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Abstract—Automatic Modulation Classification (AMC) has
been the focus of research for more than three decades. Although
AMC was first motivated by its applications in military scenarios
such as electronic warfare, surveillance or threat analysis, nowa-
days it can be applied in various civilian applications, especially
in the context of dynamic spectrum management. It is very
challenging for an AMC classifier to achieve a good trade-off
between a classification accuracy and computational cost. In
the literature most attention is paid on how to achieve high
classification accuracy, while computational complexity is often
neglected. In this paper we propose a novel AMC framework
based on Parallel Fusion of one-Dimensional (1D) Convolutional
Neural Network (CNN), where the amplitude series is fed to one
parallel branch, while the phase series is fed to the other parallel
branch of the neural network. Through comprehensive perfor-
mance analysis, we show that the proposed AMC framework
achieves a classification accuracy close to 90% over the range of
Signal-Noise Ratio (SNR) values from 0 dB to 18 dB, but with a
computational cost that is 2.5 times lower than State-of-the-Art
(SoA) models with the same achieved accuracy.

Index terms — Automatic Modulation Classification, Deep
Neural Networks, Convolutional Neural Network

I. INTRODUCTION

AMC presents an intermediate step between signal detection
and demodulation [1]. The goal of AMC is to maximize
the classification accuracy for a large number of modulation
formats under different channel conditions, while keeping the
computational complexity acceptable. Deep Neural Networks
(DNNs) have recently attracted AMC researchers’ attention
due to their remarkable results in various fields such as
computer vision and natural language processing [2]. More-
over, in [3], it is shown that an end-to-end communications
system can be modelled using Neural Network (NN) with
a performance that is competitive with respect to the SoA
modular communication systems. Conventional AMC methods
(i.e. Likelihood Based (LB) and Feature Based (FB)) will
fail to perform AMC task as those systems have machine
made modulations/constellations. In addition, a beauty of Deep
Learning (DL) AMCs lies in the no needs for an expert
knowledge and in fact that a high classification accuracy
can be achieved for a small number of samples, what might
make them feasible for a local implementation at the chipsets
without need for a cloud-computing. However, SoA DL AMCs
mostly neglect the computational cost what results out with
very complex proposed NN models [4].

Keeping in mind both, the classification accuracy and com-
putational cost, in this paper we propose an AMC framework

which consists of two stages, the signal preprocessing stage
and the signal modulation classification. As a classifier is
utilized a novel proposed Parallel Fusion of 1D CNN, which
reduces the computational cost versus SoA AMC based on
Long-Short Term Memory (LSTM) [5] and improves the
classification accuracy versus SoA AMCs based on CNN.
The low computational cost is achieved by using 1D CNN,
which is very effective for time-series and provides a good
performance [2]. High classification accuracy is achieved by
splitting amplitudes and phase series to different NN branches.
Each modulation format is described by amplitude, phase or
frequency variations and with learning each of them indepen-
dently leads to higher accuracy. SoA CNN and other DNN
models rely on two channel input data [5]–[7], one channel
for amplitude series and other for phase series. Having in mind
how the convolution is performed in CNN [2], it is obvious
that the values from different channels will be mixed together
at deeper layers what will require more complex NN models
to learn non-linear mixture of amplitude and phase series.

The remainder of the paper is organized as follows. The
overview of SoA AMC methods is presented in II. In Section
III the signal model and classifier performance metrics are
discussed. Section IV explains the structure of novel AMC
framework. The section V introduces the relevant SoA models
for AMC that are then discussed next. The conclusions are
briefly presented in Section VI.

II. RELATED WORK

Generally, AMC approaches can be broadly classified to
LB, FB and DL.

1) LB methods: They are optimal in Bayesian sense, in that
they minimize the chance of a wrong classification. LB meth-
ods use exact or approximate Likelihood Ratio Tests (LRTs)
as a decision criterion. LB methods require a careful design
and selection of signal and noise models. The traditional LB
methods assume that all channel parameters are known. LB
methods are characterized by high computational complexity
and are sensitive to noise and interference. A dynamic wireless
fading channel introduces a lot of nonlinear imperfections
which are hard to describe by maths. Moreover, it is very
difficult to obtain all necessary system parameters at receiver
side. Having said that, LB AMCs deployed in practical envi-
ronment might not operate well. A detailed survey about LB
methods is given in [8,9].
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Figure 1. AMC Framework.

2) FB methods: They rely on an assumption that any given
feature may be similar between different modulations, but
no two modulations are similar in all features. FB methods
[10]–[13] are sub-optimal in Bayesian sense, but they are
popular due to their easy implementation. They may have high
computational complexity depending on how many and which
type of signal features are used. FB methods require offline
phase for feature extraction and substantial system design-side
knowledge about modulation properties. FB AMCs require
a huge number of samples (theoretically infinite) to ensure
required high classification accuracy. However, huge number
of samples leads to higher processing delay and for local
chipset implementation of AMCs it might be infeasible.

3) DL methods: DL relies on Stochastic Gradient Descent
(SGD) technique to optimize NN models. Due to their pop-
ularity and high performance in various applications, DNNs
have been widely considered for AMC task [14]. Multi-Layer
Perceptron Network (MLPN), CNN and Recurrent Neural Net-
work (RNN), i.e. LSTM have been investigated for AMC task.
Their convergence time depends on the number of considered
modulations and the type of environment. CNNs are faster by
design, since the computations in CNNs can happen in parallel,
while RNNs need to be processed sequentially, since the
subsequent steps depend on previous ones. DL methods don’t
have feature selection phase, since the efficient classification
features are selected directly from raw In-phase/Quadrature
(I/Q) components of signal [4]–[7]. Thus, there is no need
for an expert knowledge, such as it in FB AMCs. Moreover,
DL AMCs can achieve high classification accuracy for small
number of samples [5,6]. There are also a few proposals which
combine two NNs connected in serial or parallel in order to
achieve better performance of classifier such is [4] where is
shown that serial fusion of LSTM and CNN is better than
parallel.

III. SIGNAL MODEL AND PERFORMANCE MEASURE

In this section, we introduced the model of modulated signal
as received by the classifier.

Assume that there is one active transmitter which transmits
signal and one antenna is utilized at the receiving side. Let
s(n) and r(n) denote the transmitted signal and received signal
at the n-th time slot, respectively (Fig. 1). Their relationship
is given by

r[n] = α[n] expj(ω0n+θ0) s[n] + v[n] (1)

where α[n] is the complex channel gain, ω0 is the frequency
offset, θ0 is the phase offset between the transmitter and the
receiver, and v[n] is the complex Additive White Gaussian
Noise (AWGN) with mean 0 and variance 2σ2

v .
A task of a classifier is to correctly choose a modula-

tion format of received signal, r[n] from a pool of known
Nmod candidate modulations. The performance of classifier
is determined by a basic measure Pcc, named as average
probability of correct classifications. Let P (i′|i)

c denote the
classification probability to declare that the i′-th modulation
format has been recognized, when the modulation format
of the incoming signal is i. Under an assumption that each
modulation format has the same probability to be sent, then
the average probability of correct classification is given as

Pcc =
1

Nmod

Nmod∑
i=1

P (i′|i)
c (2)

IV. AMC FRAMEWORK

In this section, the structure of the AMC framework is in-
troduced. The right-hand side of Fig. 1 illustrates the proposed
AMC framework, which consists of two stages, the signal
preprocessing stage and the classification stage based on the
1D CNN Parallel Fusion network model.

A. Signal Preprocessing Stage

In the signal preprocessing stage the rectangular form of
received signal is transformed into polar form, i.e. I/Q values
are transformed to their corresponding amplitude and phase
values. The amplitude and phase components of received
signal are separated into two different series. The series of
Ls amplitude samples is fed to the first branch of the Parallel
Fusion Network, while the series of Ls phase samples is fed
to the other branch of the Parallel Fusion Network. If the
length of the amplitude/phase series is lower than the required
number of samples, Ls the both series are padded with zeros
to fill the required length.

B. Classification Stage using 1D CNN Parallel Fusion net-
work model

As an AMC is proposed 1D CNN Parallel Fusion network
which is given in Fig. 2. Each branch has np Conv 1D layers
with 64 filters with kernel size of 3. To prevent the network
from overfitting after each Conv 1D layer, there is a Dropout
layer with drop probability of 0.2. Parallel branches are merged
by a Concat Merge layer. The output concatenated series
of data passes through ns Conv 1D layers, each with 64
filters and a kernel size of 3. Each serial Conv 1D layers is
followed by Max Pooling layer with kernel size of 2 and with
Dropout Layer with drop probability of 0.2. The Max Pooling
Layer reduces the complexity of the output and prevents
overfitting of the data. The data passes further through two
Fully Connected Layers (FCLs) with 128 units and Scaled
exponential Linear units (SeLu) activation. The dropout layer
with keeping probability of 0.5 follows each FCL, as well.
Finally, the data are fed to the last FCL with number of the
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Figure 2. 1D CNN Parallel Fusion Network.

units equal to number of considered modulations and Softmax
activation. Model classification accuracies are analysed for
different values of np and ns in order to find their optimal
values which assures the highest accuracy under a reasonable
complexity.

V. AMC PERFORMANCE ANALYSIS

The performance and the sensitivity analysis of different
system parameters is carried out for the proposed 1D CNN
Parallel Fusion network and some SoA single-signal AMC
models, what is presented in this section. For our performance
analysis, we are mainly interested in classificaiton accuracy
and processing cost.

A. RadioML dataset

The single-signal AMC comparison analysis is done by
utilizing a baseline modulation dataset, described in [15]. The
synthetic dataset is built in GNU radio, by simulating the 11
commercially used modulation formats at varying SNR ratios
(-20 dB to 18 dB). The channel is modelled as dynamic and
includes a number of imperfections such as center frequency
offset, sample rate offset, AWGN, multi-path and fading. Each
signal example is normalized and consists Ls = 128 complex
floating point time I/Q samples.

B. SoA Models

For comparison we utilize the newest SoA FB and DL
AMC models. LB AMC models are left out due to their
high computational complexity. Among the SoA DL AMC
we chose the following DNN models:
• LSTM model with 2 hidden layers as it is given in [5];
• two-Dimensional (2D) CNN model with two 2D convo-

lutional layers and two dense FCLs as it is described in
[7];

• 1D CNN model with seven 1D convolutional layers,
seven Max Pooling layers and three dense FCLs, such
it is given in [6]. Since the input sample length is 128,

the first three Max Pooling layers are removed from the
model;

• Complex-valued 1D CNN model has the same number
and type of hidden layers as model in [7], but the
activations are complex-valued and convolutional layers
are 1D.

As FB AMCs we consider the following shallow classifiers
which are widely used in SoA models:
• Decison Tree Classification (DTC) with the maximal

depth equal to number of features;
• Support Vector Machines (SVM) with a radial kernel and

a penalty parameter equal to 10;
• K-Nearest Neighbour (KNN) with number of neighbours

equal to number of input features.
The features taken into account belong to instantaneous

time domain, transform domain, statistical and zero-crossing
features. Their definitions and mathematical descriptions can
be found in [16]. 30 features given in [16] are calculated for
a sample length of 128 I/Q values. The parameters of FB
classifiers are set according to the ones that are common in
SoA models.

C. Implementation Details

All single-signal AMC models considered in this paper are
implemented in TFlearn, a Python’s deep learning library built
on top of Tensorflow [17]. The training and testing stages
for each of them are run on Dell laptop with the following
processor Intel i7-8650U CPU @ 1.90GHz 2.11 GHz. The
training stage is done through 80 epochs, with the batch
size (number of samples per gradient update) of 256. As an
optimizer is set Adam (Adaptive Moment Estimation)[18],
with a learning rate set to 0.001, while the metric is Categorical
cross-entropy.

D. Results

1) AMC performance by model: The classification accura-
cies for the SoA models and our proposed 1D CNN Parallel
Fusion network model are summarized in Fig. 3. The highest
accuracy is achieved by the LSTM model, while our proposed
1D CNN Parallel Fusion network achieves the same accuracy
at high SNR values and a slightly decreased (less than 8%)
performance at low SNR. A KNN classifier with 30 neighbours
has the worst accuracy. The 1D CNN model outperforms the
2D CNN model. The complex-valued 1D CNN model achieves
the highest classification accuracy at low SNR values, but
due to its high complexity it is not preferable choice. Fig. 3
shows that DNN models outperform the shallow classifiers
for a whole range of SNR values. Fig. 4 shows that both
LSTM and 1D CNN Parallel Fusion models have a problem
to distinguish Wide-Band Frequency Modulation (WBFM)
and Amplitude Modulation - Dual-Side Band (AM-DSB),
what is a consequence of the way how the AM-DSB dataset
is built (there are silence periods of audio signals). A 1D
CNN Parallel Fusion model can distinguish higher orders of
Quadrature Amplitude Modulation (QAM) modulation with
high accuracy of 76 − 85% at 0 dB SNR. The SoA models
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Figure 3. AMC Classification accuracy with input signal in time domain.
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(a) 1D CNN Parallel Fusion
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Figure 4. Confusion matrix at 0 dB of SNR.

of CNN have this accuracy up to 55%. Therefore, by splitting
amplitude series and phase series to two CNN branches we
achieved 30% increase of classification accuracy for QAM
family modulations.

One more interesting thing to compare is the performance of
time or frequency domain series. For each model we compare
the same set of classifiers for input sequences that present
the magnitude of Fast-Fourier Transformation (FFT). Fig. 5
shows that the LSTM performance degrades much when the
input signal is the magnitude of FFT. On the other hand, both
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Figure 5. Single-signal AMC performance in time and frequency domain.

1D and 2D CNN, have a lower performance degradation and
perform better than LSTM. However, in each case the time
series input data provides higher classification accuracy. Thus,
AMCs based on spectograms have a bad performance, since
the modulation formats within the same family share the same
shape of spectrum.

2) FB AMC performance by number of features: In order
to get insight in the sensitivity of FB AMCs to the feature
selection, we explored their performance and cost as a func-
tion of feature selection. First, we calculated a correlation
coefficient of each feature given in [16] with the modulation
output label. Based on obtained correlation coefficients values,
we picked 11 features with the highest absolute value and
examined the performance of FB AMCs with such reduced
number of features. According to the Fig. 6 we can state that
FB AMCs are high sensitive on number and type of features
that are fed to their inputs. Support-Vector Classifier (SVC)
achieves the highest classification accuracy versus DTC and
KNN, but it is the most complex. The results shown in Fig. 6
are expected, since the absolute value of correlation factor of
each of 30 features with output modulation label is below 0.21,
what means that whichever feature is left out it will have an
impact on the classification accuracy.

3) 1D CNN Parallel Fusion AMC performance by depth: In
order to obtain the optimal values for np and ns parameters
of 1D CNN Parallel Fusion network we experimented with
different combinations. Fig. 7 shows that the classification
accuracies are slightly different, but the highest accuracy is
obtained for np = 4 and ns = 5. However, LSTM model has
the highest accuracy, but it has the highest computational cost.
By 1D CNN Parallel Fusion network we achieved the same
accuracy for high SNR values and a slight lower accuracy
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Table I
PROCESSING TIME PER SAMPLE [MS]

Model
1D CNN Parallel Fusion

LSTM SoA 1D CNN
np = 2, ns = 4 np = 3, ns = 4 np = 2, ns = 5 np = 4, ns = 5 np = 5, ns = 6

Time 0.6 1.0 0.87 1.0 1.5 2.5 0.5
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Figure 6. FB AMCs performance by number of features.
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Figure 7. 1D CNN Parallel Fusion Classification Accuracy sensitivity on
network depth.

(less than 8%) at low SNR values, but with the significant
lower computational cost. Table I shows that for optimal 1D
CNN Parallel Fusion network the classification/prediction time
consumption is 2.5 times lower than time needed by LSTM.

VI. CONCLUSIONS

In this paper we propose a Parallel Fusion AMC framework
that aims to achieve good feature extraction from raw complex
signals, while at the same time minimize computational cost.

Through a detailed performance analysis and comparison with
various AMC approaches from literature, we show that our
method achieves SoA classification performance at high SNR
while reducing the computational cost with at least a factor 2.
In addition, memory requirements are reduced significantly.
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