
Nonparametric analysis of
random utility models:
computational tools for
statistical testing

Bart SMEULDERS, Laurens CHERCHYE and Bram DE ROCK

FACULTY OF ECONOMICS AND BUSINESS

DISCUSSION PAPER SERIES DPS19.08

AUGUST 2019

Nonparametric Analysis of Random Utility Models:

Computational Tools for Statistical Testing

Bart Smeulders∗, Laurens Cherchye†, Bram De Rock‡

August 26, 2019

Abstract

Kitamura and Stoye (2018) recently proposed a nonparametric statistical test for random utility
models of consumer behavior. The test is formulated in terms of linear inequality constraints and
a quadratic objective function. While the nonparametric test is conceptually appealing, its practi-
cal implementation is computationally challenging. In this note, we develop a column generation
approach to operationalize the test. We show that these novel computational tools generate con-
siderable computational gains in practice, which substantially increases the empirical usefulness of
Kitamura and Stoye’s statistical test.

1 Introduction

In the analysis of consumer behavior, random utility models are popularly used to structure the notion
of stochastic rationality in the presence of unrestricted (possibly infinite dimensional) unobserved het-
erogeneity. In a recent and insightful paper, Kitamura and Stoye (2018) (henceforth KS) provided an
operational method to nonparametrically test random utility models. Particularly, they developed a sta-
tistical test for the hypothesis that a repeated cross-section of demand data might have been generated by
a population of rational consumers, in a setting with any number of goods and allowing for unrestricted
unobserved heterogeneity. To do so, these authors built on the seminal work of McFadden and Richter
(1990), who presented a nonparametric characterization of stochastic rationalizability (i.e. data consis-
tency with random utility optimization), but without considering in much detail its operationalization or
statistical testing. For their statistical test, KS extended the linear program proposed by McFadden and
Richter with a quadratic objective function. In essence, the resulting optimization problem boils down
to calculating the Euclidean minimum distance between a vector and a convex set in a high-dimensional
space.

While conceptually attractive, the practical implementation of KS’s statistical test is computationally
challenging. The above described optimization problem implies a large quadratic program that includes
one variable per rational choice type. However, by default the number of rational types rises exponen-
tially with the number of choice situations and, moreover, identifying all rational choice types is time
consuming. KS’s procedure requires solving this quadratic program not only to compute their test statis-
tic, but also in every iteration of the bootstrap method they propose for simulating the statistic’s critical
value. In fact, KS explicitly recognize computational complexity as one of the main limiting factors of
their novel testing procedure. They mention the development of computational tools that make their
theoretical findings applicable to larger sized problems as a “salient issue” for further research (KS, p.
1906). We will formally motivate this issue by showing the NP-Hardness of Kitamura and Stoye’s testing
problem (see Section 4.1).

∗HEC Management School, University of Lige, bart.smeulders@uliege.be.
†Department of Economics, University of Leuven (KU Leuven). E. Sabbelaan 53, B-8500 Kortrijk, Belgium. E-mail:

laurens.cherchye@kuleuven.be. Laurens Cherchye gratefully acknowledges the European Research Council (ERC) for his
Consolidator Grant 614221. Part of this research is also funded by the Research Fund KU Leuven and the Fund for Scientific
Research-Flanders (FWO).
‡ECARES, Université Libre de Bruxelles and Department of Economics, University of Leuven (KU Leuven). Avenue F.

D. Roosevelt 50, CP 114, B-1050 Brussels, Belgium. E-mail: bderock@ulb.ac.be. Bram De Rock gratefully acknowledges
FWO and FNRS for their support.

1

These observations form the starting motivation of our current note. Particularly, we propose novel
tools for operationalizing KS’s testing procedure, and we show that these tools can considerably alleviate
computational constraints in empirical applications. We expect that this will contribute to the further
dissemination of KS’s appealing nonparametric test in applied work. At this point, we emphasize that
our following developments are also directly useful for alternative extensions of KS’s original contribution
that have been proposed in follow-up work. For example, Deb et al. (2017) extended KS’s original analysis
to apply to the notion of revealed price preference, with consumers trading off the utility of consumption
against the disutility of expenditure, and Kitamura and Stoye (2019) build on KS’s basic results to bound
features of counterfactual choices in the nonparametric random utility model of demand. For the sake of
brevity we will not explicitly focus on these extensions in the current note, but the computational tools
that we introduce below are fairly easily adapted to these other settings.

Our specific contribution is that we propose a column generation approach for the Euclidean distance
calculation. This approach exploits that optimal solutions to programming problems with many variables
but few constraints can often be characterized in terms of only a small number of variables. Therefore, a
column generation approach starts with a limited number of variables, and identifies new ones as needed
through a separate optimization problem. This allows us to circumvent the problem of having to identify
all rational choice types.1 As for the practical application of such a column generation approach to the
setting under study, a specific issue relates to the tightening procedure that KS propose for computing the
critical value of their test statistic. This tightening procedure requires knowledge of all rational choice
types, which in principle makes it incompatible with column generation. We show however that this
obstacle can be overcome through a slight modification of KS’s original procedure. Finally, we illustrate
the practical usefulness of our newly proposed column generation algorithms by re-analyzing KS’s empir-
ical application. This application demonstrates that our novel tools generate considerable computational
gains in practice, which substantially increases the empirical usefulness of KS’s test.

This note unfolds as follows. Section 2 sets the stage by briefly describing KS’s random utility model
and proposed testing procedure. Section 3 introduces our column generation algorithms to implement
KS’s statistical test. Section 4 presents our empirical application. Section 5 concludes.

2 Kitamura and Stoye’s Statistical Test

Throughout, we will focus on a discrete choice setting. We remark that KS considered a continuous
choice setting in their basic set-up, with choice sets representing budget sets that are characterized by
prices and expenditure levels. However, they relied on a discretization of these choice sets in their testing
procedure, which makes it formally equivalent to the setting described below.

2.1 Random Utility and Stochastic Rationalizability

Let X represent the set of all discrete choice options xi, with N = |X | the number of choice options, and
let u : X → R denote a utility function.2 For simplicity, we assume u(xi) 6= u(xj) for all i, j ∈ X , i 6= j.
A choice situation t is characterized by a subset of the discrete choice options, denoted Xt ⊆ X . We will
assume that there are T choice situations, and every choice set Xt contains It choice options (such that∑T
t=1 It = N). A rational individual with a utility function u picks the choice option x that satisfies

x = arg max
xj∈Xt

u(xj).

Given the discrete nature of the choice sets Xt, there is a finite number of possible choice profiles
defined over the T choice situations. We refer to each such choice profile as a choice type, indexed by r.
Specifically, we encode a choice type r as ar = (ar,1,1, . . . , ar,T,IT), with ar,t,i = 1 if choice option xi is
chosen in situation t by type r and ar,t,i = 0 otherwise. The set of rational choice types R is the set of
all types r for which there exists some utility function ur such that

ar,t,i = 1 if and only if xi = arg max
xj∈Xt

ur(xj).

1At this point, we indicate that the computational problems handled in the current paper are similar to those encountered
in the study of random utility models in binary choice settings with rational choice types represented by strict linear orders
over the choice alternatives (Block and Marschak, 1960). Smeulders et al. (2018) propose column generation algorithms for
that particular setting.

2We assume that utility functions u satisfy the same well-behavedness properties as in Kitamura and Stoye (2018).

2

Let PR be a probability distribution over all rational choice types, and let pr be the probability of a
given choice type. We define the sets Rt,i as the subsets of R such that r ∈ Rt,i if and only if ar,t,i = 1,
i.e. Rt,i is the set of rational choice types that choose xi in choice situation t.

Assume a set of observed choice situations for a given population, and let πt,i denote the probability
that option i is chosen in situation t. Stochastic rationalizability requires that there exists a probability
distribution PR such that, summed over all rational choice types r, the probability of choosing option
xi in situation t (given by

∑
r∈Rt,i

pr) equals πt,i. For π = (π1,1, . . . , πT,IT) representing the choice
probabilities, we thus have the following definition.

Definition 1. The choice probabilities π are stochastically rationalizable if and only if there exists a
distribution PR over choice types such that∑

r∈Rt,i

pr = πt,i ∀t = 1, . . . , T,∀xi ∈ Xt.

We conclude this section by highlighting the geometric interpretation of Definition 1, which will be
useful for our discussion of KS’s tightening procedure in Section 3.2. Consider a space with the number
of dimensions equal to the number of choice options summed over all choice situations (i.e. N). Then,
we can interpret π as a vector in this space, with πt,i the coordinate in the dimension associated with
situation t and choice option xi. Similarly, the vectors ar provide coordinates in each dimension for each
rational choice type, which can be used to define the convex cone

C = {c|c =
∑
r∈R

λrar, λr ≥ 0, r ∈ R}. (1)

It readily follows that the choice probabilities π are stochastically rationalizable if and only if π ∈ C.

The above representation of the cone C is called its V -representation, which defines the cone as a set
of positive linear combinations of the vectors ar. Each cone has an equivalent H-representation, which
characterizes the cone in terms of hyperplanes (by the Weyl-Minkowski theorem; see Gruber (2007)).
In that case, we define C as the intersection of feasible regions characterized by a set of hyperplanes
H = H≤ ∩ H= with the following properties: first, every h ∈ H≤ divides the space into a half-space
(including the hyperplane itself) representing a feasible region and a half-space representing an infeasible
region and, second, every h ∈ H= defines a feasible region equal to the hyperplane itself. By construction,
there exist parameters bh,t,i with

∑T
t

∑It
i bh,t,ict,i = 0 describing each hyperplane h ∈ H. Then, we can

specify

C =

{
c

∣∣∣∣∣
∑T
t

∑It
i bh≤,t,ict,i ≤ 0,∀h≤ ∈ H≤∑T

t

∑It
i bh=,t,ict,i = 0,∀h= ∈ H=

}
. (2)

2.2 Testing the Random Utility Model

We next recapture KS’s test statistic for checking stochastic rationalizability, as well as their bootstrap
method for simulating the critical value of this statistic. For compactness, we will only focus on those
aspects that will be instrumental for our following discussion, and we refer to KS for further details.

Test Statistic. Let π̂ be an empirical estimate for the choice probabilities π. KS propose to use the
test statistic JN that is defined as the Euclidean distance between the vector π̂ and the set C specified
above. More formally, we can compute JN as the solution to the following optimization problem:

Minimizepr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (3)

Subject to ∑
r∈Rt,i

pr + st,i = π̂t,i ∀t = 1, . . . , T,∀xi ∈ Xt (4)

pr ≥ 0 ∀r ∈ R. (5)

3

Like before, pr denotes the probability associated with the rational choice type r. Then, for each
dimension associated with choice situation t and option xi, the value st,i gives the distance between a
linear combination of the types (i.e.

∑
r∈Rt,i

pr) and the estimated choice probability π̂t,i. Referring to
Definition 1, we have that π̂ is stochastically rationalizable if and only if JN = 0. In what follows, we will
use η̂ to denote the projection of π̂ onto C that corresponds to the solution of this minimization problem.

Critical Value. KS propose a bootstrap procedure to simulate the critical value of their test statistic.
The procedure is characterized by a tuning parameter τN that is chosen such that τN ↓ 0 and

√
NτN ↑ ∞.

It makes use of M bootstrap replications with sample frequencies π̂∗(m) for m = 1, . . . ,M . Then, the
critical value for JN is computed as follows:

1. Obtain the τN -tightened estimator η̂τN that solves the optimization problem

Minimizepr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (6)

Subject to ∑
r∈Rt,i

pr + st,i = π̂t,i ∀t = 1, . . . , T,∀xi ∈ Xt (7)

pr ≥ τN/|R| ∀r ∈ R. (8)

2. Define the τN -tightened recentered bootstrap estimators

π̂∗(m)
τN = π̂∗(m) − π̂ + η̂τN . (9)

3. The bootstrap test statistics J
∗(m)
N (τN) are the solutions to minimization problem (6)-(8), using

π̂
∗(m)
τN for the right-hand sides of the equalities.

4. Use the empirical distribution of J
∗(m)
N (τN), m = 1, . . . ,M to obtain the critical value for JN .

We note that the problem (6)-(8) imposes strictly positive lower bounds on all variables pr. These
bounds are meant to tighten the cone, to achieve an effect similar to generalized moment selection (see
KS for a detailed discussion).

2.3 Computational Difficulties

Computing the test statistic JN and its critical value requires solving 2 + M quadratic programs: the
problem (3)-(5) must be solved once, and the problem (6)-(8) must be solved 1+M times (once to obtain
the τN -tightened estimator η̂τN , and M times for the bootstrap replications to generate the empirical

distribution of J
∗(m)
N (τN)). As mentioned by KS, solving these problems is computationally challenging.

In their own computations, KS follow a straightforward approach that first identifies all rational choice
types r ∈ R, to subsequently solve 2 +M large quadratic programs (involving one variable per rational
type). However, the number of rational choice types can rise exponentially with the number of choice
situations T , which makes the approach by KS computationally costly for moderately sized instances,
and even practically impossible to handle for larger instances.

As a specific illustration, Table 1 shows the approximate number of rational choice types for different
size instances in KS’s own empirical application.3 When recapturing this application in Section 4, we will
also formalize the computational complexity of computing JN (and its critical value) by showing that it
is NP-Hard in general.

3 Statistical Testing through Column Generation

In the following sections, we describe a column generation procedure to operationalize KS’s statistical
test without requiring the identification of all rational choice types. In Section 3.1, we focus on problem
(3)-(5). In Section 3.2, we handle problem (6)-(8). At this point, we indicate that problem (6)-(8) is

3The total number of choice types is calculated exactly. We use random sampling to estimate the ratio of rational choice
types to total choice types.

4

3 Goods 4 Goods 5 Goods
Min Max Min Max Min Max

T = 7 3.00E+00 1.79E+04 3.10E+01 2.03E+05 3.10E+01 3.36E+05
T = 10 8.82E+02 7.53E+07 1.15E+04 1.03E+10 1.34E+05 2.43E+10
T = 15 6.91E+09 2.59E+13 1.53E+13 2.38E+16 7.16E+14 2.08E+17
T = 20 2.68E+16 6.52E+20

Table 1: Approximate maximum and minimum number of rational choice types in KS’s application.

subtly different from problem (3)-(5), as it involves strictly positive lower bounds for the variables pr that
are associated with the rational choice types. In principle, this makes it impossible to solve this problem
without first identifying all rational choice types. However, we will show that a minor adaptation of KS’s
original procedure allows us to circumvent this problem. Finally, we will also indicate the possible use
of an upper bounds method to more efficiently calculate critical values in practical applications of our
column generation approach.

3.1 Computing the Test Statistic

As indicated above, we tackle this problem by making use of a column generation algorithm. More
precisely, instead of solving problem (3)-(5) directly, we start with a restricted version of this problem,
which uses only a subset of its variables (representing a subset of rational choice types). We call this new
problem the restricted master problem, and refer to the original problem (3)-(5) as the complete master
problem. We then check whether the solution of the restricted master problem is also a solution of the
complete problem (3)-(5) by solving a so-called pricing problem. If this turns out not to be the case,
we can use the outcome of the pricing problem to identify a new variable to be added to the restricted
master, and we proceed by (re-)solving the resulting problem.4

We formally introduce the proposed algorithm in a step-by-step manner. In a first step, we solve
the problem (3)-(5) with a restricted set R̄ containing k rational choice types. Throughout, we will
use bar notation for variables, sets or solutions that correspond to a restricted master problem. We
let p̄∗ = (p̄∗1, . . . , p̄

∗
k) and s̄∗ = (s̄∗1,1, . . . , s̄

∗
T,IT

) represent the optimal solution to this restricted master

problem. We can use this solution to construct the Euclidean projection of π̂ on the restricted set C̄, and
we denote this projection by η̄∗ = (η̄∗1,1, . . . , η̄

∗
T,IT

), with η̄∗t,i =
∑
r∈R̄t,i

p̄∗r .

By the separating hyperplane theorem, we know that η̄∗ is also the Euclidean projection of π̂ on the
complete set C if only if

(π̂ − η̄∗) · (η − η̄∗) ≤ 0 for all η ∈ C.

Since C is a cone generated by linear combinations (with positive coefficients) of the vectors ar (for
r ∈ R), it suffices that this inequality holds for all ar. Note that π̂ − η̄∗ = s̄∗ and, thus, we can rewrite
the inequality (π̂ − η̄∗) · (ar − η̄∗) ≤ 0 as s̄∗ar ≤ s̄∗η̄∗. Therefore, we can check whether η̄∗ is the
Euclidean projection of π̂ on C by verifying the following problem.

Problem 1. Does there exist a choice pattern r ∈ R such that s̄∗ar > s̄∗η̄∗ ?

We can check Problem 1 through the optimization problem

arg max
r∈R

s̄∗ar, (10)

which we refer to as the pricing problem. Clearly, for each solution to (10), we can easily check whether
the optimal objective value exceeds the threshold value s̄∗η̄∗. If this turns out to be the case, the optimiz-
ing choice type r ∈ R is added to the set of choice patterns considered in the restricted problem, which
is then re-solved. Otherwise, the solution (p̄∗, s̄∗) to the restricted problem is also an optimal solution to

4Basically, this approach computes the distance between a point and a polytope by iteratively taking into account addi-
tional vertices of a polytope. This type of procedure was originally described by Wolfe (1976). In his original contribution,
Wolfe makes use of an exhaustive list of vertices of the polytope, which is impractical in our current application given the
large number of vertices. Cadoux (2010) extends Wolfe’s approach to a setting without an exhaustive list of vertices. Our
following procedure adapts Cadoux’ method to our problem setting. In Section 3.2 we show the possibility to extend this
column generation approach to make it applicable to the tightened problem (6)-(8).

5

the problem that considers the full set R of rational choice types.

Importantly, although an optimal solution to (10) is preferable, it is actually sufficient to identify
any r ∈ R that meets s̄∗ar > s̄∗η̄∗ to continue with the column generation procedure. To speed up
computation, it can thus be more interesting to quickly find any type r ∈ R meeting this threshold
criterion than to spend a longer time finding the solution to (10). We will explore this feature in our
empirical application in Section 4, by comparing computation times when using heuristics to solve the
pricing problem with computation times when using an exact algorithm.

Algorithm 1 summarizes our column generation procedure. The crucial benefit of this column gen-
eration approach is that it allows us to solve problem (3)-(5) with only a fraction of the rational choice
types identified. In Section 4 we will show that this yields substantial computational gains in practice.

Algorithm 1: Quadratic Program Column Generation Algorithm

1: Solve Initial Restricted Master Problem, optimal solution p̄∗, s̄∗, η̄∗.
2: while there exists r ∈ R with s̄∗ar > s̄∗η̄∗ do
3: Find a choice pattern r ∈ R with s̄∗ar > s̄∗η̄∗.
4: Set R̄ := R̄ ∪ r.
5: Re-Solve Restricted Master Problem, optimal solution p̄∗, s̄∗, η̄∗.
6: end while
7: Restricted Master Solution p̄∗, s̄∗, η̄∗ is the optimal solution p∗, s∗,η∗ to the Complete Master

Problem.

3.2 Computing the Critical Value

The tightened problem to compute the critical value of KS’s test statistic involves the specific complication
that it is characterized by a strictly positive lower bound on pr for all r ∈ R. In principle, this is
incompatible with the column generation algorithm that we described in the previous section, which only
uses a subset of these variables and, thus, puts multiple values pr equal to zero by default. We note,
however, that the tightening (i.e. computing the vector η̂τN that minimizes the distance to π̂) can also
be achieved by only imposing a strictly positive lower bound on a small subset of the variables pr. More
specifically, we consider a subset of the rational choice types R′ ⊂ R such that, for each hyperplane
h≤ ∈ H≤, there exists at least one r ∈ R′ that satisfies

∑T
t=1

∑It
i=1 bh≤,t,iar,t,i < 0. Then, the following

result follows readily from the proof of Lemma 4.1 in KS.

Lemma 1. For τ > 0, define

C =

{
c|c =

∑
r∈R

λrar, λr ≥ 0,∀r ∈ R\R′, and λr ≥ τ/|R′|,∀r ∈ R′
}
.

Then, one also has

C =

{
c|

T∑
t

It∑
i

bh≤,t,i ct,i ≤ −τφh,∀h≤ ∈ H≤, and

T∑
t

It∑
i

bh=,t,i ct,i = 0,∀h= ∈ H=

}
,

with φh > 0 for all h≤ ∈ H≤.

Given a suitable set R′, we can thus solve the following problem.

Minimizepr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (11)

Subject to ∑
r∈Rt,i

pr + st,i = π̂t,i ∀t = 1, . . . , T,∀xi ∈ Xt (12)

pr ≥ τN/|R′| ∀r ∈ R′ (13)

pr ≥ 0 ∀r ∈ R. (14)

6

As the goal of our column generation approach is to minimize the number of variables we consider
explicitly, being forced to use all variables r ∈ R′ is not ideal. The following lemma provides us with a
suitable reformulation that sets all lower bounds to zero.

Lemma 2. The problem

Minimizepr,st,i JN = N

T∑
t=1

It∑
i=1

s2
t,i (15)

Subject to ∑
r∈Rt,i

pr + st,i = π̂t,i −
∑
r∈R′t,i

τN/|R′| ∀t = 1, . . . , T,∀xi ∈ Xt (16)

pr ≥ 0 ∀r ∈ R. (17)

is equivalent to problem (11)-(14).

Proof. Given a feasible solution (st,i, pr) to (11)-(14), let (st,i, p
′
r) be a solution to (15)-(17), with p′r = pr

for r ∈ R\R′ and p′r = pr − τN/|R′| for r ∈ R′. This is a feasible solution to (15)-(17). Since both
problems have the same objective function, and the st,i variables have the same value in both feasible
solutions, a solution to (11)-(14) implies the existence of a solution to (15)-(17) with the same objective
value. Likewise, given a feasible solution (s′t,i, p

′
r) to (15)-(17), we have that (s′t,i, pr) with pr = p′r+τN/|R

for r ∈ R, pr = p′r otherwise, is a feasible solution to (11)-(14), again with the same objective value.
Thus, the optimal solution to both problems will have the same value.

In view of practical applications of KS’s statistical test, a final important observation is that it is

actually not required to identify the exact distribution of J
∗(m)
N (τN) to check whether or not JN exceeds

its critical value. We only need to compute the fraction of bootstrap test statistics J
∗(m)
N (τN) larger or

smaller than JN to conclude the test. As an implication, we can make use of an upper bound on the

bootstrap test statistics J
∗(m)
N (τN) to more quickly determine the p-value of JN . More precisely, if for

a given bootstrap repetition we can determine at any point in the column generation algorithm that

J
∗(m)
N (τN) is strictly smaller than JN , then we can terminate the algorithm and restrict to saving (only)

the upper bound on J
∗(m)
N (τN). Obviously, this approach can result in significant savings of computation

time: the bootstrap test statistics need not be computed exactly, while the resulting p-values do not
change.

An interesting by-product of our column generation approach is that it readily allows for defining

such an upper bound on J
∗(m)
N (τN): by construction, the objective value of the restricted master problem

provides an upper bound on the objective value of the original problem (6)-(8), as any solution to the
restricted master problem is also feasible for the original problem. Thus, because the restricted master
problem is already solved in every iteration of the column generation algorithm, no additional work is
required to obtain this upper bound.

4 Empirical Application

We show the empirical usefulness of our novel computational tools by replicating the empirical tests
conducted by KS in their original study. KS characterize rational choice types in terms of the Strong
Axiom of Revealed Preference (SARP). To be precise, KS consider the Generalized Axiom of Revealed
Preference (GARP) in addition to SARP. However, as they indicate, GARP and SARP become em-
pirically equivalent when we restrict attention to patches exhibiting strict revealed preference relations
(explained below), which is also what KS do in their empirical application. In what follows, we start by
briefly recapturing SARP, and we show how this SARP characterization of rationality can be integrated
in our general set-up introduced in Section 2. Subsequently, we customize the general column generation
approach described in Section 3 to the specific application setting under study. Finally, we report and
discuss the main results of our empirical application.

4.1 SARP-based rational choice types

For a given consumer, consider a dataset D = {(wt,qt)}Tt=1, with qt ∈ RL+ a bundle of L goods bought
at the price vector wt ∈ RL++. Suppose that, for observations t and t′, we have wtqt′ < wtqt. Then, we

7

conclude that the consumer reveals her preference for the quantities qt over the quantities qt′ , since the
latter bundle was affordable when the former bundle was chosen. Formally, we denote wtqt′ < (≤)wtqt
by qt � (�)qt′ , with � representing “strict” revealed preference. Furthermore, we use qt �∗ qt′ if there
exists a chain of quantity vectors such that qt � . . . � qt′ , and qt �∗ qt′ if such a chain exists with at
least one � relation included. We can now define the SARP, which basically requires that the dataset D
defines acyclic revealed preference relations.

Definition 2. The dataset D = {(wt,qt)}Tt=1 satisfies the Strong Axiom of Revealed Preference (SARP)
if there do not exist two observations t, t′ ∈ T , with qt 6= qt′ , such that qt �∗ qt′ and qt′ �∗ qt.

A central result in the literature on nonparametric demand analysis is that there exists a utility func-
tion that rationalizes the consumer’s observed behavior if and only if the dataset D satisfies SARP (see
Afriat (1967) and Varian (1982)).5 In that case, we say the consumer is rational.

In their application, KS consider a repeated cross-section of demand data that have been generated
by a population of consumers. Every cross-section/year t = 1, . . . , T represents a choice situation that is
characterized by a budget hyperplane (i.e. prices and total expenditures); this hyperplane is the same for
all consumers observed in year t. To apply the set-up of the previous sections, we discretize the budget
hyperplane of each year t by partitioning the set of possible choices (RL+) into subspaces xt,1, . . . , xt,It ;
we will use the word “patches” to refer to these subspace elements. This partitioning is such that (i)

RL+ =
⋃It
i=1 xt,i, (ii) for all bundles q,q′ ∈ xt,i and each other year t′, q and q′ induce exactly the same

revealed preference relations, and (iii) the partition is of minimal size. Following KS, we only consider
patches corresponding to strict revealed preference relations. Every choice set Xt is the set of patches for
a given year t, and the set X contains the union of patches defined over all years t. One can verify that,
for each year t, the number of patches (and, thus, possible choices) we must account for is bounded from
above by 2T .

Following our reasoning of before, we are specifically interested in rational choice types, which we
characterize by the SARP condition in Definition 2. That is, the set of rational choice types R is the
set of all types r for which the chosen patches induce acyclic revealed preference relations (so obtaining
SARP-consistency). Given that there exists a finite number of patches, the number of rational choice
types to be considered is by construction also finite. Now that we have specified the sets of choice options
Xt and the set of rational choice types R for KS’s application setting, we can formally establish the
complexity of computing the associated test statistic JN (which we already briefly discussed in Section
2.3). In Appendix A, we prove the following result.

Theorem 1. Computing the test statistic JN is an NP-Hard problem.

To sketch the meaning of this result, we note hat the class of NP-Hard problems is a class of prob-
lems defined in computational complexity theory (see Garey and Johnson (1979) for an introduction).
Informally, a problem is NP-Hard if it is at least as difficult as the hardest problems in the class NP.
This means that no algorithm can exist for these problems with a runtime polynomially bounded by the
input size, unless one can prove P = NP. Computational complexity follows because it is widely believed
that P 6= NP (although this last inequality still has not been shown formally).

Finally, note that Theorem 1 does not exclude that in special cases there may be particular structure
in the choice options, and induced revealed preference relations, that can be exploited to reduce the
computational complexity of the problem. For example, Hoderlein and Stoye (2014) provide a polynomial
size description of the set in the case of 2 goods. In this special case, the limitation in the number of goods
puts limits on the possible number of choice options and their relations, so that the problem becomes
polynomially solvable. In particular instances with more than 2 goods, it may therefore be possible that
the problem also exhibits structure that can be exploited to find polynomial time algorithms. We see a
further exploration of this question as a potentially interesting avenue for follow-up research.

4.2 Customization

In Section 3, we introduced a general column generation procedure to calculate the test statistic JN
and to handle the tightening procedure for computing the critical value of this statistic. For the specific

5To be exact, Varian (1982) (based on Afriat (1967)) proved that there exists a (non-satiated) utility function that
rationalizes the consumer’s behavior if and only if the set D satisfies GARP. As explained above, GARP is equivalent to
SARP in our application setting.

8

SARP-based setting under study, the (restricted) master problem does not require customization, as the
formulation (3)-(5) readily applies to any discrete choice setting. However, the set of rational choice
types R is setting-specific and, therefore, we make use of a tailored formulation of the pricing problem
(10). In particular, we design a customized pricing problem that defines binary variables αt,i encoding a
valid choice type r (characterized by the binary variables ar,t,i above) that is consistent with SARP. An
optimal solution to the problem shows whether or not a rational choice type exists that can be added to
the master problem. If so, the solution values of the αt,i variables encode one such type r (for which we
can set ar,t,i = αt,i).

More specifically, analogous to the variables ar,t,i above, the binary variables αt,i indicate which patch
xt,i is chosen in each time year t. Next, we let the binary variables ρt,t′ represent the preference relations
between the patches chosen in the years t and t′, that is, ρt,t′ = 1 indicates that the patch chosen in year
t is revealed preferred over the one chosen in year t′. To characterize these binary variables ρt,t′ , we use
parameters Xt,i,t′ that indicate direct revealed preference relations for the patch xt,i: Xt,i,t′ = 1 if the
patch chosen in t is revealed preferred over the one chosen in t′, and Xt,i,t′ = 0 otherwise. Using all this,
we can define the following customized pricing problem:

Maximize

T∑
t=1

It∑
i=1

st,iαt,i (18)

Subject to

It∑
i=1

αt,i = 1 ∀t = 1, . . . , T (19)

It∑
i=1

αt,iXt,i,t′ − ρt,t′ ≤ 0 ∀t, t′ = 1, . . . , T (20)

ρt,t′ + ρt′,t” − ρt,t” ≤ 1 ∀t, t′, t” = 1, . . . , T (21)

ρt,t′ + ρt′,t ≤ 1 ∀t, t′ = 1, . . . , T (22)

ρt,t′ ∈ {0, 1} ∀j, t,= 1, . . . , T (23)

αt,i ∈ {0, 1} ∀t = 1, . . . , T, i = 1, . . . , It (24)

Constraint (19) ensures that exactly one patch is chosen on each budget. Constraints (20)-(22) guar-
antee that SARP is satisfied for the chosen patches. Specifically, constraint (20) imposes that, if a chosen
patch induces a revealed preference relation (Xt,i,t′ = 1), then ρt,t′ must be set to one. Next, constraint
(21) makes sure that the ρ-variables reflect transitivity of the preference relations. Finally, constraint
(22) enforces that the preference relations are acyclic. Together, these constraints guarantee that the
αt,i-variables encode a type that satisfies SARP.

As explained in Section 3, an optimal solution to the pricing problem is actually not required to
proceed with the column generation algorithm. It suffices to add any rational choice type that satisfies
s̄ar ≥ s̄∗η̄∗ to the restricted master problem in order to improve its solution. Therefore, and because
solving the pricing problem to optimality is often computationally costly, we propose to solve the pricing
problem by using heuristics, which are generally much less time consuming. We use exact procedures to
solve the pricing problem only when these heuristics do not allow us to identify new choice types to be
added to the restricted master. Algorithm 2 shows how the heuristic and exact procedures work together.
In our empirical implementation, we adopted a Best Insertion heuristic (Mart́ı and Reinelt, 2011) to solve
our specific pricing problem. See Appendix B for a detailed description.

Algorithm 2: Solving the Pricing Problem

1: Solve the pricing problem using heuristic algorithms.
2: if The best solution has a value < s̄∗η̄∗ then
3: Solve the pricing problem using exact algorithms.
4: end if

Finally, the tightening procedure for computing the critical value of JN requires that a subset of

9

the rational choice types R′ ⊂ R is identified a priori. This subset R′ can be generated by randomly
drawing choice types, to subsequently retain the rational choice types (that satisfy SARP). Admittedly,
this approach may be time consuming if the probability is low that a randomly chosen choice type is
rational. Therefore, we opt for a semi-random method to speed up the process. Specifically, we begin by
randomly generating choice types, and subsequently make small changes to these initial types to remove
violations of rationality. In our application, the subset R′ contains 1,000 rational choice types. Appendix
C provides a detailed description of our procedure to define R′.

4.3 Results

We implement our column generation algorithm in C++, and CPLEX 12.8 is used to solve both the
quadratic master problems, as well as the exact pricing problems. We ran our computational exper-
iments on a computer with a quad-core 2.6 GHz processor and 16Gb RAM. For the first bootstrap
iteration, we initialize the set R̄ as an empty set. At the end of each bootstrap iteration, the set R̄ is
saved and used as the starting set for the next bootstrap iteration. This approach generally speeds up
computation, as good solutions for different bootstrap iterations usually have rational choice types in
common, which do not need to be re-generated using these starting sets.6

Our specific focus is on the speed-ups that are achieved through the use of the various techniques that
we introduced above. Specifically, we compare three configurations:

1. Exact: all pricing problems solved exactly, no use of bounds (on bootstrap test statistics).

2. Heur.-No Bounds: heuristic & exact algorithms for the pricing problem, no use of bounds.

3. Heur.-Upper Bounds: heuristic & exact algorithms for the pricing problem, upper bounds used.

We use KS’s dataset, which is drawn from the U.K. Family Expenditure Survey. The data contains
annual consumption data for the period from 1975 to 1999; the number of data points used varies from
715 (in 1997) to 1509 (in 1975), for a total of 26341. We refer to KS for additional information on sample
selection criteria and (composite) goods used in the analysis.

Following KS, we start by considering the setting with 3 composite goods and time blocks of 7 con-
secutive years. To demonstrate the computational gains that are generated by our novel tools, we also
consider longer time blocks of 10 and 15 years. Further on, we also discuss results for 4 and 5 composite
goods (constructed as in KS), time blocks of 20 consecutive years and a time block containing all 25 years
covered by KS’s dataset.

Table 2 summarizes our results for the three configurations under study. For each of our three time
block specifications (7, 10 and 15 consecutive years), it reports the minimum, maximum and average
computation times defined over all possible exercises. Computation times were capped at 1 hour (3600
seconds) for each instance. Appendix D presents the detailed results underlying Table 2.

Exact Heur. - No Bounds Heur. - Upper Bounds
Min Avg Max Min Avg Max Min Avg Max

7 Years 3 10 22 3 9 18 3 7 14
10 Years 6 73 332 6 33 107 6 22 57
15 Years 240 NA > 3600 94 461 1600 95 311 998

Table 2: Minimum, Maximum and Average computation times for 3 goods.

To put our results in Table 2 into perspective, it is worth recalling that, even though KS do not
provide detailed computation times, they do mention (in footnote 17) that computing all rational choice
types takes up to 1 hour, while computing one test statistic takes about 5 seconds. Given 1000 bootstrap
repetitions, this implies more than 2 hours to compute the critical value for the hardest instances these
authors tested (with time blocks of 7 or 8 consecutive years). While it is effectively impossible to compare
computational results exactly, Table 2 clearly reveals that even in its simplest configuration (Exact), our

6The set R̄ can become large over time, slowing down computation. If this is the case, it can be beneficial to record how
often variables are used in the optimal solution and to periodically remove rarely used variables.

10

column generation approach enables statistical testing on substantially larger datasets.

Furthermore, Table 2 shows the large impact on computation time of using heuristics (for the pricing
problem) and upper bounds (for the bootstrap test statistics). While these features appear to have lim-
ited impact for the smaller instances, they do substantially speed up computation for the more complex
problems. The addition of heuristics lowers the average computation time by almost 55% for the 10
years instances, and by nearly 70% for the 15 years instances (that finished within 1 hour in the Exact
configuration). Likewise, the use of upper bounds speeds up computation by about 35% for both the 10
years and 15 years instances.

As indicated above, we also considered time blocks of 20 years and a time block containing all 25 years
covered by the data. For the 20 years instances, we only used the configuration Heur.- Upper bounds,
and found that 3 out of the 6 possible instances finished within the hour. Out of those that did not
finish, 284 bootstrap repetitions finished within the hour for the hardest instance, suggesting that all
instances could be finished in under 4 hours. For the full 25 years dataset, 2.75 hours were necessary to
complete 100 bootstrap iterations, thus indicating that computing the full 1000 bootstraps should take
around 1 day. Like before, these results support the practical usefulness of our novel tools; they allow us to
implement KS’s statistical tests in reasonable time even in the case of computationally complex instances.

So far, we have restricted to instances characterized by 3 goods. Generally, increasing the number of
goods increases the computational difficulty of the testing problem. More goods typically lead to more
patches, which in turn increase the number of (rational) choice types; see also Table 1 above. Compu-
tation times clearly reveal this higher complexity. Whereas the average computation time for 10 years
instances equals 22 seconds for 3 goods (using the configuration Heur.- Upper bounds), it amounts to 127
seconds for 4 goods and to 156 seconds for 5 goods. When using 4 and 5 goods, we found that some 15
years instances could not be solved within the hour. Based on the number of bootstrap iterations that
could be solved within one hour, we can infer that the time needed for the hardest instances equals about
2 hours (for 4 goods) and 4.5 hours (for 5 goods). Detailed results per instance are given in Appendix D.

One last interesting observation pertains to the conclusions of the statistical tests regarding stochastic
rationalizability of the observed consumption behavior that is under study. Based on their analysis of time
blocks that consist of 7 and 8 consecutive years, KS (p. 1906) state “that estimated choice probabilities
are typically not stochastically rationalizable, but also that this rejection is not statistically significant”.
Our results allow us to further strengthen this conclusion. Particularly, the qualitative finding of positive
but statistically insignificant test statistics remains intact even when considering substantially longer time
blocks. See, for example, the results in Appendix D for the blocks of 10 and 15 years.

5 Conclusion

We have addressed the computational complexity of KS’s nonparametric approach to testing random util-
ity models, by developing advanced algorithms that generate substantial computational gains in practice.
The basic ingredient of our column generation approach is that it avoids a complete enumeration of all ra-
tional choice types, but instead generates rational types only when necessary. We have demonstrated the
practical usefulness of our novel computational tools by applying them to KS’s original application set-
ting. An interesting empirical conclusion of our application is that models of random utility optimization
have substantial (nonparametric) empirical support even when considering long time periods.

References

S. N. Afriat. The construction of utility functions from expenditure data. International Economic Review,
8:67–77, 1967.

H.D. Block and J. Marschak. Random orderings and stochastic theories of responses. Contributions to
probability and statistics, 2:97–132, 1960.

F. Cadoux. Computing deep facet-defining disjunctive cuts for mixed-integer programming. Mathematical
Programming, 122(2):197–223, 2010.

11

R. Deb, Y. Kitamura, J. Quah, and J. Stoye. Revealed price preference: Theory and stochastic testing.
Technical report, University of Toronto, 2017.

M.R. Garey and D.S. Johnson. Computers and intractability. Freeman San Francisco, CA, 1979.

M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and combinatorial optimization. Springer
Verlag, 1988.

Peter M Gruber. Convex and discrete geometry, volume 336. Springer Science & Business Media, 2007.

S. Hoderlein and J. Stoye. Revealed preferences in a heterogeneous population. Review of Economics
and Statistics, 96(2):197–213, 2014.

Y. Kitamura and J. Stoye. Nonparametric analysis of random utility models. Econometrica, 86:1883–1909,
2018.

Y. Kitamura and J. Stoye. Nonparametric counterfactuals in random utility models. Technical report,
Yale University, 2019.

R. Mart́ı and G. Reinelt. The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial
Optimization, volume 175 of Applied Mathematical Sciences. Springer-Verlag Berlin Heidelberg, 2011.

D.L. McFadden and M.K. Richter. Stochastic rationality and revealed stochastic preference. In Prefer-
ences, uncertainty, and optimality, essays in honor of Leo Hurwicz, pages 161–186. Westview Press,
1990.

B. Smeulders, C. Davis-Stober, M. Regenwetter, and F. Spieksma. Testing probabilistic models of choice
using column generation. Computers & Operations Research, 95:32–43, 2018.

H.R. Varian. The nonparametric approach to demand analysis. Econometrica, 50(4):945–973, 1982.

P. Wolfe. Finding the nearest point in a polytope. Mathematical Programming, 11(1):128–149, 1976.

12

Appendix A: Proof of Theorem 1

Before embarking on the proof of Theorem 1, we first further refine the definition of the problem by
imposing a mild assumption on the set R of rational choice types. We use t′ �r t to denote that the
choice option chosen by r in choice option t′ is preferred over the choice option chosen in t. We assume
these preference relations are fully determined by the choice in t, that is, choosing xt,i induces a set of
revealed preference relations t′ �r t, t′′ �r t, . . ., regardless of the choices in t′, t′′, A choice type
r ∈ R if and only if the relation �r is acyclic. The revealed preference relations induced by a particular
choice are captured by the parameter Xt,i,t′ , of which the value equals 1 if the choice of xi in t induces
t′ �r t and 0 otherwise. Given this definition of the set R, the set is completely described by the sets of
choice options Xt for t = 1, . . . , T and the parameters Xt,i,t′ .

The proof uses the technique of reducing a known NP-Hard problem B to a new problem A. Such a
reduction shows that, given an instance of B, an instance of A can be constructed in polynomial time,
and the solution to the instance of A can be transformed back into a solution to the instance of B, again
in polynomial time. Thus, the reduction proves that, if a polynomial time algorithm exists for solving A,
there must also exist one for solving B. (For example, transforming the B instance into an A instance,
solving this new A instance and transforming it back to the B instance would be one such algorithm.)
This is known to be impossible unless P = NP.

Proof. First, we note that computing the exact value of JN is at least as hard as deciding whether JN = 0
or not. Thus, if the membership problem (i.e. decide whether π ∈ C or π /∈ C) is NP-Hard, computing
the exact value of JN is too. Grotschel et al. (1988) show that there exists a polynomial equivalence
between the problems of membership and optimization (∃c ∈ C : cw ≥W ?) over a set defined by linear
inequalities: if optimizing over the set is NP-Hard, than so is the membership problem, and by extension
computing JN . Note that, by definition, C is the set of all positive linear combinations of ar, r ∈ R. As
such, the optimization problem can be equivalently written as: ∃r ∈ R : arw ≥ W ? We now formally
define an instance of the optimization problem.

Problem 2. Weighted Rational Choice Type (WRCT)
Instance: Sets of discrete choice options Xt for t = 1, . . . , T , binary values Xt,i,t′ for all t, t′ = 1, . . . , T
and xi ∈ Xt, weights wt,i for all t = 1, . . . , T , xi ∈ Xt and a value W .
Question: Does there exist a rational choice type r ∈ R such that arw ≥W?

We will show that this problem is at least as hard as the well-known NP-Hard problem feedback
vertex set.

Problem 3. Feedback Vertex Set (FVS)
Instance: A directed graph G = (V,A) and a value M .
Question: Does there exist a subset of vertices V ′ ⊆ V with |V ′| ≥M , such that G′ = (V ′, A′) is acyclic,
with (v, v′) ∈ A′ ⇐⇒ (v, v′) ∈ A and v, v′ ∈ V ′.

Given an instance of FVS, we construct an instance of WRCT, as follows. For each vertex v, there is
one set Xv consisting of two choice options xv,1 and xv,2. Set wv,1 := 1 and wv,2 := 0. Furthermore, set
Xv,1,v′ := 1 if there exists an arc (v′, v) ∈ A, and set Xv,1,v′ := 0 otherwise. Xv,2,v′ := 0 for all v′ ∈ V .
Finally, set W := M .

We will now show that there exists a satisfying solution to FVS if and only there exists a satisfying
solution to WRCT.

⇒) First, suppose a satisfying solution to WRCT exists. Then, there must exist a satisfying solution
to FVS. Indeed, consider the rational choice type r for which arw ≥ W . There must be at least W
choice situations for which ar,v,1 = 1. Construct V ′ by selecting all vertices corresponding to these choice
situations. Trivially, we have |V ′| ≥ W = M . Furthermore, note that the existence of (v, v′) ∈ A′ in
the FVS solution implies v �r v′. Indeed, (v, v′) ∈ A′ requires both v, v′ ∈ V ′, i.e., both ar,v,1 = 1 and
ar,v′,1 = 1. By construction, if ar,v′,1 = 1 and (v, v′) ∈ A, v �r v′. Thus, if �r is acyclic, the graph
G′ = (V ′, A′) is too.

⇐) Next suppose a satisfying solution to FVS exists. Then, there must exist a satisfying solution to
WRCT. For each v ∈ V ′, set ar,v,1 := 1. Conversely, if v /∈ V ′, set ar,v,2 := 1. It is clear that arw ≥W .
It remains to be shown that �r is acyclic. Note that ar,v,2 = 0 for each v /∈ V ′. Thus, there does not

13

exist any v′ such that v′ �r v. As a result, there can be no cycle of revealed preference relations involving
v /∈ V ′, and we must only consider revealed preference relations v �r v′ with v, v′ ∈ V ′. Now, note that
v �r v′ with v, v′ ∈ V ′ implies (v, v′) ∈ A′. Indeed, by construction v �r v′ is only possible if (v, v′) ∈ A
and, since v, v′ ∈ V ′, it follows that (v, v′) ∈ A′. Thus, if G′ = (V ′, A′) is acyclic, the relation �r is
too.

14

Appendix B: Heuristic Pricing Algorithm

For the pricing problem we use a Best Insertion heuristic to quickly generate good rational choice types
to add to the restricted master problem. The Best Insertion Algorithm iteratively creates an ordering
of the choice situations, which (can) correspond to a rational choice type. First, we explain the link
between orderings of the choice situations and rational choice types. Next, we explain how to build an
ordering that provides a good solution to the pricing problem. Algorithm 3 provides the pseudo-code for
the heuristic.

Let T = {t|1 ≤ t ≤ T} represent the set of the observed choice situations. Consider an ordering
OT over all choice situations t ∈ T . We can associate a rational choice type with this ordering if the
patch chosen in a lower ranked choice situation is not preferred over one chosen in a higher ranked
choice situation. More specifically, let oT (t) be the position of choice situation t in the ordering. We can
associate a rational choice type with this ordering if for each choice situation t there exists a patch xt,i,
which lies above all budget planes Bt′ with oT (t) < oT (t′) ≤ T (i.e. Xt,i,t′ = 1). Notice that in this
case, there exists a feasible solution to the pricing problem for which ρqj ,qj′ = 1 only if j ≤ j′. Given
the objective function of the pricing problem, we can easily find the objective value of the best rational
choice types respecting the ordering of choice situations, by using the following function:

V (OT) =

T∑
t=1

max
(i:Xt,i,t′=1,∀t′ for which oT (t)<oT (t′))

st,i, (25)

with st,i the value of choosing patch xt,i in the pricing problem.

Building an ordering is done in an iterative fashion. Consider an ordering Om of m choice situations
in the set T ′ ⊂ T . We now wish to expand this ordering by inserting an additional choice situation
t /∈ T ′. The ordering Ojm is an ordering of m + 1 elements, created by inserting alternative t in the jth

position in the ordering Om. More precisely, all choice situations in positions j to m in the ordering Om
are placed one position further back, and choice situation t is placed in the jth position. The value of the
best (partial) rational choice type consistent with Ojm can be evaluated using (25), if one exists. In this
fashion, the best insertion position can be identified and the resulting ordering is fixed. This process is
repeated until all choice situations have been added to the ordering.

In the implementation, we add a dummy patch xt,It+1 for each t ∈ T , with Xt,It+1,t′ = 1 for all t′ ∈ T
and st,It+1 an arbitrarily low (negative) number. In this way, the value V (Om) is always defined, and a
negative value indicates that there does not exist a consistent rational choice type.

Algorithm 3: Best Insertion Algorithm.

1: Choose t ∈ T .
2: Create order O1 and set o1(t) := 1.
3: Set T ′ := {t}, k := 1.
4: while T ′ 6= T do
5: Choose t ∈ T \T ′.
6: For each j = 1, . . . , k, compute V (Ojk).

7: Let r := arg maxj=1,...,k V (Ojk).
8: Set Ok+1 := Ork.
9: Set T ′ := T ′ ∪ {t}.

10: Set k := k + 1.
11: end while

As a final implementation note, we remark that the choice situation to be inserted in the partial order
can be chosen freely. Different choices in the order in which choice situations are inserted can lead to
different orderings. In the implementation, we randomly generated the orders in which the situations are
inserted. For each pricing iteration we ran the algorithm 10 times with different insertion orders. From
these 10 runs of the best insertion algorithm, only the best solution to the pricing problem is kept.

15

Appendix C: Generation of Choice Types for Tightening

To tighten the set based on a subset of the rational choice types, we generate the subset in a semi-
random way. First, we generate (likely irrational) choice types by randomly choosing one patch on each
budget. If this choice type is rational, we add it to the subset for tightening. If it is not, we identify
the subsets of budgets for which preference cycles exist. For each such subset, we randomly pick one
budget. For that budget, we look for a patch which (i) removes at least one preference relation within
the subset, (ii) is as close as possible to the currently selected patch on that budget, and (iii) removes
(rather than adds) revealed preference relations. In this way, we slightly change the choice type, while
increasing the probability that it is a rational choice type. If after these changes the choice type is not
yet rational, the procedure is repeated until a rational choice type is found. Algorithm 4 contains the
pseudo-code to generate these rational choice types in a semi-random way. In the algorithm, we again
define T = {t|1 ≤ t ≤ T} as the set of all choice situations.

Algorithm 4: Generation of rational choice types.

1: Randomly generate a choice type a with
∑It
i=1 at,i = 1.

2: while a /∈ R do
3: Identify revealed preference relations ri,j , ∀i, j = 1, . . . , T .
4: Identify a partitioning T1, . . . , Tm with

⋃m
i=1 Ti = T and Ti ∩ Tj = ∅ for all i 6= j.

5: for all Tk with |Tk| > 1 do
6: Randomly choose t ∈ Tk, with xt,z the currently chosen patch on Bt.
7: for all xt,i, i = 1, . . . , It do
8: if Xt,i,t′ ≤ Xt,z,t′ for all t′ ∈ Ti then
9: Scorei := 999.

10: end if
11: for all t′ ∈ T do
12: if Xt,z,t′ = −1 and Xt,i,t′ = 1 then
13: Scorei := Scorei + 1.
14: else if Xt,z,t′ = 1 and Xt,i,t′ = −1 then
15: Scorei := Scorei + 5.
16: end if
17: end for
18: Find a patch xt,j with j ∈ arg mini=1,...,It Scorei.
19: Set at,z := 0 and at,j := 1.
20: end for
21: end for
22: end while

16

Appendix D: All Computational Results

Exact - No Bounds Heur. - No Bounds Heur. - Upper Bounds
Years Jstat Pval Time Completed Time Completed Time Completed

75 81 3.86 0.35 21.8 1000 17.9 1000 8.1 1000
76 82 11.77 0.13 15.9 1000 14.2 1000 5.2 1000
77 83 9.96 0.18 18.4 1000 14.8 1000 5.8 1000
78 84 7.49 0.22 14.9 1000 11.8 1000 5.1 1000
79 85 0.11 0.966 14.6 1000 12.0 1000 12.1 1000
80 86 0.01 1.00 15.7 1000 11.0 1000 10.8 1000
81 87 0.00 1.00 9.5 1000 9.9 1000 10.1 1000
82 88 0.00 1.00 3.8 1000 4.3 1000 4.6 1000
83 89 0.00 1.00 3.3 1000 3.9 1000 4.1 1000
84 90 0.00 1.00 3.8 1000 4.6 1000 4.7 1000
85 91 0.04 0.80 3.3 1000 3.8 1000 3.5 1000
86 92 2.24 0.63 8.2 1000 8.3 1000 6.6 1000
87 93 1.55 0.74 21.3 1000 16.8 1000 13.9 1000
88 94 1.68 0.67 16.6 1000 14.4 1000 11.0 1000
89 95 0.04 0.97 10.2 1000 9.1 1000 9.2 1000
90 96 0.04 0.94 5.6 1000 5.7 1000 5.7 1000
91 97 0.04 0.94 4.8 1000 5.3 1000 5.1 1000
92 98 0.04 0.97 3.3 1000 3.7 1000 3.6 1000
93 99 0.04 0.66 3.0 1000 3.3 1000 2.9 1000

Table 3: Computational Results for 7 years, 3 goods.

Exact - No Bounds Heur. - No Bounds Heur. - Upper Bounds
Period Jstat Pval Time Completed Time Completed Time Completed
75 84 10.08 0.226 173.3 1000 65.3 1000 31.2 1000
76 85 9.94 0.217 174.6 1000 66.7 1000 35.2 1000
77 86 10.08 0.319 331.5 1000 106.5 1000 56.8 1000
78 87 11.14 0.487 120.1 1000 46.2 1000 29.2 1000
79 88 2.93 0.882 55.4 1000 29.2 1000 23.7 1000
80 89 4.02 0.666 23.7 1000 13.9 1000 10.9 1000
81 90 0.00 1 11.3 1000 10.2 1000 10.6 1000
82 91 0.06 0.956 6.1 1000 6.1 1000 6.0 1000
83 92 3.40 0.789 14.9 1000 13.7 1000 12.1 1000
84 93 7.03 0.82 40.0 1000 30.5 1000 25.3 1000
85 94 4.22 0.795 56.0 1000 31.5 1000 26.5 1000
86 95 3.26 0.814 42.4 1000 30.8 1000 25.2 1000
87 96 3.43 0.742 36.6 1000 28.4 1000 22.9 1000
88 97 2.98 0.8 34.6 1000 23.2 1000 19.1 1000
89 98 1.99 0.823 30.1 1000 19.9 1000 15.1 1000
90 99 1.90 0.767 14.9 1000 9.7 1000 8.8 1000

Table 4: Computational Results for 10 years, 3 goods.

17

Exact - No Bounds Heur. - No Bounds Heur. - Upper Bounds

Period Jstat Pval Time Completed Time Completed Time Completed
75 89 27.95 0.243 271 1600 1000 660 1000
76 90 15.42 0.618 508 1358 1000 998 1000
77 91 17.11 0.709 2632 1000 718 1000 566 1000
78 92 18.37 0.637 1102 1000 353 1000 293 1000
79 93 23.87 0.902 724 1000 188 1000 185 1000
80 94 19.96 0.594 420 1000 132 1000 100 1000
81 95 12.87 0.771 454 1000 115 1000 102 1000
82 96 12.92 0.854 240 1000 94 1000 95 1000
83 97 13.66 0.846 297 1000 123 1000 108 1000
84 98 15.26 0.827 647 1000 238 1000 195 1000
85 99 29.45 0.895 384 1000 149 1000 123 1000

Table 5: Computational Results for 15 years, 3 goods.

18

Goods # Years Period JStat Pval Computation Time Completed

3 20 75 94 39.85 325
3 20 76 95 26.99 284
3 20 77 96 35.43 571
3 20 78 97 35.18 0.738 3443 1000
3 20 79 98 30.39 0.744 1721 1000
3 20 80 99 26.13 0.771 1425 1000
4 7 75 81 5.43 0.266 8 1000
4 7 76 82 5.74 0.368 13 1000
4 7 77 83 6.07 0.381 14 1000
4 7 78 84 2.14 0.682 16 1000
4 7 79 85 0.33 0.942 23 1000
4 7 80 86 1.70 0.812 13 1000
4 7 81 87 0.64 0.88 11 1000
4 7 82 88 0.30 0.65 5 1000
4 7 83 89 0.26 0.516 3 1000
4 7 84 90 0.25 0.717 3 1000
4 7 85 91 3.59 0.461 4 1000
4 7 86 92 7.27 0.313 6 1000
4 7 87 93 6.60 0.432 11 1000
4 7 88 94 6.95 0.389 15 1000
4 7 89 95 4.89 0.329 12 1000
4 7 90 96 4.42 0.2 8 1000
4 7 91 97 3.32 0.259 6 1000
4 7 92 98 0.06 0.885 8 1000
4 7 93 99 0.00 1 4 1000
4 10 75 84 5.73 0.404 303 1000
4 10 76 85 4.60 0.577 606 1000
4 10 77 86 6.11 0.613 443 1000
4 10 78 87 4.27 0.725 145 1000
4 10 79 88 1.99 0.919 52 1000
4 10 80 89 2.90 0.856 20 1000
4 10 81 90 0.88 0.955 15 1000
4 10 82 91 5.86 0.619 11 1000
4 10 83 92 11.35 0.496 10 1000
4 10 84 93 10.36 0.599 22 1000
4 10 85 94 13.42 0.473 25 1000
4 10 86 95 11.15 0.598 69 1000
4 10 87 96 5.83 0.667 232 1000
4 10 88 97 7.99 0.469 177 1000
4 10 89 98 13.79 0.506 86 1000
4 10 90 99 4.91 0.416 18 1000
4 15 75 89 29.23 0.167 3188 1000
4 15 76 90 11.32 439
4 15 77 91 14.85 0.67 1376 1000
4 15 78 92 17.90 0.623 852 1000
4 15 79 93 17.91 0.59 619 1000
4 15 80 94 25.92 0.46 443 1000
4 15 81 95 22.70 0.553 508 1000
4 15 82 96 21.31 0.578 880 1000
4 15 83 97 25.45 0.455 676 1000
4 15 84 98 25.79 0.424 776 1000
4 15 85 99 16.37 0.657 923 1000

Table 6: Computational results for 3 and 4 goods, Heuristic Pricing and Upper Bounds

19

Goods # Years Period JStat Pval Computation Time Completed

5 7 75 81 4.75 0.193 8 1000
5 7 76 82 5.34 0.258 12 1000
5 7 77 83 4.66 0.367 15 1000
5 7 78 84 1.45 0.748 20 1000
5 7 79 85 0.22 0.96 28 1000
5 7 80 86 7.91 0.239 9 1000
5 7 81 87 6.33 0.314 8 1000
5 7 82 88 9.39 0.185 4 1000
5 7 83 89 9.73 0.136 2 1000
5 7 84 90 10.26 0.246 3 1000
5 7 85 91 3.59 0.435 4 1000
5 7 86 92 9.46 0.239 6 1000
5 7 87 93 6.32 0.416 16 1000
5 7 88 94 6.91 0.377 19 1000
5 7 89 95 5.84 0.295 17 1000
5 7 90 96 3.55 0.256 14 1000
5 7 91 97 3.27 0.234 7 1000
5 7 92 98 0.01 0.992 7 1000
5 7 93 99 0.00 1 4 1000
5 10 75 84 4.92 0.359 333 1000
5 10 76 85 4.03 0.486 663 1000
5 10 77 86 9.20 0.314 463 1000
5 10 78 87 7.67 0.389 174 1000
5 10 79 88 25.85 0.299 50 1000
5 10 80 89 10.90 0.238 18 1000
5 10 81 90 10.55 0.412 16 1000
5 10 82 91 17.34 0.347 9 1000
5 10 83 92 24.67 0.185 9 1000
5 10 84 93 17.67 0.296 29 1000
5 10 85 94 9.44 0.578 47 1000
5 10 86 95 7.75 0.677 113 1000
5 10 87 96 5.44 0.689 402 1000
5 10 88 97 7.00 0.561 328 1000
5 10 89 98 5.90 0.408 121 1000
5 10 90 99 5.71 0.394 29 1000
5 15 75 89 23.48 365
5 15 76 90 15.76 196
5 15 77 91 16.29 735
5 15 78 92 22.79 0.335 2038 1000
5 15 79 93 20.57 0.365 1585 1000
5 15 80 94 24.41 0.363 1211 1000
5 15 81 95 19.24 0.517 2040 1000
5 15 82 96 19.04 0.513 2943 1000
5 15 83 97 20.86 0.501 1669 1000
5 15 84 98 18.82 0.521 2379 1000
5 15 85 99 10.43 0.787 2246 1000

Table 7: Computational results for 5 Goods, Heuristic Pricing and Upper Bounds

20

Copyright © 2019 @ the author(s). Discussion papers are in draft form. This discussion paper
is distributed for purposes of comment and discussion only. It may not be reproduced without
permission of the copyright holder. Copies of working papers are available from the author.

	cover 1908
	Nonparametric analysis of random utility models: computational tools for statistical testing����Bart SMEULDERS, Laurens CHERCHYE and Bram DE ROCK��FACULTY OF ECONOMICS AND BUSINESS

	1908 Smeulders_Cherchye_De Rock
	Introduction
	Kitamura and Stoye's Statistical Test
	Random Utility and Stochastic Rationalizability
	Testing the Random Utility Model
	Computational Difficulties

	Statistical Testing through Column Generation
	Computing the Test Statistic
	Computing the Critical Value

	Empirical Application
	SARP-based rational choice types
	Customization
	Results

	Conclusion

	copyright

