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Abstract—To enable energy-efficient embedded execution of
Deep Neural Networks (DNNs), the critical sections of these
workloads, their multiply-accumulate (MAC) operations, need
to be carefully optimized. The SotA pursues this through run-
time precision-scalable MAC operators, which can support the
varying precision needs of DNNs in an energy-efficient way. Yet,
to implement the adaptable precision MAC operation, most SotA
solutions rely on separately optimized low precision multipliers
and a precision-variable accumulation scheme, with the possi-
ble disadvantages of a high control complexity and degraded
throughput. This paper, first optimizes one of the most effective
SotA techniques to support fully-connected DNN layers. This
mode, exploiting the transformation of a high precision multiplier
into independent parallel low-precision multipliers, will be called
the Sum Separate (SS) mode. In addition, this work suggests an
alternative low-precision scheme, i.e. the implicit accumulation of
multiple low precision products within the multiplier itself, called
the Sum Together (ST) mode. Based on the two types of MAC
arrangements explored, corresponding architectures have been
proposed to implement DNN processing. The two architectures,
yielding the same throughput, are compared in different working
precisions (2/4/8/16-bit), based on Post-Synthesis simulation. The
result shows that the proposed ST-Mode based architecture
outperforms the earlier SS-Mode by up to x1.6 on Energy
Efficiency (TOPS/W) and x1.5 on Area Efficiency (GOPS/mm?).

Index Terms—Digital Design, Deep Neural Network, Inference,
Multiplier, Scalable Precision, Synthesis, Energy Efficiency.

I. INTRODUCTION

Deep learning currently plays a crucial role in the rapid de-
velopment of artificial intelligence (AI). It enables tremendous
performance improvements in various machine learning appli-
cations, such as computer vision [1]-[3], speech recognition
[4], [5], natural language processing [6], etc. Moving deep
neural network (DNN) inference from the cloud to embedded
devices is a trend today to get rid of the limitation of wireless
bandwidth and to protect users’ privacy. However, running
DNN-based applications on battery-constrained and memory-
limited systems puts extremely high demand on both throughput
and energy efficiency for embedded platforms [7].

A good approach to alleviate this stress is to compute at a
reduced computational precision, using appropriate per-layer
or per-channel quantization of activations and weights, which
can largely save resources without excessive accuracy loss [8],
[9]. Yet, it has been shown that there is a wide variety of
precision requirements among (non-binary) neural networks
[10], [11], ranging from 2 to 16 bit. As such, DNN hardware

platforms should better support run-time precision scalability
towards energy-efficient and application-flexible embedded
DNN execution. Targeting this goal, the design of the precision-
variable multiply-accumulate (MAC) operator, representing the
dominant DNN compute kernel, should be carefully optimized.

Most SotA solutions rely on optimized low precision
multipliers with a separately optimized precision-variable
accumulation scheme to implement the adaptable precision
MAC operation, which might lead to low throughput and high
control complexity. This paper, in contrast, uses a single high
precision multiplier deployed in parallel low precision modes.
The main contributions of this work are as such:

1) We enhance the Baugh-Wooley multiplier with two alter-
native sub-word parallellization schemes: Sum Separate
(SS) inspired from [12], and Sum Together (ST) designed
by us. Hybrid combinations of the two are also explored.

2) Based on the two multiplier configurations, SS mode and
ST mode, corresponding processing element (PE)-array-
level architectures have been proposed to support the DNN
inference execution.

3) A detailed comparison between the SS-based and ST-based
architectures is made under different precision (2/4/8/16-
bit) modes, taking throughput, energy efficiency, and area
efficiency into consideration.

II. RELATED WORK

Recently, several multiplier architectures were introduced in
the SotA [12]-[15] to support run-time precision adjustment. In
general, we can divide precision-configurable MAC units into
two categories, temporal-based and spatial-based. Temporal-
based structures realize precision tuning through iterative
sequencing of operations, adding more resolution in each
step, as in [14]. While spatial-based methods implement
variable computing precision 1) through an agglomeration
of simple multiplier units connected together via a network
of adders/shifters, as in [13], [15], or 2) via architectural
submapping and rearrangement, changing signal flow patterns
and gating or activating certain circuit parts when bitwidth
changes, as has been explored in [12] and in this paper.

A. Overview of SotA Architectures

UNPU [14] exploits the temporal-based approach, using bit-
serial PEs to realize precision-configurable MAC operations
for every kind of neural network. It can support fully variable



weight from 1 to 16 bit precision and enjoy an optimized
area budget. However, in such serial approaches, throughput
and energy efficiency could be sub-optimal [16]. Moreover, it
only efficiently supports bitwidth adaptation of one of the two
multiplier inputs, weight in this case.

For spatial-based approach, a lookup-table (LUT)-based
reconfigurable multiplier has been used in DNPU processor
[13]. It supports precision-scalable multiplication by utilizing
a LUT to firstly get partial products and then feed them into
a configurable shift-add pipeline. However, this MAC engine
can only maximize its benefits when the weights are quite
stationary so that it doesn’t need to frequently update the LUT,
which is not the case for FC-NN and LSTM.

BitFusion [15] recently emerged as a spatial-based bitwidth-
flexible accelerator. It consists of an array of bit-level processing
elements, each executing 2-bit multiplications and then fusing
their results through configurable adder/shifter networks. This
architecture can achieve good hardware utilization rate and
throughput for different bitwidth settings but at the cost of
the overhead coming from relatively complex interconnect
network and control logic. Besides, the variability of its input
bandwidth complicates the memory fetch pattern, degrading the
compatibility when applying it to different system topologies .

All previously discussed approaches configure into a high
resolution multiplier from multiple optimized low resolution
building blocks. In contrast, the architecture described in [12]
modifies a full precision Baugh-Wooley array multiplier to sup-
port variable-precision operation by architectural submapping
and rearrangement. The MAC unit operates normally in full
precision mode with the option of trading the precision for
more parallel low-precision processing and energy saving.

B. Key Takeaways

It is important to limit interconnect complexity and control
logic required for the precision adjustment. [12] has proven
that variable precision can be supported in regular multiplier
with very limited overhead. Its operating principle is (for a
4-bit full precision example) depicted in Fig. 1b. As can be
seen in 1b, its implementation only requires little overhead
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Fig. 1: Decomposing a (a) 4-bit multiplication through (b) Sum

Separate (SS) and (c) Sum Together (ST) methodology.

in breaking a few accumulation paths in low precision mode.
Dynamic power savings are achieved in low-precision modes,
due to the increased parallel processing, the reduced switching
activity and the shorter critical path.

This paper continues on the basic idea of enabling sub-
word parallel operations in a full-precision multiplier. Yet, we
explored an alternative internal configuration, named the “Sum-
Together” (ST) mode, to extract more parallel processing with
reduced precision. We compared this mode to the approach
introduced in [12], which we denoted by “Sum Separate” (SS)
mode, that we have enhanced for FC-NNs.

III. DESIGN CONCEPTS
A. Sum Together (ST) mode operating principle

The objective of the ST mode is to decompose a high
resolution multiplication into several reduced precision multi-
plications, whose resulting products are directly accumulated
inside of the multiplier. Its principle is (for a simple 4-bit full
precision example) depicted in Fig. 1c. Such configuration
saves the necessity of using additional adders to sum up these
products as it uses the multiplier array cells to implicitly
perform the addition. As a result, ST mode saves significant
register activity and MAC output bandwidth, as can be seen in
the implementation diagram in Fig. 2b, which could possibly
bring large system-level savings.

To explore these savings, we will propose the PE-array-
level engines to implement the full DNN processing kernel
of both approaches, SS and ST respectively. Both designs
consider computing the matrix-vector product of weight matrix
Wy and activation vector Ay that is typical to the DNN
processing in inference mode. To be able to make an on-par
comparison, both processing engines will be conceived towards
identical throughput, making use of 16 parallel multipliers with
a 16-bit maximum precision.

B. Sum Separate (SS) Engine

The SS-mode configuration of the multiplier enables the
computation of 16/m products independently at m-bit precision
with m = {2,4,8,16}. We construct a PE as depicted in Fig. 3,
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Fig. 2: The modified 4-bit multiplier performs two 2-bit
multiplications in (a) SS and (b) ST Mode.
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Fig. 3: The Architecture of SS Engine

and deploy it 16-wise parallel with following enhancements for
efficient execution of fully-connected layers. The elements of
Anx1 are loaded 32 bits at a time into a circular input buffer,
from which the top 16 bits broadcast to the input of 8 PEs
and the bottom 16 bits correspondingly. The W, n elements
are loaded 256 bits every clock cycle and split over the PEs as
depicted in Fig. 3. As such, each PE gets a pair of 16/m inputs
of m bit precision each that correspond to a partial product of
the matrix vector multiply. Every clock cycle, the scheme loads
W< n new weight elements, while rotating the circular input
buffer by m shifts, thus computing 16 x 16/m outputs in N
cycles. Every PE contains a register to accumulate the partial
sums in every precision mode. Yet, to support independent
parallel result accumulation in the worst case, precision mode
m = 2, the buffer requires enough accumulation headroom
bits for each result. For example, enabling 10-bit accumulation
margin needs a register length requirement of 112 bits.

C. Sum Together (ST) Engine

The ST-mode configuration of the multiplier also enables the
computation of 16/m products at m bit precision in parallel,
albeit the output is a sum of the set of products. The ST
engine, as depicted in Fig. 4, consists of two sets of 8 ST-
mode multipliers, each pair operating in tandem, the results
of which are added together and finally accumulated in the
output register. The elements of Ay are loaded 32 bits at a
time and the top 16 bits broadcast to the top set of multipliers
and the bottom 16 bits correspondingly. The Wy, n elements
are loaded 256 bits at a time and split over the multipliers
as depicted in Fig. 4. As such, each PE gets a pair of 16/m
inputs of m bit precision that correspond to a partial product
of the matrix vector multiply similar to the previous scheme.
This scheme iterates by loading new elements of both the
matrix and vector in each cycle and compute 8 outputs in
N/(2%16/m) cycles. The difference however is that the 16/m
products implicitly add within the array multiplier and thus this
scheme vectorizes over the matrix/vector element differently.
This prevents the need for a circular buffer, and avoids separate
accumulation overhead bits for all low-precision products. Still
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Fig. 4: The Architecture of ST Engine

targeting 10-bit accumulation margin, the output register can
now operate with just 42 bits.

D. Additional Hybrid Sub-Mapping Ideas

The ST topology can easily be extended towards other
multiplication precision. As indicated in the 6-bit multiplier
in Fig. 5, one 6-bit multiplication can be decomposed into
two 3-bit or three 2-bit multiplications. Moreover, it can also
support two 2-bit/4-bit asymmetrical multiplications. Finally,
also hybrid approaches of the ST and SS are possible, as in
Fig. 5(d), where four 2-bit multiplications are summed together
pairwise, enabling benefits of both approaches.

IV. RESULTS AND COMPARISON
A. Comparing ST and SS Engines at Architectural Level

Comparing SS and ST multipliers, in full-precision mode,
they work the same. In lower precision modes, they are
configured into 2 different diagonal patterns. The basic trade-
off is that SS multiplier has higher switching activity (since
the bottom-right triangle region of SS-mode multiplier need
to pass on several products to the right-bottom edge of the
array multiplier, thus cannot be fully switched off), while ST
multiplier has longer critical path.

Comparing SS and ST engines, as summarized in Table I,
their throughputs are the same and scale geometrically with the
precision. Both engines utilize the weight load bandwidth to the
fullest. However, they differ in the read rate for activation, with
the SS method requiring less access owing to the local circular
buffer. The output write rate overall is the same between the two
methods, yet at different periodicity. Another main difference,

3b 2b 2b X 4b 2b
2b 2b| |2b 2b
X
3b 2b ab 2b
(a) 3-bit ST (b) 2-bit ST (c) 2-/4-bit ST (d) 2-bit ST+SS

Fig. 5: Four examples of configuring a 6-bit array multiplier



TABLE I: Comparing ST and SS Engines at Architectural Level

Matrix-Vector Multiplication Wy, v X Anx1 @ 16/8/4/2-bit precision
Precision Total Compute Activation Weight Output
Method Bits Cycles read rate read rate write rate
(rows) X (columns) X (inner loop) | (bits / cycles) | (bits / cycles) (bits / cycles)
16 M/16 x N/2 x 2 = MN/16 32b/2 256b / 1 16 x16b / N
Ss 8 M/32 x N/4 x 4 = MN/32 32b/4 256b /1 32 x 8 /N
4 M/64 x N/8 x 8 = MN/64 32b /8 256b / 1 64 x 4b /N
2 M/128 x N/16 x 16 = MN/128 32b/ 16 256b /1 128 x 2b /N
16 M/8 x N/2 x 1 =MN/16 32b/ 1 256b /1 8 x 16b / (N/2)
ST 8 M/8 x N/4 x 1 = MN/32 32b/ 1 256b /1 8 x 8b/ (N/4)
4 M/8 x N/8 x 1 = MN/64 32b/ 1 256b / 1 8 x 4b / (N/8)
2 M/8 x N/16 x 1 = MN/128 32b /1 256b /1 8 x 2b / (N/16)
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Fig. 6: Energy Efficiency vs. Speed vs. Area

which is not depicted in the table, is the data memory placement.
SS requires significantly more complex addressing scheme
while ST requires only linear addressing. The simplicity of
the addressing scheme for ST may yield significantly simpler
memory hierarchy and access logic, potentially yielding energy
gains. However, the simulation of this work does not include
memory hierarchy and chooses to focus on the PPA of the two
proposed MAC engines.

B. Comparing ST and SS Engines from PPA aspect

The two proposed precision-scalable MAC engines were
synthesized in 40nm Low Power technology for various
operating frequency targets. Fig. 6 captures the average energy
efficiency, which is extracted from the simulation of every
possible precision mode with equal weight, vs area vs target
frequency for each engines, which allows to summarize the
general trade-off between the two architectures.

Fig. 7 shows a more interesting results with the energy
efficiency vs area efficiency curves of specific precision modes.
At lower precision mode, the ST clearly outperforms SS,
while both yield similar performance at full precision. This is
primarily due to the higher multiplier switching activity and the
energy spent on the internal wide registers in SS. The curves
also indicate the most optimal PPA trade-off operating points.
Another interesting observation is that the scaling of the energy
efficiency (TOPS/W) is not by a factor of 2 between precision
mode, but higher. This comes from two factors, the increased
number of operations in parallel yielding a factor of 2; and
the reduced switching activity yielding a factor < 2 of energy

Throughput/Area [GOPS/mm”2]

Fig. 7: Energy efficiency vs. Area efficiency

saving. These two effects compound into a super linear energy
efficiency gain as a function of precision.

C. Comparison with SotA

The differentiating aspect of this work with the SotA, is in
the use of a single high precision multiplier in sub-word parallel
mode with internal accumulation. While enabling parallelism,
this allows to decouple scalability from the macro architecture
and avoids the need for complex adder shifter networks and
control logic as seen in [13], [14], [15]. A similar ST mode
could potentially be deployed in [13], by disabling the shifters
in their multipliers to achieve similar savings in this design.
The energy savings due to dynamic voltage scaling in low
precision mode, first reported in [12], can also be applied to
this work to yield further energy savings.

V. CONCLUSION

In this work, we have proposed two MAC engines built
around sub-word parallel mappings of an array multiplier
to target DNN inference processing with run-time precision
scalability. Performance measures of both design have been
extensively compared, as well as contrasted with the SotA
approaches. The results yield optimal frequency operating
points, trading energy efficiency vs. area efficiency, as well
as design decision guidelines based on application level
requirements.
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