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1. Project motivation

• Collaboration between CERN and Leuven University. We provide the 
data, problem case and machine expertise; they provide ML expertise 
and master student supervision.

• Problem statement: vast amount of sensor data (pressure, temperature, 
voltage, current, calculated metrics, beam parameters), resulting in:
• Many measurements without thresholds for alarms generation
• Time-consuming manual analysis after fault occurrence, to understand anomalous 

behaviour
• Equipment interlocks (i.e. machine downtime) that could have been prevented!

• Use of ML as a solution by applying unsupervised learning for anomaly 
detection, based on historical data
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• Normal Software flow:
CALS logging database (Oracle) → Python extraction script →  MongoDB

→ Gitlab LFS  →
Pandas → Scikit-learn → scripts, Jupyter Notebooks and Plotly Dash

• In addition: porting the pipeline to use Apache Spark Dataframes and MLlib, 
because of CERN’s Spark cluster with direct access to NXCALS logged data

• Computational gain vs. porting effort and smaller user-community

Data, model and scripts:

• All publicly at https://gitlab.cern.ch/te-abt-ec/anomaly-detection-mki-2019/ 

• Implemented Continuous Integration (CI) for reliable code
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2. Software tools
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3. Anomaly Detection Engine Pipeline (ADEP)

Pipeline and grid-search
 Modular and object-oriented, to allow easy addition of e.g. models
 Grid search allows automated model hyper-parameter and evaluation 

tuning 
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3. Anomaly Detection Engine Pipeline (ADEP)

Pre-processing
 Dedicated to the x2 4 LHC injection kicker magnet pulse generators (MKI)

 Focussed on 18-months timespan (03/2016 – 09/2017), with some well-understood anomalies

 Wide variety of data, fixed-frequency and on-event sampled, some filtered at the level of the 
database → 120 variables total

 Continuous data, IPOC data, controller data, beam data, e-logbook data

 Applied techniques: removal of bad measurements (hard-coded thresholds), data 
interpolation, resampling

 Feature selection and generation, including sliding window for temporal information and 
evaluation of TSFRESH* generated feature set

* python package ‘Time Series Feature extraction based on scalable hypothesis tests’
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3. Anomaly Detection Engine Pipeline (ADEP)

Pre-processing
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EVENTDATE 25/07/2016 00:19:48

PATH LHC.MKI2

COMMENT CCC calls for a faulty MKI2 generator during 
LHC fill. I checked and there was a flashover 
in magnet D, vacuum recov- ered rather 
slowly. IPOC also shows an increased current 
for IM-D. Flashover **not** detected by fast 
interlocks. . . .

TAG anomaly

Effect of bad measurements filtering (magnet current > 1kA)
E-logbook example entry, manually tagged

Possible labels: anomaly, fault, info, intervention, research



3. Anomaly Detection Engine Pipeline (ADEP)

Anomaly detection
 Gaussian Mixture Models (GMM)

 Fit all data to a mixture of finite Gaussian distributions with unknown parameters A 
datapoint with a low probability of belonging to these distributions, is anomalous

 Scales well but interpretability is limited. Number of components hard to determine.
 Isolation Forests

 Learn an ensemble of isolation trees, i.e. a random tree structure which aims to 
isolate individual points. Anomalous points will be found in leaf nodes with a shorter 
average path length to the root node.

 Performs well in high-dimensional problems, some interpretability possible. Heavier 
computation-wise → very apparent during grid search
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3. Anomaly Detection Engine Pipeline (ADEP)

Post-processing
 Group the resampled datapoints into real-world segments, which represents 

a period in time in which an anomaly could happen (i.e. LHC injection period)
 Needed for the evaluation cause a single anomaly will have several 

anomalous datapoints
 Initially by applying a complex segmentation algorithm, which introduced an 

additional segmentation distance parameter
 Now improved by using a sampled controller variable, yielding exact 

operational segments – assuming max. one anomaly/segment
 A ground truth is assigned to each segment, based on manually labelled 

CERN e-logbook entries (-12h timeframe)
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3. Anomaly Detection Engine Pipeline (ADEP)

Evaluation
 Top-k score of individual points score the segment (k tuned by grid search)
 As a metric for the grid search, the area under the precision-recall curve is 

used
 Grid search has had a significant impact on improving the results, currently 

focused on a 3-month period (precision 0.58, recall 0.70):

Anomaly Normal

Detected TP = 7 FP = 5

Undetected FN = 3 TN = 585
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3. Anomaly Detection Engine Pipeline (ADEP)

Erratic thyratron conduction (<< T_DELAY) at 8h40, FN due to wrong pre-processing filting

Evaluation, using these false detections for bug hunting and model optimisation:
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3. Anomaly Detection Engine Pipeline (ADEP)

Evaluation
 Using these false detections for bug hunting and model optimisation

Pressure spike without operational influence but nevertheless interesting for magnet specialist (FP)
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3. Anomaly Detection Engine Pipeline (ADEP)

Evaluation, another example - May 2017 grid-search results:

| GMM grid search execution time: 533.3 seconds

| AUC =  0.547 in   4.9s for feature_sel =all, scale_data = 1, 
seg_distance = STATE_MODE, a_score_method = max, 
types_of_labels = interventions+anomalies, params = 
{'covariance_type': 'full', 'init_params': 'kmeans', 'n_components': 
2, 'n_init': 1, 'verbose': 1}

| Isolation Forest grid search execution time: 766.8 seconds

| AUC =  0.456 in   4.8s for feature_sel =all, scale_data = 0, 
seg_distance = STATE_MODE, a_score_method = max, 
types_of_labels = anomalies, params = {'max_features'
: 1.0, 'max_samples': 25600, 'n_estimators': 100, 'n_jobs': 6, 
'verbose': 1}
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3. Anomaly Detection Engine Pipeline (ADEP)

Visualization
using Plotly Dash, interactive data browser with live validation metrics 
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4. Outlook

• Expand to bigger timeframes, get rid of last bugs
• Add feature selection to the grid search
• Implementation and use of the MERCS* algorithm for better 

interpretability
• Use of the COBRAS** algorithm to implement a 2nd clustering of 

the outputs of the anomaly detector, based on user-input
● To incorporate the interesting FPs 

  

* MERCS - https://eliavw.github.io/mercs-v5/
** COBRAS - https://dtai.cs.kuleuven.be/software/cobras/ 
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Thanks for your attention! Questions?
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