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Abstract. In previous work [10] the authors defined transforms for non-
conformal harmonic maps from a Riemann surface into the 3-sphere. An obser-

vation from that study was that two invariants, a real and a complex function,

determine a non-conformal harmonic map up to isometries of the 3-sphere.
We show that if the first invariant of a harmonic map and its transformed

map are the same, then these maps are either congruent or the harmonic map
belongs to a particular 1-parameter family. Inspired by this result we discuss

the Bonnet problem for non-conformal harmonic maps: to what extent is a

harmonic map determined by its first invariant?

1. Introduction

A map f : S → S3 from a Riemann surface S into the 3-sphere is harmonic if it
satisfies the equation ∆f + |df |2f = 0 where ∆ is the Laplacian on the surface S.
The map is conformal if it preserves the conformal structure on S. In this case the
map is a minimal immersion of the surface in the 3-sphere. In this article however
we will discuss non-conformal harmonic maps.

In a previous paper [10] of the authors it was shown that from a non-conformal
harmonic map f from a surface to S3 one can construct two new maps of the
same type, denoted by f+ and f−. These two constructions, called the (+) and
(−)transforms, are mutually inverse in the sense that applying successively and in
any order the (+) and the (−)construction gives the original map. The transforms
are inspired by the works [1] and [4] on minimal surfaces in odd-dimensional spheres
and are natural generalisations of the polar surface of minimal surfaces in S3 ([13]).
Taking twice the polar surface of a minimal surface in S3 produces the original
surface. This is however not the case for the transforms for non-conformal harmonic
maps. By repeatedly applying one of the transforms on an initial non-conformal
harmonic map one obtains a sequence of such maps.

It is possible that all harmonic maps in the sequence are equal to each other
up to isometries of S3. Non-conformal harmonic maps are characterized up to an
isometry of S3 by two invariants, a real-valued function φ and a complex-valued
function µ, satisfying two integrability conditions (see Proposition 2.1 for a correct
formulation). Thus a non-conformal harmonic map is congruent to its transformed
harmonic map if and only if the invariants of the harmonic map and the trans-
formed map agree, that is, if φ = φε and µ = µε (here ε stands for + or −). In
this case all the maps in the associated sequence are congruent and are certain
reparametrisations of Clifford tori. Moreover both invariants are then constant
(Theorem 3.3).
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In fact we proved a slightly better result. It is sufficient that µ = µε 6= 0 such
that the harmonic map and its transform are congruent. In view of this result, it is
natural to ask what happens when the first invariants φ and φε agree. It turns out
that this is not the case: there exists essentially one harmonic map f whose first
invariant φ agrees with the first invariant φε of its transformed map fε such that f
and fε are not congruent.

Theorem 1.1. Consider a non-conformal harmonic map f : S → S3 from a Rie-
mann surface S to the three-sphere. Let fε be its ε-transform (ε = + or ε = −) and
assume that φ = φε. Then either f is congruent to fε or, after a suitable choice of
complex coordinate on S, the invariants of f are

φ = arcsinh
( 1√
|z|
)
, µ = −2ε

z

C(|z|+ 1) + i

C
√
|z|+ 1

(1)

for some real constant C > 0.

The proof of Theorem 1.1 hinges on the fact that the level curves of an isopara-
metric function from the plane are parallel lines or concentric circles (see [2] or [14]).

Inspired by this theorem, we arrive at the following problem for non-conformal
harmonic maps. Consider two non-conformal harmonic maps whose first invariants
are equal to each other. Are the two harmonic maps then necessarily congru-
ent? This problem will be called the Bonnet problem for non-conformal harmonic
maps. It is clear that this problem is a variation of the classical Bonnet prob-
lem for CMC surfaces in Euclidean three-space [5]. The Bonnet problem has also
been investigated for surfaces in S3 and H3 (see [3], [6], [7], [8], [9]). More re-
cently the problem was extended to surfaces in homogeneous three-spaces with a
four-dimensional isometry group [11] and Lagrangian surfaces in complex space
forms [12].

Eventhough this problem is similar to the classical Bonnet problem for constant
mean curvature (CMC) surfaces, there is an essential difference. Every CMC surface
in Euclidean three-space admits a 1-parameter family of CMC surfaces. If Qdz2

is the Hopf differential of a surface with CMC H, then for every real number t
the map eitQ satisfies the Gauss-Codazzi equations for surfaces with CMC H, thus
giving a CMC surface for every value of the parameter t. The metric remains
invariant under this transformation of the Hopf differential, so the 1-parameter
family of CMC surfaces is obtained by isometric deformations. Non-conformal
harmonic maps also admit a 1-parameter family of harmonic maps, however, the
first invariant φ does not remain invariant under the deformation for non-conformal
harmonic maps (see Lemma 5.1).

The outline of the paper is as follows. The first two sections summarise the
necessary background from [10]. In Section 2 we introduce an adapted complex
coordinate and state the existence and uniqueness theorem for non-conformal har-
monic maps into S3 In Section 3 we recall the definition of two transforms for
harmonic maps and the construction of a sequence of harmonic maps using these
two transforms. The main theorem Theorem 1.1 is proven in Section 4. In the
last section we formulate the Bonnet problem for non-conformal harmonic maps
and point out the similarities and differences with the classical Bonnet problem for
CMC surfaces.

The authors would like to thank Makoto Sakaki for his helpful comments and
remarks.

2. Harmonic maps to S3

It is convenient to use quaternions to describe harmonic maps from a surface into
the 3-sphere. The ring of quaternions H can be identified with the vector space R4.
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Writing quaternions as real linear combinations of the basis elements 1, e1, e2

and e3, quaternion multiplication is determined completely by distibutivity and
the identities

e2
1 = e2

2 = e2
3 = e1e2e3 = −1.

A quaternion that is a linear combination of e1, e2 and e3 only is called an imaginary
quaternion. The set of imaginary quaternions ImH can be identified with the
Euclidean space R3. The product of two imaginary quaternions α and β is given
by

(2) αβ = −〈α, β〉+ α× β

where 〈 , 〉 is the Euclidean inner product and × is the vector product on R3.
Let us now describe the 3-sphere and its tangent spaces. The 3-sphere S3 is

the set of unit quaternions {p ∈ H | 〈p, p〉 = 1}. One can prove that 〈uv, uw〉 =
〈u, u〉〈v, w〉 for all quaternions u, v and w. Therefore pα is orthogonal to p for every
imaginary quaternion α and the tangent space at p is

(3) TpS
3 = {pα | α ∈ ImH}.

On a surface we will use complex coordinates, so in order to describe the com-
plexified tangent vectors we will need the complexified quaternions H⊗C = H⊕iH.
The element i must be distinguished from the imaginary units ei in H. The complex
bilinear extension of the Euclidean metric and vector product will also be denoted
by 〈 , 〉 and ×. The product of two complexified quaternions p1 + ip2 and q1 + iq2

is

(p1 + ip2)(q1 + iq2) = (p1q1 − p2q2) + i(p1q2 + p2q1).

Now we consider a harmonic map f : S → S3 ⊂ H from a Riemann surface S into
the 3-sphere S3. Choose a local complex coordinate z = x + iy on S. Derivations
with respect to a complex coordinate z or the real coordinates x and y will be
denoted by fz, fx and fy respectively. Since 〈f, f〉 = 1, it follows that 〈f, fz〉 = 0.

Harmonicity of the map means that fzz̄ = −|fz|2f . If f is in addition a conformal
map, f is a minimal isometric immersion of S in S3. In this paper we assume
that f is not conformal. By the harmonicity of f , the quadratic differential Θ =
〈fz, fz〉 dz2 is holomorphic. Since f is assumed to be non-conformal, 〈fz, fz〉 is
non-zero. Therefore there exists a complex coordinate z such that 〈fz, fz〉 = −1.
Geometrically this means that the coordinate lines of the image surface f(S) in
the three-sphere are orthogonal. We will call such a coordinate an adapted complex
coordinate for f .

By (3) there exist functions α and β with values in ImH such that fx = fα
and fy = fβ. This means that fz = 1

2f(α− iβ). It follows from 〈fz, fz〉 = −1 that

〈α, α〉 − 〈β, β〉 = −4, 〈α, β〉 = 0.

Hence there is a non-negative smooth function φ such that

|α| = 2 sinhφ, |β| = 2 coshφ.(4)

Note that β is nowhere vanishing by equation (4), but α can be zero. At points
were α is not zero the vectors fz and fz̄ are linearly independent and φ is positive.
In the following we will assume that f is an immersion. Since our discussions are
always local, we may restrict ourselves to the subset U of S where α 6= 0. On this
set φ is positive and the image f(U) is a surface in the 3-sphere. At a point of U
we define N to be the real unit vector in the positive direction of f(α × β). Then
the normal vector N is given by

N = 1
2 csch 2φ f(α× β).
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We now have defined a complex moving frame F = {f, fz, fz̄, N} for the har-
monic map f on the set U . The moving frame equations for F are

fzz = f + 2φz(coth 2φ fz + csch 2φ fz̄) + µN,

fz̄z = − cosh 2φ f,

Nz = −µ csch 2φ(csch 2φ fz + coth 2φ fz̄),

(5)

where µ = 〈fzz, N〉. The derivatives with respect to z̄ can be found by complex
conjugating the above equations. The integrability conditions Fzz̄ = Fz̄z for the
frame F give

2φzz̄ = − sinh 2φ+ |µ|2 csch 2φ,(6a)

µz̄ = −2µ̄φz csch 2φ.(6b)

The real function φ is a measure for the non-conformality of f at a point. The
complex function µ measures the rate at which the image of f is pulling away
from the great 2-sphere tangent to the image of f . If f is a map into a great
2-sphere, then µ vanishes and the first integrability condition reduces to the sinh-
Gordon equation.

We end this section with a Bonnet-type existence and uniqueness result for non-
conformal harmonic maps into S3. A non-conformal harmonic map from a Riemann
surface to S3 are completely characterized by the invariants φ and µ. The following
proposition follows directly from Proposition 4.1 in [10].

Proposition 2.1. Let f1, f2 : S → S3 be two non-conformal harmonic maps with
the same adapted coordinate z. Let φ1, µ1 and φ2, µ2 be the invariants of f1

respectively f2. If φ1 = φ2 and µ1 = µ2, then there is orientation preserving
isometry F such that f1 = F ◦ f2. If φ1 = φ2 and µ1 = −µ2, then there is
orientation reversing isometry F such that f1 = F ◦ f2.

3. Transforms of harmonic maps to S3

Let f : S → S3 be a non-conformal harmonic map with an adapted coordinate z.
In this section we will explain how to associate to f two other non-conformal har-
monic maps f+ and f− from S to S3. With these transforms one can construct a
sequence {fp | p ∈ Z} of non-conformal harmonic maps from S to S3 starting with
the map f0 = f .

Fix a point p ∈ S and consider the vectors

± sin θ
fβ

|fβ|
+ cos θN(7)

in Tf(p)S
3, where θ is chosen such that cos θ = |α|/|β| = tanhφ and sin θ = sechφ.

The ellipse E with fα and fβ as minor and major semi-axes is the image of a
circle in the tangent plane to S at p under df . The cosine cos θ is the ratio between
the lengths of the minor and major axes of this ellipse and is a measure for its
eccentricity. The vectors (7) have a nice geometric meaning. Let Rθ be the rotation
of Tf(p)S

3 about the minor axis of E through the angle θ. Then the orthogonal
projection of the rotated ellipse Rθ(E) onto the plane containing E is a circle. The
same holds for the rotation R−θ = R−1

θ . The vectors above are the images of the
unit normal N under the rotations Rθ and R−θ.

We can rewrite the vectors in (7) as

f± =
1

2
sech2 φ

(
±β +

1

2
α× β

)
.(8)

By varying the point p, we can regard f+ and f− as maps from S to S3 again
and we call them the (+)transform and (−)transform of f respectively. If f were
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conformal, that is if |α| = |β| everywhere, the expressions (7) still make sense. In
fact, we get θ = 0 and recover the polar surface of the minimal surface f (see [13]).

From now on we restrict to the non-conformal case and we denote the trans-
forms (8) by fε where ε is 1 or −1. All objects and functions related to fε will
be denoted with a superscript ε. For instance, the function φε is the non-negative
smooth function that satisfies the ε-analogue of (4).

Theorem 3.1 ([10]). Let f : S → S3 be a non-conformal harmonic map from a
Riemann surface S into the 3-sphere and z an adapted coordinate for f . Then the
tranforms fε, ε = ±1, are also non-conformal harmonic maps from S to S3 and z is
also an adapted coordinate for fε. Furthermore the (+)transform and (−)transform
of f are mutual inverses in the sense that

(f+)− = (f−)+ = f.

It can be shown that the function φε is positive on an open dense subset of S.
Therefore the moving frame Fε = {fε, fε1 , f̄ε1 , Nε} of a transformed harmonic
map fε is well-defined on this subset. The ε-versions of the moving frame equations
and integrability conditions for Fε hold as well on this subset. Since our calcula-
tions are local, we may tacitly assume that we are working on an open set where
the invariants φ and φε are positive.

Theorem 3.1 allows us to associate to a non-conformal harmonic map f : S → S3

a sequence {fp | p ∈ Z} of such harmonic maps by defining f0 = f , fp+1 = (fp)+

and fp−1 = (fp)− for every integer p. Moreover, if z is an adapted complex
coordinate for one of the maps fp in the sequence, then it is an adapted complex
coordinate for every map in the sequence. This sequence is called the sequence
associated to the map f .

The invariants of f and those of the transformed map fε are related by the
following relations.

Lemma 3.2 ([10]). Let f : S → S3 be a non-conformal harmonic map and fε

its ε-transform. Then the functions φ, µ and φε, µε are related by

4 sinh2 φε = |µ− 2εiφz|2 sech2 φ(9)

tanhφε(µε + 2εiφεz) = tanhφ(µ− 2εiφz).(10)

These expressions can be regarded as Bäcklund transformations for the system
of integrability conditions, in the sense that from one solution φ, µ of the second
order equations (6) one can distill another solution φε, µε of (6) using the first
order equations (9)-(10).

In one of the main theorems of [10] we determined all non-conformal harmonic
maps such that f and fε are congruent.

Theorem 3.3 ([10]). Let f be a non-conformal harmonic map and fε its ε-
transform. Then the following statements are equivalent.

(a) The maps f and fε are congruent;
(b) the maps f and fε are SO(4)-congruent;
(c) φ = φε and µ = µε;
(d) µ = µε 6= 0;
(e) the function φ is constant; and
(f) the function µ is constant and non-zero.

If one of these statements holds, all maps in the sequence associated to f are SO(4)-
congruent to each other and are certain reparametrisations of Clifford tori (see
Theorem 4.4 in [10]).
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4. Proof of Theorem 1.1

Theorem 3.3 is the starting point for our discussion. Part (c) of Theorem 3.3
says that a non-conformal harmonic map f is congruent to its εtransform if φ = φε

and µ = µε. Part (d) says that it is sufficient to only assume µ = µε. In view of
these results, it is natural to ask whether f and fε are congruent if only φ = φε

holds. Theorem 1.1 states that this fact is true except for one specific harmonic
map.

The proof uses a result on isoparametric functions. The result states that the
level sets of an isoparametric function from the plane to the real line are straight
lines or circles. This fact enables us to quickly find all harmonic functions satisfying
equation (15).

Before proving the theorem we give a slight extension a lemma from [10] (Lemma 4.1)
and an algebraic result (Lemma 4.2).

Lemma 4.1 (Lemma 4.5 in [10]). If φ = φε, then the following equations hold:

(a) µε = µ− 4εiφz;
(b) |µ| = |µε|;
(c) φzz̄ = 2|φz|2 csch 2φ;
(d) |µ|2 − 4|φz|2 = sinh2 2φ; and
(e) the function log sinhφ is harmonic.

Proof. The equations (a)–(d) are proven in Lemma 4.5 from [10]. To prove equa-
tion (e) note that (

φz cothφ
)
z̄

= cothφ(φzz̄ − 2|φz|2 csch 2φ)

vanishes by (c). Hence φz cothφ is holomorphic and which means that log sinhφ is
harmonic. �

Lemma 4.2. If z1, z2, w are complex numbers satisfying |z1| = |z2| and |z1−w| =
|z2 + w|, then there is a real number λ such that z1 + z2 = iλw.

Proof. Expanding |z1 − w|2 = |z2 + w|2 gives

|z1|2 − wz̄1 − w̄z1 + |w|2 = |z2|2 + wz̄2 + w̄z2 + |w|2.
Since |z1| = |z2| this becomes Re w̄(z1 + z2) = 0 which means that z1 + z2 is
perpendicular to w. This proves the lemma. �

Proof of Theorem 1.1. Assume that φ = φε but that f and fε are not congruent.
Step 1. Proof that µ = 2ε(c coth2 φ + i)φz with c ∈ R0. From Lemma 4.1 we

know that |µ| = |µε| and |µ − 2εiφz| = |µε + 2εiφz|. By Lemma 4.2 there is a
real valued function λ such that µ + µε = −2λi(2εiφz) = 4λεφz. The function λ
is non-zero because otherwise µ = −µε and that is impossible by Proposition 2.1.
Since µε = µ− 4εiφz, we get

(11) µ = 2ε(λ+ i)φz.

Deriving µ with respect to z̄ and using equation (c) from Lemma 4.1 gives

µz̄ = 2ελz̄φz + 2ε(λ+ i)φzz̄ = 2ελz̄φz + 4ε(λ+ i)|φz|2 csch 2φ.

On the other hand, equations (6b) and (11) give

µz̄ = −4ε(λ− i)|φz|2 csch 2φ.

Comparing the latter two equations gives

λz̄φz = −4λ|φz|2 csch 2φ.

Since we have assumed that f and fε are not congruent the function φ is not
constant by Theorem 3.3 (a) and (e). Therefore we can divide both sides by φz and
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the equation becomes (log |λ|)z̄ = −2(log | tanhφ|)z̄. The solution is λ = c coth2 φ,
c ∈ R0.

Step 2. The function k = log sinhφ is isoparametric. From Step 1 we know that

(12) |µ|2 = 4(c2 coth4 φ+ 1)|φz|2.
Substituting expression (12) in equation (d) from Lemma 4.1 one finds that

(13) 4c2 coth4 φ|φz|2 = sinh2 2φ.

The function φ and its derivative φz can be written completely in terms of k:

φ = arcsinh(ek), φz =
ekkz√
1 + e2k

.(14)

The expressions (14) simplify equation (13) to

|kz| =
e2k

|c|
.(15)

From Lemma 4.1 (e) we also know that k is a harmonic function. Therefore the
length of the gradient and the laplacian of k are constant along each level curve,
which means exactly that the function k is isoparametric.

Step 3. Obtaining the invariants. The gradient of k vanishes nowhere by (15)
so the level curves of k are smooth. A result on isoparametric functions (see [2]
or [14, p. 116]) states that the level curves of k are either parallel lines or concentric
circles.

If the level curves are lines, k depends on only one cartesian coordinate. The
function k is harmonic and depends on one coordinate, hence it must be a first
degree polynomial function. However, such a map cannot be a solution of (15), so
this case cannot occur.

If the level curves are concentric circles, then after a suitable translation z 7→
z + z0 of the complex coordinate, the function k only depends on the radial co-

ordinate r =
√
x2 + y2. Since k is harmonic, k = a log r + b, with a, b ∈ R.

Substituting k in (15) gives |a|c = e2br2a+1. So a must be equal to −1/2 and
thus b = 1/2 log(|c|/4). Hence

k =
1

2
log

c

2r
are the harmonic functions that satisfy (15). The expressions for φ and µ can be
calculated from φ = arcsinh(ek) and µ = 2ε(c coth2 φ+ i)φz. If one reparametrises
the harmonic function by performing the dilation z 7→ |c|z/4, one obtains the
expressions (1) for φ and µ in the statement �

5. The Bonnet problem for non-conformal harmonic maps

Consider a Riemann surface S and two harmonic maps f1, f2 : S → S3 from S
into the round 3-sphere S3. The holomorphic quadratic differentials Θk, k = 1, 2,
are defined by

Θk = 〈(fk)z, (fk)z〉 dz2

where z is an arbitrary complex coordinate on S. Assume that Θ1 = Θ2. Two
cases can occur.

(a) If Θ1 = Θ2 is identically zero, the harmonic maps fk, k = 1, 2, are conformal
and thus they are minimal isometric immersions of S into the three-sphere S3.

(b) If Θ1 = Θ2 is not identically zero, the set of zeros consists of isolated points.
Now we state the Bonnet problem for non-conformal harmonic maps.

Bonnet problem. Consider two regular non-conformal harmonic maps f1, f2 : S →
S3. Assume that Θ1 = Θ2 and |(f1)z| = |(f2)z|. Are the two maps necessarily con-
gruent?
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The problem presented here is a non-conformal analogue of the classical Bonnet
problem. Let X1 and X2 be two isometric immersions of a Riemann surface S
into R3 for which the induced metrics and mean curvature functions agree. The
classical Bonnet problem then asks whether the two immersions X1 and X2 are
congruent. Bonnet indicated that that there are three types of surfaces who have
an isometric but non-congruent ‘sister surface’. One of these types of surfaces are
constant mean curvature (CMC) surfaces.

The Bonnet problem for harmonic maps looks basically the same as the one
for CMC surface, but there is an essential difference. First, we have to assume
that Θ1 = Θ2 for the problem to be well-stated. It means that the conformal
structure induced on S is the same for the maps f1 and f2. This assumption allows
us to choose a complex coordinate adapted to both f1 and f2 (see equation (16)).
Note that if f1 and f2 are isometric immersions, then both holomorphic quadratic
differentials are automatically equal to zero.

Secondly we assume that 〈(f1)z, (f1)z̄〉 = 〈(f2)z, (f2)z̄〉. Choosing an adapted co-
ordinate z, this means that φ1 = φ2 (see (17) below). This assumption is analogous
to assuming that the metrics agree in the classical Bonnet problem.

Finally, there is a correspondence between harmonic maps to S3 andH-surfacesX
in R3, i.e. immersions of a surface that satisfy the equation Xxx+Xyy = 2Xx×Xy

(see Proposition 5.2 in [10]). If the harmonic map to S3 is a minimal surface then
the corresponding H-surface is CMC. In this case the correspondence is the Lawson
correspondence ([13]).

However, the Bonnet problems for CMC surfaces and harmonic maps are not
entirely the same. The Gauss-Codazzi equations of a CMC surface are invariant
under the transformation Q→ eitQ, t ∈ R, where Qdz2 is the Hopf differential of
the CMC surface. Applying the Bonnet theorem then gives a 1-parameter family
of isometric surfaces that all have the same constant mean curvature.

To a non-conformal harmonic map one can also associate a 1-parameter family of
harmonic maps by transforming the invariants of the map. However, the invariant φ
of the map does not remain invariant under this transformation (see Lemma 5.1).
Therefore the Bonnet problem for non-conformal harmonic maps is not trivial.

Lemma 5.1. Consider a non-conformal harmonic map f : S → S3. The integra-
bility conditions (6) are invariant under the transformation

φ(z)→ φ(eitz), µ(z)→ eitµ(eitz), t ∈ R

and thus one obtains a 1-parameter family ft : S → S3, t ∈ R of non-conformal
harmonic maps.

Proof. By Proposition 2.1 we know that each pair of functions φ and µ that satisfies
the system of equations (6) gives a non-conformal harmonic map. We show that
if φ and µ are solutions of (6) then

φ̂(z) = φ(eitz),

µ̂(z) = eitµ(eitz)

for every t ∈ R are also solutions of this system.

Note that φ̂z(z) = eitφz(e
itz) and φ̂zz̄(z) = φzz̄(e

itz) and therefore φ̂ and µ̂

satisfy (6a). Also note that µ̂z̄(z) = µz̄(e
itz) and hence φ̂ and µ̂ also satisfy (6b). �

We now present the first results for the Bonnet problem of non-conformal har-
monic maps. Consider two regular non-conformal harmonic maps f1 and f2 from a
Riemann surface S into S3. We always assume that Θ1 = Θ2 and |(f1)z| = |(f2)z|.
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On the open subset where Θk does not vanish, one can choose a complex coordi-
nate z such that

(16) 〈(f1)z, (f1)z〉 = 〈(f2)z, (f2)z〉 = −1,

which means that z is an adapted coordinate for both f1 and f2.
By (3) there exist ImH-valued functions αk and βk, k = 1, 2, such that (fk)z =

1
2f(αk − iβk) and by equation (16) the functions αk and βk satisfy

|αk| = 2 sinhφk, |βk| = 2 coshφk

for some real functions φk, k = 1, 2. Since the maps fk are regular, fx and fy are
linearly independent so the functions φk are positive. Since |(fk)z|2 = cosh 2φk,
k = 1, 2, we have

(17) |(f1)z| = |(f2)z| ⇔ φ1 = φ2.

Lemma 5.2. Consider two regular harmonic map f1, f2 : S → S3 satisfying the
assumptions of the Bonnet problem. Then the following statements are equivalent.

(a) 〈(f1)z, (f2)z〉 dz2 is a holomorphic differential.
(c) The angle between f1 and f2 is constant at each point on S.

Proof. The proof follows from the following calculation:

〈(f1)z, (f2)z〉z̄ = 〈(f1)zz̄, (f2)z〉+ 〈(f1)z, (fZ)zz̄〉
= −|(f1)z|2〈f1, (f2)z〉 − |(f2)z|2〈(f1)z, f2〉
. = −|(f1)z|2〈f1, f2〉z

where we used in the last step that |(f1)z| = |(f2)z|. �

Corollary 5.3. Let f be a non-conformal harmonic map f with adapted coordi-
nate z and let fε be its ε-transform. Then φ = φε if and only if 〈fz, fεz 〉 dz2 is a
holomorphic differential.

Proof. If φ = φε then by (17) |fz| = |fεz |. By Theorem 3.1 the coordinate z is
also an adapted coordinate for fε. Therefore the conditions of the Bonnet problem
are satisfied. By definition of the transform 〈f, fε〉 = 0. Hence by Lemma 5.2
〈(f1)z, (f2)z〉 dz2 is holomorphic. This proves the first implication.

Conversely assume that 〈(f1)z, (f2)z〉 is holomorphic. In Lemma 3.3 in [10] we
showed that 〈fz, fεz 〉 = tanhφ(µ−2εiφz) A calculation using (6) and (9) shows that

0 = (tanhφ(µ− 2εiφz))z̄ = 2εi(sinh2 φ− sinh2 φε),

so φ = φε. �

Lemma 5.4. Let f1 and f2 be regular non-conformal harmonic maps that satisfy
the assumptions of the Bonnet problem and let φ1, µ1 respectively φ2, µ2 be their
invariants. Then |µ1| = |µ2|. Moreover (µ2

1 − µ2
2) dz4 is a holomorphic quartic

differential.

Proof. The equation |µ1| = |µ2| follows from (6a) and (17). It can be shown by a
standard calculation that

(µ2
1 − µ2

2) dz4 =
(
〈(f1)zz, N1〉2 − 〈(f2)zz, N2〉2

)
dz4

does not depend on the choice of the complex coordinate z. Furthermore by (6b)

(µ2
1 − µ2

2)z̄ = 4
(
|µ2|2 − |µ1|2

)
φz csch 2φ = 0,

with φ = φ1 = φ2 so the quartic differential is holomorphic. �

Corollary 5.5. If f1 and f2 are not congruent, then the set {p ∈ S | µ1(p) =
±µ2(p)} consists of isolated points.
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Proof. If µ2
1 = µ2

2, then µ1 = ±µ2 so f1 and f2 are congruent by a rotation resp.
reflection by Proposition 2.1. If µ2

1 6= µ2
2, then the zeros of the quartic differential

are isolated, since it is a holomorphic differential. �
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