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Abstract 

Sudden Unexpected Death in Pediatrics (SUDP) is a tragic condition with 

hypothesized multifactorial etiology. While there is recent evidence implicating genes 

related to cardiac arrhythmia and epilepsy as genetic risk factors contributing to some 

cases of SUDP, the underlying mechanisms of SUDP remain under active 

investigation. SUDP encompasses Sudden Infant Death Syndrome (SIDS) and 

Sudden Unexplained Death in Childhood (SUDC), affecting children under and over 1 

year of age, respectively. The presence of developmental hippocampal malformations 

in many children with SIDS and SUDC suggests that a subset of patients may share 

epilepsy-related mechanisms with Sudden Unexplained Death in Epilepsy Patients 

(SUDEP). Pathogenic variants in both epilepsy- and arrhythmia-related sodium 

channel genes have recently been identified in patients with SIDS, SUDC, and 

SUDEP. 

We performed a candidate gene analysis for genes encoding sodium channel 

subunits in whole exome sequencing (WES) data from 73 SUDP patients. After a 

thorough literature review, we mapped all reported SUDP-associated sodium channel 

variants alongside variants from the population on a structural protein model to 

evaluate whether patient variants clustered in important protein domains compared to 

controls. 

In our cohort, 13 variants met criteria for pathogenicity or potential 

pathogenicity. While SCN1A, SCN1B, and SCN5A have established disease 

associations, we also considered variants in the paralogs SCN3A, SCN4A and 

SCN9A. Overall, the patient-associated variants clustered at conserved amino acid 

sites across the sodium channel gene family that do not tolerate variation in these 

genes. 
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This study provides a molecular overview of sodium channel variants present 

in cases with SUDP and reveals key amino acid sites that do not tolerate variation 

across the SCN paralog family. Further research will lead to an improved 

understanding of the contribution of sodium channels to SUDP, with a goal of one day 

implementing prevention strategies to avoid untimely deaths in at-risk children. 

Author Summary 

The sudden unexplained death of an infant or a child is a tragic event, which is likely 

caused by the complex interaction of multiple factors. Besides environmental factors, 

genes related to epilepsy and cardiac arrhythmia have been identified as risk factors. 

The sodium channel family encompasses genes, related to both cardiac arrhythmia as 

well as epilepsy, whose proteins share structural homology. We evaluated sodium 

channel gene variants in our cohort, examined all known variants in sodium genes in 

SUDP patients from the literature, and mapped patient variants alongside variants from 

the population on a 3D protein model. The patient variants clustered at conserved 

amino acid sites with low rates of variation in the general population, not only in the 

particular gene involved but also in the gene family. This study illustrates that sodium 

channel variants contribute to the complex phenotype of sudden death in pediatrics, 

suggesting complex mechanisms of neurologic and/or cardiac dysfunction contributing 

to death.

Introduction

Sudden Unexpected Death in Pediatrics (SUDP) encompasses a tragic set of 

conditions, including Sudden Infant Death Syndrome (SIDS) and Sudden Unexplained 

Death in Childhood (SUDC), affecting children under and over 1 year of age, 

respectively. These conditions are hypothesized to involve heterogeneous and 

multifactorial etiologies, conceptualized as a ‘triple-risk’ model with a convergence of 
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intrinsic, developmental, and environmental vulnerabilities contributing to death [1,2]. 

We have reported developmental hippocampal malformations in greater than 40% of 

children with SIDS and SUDC [3,4], suggesting that a subset of SIDS and SUDC is 

linked to epilepsy-related mechanisms since such hippocampal lesions have been 

classically associated with temporal lobe epilepsy [5]. The association between 

epilepsy and sudden death, demonstrated most clearly in sudden unexpected death 

in epilepsy (SUDEP), may well extend to SIDS and SUDC in patients with these 

lesions, which have been called ‘epilepsy in situ’ [6]. While the terminal mechanisms 

of SUDP and SUDEP remain speculative [7,8], there is active investigation into the 

role of genetic factors involving genes related to epilepsy [9,10] as well as cardiac 

arrhythmias [11,12]. 

 

Voltage-gated sodium channels (VGSCs) are a highly conserved family of proteins—

expressed in excitable tissue in heart, central nervous system, peripheral nervous 

system, and muscle—that are essential for the generation and propagation of action 

potentials. Interestingly, pathogenic variants in both arrhythmia- and epilepsy-related 

VGSCs have been identified in patients with SIDS, SUDC, and SUDEP [9,12–30]. In 

humans, nine different pore-forming α-subunits have been identified (NaV1.1-1.9 

encoding for SCN1A-SCN5A and SCN8A-SCN11A) [31,32]. NaV1.1, 1.2, 1.3 and 1.6 

are the primary sodium channel subunits expressed in the central nervous system, 

NaV1.7, 1.8 and 1.9 in the peripheral nervous system, NaV1.4 in skeletal muscle, and 

NaV1.5 in the heart. The pore-forming α-subunit is composed of four homologous 

domains, each containing six transmembrane α-helical segments (S1-S6). In addition, 

there are five different β-subunits (β1, β1B, β2, β3, β4) encoded by SCN1B-SCN4B 

[33]. The tissue-specific expression profiles of α-subunits and β-subunits are shown in 

Table 1. Variants in the cardiac-expressed SCN5A [12–26] gene are reported most 

frequently in association with SIDS and SUDC, but variants in SCN1A [9,27], SCN4A 

[34], SCN10A [35], SCN1B [12,35–38], SCN3B [15,39] and SCN4B [39] have also 
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been reported. In addition, variants in SCN1A [40,41], SCN2A [28,42] and SCN8A 

[29,30,42] have been associated with SUDEP. 

Table 1. Voltage-gated sodium channels expression and disease associations

Gene Protein Distribution Associated human disease

SCN1A Nav1.1 CNS, heart DS, GEFS+, FS+, familial autism, FHM3, SUDEP

SCN2A Nav1.2 CNS DS, GEFS+, OS, EOEE, BFNIS

SCN3A Nav1.3 CNS, heart Unclear, contributing to neuronal hyperexcitability/ epilepsy?

SCN4A Nav1.4 Skeletal muscle PAM, PMC, HyperPP, HypoPP, SNEL

SCN5A Nav1.5
Skeletal muscle, 

heart, CNS
AF, AS, BS, DCM, LQTS, PCCD, SIDS, SSS, SUDEP

SCN8A Nav1.6 CNS, PNS EOEE, cognitive impairment, paralysis, ataxia, dystonia

SCN9A Nav1.7 PNS CIP, IEM, PEPD, PPN

SCN10A Nav1.8 PNS PPN

SCN11A Nav1.9 PNS PPN

SCN1B β1 CNS, PNS, heart AF, BS, DS, GEFS+, LQTS, PCCD, TLE

SCN2B β2 CNS, PNS, heart AF, BS

SCN3B β3 CNS, PNS, heart AF, BS, PCCD, SIDS, ventricular fibrillation

SCN4B β4 CNS, PNS, heart LQTS, SIDS

SCN1B β1B
Fetal CNS, PNS, 

heart
BS, PCCD, epilepsy

Legend: Modified with permission from Brunklaus et al [43]. 

AF, Atrial fibrillation; AS, atrial standstill; BFNIS, benign familial neonatal-infantile seizures; BS, Brugada syndrome; 

CIP, channelopathy-associated insensitivity to pain; CNS, central nervous system; DCM, dilated cardiomyopathy; DS, 

Dravet syndrome; EOEE, early-onset epileptic encephalopathy; FHM3, familial hemiplegic migraine type 3; FS+, febrile 

seizures plus; GEFS+, genetic epilepsy with febrile seizures plus; HyperPP, hyperkalemic periodic paralysis, HypoPP, 

hypokalemic periodic paralysis; IEM, inherited erythromelalglia; LQTS, long QT syndrome; OS, Ohtahara syndrome; 

PAM, potassium-aggravated myotonia; PCCD, progressive cardiac conduction disease; PEPD, paroxysmal extreme 

pain disorder formally known as familial rectal pain syndrome; PMC, paramyotonia congenital; PNS, peripheral nervous 

system; PPN, painful peripheral neuropathies; SIDS, sudden infant death syndrome; SNEL, severe neonatal episodic 

laryngospasm; SSS, sick sinus syndrome; SUDEP, sudden unexplained death in epilepsy; TLE, temporal lobe 

epilepsy.
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Given the common evolutionary origin and expression pattern of sodium channel 

subunits expressed across cardiac and neurologic tissues, we performed a candidate 

gene analysis for variants in genes encoding these proteins and their paralogs using 

whole exome sequencing (WES) data from 73 patients with SUDP. In addition, we 

performed a structure-based assessment of all novel and reported variants in human 

sodium channels in patients with SUDP vs. controls. 

Results

Genetics and clinical characteristics of our cases

We identified 13 variants that we determined to be pathogenic or likely pathogenic in 

genes encoding for VGSCs in 11 patients, using ACMG criteria [44] (Table 2). The age 

of death across the 11 patients with variants in VGSC-encoding genes ranged from 7 

weeks to 8 years, with 9/11 (81%) patients younger than 6 months at the time of death. 

Eight patients had hippocampal malformations as assessed by detailed 

neuropathological examination, and 1 patient had a normal hippocampus. For 2 other 

patients, detailed neuropathological analysis was not possible. Full clinical and 

molecular data for all 11 patients are listed in Table 2. Notably, one patient had two 

variants in SCN1A (p.Leu1296Met, p.Glu1308Asp) (reported previously)[9], one 

patient had a variant in SCN3A (p.Ala1804Val) and in SCN10A (c.4386+1G>C), and 

two siblings carried the same variant in SCN1B (p.Trp179Ter). 
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Table 2. Variants in voltage-gated sodium channel genes in our cohort.

Gene Pat-
ient

cDNA, 
protein

AF Pathogenicity 
predictions

Inherit
ance

Age HC Additional notes

1 3886T>A, 
L1296M

8.17E-
06

PP-2, 0.979; 
SIFT, 0.001

N/A 7 we

1 3924A>T, 
E1308D

0.0006
416

PP-2, 0.727; 
SIFT, 0.281

N/A 7 we

Abnormal 
DG

 

2 2045G>T, 
G682V

4.07E-
06

PP-2, 0.478; 
SIFT, 0.003

N/A 2 mo Abnormal 
DG 

 

SCN1A

3 182T>C, 
L61P

0 PP-2, 0.783; 
SIFT, 0

N/A 20 mo Abnormal 
DG

History of atypical FS

SCN3A 4 5411C>T, 
A1804V

2.44E-
05

PP-2, 0.998; 
SIFT, 0

N/A 4 mo N/A  

5 2171A>G, 
K724R 

0 PP-2, 0.953; 
SIFT, 0.001

inh 5 mo Normal Megalencephaly, bilateral 
open opercula, bilateral 
small STG, chronic 
hemorrhages, acute HIE

SCN4A

6 307T>G, 
F103V

2.03E-
05

PP-2, 0.73; 
SIFT, 0.001

inh 3 mo Abnormal 
DG

Megalencephaly, mild 
gliosis of CWM, CerWM, 
inferior olive, tegmentum 

SCN5A 7 283G>A, 
V95I

3.25E-
05

PP-2, 0.979; 
SIFT, 0.001

inh 1.5 
mo

Abnormal 
DG

 

SCN9A 8 5624G>A, 
R1875Q 

1.62E-
05

PP-2, 0.734; 
SIFT, 0

inh 8 yrs Abnormal 
DG

Cytomegaly in RF 

4 4386+1G>C 1.22E-
05

splicing 
(100%)

N/A 4 mo N/A  SCN10A

9 305C>G, 
S102C

4.07E-
06

PP-2, 0.701; 
SIFT, 0.002

inh 3 mo 
22 d

Abnormal 
DG

Megalencephaly

10 536G>A, 
W179* 

8.19E-
06

nonsense N/A 4 mo Abnormal 
DG

MegalencephalySCN1B

11 536G>A, 
W179* 

8.19E-
06

nonsense N/A 2 mo N/A Megalencephaly

Legend: AF = allele frequency according to gnomAD; CWM = cerebral white matter; CerWM = cerebellar 
white matter; DG=dentate gyrus; FS = febrile seizures; HC = hippocampus; inh = inherited; mo = months; 
HIE = hypoxic ischemic encephalopathy; N/A=not available; PP-2 = Polyphen2; RF = reticular formation; 
SIFT = Sorting Intolerant From Tolerant; STG = superior temporal gyrus; we = weeks; yrs = years. For 
splicing variants, we used the splicing prediction score from Alamut Visual-2.10, which incorporates the 
splicing tools MaxEnt, NNSPLICE, and HSF. Variants highlighted in bold affect the same paralog position. 
Patient 1 and 2 have been reported previously.
Transcripts used: SCN1A (NM_001165963.1), SCN3A (NM_0006922.3), SCN4A (NM_000334.3), 
SCN5A (NM_198056.2), SCN9A (NM_002977.3), SCN10A (NM_006514.2), SCN1B (NM_199037.4), 
SCN3B (NM_018400.3), SCN4B (NM_174934.3). 
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Cases from the literature

We reviewed all variants in VGSC genes that have been reported in the literature in 

patients with SIDS and SUDC. We identified 74 variants in 99 patients affecting 72 

different amino acid positions in the following genes: SCN1A (n=3), SCN4A (n=5), 

SCN5A (n=55), SCN10A (n=4), SCN1B (n=3), SCN3B (n=3), SCN4B (n=1). 

Re-evaluation of all variants 

Collectively, 13 patients’ variants from our own cohort plus 99 patients’ variants 

retrieved from literature comprise 84 variants affecting 82 different amino acid 

positions in 9 genes: SCN1A (n=4), SCN3A (n=1), SCN4A (n=8), SCN5A (n=56), 

SCN9A (n=1), SCN10A (n=6), SCN1B (n=4), SCN3B (n=3), SCN4B (n=1). Three of 

the variants included here were previously reported [9,27]. 

Evaluating variants in the literature with respect to allele frequency reported in the 

general population, 11/74 variants (15%) of the variants reported in the literature had 

an allele frequency higher than 0.001, arguing against their pathogenicity. In addition, 

using pathogenicity prediction scores, we identified 23 additional variants that were 

predicted to have a benign or neutral functional effect. In total, we considered that 

there was conflicting evidence of pathogenicity for 33 out of the 74 (45%) variants 

reported in literature, and 1 out of 74 (1%) was determined to be benign based on the 

high frequency in controls, lack of predicted functional effect in silico, and/or in vivo 

absence of functional effects resulting from the variants (S1 Table). 

To further assess for evidence of variant pathogenicity, we determined the Parazscore 

for all missense variants. As expected, Parazscores from patient variants were 

significantly higher than those observed in gnomAD controls (p-value < 0.0001). The 

patients’ variants that we determined to be pathogenic with the prediction tools were 

more likely to be located at strongly conserved family members (p=0.03) (i.e., greater 
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Parazscores) (Fig 1A). On the other hand, patients’ variants that we determined to be 

conflicting or benign with the prediction scores were more likely present in less 

conserved regions (p=0.0001) (Fig 1B). Interestingly, 25 variants involved the 

'alignment index position' of a VGSC variant reported in disease (S2 Table), which is 

unlikely to occur in the general population (p-value < 0.0001). Overall, we observed 

significant clustering of variants at conserved amino acid sites, notably with the same 

amino acid affected between SCN1A/SCN5A and SCN5A/SCN9A (S2 Table). The 

variants of two patients (Patients 6 and 9) in our cohort affected the same paralog 

position: SCN4A (p.Phe103Val) and SCN10A (p.Ser102Cys) (p-value < 0.0001). Both 

patients died at 3 months of age and had pathology notable for hippocampal granule 

cell dispersion with dentate gyrus bilamination (Table 2); both variants were inherited 

from a parent who had no history of epilepsy, febrile seizures, or other major illness. 

Three other patients of our cohort (Patients 1, 7 and 8) affected the same paralog 

position at respectively SCN1A/SCN5A, SCN5A/SCN9A, and SCN5A/SCN10A. 

Interestingly, all three patients had dentate gyrus bilamination (Table 2 and 

Supplementary Table 2). 

Variant position and pathogenicity

Variants predicted to be pathogenic were more likely to be localized in the 

transmembrane regions of the protein (p-value = 0.03), which have been associated 

with severe channel dysfunction [45]. On the other hand, variants predicted to be 

conflicting or benign variants were more likely to be localized in the cytoplasm (p-value 

= 0.0063) (S1 Table, S1 Fig). Mapping of all NaV channel variants on a 3-dimensional 

structural model was not informative (S2 Fig).

Discussion
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We report 11 patients with 13 pathogenic or likely pathogenic variants in genes 

encoding for sodium channel subunits expressed in the brain and/or in the heart. 

Among the cases with variants presented here, 8 cases had hippocampal 

abnormalities but no history of seizures. None had a history of cardiac arrhythmia or 

other cardiac presentation prior to death. While SCN1A [9,27], SCN1B [12,35–37], and 

SCN5A [12–26] have strong prior associations with epilepsy, arrhythmia, and sudden 

death, we additionally considered variants in the following SCN paralogs: SCN3A, 

SCN4A, SCN9A, SCN10A. Surprisingly, only 1/13 (8%) of our own cohort of patients 

carried a variant in SCN5A, compared to 76/99 (77%) of the SIDS patients reported in 

literature. On the other hand, 4/13 (31%) of our own cohort compared to 4/99 (4%) 

patients of the literature carried a variant in SCN1A, three of which were recently 

reported [9,27]. 

Our literature review found 74 variants in 99 patients with SIDS, SIDS-like 

presentations, or SUDC affecting 72 different amino acid positions in a VGSC-related 

gene. 55/75 variants were present in SCN5A, reflecting in some cases the fact that 

this gene was specifically targeted in some series [13–16,20,21,24,46]. Since many of 

the VGSC variants reported in SIDS or SUDC were described before the current era 

of abundant publicly available control data, we re-evaluated all the variants reported in 

literature with this in mind. In a surprisingly high number of reported variants (45%), 

conflicting evidence argued against pathogenicity using current ACMG criteria. 

Analysis of the relatively modest number of variants in our cohort, coupled with a larger 

number from the literature, suggested that those variants we determined to be 

pathogenic or likely pathogenic by other metrics were most likely to be located in critical 

domains of the sodium channel protein—e.g., transmembrane domains. Alternatively, 

variants in control populations were randomly distributed throughout the genes. 

Variants considered pathogenic are enriched in conserved regions across gene family 

members. We hypothesized that variants in VGSC genes at certain conserved 
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positions might be associated with a risk for sudden death, independent of the tissue 

where the relevant gene is most highly expressed. This is illustrated by two patients in 

our cohort that carry a variant in respectively SCN4A and SCN10A at the same paralog 

position and 24 other variants from the literature that affect a paralog variant that is 

known to be disease-associated. When considering variant pathogenicity in a newly 

implicated VGSC-encoding gene, the position in the protein, with respect to paralogous 

proteins already implicated in sudden death, can provide additional evidence 

suggesting pathogenicity. 

Ultimately, while all of these factors are taken into consideration when assessing 

pathogenicity, robustly conducted experimental evidence with adequate positive and 

negative control data should be sought when there is question regarding pathogenicity. 

Larger cohort studies will be required to more securely implicate a broader range of 

VGSC-related genes in SUDP. In addition, future studies that can incorporate trio 

sequencing, in which parental DNA can be made available to determine whether 

variants are de novo and thus more likely to be pathogenic with respect to a severe 

phenotype like sudden death, will contribute to our understanding of the role of this 

family of genes to sudden death. Initial studies in induced pluripotent stem cell (iPSC)-

derived neurons and mouse models of SCN1A, traditionally associated with epilepsy, 

suggested cardiac and/or respiratory mechanisms of death [47,48]. Additional in vitro 

and in vivo studies of the sodium channel gene family will move us toward 

understanding the mechanisms through which variants in sodium channel-encoding 

genes contribute to sudden death.

Conclusions

Our analysis of a SUDP cohort and the present literature on sodium channel variants 

in SUDP cases, using population- and protein structure-based predictive models, 
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revealed 48 SCN variants. Importantly, in our cohort, the variants were found in 

children without prior histories of seizures yet with hippocampal abnormalities and 

without history or family history of cardiac arrhythmia. Overall, similar to those reported 

in prior studies, variants predicted to be pathogenic were more likely localized in the 

transmembrane regions of the protein. These findings provide evidence that sodium 

channel abnormalities contribute to the complex phenotype in SUDP involving central 

nervous system and/or cardiac rhythm dysfunction. Further, they suggest that future 

functional studies into the function of the sodium channels may elucidate the 

mechanisms through which variants in these genes underlie some cases of sudden 

death.

Methods

Ethics statement

The study has been approved by the Institutional Review Board of Boston Children's 

Hospital (approval number P00011014). Informed consent has been obtained from all 

participants.

Our cohort 

DNA from 73 SUDP cases was obtained through the Massachusetts Office of the Chief 

Medical Examiner (OCME), Boston, MA and the Office of the Medical Examiner, San 

Diego, CA using consent procedures in accordance with Massachusetts and California 

Law. These cases included 42 singletons for whom parental samples were not 

available and for whom families could not be contacted, 28 trios consisting of probands 

and both parents, and 3 probands with one parent sample available. DNA extracted 

from whole blood or saliva underwent capture for exome sequencing using either the 

Agilent SureSelect XTHuman All Exon v4 or Illumina Rapid Capture Exome 

enrichment kit (Broad Institute, Cambridge, MA). Sequencing of 100bp paired end 
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reads was obtained using Illumina HiSeq (Illumina, San Diego, CA). Coverage was 

>90% or >80% meeting 20x coverage with the two methods respectively. Our data 

analysis and variant calling methods have been described previously [49]. We utilized 

the BCH (Boston Children`s Hospital) Connect Genomics Gateway integrated with the 

WuXi NextCODE analysis platform [50] for variant interrogation and analysis. 

For each case, we performed a targeted initial analysis to identify variants in genes 

encoding for the human VGSC subunits. Candidate pathogenic variants were 

evaluated according to American College of Medical Genetics and Genomics (ACMG) 

criteria [44], including pathogenicity predictions from both Polyphen2 and SIFT and low 

population allele frequency (<0.001) according to the Genome Aggregation Database 

(gnomAD, http://gnomad.broadinstitute.org). For cases with data from parental 

samples, we evaluated de novo vs. inherited status of candidate variants of interest. 

For splicing variants, we used the splicing prediction score from Alamut Visual-2.10, 

which incorporates the splicing tools MaxEnt, NNSPLICE, and HSF.

Literature cohort

In order to identify additional cases for phenotypic comparison and to evaluate whether 

a given variant was novel or previously reported and whether there might be data 

supporting pathogenicity, we performed a literature search (PubMed, accessed June 

2018, with search parameters “Sudden Infant Death” [Mesh] AND “Sodium Channels” 

[Mesh] resulting in the identification of 43 studies. In addition, we searched the Human 

Gene Mutation Database (http://www.hgmd.cf.ac.uk/, accessed June 2018) for each 

of the VGSCs genes to identify any possible variants not found in the literature search, 

identifying 13 additional studies with cases of SIDS or SUDC and reported variants in 

sodium channel-related genes. 
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Structural protein modeling

We assessed genotype-phenotype correlation by comparing the locations of variants 

and the phenotypic features associated with each variant using the human NaV1.7 

(SCN9A) protein model described by Huang et al [51]. We analyzed the position of the 

variants of our cohort along with additional variants identified through our literature 

search (S1 Table). Three of our cases’ variants have been previously reported in 

literature [9,27]. We focused on exonic variants since intronic, splicing, and truncating 

variants cannot be annotated onto the three-dimensional protein sequence. 

Illustrations were generated using PyMol. 

In silico predictions

Functional prediction scores were obtained from the dbNSFP database version 3.5 

(August 2017, http://varianttools.sourceforge.net/). In total, we used six pathogenicity 

prediction scores (SIFT, Polyphen-2-HVAR, Polyphen-2-HDIV, Mutation Assessor, 

FATHMM, and LRT). We classified a variant as “damaging” when the majority of the 

tools predicted a functional effect for the variant (i.e., a minimum of 4 out of 6 tools). 

Splicing variants are considered “possibly damaging” or “damaging” when they have a 

likelihood of 50% or more to affect splicing. For splicing variants, we used the splicing 

prediction score from Alamut Visual-2.10, which is calculated from the splicing tools 

MaxEnt, NNSPLICE, and HSF. 

Parazscore

Based on the linear amino acid sequence of SCN9A (canonical transcript 

ENST00000409672, CCDS46441), we compared the position of 74 missense variants 

in all sodium channel gene paralogs against variants found in the general population 

using gnomAD. We evaluated the amino acid gene-family paralog conservation score 

using the Parazscore [52] (http://mbv.broadinstitute.org), which leverages amino acid 
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conservation across gene-family members, assuming that conserved sites are more 

likely to be important for protein function and thus more likely to be present in patients 

than in controls. Statistical comparison between the variant counts of patients vs. 

gnomAD was conducted using a two-tailed t-test with nominal two-sided p-values 

<0.05 considered significant.

Three-dimensional mapping of amino acid substitutions in VGSC-related 

genes

In order to assess for a genotype-phenotype correlation across gene-family paralogs, 

we compared the position of all missense variants from our own cohort and from 

literature onto a 3-dimensional NaV1.7 structure model. Since no atomic structure of 

any mammalian NaV channel is available, we used the recently published NaV1.7 

structure model [51] that has been established on the cryo-EM structure of a rabbit 

Cav channel Cav1.1.

Legend

Fig 1: SCN patient variant evolutionary conservation and population constrained 

assessment. The SCN patient variant paralog conservation score (Parazscore) is 

shown across the linear protein sequence. Parazscore values range from negative 

values, representing less conservation at a given amino acid position, to positive 

values, representing high conservation, with the highest value depicting identical 

amino acids are present in all related proteins. A) The Parazscore is shown for SCN 

variants that are predicted to be pathogenic. B) The Parazscore is shown for SCN 

variants that are predicted to be conflicting. Color scale: purple = SCN1A, turquoise = 

SCN3A, yellow = SCN4A, orange = SCN4A and SCN10A, blue = SCN5A, green = 

SCN9A, red = SCN10A. 
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Supporting information

S1 Fig. Pathogenic SCN patient variants are more likely to be localized in the 

transmembrane regions. The distribution of the paralogues of the SCN patient 

variants is shown on a two-dimensional protein model of the SCN9A protein. Variants 

predicted to be pathogenic are shown in red. Variants predicted to be benign or 

conflicting are shown in green. 

S2 Fig. SCN patient variant distribution on a three-dimensional protein model. 

The distribution of the paralogues of the SCN patient variants is shown on a three-

dimensional protein model of the SCN9A protein, described by Huang et al[51]. The 

backbone of the protein is shown in white, and disease-associated variants are shown 

as red spheres.

S1 Table. All variants in VGSC genes in patients with SIDS or SUDC

Legend: ▵patient has two variants in SCN5A; *patient has two variants in SCN5A, ◆

carries a variant in SCN5A and SCN1B (both inherited from father), ○ compound 

heterozygous for SCN5A, □ compound heterozygous for SCN1A. AF = allele 

frequency; D = deleterious; gnomAD = Genome Aggregation Database; GOF = gain 

of function; H = high; n patients = number of patients; L =  low; LOF = loss of function; 

LRT = likelihood ratio test; M = medium; MA = Mutation Assessor; N = neutral; P = 

pathogenic; PP-2 = PolyPhen2; SIFT = Sorting Intolerant from Tolerant; T = tolerant. 

Transcripts used: SCN1A (NM_001165963.1), SCN3A (NM_0006922.3), SCN4A 

(NM_000334.3), SCN5A (NM_198056.2), SCN9A (NM_002977.3), SCN10A 

(NM_006514.2), SCN1B (NM_199037.4), SCN3B (NM_018400.3), SCN4B 

(NM_174934.3).

S2 Table. Patients with variants at a paralog position 
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Legend: AF = allele frequency; GOF = gain of function; LOF = loss of function; N/A = 

not available. Variants in bold were identified in our cohort. Transcripts used: SCN1A 

(NM_001165963.1), SCN3A (NM_0006922.3), SCN4A (NM_000334.3), SCN5A 

(NM_198056.2), SCN9A (NM_002977.3), SCN10A (NM_006514.2), SCN1B 

(NM_199037.4), SCN3B (NM_018400.3), SCN4B (NM_174934.3).
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