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Abstract Allowing for symmetry in distributions is often a necessity in statistical
modelling. This paper studies a broad family of asymmetric densities, which in a
regression setting shares basic philosophy with generalized (non)linear models. The
main focus however for the family of densities studied here is quantile estimation
instead ofmean estimation. In a similar fashion a broad family of conditional densities
is considered in the regression setting. We discuss estimation of the parameters in
the unconditional case, and establish an asymptotic normality result, with explicit
expression for the asymptotic variance-covariance matrix. In the regression setting,
we allow for flexible modelling and estimate nonparametrically the location and
scale functions, leading to semiparametric estimation of conditional quantiles, again
in the unifying framework of the considered broad family. The practical use of the
proposed methods is illustrated in a real data application on locomotor performance
in small and large terrestrial mammals.

1 Introduction

Several statistical tools are developed based on the assumption that the data are
symmetric about the mean. Among standard symmetric distributions are the normal
and Student-t distributions. In case the data cannot be represented appropriately via
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symmetric distributions, asymmetric distributions are needed. Classical asymmetric
distributions include exponential, gamma, log-normal, log-Laplace, chi-squared, and
Fisher distributions, which all have support on a real halfline. Many non-classical
asymmetric distributions such as skew-normal and skew Student-t distributions, with
support the whole real line, have been proposed in the literature. When it comes to
parameter estimation (or in general statistical inference and asymptotic properties)
for a given distribution, a convenient class of distributions is the exponential family.

In a conditional setting, when covariates come into play, the interest goes to
conditional distributions for given value of the covariate (vector). Also in such a
setting the exponential family framework (now in the context of conditional densities)
is convenient. A primary interest is often in the conditional mean function, which in
the simplest case is assumed to be a linear function of the covariate, possibly only
after a transformation (through a link function) leading to the well-known framework
of generalized linear models. See for example McCullagh and Nelder (1998).

A (conditional) mean of a (conditional) distribution function is only one of its
characteristics. In contrast, a full characterization of the (conditional) distribution is
provided by the (conditional) quantile function. Of particular interests herein are the
0.50th-quantile (the median) and extreme quantiles (in case of heavy-tailed distribu-
tions). The focus in this paper is in (unconditional as well as conditional) quantile
estimation, allowing for possible asymmetry of (unconditional or conditional) dis-
tributions.

In the unconditional setting there are several approaches for constructing uni-
variate asymmetric distributions, among which these introduced by Azzalini (1985,
1986), Fernández and Steel (1998) and Arellano-Valle and Genton (2005). See also
Jones (2015). A starting point for our study is the quantile-based family of asym-
metric densities (shortened hereafter as QBA) studied by Gijbels et al. (2018). For
a real-valued random variable Y , and index-parameter α ∈ (0,1), the density of Y ,
denoted by fα(·; µ, φ), is given by

fα(y; µ, φ) =
2α(1 − α)

φ


f
(
(1 − α)

(
µ−y
φ

))
if y ≤ µ

f
(
α

(
y−µ
φ

))
if y > µ,

(1)

where f is a given symmetric around 0 density, with support the whole real line,
and unimodal, called the reference symmetric density, µ ∈ R is a location parameter
and φ ∈ R+0 is a scale parameter. When the reference symmetric density f is a
member of a location-scale family of densities, then the same holds for the family
of densities fα(·; µ, φ) in (1). The density fα(·; µ, φ) is a symmetric density if and
only if α = 0.5, and is a left-skewed (respectively right-skewed) density if α is larger
(respectively smaller) than 0.5. This family of asymmetric densities provides a
very convenient framework. Firstly, explicit expressions for distribution and quantile
functions, characteristic function, skewness, kurtosis, moments (including mean and
variance) have been provided in terms of the associated quantities for the reference
symmetric density f . In this family the parameter µ equals the αth-quantile of the
distribution (i.e. F−1

α (α; µ, φ) = µ) which explains the name ‘quantile-based’ family
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of asymmetric distributions. Secondly, maximum likelihood as well as moment
estimators (including for the index-parameter α) have been studied for the general
class (1) with explicit expressions for asymptotic variance-covariance matrices in
the asymptotic normality result for the estimators. The Fisher information matrix
of the maximum likelihood estimators also revealed that the maximum likelihood
estimators of µ and φ are asymptotically independent; i.e. the parameters µ and φ are
orthogonal (see Cox and Reid (1987)). Thirdly, the family of densities (1) includes
somewell-knownmembers studied in the literature. The asymmetric power family of
densities proposed by Komunjer (2007) is a subclass of (1) obtained by taking f (s) =

0.5
[
Γ

(
1 + 1

p

)]−1
exp (−|s |p), for s ∈ R, with p > 0. An element of this subclass

(taking p = 1) is the asymmetric Laplace density (or double exponential), often
appearing in the context of quantile estimation (Kotz et al.; 2001; Koenker; 2005).
Taking f in (1) respectively a symmetric normal, Student-t or logistic density leads
to the quantile-based asymmetric normal, asymmetric Student-t and asymmetric
logistic densities proposed and studied in Gijbels et al. (2018).

In a conditional setting, a covariate – say X – comes into play, and the interest is
in the conditional distribution ofY given X . A semiparametric context is obtained by
allowing the location and scale parameters µ and φ to vary with the given covariate
value X = x, i.e. to consider functions µ(x) and φ(x). Keeping the index-parameter
α constant, this leads to the conditional density

fY |X ,α(y; µ(x), φ(x) | X = x) =
2α(1 − α)
φ(x)


f
(
(1 − α)

(
µ(x)−y
φ(x)

))
if y ≤ µ(x)

f
(
α

(
y−µ(x)
φ(x)

))
if y > µ(x).

(2)
In a flexible setting the functions µ(·) and φ(·) are unknown (nonparametric el-
ements), and parametric elements are the parameters of the reference density
f (e.g. the degrees of freedom in case f is a Student-t density) and possi-
bly the index-parameter α. Estimation of the conditional quantile function, i.e.
qβ(x) = F−1

Y |X ,α
(β; µ(x), φ(x)|x), with β ∈ (0,1), in this semiparametric setting

has been studied in Gijbels et al. (2019). By definition conditional quantile curves
do not cross, i.e. for given 0 < β1 ≤ β2 < 1 it holds that qβ1 (x) ≤ qβ2 (x) for all x.
A particular advantage of the framework (2) is that estimated conditional quantile
curves are quaranteed not to cross each other.

One of the requirements underlying the family of densities in (1) is that the
random variable Y is continuous and has support the whole real line. Obviously
this is not always the case. For example, if Y is a lifetime variable it takes only
nonnegative values. Also variables taking values in a finite interval are of interest,
think of data that are proportions (or percentages) within 0 and 1, school grades
between 0 and 100 points, visual analogue scales between 0 and 10 cm, etc. Bounded
outcomes often have a non-standard distribution which may expose a variety of
shapes including unimodal, U-shape, and J-shape. And in particular it is important
to allow for asymmetry.

The overall aim of this paper is to extend the family of densities in (1), in the
unconditional setting, and the family of conditional densities in (2), in the condi-
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tional setting, to allow for any type of continuous variable Y , with support possibly
different from the whole real line. In Section 2 we provide a generalization of (1)
to obtain a generalized quantile-based asymmetric (GQBA) family of densities. For
this a link function is introduced, similar in spirit as in the case of generalized
linear models. Recall that in the latter models however the focus is on estimating
the mean. In contrast, in this paper the focus is always on estimating quantiles. The
generalized quantile-based asymmetric family of densities constitutes a broad class
containing as special members other families of densities studied in the literature,
such as the tick-exponential family of densities and the asymmetric power family of
densities. An aspect of Section 2 is thus also literature review. In a similar fashion,
in a conditional setting, we extend the family of conditional densities (2). In the
unconditional setting we study maximum likelihood estimation of the parameters
in the generalized quantile-based asymmetric family of densities. See Section 3.
In the conditional setting, when we focus on the semiparametric situation, we use
local maximum likelihood techniques to estimate the unknown functions, and sub-
sequently the conditional quantile function. See Section 4. In Section 5 we illustrate
the practical use of the developed methods, both in conditional and unconditional
settings. Some further discussions are provided in Section 6. Proofs of the theoretical
results are deferred to the Appendix.

2 Generalized quantile-based asymmetric family

Consider Y a real-valued random variable, with support S possibly different from
the whole real line, i.e. S ⊆ R. We consider then a function g : S 7→ R, which
is differentiable such that g′(·) > 0; and hence g is invertible. In other words the
function g is assumed to be a strictly increasing function.

Consider Z = g(Y ), which is supported on the whole real line, and assume that
Z has a density of the form (1), with location and scale parameters (µ, φ). Denoting
η = g−1(µ), the density of Y = g−1(Z) is then given by

f gα (y; η, φ) =
2α(1 − α)g′(y)

φ


f
(
(1 − α)

(
g(η)−g(y)

φ

))
if y ≤ η

f
(
α

(
g(y)−g(η)

φ

))
if y > η.

(3)

The family of densities (3) includes the family (1), where the latter is obtained by
taking the identity function g(y) = y. We refer to (3) as the generalized quantile-
based asymmetric (GQBA) family of densities. The function g is called a link function,
and is considered known in this paper. The density in (3) depends on the index-
parameter α, and on two crucial elements:

• the reference symmetric density f , and
• the monotone strictly increasing ‘link’ function g.
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Expressions for the cumulative distribution and the quantile function of Y are
presented in Theorem 1, the proof of which is provided in the Appendix. We write
the following assumption.

Assumption (A): g : S 7→ R is a differentiable function with g′(·) > 0.

The cumulative distribution function and the quantile function associated with the
reference symmetric density f are denoted by respectively F and F−1.

Theorem 1 Assume that Y has density (3), where g satisfies Assumption (A). The
cumulative distribution function of Y equals

Fg
α (y; η, φ) =


2αF

(
(1 − α) g(y)−g(η)φ

)
if y ≤ η

2α − 1 + 2(1 − α)F
(
α

g(y)−g(η)
φ

)
if y > η,

(4)

and for any β ∈ (0,1), the βth-quantile of Y equals

{
Fg
α

}−1
(β; η, φ) =


g−1

(
g(η) +

φ
1−αF−1

(
β

2α

))
if β ≤ α

g−1
(
g(η) +

φ
αF−1

(
1+β−2α
2(1−α)

))
if β > α,

(5)

with in particular
{
Fg
α

}−1
(α; η, φ) = η.

Remark 1

1. It suffices to assume that the function g is differentiable and strictly monotone
(increasing or decreasing). For simplicity of presentation we focus on the case
that g is a strictly increasing function.

2. Using (4) we find that

α Pr(Y > η) = (1 − α)Pr(Y ≤ η),

and hence α controls the amount of mass allocated in the density to the left and
right of the mode η.

In the next subsections we discuss various special subclasses and examples of the
general family (3).

2.1 Generalized tick-exponential family

We take as the reference symmetric density f in (3), the exponential power type
density (or simply power density)

f (s) = fp(s) =
1

2Γ(1 + 1
p )

exp (−|s |p) − ∞ < s < +∞, (6)
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where p ∈ (0,∞) is an index number. The distribution in (6) is also known as the
generalized normal distribution or the generalized error distribution. The density
in (6) has a heavier (respectively lighter) tail than a normal density when p < 2
(respectively p > 2). A lot of research has been done based on this family (see
for example, Mineo and Ruggieri (2005)). The package normalp in the R software
contains software routines for this density. The density in (6) is a Laplace, normal
and uniform density respectively for p = 1, p = 2 and p→ ∞. With f as in (6) we
obtain from (3) the density

f gα,p(y; η, φ) =
α(1 − α)g′(y)
φΓ(1 + 1

p )


exp

(
− (1 − α)p

[ g(η)−g(y)
φ

] p) if y ≤ η

exp
(
− αp

[ g(y)−g(η)
φ

] p) if y > η

=
α(1 − α)g′(y)
φΓ(1 + 1

p )
exp

(
−
ρα,p(g(y) − g(η))

φp

)
, (7)

where
ρα,p(u) = |u|p [(1 − α)pI(u ≤ 0) + αpI(u > 0)] , (8)

with I(A) the indicator function on A ⊆ R, i.e. I(A) = 1 (respectively 0) if A is true
(respectively false).

The family of densities in (7) might be called the generalized quantile-based
exponential power family, and is not available in the literature. It could also be
called generalized tick-exponential family since it is a generalized version of the
existing tick-exponential family which we discuss and review in Section 2.2. The
loss function ρα,p(u) may be termed power-tick loss function. A well-known loss
function used for nonparametric quantile estimation is the tick loss function, defined
as ρα(u) = u(α − I(u < 0)) which is a special case of (8) for p = 1. See for example
Koenker and Bassett Jr (1978) and Koenker (2005) for background information on
the tick loss function. A graph of the power-tick loss function ρα,p(u) for various
values of p and for α ∈ {0.25,0.50} is displayed in Figure 1.

Using the log-link function (i.e. g(y) = ln(y)) and p = 2 we obtain from (7) the
density

f g
α,2(y; η, φ) =

2α(1 − α)
yφ
√
π


exp

(
− (1 − α)2

[ ln(η)−ln(y)
φ

]2
)

if y ≤ η

exp
(
− α2 [ ln(y)−ln(η)

φ

]2
)

if y > η,
(9)

which is the density of a log-asymmetric normal distribution, which we denote by
Log-AND(η, φ,α). As a special case of this, for α = 0.5, one obtains the density of
a log-normal distribution, denoted by Log-ND(µ, τ2), with µ = ln(η) and τ2 = 2φ2.
A log-normal density is widely used in applications in financial economics (see, for
example, Crow and Shimizu; 1988).

With the identity link function (i.e. g(y) = y) the density in (7) results into
a density that can be termed an asymmetric exponential power density (AEPD),
denoted by AEPD(η, φ,α), and given by
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Fig. 1: Power-tick loss function ρα,p(u) with α = 0.25 (left panel) and α = 0.50
(right panel) for various values of p.

fα,p(y; η, φ) =
α(1 − α)
φΓ(1 + 1

p )


exp

(
− (1 − α)p

[ η−y
φ

] p) if y ≤ η

exp
(
− αp

[ y−η
φ

] p) if y > η.
(10)

Many examples of AEPD(η, φ,α) given in (10) are available in the econometrics

literature. For example, for η = 0 and φ = p

√
αp+(1−α)p

2 , the density in (10) can be
written as

fα,p(y) =


δ

1
p
α,p

Γ(1+ 1
p )

exp
(
−
δα,p
αp |y |

p
)

if y ≤ 0

δ
1
p
α,p

Γ(1+ 1
p )

exp
(
−

δα,p
(1−α)p |y |

p
)
if y > 0,

where δα,p = 2αp (1−α)p
αp+(1−α)p . This density, some of its probabilistic properties and maxi-

mum likelihood estimation of the parameters was studied in Komunjer (2007), where
also an application to risk management theory was presented.

Two other examples of AEPD(η, φ,α) in (10) are an asymmetric normal (for
p = 2) and an asymmetric Laplace distribution (for p = 1) which were introduced
and/or studied in Gijbels et al. (2018). A graph of the density (10) for different values
of the index-parameter α and of p are presented in Figure 2. Note from Figure 2
that the density is symmetric for α = 0.5 for any value of p, whereas for α larger
(respectively smaller) than 0.5 it is a left-skewed (respectively right-skewed) density.

The cumulative distribution function and the quantile function of an exponential
power density (6) are given by, respectively,
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Fig. 2: Asymmetric exponential power densities with α ∈ {0.25,0.50,0.75}, η = 0
and φ = 1 for various values of p; and (bottom right) with α = 0.25, φ = 1, p = 2
and for various values of η.

Fp(s) =
1
2
+ sgn(s)

γ
(

1
p , |s |

p
)

2Γ( 1
p )

for s ∈ R

F−1
p (β) = sgn

(
β −

1
2

) [
γ−1

(
1
p
,Γ

(
1
p

)
sgn

(
β −

1
2

)
(2β − 1)

)] 1
p

for 0 < β < 1,

where γ(s, x) is the lower incomplete gamma function, i.e. γ(s, x) =
∫ x

0 ts−1e−tdt,
for x ≥ 0 such that γ(s,0) = 0; and where γ−1(s, y) is the inverse of the incomplete
gamma function, i,e., x = γ−1(s, y) is equivalent to y = γ(s, x). Substituting these
expressions in Equations (4) and (5) in Theorem 1 with F = Fp and F−1 = F−1

p , one
easily deduces the following properties for the generalized tick-exponential family
of densities (7).
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Corollary 1 Assume that Y has density (7), where g satisfies Assumption (A). For
any p ∈ (0,∞), the cumulative distribution function Fg

α,p(·; η, φ) of Y then equals

Fg
α,p(y; η, φ) =


α − α

Γ( 1
p )
γ

(
1
p , (1 − α)

p
(
g(η)−g(y)

φ

)p)
if y ≤ η

α + 1−α
Γ( 1

p )
γ

(
1
p , α

p
(
g(y)−g(η)

φ

)p)
if y > η;

(11)

and for any β ∈ (0,1), the βth-quantile of Y , denoted by
{
Fg
α,p

}−1
(β; η, φ), is

{
Fg
α,p

}−1
(β; η, φ) =


g−1

(
g(η) −

φ
1−α

[
γ−1

(
1
p ,Γ(

1
p )
(α−β)
α

)] 1
p

)
if β ≤ α

g−1
(
g(η) +

φ
α

[
γ−1

(
1
p ,Γ(

1
p )
(β−α)
1−α

)] 1
p

)
if β > α.

(12)

For the identity link, i.e. the exponential power densities, the cumulative distribu-
tion function (11) and the quantile function (12) are provided, respectively in Figure
3 and Figure 4 for different values of p and α. The right-skewness of the distributions
is clearly visible for the case α = 0.25.
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Fig. 3: Cumulative distribution function (11) with identity link, η = 0 and φ = 1 for
different values of p, α = 0.25 (left panel) and α = 0.5 (right panel).

2.2 Tick-exponential family with scale parameter

A special case of the generalized tick-exponential family of densities (7) is obtained
by taking p = 1. We then get the tick-exponential family for which the density is of
the form
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Fig. 4: Quantile function (12) with identity link, η = 0 and φ = 1 for different values
of p, α = 0.25 (left panel) and α = 0.5 (right panel).

f g
α,1(y; η, φ) =

α(1 − α)g′(y)
φ


exp

(
− (1 − α)

[ g(η)−g(y)
φ

] )
if y ≤ η

exp
(
− α

[ g(y)−g(η)
φ

] )
if y > η.

(13)

A particular form of f g
α,1(y; η, φ) in (13) with α = 0.5 has been studied by Jung

(1996) in a context of the quasi-likelihood median regression. Komunjer (2005)
provided a tick-exponential family in which a density takes on the form:

f̃α(y; η) =
{

exp [−(1 − α) (g(η) − b(y))] if y ≤ η
exp [α (g(η) − c(y))] if y > η,

(14)

where the functions g, b and c are continuous functions and satisfy the following
conditions which need to hold for all values of y ∈ R:

i) g′(y) > 0,
ii) exp{−(1 − α)[g(y) − b(y)]} = α(1 − α)g′(y),

iii) exp{α[g(y) − c(y)]} = α(1 − α)g′(y),
iv) (1 − α)b(y) + αc(y) = g(y).

Using these conditions, the density in (14) can be rewritten as

f̃α(y; η) = α(1 − α)g′(y)
{

exp [−(1 − α) (g(η) − g(y))] if y ≤ η
exp [α (g(η) − g(y))] if y > η,

(15)

which is a special case of (13) with scale parameter φ = 1. The family of densities
(15) is studied in for example Komunjer (2005), and a special case in Gourieroux
et al. (1984).

From Corollary 1, taking p = 1, and using that γ(1, x) =
∫ x

0 e−tdt = 1 − e−x and
γ−1(1, y) = − ln(1 − y), the cumulative distribution function of Y with density (13)
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and the βth-quantile of Y (β ∈ (0,1)) are respectively

Fg
α,1(y; η, φ) =


α exp

(
(1 − α)

[
g(y)−g(η)

φ

] )
if y ≤ η

1 − (1 − α) exp
(
−α

[
g(y)−g(η)

φ

] )
if y > η,{

Fg
α,1

}−1
(β; η, φ) =


g−1

(
g(η) +

φ
1−α ln

( β
α

) )
if β ≤ α

g−1
(
g(η) −

φ
α ln

( 1−β
1−α

) )
if β > α.

We now look into some specific link functions, different from the identity link.
Komunjer (2005) reported that the link function g(y) = 1

α(1−α) sgn(y) ln[1+ |y |
q];q ∈

N+ can be used for standard nonlinear quantile estimation. With this link function
the density in (13) takes the form

fα,1(y; η, φ) =


q(−y)q−1

φ(1+(−y)q )

(
1+(−y)q
1+(−η)q

)− 1
φα if y ≤ η

qyq−1

φ(1+yq )

(
1+ηq

1+yq

) 1
φ(1−α) if y > η.

(16)

A graph of this density, with η = 0, φ = 1, for various values of α and q is depicted
in Figure 5. For more details on density (16) and its use, see Komunjer (2005).

Gneiting (2011) considered generalized piecewise linear loss functions. Related
to this is choosing a log-link function g(y) = ln(y) in (13), giving the density

fα,1(y; η, φ) =
α(1 − α)
φy


(
y
η

) (1−α)
φ if y ≤ η(

η
y

) α
φ if y > η.

(17)

This density is called the log-asymmetric Laplace distribution, denoted by
Log-ALaD(η, φ,α). Reparametrization of the density in (17) using the parameters
φ = (γ + ζ)−1 and α = γ(γ + ζ)−1, leads to the density

fγ(y; η, ζ) =
1
η

γζ

(γ + ζ)


(
y
η

)ζ−1
if y ≤ η(

η
y

)γ+1
if y > η,

(18)

which was proposed in (Kozubowski and Podgórski; 2003, eq. (3)). A plot of (17) is
presented in Figure 6. A particular form of Log-ALaD(η, φ,α) in (17) with α = 0.5
is called a log-Laplace distribution which was considered in, for example, Lindsey
(2004).

Another interesting link function is one of a logit type g(y) = logit(F0(y)) =

ln
[

F0(y)
1−F0(y)

]
where F0 is any continuous distribution function, strictly increasing on

S ⊆ R. Note that such a g : S 7→ R satisfies Assumption (A). As a first example
consider F0 the cumulative distribution function of a uniform random variable on a
finite interval [a, b] ⊂ R. Then F0(y) =

y−a
b−a for y ∈ [a, b], and is strictly increasing
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Fig. 5: Density fα,1(y; η, φ) in (16) with η = 0 and φ = 1, and various values of q
and α.

on S = [a, b]. The resulting link function is g(y) = ln
(
y−a
b−y

)
, for y ∈ [a, b]; which is

very appropriate for modeling a continuous random variableY that takes on values in
the bounded interval [a, b]. Several authors considered this link function in quantile
estimation, including Bottai et al. (2010) and Columbu and Bottai (2016). Using the
link function g(y) = ln

(
y−a
b−y

)
; y ∈ [a, b], in (13) leads to the density
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Fig. 6 Density
log-ALaD(η, φ, α) in (17)
for η = 40 and φ = 1.
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) (1−α)
φ if y ≤ η(
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) α
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for which a graph is presented in the left panel of Figure 7.
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Fig. 7: Densities (13) with link function g(y) = ln
[

F0(y)
1−F0(y)

]
, for η = 30 and φ = 1.

Left panel: F0 from a U[a, b]; Right panel: F0 from a standard exponential.
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As a second example take F0 equal to the cumulative distribution function of an
exponential distribution with parameter λ > 0, i.e. F0(y) = 1 − exp(−λy), which is
strictly increasing on S = [0,+∞). This leads to the link function g(y) = ln(eλy − 1),
for y ∈ [0,+∞). With this link function we obtain from (13) with φ = 1 the density

fα,1(y; η,1) = α(1 − α)λeλy
{ (

eλη − 1
)−(1−α) (eλy − 1

)−α if y ≤ η(
eλη − 1

)α (
eλy − 1

)−(1+α) if y > η,

for which a plot is depicted in the right panel of Figure 7. For real data applications
an important issue is to find an appropriate density model. Goodness-of-fit tests can
be used here, or model selection tools, among others. See also Section 5.

2.3 Generalized quantile-based asymmetric family: conditional setting

In the conditional setting we follow the same reasoning as we did when passing from
(1) to (2). Keeping in mind the general family in (3) this leads to the general family
of conditional densities

f g
Y |X ,α

(y; η(x), φ(x) | X = x)

=
2α(1 − α)g′(y)

φ(x)


f
(
(1 − α)

(
g(η(x))−g(y)

φ(x)

))
if y ≤ η(x)

f
(
α

(
g(y)−g(η(x))

φ(x)

))
if y > η(x),

(19)

with index-parameter α ∈ (0,1), given link function g, and unknown location and
scale functions η(·) and φ(·).

All subclasses and special examples discussed in Sections 2.1 and 2.2 can also
be considered in this conditional setting. Results similar to these in Theorem 1
straightforwardly hold. As an example the generalized tick-exponential family of
conditional densities of Y given X = x is

f g
Y |X ,α,p

(y; η(x), φ(x) | X = x)

=
α(1 − α)g′(y)
φ(x)Γ(1 + 1

p )
exp

(
−
ρα,p(g(y) − g(η(x)))

(φ(x))p

)
. (20)

In the next sections we turn to statistical estimation in both settings: the uncondi-
tional one and the conditional one.
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3 Unconditional setting: maximum likelihood estimation

Let Y1, . . . ,Yn be an i.i.d. sample from Y with density from the GQBA family (3).
The main objective is to estimate, based on this sample, the parameter vector θg =
(η, φ,α)T , where the dependence on the link function g comes in via η = g−1(µ).
The estimated parameters can then be substituted into the expression provided in
Theorem 1 to get the estimated quantile function. Since the link function g is known,
we can obtain the i.i.d. sample Z1, . . . , Zn (with Zi = g(Yi), for i = 1, . . . ,n) from
Z with density (1), and location and scale parameters (µ, φ). Maximum likelihood
estimation of the parameter vector θ = (µ, φ,α)T can then be carried out, as discussed
in Gijbels et al. (2018). The maximum likelihood estimator (MLE) of θg = (η, φ,α)T
is then easily obtained via the relationship η = g−1(µ). The likelihood function for
the parameter vector θ = (µ, φ,α)T of the density in (1), based on the calculated
sample Z1, . . . , Zn, is

Ln(µ, φ,α)

=

[
2α(1 − α)

φ

]n n∏
i=1

[
f
(
(1 − α)

(
µ − Zi

φ

))]I(Zi ≤µ)

×

[
f
(
α

(
Zi − µ

φ

))]I(Zi>µ)

,

leading to the log-likelihood function

`n(µ, φ,α) = n ln[2α(1 − α)] − n ln(φ) +
n∑
i=1

I(Zi ≤ µ) ln
[

f
(
(1 − α)

(
µ − Zi

φ

))]
+

n∑
i=1

I(Zi > µ) ln
[

f
(
α

(
Zi − µ

φ

))]
.

The MLE of θ is obtained as a solution to maxθ∈Θ `n(µ, φ,α); where Θ =
R × R+ × (0,1) is the parameter space of θ. A detailed study on how to solve
this optimization problem, and statistical properties of the estimator can be found in
Section 3 of Gijbels et al. (2018). Denote by θ̂MLE

n = (µ̂MLE
n , φ̂MLE

n , α̂MLE
n )T the maxi-

mum likelihood estimator of θ = (µ, φ,α)T . The plug-in estimator of θg = (η, φ,α)T

is then θ̂gn
MLE
= (η̂MLE

n , φ̂MLE
n , α̂MLE

n )T , where η̂MLE
n = g−1(µ̂MLE

n ).

The asymptotic properties of the maximum likelihood estimator θ̂gn
MLE

follow
easily (by applying the Delta method) from the asymptotic normality result for θ̂MLE

n

established in Theorem 3.4 of Gijbels et al. (2018). The following assumptions are
needed.

Assumptions:

(B1) Let ΘR = [−µu, µu] × [φl, φu] × [αl, αu], where 0 < µu < ∞, 0 < φl ≤ φ ≤
φu < ∞, and 0 < αl ≤ α ≤ αu < 1, be a compact subset of Θ, and assume that
θ ∈ Θ̊R, with Θ̊R the interior of ΘR.

(B2)
∫ ∞

0

�� ln f (s)
�� f (s)ds < ∞; where f (s) is the reference symmetric density.
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(B3) γr =
∫ ∞

0 sr−1 ·
( f ′(s))2

f (s) ds < ∞ for r = 1,2,3.
(B4) lim

s→∞
s f (s) = 0 or

∫ ∞
0 s f ′(s)ds = − 1

2 .

Theorem 2 Suppose Assumptions (B1)—(B4 )and Assumption (A) hold. Then the
MLE θ̂gn

MLE
of θg = (η, φ,α)T centered according to θg is asymptotically trivariate

normally distributed with mean vector 0 and asymptotic variance-covariance matrix
I(θg)−1:

√
n[θ̂gn

MLE
− θg]

d
−→N3

(
0,I(θg)−1

)
,

where

I(θg)−1

=


γ3φ

2

2α(1−α)(γ1γ3−γ
2
2 )

( (
g−1) ′ (µ))2

(1−2α)γ2φ
2

2α(1−α)(γ1γ3−γ
2
2 )

(
g−1) ′ (µ) γ2φ

2(γ1γ3−γ
2
2 )

(
g−1) ′ (µ)

(1−2α)γ2φ
2

2α(1−α)(γ1γ3−γ
2
2 )

(
g−1) ′ (µ) [I(θg)−1]22

(1−2α)γ1φ

2(γ1γ3−γ
2
2 )

γ2φ

2(γ1γ3−γ
2
2 )

(
g−1) ′ (µ) (1−2α)γ1φ

2(γ1γ3−γ
2
2 )

α(1−α)γ1
2(γ1γ3−γ

2
2 )


,

with the (2,2)th element of the matrix being

[I(θg)−1]22

=

(
6α2γ1γ3 + 2 γ2

2α2 − 4α2γ1 − 6α γ1γ3 − 2 γ2
2α + 4α γ1 + 2 γ1γ3 − γ1

)
φ2

2α(1 − α)(2γ3 − 1)(γ1γ3 − γ
2
2)

.

If the index-parameter α is known, then the asymptotic variance-covariance matrix
of the MLE θ̂gn

MLE
= (η̂MLE

n , φ̂MLE
n )sT of (η, φ)T is

I(θg)−1 =


φ2

2α(1−α)γ1

( (
g−1) ′ (µ))2

0

0 φ2

2γ3−1

 .
Remark 2

1. Note that, for an identity link function g(y) = y, we have
(
g−1) ′ (µ) = 1. In

this special case, the asymptotic normality result in Theorem 2 reduces to that
provided in Theorem 3.4 of Gijbels et al. (2018).

2. For the log-asymmetric Laplace density with parametrization as in (18),
Kozubowski and Podgórski (2003) provide the Fisher information matrix

I(η, γ, ζ) =


γζ

η2 − 1
η

ζ
γ+ζ

1
η

γ
γ+ζ

− 1
η

ζ
γ+ζ

1
γ2 −

1
(γ+ζ )2

− 1
(γ+ζ )2

1
η

γ
γ+ζ − 1

(γ+ζ )2
1
ζ2 −

1
(γ+ζ )2

 . (21)
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Exploiting the connections between the reparametrizations in (18) and (17), we
can show that the expression of the inverse of the Fisher information matrix in
(21) coincides with I(θg)−1 if f is a Laplace (i.e., f (s) = 1

2 e−|s |) and g is a
log-link function (i.e. g(y) = ln(y)).

We next discuss estimation in case of a conditional density function taking the
form (3) where the parameters are unknown functions of a covariate. We then study
semiparametric conditional quantile curve estimation.

4 Conditional setting: local-likelihood estimation

We turn to the conditional setting, assuming that the conditional density of Y given
the covariate value X = x is as in (19). In this section we assume for simplicity
that the index-parameter α is known. The main objective is then the estimation of
the unknown location function η(x) and scale function φ(x). From the conditional
version of Theorem 1 we get that the βth-conditional quantile function of Y given
X = x (with (0 < β < 1)) is{

Fg

Y |X ,α

}−1
(β; η(x), φ(x)|x) = g−1 (g(η(x)) + φ(x) · Cα(β)) , (22)

where

Cα(β) =
1

1 − α
F−1

(
β

2α

)
I(β < α) +

1
α

F−1
(

1 + β − 2α
2(1 − α)

)
I(β ≥ α).

The quantityCα(β) is a known constant and is amonotonic function of β. For estimat-
ing the βth-conditional quantile function ofY given X = x, we first obtain estimators
for the functions η(x) and φ(x), and then substitute these into expression (22). Given
that structure and that g−1 is a monotonic function, as well as Cα(β) (looked upon

as a function of β) it is granted that the estimator for
{
Fg

Y |X ,α

}−1
(β; η(x), φ(x)|x)

obtained as such satisfies the property of non-crossing estimated quantile functions.
Let (Y1,X1), . . . , (Yn,Xn) be an i.i.d. sample from (Y,X) where the conditional

density of Y given X = x is as in (19). From this sample we form the sample
(Z1,X1), . . . , (Zn,Xn) from (Z,X) where the conditional density of Z = g(Y ) given
X = x is of the form (2). This conditional density depends on the unknown functions
µ(x) and φ(x) which will be estimated using local maximum likelihood techniques,
as proposed in Gijbels et al. (2019). We briefly discuss this method.

The semiparametric estimation procedure consists of approximating µ(x) and
ln(φ(x)) locally by a polynomial function, i.e. performing a local polynomial fit. See
for example Fan and Gijbels (1996) for background information on this smoothing
technique. Hereby focus on ln(φ(x)) instead of on φ(x) is done to ensure that the
estimator of φ(x) = exp {ln(φ(x))} is always positive. For simplicity of presentation,
denote θ1(x) = µ(x) and θ2(x) = ln(φ(x)). Suppose we want to estimate θr (x0), for a
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given x0 ∈ R. For each observation Xi in a neighbourhood of x0 we can approximate
θr (Xi) by using a Taylor expansion with a polynomial of order pr ∈ N; (r = {1,2}):

θr (Xi) ≈ θr (x0) + θ
′
r (x0)(Xi − x0) + · · · +

θ
(pr )
r (x0)

pr !
(Xi − x0)

pr

≡

pr∑
j=0

θr j(Xi − x0)
j = XT

i,pr
θr , (23)

where Xi,pr = (1, (Xi − x0), · · · , (Xi − x0)
pr )T , θr = (θr0, · · · , θrpr )

T with θrv =
θ
(v)
r (x0)
v! ; v = 0,1, . . . , pr .
Since the Taylor expansion in (23) is only valid for Xi close to x0, this needs to be

taken into account for the contribution of each datum (Zi,Xi) to the log-likelihood

`(θ1(Xi), θ2(Xi); Zi) = ln fZ |X ,α(Zi; θ1(Xi), θ2(Xi)|Xi).

In local likelihood estimation techniques this is done by introducing aweight function
that only gives a non-zero weight to the contribution if Xi is indeed close to x0.
More precisely, let K be a symmetric probability density with compact support, and
denote by Kh(·) = K(·/h)/h the rescaled version of K(·), where h > 0 is a bandwidth
parameter (determining the size of the neighbourhood of x0). Each entry in the log-
likelihood function is given the weight Kh(Xi − x0) and the resulting conditional
local kernel-weighted log-likelihood is

Ln(θ1,θ2; h, x0) =

n∑
i=1

`(XT
i,p1

θ1,XT
i,p2

θ2; Zi)Kh(Xi − x0). (24)

The unknown vector of function values (θ1(x0),θ2(x0)) is then estimated by

(θ̂1(x0), θ̂2(x0)) = arg max
θ1 ,θ2

n∑
i=1

`(XT
i,p1

θ1,XT
i,p2

θ2; Zi)Kh(Xi − x0). (25)

The estimator θ̂(v)r (x0) for θ(v)r (x0), v = 0,1, . . . , pr is then given by θ̂
(v)
r (x0) =

v!θ̂rv(x0).
The entire function θr (·) (for r ∈ {1,2}) is estimated by considering a grid of

x0-values and solving maximization problem (25) for each point in the grid. Finally,
the estimated βth-conditional quantile function of Z (respectively Y ) at the point x0
is

F̂−1
Z |X ,α(β; µ(x0), φ(x0)|x0) = θ̂1(x0) + exp(θ̂2(x0)) · Cα(β) (26)

̂{
Fg

Y |X ,α

}−1
(β; η(x0), φ(x0)|x0) = g−1

(
θ̂1(x0) + exp(θ̂2(x0)) · Cα(β)

)
. (27)

We next discuss an example of the above semiparametric estimation procedure.
Consider the conditional generalized tick-exponential family of conditional densities
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(20). Based on the (calculated) data (Z1,X1), . . . , (Zn,Xn) we write the local kernel-
weighted conditional log-likelihood function (24) and obtain

Ln(θ1,θ2; h, x0) = ln

[
α(1 − α)
Γ(1 + 1

p )

]
n∑
i=1

Kh(Xi − x0) −

n∑
i=1

XT
i,p2

θ2Kh(Xi − x0)

−

n∑
i=1

(
ρα,p(Zi − XT

i,p1
θ1)Kh(Xi − x0)

{exp[XT
i,p2

θ2]}p

)
. (28)

A special situation occurs when we take p2 = 0, and hence approximate θ2(x0)
locally by a constant, and θ2(x0) = θ20(x0). In this case the solution to maximization
problem (28) has the explicit expression

θ̂1(x0) = arg min
θ1∈R(d+1)×1

n∑
i=1

ρα,p(Zi − XT
i,p1

θ1)Kh(Xi − x0)

θ̂20(x0) =
(

1
p

)
ln


p

n∑
i=1

ρα,p (Zi−XT
i ,p2

θ1)Kh (Xi−x0)

n∑
i=1

Kh (Xi−x0)

 .
We refer to Gijbels et al. (2019) for a detailed study and for approaches to choose
the bandwidth parameter h.

For the identity link function, an asymptotic normality result for the estimators
of (θ1(x0), θ2(x0)) is established in Gijbels et al. (2019). From this an asymptotic
distributional result for the local log-likelihood estimators of (η(x0), θ2(x0)) and
for the conditional quantile estimator

{
Fg

Y |X ,α

}−1
(·; η(x0), φ(x0))|X = x0) can be

derived. Due to the technicality, we do not elaborate on this here.

5 Real data applications

In this section we illustrate the use of the proposedmethodology in data analysis. The
data that we consider are data on locomotor performance in small and large terrestrial
mammals. A detailed description of these data is available in Iriarte-Díaz (2002).
For n = 142 species of mammals measurements on their body length, body mass
(in kg) and maximum relative running speed were recorded. The maximum relative
running speed measurement takes into account the body length of the mammals, and
was obtained by dividing the maximum speed of the mammal species by its body
length. In Section 5.1 we are interested in finding an appropriate density to describe
the distribution of the maximum relative running speed of terrestrial mammals (Y ).
Of interest is also to find out the relationship between the maximum relative running
speed and the body mass of the mammals. One of the findings in Iriarte-Díaz (2002)
was that the relationship differs, in mean behaviour, when focusing on small or on
large mammals. In Section 5.2 we go beyond investigation of a conditional mean,
and study instead conditional quantiles, which allows to have a more complete
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understanding of the conditional distribution of Y for given log(body mass). Note
that here the response variable Y takes on only positive values. An appropriate link
function in this real data analysis turns out to be log-link function i.e. g(y) = ln(y).

5.1 Parametric quantile estimation

We first would like to find an appropriate distribution for the maximum relative
running speed. To get an idea about the possible asymmetry of the distributionwe plot
in Figure 8 the histogram of the log-transformed data (the Zi = ln(Yi) observations),
together with a kernel density estimate. In this and later kernel density estimates we
use a Gaussian kernel with Silverman’s rule-of-thumb bandwidth (the default in the
R command density). As can be seen from Figure 8 the log-transformed data are
left-skewed.

Fig. 8 Histogram and kernel
density estimate (solid line)
of log(Maximum relative
running speed) data.
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For the reference symmetric density f in (3) we consider the following densities:
a standard normal density, a Student-t density with ν degrees of freedom, a standard
logistic density and a standard Laplace density. We refer to the resulting asymmetric
densities as the Log-asymmetric normal, Student-t, logistic and Laplace densities,
abbreviated as Log-AND(η, φ,α), Log-ATD(η, φ,α, ν), Log-ALD(η, φ,α) and Log-
ALaD(η, φ,α), respectively. For selecting an appropriate density for Y , in the set of
considered densities, we look into the equivalent problem of selecting the appropriate
density for Z = ln(Y ), in the family (1) which involves the parameter θ = (µ, φ,α)T
as well as possible other parameters. The corresponding set of candidate densi-
ties consists of the asymmetric normal, Student-t, logistic and Laplace densities,
abbreviated as AND(µ, φ,α), ATD(µ, φ,α, ν), ALD(µ, φ,α) and ALaD(µ, φ,α), re-
spectively. The full parameter vector in each model is estimated by using maximum
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likelihood estimation as described in Section 3. We perform a Kolmogorov-Smirnov
(KS) goodness-of-fit test for each model in testing the hypotheses

H0 : Sample data come from the Fα(·; µ, φ) distribution (µ and φ unspecified)
H1 : Sample data do not come from the Fα(·; µ, φ) distribution.

We calculate the realized value of the KS-test statistic, denoted by Dn = sup
z
|F0(z)−

Fn(z)|, where F0(·) is the cumulative distribution function under H0 (with estimated
parameters) and Fn(·) is the empirical distribution function. We retain a candidate
distribution if and only if the P-value of Dn is larger than the fixed significance level
0.05 which indicates that there is no strong evidence against H0. In order to select
the most parsimonious density model among all retained candidates, we compute
the value of Akaike’s information criteria (AIC):

AIC = −2 ln
(
Ln

(
θ̂MLE
n

))
+ 2k,

where k is the number of estimated parameters in the model, and Ln

(
θ̂MLE
n

)
is the

realized maximal likelihood value. The best model among all retained candidates is
chosen based on the smallest AIC value.

For each candidate quantile-based asymmetric model we list in Table 1 the max-
imum likelihood estimates of the parameters, the realized maximal value of the
log-likelihood ln

(
Ln

(
θ̂MLE
n

) )
, the AIC-value, and the value of the test statistic Dn

with the associated P-value for the test. If parameters are not involved in a model,
we mention this by NAP = Not Applicable in Table 1.

Table 1: Maximum likelihood estimates, maximal log-likelihood and corresponding
AIC-value, Kolmogorov-Smirnov test statistic value and corresponding P-value.

Density AND(µ, φ, α) ATD(µ, φ, α, ν) ALD(µ, φ, α) ALaD(µ, φ, α)

µ̂ 3.5596 3.5945 3.5854 3.6702
φ̂ 0.1914 0.1793 0.1143 0.1056
α̂ 0.8372 0.8435 0.8521 0.8892
ν̂ NAP 8.9212 NAP NAP

LogLik −150.2551 −150.7701 −150.8381 −150.8381
AIC 306.5102 307.3200 307.6762 307.6763
Dn 0.0446 0.0503 0.0632 0.0635
P-Value 0.9294 0.8492 0.5969 0.6558

NAP = Not Applicable

From Table 1 it is seen that, among the considered models, the asymmet-
ric normal density AND(µ, φ,α) has the smallest value for the KS-statistics Dn

with the largest associated P-value, as well as the lowest AIC value (among
all retained models, which are all models here). Hence an asymmetric normal



22 Irène Gijbels, Rezaul Karim and Anneleen Verhasselt

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

β

Q
ua

nt
ile

 o
f M

ax
im

um
 r

el
at

iv
e 

ru
nn

in
g 

sp
ee

d

1.5 2.0 2.5 3.0 3.5

1.
5

2.
0

2.
5

3.
0

3.
5

Theoretical quantile

E
m

pi
ric

al
 q

ua
nt

ile

Fig. 9: Left: Estimated quantile function of Log-AND(η̂, σ̂, α̂); Right: Q-Q plot for
the log-asymmetric normal distribution Log-AND(η̂, φ̂, α̂).

model is the selected model for Z=log(maximum relative running speed). For
this selected model, the estimated value for the index-parameter is α̂ = 0.8372,
which coincides with our earlier finding that the distribution is left-skewed. For
Y , the maximum relative running speed, the selected model is thus the density
in (9) with index-parameter 0.8374. The maximum likelihood estimate for η is
η̂ = g−1(µ̂) = 35.1491. The estimated quantile function is easily obtained from
(5) with F−1(β) = sgn(β − 0.5)

√
2γ−1(0.5, sgn(β − 0.5)

√
π(2β − 1)) for the quantile

function of a standard normal density f . The estimated βth-quantile function of
Log-AND(η, φ,α) is

F−1
α̂
(β) = exp ©­«log(η̂) −

φ̂

1 − α̂

√
2γ−1 (1

2
,

√
π(α̂ − β)

α̂

)
I(β ≤ α̂)

+
φ̂

α̂

√
2γ−1 (1

2
,

√
π(β − α̂)

1 − α̂
)
I(β > α̂)

ª®¬ ,
which is depicted in the left panel of Figure 9. The right panel of Figure 9
presents the Quantile-Quantile (Q-Q) plot comparing the fitted quantiles (using
Log-AND(η̂, φ̂, α̂)) and the empirical quantiles of the Yi data, together with a 45-
degree reference line (the solid line). It is observed that most of the Q-Q values
are close to the 45-degree reference line which indicates that the Log-AND(η̂, φ̂, α̂)
distribution fits quite well the maximum relative running speed data.
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5.2 Semiparametric quantile estimation

In this section we consider the maximum relative running speed as the response
variable Y and log(Body Mass) as a covariate X . Similar to the conditional mean
estimation in Iriarte-Díaz (2002), we again consider a logarithmic transformation of
Y , denoted by Z (i.e., Z = ln(Y )). A scatter plot of the observations of log(Maximum
relative running speed) against the observations of log(Body mass) is provided in
Figure 10 (left panel). Presented is also a nonparametric estimate m̂ of the conditional
mean of E(Z |X = x) obtained by local linear fitting using a Gaussian kernel. The
scatterplot with the conditional mean estimate reveals that the maximum relative
running speed decreases with increasing body mass and that the average maximum
relative running speed behaves differently over different ranges of bodymass.Overall,
it decreases with increasing body mass.

We next use the semiparametric method exposed in Section 4 to investigate in
more detail the conditional distribution of the maximum relative running speed for
given log(body mass). In the proposed methodology, we assumed that the index-
parameter α is known which may not be the case in a real data application, as here.
We proceed as follows to select a reference symmetric density f and to approximate
the index-parameter α. Using the local linear regression estimate m̂ we consider the
conditional mean residuals Zi − m̂(Xi). A histogram for these residuals is provided
in the right panel of Figure 10, together with a kernel density estimate. From this
figure it is seen that the residuals are slightly left-skewed.
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Fig. 10: Left: Scatterplot and conditional mean estimate of log(Maximum relative
running speed); Right: Histogram of the residual obtained by local linear mean
regression fitting.

We then look for an appropriate asymmetric density which describes well the
distribution of the residuals. This distribution will then be used in our semiparamet-
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ric analysis. As candidate densities for the distribution of the residuals we consider
asymmetric Laplace, normal, Student-t and logistic densities. Similarly as in the anal-
ysis of Section 5.1 we evaluate the appropriateness of a model via the Kolmogorov
Smirnov goodness-of-fit test, and only consider models for which the P-value of
the test is larger than the significance level 0.05. The Kolmogorov Smirnov test
gives the largest P-value (0.7597) for the asymmetric normal density (denoted by
AND). In addition, this density also appears to be the most parsimonious one among
all candidates since it has the smallest AIC-value (79.1487). For this AND model
the maximum likelihood estimator for α is α̂ = 0.5937, which confirms the slight
left-skewness of the distribution of residuals observed in Figure 10.

Based on the above preliminary analysis we then consider a conditional asymmet-
ric normal density (20) with g(y) = ln(y) (and power p = 2) and index-parameter
α = 0.5937. We apply the semiparametric method of Section 4 to estimate θ1(x0)
and θ2(x0). We use local linear fitting for both unknown functions, i.e. p1 = p2 = 1
and a bandwidth value h = 0.9030. This bandwidth was determined in a data-driven
manner, using a rule of thumb bandwidth selector, discussed in detail in Gijbels et al.
(2019). From the estimates of θ1(x0) and θ2(x0) we then obtain the estimated βth-
conditional quantile of Z and Y from (26) and (27), respectively. Figure 11 displays
the estimated βth-conditional quantile functions of Z (in left panel) and Y (in right
panel), for values β ∈ {0.1,0.5, α,0.9}.
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Fig. 11: Estimated semiparametric quantile curves of log(Maximum relative running
speed) (left panel); and of Maximum relative running speed (right panel).

From the right panel of Figure 11 it is clearly seen that the upper conditional
quantile curve of the maximum relative running speed has a different behaviour
(shape) than the lower conditional quantile curve. All presented estimated quantile
curves show a decreasing trend. The estimated 0.90th-conditional quantile curve is
rapidly decreasing for all values of log(Body mass) except in the interval (−1.5, 2).
In this interval, the upper extreme quantile curve is slightly increasing for increasing
log(Body mass). It would be interesting to further investigate these findings, and
relate this back to the species of terrestrial mammals.
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Figure 12 depicts the estimated function θ̂2(·). It is clearly seen that the estimated
log-scale function θ̂2(·) is increasing with increasing log(Body mass) up to 1 and
then decreasing.

Fig. 12 Local maximum
log-likelihood estimate of
θ2(x0) with p2 = 1, using
the conditional asymmetric
normal likelihood.
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6 Conclusion and further discussion

In this paper a new broad class of asymmetric densities is proposed, where these
densities are appropriate formodelling a continuous randomvariableY with arbitrary
(bounded or unbounded) support in R. The class depends on an index-parameter α
(with 0 < α < 1), and the location parameter η of the class coincides with the αth-
quantile of the distribution. The class of densities depends on two crucial elements:
(i) the reference symmetric density f and (ii) the monotone link function g. The
class of densities includes several examples studied separately in the literature. In
this paper we provide results for statistical inference for all the members of the whole
broad class in one single track.

We also consider a regression setting, when the interest is in the impact of a
covariate X on the variable of interest Y . Assuming that the index-parameter is
not changing with the realized value of X , we consider a similar broad class of
conditional densities, where the location and scale parameters are allowed to vary
with the realized value of X , and are left unspecified, leading to a semiparametric
framework. In both settings, the unconditional and conditional ones, we discuss
estimation methods and establish asymptotic properties. A specific merit of this
study is that the results can be employed to the many examples that are available in
the literature.

An R package QBAsyDist has been written by the authors, providing codes for
simulating data from the general (conditional) density families, for plotting densities



26 Irène Gijbels, Rezaul Karim and Anneleen Verhasselt

and presenting model characteristics, for parametric and semiparametric estimation,
including goodness-of-fit testing and some model selection tools for choosing an
appropriate model. The package will be available soon, and requests for it can be
addressed to the authors.

In this paper we assume g to be a known link function. In real data applications
however this link function might not be known, and estimation of the link function
might be needed. One approach is then to consider a broad parametric class of
appropriate transformations, and to estimate the link function by estimating the
parameter(s) describing the broad class. An example of a possible parametric class
of link functions would be a Box-Cox power transformation. See for example Mu
and He (2007).

We only discuss the univariate covariate case. In case of a d-dimensional co-
variate vector X = (X1, . . . ,Xd) the methodology presented in Section 4 can still be
employed, but due to the possible curse of dimensionality it might be necessary to
put some more structure on the d-variate location and scale functions. A possible
approach is to consider additive modelling structures for these d-variate functions.
This topic is studied in current research.
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Appendix:

A.1 Proof of Theorem 1

If Z is a random variable with asymmetric density fα(·; µ, φ) in (1), then the cumu-
lative distribution function of Z is given by

Fα(z; µ, φ) =
{ 2αF

(
(1 − α)( z−µφ )

)
if z ≤ µ

2α − 1 + 2(1 − α)F
(
α(

z−µ
φ )

)
if z > µ,

(A.1)

and for any β ∈ (0,1), the βth-quantile of Z is

F−1
α (β) =

{
µ +

φ
1−αF−1 ( β

2α
)

if β ≤ α
µ +

φ
αF−1

(
1+β−2α
2(1−α)

)
if β > α,

with F−1
α (α) = µ. These results are given in Corollary 2.1 of Gijbels et al. (2018).

Using Expression (A.1), we find
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Fg
α (y; η, φ) = Pr(Y ≤ y) = Pr

(
g−1(Z) ≤ y

)
= Pr (Z ≤ g(y))

=

{
2αF

(
(1 − α)( g(y)−g(η)φ )

)
if y ≤ η

2α − 1 + 2(1 − α)F
(
α(

g(y)−g(η)
φ )

)
if y > η.

From this we then easily obtain (5).

A.2 Proof of Theorem 2

Theorem 3.4 of Gijbels et al. (2018) states that under the assumptions (B1)—(B4),
the MLE θ̂(MLE)

n centered with θ is asymptotically normally distributed with mean
vector 0 and variance-covariance matrix [I(θ)]−1:

√
n(θ̂MLE

n − θ)
d
−→ N3(0,I(θ)−1) as n→∞,

where I(θ) is the Fisher information matrix given in Proposition 3.2 of Gijbels et al.
(2018), with inverse

I(θ)−1 =


γ3φ

2

2α(1−α)(γ1γ3−γ
2
2 )

(1−2α)γ2φ
2

2α(1−α)(γ1γ3−γ
2
2 )

γ2φ

2(γ1γ3−γ
2
2 )

(1−2α)γ2φ
2

2α(1−α)(γ1γ3−γ
2
2 )
[I(θ)−1]22

(1−2α)γ1φ

2(γ1γ3−γ
2
2 )

γ2φ

2(γ1γ3−γ
2
2 )

(1−2α)γ1φ

2(γ1γ3−γ
2
2 )

α(1−α)γ1
2(γ1γ3−γ

2
2 )


,

with [I(θ)−1]22 = [I(θ
g)−1]22 where the latter quantity is stated in Theorem 2.

We want to find an asymptotic distribution for θ̂gn
MLE
= (η̂MLE

n , φ̂MLE
n , α̂MLE

n )T ,
where η̂MLE

n = g−1(µ̂MLE
n ), which is a function of θ̂MLE

n . Using the multivariate delta
method, we obtain

√
n[θ̂gn

MLE
− θg]

d
−→N3

(
0,I(θg)−1

)
,

with I(θg)−1 as given in the statement of Theorem 2. Similarly, the results in (2)
can be obtained if α is known.

References

Arellano-Valle, R. B. and Genton, M. G. (2005). On fundamental skew distributions,
Journal of Multivariate Analysis 96(1): 93–116.

Azzalini, A. (1985). A class of distributions which includes the normal ones,
Scandinavian Journal of Statistics 12(2): 171–178.



28 Irène Gijbels, Rezaul Karim and Anneleen Verhasselt

Azzalini, A. (1986). Further results on a class of distributions which includes the
normal ones, Statistica 46(2): 199–208.

Bottai, M., Cai, B. and McKeown, R. E. (2010). Logistic quantile regression for
bounded outcomes, Statistics in Medicine 29(2): 309–317.

Columbu, S. and Bottai, M. (2016). Logistic quantile regression to model cognitive
impairment in Sardinian cancer patients, in T. Di Battista, M. E. and R. W. (eds),
Topics on Methodological and Applied Statistical Inference, Springer, pp. 65–73.

Cox,D.R. andReid,N. (1987). Parameter orthogonality and approximate conditional
inference, Journal of the Royal Statistical Society, Series B (Methodological)
49(1): 1–39.

Crow, E. L. and Shimizu, K. (eds) (1988). Lognormal Distributions: Theory and
Applications, CRC Press.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its applications,
Vol. 66, CRC Press.

Fernández, C. and Steel, M. F. (1998). On Bayesian modeling of fat tails and
skewness, Journal of the American Statistical Association 93(441): 359–371.

Gijbels, I., Karim, R. and Verhasselt, A. (2018). On quantile-based asymmetric
family of distributions: properties and inference, Under review .

Gijbels, I., Karim, R. and Verhasselt, A. (2019). Semiparametric quantile regression
using quantile-based asymmetric family of densities, Submitted .

Gneiting, T. (2011). Quantiles as optimal point forecasts, International Journal of
Forecasting 27(2): 197–207.

Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo maximum likelihood
methods: theory, Econometrica 52(3): 681–700.

Iriarte-Díaz, J. (2002). Differential scaling of locomotor performance in small and
large terrestrial mammals, Journal of Experimental Biology 205(18): 2897–2908.

Jones, M. (2015). On families of distributions with shape parameters, International
Statistical Review 83(2): 175–192.

Jung, S.-H. (1996). Quasi-likelihood for median regression models, Journal of the
American Statistical Association 91(433): 251–257.

Koenker, R. (2005). Quantile Regression, Cambridge University Press.
Koenker, R. andBassett Jr, G. (1978). Regression quantiles,Econometrica 46(1): 33–
50.

Komunjer, I. (2005). Quasi-maximum likelihood estimation for conditional quan-
tiles, Journal of Econometrics 128(1): 137–164.

Komunjer, I. (2007). Asymmetric power distribution: theory and applications to risk
measurement, Journal of Applied Econometrics 22(5): 891–921.

Kotz, S., Kozubowski, T. J. and Podgórski, K. (2001). Asymmetric Laplace dis-
tributions, The Laplace Distribution and Generalizations, Springer, chapter 3,
pp. 133–178.

Kozubowski, T. J. andPodgórski,K. (2003). Log-Laplace distributions, International
Mathematical Journal 3(4): 467–495.

Lindsey, J. K. (2004). Statistical Analysis of Stochastic Processes in Time, Cambridge
University Press.



Parametric and semiparametric quantile estimation 29

McCullagh, P. and Nelder, John, A. (1998). Generalized Linear Models, Chapman
and Hall.

Mineo, A. and Ruggieri, M. (2005). A software tool for the exponential power
distribution: The normalp package, Journal of Statistical Software 12(4): 1–24.

Mu, Y. and He, X. (2007). Power transformation toward a linear regression quantile,
Journal of the American Statistical Association 102(477): 269–279.


	Quantile estimation in a generalized asymmetric distributional setting
	Irène Gijbels, Rezaul Karim and Anneleen Verhasselt
	Introduction
	Generalized quantile-based asymmetric family
	Generalized tick-exponential family
	Tick-exponential family with scale parameter
	Generalized quantile-based asymmetric family: conditional setting

	Unconditional setting: maximum likelihood estimation
	Conditional setting: local-likelihood estimation
	Real data applications
	Parametric quantile estimation
	Semiparametric quantile estimation

	Conclusion and further discussion
	Appendix:
	Proof of Theorem 1
	Proof of Theorem 2

	References
	References



