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Abstract Over the years, a wide range of generalized coordinates have been pro-
posed to describe the motion of rigid and flexible multibody systems. Depending
on the type of formulation, a different equation structure is obtained for the model.
Most formulations rely on a redundant number of Degrees Of Freedom (DOFs) and
some associated constraints, leading to a set of Differential-Algebraic Equations
(DAEs) to model the system dynamics. On the other hand, the ‘Minimal Coordi-
nate’ formulation describes the dynamics through a minimal amount of DOFs and
leads to a system of Ordinary Differential Equations (ODEs). For many applica-
tions, this ODE structure is an important benefit, as it enables a natural integration
for state-estimation and model-based control. The backside of this approach is that it
is generally not-straightforward to find a minimal number of parameters to unequiv-
ocally describe the system configurations, especially for complex mechanisms. In
this work, a machine learning approach based on Auto-Encoders is proposed to find
a non-linear transformation that leads to a minimal parameterization of the motion.
It is shown that such non-linear transformation can be used to project into mini-
mal coordinates while its inverse permits to perform the simulation in the reduced
dimension and re-obtain the original coordinates.

1 Introduction

Over the past decades, several formulations have been proposed to describe the mo-
tion of rigid and flexible multibody systems. For rigid mechanisms, such formalisms
can be divided in three main categories according to the number and typology of De-
grees Of Freedom (DOFs): usage of a minimal amount of coordinates as the ‘Mini-
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mal Coordinates (MC)’ [1] or ‘Joint Coordinates (JC)’ [2], use of angle and position
coordinates as the ‘Cartesian Coordinates (CC)’ [3] and use of only position coordi-
nates as the ‘Natural Coordinates (NC)’ [4]. The formulations have been extended
to describe flexible mechanisms subject to small deformations as, for example, the
‘Global Modal Parameterization (GMP)’ [5, 6], the ‘Floating Frame of Reference
(FFR)’ [7], and the ‘Flexible Natural Coordinates Formulation (FNCF)’ [8].

Depending on the type of formulation used, a different equation structure is ob-
tained for the model. Currently, most of the formulations rely on a redundant num-
ber of Degrees Of Freedom (DOFs) and some associated constraints, leading to
a set of Differential-Algebraic Equations (DAEs) to model the system dynamics.
On the other hand, the MC formulation describes the dynamics through a minimal
amount of DOFs and leads to a system of Ordinary Differential Equations (ODEs).
For many applications, this ODE structure is an important benefit, as it enables a
natural integration for state-estimation and model-based control. The backside of
this approach is that it is generally not-straightforward to find a minimal number
of parameters to unequivocally describe the system configurations, especially for
complex mechanisms.

In this work, starting from a reference multibody simulation expressed in Natural
Coordinates, a machine learning approach is proposed to reduce the model to Mini-
mal Coordinates. An Auto-Encoder (AE) neural network is used to find a non-linear
transformation that leads to a minimal parameterization of the rigid motion. The in-
verse function can then be used to perform the simulation of the model dynamics in
the reduced dimension and re-obtain the full-order coordinates.

The paper is organised as follows: Section 2 describes the proposed approach
and Section 3 presents an application example; Section 4 reports some concluding
remarks.

2 Auto-Encoders for minimal parameterization of multibody
systems

This section describes the proposed procedure: in the first part Auto-Encoders are
introduced, while in the second part their application to multibody dynamics is pre-
sented.

2.1 Auto-Encoders

Recently, novel non-linear dimensionality reduction techniques have been proposed
to address the limitations of classic linear methods such as Principal Component
Analysis (PCA) [9]. In particular Auto-Encoders, a sub-class of Neural Networks,
seem promising to achieve such aim [10]. Here, we provide a brief overview of the
key concepts of these methods.
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2.1.1 Neural Networks

In general, a Neural Network (NN) is the composition of several basic units as the
one reported in Fig. 1.

Fig. 1 A Neural Network unit. The terms of the input xxxin are multiplied by the weights in WWW nn and
added to the bias in bbbnn before going through the activation function fff actnn . The full layer will be
composed by i = 1, . . . ,nout units to obtain the nout terms of the output xxxout .

A vector xxxin ∈ Rnin is the input to the NN layer. It is multiplied by the weight
matrix WWW nn ∈Rnout×nin and a bias vector bbbnn ∈Rnout is added to obtain xxxmid ∈Rnout .
A so-called ‘activation function’ fff actnn is then applied to each element i of xxxmid , to
obtain the output vector xxxout ∈ Rnout :

xxxout = fff actnn(xxxmid) = fff actnn(WWW nn xxxin +bbbnn) (1)

The choice of the activation function typically depends on the application, but
the most common are: the linear function (lin), the Rectified Linear Unit (ReLU)
and the sigmoid or logistic function (sig). They are, respectively, reported below:

xxxout = fff actlin(xxxmid) = xxxmid (2)

xxxout = fff actReLU
(xxxmid) = max(0, xxxmid) (3)

xxxout = fff actsig
(xxxmid) =

1
1+ e−xxxmid

(4)

The parameters of the NN Pnn = {WWW nn, bbbnn} will be trained (or optimized) to
minimize a certain cost function as, for example, the difference between xxxout and a
reference xxxre f .

If more layers are stacked so that the output of a layer is the input to following
one, the NN is called ‘deep’ and it typically allows to approximate more complex
functions. For a full review of ‘Deep Learning’ methods, the reader is referred to
[11].
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Fig. 2 The structure of a
shallow undercomplete Auto-
Encoder.

Fig. 3 The structure of a
deep undercomplete Auto-
Encoder

2.1.2 Auto-Encoder structure

An Auto-Encoder (AE) is a Neural Network with a particular, symmetric structure.
Its ‘shallow undercomplete’ version is shown in Fig. 2. It is composed by an en-
coding function fff enc where ‘shallow’ indicates that such function is composed by
a single layer of neural units while ‘undercomplete’ implies that fff enc shrinks the
input xxxin ∈Rnin to xxxr ∈Rnr with nr < nin. Then, its specular decoding function fff dec
aims to reconstruct the output x̃xxin ∈ Rnin as close as possible to the input xxxin:

xxxr = fff actenc(WWW enc xxxin +bbbenc) (5)

x̃xxin = fff actdec
(WWW dec xxxr +bbbdec) (6)

The network parameters PAE = {WWW enc ∈Rnr×n, bbbenc ∈Rnr , WWW dec ∈Rn×nr , bbbdec ∈
Rn} are trained to minimize the difference between the output and the input:

argmin
PAE

||x̃xxin(PAE)− xxxin||2 (7)

The bottleneck nr < nin acts as regularization, preventing the AE from simply copy-
ing the inputs and, instead, forcing it to learn a relevant reduced parametrization.

It can be noted that if fff actenc and fff actdec
are set as linear, the Auto-Encoder aims to

reproduce PCA. In fact, the obtained AE weights will span the same subspace as the
principal components; they would correspond if additional constraints are imposed
on the AE such as weights tied WWW dec =WWW T

enc and orthogonal WWW enc WWW T
enc = IIInr , where

IIInr is the identity matrix of dimension nr. However, the order of the singular vectors
based on singular values is, in general, not guaranteed with Auto-Encoders.

In this work we will use a deep Auto-Encoder as in Fig. 3 with non-linear acti-
vation functions and more layers to obtain a non-linear version of PCA to describe
the redundant DOFs of a multibody model as a function of the identified minimal
coordinates.
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2.2 Minimal Coordinate multibody simulation

Here, the procedure is presented. It consists of data collection from a reference
multibody simulation to train the Auto-Encoder. Then, the AE encoding function
is used to obtain the Minimal Coordinate parametrization, while the AE decoding
function is used to obtain the reduced-order model, perform the reduced simulation
and, finally, reconstruct the full coordinates.

2.2.1 Reference simulation for AE training

In order to effectively apply the proposed method, consistent coordinates are nec-
essary, meaning that they should consist of purely displacement coordinates rather
than a combination of displacements and rotations. Thus, the starting point is a
multibody model expressed in Natural Coordinates, where only position DOFs are
used:

MMM ẍxx+ fff spring + fff damper +ΦΦΦ
T
x λλλ = fff ext (8)

ΦΦΦ(xxx) = 000 (9)

Where, given n DOFs and nc constraints, xxx ∈ Rn is the vector of Natural Coor-
dinates of the system and the double-dot accent indicates the second time deriva-
tive, MMM ∈ Rn×n is a constant mass matrix, fff ext ∈ Rn is the vector of external forces,
fff spring and fff damper are the forces given respectively by spring and damper elements,
λλλ ∈ Rnc is the vector of Lagrange multipliers, ΦΦΦ ∈ Rnc is the constraint vector and
ΦΦΦx is its Jacobian with respect to xxx.

A reference simulation of such model is performed at timesteps T = {0, . . . , tnt−1}
and given xxxi = xxx(T = ti−1) the data are collected in the form:

X = {xxx1, . . . , xxxnt}, Fext = { fff 1
ext , . . . , fff nt

ext}
Fspring = { fff 1

spring, . . . , fff nt
spring}, Fdamper = { fff 1

damper, . . . , fff nt
damper}

Each set X , Fext , Fspring, Fdamper ∈ Rn×nt contains nt samples drawn from a (set
of) reference simulation(s) and is stored together with the matrix MMM.

X is used as input to train the Auto-Encoder parameters PAE in order to mini-
mize the mean squared reconstruction error:

argmin
PAE

1
nt

nt

∑
i=1

(
x̃xxi(PAE)− xxxi)2

, ∀xxxi ∈X (10)

Sigmoid activation functions as in Eq. 4 are used in order to ensure that the AE
functions have consistent derivatives as required by their evaluation in Sec. 2.2.2.
The ‘Root Mean Square Propagation (RMSprop)’ algorithm [12], a variation of
‘Stochastic Gradient Descent (SGD)’, is used for the AE parameter optimization.
The dimension of the AE bottleneck nr is set equal to the known number of Mini-
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mal Coordinates of the system. The procedure returns fff enc that gives the MC vector
xxxr and fff dec that backprojects it to the Auto-encoder Coordinates (AC) x̃xx:

xxxr = fff enc(xxx) (11)
xxx≈ x̃xx = fff dec(xxxr) (12)

2.2.2 Minimal Coordinate model

The kinetic energy K of the system can be described as a function of the obtained
Minimal Coordinates:

ẋxx ≈ ∂ fff dec

∂xxxrrr
ẋxxr (13)

K =
1
2

ẋxxT
r

(
∂ fff dec

∂xxxrrr

)T

MMM
∂ fff dec

∂xxxrrr
ẋxxr (14)

Leading to the following inertial forces in the case of a single minimal coordinate
xxxrrr:

fff m,r =

(
∂ fff dec

∂xxxrrr

)T

MMM
∂ fff dec

∂xxxrrr
ẍxxr (15)

fff g,r =

(
∂ fff dec

∂xxxrrr

)T

MMM
∂ 2 fff dec

∂xxx2
rrr

ẋxx2
r (16)

In case of spring-damper elements in the system, their forces are modeled through
additional Neural Networks. In particular, a ‘NN potential function’ fff u,r(xxxr) is built
with parameters PU trained to approximate the NC spring forces projected into
Minimal Coordinates:

argmin
PU

1
nt

nt

∑
i=1

(
∂ fff i

u,r(PU )

∂xxxi
rrr

−
(

∂ fff dec

∂xxxi
rrr

)T

fff i
spring

)2

, ∀ fff i
spring ∈Fspring (17)

xxxi
r = fff enc(xxx

i) , ∀xxxi ∈X (18)

Similarly, the parameters PD of a ‘NN damper function’ fff d,r(xxxr, ẋxxr) are trained to
approximate the NC damping forces projected into Minimal Coordinates:

argmin
PD

1
nt

nt

∑
i=1

(
fff i

d,r(PD)−
(

∂ fff dec

∂xxxi
rrr

)T

fff i
damper

)2

, ∀ fff i
damper ∈Fdamper (19)

Hence, the procedure allows to describe the dynamics as a function of the Mini-
mal Coordinates:
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fff m,r(xxxr, ẍxxr)+ fff g,r(xxxr, ẋxxr)+
∂ fff u,r(xxxrrr)

∂xxxrrr
+ fff d,r(xxxr, ẋxxr) =

(
∂ fff dec

∂xxxrrr

)T

fff ext (20)

At the first timestep i = 1, the NC initial position xxxi=1 is reduced to xxxi=1
r with

the encoding function fff enc while the initial velocity and acceleration are supposed
zero. The derivatives of the decoding function are calculated through automatic dif-
ferentiation and used to obtain the reduced order model. The dynamics equation is
integrated using a central difference scheme, obtaining xxxi=2

r and x̃xxi=2 = fff dec(xxx
i=2
r ).

The procedure is repeated until i = nt −1.

3 Application example

The methodology is demonstrated on the rigid model of a MacPherson suspension
shown in Fig. 4. It consists of 6 bodies: a lower control arm is linked to the chassis
by two spherical joints and to the steering knuckle by a spherical joint; the knuckle
is linked to the tie-rod by a spherical joint and to the strut by a prismatic joint and a
spring-damper element. The system is loaded through a time varying vertical force
on the knuckle.

The procedure described in Section 2 is followed with the AE trained to find the
mapping to a single (nr = 1) Minimal Coordinate. The comparison of the dynamics
between the original full coordinates and the Auto-Encoder approximation is shown
in Fig. 5. These results show a relatively close match between the original NC model

Fig. 4 The suspension
model.

Fig. 5 On the left, comparison of the simulation
for the knuckle centre of gravity in ‘Natural Co-
ordinates (NC)’ xxx and ‘Auto-encoder Coordinates
(AC)’ x̃xx. On the right, close-up to show the not
perfect match.

motion and the AE projected model. However, some differences exist, in particular
at maximum displacement levels.
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4 Conclusions

With respect to redundant Degree-Of-Freedom approaches for multibody simula-
tions, the Minimal Coordinate formulation has some benefits such as the possibility
to express the dynamics as Ordinary Differential Equations. However, it is often in-
feasible to set up the required analytic relations between the motion of all bodies as
a function of the MC in the case of closed-loop topologies.

In this work, a machine learning approach that reduces a multibody model to
Minimal Coordinates is proposed. It is based on a deep Auto-Encoder that trains
a non-linear encoding function in order to retrieve the minimal parameters and an
inverse decoding function that is used to describe the dynamics in the reduced space
and backproject to the full coordinates. An application example is shown.
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