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Abstract: Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many 
(patho)physiological conditions, is currently universally recognized as an important mediator of 
redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule 
may act as a signaling messenger or cause oxidative damage. The focus of this review is to 
comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in 
cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly 
introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the 
peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this 
oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date 
overview of molecular targets and biological processes that can be affected by changes in 
peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms 
and factors involved. From the data presented, it is clear that there are still numerous gaps in our 
knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular 
H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 
production and scavenging in normal and pathological conditions. 

Keywords: peroxisomes; flavin oxidases; catalase; hydrogen peroxide; cysteine oxidation;  
redox signaling; oxidative stress; organelle dysfunction; human disease 

 

1. Introduction 

Hydrogen peroxide (H2O2), the non-radical 2-electron reduction product of oxygen, is a natural 
metabolite commonly found in aerobic organisms [1]. For a long time, this compound was considered 
as an unwanted and rather detrimental by-product of oxidative metabolism [2]. However, during the 
last decades, H2O2 has moved into the forefront as a central redox signaling molecule in many 
biological processes such as cell proliferation and differentiation, tissue repair, inflammation, 
circadian rhythm, and aging [1,3]. The signaling properties of H2O2 can be attributed to its relative 
stability, diffusibility, and selective reactivity (see Section 2). However, whether H2O2 acts as a 
signaling molecule or leads to oxidative damage of biomolecules, a condition denoted as oxidative 
stress, depends on the cellular context, its local concentration, and the kinetics of its production and 
elimination [4]. For example, in the presence of free redox-active metal ions, non-toxic physiological 
levels of H2O2 can give rise to highly toxic hydroxyl radicals (●OH), which indiscriminately oxidize 
virtually any organic molecule they encounter [5,6]. 

Under steady state conditions, the in cellulo production and consumption of H2O2 are balanced. 
Major metabolic sources of H2O2 include the flavin-dependent oxidases (e.g., the endoplasmic 
reticulum oxidoreductase 1 (ERO1) [7]; the acyl-coenzyme A (acyl-CoA) oxidases in peroxisomes (see 
Section 3.1)); and superoxide dismutases (SODs) [8]. The latter group of enzymes catalyzes the 
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dismutation of superoxide anion radicals (O2●−), which are predominantly produced by the 
mitochondrial electron transport chain [9] and membrane-associated NADPH oxidases (NOXs) that 
are located in various subcellular compartments [10]. Major H2O2-scavenging enzymes include 
catalase (CAT) and various thiol-based peroxidases such as glutathione peroxidases (GPXs) and 
peroxiredoxins (PRDXs) [11]. While CAT is predominantly located in peroxisomes (see Section 3.2), 
GPXs [12] and PRDXs [13] are often localized in various subcellular compartments. 

Peroxisomes are cell organelles that are best-known for their involvement in cellular lipid 
metabolism [14]. In mammals, this entails the α- and β-oxidation of fatty acids and the biosynthesis 
of ether-phospholipids, bile acids, and docosahexaenoic acid [15]. Other metabolic functions of 
peroxisomes in mammals include glyoxylate detoxification, amino acid catabolism, polyamine 
oxidation, and the production and scavenging of reactive oxygen and nitrogen species (ROS and 
RNS, respectively) [16,17]. In addition, these organelles are also increasingly recognized as important 
hubs in innate immune-, lipid-, inflammatory-, and redox-signaling networks [18]. To perform these 
functions, peroxisomes can dynamically regulate their number, shape, and protein content in 
response to changing environmental conditions [19]. They also have to stay in close communication 
with other subcellular compartments [20]. The formation and maintenance of peroxisomes requires 
a specialized set of proteins, called peroxins (acronym: PEX; the number refers to their order of 
discovery) [21], and superfluous and dysfunctional organelles are targeted for lysosomal degradation 
through a process known as pexophagy [22]. Alterations in any of these metabolic, signaling, or other 
pathways have been linked to multiple genetic (e.g., Zellweger syndrome) [23], infectious [24], and 
oxidative stress-related (e.g., neurodegeneration, diabetes, and cancer) diseases [25,26]. In the 
following sections, we focus on the role of mammalian peroxisomes in cellular H2O2 metabolism and 
how perturbations in this process may affect cellular function and organismal health. 

2. The Basic Concepts of H2O2 Signaling 

Like many other signaling pathways, hallmarks of H2O2 signaling include messenger formation, 
messenger metabolism, messenger action, and recovery [27]. Given its relative stability (cellular  
half-life: ∼1 ms), diffusibility, and selective reactivity, H2O2 is often put forth as the most important 
redox signaling molecule [1,28,29]. This non-radical ROS can be formed and degraded in different 
subcellular compartments (see Section 1), and its local concentration depends on its rates of synthesis, 
degradation, and diffusion (Figure 1). Importantly, although H2O2 is a non-charged molecule, its 
dipole moment is higher than that of water, thereby severely limiting its transport across lipid 
membranes by simple diffusion [29]. Indeed, efficient permeation of this molecule across biological 
membranes requires specific channel proteins, referred to as peroxiporins [1]. The spatial separation 
of sources and sinks as well as its diffusion away from the site of production and across 
biomembranes lead to the formation of intracellular H2O2 gradients, which determine the behavior 
of responsive systems [6]. 

The primary messenger action of H2O2 depends on its ability to oxidize a variety of target 
proteins with a high degree of specificity, predominantly through reaction with nucleophilic cysteine 
thiolate groups (Cys-S−) that can be found in specific protein microenvironments [1]. Oxidation of 
such deprotonated cysteine residues can lead to the formation of unstable sulfenic acid (-SOH) 
intermediates that can (i) be reduced again, (ii) react with other proximal thiol groups to form  
intra- or intermolecular disulfide bonds, or (iii) undergo hyperoxidation to form sulfinic (-SO2H) and 
then sulfonic (-SO3H) acids [11,30]. Disulfide bond formation can induce conformational changes, 
leading to alterations in macromolecular interactions, protein localization, function, activity, and/or 
stability; and protein disulfides can be converted back to their reduced state by components of the 
glutaredoxin (GLRX)/glutathione (GSH)/glutathione-disulfide reductase (GSR)- and thioredoxin 
(TXN)/thioredoxin reductase (TXNRD)-containing antioxidant systems (Figure 1) [31,32]. As such, 
oxidation-susceptible cysteine thiols can function as regulatory switches that transmit information 
along a signaling cascade after being oxidized by H2O2 [11]. 

Importantly, depending on the context and circumstances (e.g., the subcellular location, the H2O2 
concentration, and duration of exposure, etc.), the oxidation of signaling proteins may occur through 
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direct reaction of H2O2 with hyper-reactive thiols or indirectly through thioredoxin- or peroxiredoxin- 
catalyzed redox relay reactions (Figure 1) [33,34]. This implies that the thiol peroxidases involved 
may display a dual function: on one hand, they can function as H2O2 scavengers that counteract redox 
signaling; on the other hand, they may act as enablers of protein thiol oxidation by transferring 
oxidative equivalents from H2O2 to redox-regulated proteins [34]. In the latter mechanism, the target 
specificity is likely to be determined by protein–protein interactions. In this context, it is relevant to 
mention that the reducing power required to maintain thiol redox networks is provided by NADPH 
[35]. 

 
Figure 1. General principles of H2O2 signaling. GLRX, glutaredoxin; GSH, reduced glutathione; GSR, 
glutathione-disulfide reductase; NADPH, nicotinamide adenine dinucleotide phosphate (reduced); 
TXN, thioredoxin; TXNRD, thioredoxin reductase. 

To illustrate the complexity of H2O2-mediated signaling; we briefly focus on one specific 
example: the activity modulation of nuclear factor erythroid 2-related factor 2 (NFE2L2). NFE2L2, 
also known as NRF2, is a transcription factor regulating the expression of genes containing an 
antioxidant/electrophile response element motif in their promoter [36]. Under homeostatic 
conditions, NFE2L2 is constitutively degraded by different pathways: on one hand, the protein 
interacts with Kelch-like ECH-associated protein 1 (KEAP1), a redox-regulated substrate adapter 
protein of the cullin 3-dependent E3 ubiquitin ligase complex that mediates the ubiquitination and 
subsequent proteasomal degradation of KEAP1-associated proteins; on the other hand, the protein 
can be phosphorylated by glycogen synthase kinase 3β (GSK-3β), thereby creating a phosphodegron 
that drives protein degradation through interaction with a ubiquitin ligase [36,37]. However, upon 
exposure to H2O2, specific cysteine residues of KEAP1 (e.g., Cys151, Cys171, Cys273, and Cys288 in 
the human protein) are oxidized, thereby inducing conformational changes interfering with the 
ability of KEAP1 to ubiquitinate NFE2L2 [38]. In addition, given that (i) phosphorylation of GSK-3β 
at serine 9 inhibits the kinase’s activity [39], and (ii) multiple kinases (e.g., the serine/threonine protein 
kinases B and C, the mitogen-activated protein kinases 1 and 14) that can mediate this 
phosphorylation event are activated by H2O2 [36], such condition also results in a KEAP1-
independent activation of NFE2L2. Importantly, electrophiles such as H2O2 can also modulate the 
activity of NFE2L2 at other levels. For example, they can (i) enhance the translation rate of the NFE2L2 
mRNA [40,41], (ii) stimulate the nuclear accumulation of the NFE2L2 by freeing a nuclear localization 
sequence that is not surface-exposed in the KEAP1-bound transcription factor and/or by oxidatively 
modifying (or masking) nuclear export sequences in KEAP1 or the NFE2L2–KEAP1 complex [36], 
(iii) increase the acetylation state of NFE2L2, a condition reported to correlate with DNA binding and 
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transcription factor activity [42,43], and (iv) affect the interaction of NFE2L2 with its transcriptional 
regulators [36]. 

3. Players in Peroxisomal H2O2 Metabolism and Transport 

Currently, it is clear that peroxisomes contain both enzymes that can produce (see Section 3.1) 
or scavenge (see Section 3.2) H2O2. In addition, there is compelling evidence that the peroxisomal 
membrane contains non-selective pore-forming proteins that allow the exchange of small metabolites 
(see Section 3.3). As such, these organelles can be expected to influence local H2O2 gradients and, 
therefore, H2O2-mediated signaling events. Whether peroxisomes act as a net sinks or sources of H2O2 
(Figure 2) most likely depends on the cell type, its physiological state, and the microenvironment. 

 
Figure 2. Peroxisomal hydrogen peroxide (H2O2) metabolism and its potential effects on intracellular 
H2O2 gradients. H2O2-producing and -degrading enzymes are depicted as red and green rectangles, 
respectively. 

3.1. H2O2-Generating Systems 

Peroxisomes are metabolically active organelles involved in a variety of biochemical processes 
(see Section 1). A specific subset of enzymes acting in these processes include the flavin adenine 
dinucleotide (FAD)- or flavin mononucleotide (FMN)-dependent oxidases (for a detailed list,  
see [44]), of which the reduced flavin forms are regenerated by reduction of molecular oxygen (O2) to 
H2O2. In this context, it is important to note that (i) unlike mitochondria, peroxisomes lack a 
respiratory chain [45], and (ii) depending on the oxidase, the cofactor can be loosely or firmly bound 
[46,47]. Natural substrates of the mammalian H2O2-producing peroxisomal oxidases include, among 
others, different types of fatty acids (e.g., very-long-chain fatty acids, 2-methyl-branched fatty acids, 
2-hydroxy fatty acids, and bile acid intermediates) [48], D-amino acids (e.g., D-Ser) [49], polyamines 
(e.g., N1-acetylspermine) [50], glycolate [51], and pipecolic acid [52]. Depending on the activity of 
these oxidases, which may be regulated by numerous posttranslational modifications (e.g., 
phosphorylation, acetylation, ubiquitination, succinylation, mono- or di-methylation [53]), and the 
intraperoxisomal H2O2 scavenging rates (see Section 3.2), changes in substrate availability or enzyme 
activity may result in altered H2O2 levels. This is nicely illustrated by a recent study showing that (i) 
lysine succinylation stimulates the activity of acyl-CoA oxidase 1 (ACOX1), a rate-limiting enzyme 
in peroxisomal fatty acid β-oxidation, (ii) sirtuin 5 (SIRT5), an NAD-dependent protein lysine 
desuccinylase, can locate to peroxisomes where it binds to and desuccinylates ACOX1, and (iii) 
downregulation of SIRT5 increases ACOX1 activity, peroxisomal H2O2 production, and oxidative 
DNA damage in cultured HepG2 liver cells, mouse livers, and/or human hepatocellular carcinoma 
samples [54]. 

3.2. H2O2-Elimination Systems 
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Currently, it is clear that mammalian peroxisomes are equipped with at least two H2O2-
eliminating enzyme systems, of which the best characterized enzyme is CAT. Depending on the H2O2 
concentration and the presence of other metabolic hydrogen donors (AH2) such as short-chain 
aliphatic alcohols, formate, or nitrite, this heme-containing protein can scavenge H2O2 in a catalatic 
(2 H2O2 → 2 H2O + O2) or peroxidatic (H2O2 + AH2 → A + 2 H2O) manner [55]. In contrast to other 
H2O2-decomposing enzymes, these reactions occur without the use of reducing equivalents [56]. CAT 
is an abundant, predominantly peroxisomal enzyme. However, depending on the cell type and 
environmental conditions, the protein may also be (partially) localized to the cytosol and nucleus 
[57,58]. In this context, it is worth noting that oxidative stress impairs the import efficiency of CAT 
into peroxisomes, a phenomenon that apparently protects the cytosol against H2O2-induced insults 
[59]. In addition, upon exposure of mammalian cells to external H2O2 or other ROS stimuli, (cytosolic) 
catalase can be phosphorylated by protein kinase C delta (PRKCD) at Ser167 [60] and by the Abelson 
tyrosin-protein kinases ABL1 and ABL2 at both Tyr231 and Tyr386 [61], thereby enhancing its 
activity. On the other hand, the activity of CAT can be down-regulated through nitrosylation of 
Cys377 [62] and S-thiolation at not yet identified cysteine residues [63,64]. Finally, CAT can also be 
phosphorylated [65], acetylated [66], succinylated [54,67], monomethylated [68,69], ubiquitinated 
[70,71], and sumoylated [72] on many other residues. However, how these posttranslational 
modification events affect CAT localization and/or activity remains to be determined. From these 
observations, combined with the fact that CAT is not essential for life [73,74], it is apparent that more 
studies are needed to fully understand the precise regulation and physiological function of this H2O2-
scavenging enzyme in peroxisomal redox biology. 

Another sink for H2O2 inside peroxisomes is PRDX5, a thiol-dependent monomeric peroxidase 
that is also located in the cytosol, the nucleus, and mitochondria [75]. PRDX5 can also reduce 
peroxynitrite (ONOO−) and a variety of lipid peroxides (LOOH) [76]. Currently, it is widely accepted 
that PRDX5 uses an NADPH-dependent thioredoxin (TXN)/TXN reductase (TXNTR) system to 
reduce its substrates [31]. Intriguingly, no such enzyme system has yet been identified in mammalian 
peroxisomes. Like CAT, PRDX5 can also be phosphorylated [77,78], acetylated [66,79], succinylated 
[67], glutathionylated [80], and ubiquitinated [70,71]. In addition, the protein can undergo disulfide 
bond formation [81,82]. Once again, how these posttranslational modifications affect PRDX5 activity 
remains to be clarified. The physiological function of peroxisomally located PRDX5 is also not yet 
clear. On one hand, the protein may act as an antioxidant by inactivating H2O2 before it can modify 
redox-sensitive cysteines [83]. On the other hand, it may act as a redox relay factor by transferring 
oxidizing equivalents from H2O2 to target proteins through thiol-disulfide reshuffling [33,34]. In the 
latter case, the peroxisomal pools of PRDX5 and CAT may play non-overlapping roles in H2O2 
clearance, a paradigm supported by the observation that both antioxidant enzymes present distinct 
kinetic characteristics. Indeed, PRDX5 and CAT scavenge H2O2 in the low micromolar and low 
millimolar range, respectively, and the maximum rate of H2O2 removal is orders of magnitude more 
for CAT than for PRDX5 [76,84]. 

Besides CAT and PRDX5, H2O2 may also be removed by glutathione peroxidases (GPXs), a 
family of antioxidant enzymes that typically use GSH as reductant [85]. However, despite the fact 
that rat liver peroxisomes appear to contain GPX activity [86], no such enzyme has yet been identified 
at the protein level. 

3.3. H2O2 Permeation Across the Peroxisomal Membrane 

Throughout the years, it has become clear the biological membranes, including the peroxisomal 
one, act as permeability barriers for H2O2 [87,88]. Importantly, to serve as a subcellular platform for 
H2O2 signaling, it is essential that peroxisomes can exchange this redox messenger with their 
environment. That this is indeed the case, has already been demonstrated in vitro [89,90], in cellulo 
[91], and in slices of liver, lung, and lenses from CAT-deficient mice [92]. In general, it is thought that 
this permeation process is governed by peroxiporins (see Section 2), a class of proteins that has not 
yet been assigned to peroxisomes. However, here it is important to note that the peroxisomal 
membrane contains a non-selective pore-forming protein, termed PXMP2, that allows free diffusion 
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of small molecules (< 300–600 Da) [93]. Nonetheless, we have recently demonstrated that neither this 
peroxisomal membrane protein (PMP) nor PEX11B, another widely expressed PMP whose yeast 
homologue enables the permeation of molecules up to 400 Da [94,95], are essential for the transport 
of H2O2 across the peroxisomal membrane [96]. 

4. The Emerging Roles of Peroxisomes in Cellular H2O2 Signaling 

A general requisite for signal propagation is the spatial segregation of opposing reactions, a 
condition resulting in the formation of concentration gradients [97]. Therefore, in order to function 
as a signaling messenger, H2O2 does not only need to be produced, but also to be enzymatically 
degraded or removed. This degradation/removal process is essential to reduce the refractory time, 
which is defined as the recovery period necessary for detecting successive signals [98]. Otherwise, 
H2O2 levels will build up, thereby preventing further signaling. Over the years, it has become clear 
that changes in peroxisomal H2O2 production or CAT activity can modulate the cellular  
thiol-disulfide state [99]. In the following sections, we first outline what is known about the molecular 
targets of peroxisome-derived H2O2 and how changes in CAT activity alter cellular thiol-disulfide 
homeostasis (see Section 4.1). Next, we discuss how peroxisomes may act as modulators of diverse 
biological processes regulated by H2O2 (see Section 4.2). Finally, we provide a brief overview of how 
imbalances in any of these processes may contribute to disease (see Section 4.3). 

4.1. Molecular Targets 

As outlined above (see Section 2), protein cysteinyl residues are the prime mediators of H2O2 
signaling [100]. Unfortunately, until now, no global proteomics data are available for redox-active 
thiols that can be modified by peroxisome-derived H2O2. To address this gap, we recently developed 
a human HEK-293 cell line that can be used to selectively induce H2O2 production inside peroxisomes 
in a time- and dose-controlled manner [101], and studies to inventory the peroxisomal  
H2O2-dependent sulfenome are ongoing. However, during the validation of this cell model, we could 
provide evidence that peroxisome-derived H2O2 can oxidize redox-sensitive cysteine thiols in 
proteins within and outside the peroxisomal compartment. Specific examples include the forkhead 
box O3 transcription factor FOXO3, the p50 and p65 subunits of the transcription factor nuclear factor 
kappa B (NF-κB), the tumor suppressor phosphatase PTEN, the peroxisomal import receptor PEX5, 
and the antioxidant enzyme PRDX5 [101]. 

An alternative approach to study the role of peroxisomal H2O2 metabolism in cellular  
thiol-disulfide homeostasis is to interfere with CAT activity. Here it is interesting to mention that (i) 
CAT activity, and not the cellular glutathione levels, appear to dominate the resistance of cells to ROS 
[102], (ii) treatment of Chang liver cells with 3-amino-1,2,4-triazole, an irreversible inhibitor of CAT 
activity, increases the protein disulfide levels by 20% [103], and (iii) cardiac-specific overexpression 
of CAT in mice decreases oxidative cysteine modification of cardiac proteins [104]. Whether the 
observed changes in cysteine oxidation are caused by alterations in the release of peroxisome-derived 
H2O2 or by changes in the capacity of peroxisomes to scavenge extra-peroxisomal H2O2 (Figure 2), 
remains to be determined. 

4.2. Biological Processes 

Despite the limited number of protein targets that have been identified for peroxisome-derived 
H2O2 (see Section 4.1), an extensive literature exists on the potential involvement of peroxisomes in 
the H2O2-mediated regulation of various fundamental biological processes. The aim of this Section is 
not to provide an exhaustive overview of this subject, but to outline some relevant  
examples (Figure 3). 

4.2.1. Gene Expression 

The synthesis, stability, subcellular localization, and/or activity of many transcription factors are 
regulated by H2O2 [36]. Currently, there is strong evidence that also peroxisomal H2O2 metabolism 
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may contribute to these processes, thereby modulating gene expression. This is perhaps best 
illustrated by the observation that whole-genome expression profiling studies have revealed that 
CAT activity modulates the expression of numerous genes, both in human cells [105] and in mice 
[106]. Another example is that, depending on the cell type and experimental conditions [107], 
sustained production of peroxisomal H2O2 [108–110], CAT inhibition [111], or CAT overexpression 
[112] can activate [108–110] or inhibit [111,112] the activity of NF-κB. These and other findings 
provide empirical evidence that alterations in peroxisomal H2O2 metabolism can modulate gene 
expression (Figure 3). However, the biological significance and underlying mechanisms of these 
observations remain largely to be established. 

 
Figure 3. Schematic presentation of how alterations in catalase (CAT) activity may shape intracellular 
H2O2 gradients, thereby impacting multiple biological processes and contributing to disease initiation 
and progression. MT, mitochondria. 

4.2.2. Cell Fate Regulation 

Cell fate decisions such as growth, proliferation, differentiation, senescence, and apoptosis are 
impacted by multiple environmental and biological cues, including H2O2 [113]. This molecule can 
instruct such decisions, directly or indirectly, by affecting the functionality of transcription factors 
and/or other proteins (e.g., kinases, phosphatases, proteases, antioxidant enzymes, etc.) involved in 
key signal transduction pathways [114]. Importantly, changes in peroxisomal H2O2 metabolism have 
been reported to influence cell fate transitions [99]. However, although these transition switches can 
be expected to occur through modification of the epigenetic landscape [115] and transcriptional 
responses (see Section 4.2.1), the driving mechanisms remain largely to be established. 

Given that low levels of H2O2 can promote cell proliferation and differentiation [113], it is not 
surprising that CAT overexpression has been shown to reduce the growth of various cell types (e.g., 
rat aortic smooth muscle cells [116], human aortic endothelial cells [117], human MCF-7 breast cancer 
cells [118], A-375 amelanotic melanoma cells [105], and human promyelocytic HL-60 cells [119]). 
Interestingly, such treatment has been reported to delay the resting (G0)/gap phase 1 (G1) to synthesis 
(S)-phase transition in mouse aortic endothelial cells during cell cycle progression [120]. In addition, 
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CAT overexpression in HL-60 (or the human promonocytic cell line U-937) and A-375 cells has been 
demonstrated to potentiate macrophage and melanocyte differentiation, respectively [105,121]. 

Depending on the cell type and context, disturbances in peroxisomal H2O2 metabolism may also 
drive cell transformation (see Section 4.3.5), promote cellular aging and senescence, or trigger cell 
death. Indeed, chronic reduction of CAT activity in human cells has been documented to increase 
oxidative damage, enhance the secretion of matrix metalloproteinases, and impair mitochondrial 
function (see Section 4.2.3) (Figure 3) [122]. In addition, there is strong evidence that CAT can act as 
a protectant against apoptosis induced by multiple types of oxidative insults (e.g., ultraviolet and 
ionizing radiation [123,124], arsenic trioxide treatment [125], or P53-induced oxidative stress [126]). 
Also, peroxisomally located PRDX5 has been shown to have a cytoprotective effect against H2O2-
induced cytotoxicity [127]. Importantly, overexpression of CAT may also sensitize cells (e.g., mouse 
hepatocytes and fibroblasts [128], human alveolar macrophages [129], and MCF-7 cells [118]) as well 
as animals (e.g., non-obese diabetic mice [130]) to different types of stressors (e.g., paraquat [128], 
tumor necrosis factor-alpha (TNFα) [128], asbestos [129], cyclophosphamide [130], paclitaxel [118], 
etoposide [118], and arsenic trioxide [118]). The latter findings clearly demonstrate that high CAT 
activity can dampen H2O2 signaling. Finally, it has been reported that the lipotoxicity of saturated 
non-esterified fatty acids in rat insulin-producing cells, which are catalase-poor, is caused by 
excessive production of H2O2 via peroxisomal β-oxidation [131]. 

4.2.3. Mitochondrial Function 

Peroxisomes and mitochondria cooperate in various metabolic (e.g., β-oxidation of fatty acids, 
ROS metabolism) and signaling (e.g., antiviral innate immune signaling) pathways [48,132], and 
disturbances in any of the peroxisomal processes—including H2O2 metabolism—can result in 
reduced mitochondrial fitness [133,134]. For instance, several studies have documented that 
inhibition of CAT activity rapidly increases mitochondrial ROS levels [135,136] and impairs 
mitochondrial membrane potential and aconitase activity [122,137]. In addition, CAT overexpression 
has been reported to safeguard mitochondrial fitness, thereby protecting the cells against stress 
insults [122,136,138]. Also here, whether this redox interplay between peroxisomes and mitochondria 
is a direct result of alterations in the release of peroxisome-derived H2O2 or caused by changes in the 
capacity of peroxisomes to scavenge extra-peroxisomal H2O2, remains to be investigated. Indeed, to 
the best of our knowledge, evidence demonstrating that peroxisome-derived H2O2 can directly 
impact mitochondrial function is still lacking. 

4.3. Diseases 

Peroxisomes have the intrinsic potential to mediate (see Sections 3.1 and 3.3) and modulate (see 
Sections 3.2 and 3.3) H2O2-driven signaling events. As such, it may not come as a surprise that 
imbalances in peroxisomal H2O2 metabolism have been associated with multiple oxidative stress-
related disease states, including obesity, diabetes, ischemia reperfusion, noise-induced hearing loss, 
neurodegeneration, aging, and tumor initiation and progression. For a detailed overview on this 
topic, we refer the reader to another recent review [99]. However, to illustrate the concept, we focus 
here on some other examples that can all be linked to alterations in CAT activity (Figure 3). Note that 
the role of this enzyme in protecting cells and tissues against H2O2-induced injury has already been 
amply documented (see below). In addition, from these and other findings, it is clear that inherited 
catalase deficiencies should be considered as a strong risk factor for aging-related pathological 
changes [74]. 

4.3.1. Heart Disease 

Transgenic overexpression of CAT in mouse hearts has been reported (i) to prevent adverse 
myocardial remodeling and progression to overt heart failure in a mouse model of dilated 
cardiomyopathy [139], (ii) to protect the heart from (post-)ischemia-reperfusion injury [140,141], 
diabetic cardiomyopathy and dysfunction [112,142], and lipopolysaccharide-induced cardiac 
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dysfunction and mortality [143], (iii) to preserve cardiac function after myocardial infarction, at least 
at later time points [144], and (iv) to alleviate cardiac diseases and aging [104,145]. These improved 
phenotypes have been linked to an overall decrease in oxidative stress [142,143], a shift of the protein 
thiol/disulfide balance towards thiols [104], a decrease in endothelial nitric oxide synthase activity 
[142], less nitration of key enzymes involved in energy metabolism [112], a decline in NF-κB signaling 
[112], a reduction in proinflammatory cytokine release [144], and a marked protection against 
myocyte hypertrophy, myocyte apoptosis, and interstitial fibrosis [139]. 

4.3.2. Kidney Disease 

CAT overexpression has also been demonstrated to provide renoprotection. Indeed, 
overexpression of this enzyme in renal proximal tubular cells of angiotensinogen transgenic mice 
[146], type 1 diabetic Akita transgenic mice [147,148], or type 2 diabetic db/db mice [149] has been 
shown to mitigate oxidative stress and prevent hypertension, albuminuria, tubulointerstitial fibrosis, 
and tubular apoptosis [146–148]. At the molecular level, these phenomena have been associated with 
attenuated angiotensinogen and proapoptotic gene expression [149,150]. 

4.3.3. Insulin Resistance and Diabetes 

Pancreatic β-cells are very vulnerable to oxidative stress, a phenomenon of importance in type 
1 diabetes and islet transplantation [151]. Interestingly, overexpression of CAT in murine pancreatic 
β-cells has been demonstrated to have no detrimental effects and to provide marked protection of 
islet insulin secretion against H2O2- and streptozocin-mediated β-cell dysfunction [152]. In addition, 
it has been reported that overexpression of CAT improves mitochondrial function in insulin resistant 
muscle cells, thereby enhancing glucose and fatty acid metabolism [138]. This finding is in line with 
other studies showing that (i) CAT deletion exacerbates the pre-diabetic phenotype in mice [106], and 
(ii) overexpression of CAT in obese mice has a positive influence on energy expenditure and 
metabolic parameters such as leptin and adiponectin levels [153]. 

4.3.4. Cardiovascular Disease 

Oxidative stress is a potent contributing factor to cardiovascular disease [154], and 
overexpression of CAT in vascular [155,156] or aortic [157] smooth muscle cells has been shown (i) to 
decrease oxidized lipid-induced cytotoxicity in vitro [155], and (ii) to prevent pathological 
mechanical changes underlying abdominal aneurysm formation in transgenic mice, primarily 
through modulation of matrix metalloproteinase activity [156,157]. However, transgenic mice with 
specific overexpression of CAT in myeloid lineage cells display impaired post-ischemic 
neovascularization, a phenotype associated with a blunted inflammatory response (e.g., lower levels 
of inflammatory markers; reduced macrophage infiltration) in ischemic tissues [158]. 

4.3.5. Cancer 

Compared to normal cells, cancer cells frequently produce elevated levels of ROS compared to 
their normal counterparts [159]. These molecules can act as pro-tumorigenic signals that promote, 
among others, abnormal cell growth, migration, resistance to apoptosis, adaptations to hypoxia, and 
genetic instability [159]. Interestingly, low CAT activity has been associated with an increased risk 
factor for many different cancers, including skin cancer [160], colorectal cancer [161], breast cancer 
[162], invasive cervical cancer [163], ovarian cancer [164], and prostate cancer [165–167]. On the other 
hand, overexpression of CAT in MCF-7 mammary cancer cells has been reported to result in a less 
aggressive phenotype and an altered response to chemotherapy [118]. Finally, CAT activity has also 
been linked to the cathepsin-induced migration and invasion of human lung cancer cells [168]. 

4.3.6. Neurodegenerative Disease 

Oxidative stress is a common denominator of various neurodegenerative disorders, including 
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis [169]. The underlying 
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reason is that the brain is exquisitely vulnerable to oxidative damage because of its high oxygen 
consumption, elevated concentrations of unsaturated lipids, and modest antioxidant defense 
compared to other tissues [169,170]. Interestingly, patients suffering from a peroxisomal deficiency 
also typically develop severe neurological deficits [171]. However, at the moment, little is known 
about how alterations in peroxisomal H2O2 metabolism contribute to brain homeostasis and health. 
To the best of our knowledge, there are no reports that comprehensively study how selective 
alterations in peroxisomal H2O2 production influence physiological and pathological brain processes. 
Nonetheless, there are a number of in vitro and in vivo studies that investigate the role of CAT as 
neuroprotective agent. For example, it has been demonstrated that increased levels of  
(peroxisome-targeted) CAT (i) protect cultured primary human neurons from H2O2-mediated 
cytotoxicity [172], (ii) safeguard cultured SH-SY5Y human neuroblastoma cells from  
β-amyloid-induced oxidative stress [173], (iii) reduce the toxicity of amyloid-β25–35 in rat brain [174], 
and (iv) protect isolated rat brain mitochondria against the toxic effects of 6-hydroxydopamine on 
mitochondrial respiration [175]. In addition, there is compelling evidence that binding of the 
neurotoxic β-amyloid peptide to CAT decreases its activity [176], a phenomenon that may explain 
why CAT activity is reduced in the brain of Alzheimer’s disease patients [177]. Nevertheless, despite 
these observations, other studies do not support the idea of CAT being a susceptibility factor for 
Alzheimer’s disease [178], Parkinson’s disease [179,180], or familial amyotrophic lateral sclerosis 
[181]. 

5. Conclusions, Challenges, and Perspectives 

As reviewed here, there is currently overwhelming evidence supporting the view that 
peroxisomes have the intrinsic ability to mediate and modulate H2O2-driven biological processes. In 
addition, there is growing consensus that perturbations in peroxisomal H2O2 metabolism can elicit 
adaptive or maladaptive responses that mitigate or aggravate the impact of the underlying cause. 
However, the specific mechanisms and physiological consequences of these events remain largely to 
be explored. The most critical questions that need to be answered include (i) the identification and 
functional dissection of redox-sensitive proteins that can be reversibly oxidized by peroxisome-
derived H2O2, (ii) the nature of the proteins involved in the transport of H2O2 and other relevant redox 
species across the peroxisomal membrane, and (iii) the biological consequences of changes in 
peroxisomal H2O2 metabolism on cellular signaling networks that drive physiological or pathological 
responses. These questions are further elaborated in the next sections. 

As mentioned above (see Section 4.1), there are presently no mammalian proteomics data for  
redox-active thiols that can be modified by peroxisome-derived H2O2. The main underlying reason 
can be attributed to the fact that, until recently, an experimental model to selectively produce 
physiological concentrations of H2O2 inside peroxisomes in a time- and dose-controlled manner was 
lacking. However, given that such a model [101] as well as a genetic tool to capture and affinity purify 
sulfenic acid-containing proteins [182] are currently available, proteome-wide unbiased 
identification of primary targets of peroxisome-derived H2O2 can be expected soon. In this context, it 
will also be interesting to see whether H2O2 generated inside peroxisomes or other locations (e.g., 
mitochondria or the cytosol) yields many specific or common targets. 

The steady-state levels of H2O2 inside peroxisomes are determined by the rates of its synthesis, 
degradation, and diffusion. Besides catalase, also NAD(P)H- and GSH-powered redox systems can 
be expected to play a role in peroxisomal redox homeostasis (these systems form a complex network 
of interactions with GPXs, TXNs, and PRDXs) [30,183]. However, as for H2O2 (see Section 3.3), it is 
still unclear how GSH, GSSG, NAD(P)+, and NAD(P)H are transported across the peroxisomal 
membrane and how peroxisomes regulate their GSH/GSSG and NAD(P)+/NAD(P)H pools. In 
addition, the electron donor for peroxisomal PRDX5 remains to be identified. For more details on 
these topics, we refer the reader to other recent reviews [48,99]. 

A last unresolved but pertinent question is how alterations in peroxisomal H2O2 metabolism 
contribute to cellular and organismal physiology. Here, it is important to highlight that more research 
needs to be done to determine under which conditions peroxisomes serve as net sources or sinks for 
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H2O2. In addition, despite the fact that the redox proteome can provide a link between metabolism 
and sulfur switch-controlled signaling events [183], it is important to realize that (i) the subgroup of 
H2O2-sensitive cysteine residues shows less conservation than their redox-insensitive counterparts, 
and (ii) the H2O2-dependent redoxome can vary dramatically between different cell types [100]. These 
factors complicate the interpretation of how peroxisome-derived H2O2 may modulate redox-driven 
intracellular signaling events and pose a significant challenge for translating the in cellulo data to in 
vivo models and subsequently to clinical practice. 

Taken together, there is convincing evidence that peroxisomes do serve as an intracellular hub 
in H2O2 metabolism and signaling. However, additional work is needed to better understand how 
cells decode and integrate these cues to produce coherent responses. The outcome of such studies can 
be expected to advance redox medicine. 
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Abbreviations 

ACOX Acyl-CoA oxidase 
Acyl-CoA Acyl-coenzyme A 
ABL Abelson tyrosine-protein kinase 
CAT Catalase 
ERO Endoplasmic reticulum oxidoreductase 
FAD Flavin adenine dinucleotide 
FMN Flavin mononucleotide 
GLRX Glutaredoxin 
GPX Glutathione peroxidase 
GSH Glutathione, reduced 
GSK-3β Glycogen synthase kinase 3β 
GSSG Glutathione, oxidized 
GSR Glutathione-disulfide reductase 
KEAP1 Kelch-like ECH-associated protein 1 
NAD(P)+ Nicotinamide adenine dinucleotide (phosphate), oxidized 
NAD(P)H Nicotinamide adenine dinucleotide (phosphate), reduced 
NFE2L2 Nuclear factor erythroid 2-related factor 2 
NF-κB Nuclear factor kappa B 
NOX NADPH oxidase 
PEX Peroxin 
PMP Peroxisomal membrane protein 
PRDX Peroxiredoxin 
RNS Reactive nitrogen species 
ROS Reactive oxygen species 
SIRT Sirtuin 
SOD Superoxide dismutase 
TXN Thioredoxin 
TXNRD Thioredoxin reductase 
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