
 

Available open access. 



2 Ruth Cardinaels* et al.

Noname manuscript No.
(will be inserted by the editor)

Quantifying the errors due to overfilling for Newtonian

fluids in rotational rheometry

Ruth Cardinaels* · Naveen Krishna

Reddy · Christian Clasen

Received: date / Accepted: date

Ruth Cardinaels

Polymer Technology

Department of Mechanical Engineering

Eindhoven University of Technology (TU Eindhoven)

P.O. Box 513, 5600MB Eindhoven

The Netherlands

*R.M.Cardinaels@tue.nl

Naveen Krishna Reddy

Faculty of Industrial Engineering

Hasselt University

Martelarenlaan 42

3500 Hasselt

Belgium

IMO, IMOMEC

Hasselt University

Wetenschapspark 1

3590 Diepenbeek

Belgium



Errors due to overfilling 3

Abstract The errors on rheological measurements due to overfilling of Newto-

nian fluids using parallel plate and cone-plate setups in rotational rheometry are

quantified. Overfilled sample causes an additional drag force, thereby increasing

the measured viscosity, especially when the sample wets the geometry rim. This

can cause errors up to 30 % in standard experimental setups such as parallel plates

with a gap height of 1 mm. This viscosity error increases proportionally with the

ratio of gap height to radius of the geometry. By developing a scaling relation that

captures the main effects of the geometrical parameters on the viscosity error due

to overfilling, a master curve was constructed for the viscosity error as a function

of the amount of overfilling. Our systematic analysis of the viscosity error due to

overfilling can be utilized to correct for this error during rheological measurements

in which overfilling is known but unavoidable or desired.

Keywords Overfilling · Edge effects · Rotational rheometry · Shear viscosity

1 Introduction

Rotational rheometers are ubiquitous in both academia and industry. In soft mat-

ter research, rotational rheometers are frequently used to characterize the flow
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behavior and moduli of complex materials. Using structure-rheology relations that

are well-established for a wide range of material classes, rheology can also provide

in-situ and time-resolved microstructural information (Larson 1999). In indus-

trial production units rotational rheometers are commonly present for monitoring

the quality of the produced materials. The most common measuring geometries

in rotational rheometers are the parallel plate and cone-plate geometries with the

bottom plate in many configurations being larger than the top plate (Macosko

1994). The analysis to extract rheological parameters from measurements with

these geometries is based on the assumption of a cylindrical (for parallel plate

setup) or spherical (for cone-plate setup) shape of the free surface of the sample

(Macosko 1994). It is common knowledge in experimental rheology that it is es-

sential to trim the sample edge carefully after sample loading and to maintain the

spherical or cylindrical surface shape during actual measurements. Kalika et al.

(1986) state that ’the need to monitor the edge is part of the folklore of rheometry’.

In spite of the above statement, overfilling and underfilling scenarios are encoun-

tered quite frequently, sometimes due to experimenter’s inexperience, but also as

an unavoidable result of the design of the measurement setup or the sample prop-

erties, or as a means to resolve other measurement complications. Some examples

in which overfilling is unavoidable are rotational rheometers with upper geometries

that inhibit sample trimming due to the presence of a large solvent reservoir on

top of the geometry, measurements of samples with large contact angles (Choi and

Kim 2006; Srinivasan et al. 2013) or linear motion micro-rheometers (Clasen and

McKinley 2004; Clasen et al. 2006). Furthermore, overfilling is frequently used to

avoid evaporation in volatile samples for which an excess amount of fluid is loaded

in the rheometer or for which the sample edge is covered with a non-volatile second
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fluid. Overfilling also provides an effective means to avoid edge fracture (Quinzani

and Vallés 1986; Vrentas et al. 1991; Snijkers and Vlassopoulos 2011; Schweizer

and Schmidheiny 2013).

When considering the fluid mechanics problem of flow in a rotational rheometer,

inertia, gravity, surface tension and edge effects at the air-liquid interface are com-

monly neglected (Walters 1975; Macosko 1994). For the typical rotational speeds

used in rotational rheometers (< 500 s−1) the Reynolds number is low, justify-

ing the assumption of Stokes flow. It is then the balance between surface tension

and gravity that determines the shape of the free sample surface (Shipman et al.

1991). Shipman et al. (1991) show that the deviation from the theoretical cylin-

drical surface shape in parallel plate rheometers generally remains rather limited.

Although this small shape deviation has implications for the measured normal

stresses, torque measurements for medium to high viscous samples are normally

insensitive to the shape of the free sample surface, provided that the correct vol-

ume of liquid is present. However, a recent study by Johnston and Ewoldt (2013)

has shown that for low viscous samples the effect of surface tension via contact

line tension can be large, already for a slight rotational asymmetry of the sample

edge. In the presence of surface active components, also interfacial rheology of the

free sample surface can contribute to the measured torque signal, even with a per-

fectly cylindrical or spherical edge shape (Sharma et al. 2011). Obviously, when

large deviations from the theoretical surface shape occur, such as edge fracture,

the obtained rheological parameters will no longer be correct, even in the absence

of surface-active components (Walters 1975; Macosko 1994; Tanner and Keentok

1983).

The effects of overfilling on rheological measurements have been studied both ex-
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perimentally and theoretically for cases in which the rotating plate or cone is

inserted in a large container of fluid (Griffiths et al. 1969; Griffiths and Walters

1970; Paddon and Walters 1979; Quinzani and Vallés 1986; Vrentas et al. 1991;

Khaliullin and Schieber 2009). Quinzani and Vallés (1986) performed both exper-

iments and modeling on a modified cone-plate measuring device that was designed

to avoid edge fracture, as shown in Figure 1a. They determined the effect on the

measured torque and normal force due to the presence of the stationary closed

cup around the rotating cone. They found that the presence of sample in the gap

between the rotating cone and the top lid of the stationary container contributes

substantially to the measured torque, but does not affect the normal force. Vrentas

et al. (1991) studied the case in which a sample reservoir is used in a parallel plate

setup. Their setup is depicted in Figure 1b. They demonstrate that the ratio of

the diameter of the container to that of the upper plate has a large effect on the

measured torque, mainly when the container is not much larger than the plate.

Similarly, Pieper and Schmid (2016) show that a guard ring around the sample

affects both the velocity profile as well as the measured torque values. Other stud-

ies on overfilling consider a setup in which the fluid is filled in a large bath such

that it also covers the top part of the measuring plate or cone, this is sometimes

refereed to as the ”sea of fluid configuration” (Paddon and Walters 1979; Griffiths

et al. 1969; Griffiths and Walters 1970; Walters 1975).

To our knowledge no systematic studies have been carried out on the situation in

which a small amount of overfilling is present symmetrically around the measuring

plate or cone in a regular rheometer as depicted in Figure 1c. This is surprising as

this represents the most common case of overfilling encountered. Giles and Hooper

(1999) presented results showing that the effects of overfilling on the generated
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torque values in a rotational rheometer depend on the amount of overfilling, as

well as on the ratio of gap spacing to plate diameter. Davies (2015) demonstrates

that the viscosity measured with a cone-plate rheometer is less sensitive to over-

filling as compared to underfilling. Nevertheless, this source of experimental error

can not just be taken for granted or ignored. We therefore present in this work

a systematic study of the effects of overfilling for Newtonian fluids in rotational

rheometry. Experiments are performed using both parallel plate and cone and

plate geometries in a standard rotational rheometer with the bottom plate being

much larger than the top geometry. The amount of overfilling is varied in a con-

trolled way and correlated to the errors on the measured viscosity. Furthermore,

the experimental results are compared with those of numerical simulations. The

simulations provide insight in the origin of the measurement errors due to overfill-

ing and allow to systematically study the effects of several geometrical parameters

on the measurement errors due to overfilling. Finally, suggestions to minimize these

errors are formulated from the perspectives of instrument design and execution of

experiments.

2 Materials and methods

2.1 Materials

As Newtonian fluids, polydimethylsiloxanes (PDMS, Brookfield) with viscosities of

0.99, 12.4 and 101 Pa s at 25 oC were used. For the fluid with the highest viscosity,

a slight shear thinning sets in at shear rates above 10 s−1. In the present work,

only shear rates in the range where the Brookfield oils have a constant viscosity are

considered. The surface tension of polydimethylsiloxane at 25oC is approximately
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Fig. 1 Schematics of modified setups used for avoiding edge effects: a) modified cone-plate

fixture with closed side walls studied by Quinzani and Vallés (1986), b) parallel plate setup

with a sample reservoir studied by Vrentas et al. (1991), c) typical overfilling scenario studied

in the present work.

20 mN/m (Wu 1982). Combined with the relatively high viscosity values, this

ensures that the measured torque values will not be affected by surface tension

effects (Johnston and Ewoldt 2013).

2.2 Rheometry

Rheological experiments were carried out using a stress-controlled rheometer (Phys-

ica MCR 501 from Anton Paar) and a strain-controlled rheometer (ARES-LS from

Rheometrics). Measurements were performed using a large bottom plate combined

with a 25 or 50 mm diameter top plate or cone (cone angles of 2o (0.035 rad) and

5.7o (0.1 rad)). The parallel plate and cone-plate setups will be referred to in this
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work as the PP and CP setup. All geometries had smooth stainless steel surfaces as

supplied by the manufacturer. The temperature was kept constant at 25 oC using

a Peltier element integrated in the lower plate. An externally calibrated thermo-

couple (hypodermic needle, type T Copper-Constantan, Omega, Stamford CT)

was used to verify that the temperature in the sample was within ±0.1o of the set

temperature. Steady state flow experiments were carried out over a range of shear

rates from 0.1 to 10 s−1 with a measurement time of 120 s at each shear rate. A

minimum of two experiments with a new sample loading was performed for each

overfilling case. The reported values are averages with the data precision of each

point indicated by means of the standard deviation over the repeat measurements.

2.3 Definition of viscosity error and amount of overfilling

To quantify the effects of overfilling, the relative error in viscosity was determined.

This error is defined as:

∆η =
η − η0%
η0%

(1)

where η is the measured viscosity with sample overfilling and η0% is the sample

viscosity and thus the measured viscosity for an exact filling.

The amount of overfilling ∆OF is defined as the ratio of the overfilled (=extra)

volume to the volume required to exactly fill the geometry:

∆OF =
Vex

Vgeometry
(2)

with:

Vex = Vsample − Vgeometry (3)

wherein Vsample is the sample volume and Vgeometry is the volume required to ex-

actly fill the geometry. The volume required to exactly fill the geometry Vgeometry
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depends on the type of geometry, being equivalent to HπR2 for the PP geometry,

with H the gap height and R the plate radius. For the CP geometry Vgeometry

becomes:

Vgeometry,CP =
2

3
πR3tan(θ) +

1

3
π

H3
trun

tan2(θ)
(4)

with R the cone radius, θ the cone angle andHtrun the height of the truncated part

of the cone tip. In this expression, the first term accounts for the volume around

the cone whereas the second term accounts for the volume of the truncated part of

the cone. The latter quantity is usually negligible due to the small value of Htrun.

2.4 Loading procedures

Specific loading procedures were used to obtain the required amounts of overfilling

in a reproducible way. For all measurements, the sample under investigation was

initially loaded onto the bottom plate. The upper geometry was then slowly moved

down to the required gap. Samples with viscosity 12.4 Pa s were allowed to rest

for 300 s before any measurement. In the case of no overfilling it was ensured that

the sample was precisely pinned to the edge of the geometry and did not touch the

outer rim of the upper geometry during sample loading. For experiments using the

PP setup care was taken to avoid air bubble formation while bringing the upper

plate to the required gap, as even low volume fractions of bubbles will affect the

measurements (Joh et al. 2010; Tran-Duc et al. 2013). Air bubbles were avoided

by placing a small amount of the sample to be measured in the center of the

upper plate so as to induce a forced wetting from a single point. The presence

of air bubbles during normal sample loading and their absence after using the

forced wetting method was confirmed by visualisation of the sample loading in an
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MCR301 rheometer equipped with a transparent bottom plate (Reddy 2019).

For measurements with the PP setup with varying gap height, the upper plate

was initially brought to a gap of 1 mm. The excess sample was then removed

with a spatula. After this sample trimming the exact sample volume Vsample with

a cylindrical surface was left underneath the plate. Subsequently, the plate was

lowered to the smaller gap height H. A first set of experiments was performed at

different gap heights for a fixed Vsample, resulting in ∆OF values between 0.05 and

1. A second set of measurements with the PP setup was performed with a constant

gap height of 0.5 mm. In these experiments the sample loading and trimming was

performed at varying larger gaps, which were chosen as such that the loaded sample

volume at the final height led to a ∆OF between 0.05 and 1. In the CP setup,

the procedure was similar to that for the PP setup with constant gap height. In

this case the measurement gap was determined and fixed by the cone truncation.

For the CP geometry the correct sample edge shape in the absence of overfilling is

spherical. To achieve this the sample is trimmed at a slightly higher height before

the upper cone geometry is brought to the desired measuring height Htrun so that

the sample at the edge of the CP geometry has the required spherical shape. The

trimming height Htrim in the cone-plate geometry can be obtained by determining

the volume needed to provide a spherical sample edge, resulting in:

Htrim = R(θ − sinθ) +Htrun (5)

For larger degrees of overfilling the sample will eventually not remain pinned to

the lower edge of the geometry, but will also wet the outer rim and will pin to the

upper edge of the rim. The occurrence of such a wetting was monitored and in

that case a homogeneous wetting of the rim was assured. The occurrence of rim
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wetting was in particular taken into account for comparison with the numerical

simulations.

2.5 Numerical simulations

Numerical simulations of the flow in parallel plate and cone-plate rotational rheom-

etry setups were performed with the finite element package COMSOL Multi-

physics. The simulation domain is shown in Figure 2a. Due to the symmetry

around the central axis, simulations in a 2D axisymmetric domain are sufficient

to describe the full 3D flow. The boundary conditions consist of axial symmetry

on the left boundary, a stationary wall with no slip at the bottom, a top wall with

only a non-zero velocity component in the ϕ-direction (uϕ(r) = Ωr, with Ω the

rotation speed and r the radial distance from the center) and zero viscous stress on

the right boundary that is in contact with air. The values of the angular velocity

are chosen to provide shear rates that correspond to the experimental values. A

zero pressure constraint is applied at the contact point between the bottom plate

and the sample edge. The diameter of the top plate or cone and the gap height are

chosen equal to the experimental values. To study the effect of the shape of the

sample edge on the outcome of rheological measurements, different edge shapes

were imposed in the simulations, as illustrated in Figure 2b. Two types of edge

shapes are considered, each with and without including contact between the sam-

ple and the rim of the upper geometry. The first type is a straight boundary,

starting from the edge of the upper plate and extending a certain distance along

the lower plate, depending on the amount of overfilling. The second type of edge
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is a curved shape defined by a quadratic Bézier curve through the edge point of

the upper plate (point1), the sample contact point on the lower plate (point 3)

and an intermediate point (point 2) for which the r and z coordinates obey the

following relations:

r2 = r1 + c(r3 − r1) (6)

z2 = dz1 (7)

whereby c and d determine the edge shape. The radial distance r3 along the lower

plate that is covered with sample is varied to obtain different amounts of overfilling.

For Newtonian fluids and under stationary conditions, the following momentum

and mass balance equations are solved in the fluid domain, with the boundary

conditions as shown in Figure 2a:

ρ
[
(u · ∇)u

]
= ∇ ·

[
− pI+ η

(
∇u+ (∇u)T

) ]
+ F (8)

∇ · u = 0 (9)

in which η is the viscosity, p the pressure, u the velocity, I the identity tensor and

F the external body force per unit volume. The viscosity is chosen equal to that

of the polydimethylsiloxanes used in the experiments. The external body force

consists of a gravitational force in the negative z-direction. The flow is assumed

to be incompressible. The equations are discretized by means of a finite element

method in the package COMSOL Multiphysics. A built-in predefined mesh type

with triangular mesh elements calibrated for fluid dynamics is used, combined

with 2 layers of quadrilateral boundary elements along the solid boundaries. It

was verified that further refinement of the mesh did not significantly affect the

obtained results. Piecewise linear functions are used to represent the pressure and
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the velocity is described by means of piecewise quadratic functions. The direct

linear PARDISO solver is used and in each simulation run typically around 20000

degrees of freedom are solved for in the PP setup and around 60000 in the CP

setup. Since the Reynolds number remains well below 1, numerical stabilization

techniques were not necessary in the simulations.

From the simulated velocity fields, the torque M on the upper plate can be ob-

tained as:

M =

∫ R

0
2πη0%γ̇ϕz(r,H)r2dr +

∫ H+Hr

H
2πη0%γ̇ϕr(R, h)r2dh (10)

in which R is the radius of the upper plate, H is the gap height, Hr is the rim

thickness of the upper plate, γ̇ϕz(r,H) and γ̇ϕr(R, h) are the shear rates at the

lower boundary of the upper geometry and at the geometry rim respectively, with

the subscripts ϕz and ϕr indicating the components of the rate of deformation

tensor that correspond to the derivative of the ϕ direction velocity in either the z

or the r direction (direction perpendicular to the respective wall), and η0% is the

sample viscosity. The first term on the right-hand side of eq. 10 is the contribution

from the lower surface of the upper plate (M1 in Figure 2c) whereas the second

term is the contribution of the side rim of the upper plate (M2 in Figure 2c). The

measured viscosity is then obtained from the standard relation between shear stress

τ and torque M that is valid for a precisely filled rotational geometry (Macosko

1994):

M =
τπR3

a
(11)

where τ is the shear stress of the fluid at the rim and a = 2 for PP geometries

and a = 3/2 for CP geometries (Macosko 1994). It was verified that this protocol
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Fig. 2 a) Schematic representation of simulation boundary conditions, b) Four different con-

figurations of the sample edge at the plate rim (not to scale), c) Velocity distribution in the

sheared sample with the two torque contributions indicated, where M1 is due to the sample

underneath the upper plate and M2 is due to the sample in contact with the outer rim of the

upper plate.

leads to simulated viscosity values in the absence of overfilling that agree with

the inserted sample viscosities. Moreover, since the main component of the rate

of deformation tensor in the fluid inside the gap is the ϕz component, whereas in

the region against the edge of the upper geometry the ϕr component dominates,

the shear rates in Eqn. 10 can be represented by the magnitude of the rate of

deformation tensor.
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3 Experimental and numerical results

The error on viscosity measurements in rotational rheometry due to overfilling of

Newtonian liquids will be presented here. The experimental results for overfilling

in various plate-plate and cone-plate setups will be presented in Section 3.1. Sub-

sequently, the origins of the overfilling effects will be studied in more detail by

means of numerical simulations in Section 3.2. Based on the insights gained in

Section 3.2, all parameters playing a role in viscosity errors due to overfilling are

captured in a single scaling relation in Section 3.3.

3.1 Experimental observations of viscosity error due to overfilling

In this section, the errors on the measured viscosity in rotational rheometers are

studied for various amounts of overfilling. Figure 3 provides representative images

of the sample edge in a plate-plate setup with increasing amounts of overfilling.

The excess sample is not only present around the sample within the actual gap,

but also wets the side walls of the upper geometry. It was observed that, for the

PDMS samples, starting from an amount of overfilling ∆OF = 0.20, the complete

side rim of the upper geometry is wetted. This has been the case in all experi-

ments performed in this work, a pinning of the sample to only the lower edge of

the upper geometry was not possible for any degree of overfilling above 0.2. For all

samples, sufficient time was allowed for the sample edge to reach its equilibrium

shape, which is determined by the pinning of the sample as well as its contact an-

gle with the geometry and its surface tension. Due to the dominant contribution

of viscous forces as compared to surface tension effects in the azimuthal direction,

small asymmetries in the sample edge shape in this direction disappear due to the
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Fig. 3 Images of the edge of the overfilled sample for silicone oil with viscosity 12.4 Pa s in

a plate-plate setup with plate diameter D = 25 mm and gap height H = 0.5 mm, a) ∆OF =

0.05, b) ∆OF = 0.10, c) ∆OF = 0.20, d) ∆OF = 0.40, e) ∆OF = 0.70.

presence of the shear flow. It was verified that, once a symmetric surface shape

was attained, the shear flow did no longer affect the shape of the sample edge,

at least within the range of shear rates studied. This is expected to remain the

case as long as inertia and elastic stresses are absent, since the viscous shear stress

has no component in the direction of the edge curvature between top and bottom

plate (Shipman et al. 1991).

Experimental viscosity errors obtained in plate-plate setups with a plate diameter

of 25 mm are presented in Figure 4. In all cases, the viscosity error is positive, in-

dicating that the presence of extra, overfilled material around the geometry causes

an additional torque exhibited on the upper geometry. When the measurements are

performed at a constant final gap height, the viscosity error gradually increases
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and eventually plateaus. The data in Figure 4 clearly show that overfilling can

have a substantial effect on the measured viscosity values, with the plateau level

of the viscosity error reaching up to 30%. A comparison of the different datasets

in Figure 4 allows to conclude that the viscosity error substantially increases with

both the gap height H as well as the rim height Hr. This can be rationalized by

the fact that higher values of the gap height as well as the rim height result in a

larger ratio of surface area in contact with overfilled sample as compared to the

bottom surface area of the upper geometry. Since the later is the only surface on

which the sample exhibits a torque in absence of overfilling whereas the former

will generate extra torque contributions, increasing this ratio increases the viscos-

ity error. When experiments are performed by gradually reducing the gap height,

the viscosity error versus amount of overfilling in Figure 4 shows a small over-

shoot with increasing amount of overfilling. This can be attributed to the presence

of two competing effects. While the amount of overfilling is increasing, the gap

is simultaneously decreasing. For clarity, the gap height used in the variable gap

experiments is shown on the top axis in Figure 4. It can be seen that for a gap

height of 0.5 mm exactly the same viscosity error is obtained whether this gap

height is obtained via a direct reduction of the gap height from 1 to 0.5 mm or

via the variable gap experiments. This is caused by the fact that in both cases the

same shape of the overfilled sample was obtained.

Figure 5 shows the effect of plate diameter, whereby a larger plate diameter

(50 mm versus 25 mm) results in a significantly smaller effect of overfilling on the

viscosity measurements. Similar to the effects of gap height, this can be attributed

to the relative contributions of surface area in contact with overfilled sample versus
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Fig. 4 Experimental data for the viscosity error due to overfilling of silicone oil with viscosity

12.4 Pa s in plate-plate setups with plate diameter D = 25 mm and various gap and rim heights

H and Hr. The error bars indicate the standard deviation over the repeat measurements.

bottom surface of the upper geometry. Figure 5 also shows the effects of overfilling

for cone-plate setups with a diameter of 25 mm. To allow a direct comparison with

the results for the plate-plate setups, the gap under the cone at the edge of the

geometry is indicated as gap height in the figure. It can be seen that a cone-plate

geometry with a similar diameter and gap height exhibits a smaller viscosity error

as compared to the corresponding plate geometry. To estimate the significance of

the viscosity error due to overfilling, it can be compared with the typical preci-

sion and accuracy of a viscosity measurement, which is within ± 1.5 % for these

Newtonian oils and when using a well-calibrated rheometer. The precision of the

data is indicated by the error bars in Figures 4 and 5 that indicate the standard
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Fig. 5 Experimental data for the viscosity error due to overfilling of silicone oil with viscosity

12.4 Pa s in plate-plate setups with plate diameter D = 25 mm and D = 50 mm as well as

cone-plate setups with cone diameter D = 25 mm and various cone angles θ. The error bars

indicate the standard deviation over the repeat measurements.

deviation obtained from repeat measurements.

3.2 Origins of viscosity errors due to overfilling

Numerical simulations of the flow of Newtonian fluids in rotational rheometry have

been performed to study the local effects of sample overfilling on the flow field.

This in turn allows to shed light on the implications of the flow field alteration

on the measured rheological parameters. The actual sample shape of the overfilled

sample will depend on a balance between the surface forces and gravity (Bond
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number). However, our aim is to unravel the origin of the viscosity error due to

overfilling and to provide insights in the dependence of this viscosity error on the

relevant geometrical parameters. Therefore, we did not attempt to numerically

solve the free-surface problem. Hence, the actual transient shaping process during

which the sample shape evolves under the driving forces of gravity and surface

forces resisted by the viscoelastic stresses inside the sample, is beyond the scope

of the present work. Rather, we fixed various steady state shapes of the overfilled

volume and imposed a zero stress boundary condition on the sample edge to pro-

vide relevant insights. Figure 6 shows a comparison between the viscosity error

obtained from numerical simulations and the experimentally determined one in

a plate-plate setup with plate diameter D = 25 mm. The simulation data cor-

respond to the different overfill scenarios defined in Figure 2b. When the excess

amount of sample wetting the upper plate rim is not taken into account, the

predicted viscosity error in Figure 6 is much smaller than in reality (5 % versus

approximately 20 % error), thereby indicating that the extra fluid wetting the

upper geometry rim has a large contribution to the viscosity error. The upper four

simulated curves all include the fluid against the plate rim, but with a different

shape corresponding to different values of c and d in Eqns. 6 and 7. It can clearly

be seen that changing the shape of the sample edge results in moderate effects

on the viscosity error as compared to the difference between the situations with

and without rim. The simulation results in Figure 6a and the selection of edge

shapes at ∆OF = 0.50 in Figure 6b clearly demonstrate that the straight edge

scenario that carries more fluid close to the rim for the same ∆OF as compared to

the scenario with curved edge, leads to a slightly higher viscosity error in Figure

6a. This can be attributed to the fact that the extra fluid on the bottom plate
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Fig. 6 a) Comparison between experimental data and simulation results of viscosity error for

12.4 Pa s silicone oil in a PP setup with D = 25 mm, H = 0.5 mm and Hr = 1.1 mm. The

error bars indicate the standard deviation on the data obtained from repeat measurements

, b) Edge shapes and velocity distributions at ∆OF = 0.5.

that extends far from the actual sample, does not contribute significantly to the

measured torque. From Figure 6a it can be concluded that when the sample shape

is taken into account, the numerical and experimental results correspond very well.

Since Figure 6 shows that the applied approach provides a relatively good predic-

tion of the measured viscosity error, the numerical simulations are subsequently

used to obtain the flow field in the sample. First, it should be mentioned that for

all the cases investigated here, the only non-zero component of the velocity field

was that in the angular direction. Hence, no secondary flows were present. The

origin of the increase of the measured torque values with overfilling can then be
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explored from plots of the shear rate throughout the gap. As long as Stokes flow

is present in the gap, the flow profiles in the gap are similar, irrespective of the

applied shear rate. Hence, only results for a shear rate of 1.0 s−1 will be shown

here. Figure 7 shows the shear rate in the parallel plate setup for a gap of 1.0 mm.

The shear rates are multiplied with the square of the radius to allow assessing

the relevant torque contributions as the area underneath the curves, according to

Eqn. 10. Figure 7a provides the rescaled shear rates as a function of the radial

position r. For exact sample filling the shear rate increases linearly, i.e. from 0.0

s−1 at the center to 1.0 s−1 at the edge, as expected for a parallel plate setup.

When overfilling is present the shear rate in the fluid at radial distances close to

the plate radius increases rapidly to values larger than 1 s−1. This clearly shows

that the presence of excess fluid due to overfilling affects the flow profile inside

the gap. The increased shear rates at the measuring plate will increase the local

shear stress and hence have a significant effect on the measured viscosity values,

as can be seen in Figures 4 and 5. In the range of studied amounts of overfilling,

the distance over which the flow profile is affected does not depend on the amount

of overfilling but rather on the gap between the plates. This is illustrated in Figure

7a, where the shear rate starts to deviate from the applied value of 1.0 s−1 at radial

distances about 1 mm inwards from the plate edge, which roughly corresponds to

the gap between the plates (H = 1.0 mm). This observation confirms the generally

accepted statement that edge effects in a finite geometry extend over a distance

that corresponds to the gap height (Tanner and Keentok 1983; Vrentas et al.

1991). Edge effects on the measured viscosity values can thus be minimized by

using geometries with a large diameter to gap ratio. This is confirmed in Figures 4

and 5, from which it clearly follows that the viscosity error is smaller for the plate
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with a larger diameter or when the gap height is smaller. A more detailed analysis

of the effect of the diameter to gap ratio will be presented in Section 3.3.

Figure 7a also shows that besides increasing with the amount of overfilling,

the shear rate also increases more substantially when there is no rim wetting of

the fluid. Hence, the corresponding torque contribution from the fluid underneath

the upper plate is higher in absence of rim wetting. However, when the sample

wets the rim, this also provides an extra torque contribution. This is shown in

Figure 7b where the rescaled shear rates are provided as a function of the height

at a radial distance that equals the plate radius. For exact filling the shear rate

is equal to the applied shear rate of 1.0 s−1 accross the complete gap height. If

the simulations are run with overfilling the shear rate across the gap at a radial

distance that equals the plate radius is not constant. It is lower than the applied

value close to the bottom plate where the fluid extends further out of the gap and

higher at the top plate where there is less excess fluid around the gap. The increase

of the shear rate across the gap is slightly higher when the sample does not wet

the plate rim. When the sample wets the rim, the stress along the plate rim is

not zero and an extra torque contribution is generated by the presence of sheared

sample along the rim. As can be seen from Figure 7b this torque contribution is

significant and substantially increases in value and in the extent of the rim region

over which it acts when the amount of overfilling is increased.

As mentioned before, the sample edge shape only depends on the surface forces

and gravity and is independent of the viscous stresses in the material. Hence, the
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Fig. 7 Simulation results of the shear rate between the plates for an applied shear rate of 1.0

s−1, D = 25 mm, H = 1 mm and Hr = 1 mm, straight sample edge. a) Shear rate at the

bottom surface of the top plate, b) Shear rate at a radial distance equal to the plate radius.

Shear rates are rescaled to reflect the torque contributions (Eqn. 10). The shear rate is taken

as the magnitude of the rate of deformation tensor.

sample shape is expected to be independent of the sample viscosity. Moreover, in

case of Stokes flow, the flow field in the sample also remains the same, irrespective

of the sample viscosity. Hence, numerical simulations performed with different vis-

cosity values, but with a fixed edge shape, revealed no effect of the sample viscosity

on the viscosity error. Moreover, a selection of experiments performed with silicone

oils of 0.99 Pa s and 101 Pa s also revealed no effect of the sample viscosity on the

viscosity error. However, since the shape evolution towards steady state is much

slower when the viscosity is higher, a longer waiting time should be implemented

before the experimental measurement in case of high viscous liquids in order to

obtain the steady state viscosity error.
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3.3 Master curves for viscosity error

The viscosity error is caused by an extra torque Mex originating from the excess

sample. To provide a uniform description of the overfilling error that is independent

of the geometrical parameters, we derive a scaling relation. At first, we neglect the

effect of rim wetting for our considerations. Thereto, we approximate the extra

torque as proportional to an average additional stress τout acting tangentially on

the cylindrical area 2πRH of the sample at a distance R from the geometry center.

This stress is assumed to be caused by the drag of the extra sample surrounding

the cylindrical sample surface. It should be recognized that this stress and thus

the extra torque is not so much determined by the overfilled volume but rather by

the cross-sectional shape of the overfilled volume that surrounds the geometry. To

capture the effect of overfilling shape rather than volume, the amount of overfilling,

∆OF , is rescaled to an effective ∆OFeff that reflects the shape and can thus be

related to the relative extra torque Mex/M . For a certain overfilling volume, the

overfilled shape depends on the geometry dimensions namely the gap height at

the rim H and the plate radius R. Keeping the same overfill shape, and hence

the same ∆OFeff , corresponds then to maintaining a constant ratio of radial to

vertical dimension of the cross-section, which can be written as Aex/H
2, with Aex

being the cross-sectional area of the overfilled volume. Since the cross-sectional

area of the overfilled volume Aex ≃ Vex/(2πR), the ratio of the radial to vertical

dimension of the overfilled volume can be expressed in terms of the excess volume,

Aex/H
2 = Vex/(2πRH2). Inserting the expression from Section 2.3 for Vgeometry

for a PP or CP setup, results in:

∆OFeff =
R

bH

Vex

Vgeometry
=

R

bH
∆OF (12)
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in which b = 2 for a PP setup and b = 3 for a CP setup.

Further, the viscosity error can be calculated from the ratio of the extra torque

Mex due to the overfilling to the sample torque at correct sample filling M of Eqn.

11:

∆η ∼ Mex

M
=

2πR2H

a−1πR3

τout
τ

=
2aH

R

τout
τ

(13)

in which τ is the sample shear stress for correct sample filling and τout is the

additional average shear stress resulting from the drag of the overfilled sample

volume that should be a function of the overfilled shape and therefore a function

of ∆OF . Both stresses τ and τout scale linearly with the sample viscosity η0%

and the shear rate at radius R, γ̇ = ΩR/H. However, τout will also exhibit a

(non-linear) dependency on the shape of the overfilled volume. Simple geometrical

arguments show that for the same shape (expressed by a constant ratio Aex/H
2 as

shown for the derivation of Eq. 12) a single relative stress τout/τ will be observed,

independent of the absolute magnitude of Aex or H. This means that we can

describe the shape dependency of the relative stress τout/τ with a single function

fshape that depends solely on the effective overfilling of Eq. 12. Hence, the viscosity

error can be expressed as:

∆η =
2aH

R
fshape

(
R

bH
∆OF

)
(14)

Based on this derivation, plotting a rescaled viscosity error ∆ηR
2aH as a function of

the effective overfilling R
bH∆OF should collapse all curves of viscosity error onto

a single master curve. First, this scaling is performed for numerical simulation re-

sults in which PP and CP setups are used with various diameters, gap heights and



28 Ruth Cardinaels* et al.

cone angles. The numerical results , using the straight edge configuration of Figure

2b are shown in Figure 8a. Similar to the experimental data, the overfilling error is

shown to increase with increasing gap height at the edge and with decreasing plate

diameter. After rescaling with the scaling factors proposed in Eqn. 14, Figure 8b

demonstrates that the curves of the different overfilling scenario’s in PP and CP

setups without rim wetting collapse relatively well. The master curve in Figure 8b

follows an exponential rise profile given by:

fshape = 0.4(1− exp(−2.5
R

bH
∆OF )) (15)

This also allows to approximate a maximum viscosity error that can be expected

for a certain geometry. From the observed plateau of ∆ηR
2ah at higher overfilling

one can read off the maximum fshape that correlates the maximum viscosity error

∆ηmax and the geometry parameters 2aH/R so that:

∆ηmax = fshape,max
2aH

R
(16)

From Figure 8 and Eqn. 15 it is clear that fshape,max ≈ 0.4 so that ∆ηmax =

0.8aH/R for cases without rim wetting. This scaling relation clearly demonstrates

the previously mentioned increase of the viscosity error with gap height and de-

crease with geometry radius. Moreover, it also clearly shows that when the radius

is the same, the viscosity error in a plate-plate setup will in general be higher than

that in a cone-plate setup due to two effects. First, the prefactor a is higher for

a PP than for a CP setup, which reflects that for the same geometry radius R a

PP geometry creates less sample torque than a CP geometry at the same height

H, so that the additional torque from overfilling weighs stronger. Second, the gap

height H at the edge is in general also larger for a PP setup than for a CP setup.
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Fig. 8 a) Simulation results of the viscosity error versus amount of overfilling in various plate-

plate and cone-plate setups without rim wetting and with a straight sample edge, b) Rescaled

simulation results.

It can be concluded that the presented scaling approach captures the effects of the

(known) dimensions of the geometry and allows to compare the effects of effective

overfillings (and the shape of the extra volume) for geometries of different types,

radii, and gap heights. It should be noted that, as can be expected from Figure 6,

edge shapes with a higher curvature result in a slightly lower value of fshape,max.

However, superposition of the data for different geometries remains valid as long

as the edge shape, as presented in Eqns. 6 and 7, is kept constant (data not shown).

During the experiments, it was observed that, when loading a sample to an over-

filled condition, the sample was forced to break the pinning to the lower edge of

the upper geometry and to wet the geometry’s outer rim. This rim wetting upon

overfilling is generally taking place when applying the trimming procedure, during

which already the scraping of the edge leads to a partial wetting of the rim. During

the approach of the final measuring gap the sample is then fully wetting the rim

and pinning to the upper edge, as shown in Figure 3. In case of a wetting of the
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outer rim and pinning to the upper edge, Eqn. 14 needs to be adjusted accordingly.

The vertical dimension of the cross-sectional area Aex of the overfilled volume Vex

is in the case of rim wetting the sum of the sample height H and the height or

’thickness’ of the rim Hr . Hence, the definition of the effective overfilling that

enters the shape function fshape should be adapted. Since the conservation of the

overfilled shape requires now Aex/(H +Hr)
2 to be constant, Eqn. 14 will contain

a correction factor H/(H +Hr)
2, so that it takes on the form:

∆η =
2aH

R
fshape

(
RH

b(H +Hr)2
∆OF

)
(17)

Moreover, the tangential stress exerting a drag force on the sample due to the

overfilled sample now acts over a height H + Hr rather than H. However, also

the average additional stress τout scales now with a shear rate that depends on

H +Hr, so that the height in the prefactor of the right hand side of eq. 14 does

not change. Eqn. 17 thus presents a scaling relation that should take into account

rim wetting. This scaling was applied to results of numerical simulations for plate-

plate setups with various gap and rim heights, as shown in Figure 9. It can be

seen that this scaling indeed provides a rather good collapse of data obtained at

various total heights H + Hr. However, a pronounced effect of the ratio of gap

height to total height x = H/(H +Hr) remains. This can be rationalized by the

fact that the velocity field in the overfilled volume will depend on how much fluid

is in contact with the rim height Hr, and how much with the sample over the

the height H. Without rescaling of the viscosity error according to Eqn. 17, the

viscosity error shows a non-monotonous dependence on the ratio x = H/(H+Hr).

However, after rescaling with H, as shown in Figure 9, the viscosity error shows

a monotonous dependence on x. As a matter of fact, it turns out that weighing
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the shape function fshape with a correction factor x+ (1− x)k that incorporates

the ratio x = H/(H+Hr) and a weighing coefficient k allows to take into account

the relative contributions of both parts of the overfilled volume. Hence, Eqn. 17 is

corrected to read as:

∆η =
2aH

R
[x+ (1− x)k]fshape

(
RH

b(H +Hr)2
∆OF

)
(18)

Determining the unknown k as fit parameter from a set of simulation data with

H +Hr = 1 mm leads to k = 4.3. Subsequently, simulation data with a straight

edge shape and various gap heights can be overlapped rather well on a master

curve by plotting ∆ηR
2aH[x+(1−x)k] as a function of RH

b(H+Hr)2
∆OF in Figure 9b. It

should be noted that this scaling only holds for x ≥ 0.3 whereas for lower values

of x the linear scaling of the overfilling error with x breaks down. However, for

typical experimental geometrical parameters H and Hr as given in Figures 4 and

5 the requirement of x ≥ 0.3 is maintained and the mastercurve of Figure 9 holds.

Based on the scaling arguments presented here, a rescaling of the experimen-

tal data in Figures 4 and 5 can be performed. The result is shown in Figure 10.

From this figure it can be concluded that the proposed scaling approach allows

to capture the main trends of the effects of the geometrical parameters on the

overfilling error in rotational rheometry. However, since the model is based on a

representation of the overfill shape by its ratio of vertical to horizontal dimension,

which does not uniquely capture shape effects due to the possibility of different

curvatures of the edge shape as a function of the amount of overfilling, the de-

scription is not exact. To capture these secondary effects, it is expected that more

details of the sample shape should be taken into account, which could possibly be
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Fig. 9 Simulation results of the viscosity error versus amount of overfilling in a plate-plate

setup with D = 25 mm with rim wetting and with a straight sample edge a) Rescaled according

to Eqn. 17, b) Rescaled according to Eqn. 18.

done by applying an additional scaling with the Bond number (=ρgL2
c/α with ρ

the fluid density, g the gravitational constant, Lc the characteristic length scale

and α the fluid surface tension). When taking the sum of the gap height H and rim

height Hr as the relevant length scale in the Bond number, it varies between 1.1

and 4.1 for the different cases presented in Figure 10. Hence, differences in sample

edge shape are expected between the different samples due to different amounts of

sagging under the effect of gravity. This more detailed analysis of the edge shape

is however beyond the scope of the present work, in which we focus on the primary

effects of the geometrical parameters on the viscosity error due to overfilling. It

should be noted that from Figure 6 it becomes clear that differences in the sample

edge shape will only provide minor corrections to the proposed scaling model, at

least for Newtonian samples.
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Fig. 10 Experimental results of the viscosity error versus amount of overfilling in various

plate-plate and cone-plate setups after rescaling with Eqn. 18.

4 Conclusions

The error on the measured viscosity due to overfilling of Newtonian liquids in

rotational rheometry has systematically been investigated. The error in viscosity

increases steeply for small amounts of overfilling before reaching a plateau value

at high amounts of overfilling. Overfilling simulations revealed that there is a large

contribution of the overfilled sample that is pinned to the rim of the upper ge-

ometry. The plateau value of the measurement error is determined by the ratio

between the gap height and the plate or cone radius. Moreover, with the same gap

height at the edge, the viscosity error in a cone-plate setup is only 75 % of that

obtained with a parallel plate setup. By rescaling the amount of overfilling to a

fixed shape of the overfilled volume and deriving the extra torque due to overfilling
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from scaling arguments, a universal relation for the evolution of the viscosity error

with the amount of overfilling was derived. This relation captures the main effects

of the geometrical parameters on the viscosity error and allows to predict viscos-

ity errors a priori for a certain geometrical setup. Thereby, our work will allow to

correct for viscosity errors due to overfilling, allowing to introduce overfilling as a

solution for problems such as edge fracture or solvent evaporation without loss of

measurement accuracy.

5 Recommendations

In general, several recommendations can be made to avoid or minimize the errors

due to sample overfilling:

1. For parallel plate setups a measuring geometry with a large diameter should

be used at a small measuring gap. For cone-plate setups a small measuring gap at

the geometry edge is realized by using a small cone angle. At small gaps parallelism

will become important and therefore care must be taken to align the geometry

properly. Moreover, during sample loading in parallel plate geometries air bubbles

might be formed (Reddy 2019). To avoid formation of air bubbles, the center of

the upper plate should be wetted with a small amount of sample before sample

loading so as to induce a forced wetting from the center.

2. During sample loading wetting of the outer rim of the measuring plate should

be avoided. This alone will reduce the measurement error to a large extent. If this

cannot be avoided then measuring geometries with a thin edge should be used.
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3. In cone-plate setups, the sample should be scraped at a correct trimming height,

as defined in Eqn. 5, to result in a spherical sample edge shape. With low viscous

and low surface tension fluids, care should be taken not to remove too much sample

during scraping as this will cause underfilling. Alternatively, the required sample

volume can be calculated and directly added with an accurate volumetric pipette,

thereby avoiding the need for sample trimming.

4. When using a bottom plate with dimensions equal to that of the top plate, lower

amounts of overfilling can be reached, as the sample will flow out at high amounts

of overfilling. Therefore, the effects of overfilling can be reduced with such a setup.

It is expected that due to the different shape of the sample surface, the overall

scaling presented in Eqn. 18 will remain valid, but the exact value of the viscosity

error, determined by the fitting parameter k, will be different.

5. The analysis performed here is applicable for sample overfilling. However, it is

known that sample underfilling leads to a viscosity value that is lower than the true

value (Davies 2015; Hellström et al. 2015). In case of symmetric underfilling, the

correct viscosity value can be obtained by taking into account that the generated

torque only originates from the part of the geometry that is wetted by the sample.

By taking the wetted radius Rw as the radius of the sample edge and defining the

amount of underfilling ∆UF as in Eqn. 2, the viscosity error due to underfilling in

a plate-plate geometry as derived by Hellström et al. (2015) can be rewritten as:

∆η = (
Rw

R
)4 − 1 = ∆UF (1 + (

Rw

R
)2) (19)

This relation was experimentally verified by Hellström et al. (2015) for small

amounts of underfilling. From this analysis, it can be seen that, contrary to over-

filling effects, underfilling effects are not dependent on the ratio of the gap height
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to geometry radius. Hence, for certain geometries underfilling effects can be more

severe than overfilling effects. However, since the viscosity errors due to under-

filling are not expected to level off at a certain amount of underfilling, they will

always become larger than errors due to overfilling when deviations from the cor-

rect amount of filling are substantial.

6. In principle, any extra fluid in contact with the geometry or the sample will

result in an additional torque contribution. For instance, using a low-viscous fluid

around the sample to avoid evaporation will also cause overfilling effects, be it

much less severe than overfilling with the actual sample due to the lower viscosity

and thus lower extra torque contribution. Moreover, the use of an evaporation

blocker with a vapor lock connected to the geometry, will increase the measured

torque. However, when keeping in mind that the solvent in the solvent reservoir

in general has a much lower viscosity as compared to the sample and that both

the immersed surface area as well as the radial distance from the centerline are

much smaller for the vapor lock as compared to the measuring geometry, this

contribution can most often be neglected. If not, this torque contribution can be

measured a priori and can subsequently be subtracted from the measured torque

of the sample.

6 Outlook

In the present work, the effects of overfilling on viscosity measurements of Newto-

nian fluids are studied. In that case, the relative error in viscosity is independent
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of the sample viscosity and thus plays an equal role for low and high viscous mate-

rials. However, for fluids that exhibit shear thinning/thickening or viscoelasticity,

additional effects may come into play. Qualitatively, it is expected that the increase

of the shear rate at the geometry edge due to overfilling will reduce the viscosity

error due to the overfilling for shear thinning fluids. However, preliminary exper-

iments on viscoelastic fluids also revealed that viscoelasticity affects the sample

edge shape, which also contributes to the overfilling effects. Moreover, Shipman

et al. (1991) have shown that the surface shape contributes more strongly to

normal force measurements as compared to shear stress measurements in rota-

tional rheometry. Unravelling these additional effects is beyond the scope of the

present work, but it is clear that, in addition to the effects for Newtonian fluids, the

sample properties will further affect the measured viscosity error due to overfilling.

Traditionally, rheological measurements required the generation of rheometric flows

i.e. pure shear or extensional flows with a homogeneous shear or extension rate

throughout the sample. However, ongoing developments concerning localized char-

acterizations of deformation fields as well as combined experimental-numerical ap-

proaches expand the possibilities for performing material characterization in non-

model flow conditions. This will allow in-situ material characterization or charac-

terization of small quantities of materials that do not allow loading of standard

geometry setups. Our work is a simple example of how scaling and combination

of experiments with numerical simulations can allow to extract accurate measure-

ment data even in absence of a well-defined sample geometry.
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