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Abstract

Many computer systems are becoming increasingly tailored
to their users, customizing and optimizing their experience.
However, most conversational agents do not follow this trend
when it comes to humorous interactions. Instead, they em-
ploy pre-written answers regardless of whether the user liked
previous similar interactions. While there already exist sev-
eral computational humor systems that can successfully gen-
erate jokes, their joke generation models, parameters or even
both are often fixed. In this paper, we propose GOOFER, a
general framework for computational humor that learns joke
structures and parameterizations from rated example jokes.
This framework uses metrical schemas, a new notion we in-
troduce, which are a generalization of several types of other
schemas. This new type of schema makes regular schemas
compatible with machine learning techniques. We also pro-
pose a strategy for identifying useful humor metrics based on
humor theory, which can be used as features for the machine
learning algorithm. The GOOFER framework uses these novel
concepts to construct a pipeline with new components around
previous generators. Using a mapping to our previous work
on analogy jokes, we show that this framework cannot only
generate this type of jokes well, but also find the importance
of specific humor metrics for template values. This indicates
that it is on the right track towards joke generation systems
that can automatically learn new templates and schemas from
rated examples. This work thus forms a stepping stone to-
wards creating programs with a sense of humor that is adapt-
able to the user.

Introduction

Generating jokes is one of the research tasks in the field of
computational humor. In this field, there are three distinct
kinds of computational tasks, being the generation, detect-
ing and analysis of humorous artefacts (Binsted et al. 2006;
Ritchie 2002). The ideal computational humor system
would be able to perform all three mentioned task categories
on all types of humor. However, most computational humor
systems tend to focus on a single task, performed on a spe-
cific type of humor (Ritchie 2001). Joke generation systems
also tend to follow a fixed-rule set, and are thus unable to
nudge their jokes towards the preferences of a certain user.
Existing systems also exist in isolation from each other. Un-
til now, no attempt has been made to generalize over the
existing research in the field in order to create systems that

generalize previous research and as such are capable of do-
ing more types of tasks on more types of humor. This paper
focuses on the first and the last task categories: generating
and analysis of humor. This allows the generator to steer to-
wards certain jokes based on analysis of rated jokes (e.g. of a
certain user). In previous work, we explored how to perform
this task on analogy jokes using a system called GAG (Gen-
eralized Analogy Generator) (Winters, Nys, and De Schr-
eye 2018). In this work, we extend that system to a general
framework called GOOFER (Generator Of One-liners From
Examples with Ratings). This framework could be used for
many types of short jokes and is able to generalize and im-
prove several previous humor generators.

The effectiveness of a joke generation system depends on
the quality of the jokes it produces. However, this quality de-
pends on many factors, e.g. word choice (Stock and Strappa-
rava 2003), word order (narrative) (Raskin 1985), amount of
incongruity (Kao, Levy, and Goodman 2016; Ritchie 2002)
and cultural understanding (Petrovi¢ and Matthews 2013).
Some promising factors have not yet been studied in much
detail, such as the individual and temporal dependencies, by
which we mean that joke quality also depends on the ob-
server and the time when the joke was observed. It goes
without saying that to increase the effectiveness of a joke
generation system, the jokes should be tailored to an in-
dividual user’s preferences. Seeing the disagreement be-
tween users in the evaluations of jokes from previous re-
search (Goldberg et al. 2001; Petrovi¢ and Matthews 2013;
Stock and Strapparava 2003; Winters, Nys, and De Schreye
2018), it is necessary to account for individual user prefer-
ences when generating jokes. However, most systems that
are able to adapt jokes to user preference, are not respon-
sible for the generation of these jokes, but are mere humor
recommendation engines (Goldberg et al. 2001). We as-
sume the reason for this absence is that most of the existing
humor generators utilize some form of rule set or assump-
tions about their type of joke, or have a model trained to
mimic the textual input without considering the quality. This
implies that they cannot update the content of their jokes
without human intervention. Even worse, this also implies
that most are completely incapable of automatically learn-
ing new types of humor than the type of humor they were
designed for, nor can they update their rules based on rating
for previously generated jokes. This has some serious impli-



cations for both the individual and temporal dimensions of
the generator’s joke quality.

Having the capability of learning humor from joke exam-
ples along with their perceived quality can help joke gen-
erators nudge their generative space towards more interest-
ing generations. Using this mechanism, it can account for
the temporal and individual factors of humor appreciation,
by learning new types of jokes from popular platforms and
learn to adapt to users by feeding its own generated jokes
with ratings back into its training data.

Background
Humor Theory

The incongruity-resolution theory (IR) is probably the most
widely accepted theory, and is also most relevant to com-
putational humor research (Krikmann 2006). It states that
humor originates from noticing an incongruity in incom-
patible views, and resolving this incompatibility (Binsted
et al. 2006). This is in line with the argument that humor
stems from a sudden mental bisociation. (Koestler 1964). A
“bisociation” describes the two different viewpoints an act
of creativity tends to have, and manifests itself as a jump be-
tween two self-consistent but incompatible frames of refer-
ence (Ritchie 2001; Krikmann 2006). Most humor theorists
seem to agree on the idea of humor being the combination
of two such frames, since most jokes can be distilled to a
set-up and a punchline (Ritchie 2001).

Ritchie argued that several formal humor theories were
often far from being implementable enough for generative
purposes, and created his own formal theory, extending the
incongruity-resolution theory. He uses the notion of surprise
disambiguation, which states that two different interpreta-
tions for the set-up of a joke must exist, an obvious interpre-
tation (e.g. “the fish are in an aquarium” for the joke in Fig-
ure 1) and a hidden interpretation (“the fish are in a military
vehicle”) that only becomes apparent through the punchline,
which forces the hidden interpretation as the only remaining
possible interpretation (Ritchie 1999). Hearing the punch-
line will thus cause an inconsistency with the interpretation
assumed when hearing the setup. This inconsistency starts
a mental search process to the hidden interpretation, which
should be the only interpretation compatible with both the
set-up and the punchline. Finding this cognitive rule to ex-
plain the mismatch causes laughter to ensue (Ritchie 1999).

Ritchie proposed several properties to identify the rela-
tionships specified in his theory, which creates more con-
crete measurements for joke generation and detection than
previous theories (Ritchie 1999; 2002), which we visualized
in Figure 1.

e OBVIOUSNESS: The first interpretation should be very
obvious (e.g. fish are usually in aquariums), otherwise
observers hearing the hidden interpretation will not expe-
rience an incongruity at the end of the joke, due to the joke
being fully compatible with this interpretation. This prop-
erty thus quantifies how obvious the initial interpretation
of the set-up is.

e CONFLICT: There should be a conflict between the
punchline and the obvious interpretation, otherwise the

search process to the cognitive rule explaining the mis-
match will not start (e.g. you can not drive an aquarium).

e COMPATIBILITY: The meaning of the punchline should
be compatible with the second, hidden interpretation, oth-
erwise the search for a cognitive rule will not stop, en-
suing in puzzlement (e.g. “drive tank” is compatible with
“in a military vehicle” interpretation).

o COMPARISON: There should be a contrasting relationship
between the two possible interpretations of the setup, as
there would be no bisociation otherwise (e.g. if the hidden
interpretation was “in the sea”, it would be less funny).

e INAPPROPRIATENESS: The second interpretation should
be inherently odd, inappropriate or taboo, as this will
make the interpretation less obvious, and more humorous
to the observer (e.g. fish usually do not drive vehicles).

Setup Two fish are in a tank. Obvious
Says one to the other: Interpr.
« k T G ~ COMPARISON
Punchline ‘D0 YOUu know how to Hidden
drive this thing?” Interpr.

Figure 1: Visualisation of the IR theory

Templates & Schemas

There are several approaches to text generation, such as tem-
plates, grammars, Markov chains and recurrent neural net-
works. Templates are probably one of the most simplis-
tic and naive methods, but they are a powerful tool mostly
employed in macros, user interfaces and chat bots (Pilato
et al. 2008). They are also extensively used in compu-
tational humor projects (Binsted and Ritchie 1994; Manu-
rung et al. 2008; Venour 1999; Lessard and Levison 1992;
Raskin and Attardo 1994; Winters and Mathewson 2019).

A template, in the meaning we intend, can be defined as a
text with slots or variables. These variables are filled in later
by another data source. It also allows data sources to work
with different templates. In this work, we call the values to
be filled into a particular template “template values”.

Schemas are often used as the data source for tem-
plates in computational humor (Binsted and Ritchie 1994;
Manurung et al. 2008; Venour 1999). They are for ex-
ample used in the first computational joke production en-
gine, JAPE, as well as its successor STANDUP (Manurung
et al. 2008). These systems generate punning riddles in a
question-answer format. In these works, schemas are de-
fined as the structure defining the relationships between key
words in a joke (Binsted and Ritchie 1994).

In STANDUP, schemas consist of five parts (Manurung et
al. 2008):

e Header: the variables and the name of the template, e.g.
newelon2 (NP, A, B, HomB).

e Lexical preconditions: the syntactic,  pho-
netic, structural or semantic constraints on the



variables, e.g. nouncompound (NP, A, B),
homophone (B, HomB) , noun (HomB).

e Question specification: the templates to match the as-
signed variables to, along with some lexical constraints
for their template values, e.g. “What do you call a
[SynHomB] with a [MerA]?” with constraints like
shareproperties (NP, HomB).

e Answer specification: Similar to the question specifi-
cation, e.g. “A [A] [HomB].” with constraints like
phrase (A, HomB)

e Keywords: used to define equivalence between jokes,
e.g. [NP, HomB].

Such a schema can then generate jokes like Joke 1.

JOKE 1:
What do you call a shout with a window?
A computer scream. (Manurung et al. 2008)

Unsupervised Analogy Generator

Petrovic & Matthews have created a model for generating
analogy jokes using the “I like my X like I like my Y, Z”
template, which we will call the unsupervised analogy gen-
erator (Petrovi¢ and Matthews 2013). They argue their pro-
gram is the first fully unsupervised humor generation sys-
tem, as they did not rely on a hard-coded schema approach,
but on relations used in a minimization model (although one
could also argue that due to specifying this model, it is only
partially unsupervised). Their model encodes five relations
about the X, Y and Z in these analogy jokes. It fixes the
template values such that every template value is a single
word, more specifically that X and Y are both nouns and
that Z is an adjective. The system requires X to be defined
by the user, and uses n-grams to choose Y and Z in such a
way that Z is an adjective usable for both X and Y. The
relational assumptions used in the model are that the joke is
better the more frequent the attribute is used to describe both
nouns, the less common the attribute is, the more ambiguous
the attribute is and the more dissimilar the two nouns are
(Petrovi¢ and Matthews 2013). These assumptions are all
shown to be implementable as a metric resulting in a num-
ber. In order to rank how funny a joke is, the program min-
imizes the product of these five metrics. This research thus
does not use machine learning techniques on training data to
generate jokes.

Evaluators considered jokes created by the unsupervised
analogy joke generator funny 16% of the time. Human-
produced jokes using the same template were considered to
be funny in 33% of the time. (Petrovi¢ and Matthews 2013).
A joke generated by this system can be seen in Joke 2.

JOKE 2:

I like my relationships like I like my source, open
(Petrovi¢ and Matthews 2013)

Joke Template Extraction

T-PEG (Template-Based Pun Extractor and Generator) is a
system created for the extraction of templates, aimed at pun

templates (Hong and Ong 2009). It generates punning rid-
dles similar to jokes created by JAPE and STANDUP. In order
to find a template, the system receives a single punning rid-
dle, for which it replaces some words with variables. The
template extraction algorithm is capable of detecting several
types of variables, even hidden schema variables. However,
they noted that the system heavily relied on linguistic re-
lationships between these template values. In the author’s
evaluation, 69.2% of the found templates were actually us-
able for joke generation (Hong and Ong 2009).

Other researchers tested T-PEG by clustering several sim-
ilar STANDUP-generated jokes based on structural similarity
(Agustini and Manurung 2012). Their system extracts tem-
plates using T-PEG, and employs agglomerative clustering
on these templates using a single majority rule using a se-
mantic similarity evaluation function. They tested this sys-
tem by automatically verifying whether the templates and
schemas used in STANDUP generated jokes were correctly
found, and found that it had an overall precision of 61%
(Agustini and Manurung 2012).

GOOFER

GOOFER (“Generator of One-Liners From Examples with
Ratings”) is a novel theoretical computational humor frame-
work for generating short jokes based on rated example
jokes. In this section, we generalize the notion of schemas,
create a theoretically founded set of metrics for humor pur-
poses, and describe the flow and components of this novel
framework.

Schema Generalization

Constraint-based Schemas As mentioned earlier, tem-
plates and schemas are an often used approach in compu-
tational humor. Schemas usually use lexical relations on
the single word template values, such as synonymy and
homonymy. We call this type constraint-based schemas.
Generating template values given a seed is straightforward
in constraint-based schemas: once a template variable is
filled in, the possibilities for the other words are limited to
those that are in the strictly defined relations with the al-
ready filled in template values. The limited search space
of constraint-based approaches has two effects: it has the
benefit of being efficient when generating, but their genera-
tive space might appear small compared to generators using
other approaches. As illustrated earlier, this type of schemas
can be written in a ProLog-like notation, which reveals that
these schemas can both generate as well as check jokes. This
notation only works for constraint-based schemas, and a dif-
ferent notation for schemas is required in order to incorpo-
rate metrics instead of strict relations.

Schemas Generalization Recognizing components of
joke generation systems as templates and/or schemas, even
if they do not use these explicitly, is a useful exercise to
come up with new ways of modeling similar systems. As
such, Venour (1999) showed how a Tom Swifty joke gen-
erator (Lessard and Levison 1992) was implicitly using
templates and schemas. We show how to extend his ap-
proach even further, and map other systems that do not use



constraint-based approaches onto a more general type of
schema that would allow the use of machine learning algo-
rithms. In order to achieve this, we introduce the notion of a
metrical schema.

Metrical Schema We define a metrical schema as having
the following components, inspired by the definition of a
schema of the STANDUP generator (Manurung et al. 2008):

e Header: the name of the schema, as well as the variables
used in this schema.

e Generator: a generator to propose candidate template
values for jokes.

o Features: the features used and which variables they are
used on. They map template values to numbers.

o Aggregator: the way to aggregate the features and to
choose the output jokes, e.g. all feature values must be
above a certain value or the sum of certain feature values
is higher than the sum of other features.

o Template: the template with slots for the variables.

o Keywords: the most relevant variables, used for calculat-
ing equivalence between schema outcomes, and to avoid
producing similar jokes which might bore the user due to
lack of surprise.

Proof of Generalization In order to show that a metrical
schema is a generalization of the constraint-based schema,
we have to show that a theoretical mapping from the lat-
ter to the former exists. First, the header and the keywords
are transferable. Second, multiple templates (such as in
STANDUP) can be mapped to a single template through con-
catenation. Third, the constraints can be mapped to func-
tions that output O if the given constraint is violated and 1
if it is satisfied. These functions form the features of the
new metrical schema. Fourth, since the schema only al-
lows the assignment of variables that make all the functions
map to 1, the aggregator function is defined as a function
that only returns rrue if all features return 1. The only at-
tribute left to define now is the generator, as this came for
free using the ProLog-like constraints. Since this is a the-
oretical mapping, we ignore efficiency. We can then define
the generator as generating all possible combinations of as-
signments to the variables using all words of the constraint-
based generator’s lexicon. This concludes the mapping from
a constraint-based schema to a metrical schema, showing
that it is a strictly more general notation.

Example of Mapping With this new notion of a metri-
cal schema, we can map the previously discussed analogy
generator (Petrovi¢ and Matthews 2013) to the template and
schema approach. As discussed earlier, this system uses
metrics to calculate five metric values from a joke using the
“I like my X like I like my Y, Z” template. It applies mini-
mization of the product of several values (e.g. dissimilarity
and ambiguity of certain template values) over the space of
possible jokes. This could thus not have been represented
using constraint-based schema, as there is no notion of min-
imization nor feature values in this type of schemas. Their

system only generates “I like my X like I like my Y, Z”
jokes, and has one model to generate this, implying it only
uses one template with only one schema. It is relatively
straightforward to map their model to a metrical schema, as
can be seen on Figure 2. This mapping shows that the new
metrical schema notion is also generalizing joke generators
that did not explicitly use (constraint-based) schemas.

Header: pm_analogy.model (X,Y, Z)

Maetrics: relatedness (X, Z),
relatedness (Y, 2),

dissimilarity (X,Z2), ambiguity(Z),
uncommonness (Z)

Aggregator: Product of features is below threshold ¢.
Generator:

1. Take X from input.

2. Generate Z from X as a possible adjective used with

X with Google Ngrams.
3. Generate Y from Z as a possible noun used after Z
with Google Ngrams.
Template: I like my <X> like I like my
<Y>, <Z>.

Keywords: [X, Y, Z]

Figure 2: Our mapping of the unsupervised analogy genera-
tor (Petrovi¢ and Matthews 2013) to a metrical schema.

Classification and Regression Schemas This new gener-
alization allows for the use of machine learning by choosing
a machine learning algorithm for the aggregator component.
A classification algorithm can learn which feature values are
correlated with what discrete rating (e.g. from the mode
score of a collection of ratings, or the score of one specific
person). In a similar fashion, a regression algorithm can esti-
mate a non-discrete rating (e.g. from the average rating). By
training to distinguish good jokes from bad jokes, and only
allow jokes with an estimated score above a certain thresh-
old, these algorithms act as the aggregator of the metrical
schema. They also need to be accompanied by a more naive
generator as the template values generator of the metrical
scheme. The classification algorithms thus judge whether
any of the candidates generated by the template values gen-
erator have a score exceeding a certain threshold in order to
be considered “good”. We call this type of metrical schema
a classification schema or a regression schema depending on
the used algorithm.

Metric Set Identification

Now that we have defined schemas such that they are ca-
pable of using classification and regression algorithms, we
need to define the metrics usable for calculating features
from template values. These metrics should be metrics that
make sense for a joke judging algorithm. As discussed ear-
lier, Ritchie’s incongruity-resolution theory identifies five
properties necessary for verbal humor (Ritchie 1999). We
can use these properties to identify and validate a set of po-
tential metrics to identify humor, similar to what we did in
GAG (Winters, Nys, and De Schreye 2018).



For OBVIOUSNESS, metrics need to measure how obvi-
ous an interpretation is. This can be approximated using as-
sociation or semantic distances in a lexicon: words that are
not far from each other semantically, are probably linked to
the same and common (since a lexicon contains it) interpre-
tation. Another good measuring function is word frequency
using 1-grams. If the word frequency is high, chances are
that this word is a common word, where people associate
this word with one specific, obvious meaning more easily.

For CONFLICT, we need the first interpretation to conflict
with the punchline. This can also be approximated using
association or semantic distance, as larger distances corre-
late with higher conflict. Previous research used n-grams
for this (Petrovi¢ and Matthews 2013), because when par-
ticular words of the punchline are used more with specific
other words of the setup, the meaning of this combination
of words suddenly becomes more important than all other
used words linked to the first interpretation, increasing the
conflict with these words.

For COMPATIBILITY, the metrics should measure how
compatible the hidden interpretation is with the set-up,
which causes the search process to stop searching for an-
other cognitive rule. Again, n-grams can approximate this,
as more frequent particular words indicate higher compat-
ibility. The number of meanings a word has is another
interesting metric related to its ambiguity (Petrovi¢ and
Matthews 2013). The surprise disambiguation confirms this,
as the set-up is supposed to be ambiguous, with one ob-
vious meaning. Previous research also used metrics deter-
mining how similar words sound (Manurung et al. 2008;
Binsted and Ritchie 1994; Valitutti et al. 2013; Venour
1999), as homonyms can link the first and the second in-
terpretation, but ensure that only the second interpretation is
appropriate in a context.

For COMPARISON, the metrics should measure how
much contrast the two possible interpretations have. Pre-
vious research did this by analyzing the domains of the
words (Raskin 1985) using WordNet Domains (Magnini
and Cavaglia 2000; Stock and Strapparava 2003), although
WordNet itself could also be used to find dissimilarity using
semantic distance. Adjective vector differences have also
been successfully used in computational humor research
for approximating this property (Kiddon and Brun 2011;
Petrovi¢ and Matthews 2013). Calculating this value is done
by looking up the frequency of the adjectives used for a
noun, and calculating a value based on its difference that
describes how different the contexts are that certain words
occur in.

For INAPPROPRIATENESS, the metrics should approxi-
mate how odd, inappropriate, taboo and/or absurd the sec-
ond interpretation is. Adjective sexiness and noun sexiness
are used in DEViaNT innuendo detection system to calcu-
late how likely it is that a word is an innuendo-related word
(Kiddon and Brun 2011). It compares the frequency of the
word in a sexual corpus with a non-sexual corpus for adjec-
tives, and adjective vector differences with body parts for
nouns. Inappropriateness can also be approximated using
the unigram frequency in a balanced corpus, as it is related
to its unpredictability, and is thus capable of identifying odd

words (Petrovi¢ and Matthews 2013).

The identified metrics form a foundation for the knowl-
edge base of our generic framework and are used by the
machine learning algorithms to extract features from given
jokes. This metric set is not exhaustive, and some metrics
complement each other. However, it shows how to cover as
much as possible with a small number of metrics from a hu-
mor theory point of view, by only selecting a metric from
each category and making sure all five dimensions are cov-
ered. In GOOFER, this metrics knowledge base is extensible,
allowing it to improve the performance for particular type of
joke and for testing new humor theories.

Framework Flow

The GOOFER framework uses the previously introduced
classification and regression schemas and metric set to learn
generating jokes based on a corpus of human-rated jokes. It
first extracts the templates from the given jokes and trans-
forms the dataset to the template values with their ratings
for each template. This transformed dataset is used to learn
classification schemas for each discovered template. A gen-
erator then proposes a large number of template values. The
classification schema picks the template values that it con-
siders best, based on its learned humor knowledge. These
template values are then inserted into their template to cre-
ate a set of output jokes.

Components

Human evaluation The example jokes have to be rated
for the classifier to distinguish good jokes from bad jokes.
This is the only place where humans are involved in the al-
gorithm, apart from the user of the system delivering seed
words and possibly input jokes.

Template extractor Jokes often have a template, and as
such, can be clustered to discover these templates (Hong and
Ong 2009; Agustini and Manurung 2012). The template ex-
tractor component detects templates for the template store,
and extracts the template values for the metric-based rater. It
might also detect additional information about the template,
such as the part of speech of certain template values.

Template store The templates found by the template ex-
tractor are stored in the template store, along with their own
trained template values classifier, for its metrical schema.

Metric-based rater Template values need feature values
in order to be able to be processed by machine learning algo-
rithms. The metric-based rater achieves this task using the
identified metrics set, and using every metric on all (com-
binations of) template values that fit its prerequisites, thus
mapping template values to a set of numbers.

Values generator The metrical schema requires that a
generator proposes candidate template values for jokes. This
component can thus be any other template-using joke gen-
eration system. It both receives a seed and some additional
instructions from the related template (e.g. part of speech)
about how to generate these values. This second type of
information decreases the size of the generative space, but
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Figure 3: GOOFER framework for joke generation from examples, generalized from GAG (Winters, Nys, and De Schreye 2018).

should increase the score the classifier assigns to the gener-
ated values on average.

The generator could use any kind of text generation tech-
nique. Since we made the assumption of only having single
word template values, an interesting way is using n-grams to
generate related words, similar to the unsupervised analogy
generator (Petrovi¢ and Matthews 2013).

As mentioned earlier, the values generator could also be
another computational humor system that employs a tem-
plate and schema approach, or can be shown to use an equiv-
alent system, as we did earlier. Using such a generator in the
GOOFER framework would extend an existing system by al-
lowing it to learn from previous generations.

Classifier After the template values are converted to fea-
ture values, they receive scores from the algorithm of the
classification or regression schema, which differs from tem-
plate to template. A wide range of classification and regres-
sion algorithms are applicable here. In our experiments, we
found RandomForests to work well for both classification
as well as regression purposes (Winters, Nys, and De Schr-
eye 2018). Additionally, when a decision tree approach is
used and the knowledge base is composed of understand-
able humor theory metrics, the resulting decision trees might
be understandable for humans. This is due to decision trees
stating which attributes cause the largest impurity decreases,
which can help humans learn what metrics contribute most
to the funniness of specific type of joke.

Regression algorithms are useful because they are capa-
ble of dealing with real numbers. This means that they can
use the average score a joke gets as the score. This is in con-
trast with classification algorithm that only support a certain
number of classes, for which we use the mode or the rating
of a single user. This can also be a disadvantage, as the per-
ceived funniness can be entirely different between people,
meaning that the average rating might often be close to the
middle of the rating range.

One important factor to account for when choosing a clas-
sifier or regression algorithm, is the ability to deal with noisy
metrics used in GOOFER. The framework deploys a large
number of metrics on all possible combinations of the tem-

plate values, meaning many features might be noisy. The
chosen algorithm should thus be resistant to this noise. Since
Random Forests ignore parts of the features and of the data
set, this might be one of the reasons why it performs so well
in our previous experiments (Winters, Nys, and De Schreye
2018).

Code

Several components of this framework have been imple-
mented for the evaluation. The code is available on https:
//github.com/TWinters/goofer.

Evaluation
Generalized Analogy Generator

In order to show that systems implementing the theoretical
specification of the GOOFER framework work and to eval-
uate its results, it requires an implementation. We already
implemented a subset of its components in our GAG (Gen-
eralized Analogy Generator) system (Winters, Nys, and
De Schreye 2018), covering most GOOFER framework steps
and components, apart from the template extraction step due
to only having a single template (being “I like my X like I
like my'Y, Z”). The reason for this is that it simplified data
collection, and because previous research on template ex-
traction for jokes had already been successfully done (Hong
and Ong 2009; Agustini and Manurung 2012).

The second simplification is the template values gener-
ator, which uses n-grams in a similar fashion as the unsu-
pervised analogy generator (Petrovi¢ and Matthews 2013).
Since the analogy joke template tends to use nouns for X
and Y and adjectives as Z, we built our template values gen-
erator accordingly'. As noted earlier, the POS information
of template values can be found by the template extraction
algorithms, implying this simplification adds no extra infor-
mation. The third simplification is that the human evaluation
component is also responsible for generating the input jokes

IThis is the most obvious kind of content for this template. In
reality however, we noted that a significant amount of people di-
verge from these word types when creating this type of joke them-
selves, for example by naming a relation to another noun as 7.



used in the training data, as we build a platform to collect
both. This ensured that the format of the joke is following
the supported analogy joke template. This does not violate
any of the assumptions of the GOOFER framework, since the
input jokes were defined as coming from any source. The
GAG system only used a select number of the metrics we
proposed, but covered all of the five necessary properties.
The GAG system thus generalized the unsupervised analogy
generator using this framework.

To evaluate the GAG system, 203 different volunteers
helped us collect a data set® of 524 jokes (of which 100 gen-
erated) and 9452 ratings to these jokes in total, about half
of which were for evaluation. In this evaluation of GAG,
we found that the best generation model was the classifier
schema, with 11.41% jokes having four or more stars on
five, whereas humans with similar constraints achieved this
rating 21.08% of the time (Winters, Nys, and De Schreye
2018). This is a similar ratio of funniness between gener-
ated and human created jokes as the unsupervised analogy
generator (Petrovi¢ and Matthews 2013), thus successfully
generalising a previous system using GOOFER.

Metrics Importance Analysis

As mentioned earlier, GOOFER can find the importance of
each metric for each position when using for example deci-
sion tree algorithms. The importance of each attribute for
the training data using the random forest algorithm in the
GAG system is given in Table 1. The importance value is
based on how well a metric helps decreasing the entropy of
the values in the random trees, ranging from O (no decrease)
to 1.

Importance | Applied metric
0.67 | relative_sexual _freq.?2
0.67 | relative_frequency_2_1
0.62 | adj_vector_similarity_0_1
0.59 | relative_sexual_freq.0
0.56 | sexual freq.0
0.53 | word_senses_2
0.52 | relative_frequency 2.0
0.52 | sexual freqg.?2
0.50 | word_senses_0
0.50 | relative_sexual freq.l
0.50 | frequency_0
0.45 | frequency_2
043 | sexual freqg.l
0.36 | frequency_1
0.26 | word_senses_1

Table 1: The attribute importance of every metric to a certain
template value position according to the regression version
of the Random Forest algorithm on the average score of the
training data.

The found attribute importance seems to be conforming
to the model used in the unsupervised analogy generator

https://github.com/twinters/jokejudger—
data

(Petrovi¢ and Matthews 2013), as their metrics roughly map
to the 2nd, 3rd, 6th, 7th and 12th most important metrics.
The fact that frequency_2 is such a low scoring feature
might be because of its similarity to the the top scoring fea-
ture, indicating a possible oversight for the INAPPROPRI-
ATENESS property in that research. The found importance
ranking is a good sign for GAG and GOOFER, since it seems
to somewhat be able to learn these earlier found assump-
tions about this type of joke. The GAG system effectively
generalizes the system created by Petrovic, as it eliminates
the need to explicitly model the minimization function and
it is capable of detecting even more possible schemas. This
shows that our GOOFER framework can effectively make a
more generic version of existing research.

Future Work
Generalizing Templates and Template Extraction

In this paper, we chose to work with templates that are a
list of fixed strings. One issue with this is that they repre-
sent fixed sentences that do not allow small (grammatical)
variations. One possible way of solving this is by defining
templates using grammars with variables instead of strings
and template slots alternating each other. The template ex-
traction methods would then need to be updated, e.g. re-
quire new distance measures for grammar trees in order to
find these grammar tree templates. Ideally, it would have
grammar trees that could represent minimal generalizations
of template values in different levels, e.g. same word, same
stem, same POS, any word etc. This would increase train-
ing data per template, as the template extractor would merge
training data of the similar templates.

Sentence Generation

The GOOFER framework assumes for simplicity that tem-
plate values are single words. Both the discussed metrics
and the generated template values have been focused for sin-
gle word template values. In order to successfully generate
jokes using multiple words as template values, the template
value generator has to be updated to be capable of proposing
such larger parts of sentences.

Probabilistic Logic Schemas

We already showed how using certain machine learning al-
gorithms such as decision tree learners can give indication
of the importance of certain attributes, giving some insight
into what constitutes a good joke. We also discussed how
previous work used ProLog-like notations for representing
schemas. Using probabilistic logic (like ProbLog (De Raedt,
Kimmig, and Toivonen 2007)) might lead to probabilis-
tic schemas, which would combine the benefits of both
the metrical schema introduced in this paper, and upgrade
constraint-based schemas to the probabilistic paradigm. The
rules induced by such a framework would be more human
comprehensible than the algorithms we used in this paper,
and could be a useful tool to create human-curated versions,
leading to co-creation of joke generator specifications be-
tween humans and machines.



Conclusion

In this research, we created a computer program that is ca-
pable of learning to generate humor based on human-rated
examples. We achieved this by extending and generalizing
computational humor concepts such as schemas. We also
used humor theory and other computational humor research
in order to argue, identify and evaluate a knowledge base of
humorous metrics. These findings are used in the GOOFER
framework, which is capable of learning humor from rated
examples. It achieves this by finding correlations between
metrics applied onto template values used in templates that
make a joke humorous, and indicate the most important met-
rics for a particular set of jokes. This framework shows how
machine learning algorithms can alleviate humans from the
elaborate task of crafting schemas for humor generation by
hand. We thus hope that this framework can be a stepping
stone towards creating a more adaptive computational sense
of humor.
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