
Vrije Universiteit Brussel

Faculteit Wetenschappen en

Bio-ingenieurswetenschappen

Departement Computerwetenschappen

Generalisation and Specialisation Operators for

Computational Construction Grammar and their

Application in Evolutionary Linguistics Research

Proefschrift voorgelegd tot het behalen van de graad van doctor in de

wetenschappen aan de Vrije Universiteit Brussel te verdedigen door

Paul VAN EECKE

Promotoren: Brussel, 4 oktober 2018

Prof. dr. em. Luc Steels

Prof. dr. Katrien Beuls

Paul_Van_Eecke_def.indd 1 27/09/18 08:37

ii

© Paul Van Eecke
2018 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic & Scientific Publishers nv)
Keizerslaan 34
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@aspeditions.be
www.aspeditions.be

ISBN 978 90 5718 825 1
NUR 980
Legal deposit D/2018/11.161/111

All rights reserved. No parts of this book may be reproduced or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the author.

Paul_Van_Eecke_def.indd 2 27/09/18 08:37

Jury Members

Chairman Prof. dr. Coen De Roover

Vrije Universiteit Brussel, Belgium

Secretary Prof. dr. Geraint Wiggins

Vrije Universiteit Brussel, Belgium

External members Prof. dr. Luc De Raedt

KU Leuven, Belgium

Prof. dr. Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf, Germany

Prof. dr. Freek Van de Velde

KU Leuven, Belgium

Promotors Prof. dr. em. Luc Steels

Vrije Universiteit Brussel, Belgium

Prof. dr. Katrien Beuls

Vrije Universiteit Brussel, Belgium

Internal member Prof. dr. Bart Jansen

Vrije Universiteit Brussel, Belgium

iii

Paul_Van_Eecke_def.indd 3 27/09/18 08:37

iv

Paul_Van_Eecke_def.indd 4 27/09/18 08:37

Abstract

The natural languages that underlie human communication are remarkably expressive,

robust and well-adapted to the communicative needs of their users. However, the

question of how these languages have emerged and through which mechanisms they

continue to evolve remains heavily debated. A common methodology for studying this

question is to simulate the emergence and evolution of language using agent-based

models. In these models, a population of autonomous agents, which are either physi-

cal robots or software entities, participates in a series of communicative interactions,

known as language games. Each game is played by two agents in the population, one

being the speaker and the other being the hearer. The game involves a scripted, com-

municative task, which either succeeds or fails. At the end of the game, the speaker

provides feedback to the hearer, so that learning can take place. The goal of the

models is to determine the exact mechanisms that need to be present in the individ-

ual agents, so that a communication system with human language-like properties can

emerge and evolve.

While agent-based models have within the language game paradigm most extensively

been used to study concept learning and vocabulary formation, they have more recently

also been successfully applied to experiments on the emergence and evolution of gram-

mar. In these models, the agents need to be equipped with a computational grammar

formalism that supports robust and flexible language processing, including mechanisms

for inventing and adopting grammatical structures. This dissertation presents three

major contributions to the field of research that studies the modelling of the emer-

gence and evolution of grammar.

The first contribution consists in the implementation of a new, higher-level notation

for Fluid Construction Grammar (FCG). FCG is an advanced computational grammar

formalism that is often used in evolutionary linguistics experiments. The new notation

represents grammatical structures in a more intuitive way and abstracts away from

low-level implementation details. This facilitates the use of FCG in language evolution

v

Paul_Van_Eecke_def.indd 5 27/09/18 08:37

vi

experiments and the new notation has indeed already become FCG’s standard notation.

The second contribution introduces powerful mechanisms for generalising and special-

ising grammatical constructions. The impasse that arises when agents are faced with

utterances that they cannot process can often be overcome by adapting constraints

that block the application of existing grammatical constructions. Previous experiments

relied on ad hoc ways to detect and adapt these constraints. Here, I extend FCG with

three general mechanisms: (i) an anti-unification based operator that finds the blocking

constraints and their least general generalisations, (ii) a hierarchical type system that

can capture these generalisations is a fine-grained way, and (iii) a pro-unification op-

erator that imposes additional constraints on a construction, specialising it to specific

cases.

The third contribution consists in a case study that demonstrates how the representa-

tions and mechanisms introduced above can be incorporated in an actual agent-based

experiment. The experiment that I present here studies how early syntactic structures

can emerge and evolve in a population of agents. In particular, it models how shared

word order patterns can come into place and reduce the referential ambiguity of the

language. The experiment makes use of the type hierarchy system to capture the asso-

ciation strength between words and slots in the word order patterns, and relies on the

anti-unification operator to expand the coverage of existing patterns to novel words.

The experiment shows that a coherent and efficient word order system rapidly emerges

in a population of agents that are equipped with these general, local mechanisms.

Paul_Van_Eecke_def.indd 6 27/09/18 08:37

Samenvatting

De natuurlijke talen die aan de basis liggen van menselijke communicatie zijn opvallend

expressief, robuust en aangepast aan de communicatieve noden van de taalgebruik-

ers. De vraag hoe deze talen ontstaan zijn en zich voortdurend verder ontwikkelen,

blijft echter onderwerp van hevige discussie. Een moderne methode om deze vraag te

bestuderen, bestaat erin om het ontstaan en de evolutie van taal te simuleren door

middel van agentgebaseerde modellen. Tijdens deze simulaties neemt een populatie

van autonome agenten - dit kunnen fysieke robots of softwareagenten zijn - deel aan

een reeks communicatieve interacties, die taalspelen genoemd worden. Elk taalspel

wordt gespeeld door twee agenten in de populatie, de ene in de rol van spreker en de

andere in de rol van hoorder. Het spel verloopt volgens een vast script en omvat een

communicatieve taak die beide agenten tot een goed einde proberen te brengen. Na elk

spel geeft de spreker feedback aan de hoorder over de uitkomst van de taak, zodat leren

mogelijk wordt. Het doel van de modellen is om de exacte mechanismes te bepalen die

in de individuele agenten aanwezig moeten zijn, opdat een communicatiesysteem dat

bepaalde kenmerken van menselijke taal vertoont, kan onstaan.

Hoewel het taalspelparadigma in het verleden het vaakst werd gebruikt om het onstaan

van concepten en vocabularia te bestuderen, wordt het sinds kort ook met succes

toegepast om het ontstaan en de evolutie van grammatica te simuleren. Om deze

simulaties te kunnen uitvoeren, moeten de agenten uitgerust worden met een compu-

tationeel grammaticaformalisme dat snelle, robuuste en flexibele taalverwerking onder-

steunt en dat mechanismes voor het uitvinden en het leren van grammaticale structuren

bevat. Dit proefschrift levert drie belangrijke bijdragen aan het onderzoeksveld dat het

modelleren van de evolutie van grammatica bestudeert.

De eerste bijdrage betreft de implementatie van een nieuwe notatie voor Fluid Construc-

tion Grammar (FCG). FCG is een geavanceerd computationeel grammaticaformalisme

dat vaak in evolutionaire taalkunde-experimenten gebruikt wordt. De nieuwe notatie

stelt grammaticale regels en structuren op een intüıtievere manier voor, en zorgt ervoor

vii

Paul_Van_Eecke_def.indd 7 27/09/18 08:37

viii

dat bepaalde technische aspecten automatisch achter de schermen behandeld worden.

Dit maakt het gebruik van FCG in evolutie-experimenten heel wat makkelijker, wat

ervoor gezorgd heeft dat deze nieuwe notatie ondertussen de standaardnotatie voor

FCG geworden is.

De tweede bijdrage introduceert krachtige mechanismes om grammaticale construc-

ties te generaliseren en te specialiseren. De impasse die ontstaat wanneer agenten

geconfronteerd worden met talige uitingen die ze niet kunnen verwerken, valt vaak op

te lossen door de condities die de toepassing van een bestaande constructie tegen-

houden, aan te passen. In vorige experimenten werden ad-hoc methodes gebruikt voor

het detecteren en aanpassen van deze condities. Hier wordt FCG uitgebreid met drie

algemene mechanismes: (i) een anti-unificatiegebaseerde operator die de blokkerende

condities en hun meest specifieke generalisaties bepaalt, (ii) een hiërarchisch typesys-

teem dat toelaat deze generalisaties op een fijnmazige manier te vatten, en (iii) een

pro-unificatieoperator die bijkomende condities toevoegt aan een constructie, zodat

deze enkel in specifieke gevallen kan toepassen.

De derde bijdrage bestaat uit een gevalstudie die toont hoe de representaties en mech-

anismes die in de eerste twee bijdragen gëıntroduceerd worden in een concreet agent-

gebaseerd experiment toegepast kunnen worden. De gevalstudie onderzoekt hoe primi-

tieve syntactische structuren kunnen ontstaan in een populatie van agenten. Meer spec-

ifiek modelleert het experiment hoe gedeelde woordvolgordepatronen kunnen ontstaan

en de referentiële ambigüıteit van de taal reduceren. Het experiment maakt gebruik

van het hiërarchisch typesysteem om de associatiesterkte tussen woorden en kavels

in de woordvolgordepatronen te vatten, en gebruikt de anti-unificatieoperator om de

dekking van bestaande patronen naar nieuwe woorden uit te breiden. Het experiment

toont aan dat een coherent en efficiënt woordvolgordesysteem snel kan ontstaan in een

populatie van agenten die uitgerust zijn met deze algemene, lokale mechanismes.

Paul_Van_Eecke_def.indd 8 27/09/18 08:37

Acknowledgements

The scientific adventure that has now resulted in the completion of my doctoral dis-

sertation started around 5 years ago, at a summer school in Cortona, Italy. There, the

organiser of the school, Luc Steels, introduced me to his ambitious research program

and to his vibrant team of multitalented researchers. I immediately knew that I wanted

to join his team and a few months later, I was thrilled to be able to start my PhD

under his supervision. During my PhD, I could pursue my research interests and ideas

in a lively and stimulating research environment, with plenty of opportunities to meet

excellent researchers from many fields and to actively participate in the scientific pro-

cess. Thank you, Luc, for all the opportunities you have created, and for all the trust

you have placed in me. It is due to your vision and inspiration that I have become the

researcher who I am today.

My deepest gratitude also goes to Katrien Beuls, who became the second promotor

of my dissertation. Thank you, Katrien, for all the inspiring discussions about the

fundamentals and future of our research, and for the highly productive days of pair

programming. Thank you also for your precious advice and unconditional support, in

particular during the last phase of my PhD; it means a lot to me. I have always enjoyed

working with you, and I am happy that we will be able to continue to do so for the

foreseeable future.

I am also indebted to the other members of my PhD jury: prof. dr. Coen De Roover,

prof. dr. Geraint Wiggins, prof. dr. Laura Kallmeyer, prof. dr. Luc De Raedt, prof.

dr. Freek Van De Velde and prof. dr. Bart Jansen. Thank you for all the work you have

put into reading and assessing this dissertation. Your inspiring questions, comments

and suggestions have not only improved the quality of this document, but will also have

a positive impact on my future research.

I would also like to thank Remi van Trijp for teaching me the ropes of the scientific

process, for introducing me into the computational construction grammar and evolu-

tionary linguistics communities, and for providing valuable and detailed comments on

ix

Paul_Van_Eecke_def.indd 9 27/09/18 08:37

x

every chapter of this dissertation. Thank you, Remi, I appreciate it a lot.

A large part of my PhD research has been conducted at Sony Computer Science Labo-

ratories (CSL) Paris. I am grateful to all my CSL colleagues for their support, whether

scientific, administrative or technical. I would in particular like to thank François Pa-

chet, former director of CSL; Sophie Boucher, the lab manager; Nicolas Duval and

Pratik Bhoir, the system administrators, and Peter Hanappe, one of the finest re-

searchers I have ever met. At CSL, I was fortunate enough to share an office for more

than 3 years with Miquel Cornudella, an excellent Lisp teacher and a true friend. I

would also like to thank Timotée Neullas, Emmanuel Deruty, David Colliaux, Stéphane

Rivaux and Michael Anslow, for the many interesting and entertaining discussions we

had.

My gratitude also goes to all my VUB colleagues, in particular to Jens Nevens and Rox-

ana Rădulescu for their valuable feedback on my work, to Frederik Himpe for solving

all my technical problems, and to Lara Mennes and Brigitte Beyens for their admin-

istrative support. I would also like to thank Eḿılia Garcia Casademont for sharing

her insights on the emergence of phrase structure, Raquel Fernández and Robert van

Rooij for hosting me during a two-month research visit at the Institute for Logic, Lan-

guage and Computation (ILLC) and Michael Rovatsos for professionally coordinating

the ESSENCE project, on which I was employed.

I am especially grateful to all the present and former members of the Centre for Compu-

tational Linguistics, in particular to Frank Van Eynde, Vincent Vandeghinste, Liesbeth

Augstinus and Jonas Doumen. You are the reason that I studied computational linguis-

tics and artificial intelligence, and that I was well prepared to carry out this research

project.

I would also like to thank my family for their continuous support throughout my ed-

ucation and scientific career. Thank you for providing me with the freedom and op-

portunities to pursue my dreams and for supporting all the decisions that I made. My

gratitude also goes to my T&L, ‘harde kern’ and other friends, you know who you are.

Finally, I would like to express my warmest appreciation to the person who stood by

me at every point during this journey, who encouraged me to seize every scientific

opportunity that presented itself, who weighed in with crucial advice at a number of

key choice points, and without whom the end result would not have been the same.

Thank you, Lynn, for everything.

The research reported in this dissertation has been financially supported by the Marie

Curie Initial Training Network ESSENCE (grant agreement no. 607062), with addi-

tional funding from Sony Computer Science Laboratories Paris.

Paul_Van_Eecke_def.indd 10 27/09/18 08:37

Contents

1 Introduction 5

1.1 Introduction . 5

1.2 Objectives and Contributions . 6

1.2.1 Knowledge Representation and Reasoning 7

1.2.2 Metacognition . 8

1.2.3 Evolutionary Computation 9

1.3 Potential Impact . 10

1.3.1 Computational Construction Grammar 10

1.3.2 Evolutionary Linguistics . 10

1.3.3 Intelligent Systems . 11

1.4 Structure of the Dissertation . 12

2 Background 15

2.1 Introduction . 15

2.2 Evolutionary Linguistics . 16

2.2.1 Innate vs. Emergent Language 16

2.2.2 Three Complimentary Perspectives on Language Evolution . . 16

2.2.3 Cultural Language Evolution 18

2.2.4 Language Games on the Emergence of Vocabularies 20

2.2.5 Language Games on the Emergence of Concepts 20

2.2.6 Language Games on the Emergence of Grammar 21

2.2.7 Limits of the Current Research 22

2.3 Computational Linguistics . 24

2.3.1 Requirements . 24

2.3.2 Grammar Formalisms . 25

2.4 Conclusion . 29

3 Fluid Construction Grammar 31

3.1 Introduction . 32

1

Paul_Van_Eecke_def.indd 11 27/09/18 08:37

2 CONTENTS

3.2 A High-level Notation for FCG . 32

3.3 Language Processing as a Problem Solving Process 33

3.4 The Basic Building Blocks . 36

3.4.1 Transient Structures . 36

3.4.2 The Initial Transient Structure 38

3.4.3 Constructions . 39

3.4.4 The Construction Inventory 46

3.4.5 Construction Application and Search 46

3.4.6 Goal Tests and Solutions . 49

3.4.7 Meaning Representations . 50

3.5 Meta-Layer Problem Solving and Learning 50

3.5.1 Meta-Layer Architecture . 51

3.5.2 The Meta-Layer in Evolution Experiments 52

3.5.3 Library of Diagnostics and Repairs 54

3.6 FCG Interactive: Web Service and API 54

3.6.1 FCG Interactive Web Service 55

3.6.2 FCG Interactive Web API 56

3.7 Conclusion . 60

4 A Type Hierarchy System for FCG Symbols 63

4.1 Introduction . 63

4.2 The Nature of Categories in FCG 64

4.3 A Type Hierarchy System for FCG symbols 66

4.3.1 Type Hierarchy Concept . 66

4.3.2 Type Hierarchy Implementation 67

4.3.3 Type Hierarchy: Match and Merge 69

4.4 Examples . 70

4.4.1 Diversity among Categories 71

4.4.2 Exploiting Generalisations for Learning 73

4.4.3 Cancellation of Generalisations 75

4.4.4 Entrenchment of Type Hierarchy Links 80

4.5 Type Hierarchies versus Typed Feature Structures 83

4.6 Conclusion . 84

5 Generalising Constructions using Anti-Unification 87

5.1 Introduction . 88

5.2 Resolving Grammatical Impasses . 89

5.3 Anti-Unification . 91

5.3.1 Anti-Unification vs. Unification 91

5.3.2 A Basic Anti-Unification Algorithm 93

Paul_Van_Eecke_def.indd 12 27/09/18 08:37

CONTENTS 3

5.4 Anti-Unification for FCG Structures 95

5.4.1 About Pattern and Source 95

5.4.2 Integrating Cost Calculation 96

5.4.3 Pairing Units . 98

5.4.4 Anti-Unifying Features and Values 100

5.5 Demonstration . 102

5.5.1 Variable Decoupling . 102

5.5.2 Value Relaxation . 107

5.5.3 Feature/Predicate Deletion 107

5.5.4 Unit Deletion . 109

5.6 Anti-Unification and Type Hierarchies 111

5.7 Anti-Unification as a Debugging Tool in Grammar Engineering 112

5.7.1 Extending the Anti-Unification Algorithm 114

5.7.2 Example . 115

5.7.3 Integration into the FCG Environment 117

5.8 Conclusion . 118

6 Specialising Constructions using Pro-Unification 121

6.1 Introduction . 121

6.2 Generalisation and Specialisation . 122

6.3 Anti-Unification and Pro-Unification 125

6.3.1 A General Pro-Unification Algorithm 126

6.3.2 Integration in FCG’s Meta-Layer Architecture 127

6.4 Demonstration: Learning Word Order Constraints 130

6.5 Conclusion . 133

7 Case Study: the Origins of Syntax 135

7.1 Introduction . 136

7.2 The Origins of Syntax . 137

7.3 Experimental Design and Implementation 138

7.3.1 World . 138

7.3.2 Population . 139

7.3.3 Interaction Script . 141

7.4 Learning Strategies . 144

7.4.1 Lexical Strategy . 144

7.4.2 Grouping Strategy . 149

7.4.3 N-gram Strategy . 154

7.4.4 Pattern Strategy . 159

7.5 Comparison and Discussion . 169

7.5.1 Communicative Success . 171

Paul_Van_Eecke_def.indd 13 27/09/18 08:37

4 CONTENTS

7.5.2 Coherence of the Language 172

7.5.3 Number of Grammatical Constructions 173

7.5.4 Search Effort . 174

7.5.5 Final Discussion . 176

7.6 Conclusion . 177

8 Conclusions 179

8.1 Introduction . 179

8.2 Achievements . 180

8.2.1 A High-Level Notation for Fluid Construction Grammar . . . 181

8.2.2 Integration of a Meta-Level Architecture 181

8.2.3 A Type Hierarchy System for FCG Symbols 182

8.2.4 Generalisation and Specialisation operators 183

8.2.5 An Agent-Based Experiment on the Origins of Syntax 183

8.3 Future Research . 184

8.4 Final Remarks . 186

Appendix A List of Publications 203

Index 205

Paul_Van_Eecke_def.indd 14 27/09/18 08:37

Chapter 1

Introduction

1.1 Introduction . 5

1.2 Objectives and Contributions . 6

1.2.1 Knowledge Representation and Reasoning 7

1.2.2 Metacognition . 8

1.2.3 Evolutionary Computation 9

1.3 Potential Impact . 10

1.3.1 Computational Construction Grammar 10

1.3.2 Evolutionary Linguistics . 10

1.3.3 Intelligent Systems . 11

1.4 Structure of the Dissertation . 12

1.1 Introduction

The natural languages that underlie human communication are remarkably expressive,

robust and well-adapted to the communicative needs of their users. While the origins

of these languages have fascinated the scientific community for many years, the exact

mechanisms through which they have emerged and continue to evolve remain heavily

debated. A modern methodology for investigating these mechanisms consists in sim-

ulating the emergence and evolution of language using agent-based models. In these

models, a population of autonomous, artificial agents, which are either physical robots

or software entities, participates in a series of situated, communicative interactions,

5

Paul_Van_Eecke_def.indd 15 27/09/18 08:37

6 CHAPTER 1. INTRODUCTION

called language games. Each game is played by two agents in the population, one agent

in the role of speaker and the other in the role of hearer. The game involves a scripted

communicative task, for example establishing joint attention to a particular object in

the scene. In order to fulfil the task, the speaker will need to convey information to

the hearer using language, and the hearer will need to perform an action. At the end

of the game, the speaker provides feedback to the hearer about the outcome of the

task, so that learning can take place.

The language game paradigm allows studying the exact mechanisms that need to be

present in the individual agents, so that a communication system that exhibits human

language-like properties can emerge and evolve. The results of the experiments do not

only contribute to the linguistic debate on the origins of language, but also provide

insight into how artificial systems, in which large populations of agents develop their

own robust, flexible and adaptive communication system, can be built.

Previous studies have mainly focused on the application of the language game paradigm

to concept learning and vocabulary formation, which has led to a good understanding

of the mechanisms that are involved (Steels, 2011b). In a smaller number of studies,

the same paradigm has also successfully been applied to the emergence and evolution

of grammar, but the understanding of the mechanisms that are involved there is still

much more limited. A major challenge in setting up these experiments is to equip the

agents with a computational formalism that allows for robust and flexible language

processing and that includes the appropriate mechanisms for inventing and adopting

grammatical structures. This dissertation aims to advance the state of the art in

this domain of research by introducing improved representations and more general and

powerful invention and adoption mechanisms with which the agents can be endowed,

and by presenting a first experiment in which a population of agents employs these

representations and mechanisms for developing a shared language that makes use of

syntactic patterns for improving its expressiveness and efficiency.

The remainder of this chapter is structured as follows. The first part presents an

overview of the objectives and contributions of the dissertation (1.2). The second

part discusses the potential impact of these contributions (1.3). Finally, the third part

explains in detail the structure of this document (1.4).

1.2 Objectives and Contributions

The primary objective of this dissertation is to improve the representations and mecha-

nisms that are currently used in agent-based models of language evolution, and extend

Paul_Van_Eecke_def.indd 16 27/09/18 08:37

1.2. OBJECTIVES AND CONTRIBUTIONS 7

them with more powerful and general learning operators. This is done with the goal of

establishing a general framework that provides powerful building blocks for conducting

more advanced experiments on the emergence and evolution of grammar, and for de-

signing intelligent systems in which a large number of agents needs to communicate

using a robust, flexible and adaptive language. A secondary objective is to make use

this framework to investigate how early syntactic structures can emerge and evolve in

a population of artificial agents, and what advantages these structures bring to the

language.

These two high-level objectives are tackled by five concrete contributions, which are

inspired by three major subfields of artificial intelligence (AI): knowledge representation

and reasoning (1.2.1), metacognition (1.2.2) and evolutionary computation (1.2.3).

1.2.1 Knowledge Representation and Reasoning

One of the central goals in AI is to find adequate computational representations that

are able to capture information about relevant subdomains of the world in such a way

that they can be used by intelligent systems to automatically solve complex tasks. In

the case of language games, the complex task that the agents need to solve consists

in comprehending and formulating utterances, i.e. mapping between utterances and a

representation of their meaning. The knowledge that needs to be represented in order

to be able to solve the task is captured in the form of a computational grammar. The

first two contributions of this dissertation concern major advances in the representa-

tions that are used in Fluid Construction Grammar (FCG), the computational grammar

formalism that is most widely used in evolutionary linguistics experiments.

• A High-Level Notation for FCG. I present the implementation of a high-level
FCG notation. The new notation presents the information that is contained in

constructions and transient structures in a clearer and more intuitive way, and

is high-level in the sense that it handles low-level processing issues behind the

scenes. The conceptual clarity, intuitiveness and high-level nature of the new

notation facilitate the design and set-up of language evolution experiments and

allows for an easier explanation of the grammars that are learnt.

• A Type Hierarchy System for FCG Symbols. All information that is captured
in an FCG grammar is local to its constructions. This has important advan-

tages when used in evolutionary experiments, where new constructions, features

and categories can emerge at any moment, and existing ones constantly evolve.

However, it has the disadvantage that the grammar cannot explicitly capture gen-

eralisations and systematic relations among features and categories that are used

Paul_Van_Eecke_def.indd 17 27/09/18 08:37

8 CHAPTER 1. INTRODUCTION

in different constructions. In order to accommodate this issue, I introduce a type

hierarchy system for FCG symbols. The system allows expressing hierarchical

relations among the symbols that are used in the grammar, while preserving the

open-endedness, dynamicity and fluidity of the formalism. I show that the fact

that these hierarchical relations can be expressed allows capturing fine-grained

generalisations that are useful for evolving and learning grammars.

1.2.2 Metacognition

According to the classical action-perception cycle, agents perceive the world, reason

about it, and act upon it. This model is well suited to react to situations that were

foreseen when the system was built. However, autonomous agents will inevitably en-

counter unforeseen situations, in which, in order to react appropriately, they do not

only need to be able to reason about the world, but also need to be able to reason

about their reasoning (Schmill et al., 2008). This problem solving capability plays a

central role in AI and is commonly referred to as metacognition or meta-level reason-

ing1. Metacognition is often implemented by a double action-perception cycle, in which

the first cycle perceives, reasons about and acts upon the world, and the second cycle

monitors, reasons about and controls the reasoning itself (see e.g. the Soar system

(Laird et al., 1987) and the MIDCA system (Cox et al., 2016)). In the case of lan-

guage processing, the first cycle is concerned with applying the rules of the grammar,

and the second cycle is concerned with monitoring this process, reasoning about the

grammar rules, and if necessary, adapting the grammar (see e.g. Beuls et al. (2012)).

Two contributions of this dissertation concern the metacognitive problem-solving ca-

pabilities that are needed for supporting the robust and flexible processing of adaptive

languages. These capabilities are concretely implemented in FCG.

• Integration of a Meta-Level Architecture. Whether they were part of evo-
lutionary experiments or not, FCG grammars have often been combined with a

general meta-level architecture. It required however quite an effort and a detailed

knowledge of the FCG processing engine and its codebase, in order to interlace

FCG’s routine processing layer with the meta-level monitoring and control of-

fered by this architecture. Here, I present a tight integration of this general

meta-level architecture in FCG, making it a standard feature that is easy to use

with any FCG grammar. It is especially useful in combination with the general

and powerful meta-level operators that are presented in the next contribution.

• Meta-Level Generalisation and Specialisation Operators. A meta-level ar-

1See Cox and Raja (2011) for a good introduction on metacognition.

Paul_Van_Eecke_def.indd 18 27/09/18 08:37

1.2. OBJECTIVES AND CONTRIBUTIONS 9

chitecture is only as powerful as the operators that it has at its disposal. In

previous evolutionary linguistics experiments, these operators were always very

specific to the problem at hand, acting on predefined features and implementing

very specific rules. Here, I present two general meta-level operators that can be

applied for solving a much wider range of problems. The first operator concerns

an anti-unification-based generalisation algorithm for FCG constructions. This

operator allows generalising constructions, relaxing the necessary constraints, so

that they can be applied to novel, unforeseen observations. One flavour of the

algorithm creates new, generalised constructions, whereas another flavour of the

algorithm incorporates the required generalisations into the type hierarchy of the

grammar. This operator is particularly useful in evolutionary linguistics exper-

iments for expanding the coverage and applicability of existing constructions.

The second operator, called pro-unification, concerns an algorithm that spe-

cialises constructions towards observations by incorporating additional, observed

constraints. This operator is particularly useful to capture observed agreement

or word order regularities.

1.2.3 Evolutionary Computation

Like many techniques in AI, the mechanisms that are used to model the emergence

and evolution of language are inspired by processes observed in biological evolution. In

particular the concepts of variation, selection, self-organisation and emergent function-

ality play a central role in this field of research (Steels, 2012b). The last contribution

of this dissertation concerns a concrete experiment that combines these concepts with

the representations and meta-level operators described above, and shows how a lan-

guage exhibiting early syntactic structures can emerge and evolve in a population of

agents.

• Agent-Based Experiment on the Origins of Syntax. I present an agent-based
experiment that models how early syntactic structures can emerge and evolve in a

population of artificial agents, through processes of variation, selection and self-

organisation. The experiment investigates different strategies that the agents

can use for structuring their utterances, and compares the emerged languages in

terms of expressiveness, efficiency and coherence. Apart from shedding light on

the possible mechanistic origins of syntactic structures, the experiment demon-

strates that the representations and operators introduced in this dissertation pro-

vide novel ways to elegantly model the mechanisms involved in the emergence

and evolution of language.

Paul_Van_Eecke_def.indd 19 27/09/18 08:37

10 CHAPTER 1. INTRODUCTION

1.3 Potential Impact

I see a potential impact of the contributions presented in this dissertation in at least

three domains of research: computational construction grammar (1.3.1), evolutionary

linguistics (1.3.2) and intelligent systems (1.3.3).

1.3.1 Computational Construction Grammar

Computational construction grammar is a subdiscipline of linguistics that “aims to

operationalise the insights and analyses from construction grammar into concrete pro-

cessing models” (Van Eecke and Beuls, 2018). These models can be used to validate

the completeness and consistency of construction grammar analyses and test their ac-

curacy and coverage on text corpora (Steels, 2017). The contributions presented in

this dissertation are already having a concrete impact in this domain. The intuitive-

ness of the high-level notation that I have implemented facilitates the learning of FCG,

the formalisation of linguistic intuitions and hypotheses, and the dialogue with the con-

struction grammar community. This is reflected by the fact that the high-level notation

has already become FCG’s standard notation, and that it has already been used in mul-

tiple publications by different researchers for tackling various linguistic challenges (i.a.

Marques and Beuls, 2016; Beuls et al., 2017; van Trijp, 2017; Cornudella Gaya, 2017).

I hope that in the future, this will lead to FCG becoming a standard for documenting,

validating, testing and exchanging construction grammar analyses, and I believe that

the open-endedness of the formalism and the fact that it is largely theory-neutral make

FCG well-suited to serve this purpose.

The meta-level operators for generalising and specialising constructions can be used

to make grammars more flexible and robust against unexpected input, thus extending

their coverage when applied to text corpora. They can also be used to study the

mechanisms that are involved in other topics of interest in construction grammar and

in which meta-level problem solving is of key importance, such as language acquisition

and creativity (Van Eecke and Beuls, 2018).

1.3.2 Evolutionary Linguistics

The potential impact of my dissertation in the field of evolutionary linguistics resides

mainly in the methodological innovations that are proposed. The general framework

of representations and meta-level operators that is introduced, and demonstrated in

the agent-based experiment on the origins of early syntax, will in the future lead to

Paul_Van_Eecke_def.indd 20 27/09/18 08:37

1.3. POTENTIAL IMPACT 11

more advanced experiments on the emergence and evolution of grammar. Building

further on my contributions, many interesting experiments come within reach. Among

other things, these experiments could (i) use the same mechanisms to extend the

current experiment to include hierarchical and recursive structures that further extend

the expressiveness of the language, (ii) combine the word order strategy used here with

strategies for agreement marking, and (iii) model processes of grammaticalisation, in

which lexical words specialise in a specific function and become grammatical markers.

The results of these experiments will lead to a better understanding of the mechanisms

through which grammatical structures can emerge and evolve and provide evidence for

the hypothesis that these structures do not need to be innate but can emerge through

communication.

1.3.3 Intelligent Systems

A third area of potential impact concerns applications in which intelligent agents need

to communicate, either with humans or with each other. In many applications in

which an intelligent agent needs to communicate with a human user, a very precise

understanding of what the user says is necessary. This requires mapping the user’s

utterance to a meaning representation that can be used to reason within the domain

of the application. An example of such an application is visual question answering. A

human user asks a question about an image, for example taken by the camera of a

robot. The system should try to understand the question, reason about the image,

and formulate an answer. For example, if the user would ask “Do you see more dogs

than cats?” about an image that contains 2 dogs and 3 cats, the system should be

able to answer “No, I see more cats than dogs”. We are currently designing a visual

question answering system for the standard CLEVR dataset (Johnson et al., 2017),

and it proves to be the case that the representations and mechanisms described in this

dissertation are particularly useful for building such a system. An FCG grammar maps

the question of the user to a functional program (e.g. (> (count (filter-object dog

input-image) (count (filter-object cat input-image)))) in which the functions ‘filter-

object’ and ‘count’ are implemented as deep neural networks. The functional program

is then executed and an answer to the question is formulated. FCG is especially well-

suited for being used in this kind of task, as the meaning representation that it uses

can be specifically designed for the problem at hand. A next, exciting step in this

project is to use the metacognitive capabilities that are presented in this dissertation

to have an agent learn a grammar that maps between the natural language input and

the functional programs that serve as a meaning representation. Once this system is in

place, an experiment can be set up, in which a population of agents develops its own,

Paul_Van_Eecke_def.indd 21 27/09/18 08:37

12 CHAPTER 1. INTRODUCTION

adequate grammar without the need for human input. A different project in which the

high-level FCG notation and type hierarchy system have already been applied, explores

how machine-readable instructions can be inferred from wikiHow recipes (Cangalovic,

2018).

1.4 Structure of the Dissertation

The remainder of this dissertation is structured as follows:

• Chapter 2: Background. This chapter sketches the background of this re-
search project and situates it within the broader contexts of evolutionary and

computational linguistics.

• Chapter 3: Fluid Construction Grammar. This chapter introduces FCG and
focusses in particular on the contributions that were made in the context of this

dissertation: the implementation of a high-level notation and the tight integration

of a general meta-level architecture for problem solving and learning. This chapter

introduces many concepts on which the following chapters build, but can also be

read separately as a stand-alone introduction to FCG.

• Chapter 4: A Type Hierarchy System for FCG Symbols. This chapter presents
an extension to FCG that allows capturing generality-specificity associations be-

tween symbols that occur in the constructions of a grammar. In a type-hierarchy,

symbols can be declared to be subtypes or supertypes of other symbols and FCG’s

construction application machinery is adapted to take these (weighted) associ-

ations into account. The chapter discusses why such a system is desired, de-

scribes how the system is implemented and demonstrates different aspects of its

use through examples.

• Chapter 5: Generalising Constructions using Anti-Unification. This chapter
introduces an anti-unification-based generalisation operator for FCG construc-

tions. It discusses why the operator is needed, describes how different flavours

of the operator are implemented, and shows how it can be used to relax con-

straints that block the application of a construction, or to capture fine-grained

generalisations in a type hierarchy.

• Chapter 6: Specialising Constructions using Pro-Unification. This chap-
ter introduces an operator that constrains FCG constructions towards concrete

observations. It discusses why such an operator is desired, describes its imple-

mentation and shows how it can be used to capture observed regularities, for

Paul_Van_Eecke_def.indd 22 27/09/18 08:37

1.4. STRUCTURE OF THE DISSERTATION 13

example in agreement or word order.

• Chapter 7: Case Study: the Origins of Syntax. This chapter introduces a
case study in which the representations and mechanisms described in the pre-

vious chapters are applied in an agent-based experiment on the emergence of

early syntactic structures. The case study shows that these representations and

mechanisms allow a population of artificial agents to rapidly develop a shared

language that makes use of basic syntactic structures for improving its expres-

siveness, coherence and efficiency.

• Chapter 8: Conclusion. This chapter summarises the contributions of this
dissertation, reflects on its achievements, and formulates interesting paths to

pursue in further research.

This dissertation is accompanied by an interactive web demonstration, which is acces-

sible at https://www.fcg-net.org/demos/vaneecke-phd. The web demonstration

shows most of the examples discussed in this dissertation in full detail, providing addi-

tional information on the specifics of how everything is implemented.

Paul_Van_Eecke_def.indd 23 27/09/18 08:37

14 CHAPTER 1. INTRODUCTION

Paul_Van_Eecke_def.indd 24 27/09/18 08:37

Chapter 2

Background

2.1 Introduction . 15

2.2 Evolutionary Linguistics . 16

2.2.1 Innate vs. Emergent Language 16

2.2.2 Three Complimentary Perspectives on Language Evolution . . 16

2.2.3 Cultural Language Evolution 18

2.2.4 Language Games on the Emergence of Vocabularies 20

2.2.5 Language Games on the Emergence of Concepts 20

2.2.6 Language Games on the Emergence of Grammar 21

2.2.7 Limits of the Current Research 22

2.3 Computational Linguistics . 24

2.3.1 Requirements . 24

2.3.2 Grammar Formalisms . 25

2.4 Conclusion . 29

2.1 Introduction

This chapter sketches the broader research context in which this dissertation is embed-

ded. It first discusses its objectives in relation to the state of the art in evolutionary

linguistics (2.2) and then reviews the methods that are used from a computational

linguistics angle (2.3). Both sections discuss the wider research context first, and

15

Paul_Van_Eecke_def.indd 25 27/09/18 08:37

16 CHAPTER 2. BACKGROUND

gradually narrow it down until the specific topics that are addressed in this dissertation

are reached.

2.2 Evolutionary Linguistics

Evolutionary linguistics is the field of research that studies the origins of natural lan-

guages. This section introduces the main approaches that are taken in this field, the

methodologies that are used, the results that have been obtained, and the limits of the

current research.

2.2.1 Innate vs. Emergent Language

A long-standing debate in linguistics concerns the nature of linguistic structures. A

first view claims that humans are born with a stable, universal grammar, which, as

a consequence of its innateness, underlies all human languages (i.a. Chomsky, 1986;

Roberts, 2017). According to this view, variations among languages are limited to

different parametrisations of this universal grammar (Fanselow, 1993; Gianollo et al.,

2008), and learning a language consists thus in finetuning a set of parameters (e.g.

Fodor and Sakas, 2017). The alternative view argues that linguistic structures are not

innate or a priori present in the human brain, but that language is a dynamic system

that emerges through the communicative interactions of interlocutors (Hopper, 1987;

Jasperson et al., 1994). The contributions presented in this dissertation are situated

within a research program that investigates the latter view. This research program aims

to build models that show that linguistic structures can emerge, evolve and propagate

through the communicative interactions of members of the language community.

2.2.2 Three Complimentary Perspectives on Language Evolution

The evolution of natural languages can be studied from different points of view, which

each have their own goals and methodologies. Steels (2012c, p. 1-2) identifies the

following three perspectives:

• The biological perspective (i.a. Jablonka and Lamb, 2005; Fitch, 2010; Arbib,
2012; Dediu, 2007; Bickerton and Szathmáry, 2009) focuses on the human bi-

ological endowment. This perspective investigates how the cognitive functions

that are needed in the brain for processing language are neurobiologically imple-

mented, and how these neurobiological structures and processes are genetically

Paul_Van_Eecke_def.indd 26 27/09/18 08:37

2.2. EVOLUTIONARY LINGUISTICS 17

encoded. It also studies how, where and when the genetic basis underlying the

human language capactity has evolved in the history of biological evolution. The

methodology that is used to study language evolution from this perspective is the

framework of Darwinian, genetic evolution that is used in evolutionary biology.

• The social perspective (i.a. Knight et al., 2000; Tomasello, 2003; Dor et al.,
2014) focuses on the societal conditions that have influenced the evolution of

language. These include (changes in) the size of communities, the social rela-

tions, the need to cooperate on complex tasks and the role of trust in establishing

a (symbolic) communication system that can be used to deceive. The method-

ologies that are used to study language evolution from this perspective belong

to the domains of anthropology and social science.

• The cultural perspective (i.a. Steels, 1999; Smith et al., 2003; Kirby et al., 2008;
Christiansen et al., 2009; Steels, 2012c) focuses on how languages evolve over

time as a consequence of their use in communication. The evolution of any

unit of language can be the topic of investigation, including, but not limited

to, sounds, concepts, words, semantic structures, morphological structures, syn-

tactic structures and dialogue structures. The cultural perspective studies how

these units can appear in a language, propagate, change (for example through

grammaticalisation processes), erode and disappear. The methodologies that

are used to study language evolution from this perspective belong to the do-

main of linguistics, and are inspired by concepts used in evolutionary biology

(e.g. variation, selection, self-organisation, emergent functionality) and artificial

intelligence (e.g. agent-based modelling, evolutionary computation).

These three perspectives are complementary and are highly dependent on each other.

However, the fact that the processes of biological, social and cultural evolution take

place at very different timescales makes it possible to study them in isolation. For

example, processes of cultural evolution can be studied independently from processes

of biological and social evolution, as long as they do not assume cognitive functions or

social circumstances that conflict with the insights provided by these other perspectives.

While Steels (2012d, p. 1) points out that a complete theory of language should

cover all three perspectives, further progress needs to be made in the subdomains

that investigate these perspectives before a unified theory can be presented. This

dissertation focuses uniquely on the cultural perspective on language evolution.

Paul_Van_Eecke_def.indd 27 27/09/18 08:37

18 CHAPTER 2. BACKGROUND

2.2.3 Cultural Language Evolution

The field of cultural language evolution studies how cultural transmission can explain

the linguistic structures that are observed in natural languages. The research in this

field is centred around two complimentary research questions. The first question is

concerned with how the learning biases of language learners shape the structure of lan-

guages. This research question is studied through the iterated learning paradigm. The

second question is concerned with how linguistic conventions arise through interaction

and coordination, and is studied through the language game paradigm.

The Iterated Learning Paradigm

The iterated learning paradigm (i.a. Kirby, 2001; Smith et al., 2003) studies “the

process by which a behaviour arises in one individual through induction on the basis of

observations of behaviour in another individual who acquired that behaviour in the same

way” (Kirby et al., 2014, p. 108). The paradigm provides a framework for investigating

how language is transmitted across generations of language users, by which the learning

mechanisms used by the learners give rise to certain structural features observed in

human languages. An important concept in the theory is the transmission bottleneck.

Learners only have access to a small amount of learning data for learning a complex and

open-ended system, which leads to a pressure for systematicity and compositionality

in language.

Experiments following this paradigm typically start with a random language, in the

sense that its form-meaning mappings are not systematic nor compositional. This lan-

guage is used ‘internally’ by a first-generation speaker and a subset of the language

is ‘externalised’ through communication and observed by a second-generation learner.

The learner generalises over these observations, reconstructing his own ‘internal’ lan-

guage. The learner then becomes the speaker, and ‘externalises’ a subset of his internal

language to a third-generation learner, who generalises over his observations and re-

constructs his ‘internal’ language. This process is repeated over many generations and

the experiments show that the language that emerges is systematic and compositional.

Note that in these experiments, only the hearer imposes structure on the language,

and that achieving communicative success does not play any role.

The iterated learning paradigm has been studied through three different methodologies.

The initial experiments were conducted using agent-based models. These models focus

mainly on the learner’s biases involved in the emergence of systematic, compositional

languages. These include biases towards generalisation (Kirby, 2001, 2002a), and

Paul_Van_Eecke_def.indd 28 27/09/18 08:37

2.2. EVOLUTIONARY LINGUISTICS 19

one-to-one meaning-signal mappings (Smith, 2002, 2004). The paradigm has also

been investigated using mathematical models, which confirm that languages that are

subject to iterated learning converge to the learning biases of the learners (Griffiths

and Kalish, 2007). Finally, the iterated learning paradigm has also been tested in

many experiments with human participants (Kirby et al., 2008). These experiments

confirm that the regularisation and systematisation of languages that are the outcome

of agent-based and mathematical models can also be replicated in the laboratory, and

reveal the learning biases of humans.

Overall, the experiments that have been conducted within the iterated learning paradigm

convincingly show that the learning biases of the learners can give rise to certain as-

pects of linguistic structure, in particular to the emergence of regular and compositional

structures. The experiments do however not (have the goal to) account for the shar-

ing, coordination and alignment of linguistic concepts and structures in a population

within a single generation.

The Language Game Paradigm

The language paradigm (Steels, 1995, 1997, 2012d) shares the aim of the iterated

learning paradigm to explain the origins of language in terms of cultural evolution, but

proposes very different selectionist criteria. Instead of focusing on transmission con-

straints and learning biases, the language game paradigm attributes the emergence and

evolution of linguistic structures to the pressures of communicative success, cognitive

(processing) effort and social conformity.

Experiments in this paradigm are conducted with populations of agents that are situated

in a physical or simulated world. The agents in the population repeatedly play language

games. Typically, two agents from the population, a speaker and a hearer, participate in

a game and carry out a communicative task. The speaker needs to convey information

to the hearer using language. He uses re-entrance to monitor his conceptualisation and

formulation process, i.e. he internally comprehends and interprets the utterance that

he would formulate and determines whether he would have been able to complete the

task based on this information. If necessary, the speaker will add the necessary words,

meanings, categories, structures, or any other elements to his grammar (invention).

The hearer comprehends and interprets the utterance and performs the task. Then, the

speaker gives feedback about the outcome of the task. If the communicative interaction

succeeded, the speaker and hearer typically reinforce the linguistic elements that they

have used. If it failed, the speaker might punish the elements that he has used, and the

hearer uses the feedback to learn. He makes hypotheses about the linguistic elements

Paul_Van_Eecke_def.indd 29 27/09/18 08:37

20 CHAPTER 2. BACKGROUND

that were used by the speaker and adds them to his grammar (adoption). The idea is

that if the adequate invention, adoption and reinforcement mechanisms are in place,

the population will eventually converge on a shared language.

The language game paradigm has been studied through agent-based models (i.a. the

collection of papers presented in Steels, 2012c) and through mathematical models (i.a.

Baronchelli et al., 2006; Liu et al., 2009). The experiments, which will be explained in

more detail below, convincingly show that through local interactions and communicative

pressures, populations of agents can globally coordinate on languages that feature many

of the characteristics observed in human languages, such as shared semantic categories,

vocabularies and case systems. The framework and case study that are presented in

this dissertation are situated within the language game paradigm.

2.2.4 Language Games on the Emergence of Vocabularies

A substantial number of experiments have used the language game paradigm to study

how populations of agents can reach conventional agreement on shared vocabular-

ies without central control, central broadcasting or mind-reading. These experiments

study variations on the ‘naming game’ (Steels, 1995), in which the agents in the pop-

ulation develop a language to refer to objects using unique (proper) names. These

experiments have been grounded in physical robots (Steels and Loetzsch, 2012), a

variety of alignment mechanisms has been studied (Wellens, 2012), scaling laws have

been determined (Baronchelli et al., 2006), convergence proofs have been formulated

(De Vylder and Tuyls, 2006), and the effects of social network structures (Liu et al.,

2009), intrinsic motivation and active learning (Schueller and Oudeyer, 2016) have

been investigated . The naming game has been so extensively studied that Steels

(2011b, p. 350) concludes that “the question how a set of conventions can become

shared in a distributed population of autonomous individuals through a cultural process

has been solved [in this context]”.

2.2.5 Language Games on the Emergence of Concepts

A next series of experiments go beyond vocabularies that consist of proper names,

and study how a population of agents can coordinate on conceptual systems. In these

experiments, the agents do not only invent, adopt and align a set of words, but also

invent, adopt and align a set of semantic categories that serve as meanings to these

words. For example, imagine that a speaker needs to draw the attention of a hearer

to an object that is the largest object in the scene. The speaker does not have any

Paul_Van_Eecke_def.indd 30 27/09/18 08:37

2.2. EVOLUTIONARY LINGUISTICS 21

concepts or words yet and perceives the size of the objects on a continuous scale. He

reasons that the size channel discriminates well this object from the other objects in

the scene and that is has thus a high chance to lead to communicative success. He

invents a new size category (let’s call it large, although the agent will probably prefer

size-cat-1) with the size of the object as initial value. He will now invent a word

to express this semantic category and say the word. The hearer will of course not

understand it, but after feedback, he will adopt the word and associate it either to a

similar semantic category that he already has, or otherwise create a new one. One

word might become associated to multiple categories and vice versa. Both words and

semantic categories have a score assigned to them, which reflects how often they led

to communicative success in the past. After each interaction, the score of the word is

updated, the score of the category is updated, and the category itself is shifted towards

the observation (e.g. if large had a value of 0.6 and the new observation had a size

value of 0.7, the value of large might become 0.62).

Experiments on the emergence and evolution of concepts have been conducted in many

domains, including color categories (Steels et al., 2005; Puglisi et al., 2008; Bleys et al.,

2009), action categories (Steels and Spranger, 2008), spatial categories (Spranger,

2012) and semantic roles (van Trijp, 2008). The results of the experiments show that

through communicative interactions, populations of agents cannot only coordinate

on shared vocabularies, but also on shared conceptual systems that underlie these

vocabularies. While the emergence and evolution of conceptual systems might not be

a solved problem yet, these experiments have led to a relatively good understanding of

the general concept formation and alignment mechanisms that are involved.

2.2.6 Language Games on the Emergence of Grammar

In a third wave of language game experiments, the complexity of the languages that

emerge and evolve increases considerably, both from a semantic and a morpho-syntactic

point of view. The topic of interest shifts from semantic categories and vocabularies to-

wards semantic relations and grammatical structures. There are two main approaches

to the emergence of grammar. The first approach investigates how complex compo-

sitional and hierarchical syntactic structures might arise to express complex composi-

tional and hierarchical semantic structures, whereas the second approach studies how

morpho-syntactic structures might arise to dampen the referential ambiguity of the

language.

Inspired by cognitive and procedural semantics, the first approach especially focusses

on the meaning side of the languages. The concepts that emerge and their semantic

Paul_Van_Eecke_def.indd 31 27/09/18 08:37

22 CHAPTER 2. BACKGROUND

representations now include predicates that express relations and that are combined

compositionally and hierarchically. The syntactic structures co-evolve with the se-

mantic structures and mirror their composition and hierarchy. Experiments following

this approach have been conducted in the domains of color (Bleys and Steels, 2009;

Bleys, 2016), spatial relations (Spranger et al., 2010; Spranger, 2016), quantifiers

(Pauw and Hilferty, 2012; Pauw et al., 2013) and logical operators (Sierra-Santibáñez,

2014, 2018). These experiments investigate how different strategies for conceptualis-

ing relevant aspects of the world compare to each other in terms of (time to reach)

communicative success, (time to reach) convergence and cognitive effort.

The second approach studies the morpho-syntactic strategies that languages use to

minimize their referential ambiguity. These strategies are beneficial for the language

users, as they increase the expressiveness of the language and minimize the cogni-

tive effort that is needed to process utterances in this language. In order to achieve

this, natural languages employ two main morpho-syntactic devices, namely markers,

for example for case, gender or number, and word order. Both markers and word

order indicate which words in an utterance belong together, which reduces the refer-

ential ambiguity of the language. Experiments have been conducted on the emergence

and evolution of case markers (van Trijp, 2013; Lestrade, 2015a; van Trijp, 2016;

Lestrade, 2016), the recruitment and erosion of agreement markers (Beuls and Steels,

2013; Vera, 2018) and the emergence of phrase structure (Steels and Garcia Casade-

mont, 2015a,b; Garcia Casademont and Steels, 2016). These experiments confirm the

hypothesis that the emergence of shared grammatical structures reduces the ambiguity

of the languages, thus maximizing their expressiveness and minimizing the cognitive

effort involved in their processing.

2.2.7 Limits of the Current Research

The overview of experiments presented above shows that the language game paradigm

cannot only explain the emergence and self-organisation of vocabularies and conceptual

systems, but can also be used to study the emergence of complex semantics and

shared grammatical structures. While the emergence of shared vocabularies might be

considered a solved problem by now, the research into the emergence and evolution of

grammatical structures still leaves many questions unanswered. Important challenges

are here to explain how language strategies such as case marking and phrase structure,

as well as different conceptualisation strategies, emerge, how certain strategies become

important for structuring a language, how they compete with other strategies, and how

they might fade away again.

Paul_Van_Eecke_def.indd 32 27/09/18 08:37

2.2. EVOLUTIONARY LINGUISTICS 23

As the complexity of the agent-based models scales up enormously when moving from

the emergence and evolution of vocabularies to the emergence and evolution of gram-

mar, the tools that are used to build the models need to become more powerful as well.

There are currently two released software packages in use that provide useful building

blocks for setting up this kind of experiments.

The first software package is called MoLe: Modelling Language Evolution (Lestrade,

2017), and was used in the experiments on the emergence of case reported by Lestrade

(2015a,b, 2016). MoLe is distributed as an R package1 and was especially developed for

studying case and argument structure, as reflected by its former nameWDWTW (who

does what to whom). It includes the necessary building blocks for setting up multi-

agent language games in which lexical items can be recruited as grammatical markers.

MoLe does not include an advanced semantic processing engine, an elaborate language

processing engine, and interfaces to physical robots or rich world models.

The second software package is called Babel2 (Loetzsch et al., 2008) and was used

in all other experiments on grammar evolution described above, except for the ones

presented by Sierra-Santibáñez (2014, 2018); Vera (2018). Babel2 groups a number

of software tools that can be used to set up a wide range of evolutionary linguis-

tics experiments. It is implemented in Common Lisp and is distributed via its github

page2. Babel2 includes an experiment framework for implementing multi-agent sim-

ulations and a monitoring and visualisation system for tracking and visualising both

the details of individual language games and results that are aggregated over a se-

ries of games (Loetzsch et al., 2009). For conceptualising complex meanings, and

interpreting meanings in relation to the world, Babel2 includes a powerful procedural

semantics framework, called incremental recruitment language (IRL) (Spranger et al.,

2012b). For mapping from a meaning representation to an utterance (comprehension),

and vice versa (formulation), it includes Fluid Construction Grammar (FCG) (Steels,

2011a, 2017), a bidirectional computational grammar framework. Babel2 also includes

a robot interface that connects these tools with physical robots, as well as a general

meta-level architecture that can be used in the experiments to separate the routine

processing abilities of the agents from their problem solving capabilities.

These two software packages have led to interesting experiments on the emergence

and evolution of grammatical structures. However, more advanced experiments, in

which different language strategies are combined, become tedious to implement us-

ing the existing systems and would benefit from more advanced tools to model the

representation, invention, adoption, competition and alignment of grammatical struc-

tures in a more general way. In this dissertation, I aim to push the state of the art

1https://CRAN.R-project.org/package=MoLE
2https://github.com/EvolutionaryLinguisticsAssociation/Babel2

Paul_Van_Eecke_def.indd 33 27/09/18 08:37

24 CHAPTER 2. BACKGROUND

in this domain by introducing improved representations and more general invention,

adoption and alignment mechanisms in Babel2’s language processing component Fluid

Construction Grammar.

2.3 Computational Linguistics

This section discusses the language processing techniques that are used in experiments

on the emergence and evolution of grammar from a computational linguistics point

of view. It first describes the properties that are required for a language processing

component to be used in such experiments (2.3.1) and then discusses a selection of

linguistic formalisms, focussing in particular on how they relate to these requirements

(2.3.2).

2.3.1 Requirements

In order to be used as the language processing component in evolutionary linguistics

experiments, a computational grammar formalism needs to satisfy a number of re-

quirements. The formalism needs to (i) have sufficient expressive power, (ii) support

bidirectional, semantic processing, (iii) have an efficient implementation, and (iv) in-

tegrate invention, adoption and alignment mechanisms that allow for robust, flexible

and open-ended language processing.

Expressive Power When studying the emergence and evolution of natural languages,

it is obvious that the expressiveness of the computational grammar formalism that is

used needs to be sufficient to model at least the phenomena that are under investi-

gation, and preferably also other phenomena that are observed in natural languages.

These phenomena include for example free and fixed word orders, hierarchical and

recursive structures, case and agreement marking systems, and long-distance depen-

dencies.

Bidirectional, Semantic Processing Evolutionary linguistics experiments require a

language component that is capable of semantic processing. The task of this compo-

nent is not to accept or generate sentences that are licensed by a grammar, but to use

a grammar to map between utterances and a representation of their meaning. It is cru-

cial that the system is bidirectional, in the sense that the same grammar and processing

Paul_Van_Eecke_def.indd 34 27/09/18 08:37

2.3. COMPUTATIONAL LINGUISTICS 25

mechanisms are used for both comprehension (mapping from an utterance to a rep-

resentation of its meaning) and formulation (mapping from a meaning representation

to an utterance). This ensures that the grammatical structures that are learned by an

agent in comprehension can immediately be used by this agent in formulation, and that

the structures that are invented in formulation can also be comprehended. It is impor-

tant that the grammar formalism allows for meaning representations that are expressive

enough to model the meanings conveyed through natural language utterances.

Efficient Implementation The grammar formalism needs to have an efficient im-

plementation that can be used in experiments in which utterances are formulated and

comprehended thousands and thousands of times.

Flexible Language Processing In evolutionary linguistics experiments, each agent

in the population gradually builds up his own grammar, based on the outcome of the

communicative interactions in which he participates. This means that the grammar of

an agent is not a static system, but a dynamic system that undergoes changes every

time an utterance is comprehended or formulated. The grammar formalisms that

are used need to reflect this dynamic nature of the language. They need to support

mechanisms for introducing new linguistic elements into the grammar, for adopting

linguistic elements introduced by other language users, and to model the competition

between different elements that serve the same function.

2.3.2 Grammar Formalisms

A large variety of grammar formalisms has been developed in the computational linguis-

tics literature. Based on the kind of structure that these formalisms attribute to the

utterances of a language, they can be categorised into three groups: phrase structure

grammars, dependency grammars, and construction grammars. The following sections

briefly discuss these three groups of grammar formalisms with a special focus on the

requirements described above.

Phrase Structure Grammars

Phrase structure grammars analyse utterances in terms of hierarchical constituency

structures. A constituent is a group of (typically) adjacent words that function as a

single unit in an utterance. The smallest constituents are individual words, and larger

constituents span over multiple smaller ones. The constituents are organised into a

Paul_Van_Eecke_def.indd 35 27/09/18 08:37

26 CHAPTER 2. BACKGROUND

tree structure that spans over all the words of an utterance. Most phrase structure

grammars spring from the generative grammar tradition pioneered by Chomsky (1956,

1957). The main aim of these grammars is to establish a set of rules that describes

(recognises and generates) all correct sentences of a natural language, and only those.

Phrase structure grammars have often been computationally implemented using context-

free grammars (CFGs). Early on, CFGs have been enhanced with systems for handling

transformations that capture relations between sentences, for example the relation

between the active and passive voice (Chomsky, 1957). Other formalisms enhance

context-free grammars with features, allowing to drastically reduce the number of

rewrite rules needed to model phenomena such as subject-verb agreement (Gazdar

et al., 1985). CFGs do however not have sufficient expressive power to model all

utterances observed in natural languages (Shieber, 1985), which has led to the devel-

opment of more expressive formalisms.

One class of formalisms aims to extend the expressive power of CFGs in order to be

able to model at least some of the non-context-free structures that are observed in

natural languages, while retaining the property that they can be parsed in polynomial

time. These formalisms include, in increasing order of expressiveness, tree-adjoining

grammars (TAGs) (Joshi et al., 1975), linear context-free rewriting systems (LCFRSs)

(Vijay-Shanker et al., 1987) and range concatenation grammars (RCGs) (Boullier,

2000). For an elaborate discussion of this class of formalisms, see Kallmeyer (2010).

Like CFGs, these formalisms represent utterances as tree structures and aim to model

all and only the correct sentences of a language. Apart from the relations that are

captured in the tree structures, they do not aim to model the semantics of the sentences

that they describe. This is the main reason why (extended) CFGs are usually not used

in evolutionary linguistics experiments.

A different approach is taken by categorial grammars, such as combinatory categorial

grammar (CCG) (Steedman, 2000). Categorial grammars attribute to each lexical item

a syntactic type, which is either primitive (e.g. N and NP for noun and noun phrase)

or complex (e.g. S\NP for an intransitive verb, meaning ’takes an NP on the left
and returns an S’). Based on these syntactic types, utterances are analysed through

deduction. Categorial grammars are well-suited for semantic parsing, as during the

deduction process that builds up the phrase structure, lambda expressions capturing

the compositional meaning of an utterance can be constructed in parallel. Generally,

categorial grammars are used for parsing, rather than for production or generation.

Categorial grammars have not often been used in evolutionary linguistics experiments,

with the exception of Briscoe (2000) in the context of learning parameter settings for

a universal grammar.

Paul_Van_Eecke_def.indd 36 27/09/18 08:37

2.3. COMPUTATIONAL LINGUISTICS 27

A third class of phrase structure grammars that has a very high expressive power

groups constraint-based formalisms such as lexical-functional grammar (LFG) (Kaplan

and Bresnan, 1982), head-driven phrase structure grammar (HPSG) (Pollard and Sag,

1994) and sign-based construction grammar (SBCG) (Boas and Sag, 2012). These

formalisms use the unification of feature structures as a basic mechanism to derive the

possible sentences of a language, their phrase structure and their semantics. These

formalisms model language as a static constraint system, which limits their usability in

experiments in which languages dynamically emerge and evolve.

Finally, Definite Clause Grammars (DCGs) (Pereira and Warren, 1980) are an extension

of CFGs that is closely related to languages for logic programming, in particular Prolog.

DCGs represent grammar rules as definite clauses, as used in computational logic.

DCGs can be straightforwardly compiled into plain Prolog code, and have direct access

to the full power of the language. They can be processed efficiently, can compute

semantic structures and can be used both for parsing and for producing sentences.

They have been used in interesting evolutionary linguistics experiments, including Kirby

(2001, 2002a) on the emergence of compositionality, and Sierra-Santibáñez (2014,

2018) on the emergence and evolution of language systems for boolean coordination.

By design, phrase structure grammars attribute a central role to the order of the words

in an utterance. This allows the implementation of efficient parsing algorithms, but has

two major disadvantages when used in evolutionary linguistics experiments. The first

disadvantage is that it is difficult to implement phenomena such as case or agreement

marking independently from word order constraints. A second disadvantage is that the

rules in phrase structure grammars are local and cannot access information captured

in structures located more remotely in the tree structure.

Dependency Grammars

Dependency grammars (Tesnière, 1965) do not analyse utterances in terms of con-

stituents, like phrase structure grammars, but in terms of the dependencies between

the words that constitute the utterances. These dependencies are usually grammatical

functions such as subject, direct object or modifier. The nodes in the parse trees are

the words that occur in the utterances. The main verb is the root of the parse tree and

arcs go from higher nodes to their dependents, for example from the main verb to the

subject noun, and from the subject noun to its determiner. As the parse trees do not

need to capture word order, dependency grammars can well be used for modelling free

word order languages. Dependency grammars are most often learnt from annotated

corpora and are only used in the parsing direction. The semantics that they model is

Paul_Van_Eecke_def.indd 37 27/09/18 08:37

28 CHAPTER 2. BACKGROUND

limited to the labels on the arcs in the dependency trees. For these reasons, dependency

grammars are not used in evolutionary linguistics experiments. An elaborate discussion

about dependency parsing is presented by Nivre (2006); Kübler et al. (2009).

Construction Grammars

While phrase structure grammars and dependency grammars analyse sentences in terms

of constituency and dependency relations respectively, construction grammars do not

choose a primary perspective based on a particular relation, but consider many different

perspectives at the same time. The basic tenets of construction grammar, as laid out

by Fillmore et al. (1988); Goldberg (1995); Kay and Fillmore (1999); Croft (2001);

Goldberg (2006), are the following. First of foremost, construction grammars consider

language as a collection of form-meaning pairings, called constructions. Constructions

cut through the traditional layers of linguistic analysis, as they can combine phonologi-

cal, morphological, syntactic, semantic, pragmatic and multi-modal information within

a single construction. Construction grammars do not distinguish between a ‘lexicon’

and a ‘grammar’, but adhere to a lexicon-grammar continuum. The constructions that

make up a grammar range from very concrete, for example mapping between a partic-

ular string or phonological form and its meaning, to very abstract, for example in the

case of argument structure constructions. Constructions can span over multiple worlds

or combine specific words with more abstract phrases. Construction grammars consider

language as a dynamic system, of which the constructions and their entrenchment are

in constant flux.

There have been multiple efforts to build computational systems for formalising and

processing construction grammars. Embodied Construction Grammar (ECG) (Bergen

and Chang, 2005; Feldman et al., 2009) aims to analyse language into conceptual

schemas that parametrize mental simulations (Bergen and Chang, 2005). The ECG

system only implements language comprehension and not production. Template Con-

struction Grammar (TCG) (Barres, 2017) and Dynamic Construction Grammar (DCG)

(Dominey et al., 2017) are neuro-computational approaches to construction grammar.

DCG focusses on mapping regularities in word order to semantic roles and TCG fo-

cusses on the neural dynamics of language-vision interactions. Finally, Fluid Construc-

tion Grammar (FCG) (Steels, 2011a, 2017) implements the aforementioned tenets of

construction grammar with a special focus on language as an open-ended, dynamic

system.

FCG was especially designed to be used in evolutionary linguistics experiments. It

performs bidirectional, semantic processing, has a very high expressive power, has an

Paul_Van_Eecke_def.indd 38 27/09/18 08:37

2.4. CONCLUSION 29

efficient implementation, and integrates many features for modelling the invention,

adoption and alignment of linguistic elements. FCG has been used in many evolutionary

linguistics experiments, including experiments on the emergence and evolution of case

marking (van Trijp, 2016), agreement marking (Beuls and Steels, 2013) and phrase

structure (Garcia Casademont and Steels, 2016). The contributions presented in this

dissertation are all integrated into the FCG platform. An elaborate discussion of FCG

is presented in chapter 3 of this dissertation.

2.4 Conclusion

In this chapter, I have laid out the broader research context in which this dissertation is

embedded. I have first situated the project within the field of evolutionary linguistics,

in particular within the subfield that employs the language game paradigm to study

language evolution from a cultural perspective. Previous work in this field has mainly

focussed on the emergence of vocabularies and concepts, which has led to a good un-

derstanding of the mechanisms that are involved. More recently, the same paradigm has

also successfully been applied in experiments that study the emergence and evolution

of grammar. However, more advanced experiments would benefit from more general

tools for representing, inventing, adopting and aligning grammatical structures.

Then, I have discussed the methods that are used in these experiments from a com-

putational linguistics perspective. I have introduced the requirements that such ex-

periments impose on the grammatical formalisms that they use. These requirements

included sufficient expressive power, support for bidirectional semantic processing, an

efficient implementation, and support for the integration of invention, adoption and

alignment mechanisms. I have discussed a number of formalisms with respect to these

requirements, with a special focus on those that have been used in previous evolutionary

linguistics studies. I have introduced Fluid Construction Grammar as a computational

construction grammar platform that was especially designed to fit these requirements

and that has been extensively used in previous experiments. All contributions that will

be presented in the rest of this dissertation are integrated in the FCG platform.

Paul_Van_Eecke_def.indd 39 27/09/18 08:37

30 CHAPTER 2. BACKGROUND

Paul_Van_Eecke_def.indd 40 27/09/18 08:37

Chapter 3

Fluid Construction Grammar

3.1 Introduction . 32

3.2 A High-level Notation for FCG . 32

3.3 Language Processing as a Problem Solving Process 33

3.4 The Basic Building Blocks . 36

3.4.1 Transient Structures . 36

3.4.2 The Initial Transient Structure 38

3.4.3 Constructions . 39

3.4.4 The Construction Inventory 46

3.4.5 Construction Application and Search 46

3.4.6 Goal Tests and Solutions . 49

3.4.7 Meaning Representations . 50

3.5 Meta-Layer Problem Solving and Learning 50

3.5.1 Meta-Layer Architecture . 51

3.5.2 The Meta-Layer in Evolution Experiments 52

3.5.3 Library of Diagnostics and Repairs 54

3.6 FCG Interactive: Web Service and API 54

3.6.1 FCG Interactive Web Service 55

3.6.2 FCG Interactive Web API 56

3.7 Conclusion . 60

31

Paul_Van_Eecke_def.indd 41 27/09/18 08:37

32 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

3.1 Introduction

The framework that I present in this dissertation is integrated in Fluid Construction

Grammar (FCG). While most contributions, in particular the type hierarchy system

and meta-level operators, are designed as modular extensions to the existing system,

other contributions have led to major improvements to the FCG system itself. The

present chapter introduces the basics of FCG, on which the remaining chapters will

build. It focuses in particular on my own contributions, including the implementation

of a higher-level notation (3.2, 3.4), the tight integration of a meta-layer framework

and library of diagnostics and repairs (3.5), and the design and implementation of an

interactive web service and API (3.6).

The FCG source code including the framework of cognitive operators and all other

contributions described in this dissertation, has been released under an Apache 2.0

open source license, and is available at https://www.fcg-net.org/download.

3.2 A High-level Notation for FCG

With the first implementation dating back to around 2002, and certain major com-

ponents even to the late nineties, FCG has been in constant development over the

course of the last 15 years. This has led to major improvements in the representation

of constructions, the unificatioaengine, the stability of the overall system, the ease of

use, and the visualisations and interfaces. When the current research project started,

FCG was a mature technology that had proven its value both in evolutionary linguistics

experimentsdag (see e.g. the collection of papers published by Steels (2012b)) and

in case studies implementing challenging issues in existing natural languages (see e.g.

Beuls (2012); van Trijp (2014)). The code had reached a relatively stable status,

with the notation and basic design patterns documented by Steels (2011a) and more

advanced computational issues discussed by Steels (2012a). I will refer to this stage in

the development of FCG as FCG-2011, while I will refer to the current version simply

as FCG.

The evolutionary experiments and case studies on existing natural languages that were

set up using FCG-2011 provided new insights into how constructions are best repre-

sented. These insights led to a new notation that was initially used as a vehicle for

explaining FCG grammars to the community in a clearer and more natural way. The

new notation was introduced by Steels (2017), a paper of which the initial version was

already drafted mid 2014. In the context of the current research project, I have built a

Paul_Van_Eecke_def.indd 42 27/09/18 08:37

3.3. LANGUAGE PROCESSING AS A PROBLEM SOLVING PROCESS 33

mapping between this new FCG notation and FCG-2011. The implementation of this

mapping confirmed the validity and precision of the new notation, while also making

major contributions to the notation itself. The mapping is fully operational and has

replaced the FCG-2011 notation in the FCG release. While important parts of the FCG

core still use FCG-2011 representations, the grammar designer interfaces with the FCG

system using the new notation only. All input, such as construction inventories and

their constructions, as well as all output, including visualisations of the construction

application process, are presented in the new notation.

The new notation is more abstract and represents the information contained in con-

structions and transient structures in a more intuitive way. Moreover, it can be thought

of as a higher-level formalisation, handling certain low-level instructions behind the

scenes. The new notation considerably speeds up grammar development and makes

FCG much easier to learn. Since its first release in June 2015, it has been used in multi-

ple grammar evolution experiments (e.g. Cornudella et al. (2016); Garcia Casademont

and Steels (2016)), case studies on different existing natural languages (e.g. Marques

and Beuls (2016) for Portuguese clitics, Beuls et al. (2017) for Russian motion verbs,

Beuls (2017) for Spanish verb morphology, Van Eecke (2017) for Dutch verb phrases),

the first implemented broad-coverage construction grammar for English (van Trijp,

2017) and even a project on construction-based planning, plan recognition and plan

prediction (Beuls et al., in preparation).

3.3 Language Processing as a Problem Solving Process

FCG implements language processing as a problem solving process. Research into

problem solving has a long history in the field of artificial intelligence (AI), starting in

the fifties with the work of Newell et al. (1957). Over time, solid theoretical founda-

tions were laid out (Nilsson, 1971) and problem solving is still very influential in major

subfields of AI (Russell and Norvig, 2009). In the field of computational linguistics,

language processing has often been treated as a problem solving process. This is the

case for both comprehension (Hobbs et al., 1993; Powers et al., 2003) and formulation

(Appelt, 1985; Garoufi and Koller, 2010), as well as for language learning (Zock et al.,

1988).

A problem can be defined by the following four components, as laid out by Russell and

Norvig (2009: 70) for the 8-queens problem1.

1The 8-queens problem consists in finding a configuration of 8 queens on a chessboard, with no queen

being attacked by any other queen. The problem was originally proposed by chess composer Max

Bezzel in 1848 and is an iconic example problem in AI handbooks.

Paul_Van_Eecke_def.indd 43 27/09/18 08:37

34 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

• State Representation A representation of the state of the problem at a certain
point in time. This consists of all relevant information about the problem that is

known at that moment, in a data structure that allows efficient processing of the

problem at hand. In the case of the 8-queens problem, this is a representation

of the chessboard, with any configuration of 0 to 8 queens on the board.

• Initial State The state representation before the problem solving process has
started. It is for this problem state that a solution needs to found. In the case

of the 8-queens problem, this is a state representation with no queens on the

board.

• Operators A set of actions that can be applied to a state representation. The
operators transform a state representation into a different state representation.

In the case of the 8-queens problem, only 1 operator is available, namely adding

a queen to any empty square on the board.

• Goal Test A function that decides whether a problem state qualifies as a solution.
In the case of the 8-queens problem, 8 queens should be on the board and none

of them can be attacked by any other queen.

The task of the problem solver is to find a sequence of operators (a pathway) that

transforms the initial state into a goal state, i.e. a state representation in which the

goal test returns true. Starting from the initial state, the subsequent application of

operators gives rise to a tree of problem states, defining the search space. Finding

a pathway that leads to a solution state can be very difficult, as the search space is

often very large. In the case of the 8-queens problem, the search space contains more

than 1014 states, with only 92 states qualifying as a solution. In order to navigate

through the search space in an informed way, problem solvers commonly employ search

algorithms that rely on heuristics to help decide which pathway to pursue and which

operators to consider in the current state.

As presented by Steels and Van Eecke (2018), the standard model of problem solving

can be mapped to language comprehension and formulation in a straightforward way.

In FCG, the basic components of the model are instantiated for language processing

as follows:

• State Representation The state representation is called the transient structure.
It is a feature structure containing a representation of all information that is

known at that point in processing about the utterance that is being processed.

The transient structure can contain any kind of information, including syntactic,

semantic, pragmatic, morphological, prosodic, phonological, phonetic and multi-

modal information.

Paul_Van_Eecke_def.indd 44 27/09/18 08:37

3.3. LANGUAGE PROCESSING AS A PROBLEM SOLVING PROCESS 35

• Initial State The initial transient structure is a feature structure containing all
information that is available before processing has started. It is the result of

a pre-processing step called de-rendering. In comprehension, the initial tran-

sient structure contains the form features from the input, which are typically

strings and ordering constraints between these strings, possibly in combination

with a representation of gestures and prosodic features. In formulation, the initial

transient structure contains a representation of the meaning that needs to be

formulated.

• Operators The operators that apply to transient structures are called construc-
tions. Constructions can be seen as schemata that have preconditons and post-

conditions. This representation of operators is common in the field of planning

(see e.g. STRIPS2 , ADL3, and more recently PDDL4). When the preconditions

are satisfied by a transient structure, the construction can apply and the post-

conditions manipulate this transient structure to create a new transient structure.

As language processing is bidirectional, the constructions have two sets of pre-

conditions, one set for comprehension (called the comprehension lock) and the

other for formulation (called the formulation lock). The preconditions for com-

prehension serve as postconditions in formulation and vice versa. Constructions

can also contain a set of features that serve as postconditions in both compre-

hension and formulation (called the contributing part).

• Goal Test After each construction application, goal tests check whether the re-
sulting transient structure qualifies as a solution. Usually, different goal tests are

used for comprehension and formulation. In comprehension, goal tests typically

check that no more constructions are applicable and that all meaning predicates

are integrated into a single semantic network. In formulation, goal-tests typically

check that no more constructions are applicable and that all meaning predicates

that were present in the input have been used by constructions.

The FCG engine has the task of finding a pathway of constructions that leads from the

initial transient structure to a transient structure that qualifies as a solution. Just like

in the 8-queens problem, the problem solver relies on heuristics to navigate through

the search space in an efficient manner. Here as well, the heuristics give either an

indication of which construction should be applied next, or of which branch in the

search tree should be pursued. A schematic representation of the problem solving

process is presented in Figure 3.1.

2STRIPS: STanford Research Institute Problem Solver (Fikes and Nilsson, 1971)
3ADL: Action Description Language (Pednault, 1987)
4PDDL: Problem Domain Description Language (Malik Ghallab et al., 1998)

Paul_Van_Eecke_def.indd 45 27/09/18 08:37

36 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

Initial-
trasient-
structure

Transient-
structuret+1

cxnj

 cxni cxnj cxnk cxnl cxnm cxnn cxno cxnp … cxnz cxn-inventory

cxnp
Transient-

structuret+3

Transient-
structuret+4

cxnm

cxno

Transient-
structuret+2

Transient-
structuret+5

Final
Transient
Structure

cxnp

cxnk cxnl

Goal test: failed

Goal test: failed

Goal test: failed

Goal test: failed

Goal test: failed Goal test: failed Goal test: succeeded

Figure 3.1: A schematic representation of the problem solving process in Fluid Con-

struction Grammar. Constructions apply to create new transient structures. Goal tests

check whether the new transient structure qualifies as a solution. If so, the search pro-

cess finishes, otherwise it continues to apply further constructions, backtracking if

necessary. In this figure, a pathway is found, namely [cxno , cxnk , cxnl].

3.4 The Basic Building Blocks

In this section, I will present the basic components of FCG on a more technical level. As

it is not easy to do this in sufficient detail in a written text, I have added interactive visu-

alisations of these components to the web demonstration supporting this dissertation5.

The best strategy for achieving a deep understanding however, consists in download-

ing the FCG system and playing around with a small grammar fragment. Technical

documentation for the system is available at https://www.fcg-net.org/tech-doc.

3.4.1 Transient Structures

Transient structures, the state representations in our search problem, are represented

as feature structures. Feature structures are widely used in grammar formalisms such

as LFG 6, GPSG 7, HPSG 8, SBCG 9 and ECG 10. In FCG, the feature structures are

5https://www.fcg-net.org/demos/vaneecke-phd
6LFG: Lexical Functional Grammar (Kaplan and Bresnan, 1982)
7GPSG: Generalized Phrase Structure Grammar (Gazdar et al., 1985)
8HPSG: Head-Drive Phrase Structure Grammar (Pollard and Sag, 1994)
9SBCG: Sign-Based Construction Grammar (Boas and Sag, 2012)
10ECG: Embodied Construction Grammar (Bergen and Chang, 2005)

Paul_Van_Eecke_def.indd 46 27/09/18 08:37

3.4. THE BASIC BUILDING BLOCKS 37

reset

⨀
form:
sem-function:

syn-cat:

args:
subunits:

transient structure

root

noun-phrase-56
{meets(the-38, mouse-24)}

sem-class: referring-expression

lex-class: noun-phrase
[?x-756]

{the-38, mouse-24}

args:
sem-cat:

syn-cat:

form:
meaning:

mouse-24
[?x-756]

sem-class: physical-object

lex-class: noun
{string(mouse-24, "mouse")}

{phys-obj(mouse, ?x-756)}

args:
sem-cat:

syn-cat:

form:
meaning:

the-38
[?x-756]

sem-function: referent

lex-class: article
{string(the-38, "the")}

{selector(unique, ?x-756)}

Babel web interface http://localhost:8000/

1 of 1 13/02/2017, 16:40

Figure 3.2: Example of a transient structure. It is a feature structure consisting of a

set of units. The hierarchy is drawn based on the ‘subunits’ feature. In the value of

that feature, ‘the-38’ and ‘mouse-24’ are symbols, not pointers to the units.

not typed, which facilitates a dynamical addition, modification or deletion of features

and values in a grammar.

A transient structure consists of a collection of units. The units have a unit name and

a unit body, which consists of a set of feature-value pairs. In the transient structure,

unit and feature names are constants. The values of features can be either constants,

logical variables (symbols that start with a question mark) or feature-value pairs. An

example of a transient structure is shown in Figure 3.2.

This transient structure consists of 4 units: ‘root’, ‘mouse-24’, ‘the-38’ and ‘noun-

phrase-56’. I will skip over the root unit for the moment, and come back to it in the

next section. The body of the three other units consists of a set of feature-value pairs,

in which the internal ordering is not important. The feature-value pairs have different

kinds of values. The ‘args’ feature for example takes a sequence of symbols as value

(indicated by square brackets). The sequence consists here of a single element, ‘?x-

756’, which is a variable (as indicated by the question mark). The ‘syn-cat’ feature

takes a feature-value pair as value. The ‘lex-cat’ feature takes an atomic symbol as

value. Finally, the ‘form’ and ‘meaning’ features take a set of predicates as value,

as indicated by the curly brackets (set) and the predicate notation of their elements

(predicate). I will discuss the complete inventory of feature-types and their behaviour

in section 3.4.3. For now, I just stress that the set of possible features is completely

Paul_Van_Eecke_def.indd 47 27/09/18 08:37

38 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

open-ended and that their type can be freely chosen by the grammar designer.

The figure visualises the transient structure in a hierarchical way, namely as a tree.

The visualisation is in this case based on the ‘subunits’ feature, which has here a set of

two symbols as its value. These symbols, ‘the-38’ and ‘mouse-24’ are equal to the unit

names of two other units in the transient structure. This information is used to visualise

the hierarchy. It is important to know that the transient structure is implemented as a

set of units and that units are never nested. The value of the subunits features are just

symbols that correspond to the unit name of other units and should not be thought of

at pointers to these units. This means that multiple features can be used to represent

different perspectives at the same time, for example constituent structure, dependency

structure of information structure. The visualisation can simply be adapted by using a

different feature for drawing the hierarchy or any other kind of network of units.

As a historical note, I would like to point out that the transient structure does not

consist of a syntactic and a semantic pole any more, as it was the case in FCG-2011.

All information in now contained in a single set of units and constructions are able to

use and combine any part of this information in both comprehension and formulation.

3.4.2 The Initial Transient Structure

The initial transient structure is the transient structure that is at the root of the search

space. It contains all information that is known before the problem solving process has

started. The initial transient structure is the result of a de-rendering process. This

process translates an input into a transient structure that can be used for problem

solving. Although different de-render methods are implemented for different tasks,

de-rendering for language processing is usually done in a standardised way.

In comprehension, the input consists of a string, such as “the smart mouse”. The input

string is first tokenized. Then, a unique identifier symbol is attributed to each token,

and a predicate string(identifier,token) is created. The unique identifier makes it pos-

sible to refer unambiguously to a specific token in the input, even if has the same form

as other tokens in the input. This is for example the case when a word occurs more

than once in the input utterance. Then, the internal ordering of the tokens is encoded

in predicates as well. This is done using three kinds of predicates: meets(identifier-

1,identifier-2) indicating binary left-right adjacency, precedes(identifier-1,identifier-2)

indicating a binary precedence relation, and sequence(identifier-1,identifier-2,..., identifier-

n) capturing the complete sequence. Finally, a feature form, which gets as value the

set of string, meets, precedes and sequence predicates, is added to a unit called root in

Paul_Van_Eecke_def.indd 48 27/09/18 08:38

3.4. THE BASIC BUILDING BLOCKS 39

reset

⨀

form:

transient structure

root
{sequence(the-41, smart-3, mouse-27),
string(mouse-27, "mouse"),
string(smart-3, "smart"),
string(the-41, "the"),
meets(the-41, smart-3),
meets(smart-3, mouse-27),
precedes(the-41, mouse-27),
precedes(smart-3, mouse-27),
precedes(the-41, smart-3)}

Babel web interface http://localhost:8000/

1 of 1 13/02/2017, 16:44

(a) Comprehension reset

⨀ meaning:

transient structure

root
{phys-obj(mouse, o-1),
selector(unique, o-1),
property(intelligent, o-1)}

Babel web interface

(b) Formulation

Figure 3.3: Initial transient structure for the utterance “the smart mouse” in compre-

hension and formulation. All features in the initial transient structure are added to the

root unit.

the transient structure. An example of an initial transient structure for the utterance

“the smart mouse” is shown in Figure 3.3a.

In formulation, the input consists of a meaning representation. As the meaning repre-

sentation is typically already specified in the form of a set of predicates, no additional

pre-processing steps are needed. A feature meaning, with as value the meaning predi-

cates from the input is added to the root unit. The initial transient structure for the

meaning representation {(selector unique o-1) (phys-obj mouse o-1) (property intelli-
gent o-1)} is shown in Figure 3.3b.

As shown in Figure 3.3, the initial transient structures contain thus a single unit,

named root, with either a form feature (in comprehension) or a meaning feature (in

formulation). The value of this feature is a set of predicates capturing the information

in the input. These predicates will later be used by constructions the during the problem

solving process.

3.4.3 Constructions

Constructions are the operators in the problem solving process. Based on information

present in a transient structure, they can build a new transient structure with more

information added. The same constructions and processing mechanisms are used in

comprehension and formulation, making FCG a truly bidirectional language processing

framework.

Paul_Van_Eecke_def.indd 49 27/09/18 08:38

40 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

Design and Structure

Like transient structures, constructions are implemented as feature structures. But

whereas the feature structures representing transient structures are simply sets of

units, those representing constructions are more structured. Constructions are data

structures consisting of two parts:

• Conditional Part The conditional part specifies the preconditions of the con-
struction. It consists of one or more units. The unit names are variables and the

unit bodies are split into two parts: the comprehension lock and the formulation

lock. The comprehension locks specify the preconditions of the construction in

comprehension and the formulation locks specify the preconditions in formula-

tion. A construction can apply in comprehension when the comprehension locks

of the units on its conditional part match the transient structure and the con-

struction can apply in formulation when the formulation locks match the transient

structure. Matching is a unification process that succeeds if for each unit on the

conditional part of a construction, a unit in the transient structure can be found

such that the active locks (comprehension locks in comprehension, formulation

locks in formulation) unify. The non-active locks are merged into the transient

structure. Merging is another unification process, in which on top of matching,

features that are present in the construction but not in the transient structure are

added. In the visualization of a constructions, the conditional part is written on

the right-hand side of the arrow. For each conditional unit, the comprehension

lock is written above the horizontal line and the formulation lock below. The

structure of a construction is schematically sketched in Figure 3.4.

• Contributing Part The contributing part of a construction is written on the
left-hand side of the arrow. It contains zero or more units, of which the names

are variables. When the conditional part of a unit matches a transient structure,

the units on the contributing part are merged into the structure. When the con-

tributing part contains features that cause conflicts during merging, the process

fails and the construction cannot apply11. If merging succeeds, the construction

application succeeds.

There are no restrictions on what can be written on the left-hand side or right-hand

side of a construction, which makes an FCG grammar unrestricted (type-0 grammar)

in the Chomsky hierarchy (Chomsky, 1956).

As a historical note, I add that this layout of constructions allows the elimination of the

11In technical terms, this would be called a second-merge-fail, whereas a first-merge-fail indicates a

failure in merging the non-active locks into the transient structure.

Paul_Van_Eecke_def.indd 50 27/09/18 08:38

3.4. THE BASIC BUILDING BLOCKS 41

syn-cat:

syn-cat:

?unit-1

lex-class: noun-phrase

?unit-3

lex-class: noun-phrase

sem-cat:

syn-cat:

sem-cat:

syn-cat:

example-cxn (cxn 0.50) show attributes

?unit-1

sem-function: referent

lex-class: article

?unit-2

sem-class: physical-object

lex-class: noun

Babel web interface http://localhost:8000/

comprehension lockcomprehension lock

formulation lock

comprehension lockcomprehension lock

formulation lock

contributor

contributor

Figure 3.4: A schematic representation of a construction in FCG, with its conditional

part on the right and its contributing part on the left. Two units with their comprehen-

sion and formulation locks are shown in the conditional part and two units with their

contributor are shown in the contributing part. Note that the unit names are variables,

and that the unit name of one of the units of the contributing part is bound to the

unit name of one of the units of the conditional part.

J-unit notation known from FCG-2011 (De Beule, 2007: 47-76). This is a substantial

improvement, as understanding the J-unit notation was a major difficulty for learners

of FCG.

Feature Types

In the previous section, I have defined construction application as matching the active

locks of the construction with the transient structure and merging the non-active locks

and the contributors into the transient structure. I have not given a precise formal-

isation or algorithm for the matching and merging operations other than describing

them as unification processes. In fact, FCG allows for a representation of features that

is so expressive that features can trigger the use of a specific matching and merging

algorithm. The algorithms are associated to features on grammar level or construc-

tion level by the declaration of feature types and are reflected in the visualisation of

feature-value pairs. Note that feature types in FCG have nothing to do with ‘typed

feature structures’, which are not used in FCG at all.

I will briefly discuss the feature types that are commonly used in FCG, without going

into too much detail. An overview of these feature types, their notation and associated

algorithms, is shown in Table 3.1. For a formal definition of the underlying unification

processes, I refer the reader to Steels and De Beule (2006), De Beule (2012) and

Sierra-Santibáñez (2012).

• Default Feature Type If no other type is declared for a certain feature, the FCG

Paul_Van_Eecke_def.indd 51 27/09/18 08:38

42 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

engine will assume that it is of this default type. The feature has a value that is

either atomic, i.e. a constant or variable, or complex, in which case it consists

of one or more feature-value pairs. In matching, the feature name should be

present in the transient structure. If the value is atomic, it should unify with

the value in the transient structure. If it is complex, the feature-value pairs in

the construction should be a subset of the feature-value pairs in the transient

structure, with each corresponding pair matching. In merging, the feature should

not necessarily be present in the transient structure. If it is already there, the

bindings from matching are instantiated. If it is not, the feature and its value

are added to the transient structure. The value of a feature of the default type

cannot have multiple features with the same feature name.

• Set This feature type indicates that the value of a feature is a set. The value
is written between curly brackets. In matching, the FCG engine checks whether

the elements in the value of the feature in the construction unify with a subset

of the elements in the value of the same feature in the transient structure. In

merging, the bindings from matching are instantiated and any new elements in

the value are added to the transient structure. In sets, the same element can

occur in the value multiple times.

• Sequence The value of a sequence feature is written between square brackets.
In both matching and merging, the order and number of elements in the value is

meaningful and every element should match and merge with the corresponding

element in the transient structure.

• Set-of-predicates This feature type is very similar to the set feature type, but
the elements of the value here are predicates. This feature type is most often

used with the form and meaning features in FCG. The predicates are written in

predicate notation and placed in curly brackets.

• Sequence-of-predicates This feature type is very similar to the sequence feature
type, but the elements of the value here are predicates. The predicates are written

in predicate notation and placed in square brackets.

Another device that can be used in a construction to call a specialised matching and

merging algorithm is the negation operator. This operator can be used to indicate

that a certain feature-value pair or set element should NOT be present in the transient

structure. Negation is indicated by adding the ¬ symbol in front of a feature or set
element. Negations are only matched and not merged into the transient structure.

As a historical note, I add that the concept of feature types in FCG is quite different

from how its functionality was achieved in FCG-2011. In FCG, the feature names are

Paul_Van_Eecke_def.indd 52 27/09/18 08:38

3.4. THE BASIC BUILDING BLOCKS 43

Table 3.1: The feature types typically used in FCG, with their notation and associated

match and merge algorithms. f : feature, v : value, p: predicate, a: argument.

Feat. Type Notation Match Merge

default f1 : f2 : v2 subset instantiation / extension

f3 : v3
set f1 : {v1, v2, ..., vn} subset instantiation / extension

sequence f1 : [v1, v2, ..., vn] exact instantiation

set-of- f1 : {v1(a1), v2(a2, a3), subset instantiation / extension

predicates ..., vn(a4, a5, a6)}
sequence-of- f1 : [p1(a1), p2(a2, a3), exact instantiation

predicates ..., pn(a4, a5, a6)]

associated with a specific unification algorithm on grammar or construction level while

in FCG-2011, special operators (e.g. ‘==’, ‘==0’, ‘==1’ and ‘++’) were written

inside the feature structure. The special operators triggered a different unification al-

gorithm at that point in processing. The current notation makes the feature structures

much clearer and easier to understand. Behind the scenes however, the feature type

notation is still compiled into the special operator notation.

Operator

One of the most widely used operators is the # operator (hash-operator). By putting

a # sign in front of a feature in one of the locks of a construction, that feature is not

matched in the corresponding unit in the transient structure, but in the ‘root’ unit.

In the merging phase, it is taken from the ‘root’ unit and merged into the unit it is

specified in. If this unit does not exist yet, a new unit is built. The # operator can

be thought of in terms of cutting and pasting a feature from the ‘root’ to another

unit. The # operator is extensively used by morphological and lexical constructions to

match on strings and meaning predicates from the input. Grammatical constructions

often use this operator to match on word-order predicates.

Let us have a look a construction that employs the # operator, namely the ‘mouse-cxn’

visualised in Figure 3.5. This construction has one unit on the conditional part, with a

form feature in the comprehension lock and a meaning feature in the formulation lock.

Both features are preceded by a #. We will now apply the construction to the transient

structure shown in Figures 3.3a (for comprehension) and 3.3b (for formulation) above.

In comprehension, the construction will match the form feature in the ‘root’ unit of

the transient structure. Matching will succeed and in merging, the construction will

build a new unit, called mouse-word-xx. Then, it will move the string(mouse-word-27,

Paul_Van_Eecke_def.indd 53 27/09/18 08:38

44 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

reset

args:
sem-cat:

syn-cat:

?mouse-word
[?x]

sem-class: physical-object

lex-class: noun

meaning:
form:

mouse-cxn (cxn 0.50) show attributes

?mouse-word
{phys-obj(mouse, ?x)}

{string(?mouse-word, "mouse")}

 ⨀

Babel web interface

1 of 1

Figure 3.5: An example of a construction that employs the # operator. The feature

preceded by a # will be matched in the root unit and merged into the unit they are

written in. In this case a new unit ‘mouse-word-xx’ will be created.

“mouse”) predicate to the form feature of this new unit. It will also add the meaning

feature from the formulation lock and all features from the contributor. In formulation,

the construction will match the meaning feature in the ‘root’ unit, move it to a new

unit and add the form feature from the comprehension lock as well as all features from

the contributor.

Another historical note: the # operator replaces FCG-2011’s ‘tag’ mechanism, which

would move features from one unit in the transient structure to another unit. The

operator is still mapped to the tag mechanism behind the scenes. Another use

of FCG-2011’s tag mechanism, which allowed to express both positive and negative

constraints on the same feature, is now included in the negation operator.

Expansion (procedural attachment) and Overwriting operators

Two features that were present in FCG-2011 were initially not foreseen in the new

FCG notation. But in order to make FCG as expressive as possible, support for these

features was added and an appropriate syntax was designed. The two features are

an overwriting and an expansion operator. The overwriting operator (a => b) allows

matching on one value (a) and, if matching succeeds, to replace this value by another

value (b) in merging.

The expansion operator allows for procedural attachment, a technique well-known from

knowledge representation systems in the field of AI (Bundy and Wallen, 1984). This

operator is used to call an arbitrary function with the data on which a feature matches

and to merge the data that this function returns into the transient structure. The

use of the expansion operator provides the complete power of the LISP programming

language to an FCG construction. Moreover, it has access to the whole construction

application process, including the construction inventory, previous transient structures

Paul_Van_Eecke_def.indd 54 27/09/18 08:38

14/02/2017, 17:46

3.4. THE BASIC BUILDING BLOCKS 45

Table 3.2: The special operators used for the overwriting of features and for expansion

(procedural attachment). f : feature, v : value.

Operator Notation Match Merge

overwriting f1 : {v1 => v2} match with v1 replace v1 by v2
expansion third element in procedure procedure

feature declaration

and applied constructions. The expansion operator is very useful to perform tasks that

would be inefficient to do declaratively, for example the numerical computation involved

in calculating cosine distances when working with meaning representations based on

distributional semantics. An overview of the operators and their notation is presented

in Table 3.2.

Footprints

When the active locks of a construction match with a transient structure and the

non-active locks and contributors are not in conflict with the transient structure, a

construction can apply. This creates the need for control mechanisms preventing that

a construction keeps applying an infinite number of times, as the transient structure

usually still satisfies the active locks of the construction after its application. One way

of preventing the reapplication of a construction is to use the # operator in one of the

locks. As the ‘hashed’ feature is moved from the root into another unit, it cannot be

matched in the root any more and the construction cannot apply a second time.

A second mechanism that has a long history in FCG consists in leaving a footprint in

the transient structure and not applying a construction if its footprint is already there.

Concretely, when a construction applies, it merges a feature ‘footprints’ with as value

a set containing the construction name into one of the units in the transient structure

that also appears on the conditional part. In the lock of this unit on the conditional

part, a negated feature (using the negation operator ¬) ‘footprints’ with as value a
set containing the construction name is added. The first time that the construction

applies, the conditional part is satisfied and the footprint is merged in. The second

time, the negated feature is in conflict with the footprint and the construction cannot

apply. Footprints cannot only be used to prevent the same construction from applying,

but can also reduce the search space by blocking large numbers of mutually exclusive

constructions.

While in FCG-2011, the use of footprints was entirely the responsibility of the grammar

designer, the new FCG notation handles footprints behind the scenes. A negated

Paul_Van_Eecke_def.indd 55 27/09/18 08:38

46 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

footprints feature is added to each lock that contains no # operator of each unit

on the conditional part of a construction. To the contributor of the corresponding

unit, the footprints feature itself is added. This system ensures that by default, a

construction can only apply once using the same units to satisfy its locks. If the

grammar designer needs more fine-grained control over the footprints, he can simply

turn off the automatic footprints for a single construction or an entire grammar. In

that case, he becomes once again responsible for managing footprints himself.

3.4.4 The Construction Inventory

In FCG, a grammar is concretely implemented as a construction inventory. The con-

struction inventory contains not only the constructions of a grammar, but also all infor-

mation that is required to use the grammar in processing. This information consists of

the declaration of feature types, a configuration object for processing and a configura-

tion object for visualisation. The feature types declaration holds the feature types that

are used throughout the grammar, although they can be overloaded on construction

level. The configuration object for processing specifies many different processing op-

tions, including the required render and de-render method, search algorithm, maximum

search depth and goal tests. The configuration object for visualisation specifies a.o.

which features should be used to draw hierarchies and which level of detail should be

shown in the visualisation, e.g. for debugging purposes.

Depending on whether a grammar supports meta-layer processing (see Section 3.5)

or type hierarchies (see Chapter 4), the construction inventory also holds a list of

diagnostics and repairs or the type-hierarchy that needs to be build up or used.

3.4.5 Construction Application and Search

Now that we have seen what transient structures and constructions look like, we will

have a closer look at how the FCG engine deals with the construction application

and search processes. As explained above, the aim of the FCG engine is to find

a pathway, i.e. a sequence of construction applications that leads from the initial

transient structure to a transient structure that qualifies as a goal state.

In essence, the construction application process is steered by two mechanisms: the

queue regulator and the construction supplier. The task of the queue regulator is to

select the transient structure to which a new construction will be applied. It deter-

mines which partial pathway will be explored further. The task of the construction

Paul_Van_Eecke_def.indd 56 27/09/18 08:38

3.4. THE BASIC BUILDING BLOCKS 47

supplier is to select a construction that will be matched with a certain transient struc-

ture. Together, these two mechanisms regulate which part of the search space will be

explored.

In its most basic setting, the queue regulator always selects the transient structure

that was most recently added to the queue, leading to a depth-first exploration of

the search space. The construction supplier in its most basic setting randomly picks

a construction from the construction inventory. If the construction can apply, the

resulting transient structure is added to the queue and the queue regulator selects this

new transient structure. If no construction can apply, the queue regulator will backtrack

to the previous node in which not all constructions from the transient structure were

tried. Obviously, exploring the search tree in an uninformed way is not feasible for large

search spaces. For this reason, FCG provides a number of mechanisms for steering the

search process in a way that a solution can be found by exploring only a very small part

of the search space.

Construction Sets and Construction Networks

A first way to make the task of the construction supplier easier, is to internally structure

the constructions in the construction inventory. There are two common ways for doing

this, using construction sets or construction networks.

When using construction sets, the constructions of a construction inventory are divided

into two or more sets. The sets are ordered, with potentially a different ordering for

comprehension and formulation. At first, the construction supplier will only supply

constructions from the first set. When all these constructions have been supplied, it

will continue with constructions from the second set and further sets, until all sets

have been exhausted. Construction sets can drastically reduce the search space, as

they ensure that certain constructions can only be applied after other constructions

have been tried. It is for example common to specify that the set of morphological

constructions should be applied first in comprehension and last in formulation. This

ensures that at least all morphological information is known before starting to apply

grammatical constructions in comprehension, and that all grammatical information is

known before starting to realise words as specific morphologic forms in formulation.

Construction networks, also called priming networks (Wellens, 2011), organise the con-

structions in the construction inventory as a network. Each construction has ingoing

and outgoing priming links connecting the construction with other constructions. The

construction supplier will first supply the constructions that are primed by outgoing

links. The links can be trained using a test corpus or in a multi-agent experiment. The

Paul_Van_Eecke_def.indd 57 27/09/18 08:38

48 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

construction networks capture which constructions often apply after a given construc-

tion in a successful pathway. By doing this, they manage to extend a partial pathway

immediately with a construction that is likely to lead to a solution and therefore reduce

the search space.

Hashing Constructions

For any realistic grammar of an existing language, the construction inventory easily con-

sists of over 500.000 constructions. Most of these however, are morphological or lexical

constructions. The preconditions of these constructions are very straightforward. In

comprehension, they only require a string present in the input and in formulation, they

only need a meaning predicate present in the input. Instead of looping through all mor-

phological and lexical constructions and matching them with the transient structure,

we organise these constructions in two hash tables. The first hash table has strings as

keys and a list of constructions that match on these strings as values. The second hash

table has meaning predicates as keys and a list of constructions that match on these

meaning predicates as values. The construction supplier can now find a small set of

constructions to match for every string or meaning predicate in constant time. When

all strings or meaning predicates are moved out of the ‘root’ unit, the high number

of lexical and morphological constructions should not be considered any more by the

construction supplier. Using hashed construction sets, a grammar can be extended

with as many lexical and morphological constructions as necessary, without causing

any performance loss.

Scoring Constructions and Transient Structures

Scores can be assigned to both constructions and transient structures. Scores of con-

structions can be used by the construction supplier while scores of transient structure

can be used by the queue regulator.

In evolutionary experiments, the score of a construction reflects how confident the

language user is that this construction will contribute to achieving successful com-

munication. It is dynamically updated based on the outcome of each communicative

interaction. The construction supplier will select first constructions with a higher score.

These scores are thus mainly used to lead the search process to a specific solution state,

rather than to lead it faster to any solution state.

The score of a transient structure estimates how far away this state is from a solution

state. Heuristic search algorithms (such as A*) rely on this score for deciding which

Paul_Van_Eecke_def.indd 58 27/09/18 08:38

3.4. THE BASIC BUILDING BLOCKS 49

partial pathway in the search tree should be pursued. There has been little research

into finding good estimates for the scores of transient structures. It would however be

interesting to study the influence of factors such as the number of variable links in the

meaning representation.

Grammar Design

Last but not least, the design of the constructions in the grammar itself has also a major

influence on the size of the search space. As a general rule, it should be avoided that

two constructions with conflicting features can apply to the same transient structure.

If certain information is not yet known at one point in processing, it is preferable to

underspecify the corresponding features as compared to splitting the search tree into

two hypotheses. For example, a morphological construction realising an article as a

singular form should only apply after a noun phrase has been build and the number of the

noun with which the article needs to agree with is known. Apart from the mechanisms

described above, the feature matrices technique presented by van Trijp (2011) has

been particularly successful in underspecifying linguistic agreement information for case,

number and gender.

3.4.6 Goal Tests and Solutions

Every node in the search tree contains a transient structure. At the moment that

the node is created, all goal tests specified in the construction inventory are run on

the node. If all goal tests succeed, the node is returned as a solution. If one or

more goal tests fail, the search process continues (see Figure 3.1). In comprehension,

goal tests typically fail when other constructions can still apply, when the ‘root’ unit

still contains strings of when the meaning predicates in the transient structure are not

linked into a single semantic network. In formulation, goal tests typically fail when other

constructions can still apply or when the ‘root’ unit still contains meaning predicates.

When all goal tests succeed and a node is returned as a solution, the final transient

structure is rendered. In comprehension, rendering is done by extracting all predicates

from the meaning feature in every unit of the transient structure. These meaning

predicates are then drawn as a semantic network, as shown in Figure 3.6 for the

transient structure from Figure 3.3b. In formulation, rendering is done by extracting

all predicates from the form feature in every unit of the transient structure. Then, the

strings in the string(identifier,string) predicates are concatenated taking into account

Paul_Van_Eecke_def.indd 59 27/09/18 08:38

50 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

(phys-obj mouse ?o-1)

(selector unique ?o-1)

(property intelligent ?o-1)

Figure 3.6: In comprehension, a solution is rendered by extracting all meaning predi-

cates from a final transient structure and connecting linked variables with a line. The

resulting representation is called a semantic network. The network in this figure is

rendered from the transient structure shown in 3.2.

the ordering constraints in the other predicates. The output in comprehension is a

semantic network and the output in formulation is an utterance.

3.4.7 Meaning Representations

FCG does not impose a particular kind of meaning representation and leaves its design

up to the grammar designer. As long as the semantic networks are built up from

predicates that share arguments by linking variables, FCG can handle the meaning

representation without any additions necessary. Two types of meaning representation

are commonly used with FCG. If the aim is to ground the meaning in the sensory-motor

systems of physical robots, a procedural semantics called Incremental Recruitment

Language (IRL) (Steels, 2000, 2007; Spranger et al., 2012a) is used. If this is not the

aim, a minimal form of predicate calculus is used.

The examples in this dissertation use a minimal form of predicate calculus. All pred-

icates are typed and their arguments can only be constants and variables. The pred-

icates are written in the following form: type(predicate, arg1, arg2, ..., argn). By

linking the arguments of different predicates, complex compositional meanings can be

expressed.

3.5 Meta-Layer Problem Solving and Learning

In the previous sections, I have presented how FCG implements language processing

as a problem solving process. During this process, constructions are consecutively

applied to the initial transient structure until a solution is found. This assumes that all

linguistic knowledge that is necessary for processing the input utterances or meaning

Paul_Van_Eecke_def.indd 60 27/09/18 08:38

3.5. META-LAYER PROBLEM SOLVING AND LEARNING 51

representations is captured by the constructions of a grammar. There are two problems

here. The first problem is that it remains implicit where and how the constructions

of a grammar originated. The second problem is that language is constantly evolving

and full of innovations, making it an absolute necessity for a grammar to be dynamic,

flexible and open-ended. The two problems are closely related and boil down to the

question of how a computational construction grammar system can deal with input that

is not (yet) covered by a grammar, and how new lexical and grammatical constructions

can be learned. In FCG, this is achieved by a meta-layer architecture (Maes and Nardi,

1988), as discussed in the next sections.

3.5.1 Meta-Layer Architecture

FCG’s meta-layer architecture divides language processing into two layers: the rou-

tine layer and the meta-layer. The routine layer employs the described machinery for

construction-based language processing and is optimized for efficient processing of in-

put that is covered by the grammar. The meta-layer is designed to process input that

is not covered by the grammar and to learn new constructions from previously unseen

observations. The meta-layer architecture consists of three components: diagnostics,

repairs and consolidation strategies.

• Diagnostics. Diagnostics are tests that are run after each construction ap-
plication and inspect the resulting transient structure for any abnormalities or

potential problems. If a diagnostic detects an abnormality, it creates a problem

of a certain type, e.g. a problem of type ‘unknown-string’ or ‘unconnected-

semantic-network’. The problem object can also hold further information that

is added by the diagnostic, such as the string that was not covered or the con-

struction that has just been applied. Diagnostics have access to the complete

construction application process, including the search tree, the previously applied

constructions, the transient structures that these constructions have created and

the construction inventory. Diagnostics are specified on grammar level and stored

in the construction inventory. The problems detected by the diagnostics are local

to one branch in the search tree.

• Repairs. Repairs are methods implementing problem solving strategies. They
specialise on one or more classes of problems that are triggered by diagnostics.

When faced with a problem, a repair will try to find a solution in the form of a

fix object. The type of the fix and the way in which the fix repairs the problem

are open-ended. The most common type of fix in FCG is the fix-cxn, in which

the fix comes in the form of a construction. The application of the fix-cxn to

Paul_Van_Eecke_def.indd 61 27/09/18 08:38

52 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

the transient structure then repairs the problem. The repair methods are run

after each construction application, just after the diagnostics are run. They can

repair problems that were triggered in the same node of the search tree, but

also problems from earlier nodes that were not yet fixed. Just like in the case

of diagnostics, repairs have access the to the complete construction application

process, the search tree and the construction inventory. Repairs are specified on

grammar-level and stored in the construction inventory.

• Consolidation Strategies. While diagnostics and repairs diagnose and solve
problems at the meta-layer, consolidation strategies are designed to store solu-

tions to these problems for later reuse during routine processing. In the case

of the fix-cxns discussed above, the transfer from the meta-layer to the routine

layer is rather straightforward. As the fix-cxns work in exactly the same way as

regular constructions, they can, in principle, simply be added to the construc-

tion inventory. However, only fixes that successfully repaired a problem should

be consolidated. This is done by only storing fixes of branches in the search

tree that ultimately led to a solution node. It is not easy to strike the optimal

generality-specificity balance for a fix. Fixes that are too specific will only apply

to exactly the same observation in the future, whereas fixes that are too general

might apply to transient structures they should not apply to. This dissertation

makes a major contribution to this generality-specificity balance by incorporating

anti-unification (see chapter 5) and pro-unification (see chapter 6) algorithms in

FCG.

A schematic representation of the meta-layer architecture in FCG is shown in Figure

3.7. Diagnostics are run after every construction application. The transient structure

in which a problem is diagnosed is shown in orange. The transient structure that is

the result of applying the fix-cxn is shown in green. At the end of the branch of the

search tree, the fix-cxn is added to the construction inventory for later reuse in routine

processing.

3.5.2 The Meta-Layer in Evolution Experiments

The use of a meta-layer architecture based on diagnostics and repairs has a significant

history in evolutionary linguistics experiments. Beuls et al. (2012) describe three levels

on which a meta-layer architecture is relevant in such experiments. The first level

is the language processing level, on which diagnostics and repairs are run after each

construction application, just like we explained in the previous section. Examples of

diagnostics and repairs on language processing level implemented in earlier versions of

Paul_Van_Eecke_def.indd 62 27/09/18 08:38

3.5. META-LAYER PROBLEM SOLVING AND LEARNING 53

fix cxnaproblem

Transient-
structuret

Transient-
structuret+1

Transient-
structuret+2

Transient-
structuret+3

Transient-
structuret+n

repair
diagnose diagnose diagnose diagnose

Transient-
structuret+2'

diagnose

...

diagnose

cxnm

cxni cxnj cxnk cxnl cxnm cxnn cxno cxnp ... cxnz + fix-cxna cxn-inventory

cxnp cxnl

consolidation

Figure 3.7: A schematic representation of FCG’s meta-layer architecture. After each

construction application, a set of diagnostics is run and a set of repairs tries to create

fixes for the diagnosed problems. If a solution is found, the fixes that were created in

that branch of the search tree are added to the construction inventory for later reuse in

routine processing (consolidation). Figure adopted from Van Eecke and Beuls (2017).

FCG are presented by Steels and van Trijp (2011) and van Trijp (2012). The second

level is the process level, in which diagnostics and repairs monitor each process in the

semiotic cycle. Problems can be diagnosed and repaired after perception, conceptuali-

sation, comprehension, formulation or interpretation. The third level is the agent-level,

on which the meta-layer influences agent behaviours, such as turn-taking. This level

is needed for problems that cannot be diagnosed or repaired within one process in the

semiotic cycle, for example when re-entrance12 is required.

In this dissertation, I focus on diagnostics and repairs on the language processing level

only. My contribution is twofold. First, I have achieved a tighter integration of the

meta-layer architecture into the FCG system. Whereas in previous versions of FCG,

the grammar engineer needed to extend the system with his own classes and hooks

for communication with the meta-layer, these classes and hooks are now included in

the standard FCG distribution and are easily usable with any FCG grammar. Second, I

have implemented a library of diagnostics and repairs for common language processing

problems. With only minor modifications, these diagnostics and repairs can be used

with almost any grammar. My work on the tighter integration of the meta-layer in

standard FCG and on the library of diagnostics and repairs was done in collaboration

with Katrien Beuls and a paper discussing the results was published as Van Eecke and

Beuls (2017).

12Re-entrance refers to the capacity of an agent to use its language processing system in compre-

hension to monitor the output of its language processing system in formulation and vice versa. See

Steels (2003) for a discussion of the concept and its role in language emergence and evolution, and

Van Eecke (2015) for an application of the concept to robust language processing in FCG.

Paul_Van_Eecke_def.indd 63 27/09/18 08:38

54 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

3.5.3 Library of Diagnostics and Repairs

The power of a meta-layer architecture lies in the diagnostics, repairs and consolidation

strategies that are used. Although different tasks and grammars often require highly

specific diagnostics and repairs, certain problems occur in almost any task and gram-

mar. In order to solve these reoccurring problems in a user-friendly and standardised

way, we have included a library of basic diagnostics and repairs in the FCG system.

The following situations are covered:

• In comprehension, the input contains a form that is not covered by any construc-
tion. A new lexical construction needs to be created, mapping the perceived form

to a hypothesized meaning predicate.

• In formulation, the input contains a meaning predicate that is not covered by
any construction. A new lexical construction needs to be created, mapping the

predicate to a new form.

• In comprehension or formulation, no solution can be found. This can be due
to a case of coercion, an agreement mismatch, a word order error or a similar

problem. Conflicting features of an existing construction need to be relaxed, in

order for the construction to apply.

• In comprehension or formulation, variables in two meaning predicates need to be
bound to each other. A new phrasal construction needs to be created, capturing

the variable equalities and the word order or markers.

Table 3.3 presents the problems, diagnostics, repairs and consolidation strategies that

cover these situations in the library. The table serves as a brief overview only, a

comprehensive discussion of the algorithms that are used will follow in chapters 5 and

6 on anti-unification and pro-unification.

3.6 FCG Interactive: Web Service and API

In order to facilitate the dissemination of FCG, and in particular of the research project

presented in this dissertation, I have created an interactive web service and API for the

FCG framework. While the interactive web service provides interested people with the

opportunity of getting to know FCG without needing to install the software environment

on their computers, the API makes it easy for developers to integrate FCG as a language

processing component into any application.

Paul_Van_Eecke_def.indd 64 27/09/18 08:38

3.6. FCG INTERACTIVE: WEB SERVICE AND API 55

Table 3.3: An overview of the different problems, diagnostics, repairs and consolidation

strategies that are used in FCG’s meta-layer library.

Problem Diagnostic Repair Consolidation

Unknown-word

(comprehension)

No more applicable

cxns + strings in root

Create new lexical

cxn (hypothesized

meaning).

Add to cxn-

inventory.

Unknown-word

(formulation)

No more applica-

ble cxns + meaning

predicates in root.

Create new lexical

cxn (new form).

Add to cxn-

inventory.

Matching-conflict

(comprehension or

formulation)

No more applicable

cxns + unconnected

meaning + anti-

unification possible

with low cost.

Anti-unification of

existing construc-

tion with transient

structure.

Pro-unification

and add to

cxn-inventory.

Missing-phrasal-

cxn (comprehen-

sion or formula-

tion)

No more applicable

cxns + unconnected

meaning + anti-

unification not possible

with low cost.

Create new phrasal

cxn (variable equali-

ties and word order

/ markers).

Pro-unification

and add to

cxn-inventory.

3.6.1 FCG Interactive Web Service

The FCG Interactive web service was launched on the 17th of October 2016 at the

‘Intensive Science Scientific Festival’, an event organised by Sony Computer Science

Laboratory Paris for celebrating its 20th anniversary. Since then, it is publicly avail-

able at https://www.fcg-net.org/fcg-interactive. The web service has Fluid

Construction Grammar running under the hood, with grammars for different languages

loaded in memory. The user can select a grammar and enter the utterance or meaning

representation that he wants to process. Depending on the input, he can then click

‘comprehend’ to comprehend the input utterance, ‘comprehend-and-formulate’ to com-

prehend the input utterance and reformulate the comprehended meaning, ‘formulate’

for formulating the input meaning representation, or ‘formulate-and-comprehend’ for

formulating the input meaning representation and recomprehending the produced ut-

terance. The user can also choose between two visualisation options, the first one

including the complete construction application process, and the second one including

the final result only and hence speeding up the whole process with a few seconds.

The visualisations shown by the interactive web service are generated using FCG’s

default, browser-based visualisation library, which makes ample use of expandable/col-

lapsible elements. These elements allow the presentation of a very clear, high-level

overview of the construction application process and its result, while full detail on in-

termediate results, including transient structures, applied constructions and bindings,

Paul_Van_Eecke_def.indd 65 27/09/18 08:38

56 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

Figure 3.8: A screenshot of the FCG Interactive web service, comprehending the utter-

ance ‘tu compras o bolo’ (‘you buy the cake’) with a grammar focussing on Portuguese

clitics implemented by Marques and Beuls (2016).

are only a single click away.

A screenshot of the FCG Interactive web service in use is shown in Figure 3.8. The

upper part shows the fields that take input from the user: grammar name, utterance

to comprehend or meaning representation to formulate, and requested visualisation.

The lower part displays the construction inventory of the chosen grammar on the left,

and the analysis of the processed utterance/meaning representation on the right. The

screenshot shows the comprehension process for the utterance ‘tu compras o bolo’

(‘you buy the cake’), using a grammar that focuses on clitics in Portuguese (Marques

and Beuls, 2016).

3.6.2 FCG Interactive Web API

In order to make it easier to integrate FCG as a language processing component into

other applications, I have developed a web API (application programming interface) to

the FCG environment. The API defines a standardised, yet extensible, request-response

based protocol for the communication between external applications and FCG. The API

was launched at the same time as the web service and provides the link between the

web service and the underlying FCG system.

Paul_Van_Eecke_def.indd 66 27/09/18 08:38

3.6. FCG INTERACTIVE: WEB SERVICE AND API 57

User 1

User 2

User 3

Apache
Reverse Proxy

/fcg-interactive/fcg-request

FCG Server 1

FCG Server 2

FCG Server 3

HTTP Request

HTTP Response

FCG Load
Balancer

Figure 3.9: A schematic representation of the architecture behind the FCG Interactive

web API.

API Architecture

The general architecture of the web API is based on HTTP requests and responses.

From the client side, http requests are sent to a single endpoint, namely https://www.

fcg-net.org/fcg-interactive/fcg-request. For security reasons, the request

first arrives at an apache server that is configured as a reverse proxy. The reverse

proxy sends the request to a custom-written load balancer that checks the load of the

available FCG servers. It forwards the request to the least busy server, which handles

the request and formulates a response. Then, the response travels back through the

load balancer and the reverse proxy to the user. A schematic representation of this

architecture is shown in Figure 3.9.

At an individual FCG server, the different HTTP requests all arrive at the same port. In

order to assure a correct handling, each request should include a handler-method field,

which specifies with which method the request needs to be handled. When a request

arrives, it is first parsed into the request-type (e.g. GET or POST), the handler-

method, and a data field that groups together all other information passed in the

request. Then, a method named handle-http-request is invoked with as arguments

the request-type, the handler-method and the data field.

The API contains different handle-http-request methods that each specialise on

a request type and a handler-method. This makes the API easily extensible, as a

new functionality can be added by simply adding an additional handle-http-request

method. If a request then passes the corresponding handler-method name, it will

automatically be directed towards this method. Figure 3.10 shows a didactic example

of such a method that will be invoked when an HTTP POST request with the handler-

method ‘draw-cxn-inv’ (for drawing a construction inventory) is sent to the server. Note

Paul_Van_Eecke_def.indd 67 27/09/18 08:38

58 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

(defmethod handle−http−request (http−request
(request−type (e q l : post))
(handler−method (e q l :

draw−cxn−inv)))
” Handle method re tu rn ing a v i s u a l i s a t i o n o f the cxn− inventory ”
(l e t ∗ ((data (cdr (a s soc ”DATA” http−request : t e s t ’ equalp)))

(cxn− inventory (upcase (cdr (as soc ”CXN−INVENTORY” data
: t e s t ’ equalp)))))

(make−html (eva l (find−symbol cxn− inventory)))))

Figure 3.10: Code fragment featuring an example of a handle-http-request method

that will be invoked when an HTTP POST request with the handler-method ‘draw-

cxn-inv’ is sent to the server. HTML code visualising the construction inventory that

was passed as data will be returned.

the specialisers of the second and third argument of the method, :post and :draw-cxn-

inv respectively. The method first retrieves the data field from the HTTP request,

and retrieves the specified construction inventory from the data field. It then finds the

construction inventory object in FCG and returns the HTML code of its visualisation

as a string.

API Specification

Within the architecture described above, the API specifies a set of handler-methods

that can be used by external applications, provided of course, that the correspond-

ing request type is sent with the appropriate data. An overview of these methods is

presented in Table 3.4. At this moment, the API only supports the use of FCG gram-

mars, i.e. comprehending and formulating, and not their design. This does however

not mean that the grammars are static, as the meta-layer can be active and scores and

network links can be updated during use. If in the future, an application would need to

design grammars through the API, additional handler-methods for creating construc-

tion inventories or adding new constructions could easily be implemented within this

architecture.

Grammar Requirements

The API has been designed in such a way, that it does not put many restrictions on the

grammars. In fact, it works flawlessly with any FCG grammar as long as the grammar

runs in standard FCG and the following basic guidelines are respected.

Paul_Van_Eecke_def.indd 68 27/09/18 08:38

3.6. FCG INTERACTIVE: WEB SERVICE AND API 59

T
a
b
le
3
.4
:
S
p
ec
ifi
ca
ti
o
n
o
f
th
e
w
eb
A
P
I
to
th
e
F
C
G
In
te
ra
ct
iv
e
S
er
ve
r

H
a
n
d
le
r-
m
e
th
o
d

T
y
p
e

D
a
ta

D
o
cu
m
e
n
ta
ti
o
n

f
c
g
-
c
o
m
p
r
e
h
e
n
d

f
c
g
-
c
o
m
p
r
e
h
e
n
d
-
a
n
d
-
f
o
r
m
u
l
a
t
e

g
et
/
p
o
st

u
t
t
e
r
a
n
c
e
=
u
tt
er
a
n
ce

c
x
n
-
i
n
v
e
n
t
o
r
y
=
n
a
m
e

p
a
c
k
a
g
e
=
p
a
ck
a
g
e

v
i
s
u
a
l
i
s
a
t
i
o
n
=
n
il/
t/
lin
k
-o
n
ly

m
o
n
i
t
o
r
=
m
o
n
it
o
r

C
o
m
p
re
h
en
d
s
th
e
u
tt
er
a
n
ce
w
it
h
th
e
g
ra
m
m
ar

st
o
re
d
u
n
d
er
cx
n
-i
n
ve
n
to
ry
in
p
a
ck
a
g
e,
w
it
h
m
o
n
i-

to
r
a
ct
iv
a
te
d
.
D
ep
en
d
in
g
o
n
vi
su
a
lis
a
ti
o
n
,
re
tu
rn
s

th
e
re
su
lt
in
g
m
ea
n
in
g
re
p
re
se
n
ta
ti
o
n
(n
il
),
h
tm
l

co
d
e
w
it
h
a
vi
su
a
lis
a
ti
o
n
o
f
th
e
p
ro
ce
ss
(t
),
o
r
a

u
rl
p
o
in
ti
n
g
to
w
ar
d
s
a
n
h
tm
l
p
a
g
e
w
it
h
th
is
vi
su
-

a
lis
a
ti
o
n
(l
in
k
-o
n
ly
).
In
ca
se
o
f
fc
g
-c
o
m
p
re
h
en
d
-

a
n
d
-f
o
rm
u
la
te
a
ls
o
fo
rm
u
la
te
s
th
e
co
m
p
re
h
en
d
ed

m
ea
n
in
g
.

f
c
g
-
f
o
r
m
u
l
a
t
e

f
c
g
-
f
o
r
m
u
l
a
t
e
-
a
n
d
-
c
o
m
p
r
e
h
e
n
d

g
et
/
p
o
st

m
e
a
n
i
n
g
=
m
ea
n
in
g

c
x
n
-
i
n
v
e
n
t
o
r
y
=
n
a
m
e

p
a
c
k
a
g
e
=
p
a
ck
a
g
e

v
i
s
u
a
l
i
s
a
t
i
o
n
=
n
il/
t/
lin
k
-o
n
ly

m
o
n
i
t
o
r
=
m
o
n
it
o
r

F
o
rm
u
la
te
s
th
e
m
ea
n
in
g
w
it
h
th
e
g
ra
m
m
ar
st
o
re
d

u
n
d
er
cx
n
-i
n
ve
n
to
ry
in
p
a
ck
a
g
e,
w
it
h
m
o
n
it
o
r
a
c-

ti
va
te
d
.
D
ep
en
d
in
g
o
n
vi
su
a
lis
a
ti
o
n
,
re
tu
rn
s
th
e

re
su
lt
in
g
u
tt
er
a
n
ce
(n
il
),
h
tm
l
co
d
e
w
it
h
a
vi
su
a
li-

sa
ti
o
n
o
f
th
e
p
ro
ce
ss
(t
),
o
r
a
u
rl
p
o
in
ti
n
g
to
w
ar
d
s

a
n
h
tm
l
p
a
g
e
w
it
h
th
is
vi
su
a
lis
a
ti
o
n
(l
in
k
-o
n
ly
).
In

ca
se
o
f
fc
g
-f
o
rm
u
la
te
-a
n
d
-c
o
m
p
re
h
en
d
a
ls
o
co
m
-

p
re
h
en
d
s
th
e
fo
rm
u
la
te
d
m
ea
n
in
g
.

f
c
g
-
g
e
t
-
e
x
a
m
p
l
e
-
s
e
n
t
e
n
c
e
s

f
c
g
-
g
e
t
-
e
x
a
m
p
l
e
-
m
e
a
n
i
n
g
s

g
et
/
p
o
st

c
x
n
-
i
n
v
e
n
t
o
r
y
=
n
a
m
e

R
et
u
rn
s
a
st
ri
n
g
o
f
co
m
m
a
-s
ep
ar
a
te
d
ex
a
m
p
le

se
n
te
n
ce
s
/
m
ea
n
in
g
s
fo
r
th
e
g
ra
m
m
ar
st
o
re
d
u
n
-

d
er
cx
n
-i
n
ve
n
to
ry
.

f
c
g
-
g
e
t
-
c
x
n
-
i
n
v
e
n
t
o
r
y

g
et
/
p
o
st

c
x
n
-
i
n
v
e
n
t
o
r
y
=
n
a
m
e

R
et
u
rn
s
a
u
rl
p
o
in
ti
n
g
to
a
n
h
tm
l
fi
le
w
it
h
a

vi
su
a
liz
a
ti
o
n
o
f
th
e
g
ra
m
m
ar
st
o
re
d
u
n
d
er
cx
n
-

in
ve
n
to
ry
.

f
c
g
-
g
e
t
-
r
e
f
e
r
e
n
c
e
-
t
e
x
t

g
et
/
p
o
st

c
x
n
-
i
n
v
e
n
t
o
r
y
=
n
a
m
e

R
et
u
rn
s
a
d
o
cu
m
en
ta
ti
o
n
st
ri
n
g
o
n
th
e
g
ra
m
m
ar

st
o
re
d
u
n
d
er
cx
n
-i
n
ve
n
to
ry
,
in
cl
u
d
in
g
fo
cu
s,
a
u
-

th
o
r
n
a
m
es
a
n
d
re
le
va
n
t
p
u
b
lic
a
ti
o
n
s.

s
t
a
t
i
c
-
h
t
m
l
-
b
u
s
y

g
et
/
p
o
st

n
o
d
a
ta
re
q
u
ir
ed

R
et
u
rn
s
”
N
IL
”
if
th
e
se
rv
er
ca
n
a
cc
ep
t
a
n
ew
re
-

q
u
es
t
a
n
d
”
T
”
o
th
er
w
is
e.

Paul_Van_Eecke_def.indd 69 27/09/18 08:38

60 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

• The construction inventory should be accessible via a global variable.

• A reference text is provided, i.e. a snippet of html code describing the authors
of the grammar, as well as relevant publications.

• A text file with example utterances is provided.

• A text file with example meaning representations is provided.

• A link to an html page visualising the construction inventory is provided.

3.7 Conclusion

The main aim of this chapter was to lay out the main architecture and design concepts

of Fluid Construction Grammar, on which the rest of this dissertation will build. I have

described how FCG implements constructional language processing as a problem solving

process, with its state representations (transient structures), operators (constructions),

goal tests, heuristics and optimization strategies. I have especially focused on my own

contributions to the FCG system, which can be summarized in the following three

points:

1. I have implemented a mapping between a new high-level FCG notation and the

FCG-2011 system. The high-level notation is used for all interfacing with the

system, including the representation of grammars and visualisation of the con-

struction application process and processing result. The mapping has already

shown its worth in multiple grammars and evolution experiments.

2. I have tightly integrated an existing meta-layer architecture into FCG, extending

the construction inventory with slots for holding diagnostics and repairs, and pro-

viding hooks for running diagnostics, repairs and consolidation strategies at the

appropriate places in the construction application pipeline. I have also developed

a library of basic diagnostics and repairs for frequent problems, which can readily

be used with any grammar.

3. I have implemented an interactive web service that can be used to query FCG

grammars and visualise the construction application process and processing re-

sult. I have also implemented a web API, which allows an easy embedding of

FCG into external applications.

One of the most important properties of Fluid Construction Grammar is that it is

particularly flexible and open-ended. It is a general problem solving architecture using

rich and powerful data structures, in part due to its support for logic variables in

Paul_Van_Eecke_def.indd 70 27/09/18 08:38

3.7. CONCLUSION 61

transient structures and constructions. There are virtually no restrictions other than

the design choices discussed in this chapter. Feature names and values are completely

open-ended and can be dynamically added to or removed from the grammar. If needed,

specialised render and de-render methods, node tests, goal tests and construction

suppliers can be implemented and used without requiring any change to the system

itself.

The open-ended nature of FCG, as well as its powerful meta-layer architecture, reflect

that FCG is designed with the image of a dynamic and evolving language use in mind.

For this reason, problem solving and learning are primary concerns. Errors and innova-

tions are not seen as ‘special cases’, but as the necessary variation thriving language

evolution. Powerful problem solving and learning strategies are the only hope that a

language processing system will ever be able to communicate in a humanlike way and

keep its grammar up-to-date with the ever-evolving conventions of the language com-

munity. While the present chapter has laid out the architecture of the system, the next

chapters will present these powerful problem solving and learning strategies in detail.

Paul_Van_Eecke_def.indd 71 27/09/18 08:38

62 CHAPTER 3. FLUID CONSTRUCTION GRAMMAR

Paul_Van_Eecke_def.indd 72 27/09/18 08:38

Chapter 4

A Type Hierarchy System for

FCG Symbols

4.1 Introduction . 63

4.2 The Nature of Categories in FCG 64

4.3 A Type Hierarchy System for FCG symbols 66

4.3.1 Type Hierarchy Concept . 66

4.3.2 Type Hierarchy Implementation 67

4.3.3 Type Hierarchy: Match and Merge 69

4.4 Examples . 70

4.4.1 Diversity among Categories 71

4.4.2 Exploiting Generalisations for Learning 73

4.4.3 Cancellation of Generalisations 75

4.4.4 Entrenchment of Type Hierarchy Links 80

4.5 Type Hierarchies versus Typed Feature Structures 83

4.6 Conclusion . 84

4.1 Introduction

This chapter introduces a type hierarchy system for Fluid Construction Grammar. The

system makes it possible to capture generalisations about the categories used in a

63

Paul_Van_Eecke_def.indd 73 27/09/18 08:38

64 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

grammar, while preserving the fluid and open-ended nature of the formalism. The

chapter is structured as follows. I will first discuss the nature of categories in FCG

(4.2). Second, I will introduce the type hierarchy system and its implementation (4.3).

Then, I will demonstrate different aspects of its use through examples (4.4). Finally,

I will compare it to the use of typed feature structures in other grammar formalisms

(4.5).

The examples that are used in this chapter can be explored in full detail at https://

www.fcg-net.org/demos/vaneecke-phd/type-hierarchies. These examples are

chosen for didactic reasons only and aim to demonstrate the main properties of of the

type hierarchy system and its implementation. The actual use of the type hierarchy

system in evolutionary linguistics experiments, namely to capture categorical networks,

will be discussed in Sections 5.6 and 7.4.4 below.

4.2 The Nature of Categories in FCG

The previous chapter has discussed the use of feature structures for representing con-

structions and transient structures in FCG. The feature names that are used and the

atomic or complex values that these features can take, are not predetermined, but are

entirely open-ended. The feature names are always constants1 and the atomic elements

in their values are either constants or logical variables. Neither constants nor logical

variables have any meaning apart from how they are used within the constructions of a

grammar. When, for example, a construction contains a feature ‘lex-class’ with value

‘noun’ and a feature ‘sem-class’ with value ‘animal’, then each of these symbols in itself

has no meaning for the FCG interpreter. FCG does not know about lex-classes, sem-

classes, nouns or animals at all. Feature names and atomic elements in their values are

all treated purely as symbols. Symbols can only be compared to each other in terms

of equality, which is for example the case inside the matching and merging algorithms.

In fact, substituting each occurrence of ‘lex-class’ in a grammar by ‘y-222’ and each

occurrence of ‘noun’ by ‘x-256’ or any other symbol would not make any difference in

terms of processing and results, as long as it is done consistently. Although symbol

names can thus be chosen in a completely random fashion, those that are used in the

examples that are shown in this dissertation do reflect their function in the grammar,

in order to enhance the readability of the grammar for humans.

Because FCG treats all feature names and atomic elements in their values as either

1Feature names are always constants, but unit names in constructions are usually logical variables.

They can be constants in exceptional cases, when they refer to a specific unit in the transient

structure, e.g. ‘root’.

Paul_Van_Eecke_def.indd 74 27/09/18 08:38

4.2. THE NATURE OF CATEGORIES IN FCG 65

constants or logical variables, there is no need to tell the FCG engine which features

or values will be used by a particular grammar. There is no centralised type definition

system that defines which features can occur and which values a particular feature

can take.2 The feature structures used in FCG are untyped, which is an important

advantage for a formalism that is used in evolutionary linguistics experiments. In these

experiments, new features and values can be invented at any time and are incorporated

into existing or new constructions. In these conditions, it would be a very difficult

task to keep a type definition system up-to-date and consistent with the ever-evolving

constructions of a grammar.

However, the use of untyped feature structures also has a disadvantage. It makes it

difficult to capture certain generalisations that are easily captured using typed fea-

ture structures, especially in the case of ontological categorisations. Consider the

following example, in which a grammar contains lexical constructions for the words

‘sparrow ’, ‘pigeon’, ‘crow ’ and ‘magpie’. Each of these lexical entries contains a fea-

ture ‘semantic-class’ with value ‘bird’. Any construction can use this specific feature

to select for birds. Now, imagine that a construction wants to select for animals.

Obviously, the construction cannot match on the ‘semantic-class: animal’ feature, as

‘sparrow ’, ‘pigeon’, ‘crow ’ and ‘magpie’ have ‘bird’ as the value for this feature. The

problem can be solved by changing the value of ‘semantic-class’ in each of the lexi-

cal entries into the set {bird, animal}, such that the construction can match on this
feature. Although this is a working solution in this case, it is not a scalable solution.

Birds belong to many more categories, including vertebrates, chordates and tetrapods.

Moreover, many characteristics are associated to each of these categories, for example

oviparous, endothermic, toothless and beaked. Storing this amount of ontological in-

formation locally inside each construction would not only be inelegant, but processing

these massive feature structures would also be computationally expensive. Moreover,

the systematic relationship between ‘bird’ and ‘oviparous’ would still not be explicitly

captured, but implicitly at best, if in every construction that has ‘bird’ as an element

of its ‘semantic-class’, ‘oviparous’ is also part of this set.

The challenge that I take up in this chapter is to incorporate one of the major advan-

tages of typed feature structures, namely the possibility to generalise over categories,

into FCG, without loosing the important advantages of untyped feature structures,

2This might sound odd, as the previous chapter has introduced the use of ‘feature types’ in FCG

(see Section (3.4.3) of the previous chapter). The feature type declaration is used to influence

the unification algorithms (match and merge) that are used for specific features during processing.

Practically speaking, a unification algorithm that is specialised on a feature type might not cover all

possible structures for the value of that feature. For example, a specialised matching algorithm for

sets might expect sets and not support atomic values. Although the feature type declaration can in

this way put restrictions on the structure of the values of particular features, it does not put limits

on which symbols can occur as value, or, if the value is complex, on which features it can hold.

Paul_Van_Eecke_def.indd 75 27/09/18 08:38

66 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

namely the possibility to extend the grammar on-the-fly with novel features and cate-

gories.

4.3 A Type Hierarchy System for FCG symbols

I tackle the challenge formulated in the previous section by integrating an efficient and

flexible type hierarchy system into FCG. The type hierarchy system makes it possible

to express generalisations over categories, while respecting the fluidity of FCG. It is

dynamic in the sense that it can be built up, extended and altered during processing.

Moreover, the type hierarchy system only alters FCG’s processing behaviour for symbols

that occur in the type hierarchy, while it is left unchanged for all other symbols.

4.3.1 Type Hierarchy Concept

In FCG, constructions can apply to transient structures through matching and merging,

which are unification processes. The algorithms implementing these processes make

construction application either succeed or fail. One type of failed case is when two

different constants (not logical variables) need to be unified. In Figure 4.1 for example,

the lay-an-egg-cxn on the right cannot apply to the transient structure on the left.

The construction requires an NP unit with a feature ‘semantic-class: oviparous’ as its

subject. The transient structure on the left, which was built with ‘the crow’ as input

does not contain such a unit. It only contains an NP unit with the feature-value pair

‘semantic-class: crow’. Because ‘crow’ and ‘oviparous’ are two different symbols, their

unification fails and the construction cannot apply.

The fact that the ‘lay-an-egg-cxn’ cannot apply to the transient structure because it

requires its subject to be an NP of ‘semantic-class’ ‘oviparous’ and observes an NP

of ‘semantic-class’ ‘crow’ might be counterintuitive for humans, as crows are a proper

subset of oviparous animals. If we want the construction to apply, we need to inform

the FCG system that the symbol ‘crow’ is a subtype of the symbol ‘oviparous’. This

is done by creating a type hierarchy in the form of a network. The nodes in the

network are constants, and the directed edges indicate subtype relations. As it can be

seen on Figure 4.1 in the middle, the type hierarchy contains the information that the

symbol ‘crow’ is a subtype of the symbol ‘bird’ and that the symbol ‘bird’ is a subtype

of the symbol ‘oviparous’. Taking into account this information while matching and

merging the construction with the transient structure leads to a successful construction

application, as shown at the bottom of Figure 4.1. For symbols that are not connected

Paul_Van_Eecke_def.indd 76 27/09/18 08:38

4.3. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS 67

through the type hierarchy, or that do not occur in it, FCG’s default matching and

merging behaviour is preserved.

4.3.2 Type Hierarchy Implementation

A type hierarchy is defined on grammar level, and is stored in the :type-hierarchy

field of the data blackboard, which is a slot in the construction-inventory. The type

hierarchy is a directed graph, in which the vertices are symbols and the arcs represent

subtype relations. The graph is implemented in a scalable way as an object consisting

of a collection of hash tables holding the nodes, the incoming arcs, the outgoing arcs,

the labels, etc. For the representation and processing of the graphs, an open-source

package called ‘graph-utils’3 is used. This package is hidden from the FCG user, who

interacts with the type hierarchy of a grammar using the following interface functions

in the FCG package:

• get-type-hierarchy (cxn-inventory): returns the type hierarchy of a construction
inventory, and sets it when used with setf.

• make-instance (’type-hierarchy): CLOS function used to create a new object of
the type-hierarchy class.

• add-category (type type-hierarchy) and add-categories (types type-hierarchy):
adds one or more categories as vertices to the type-hierarchy.

• node-p (type type-hierarchy): returns true if type is a node in the type hierarchy.

• add-link (subtype supertype type-hierarchy &key (weight 0.5)): Adds an arc
between two symbols in the hierarchy.

• link-weight (subtype supertype type-hierarchy): Returns the weight of the type-
hierarchy link.

• set-link-weight (subtype supertype type-hierarchy weight): Sets the weight of the
type-hierarchy link

• incf-link-weight (subtype supertype type-hierarchy delta): Increments the weight
of the link with delta.

• decf-link-weight (subtype supertype type-hierarchy delta): Decrements the weight
of the link with delta.

3https://github.com/kraison/graph-utils

Paul_Van_Eecke_def.indd 77 27/09/18 08:38

68 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

application
process

root

initial
crow

-cxn
(cxn 0.50)

the-cxn
(cxn 0.50)

cxn-applied
np-cxn (cxn 0.50)

⨁

form
:

syn-cat:

sem
-cat:

args:
subunits:

transient structure

root

np-unit-65

{m
eets(the-52, crow

-49,
np-unit-65)}

lex-class:np

sem
antic-function:

sem
antic-class:

referring-expression

crow
[?x-790]

{the-52, crow
-49}

crow
-49

the-52

succeeded, cxn-applied

status
cxn-applied

source
structure

applied
construction

lay-an-egg-cxn (cxn 0.50)

⨁

transient structure

root

np-unit-65
crow

-49

the-52

syn-cat:

sem
-cat:

subunits:

?s-unit

lex-class:s

sem
antic-function:

proposition

{?np-subject-unit,
?lays-an-egg-unit}

sem
-cat:

args:
syn-cat:

m
eaning:

form
:

lay-an-egg-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-class:

referring-expression

oviparous
[?x]

lex-class:np

?lays-an-egg-unit

{depose-egg(?x)}

{string(?lays-an-egg-unit,
"lays"),
string(?an, "an"),
string(?egg, "egg"),
m

eets(?an, ?egg,
?lays-an-egg-unit)}

?s-unit

 ⨀

15 of 16
25/04/2017, 17:33

resulting
structure

resulting
bindings

((?x . ?x-790)
(?unit-1362 . s-unit-28)

(?s-unit . s-unit-28)
(?unit-1366 . lays-36)

(?egg . egg-44)
(?an . an-45)

(?s-unit . ?unit-1362)
(?lays-an-egg-unit . lays-36)
(?np-subject-unit . np-unit-65))

m
eaning

⨁

transient structure

root

s-unit-28

m
eaning:

form
:

lays-36
{depose-egg(?x-790)}

{string(lays-36, "lays"),
string(an-45, "an"),
string(egg-44, "egg"),
m

eets(an-45, egg-44, lays-36)}

sem
-cat:

args:
subunits:

syn-cat:

form
:

np-unit-65

sem
antic-class:

sem
antic-function: crow

referring-expression
[?x-790]

{the-52, crow
-49}

lex-class:np

{m
eets(the-52, crow

-49,
np-unit-65)}

the-52

crow
-49

(cxn 0.50)

(cxn 0.50)

(selector
activate-referent

?x-790)

(anim
al

crow
?x-790)

(depose-egg
?x-790)

http://localhost:8000/

⨁

root

initial
crow

-cxn
(cxn 0.50)

the-cxn
(cxn 0.50)

cxn-applied
np-cxn (cxn 0.50)

⨁

form
:

syn-cat:

sem
-cat:

args:
subunits:

transient structure

root

np-unit-65

{m
eets(the-52, crow

-49,
np-unit-65)}

lex-class:np

sem
antic-function:

sem
antic-class:

referring-expression

crow
[?x-790]

{the-52, crow
-49}

crow
-49

the-52

succeeded, cxn-applied

status
cxn-applied

source
structure

applied
construction

lay-an-egg-cxn (cxn 0.50)

⨁

transient structure

root

np-unit-65
crow

-49

the-52

syn-cat:

sem
-cat:

subunits:

?s-unit

lex-class:s

sem
antic-function:

proposition

{?np-subject-unit,
?lays-an-egg-unit}

sem
-cat:

args:
syn-cat:

m
eaning:

form
:

lay-an-egg-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-class:

referring-expression

oviparous
[?x]

lex-class:np

?lays-an-egg-unit

{depose-egg(?x)}

{string(?lays-an-egg-unit,
"lays"),
string(?an, "an"),
string(?egg, "egg"),
m

eets(?an, ?egg,
?lays-an-egg-unit)}

?s-unit

 ⨀

25/04/2017, 17:33

resulting
structure

M
eaning:

reset

np-cxn (cxn 0.50)

lay-an-egg-cxn (cxn 0.50)

⨁

transient structure

root

s-unit-28

lays-36

np-unit-65
the-52

crow
-49

(selector
activate-referent

?x-790)

(anim
al

crow
?x-790)

(depose-egg
?x-790)

O
V

IPA
RO

U
S

BIRD

CRO
W

16 of 16
25/04/2017, 17:41

Source Transient Structure
C

onstruction
Type H

ierarchy

R
esulting Transient Structure

F
ig
u
re
4
.1
:
A
sch
em
a
tic
represen

ta
tio
n
o
f
th
e
in
teg
ra
tio
n
o
f
a
typ
e
h
ierarch

y
system

in
F
C
G
.
T
h
e
co
n
stru
ctio
n
ca
n
a
p
p
ly
b
eca
u
se
a

p
a
th
fro
m
‘cro
w
’
to
‘o
vip
aro
u
s’
is
fo
u
n
d
in
th
e
typ
e
h
ierarch

y.

Paul_Van_Eecke_def.indd 78 27/09/18 08:38

Form
ulating

Applying

in form
ulation

initial structure

application process

applied constructions

resulting structure

U
tterance: "the crow

 lays an egg"

C
om

prehending "the crow
 lays an egg"

Applying

in com
prehension

initial
structure

application
process

FC
G

 C
O

N
STRU

C
TIO

N
 SET (4)

⨁

transient structure

root

initial
* the-cxn (cxn 0.50), crow

-cxn (cxn 0.50), np-cxn (cxn 0.50)
lay-an-egg-cxn (cxn 0.50)

the-cxn (cxn 0.50)

crow
-cxn (cxn 0.50)

np-cxn (cxn 0.50)

lay-an-egg-cxn (cxn 0.50)

⨁

transient structure

root

s-unit-27

lays-an-egg-unit-11

np-unit-64
the-unit-15

crow
-unit-15

FC
G

 C
O

N
STRU

C
TIO

N
 SET (4)

⨁

transient structure

root

succeeded, cxn-applied

status
cxn-applied

source

lay-an-egg-cxn (cxn 0.50)

transient structure

(anim
al

crow
o-1)

(selector
activate-referent

o-1)

(depose-egg
o-1)

B
abel w

eb interface
http://localhost:8000/

⨁

transient structure

root

initial
* the-cxn (cxn 0.50), crow

-cxn (cxn 0.50), np-cxn (cxn 0.50)
lay-an-egg-cxn (cxn 0.50)

the-cxn (cxn 0.50)

crow
-cxn (cxn 0.50)

np-cxn (cxn 0.50)

lay-an-egg-cxn (cxn 0.50)

⨁

transient structure

root

s-unit-27

lays-an-egg-unit-11

np-unit-64
the-unit-15

crow
-unit-15

⨁

transient structure

root

succeeded, cxn-applied

status
cxn-applied

lay-an-egg-cxn (cxn 0.50)

(anim
al

crow
o-1)

activate-referent
o-1)

(depose-egg
o-1)

http://localhost:8000/

applied
constructions

resulting
structure

resulting
structure

resulting
bindings

((?x . ?x-790)
(?unit-1362 . s-unit-28)

(?s-unit . s-unit-28)
(?unit-1366 . lays-36)

(?egg . egg-44)
(?an . an-45)

(?s-unit . ?unit-1362)
(?lays-an-egg-unit . lays-36)
(?np-subject-unit . np-unit-65))

m
eaning

⨁

transient structure

root

s-unit-28

m
eaning:

form
:

lays-36
{depose-egg(?x-790)}

{string(lays-36, "lays"),
string(an-45, "an"),
string(egg-44, "egg"),
m

eets(an-45, egg-44, lays-36)}

sem
-cat:

args:
subunits:

syn-cat:

form
:

np-unit-65

sem
antic-class:

sem
antic-function: crow

referring-expression
[?x-790]

{the-52, crow
-49}

lex-class:np

{m
eets(the-52, crow

-49,
np-unit-65)}

the-52

crow
-49

crow
-cxn (cxn 0.50)

the-cxn (cxn 0.50)

np-cxn (cxn 0.50)

lay-an-egg-cxn (cxn 0.50)

⨁

transient structure

root

s-unit-28

lays-36

np-unit-65
the-52

(selector
activate-referent

?x-790)

(anim
al

crow
?x-790)

(depose-egg
?x-790)

Babel w
eb interface

http://localhost:8000/

4.3. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS 69

• make-html (type-hierarchy): Generates HTML code visualising the type-hierarchy
as a graph.

• directed-path-p (subtype supertype type-hierarchy): Returns true if there is a
path from subtype to supertype in the type-hierarchy, nil otherwise.

• directed-distance (subtype supertype type-hierarchy): Returns the cost of the
shortest path from subtype to supertype in the type-hierarchy, nil if no path

exists.

• connected-p (type1 type2 type-hierarchy): Returns true if there is a path between
type1 and type2, regardless of the direction of the edges, nil otherwise.

• undirected-distance (type1 type2 type-hierarchy): Returns the cost of the short-
est path from type1 to type2 regardless of the direction of the edges, nil if no

path exists.

The arcs are weighted and by default, each arc has a weight of 0.5. The distances

returned by the interface functions are the sums of the weights on the arcs along the

path. The shortest path is also defined in terms of the weights on the arcs and is

calculated using Dijkstra’s algorithm (Dijkstra, 1959).

4.3.3 Type Hierarchy: Match and Merge

At this point, a representation for type hierarchies is in place, as well as interface

functions for building, extending and querying the hierarchies. Now, FCG’s matching

and merging algorithms need to be adapted, in order to take into account the type

hierarchy that is specified inside the construction inventory.

Type hierarchies only need to be taken into account when two constants are being

processed, because only constants can occur as nodes in the hierarchy. For processing

two constants, FCG’s matching and merging algorithms use the same function, namely

unify-atom. When unify-atom succeeds, it returns the list of bindings for which it

succeeds and when it fails, it returns the constant +fail+, which evaluates to nil. The

default unify-atom algorithm succeeds in the following three cases only:

1. The two atoms are equal to each other.

2. The first atom is a logical variable and the unify-variable function succeeds with

the two atoms and the list of bindings as arguments.

3. The second atom is a logical variable and the unify-variable function succeeds

with the two atoms and the list of bindings as arguments.

Paul_Van_Eecke_def.indd 79 27/09/18 08:38

70 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

In order to take the type hierarchy of the construction inventory into account, a fourth

case is added.

4. There exists a path in the type hierarchy of the construction-inventory from the

symbol in the transient structure to the symbol in the construction.

The algorithm is presented in pseudo-code in Algorithm 1. The code printed in black

belongs to the original unify-atom algorithm and the code printed in blue shows the

case that was added. Note that unify-atom only succeeds if the path goes from the

symbol in the transient structure to the symbol in the construction, and not the other

way around. The symbol from the construction should always be the more general

symbol. For example, when a construction matches on ‘noun’, then a ‘common-noun’

is also acceptable. But when a construction matches on ‘common-noun’, then ‘noun’

is not specific enough to be matched.

Algorithm 1: unify-atom adapted for use with type hierarchies

input: cxn-atom // an atom from the construction

ts-atom // an atom from the transient structure

bindings // a bindings list

cxn-inv // the construction inventory

// If unification succeeds, the algorithm returns the list of bindings

for which it succeeds, otherwise it returns +fail+.

if equal(cxn-atom, ts-atom) then // symbols are equal
return bindings

else if variable-p(cxn-atom) then // cxn-atom is a variable
return unify-variable(cxn-atom, ts-atom, bindings, cxn-inv)

else if variable-p(ts-atom) then // ts-atom is a variable
return unify-variable(ts-atom, cxn-atom, bindings, cxn-inv)

else if directed-path-p(ts-atom, cxn-atom, get-type-hierarchy(cxn-inv))

then // path in type-hierarchy
return bindings

else
return +fail+

end

4.4 Examples

I will now demonstrate different aspects of the use of type hierarchies in FCG through

four more elaborate examples. The first example shows that a type hierarchy can

Paul_Van_Eecke_def.indd 80 27/09/18 08:38

4.4. EXAMPLES 71

group many different kinds of information, ranging from very formal to very seman-

tic categories (4.4.1). The second example shows how the knowledge contained in a

type hierarchy can be exploited when new words are learned (4.4.2). The third exam-

ple presents two ways of dealing with prototypical generalisations and the cancellation

of these generalisations in the case of exceptions (4.4.3). Finally, the fourth exam-

ple demonstrates how the weights on the links can indicate the entrenchment of the

relations captured in the type hierarchy (4.4.4).

4.4.1 Diversity among Categories

While presenting the type hierarchy system in the previous sections, I have only used

examples of semantic categories that were connected through the type hierarchy: crows

are birds, birds are vertebrates, and birds are oviparous. These semantic features were

then used in constructions to match on particular units in a transient structure, e.g.

the lay-an-egg-cxn selected for an oviparous subject-unit. Although this is an intuitive

use of a type hierarchy, it is certainly not the only one possible. A type hierarchy

can combine many different kinds of information, whether it is used for semantic,

morphological, syntactic or other purposes. This first example will walk you through

three cases in which progressively more knowledge is transferred from the constructions

to the type hierarchy. The first case, visualised in Figure 4.2, does not use any type

hierarchy. The second and third case demonstrate a mild (Figure 4.3) and extensive

(Figure 4.4) use of the type hierarchy system respectively.

Case 1: No Use of Type Hierarchies

I will use the same example as before, namely a small grammar that consists of four

constructions. Together, these constructions can process the utterance ‘the crow

lays an egg’. The four constructions are shown in Figure 4.2. When we look at the

categorisations that are required and added by the constructions, we see that the ‘the-

cxn’ specifies that the word ‘the’ is an ‘article’, a ‘determiner’ and an ‘identifier’. The

‘crow-cxn’ specifies that the word ‘crow’ is a ‘count-noun’, a ‘common-noun’ and a

‘noun’, that it is a ‘bird’ and a ‘physical-object’ and that it is ‘oviparous’ and ‘flying’.

The ‘np-cxn’ combines a ‘determiner’ that is also an ‘identifier’ and a ‘common-noun’

that is also a ‘physical-object’ into an ‘np’ that is also a ‘referring-expression’. Finally,

the ‘lay-an-egg-cxn’ takes an ‘np’ that is also a ‘referring-expression’ and ‘oviparous’ as

its subject, and combines it with the words ‘lay an egg’ and their associated meaning

depose-egg(?x) into a proposition.

Paul_Van_Eecke_def.indd 81 27/09/18 08:38

72 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

These four constructions can process the utterance ‘the crow lays an egg’ in both

comprehension and formulation without the use of a type hierarchy. All categories that

are required by the conditional part (i.e. the comprehension and formulation locks) of

the constructions were added to the transient structure by merging the contributing

part of other constructions. For example, the ‘np-cxn’ matches in comprehension

on a unit that has a feature-value pair ‘lex-class: determiner’, which is added by the

contributing part of the ‘the-cxn’. No generalisations about the categories, such as the

fact that articles are a subset of determiners, are explicitly captured in the grammar.

Only information that is locally specified in the constructions is used. For clarity, the

links between the symbols in the contributing part of the lexical constructions and those

in the conditional part of the grammatical constructions are highlighted in colour and

connected through arrows in Figure 4.2.

Case 2: Mild Use of Type Hierarchies

In this second case, I will use the same grammar as in the first case, but certain

generalisations about categories will now be expressed using the type hierarchy of the

grammar. This case is visualised in Figure 4.3 and referred to as a ‘mild’ use of the

type hierarchy.

In case 1 above, the features ‘lex-class’, ‘semantic-class’ and ‘semantic-properties’ of

the lexical constructions, namely the ‘the-cxn’ and the ‘crow-cxn’, had as value a set

containing multiple symbols. For example, the ‘lex-class’ of the word ‘the’ contained

both ‘article’ and ‘determiner’. ‘article’ would then be used by constructions that select

for an article only and ‘determiner’ by constructions that select for any determiner,

such as the ‘np-cxn’ in our grammar. This is however redundant information, as every

article is also a determiner. In this second case, we will only specify the most specific

category inside the constructions. The ‘lex-class’ of ‘the’ is now only ‘article’, the

‘lex-class’ of ‘crow’ is now only ‘count-noun’ and the ‘semantic-class’ and ‘semantic-

properties’ of ‘crow’ are now only ‘bird’. Obviously, the ‘np-cxn’ and ‘lay-an-egg-cxn’

cannot apply any more, because they match on the more general classes, such as

‘determiner’, ‘physical-object’, ‘common-noun’ and ‘oviparous’. The solution consists

in declaring the relations between the more specific and the more general classes in

the type hierarchy of the grammar. We declare that an ‘article’ is a ‘determiner’, a

‘count-noun’ is a ‘common-noun’ and a ‘bird’ is a ‘physical-object’ and ‘oviparous’.

Now, the constraints in the conditional part of the ‘np-cxn’ and the ‘lay-an-egg-cxn’

are satisfied through the type hierarchy, and the four constructions of the grammar

can analyse the utterance ‘the crow lays an egg’ in both directions. Figure 4.3 shows

the constructions and the type hierarchy. The categories that are matched and merged

Paul_Van_Eecke_def.indd 82 27/09/18 08:38

4.4. EXAMPLES 73

through the type-hierarchy are connected with arrows.

The use of the type hierarchy allowed to explicitly capture certain generalisations about

categories outside of the constructions. The use of these generalisations allowed in turn

to reduce the amount of information that needed to be present in each construction.

Case 3: Extensive Use of Type Hierarchies

Case 1 presented a grammar that did not use any type hierarchy. For any construction,

all categories that could be used by other constructions for matching, needed to be

merged into the transient structure by the construction itself. Case 2 only required the

merging of the more specific categories and relied on the type hierarchy for matching

on these categories using more general categories. In case 3, we go even further in

reducing the number of categories that are explicitly declared inside the constructions,

and extensively use the type hierarchy for matching and merging. The grammar for

case 3 is visualised in Figure 4.4.

Instead of specifying the most specific category for each feature in the lexical con-

struction, we now assign the same symbol as the value of each feature. The symbol

is unique to the construction in which it occurs. For example, the ‘crow-cxn’ in Figure

4.4 has the symbol ‘crow’ as value for the features ‘lex-class’, ‘semantic-class’ and

‘semantic-properties’. The symbol ‘crow’ does not appear in any other construction.

In the type hierarchy, we declare that ‘crow’ is a subset of ‘bird’ and that ‘bird’ is

a subset of ‘oviparous’, ‘physical-object’ and ‘count-noun’. Finally, ‘count-noun’ is a

subset of ‘common-noun’. The value of each feature in the lexical construction is now

matched via the type hierarchy, which combines in this case semantic and morpho-

syntactic information. Without any changes to the ‘np-cxn’ en the ‘lay-an-egg-cxn’,

the grammar will still give the same processing results. In Figure 4.4, the symbols that

are matched through the type-hierarchy are highlighted with arrows.

4.4.2 Exploiting Generalisations for Learning

One of the main advantages of the use of type hierarchies is that the generalisations

that they capture can be exploited for learning new constructions based on novel ob-

servations. The main idea is that when observing a new word or grammatical structure

for the first time, only a very limited part of its behaviour is exposed. The large part

that is not exposed is filled in with default knowledge derived from the type hierarchy,

as shown in the following examples.

Paul_Van_Eecke_def.indd 83 27/09/18 08:38

74 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

args:
syn-cat:

sem
-cat:

subunits:

?np-unit
[?args]

lex-class:{np}

sem
antic-function:

sem
antic-class:

sem
antic-properties: referring-expression

{physical-object}
{?sem

antic-properties}
{?det, ?noun}

args:
syn-cat:

sem
-cat:

args:
sem

-cat:

syn-cat:

form
:

sem
antic-function:identifier
[?args]

lex-class:{determ
iner}

?noun

sem
antic-class:

sem
antic-properties:

{physical-object}
{?sem

antic-properties}
[?args]

sem
antic-class:{physical-object}

lex-class:{com
m

on-noun}

?np-unit
∅

{m
eets(?det, ?noun, ?np-unit)}

 ⨀

the-cxn-2 (cxn 0.50)

syn-cat:

sem
-cat:

args:

?the-unit

lex-class:{article, determ
iner}

sem
antic-function:identifier
[?x]

m
eaning:

form
:

the-cxn (cxn 0.50) show
 description

?the-unit
{selector(activate-referent, ?x)}

{string(?the-unit, "the")}

 ⨀

m
agpie-cxn (cxn 0.50)

reset

m
agpie-cxn (cxn 0.50)

crow
-cxn-3 (cxn 0.50)

crow
-cxn-2 (cxn 0.50)

args:
syn-cat:

sem
-cat:

?crow
-unit

[?crow
]

lex-class:{count-noun, com
m

on-noun, noun}

sem
antic-class:

sem
antic-properties:

{bird, physical-object}
{oviparous, flying}

m
eaning:

form
:

crow
-cxn (cxn 0.50) show

 description

?crow
-unit{anim

al(crow
, ?crow

)}
{string(?crow

-unit, "crow
")}

 ⨀

root

?the-unit-61

the-cxn (cxn 0.50) show
 attributes

root

?the-unit-61

sem
sem

FCG
 CO

NSTRUCTIO
N SET (8)

Search

syn-cat:

sem
-cat:

subunits:

?s-unit

lex-class:{s}

sem
antic-function:proposition

{?np-subject-unit, ?lays-an-egg-unit}

sem
-cat:

args:
sem

-cat:

syn-cat:

m
eaning:

form
:

form
:

lay-an-egg-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-properties: referring-expression

{oviparous}
[?x]

sem
antic-properties:{oviparous}

lex-class:{np}

?lays-an-egg-unit
{depose-egg(?x)}

{string(?lays-an-egg-unit, "lays"),
string(?an, "an"),
string(?egg, "egg"),
m

eets(?an, ?egg, ?lays-an-egg-unit)}

?s-unit
∅

{m
eets(?np-subject-unit, ?lays-an-egg-unit, ?s-unit)}

 ⨀

args:
syn-cat:

sem
-cat:

subunits:

?np-unit
[?args]

lex-class:{np}

sem
antic-function:

sem
antic-class:

sem
antic-properties: referring-expression

{physical-object}
{?sem

antic-properties}
{?det, ?noun}

sem
-cat:

args:
syn-cat:

sem
-cat:

args:
sem

-cat:

syn-cat:

form
:

np-cxn (cxn 0.50) show
 description

?det

sem
antic-function:identifier
[?args]

lex-class:{determ
iner}

?noun

sem
antic-class:

sem
antic-properties:

{physical-object}
{?sem

antic-properties}
[?args]

sem
antic-class:{physical-object}

lex-class:{com
m

on-noun}

?np-unit
∅

{m
eets(?det, ?noun, ?np-unit)}

 ⨀

the-cxn-2 (cxn 0.50)

syn-cat:

sem
-cat:

args:

?the-unit

lex-class:{article, determ
iner}

sem
antic-function:identifier
[?x]

m
eaning:

form
:

the-cxn (cxn 0.50) show
 description

?the-unit
{selector(activate-referent, ?x)}

{string(?the-unit, "the")}

 ⨀

m
agpie-cxn (cxn 0.50)

FCG
 CO

NSTRUCTIO
N SET (8)

Search

syn-cat:

sem
-cat:

subunits:

?s-unit

lex-class:{s}

sem
antic-function:proposition

{?np-subject-unit, ?lays-an-egg-unit}

sem
-cat:

args:
sem

-cat:

syn-cat:

m
eaning:

form
:

form
:

lay-an-egg-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-properties: referring-expression

{ oviparous}
[?x]

sem
antic-properties:{oviparous}

lex-class:{np}

?lays-an-egg-unit
{depose-egg(?x)}

{string(?lays-an-egg-unit, "lays"),
string(?an, "an"),
string(?egg, "egg"),
m

eets(?an, ?egg, ?lays-an-egg-unit)}

?s-unit
∅

{m
eets(?np-subject-unit, ?lays-an-egg-unit, ?s-unit)}

 ⨀

args:
syn-cat:

sem
-cat:

subunits:

?np-unit
[?args]

lex-class:{np}

sem
antic-function:

sem
antic-class:

sem
antic-properties: referring-expression

{physical-object}
{?sem

antic-properties}
{?det, ?noun}

sem
-cat:

args:
syn-cat:

sem
-cat:

args:
sem

-cat:

syn-cat:

form
:

np-cxn (cxn 0.50) show
 description

?det

sem
antic-function:identifier
[?args]

lex-class:{determ
iner}

?noun

sem
antic-class:

sem
antic-properties:

{physical-object}
{?sem

antic-properties}
[?args]

sem
antic-class:{physical-object}

lex-class:{com
m

on-noun}

?np-unit
∅

{m
eets(?det, ?noun, ?np-unit)}

 ⨀

the-cxn-2 (cxn 0.50)

F
ig
u
re
4
.2
:
C
o
n
stru
ctio
n
s
fo
r
p
ro
cessin

g
‘th
e
cro
w
lays
a
n
eg
g
’
w
ith
o
u
t
th
e
u
se
o
f
typ
e
h
ierarch

ies.
T
h
e
arro
w
s
a
n
d
co
lo
u
r
h
ig
h
lig
h
tin
g

in
d
ica
te
w
h
ich
ca
teg
o
ries
a
d
d
ed
b
y
th
e
lexica

l
co
n
stru
ctio
n
s
a
b
o
ve
are
u
sed
by
th
e
g
ra
m
m
a
tica
l
co
n
stru
ctio
n
s
b
elo
w
.

Paul_Van_Eecke_def.indd 84 27/09/18 08:38

FCG
 CO

NSTRUCTIO
N SET (8)

search...
Search

syn-cat:

sem
-cat:

subunits:

?s-unit

lex-class:{s}

sem
antic-function:proposition

{?np-subject-unit, ?lays-an-egg-unit}

sem
-cat:

args:
sem

-cat:

syn-cat:

m
eaning:

form
:

form
:

lay-an-egg-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-properties: referring-expression

{oviparous}
[?x]

sem
antic-properties:{oviparous}

lex-class:{np}

?lays-an-egg-unit
{depose-egg(?x)}

{string(?lays-an-egg-unit, "lays"),
string(?an, "an"),
string(?egg, "egg"),
m

eets(?an, ?egg, ?lays-an-egg-unit)}

?s-unit
∅

{m
eets(?np-subject-unit, ?lays-an-egg-unit, ?s-unit)}

 ⨀

args:
syn-cat:

sem
-cat:

?np-unit
[?args]

lex-class:{np}

sem
-cat:

args:
syn-cat:

sem
-cat:

np-cxn (cxn 0.50) show
 description

?det

sem
antic-function:identifier
[?args]

lex-class:{determ
iner}

?noun

sem
antic-class:{physical-object}

 ⨀

FCG
 CO

NSTRUCTIO
N SET (8)

search...
Search

4.4. EXAMPLES 75

Coercion Imagine a ‘transitive-clause-cxn’ that matches on a unit that has as ‘lex-

class’ ‘verbal’ and as ‘semantic-class’ ‘event’, like in “he sees him” or “he would have

employed him”. The grammar is now faced with the utterance “he googled him”, in

which the slot that normally should have had a verbal category now has a nominal cate-

gory. Although ‘google’ has only been observed in a verbal role in a single construction,

the grammar will now assume that it can serve a verbal role in general and opens the

way for productively using it in other constructions that take a verbal element, such

as “he would have googled him” or “he said he would google the hell out of this”. It

is the use of generalisations and abstractions that allows the use of this lexical item in

other constructions. Note that this example can be implemented using a type hierarchy

(cf. Case 2 and 3 of 4.4.1), but also by adding the verbal category inside the lexical

construction (cf. Case 1 of 4.4.1).

New bird This second example revisits the example with ‘crows’ that was worked

out in Case 3 of the previous section. Case 3 presented the ‘extensive’ use of the

type hierarchy, in which a single, unique symbol (‘crow’) was used as the value of

each feature and the matching and merging of these symbols relied extensively on

the type hierarchy. This grammar was shown in Figure 4.4 and will serve as the

starting point for the current example on learning, which is visualised in Figure 4.5.

In this example, the grammar is faced with a new concept, namely ‘magpie’. FCG’s

meta-layer architecture diagnoses that the word “magpie” is unknown and a repair will

create a new construction for this word. On the conditional part, the construction will

map between the form “magpie” and a predicate representing its meaning: (magpie

?x). On the contributing part, the features ‘lex-class’, ‘semantic-class’ and ‘semantic-

properties’ all get the value {magpie}. The symbol ‘magpie’ is at this moment unique
in the grammar, it does not appear in any other construction. From the interaction,

it can be deduced that a magpie is a kind of bird, so an arc from ‘magpie’ to ‘bird’

is added to the type hierarchy. This ensures that the constructions that match on

categories linked to ‘bird’ will be able to match on the unit created by the ‘magpie-

cxn’. The grammar will be able to use “magpie” in the same constructions as it can

use “crow”. A visualisation of the use of the ‘magpie-cxn’ is shown in Figure 4.5.

4.4.3 Cancellation of Generalisations

In the previous section, I have shown that the generalisations that are captured in

a type hierarchy are useful when learning new constructions from observations. In

all the examples up to this point, I have used relatively safe categories in the sense

that more specific categories were strict subsets of more general categories. Birds

Paul_Van_Eecke_def.indd 85 27/09/18 08:38

76 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

Saved node
 to global variable *saved-cipn*

cxn-applied
status

cxn-applied

source structure

applied construction

resulting structure

resulting bindings
((?crow-unit . crow-19))

m
eaning

(anim
al

crow
?crow

-383)

crow
-cxn-2 (cxn 0.50)

⨁

transient structure

root

args:
syn-cat:

sem
-cat:

?crow
-unit

[?crow
]

lex-class:{count-noun}

sem
antic-class:

sem
antic-properties:

{bird}{bird}

crow
-cxn-2 (cxn 0.50) show

 description

?crow
-unit

 ⨀

⨁

transient structure

root

crow
-19

Saved node
 to global variable *saved-cipn*

Saved node

cxn-applied
status

cxn-applied

source structure

applied construction

resulting structure

resulting bindings
((?the-unit . the-19))

m
eaning

(anim
al

crow
?crow

-383)
(selector

activate-referent
?x-231)

the-cxn-2 (cxn 0.50)

⨁

transient structure

root

crow
-19

syn-cat:

sem
-cat:

args:

?the-unit

lex-class:{article}

sem
antic-function:identifier
[?x]

the-cxn-2 (cxn 0.50) show
 description

?the-unit
 ⨀

⨁

transient structure

root

crow
-19

the-19

?np-unit

sem
-cat:

args:
syn-cat:

sem
-cat:

args:
sem

-cat:

syn-cat:

form
:

np-cxn (cxn 0.50) show
 description

?det

sem
antic-function:identifier
[?args]

lex-class:{determ
iner}

?noun

sem
antic-class:

sem
antic-properties:

{physical-object}
{?sem

antic-properties}
[?args]

sem
antic-class:{physical-object}

lex-class:{com
m

on-noun}

?np-unit
∅

{m
eets(?det, ?noun, ?np-unit)}

 ⨀

?s-unit

sem
-cat:

args:
sem

-cat:

syn-cat:

m
eaning:

lay-an-egg-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-properties: referring-expression

{oviparous}
[?x]

sem
antic-properties:{oviparous}

lex-class:{np}

?lays-an-egg-unit
{depose-egg(?x)}

 ⨀

resulting structure

M
eaning:

?np-unit

sem
-cat:

args:
syn-cat:

sem
-cat:

args:
sem

-cat:

syn-cat:

form
:

np-cxn (cxn 0.50) show
 description

?det

sem
antic-function:identifier
[?args]

lex-class:{determ
iner}

?noun

sem
antic-class:

sem
antic-properties:

{physical-object}
{?sem

antic-properties}
[?args]

sem
antic-class:{physical-object}

lex-class:{com
m

on-noun}

?np-unit
∅

{m
eets(?det, ?noun, ?np-unit)}

 ⨀

?s-unit

sem
-cat:

args:
sem

-cat:

syn-cat:

m
eaning:

form
:

form
:

lay-an-egg-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-properties: referring-expression

{oviparous}
[?x]

sem
antic-properties:{oviparous}

lex-class:{np}

?lays-an-egg-unit
{depose-egg(?x)}

{string(?lays-an-egg-unit, "lays"),
string(?an, "an"),
string(?egg, "egg"),
m

eets(?an, ?egg, ?lays-an-egg-unit)}

?s-unit
∅

{m
eets(?np-subject-unit, ?lays-an-egg-unit, ?s-unit)}

 ⨀

⨁

transient structure

root

s-unit-12

lays-19

np-unit-12
the-19

crow
-19

?crow
-383)

?crow
-383)

?crow
-383)

CO
U
N
T-N

O
U
N

CO
M
M
O
N
-N
O
U
N

PH
Y
SICA

L-O
BJECT

BIRD

D
ETERM

IN
ER

A
RTICLE

 to global variable *saved-cipn*

cxn-applied

((?crow-unit . crow-19))

(anim
al

crow
?crow

-383)

⨁

transient structure

root

args:
syn-cat:

sem
-cat:

?crow
-unit

[?crow
]

lex-class:{count-noun}

sem
antic-class:

sem
antic-properties:

{bird}{bird}

crow
-cxn-2 (cxn 0.50) show

 description

?crow
-unit

 ⨀

⨁

transient structure

root

crow
-19

M
eaning:
(selector

activate-referent
?crow

-383)

(anim
al

crow
?crow

-383)

(depose-egg
?crow

-383)

O
V
IPA

RO
U
S

CO
U
N
T-N

O
U
N

CO
M
M
O
N
-N
O
U
N

PH
Y
SICA

L-O
BJECT

BIRD

D
ETERM

IN
ER

A
RTICLE

Saved node
 to global variable *saved-cipn*

cxn-applied
status

cxn-applied

source structure

applied construction

resulting structure

resulting bindings
((?crow-unit . crow-19))

m
eaning

(anim
al

crow
?crow

-383)

crow
-cxn-2 (cxn 0.50)

⨁

transient structure

root

args:
syn-cat:

sem
-cat:

?crow
-unit

[?crow
]

lex-class:{count-noun}

sem
antic-class:

sem
antic-properties:

{bird}{bird}

crow
-cxn-2 (cxn 0.50) show

 description

?crow
-unit

 ⨀

⨁

transient structure

root

crow
-19

M
eaning:
(selector

activate-referent
?crow

-383)

(anim
al

crow
?crow

-383)

(depose-egg
?crow

-383)

O
V
IPA

RO
U
S

CO
U
N
T-N

O
U
N

CO
M
M
O
N
-N
O
U
N

PH
Y
SICA

L-O
BJECT

BIRD

Saved node
 to global variable *saved-cipn*

cxn-applied
status

cxn-applied

source structure

applied construction

resulting structure

resulting bindings
((?crow-unit . crow-19))

m
eaning

(anim
al

crow
?crow

-383)

crow
-cxn-2 (cxn 0.50)

⨁

transient structure

root

args:
syn-cat:

sem
-cat:

?crow
-unit

[?crow
]

lex-class:{count-noun}

sem
antic-class:

sem
antic-properties:

{bird}{bird}

crow
-cxn-2 (cxn 0.50) show

 description

?crow
-unit

 ⨀

⨁

transient structure

root

crow
-19

F
ig
u
re
4
.3
:
C
o
n
stru
ctio
n
s
fo
r
p
ro
cessin

g
‘th
e
cro
w
lays
a
n
eg
g
’
w
ith
a
m
ild
u
se
o
f
th
e
typ
e
h
ierarch

y.
T
h
e
arro
w
s
sh
o
w
th
e
ca
teg
o
ries

th
a
t
are
m
a
tch
ed
a
n
d
m
erg
ed
via
th
e
typ
e
h
ierarch

y.

se
m

-c
at

:

ar
gs

:
sy

n-
ca

t:

np
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?d
et se

m
an

tic
-fu

nc
tio

n:
id

en
tifi

er

[?
ar

gs
]

le
x-

cl
as

s:
{d

et
er

m
in

er
}

O
V
IP
A
RO
U
S

CO
U
N
T-
N
O
U
N

CO
M
M
O
N
-N
O
U
N

CR
O
W

BI
RD

PH
Y
SI
CA
L-
O
BJ
EC
T

C
om

pr
eh

en
di

ng
 "

th
e

cr
ow

 la
ys

 a
n

eg
g"

Ap
pl

yi
ng

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (5
)

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

* t
he

-c
xn

 (c
xn

 0
.5

0)
, c

ro
w

-c
xn

-3
 (c

xn
 0

.5
0)

, n
p-

cx
n

la
y-

an
-e

gg
-c

xn

Paul_Van_Eecke_def.indd 86 27/09/18 08:38

M
eaning:
(selector

activate-referent
?crow

-383)

(anim
al

crow
?crow

-383)

(depose-egg
?crow

-383)

O
V
IPA

RO
U
S

CO
U
N
T-N

O
U
N

CO
M
M
O
N
-N
O
U
N

PH
Y
SICA

L-O
BJECT

BIRD

Saved node
 to global variable *saved-cipn*

cxn-applied
status

cxn-applied

source structure

crow
-cxn-2 (cxn 0.50)

transient structure

Saved node
 to global variable *saved-cipn*

cxn-applied
status

cxn-applied

source structure

the-cxn-2 (cxn 0.50)

transient structure
np-cxn (cxn 0.50) show

 description

4.4. EXAMPLES 77

?n
p-

un
it

se
m

-c
at

:

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

fo

rm
:

np
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?d
et se

m
an

tic
-fu

nc
tio

n:
id

en
tifi

er

[?
ar

gs
]

le
x-

cl
as

s:
{d

et
er

m
in

er
}

?n
ou

n

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{p
hy

si
ca

l-o
bj

ec
t}

{?
se

m
an

tic
-p

ro
pe

rti
es

}
[?

ar
gs

]

se
m

an
tic

-c
la

ss
:{

ph
ys

ic
al

-o
bj

ec
t}

le
x-

cl
as

s:
{c

om
m

on
-n

ou
n}

?n
p-

un
it

∅
{m

ee
ts

(?
de

t,
?n

ou
n,

 ?
np

-u
ni

t)}

⨀

?s
-u
ni
t

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?n
p-

su
bj
ec

t-
un

it

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-p
ro

pe
rti

es
:re

fe
rri

ng
-e

xp
re

ss
io

n

{o
vi

pa
ro

us
}

[?
x]

se
m

an
tic

-p
ro

pe
rti

es
:{

ov
ip

ar
ou

s}

le
x-

cl
as

s:
{n

p}

⨀

re
su

lti
ng

 s
tru

ct
ur

e

?n
p-

un
it

se
m

-c
at

:

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

fo

rm
:

?d
et se

m
an

tic
-fu

nc
tio

n:
id

en
tifi

er

[?
ar

gs
]

le
x-

cl
as

s:
{d

et
er

m
in

er
}

?n
ou

n

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{p
hy

si
ca

l-o
bj

ec
t}

{?
se

m
an

tic
-p

ro
pe

rti
es

}
[?

ar
gs

]

se
m

an
tic

-c
la

ss
:{

ph
ys

ic
al

-o
bj

ec
t}

le
x-

cl
as

s:
{c

om
m

on
-n

ou
n}

?n
p-

un
it

∅
{m

ee
ts

(?
de

t,
?n

ou
n,

 ?
np

-u
ni

t)}

⨀

?s
-u
ni
t

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

m

ea
ni

ng
:

fo

rm
:

fo

rm
:

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?n
p-

su
bj
ec

t-
un

it

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-p
ro

pe
rti

es
:re

fe
rri

ng
-e

xp
re

ss
io

n

{o
vi

pa
ro

us
}

[?
x]

se
m

an
tic

-p
ro

pe
rti

es
:{

ov
ip

ar
ou

s}

le
x-

cl
as

s:
{n

p}

?l
ay

s-
an

-e
gg

-u
ni
t

{d
ep

os
e-

eg
g(

?x
)}

{s
tri

ng
(?

la
ys

-a
n-

eg
g-

un
it,

 "l
ay

s"
),

st
rin

g(
?a

n,
 "a

n"
),

st
rin

g(
?e

gg
, "

eg
g"

),
m

ee
ts

(?
an

, ?
eg

g,
 ?

la
ys

-a
n-

eg
g-

un
it)

}

?s
-u
ni
t

∅
{m

ee
ts

(?
np

-s
ub

je
ct

-u
ni

t,
?l

ay
s-

an
-e

gg
-u

ni
t,

?s
-u

ni
t)}

⨀

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

s-
un

it-
12

la
ys

-1
9

np
-u
ni
t-
12

th
e-
19

cr
ow

-1
9

O
V
IP
A
RO
U
S

CO
U
N
T-
N
O
U
N

CO
M
M
O
N
-N
O
U
N

CR
O
W

BI
RD

PH
Y
SI
CA
L-
O
BJ
EC
T

C
om

pr
eh

en
di

ng
 "

th
e

cr
ow

 la
ys

 a
n

eg
g"

Ap
pl

yi
ng

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

ap
pl

ie
d

co
ns

tru
ct

io
ns

re
su

lti
ng

 s
tru

ct
ur

e

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (5
)

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

in
iti

al
* t

he
-c

xn
 (c

xn
 0

.5
0)

, c
ro

w
-c

xn
-3

 (c
xn

 0
.5

0)
, n

p-
cx

n
(c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
(c

xn
 0

.5
0)

th
e-

cx
n

(c
xn

 0
.5

0)

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

?c
ro

w
-u

ni
t

[?
cr

ow
]

le
x-

cl
as

s:
{c

ro
w

}

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{c
ro

w
} {c

ro
w

}

cr
ow

-c
xn

-3
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?c
ro

w
-u

ni
t

⨀

np
-c

xn
 (c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

ap
pl

ic
at

io
n

pr
oc

es
s

ap
pl

ie
d

co
ns

tru
ct

io
ns

re
su

lti
ng

 s
tru

ct
ur

e

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

in
iti

al
* t

he
-c

xn
 (c

xn
 0

.5
0)

, c
ro

w
-c

xn
-3

 (c
xn

 0
.5

0)
, n

p-
cx

n
(c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
(c

xn
 0

.5
0)

th
e-

cx
n

(c
xn

 0
.5

0)

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

?c
ro

w
-u

ni
t

[?
cr

ow
]

le
x-

cl
as

s:
{c

ro
w

}

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{c
ro

w
} {c

ro
w

}

cr
ow

-c
xn

-3
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?c
ro

w
-u

ni
t

⨀

np
-c

xn
 (c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

F
ig
u
re
4
.4
:
C
o
n
st
ru
ct
io
n
s
fo
r
pr
o
ce
ss
in
g
‘t
h
e
cr
o
w
la
ys
a
n
eg
g
’
w
it
h
a
n
ex
te
n
si
ve
u
se
o
f
th
e
ty
p
e
h
ie
ra
rc
h
y.
T
h
e
ar
ro
w
s
sh
o
w
th
e

ca
te
g
o
ri
es
th
a
t
ar
e
m
a
tc
h
ed
a
n
d
m
er
g
ed
vi
a
th
e
ty
p
e
h
ie
ra
rc
h
y.

Paul_Van_Eecke_def.indd 87 27/09/18 08:38

78 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

are oviparous and physical objects, and there are probably no exceptions. In general

however, relations between categories are often of a much more prototypical nature.

Birds typically fly, but ostriches and penguins don’t. When learning about a new

bird, it is a good idea to assume that it flies, up until the point that the opposite

becomes known. In order to capture these prototypical relations as default knowledge,

a mechanism for cancelling inferences is needed when exceptions are processed. Two

different mechanisms for cancelling inferences are presented, the first one through

information in the construction itself and the second through information in the type

hierarchy.

The starting point for the two mechanisms is the same. The grammar is very similar

to the grammar used in the previous examples, but now the ‘fly-cxn’ is added. This

construction combines the word “flies” and a subject np of which the value of the

‘semantic-properties’ feature includes ‘flying’. We know that birds typically fly, so we

add a link from ‘bird’ to ‘flying’ in the type hierarchy4. This is fine for sentences like

‘the crow flies’ or ‘the magpie flies’. The challenge is to incorporate the knowledge

that ostriches don’t fly into the grammar.

Cancellation through the Construction

A first mechanism is to add a feature-value pair ‘non-prototypical: {}’ to each con-
struction. The value of the feature is a set containing all non-prototypical categories

of the construction. In the case of ‘ostrich’, ‘non-prototypical: {non-flying}’ is spec-
ified and in the case of the np, the value of the same feature in the noun copied.

In the ‘?np-subject-unit’ on the conditional part of the ‘fly-cxn’, a feature-value pair

‘non-prototypical: {¬ non-flying}’ is added. This feature requires that the value of
the ‘non-prototypical’ feature of the ‘?np-subject-unit’ does not contain the symbol

‘non-flying’. The ‘fly-cxn’ can still apply in the utterance “the crow flies”, but cannot

apply in the utterance “the ostrich flies”. A visualisation of this way of cancelling a

generalisation from the type hierarchy, namely through information that is local to the

construction, is shown in Figure 4.6. The feature that blocks construction application

in the matching phase is marked with a red arrow.

Cancellation through the Type Hierarchy

A second mechanism for the cancellation of generalisations is to include information

about non-prototypical properties into the type-hierarchy, instead of into the construc-

4Note that the aim of this example is to demonstrate that the type hierarchy can capture systematic

information, the system does not contain built-in mechanisms for detecting that birds typically fly.

O
V
IP
A
RO
U
S

CO
U
N
T-
N
O
U
N

CO
M
M
O
N
-N
O
U
N

PH
Y
SI
CA
L-
O
BJ
EC
T

CR
O
W

BI
RD

M
A
G
PI
E

C
om

pr
eh

en
di

ng
 "

th
e

m
ag

pi
e

la
ys

 a
n

eg
g"

Ap
pl

yi
ng

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (5
)

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

in
iti

al
* t

he
-c

xn
 (c

xn
 0

.5
0)

, m
ag

pi
e-

cx
n

(c
xn

 0
.5

0)
, n

p-
cx

n
la

y-
an

-e
gg

-c
xn

se
m

-c
at

:

ar
gs

:
sy

n-
ca

t:

np
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?d
et se

m
an

tic
-fu

nc
tio

n:
id

en
tifi

er

[?
ar

gs
]

le
x-

cl
as

s:
{d

et
er

m
in

er
}

Paul_Van_Eecke_def.indd 88 27/09/18 08:38

4.4. EXAMPLES 79

ap
pl

ic
at

io
n

pr
oc

es
s

ap
pl

ie
d

co
ns

tru
ct

io
ns

re
su

lti
ng

 s
tru

ct
ur

e

⨁

ro
ot

in
iti

al
* t

he
-c

xn
 (c

xn
 0

.5
0)

, m
ag

pi
e-

cx
n

(c
xn

 0
.5

0)
, n

p-
cx

n
(c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
(c

xn
 0

.5
0)

th
e-

cx
n

(c
xn

 0
.5

0)

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

?u
ni

t [?
m

ag
pi

e]

le
x-

cl
as

s:
{m

ag
pi

e}

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{m
ag

pi
e}

{m
ag

pi
e}

m
ag

pi
e-

cx
n

(c
xn

 0
.5

0)
 s

ho
w

 d
es

cr
ip

tio
n

?u
ni

t

⨀

np
-c

xn
 (c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

O
V
IP
A
RO
U
S

CO
U
N
T-
N
O
U
N

CO
M
M
O
N
-N
O
U
N

PH
Y
SI
CA
L-
O
BJ
EC
T

CR
O
W

BI
RD

M
A
G
PI
E

C
om

pr
eh

en
di

ng
 "

th
e

m
ag

pi
e

la
ys

 a
n

eg
g"

Ap
pl

yi
ng

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

ap
pl

ie
d

co
ns

tru
ct

io
ns

re
su

lti
ng

 s
tru

ct
ur

e

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (5
)

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

in
iti

al
* t

he
-c

xn
 (c

xn
 0

.5
0)

, m
ag

pi
e-

cx
n

(c
xn

 0
.5

0)
, n

p-
cx

n
(c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
(c

xn
 0

.5
0)

th
e-

cx
n

(c
xn

 0
.5

0)

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

?u
ni

t [?
m

ag
pi

e]

le
x-

cl
as

s:
{m

ag
pi

e}

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{m
ag

pi
e}

{m
ag

pi
e}

m
ag

pi
e-

cx
n

(c
xn

 0
.5

0)
 s

ho
w

 d
es

cr
ip

tio
n

?u
ni

t

⨀

np
-c

xn
 (c

xn
 0

.5
0)

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

?n
p-

un
it

se
m

-c
at

:

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

fo

rm
:

np
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?d
et se

m
an

tic
-fu

nc
tio

n:
id

en
tifi

er

[?
ar

gs
]

le
x-

cl
as

s:
{d

et
er

m
in

er
}

?n
ou

n

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{p
hy

si
ca

l-o
bj

ec
t}

{?
se

m
an

tic
-p

ro
pe

rti
es

}
[?

ar
gs

]

se
m

an
tic

-c
la

ss
:{

ph
ys

ic
al

-o
bj

ec
t}

le
x-

cl
as

s:
{c

om
m

on
-n

ou
n}

?n
p-

un
it

∅
{m

ee
ts

(?
de

t,
?n

ou
n,

 ?
np

-u
ni

t)}

⨀

?s
-u
ni
t

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?n
p-

su
bj
ec

t-
un

it

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-p
ro

pe
rti

es
:re

fe
rri

ng
-e

xp
re

ss
io

n

{o
vi

pa
ro

us
}

[?
x]

se
m

an
tic

-p
ro

pe
rti

es
:{

ov
ip

ar
ou

s}

le
x-

cl
as

s:
{n

p}

⨀

re
su

lti
ng

 s
tru

ct
ur

e

?n
p-

un
it

se
m

-c
at

:

ar
gs

:
sy

n-
ca

t:

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

fo

rm
:

?d
et se

m
an

tic
-fu

nc
tio

n:
id

en
tifi

er

[?
ar

gs
]

le
x-

cl
as

s:
{d

et
er

m
in

er
}

?n
ou

n

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

{p
hy

si
ca

l-o
bj

ec
t}

{?
se

m
an

tic
-p

ro
pe

rti
es

}
[?

ar
gs

]

se
m

an
tic

-c
la

ss
:{

ph
ys

ic
al

-o
bj

ec
t}

le
x-

cl
as

s:
{c

om
m

on
-n

ou
n}

?n
p-

un
it

∅
{m

ee
ts

(?
de

t,
?n

ou
n,

 ?
np

-u
ni

t)}

⨀

?s
-u
ni
t

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

m

ea
ni

ng
:

fo

rm
:

fo

rm
:

la
y-

an
-e

gg
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?n
p-

su
bj
ec

t-
un

it

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-p
ro

pe
rti

es
:re

fe
rri

ng
-e

xp
re

ss
io

n

{o
vi

pa
ro

us
}

[?
x]

se
m

an
tic

-p
ro

pe
rti

es
:{

ov
ip

ar
ou

s}

le
x-

cl
as

s:
{n

p}

?l
ay

s-
an

-e
gg

-u
ni
t

{d
ep

os
e-

eg
g(

?x
)}

{s
tri

ng
(?

la
ys

-a
n-

eg
g-

un
it,

 "l
ay

s"
),

st
rin

g(
?a

n,
 "a

n"
),

st
rin

g(
?e

gg
, "

eg
g"

),
m

ee
ts

(?
an

, ?
eg

g,
 ?

la
ys

-a
n-

eg
g-

un
it)

}

?s
-u
ni
t

∅
{m

ee
ts

(?
np

-s
ub

je
ct

-u
ni

t,
?l

ay
s-

an
-e

gg
-u

ni
t,

?s
-u

ni
t)}

⨀

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

s-
un

it-
12

la
ys

-1
9

np
-u
ni
t-
12

th
e-
19

cr
ow

-1
9

F
ig
u
re
4
.5
:
L
ea
rn
in
g
o
f
n
ew
co
n
st
ru
ct
io
n
s
u
si
n
g
th
e
ty
p
e
h
ie
ra
rc
h
y.
B
y
a
d
d
in
g
a
lin
k
fr
o
m
‘m
a
g
p
ie
’
to
‘b
ir
d
’
in
th
e
ty
p
e
h
ie
ra
rc
h
y,
th
e

u
se
o
f
th
e
sy
m
b
o
l
‘m
a
g
p
ie
’
w
ill
ta
ke
o
ve
r
th
e
sa
m
e
b
eh
a
vi
o
u
r
o
f
th
e
sy
m
b
o
l
‘b
ir
d
’.

Paul_Van_Eecke_def.indd 89 27/09/18 08:38

80 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

tions. Just like for the first mechanism, a feature-value pair ‘non-prototypical: {}’
is added to the constructions. However, the value is now a single symbol, which is

uniquely used inside this construction. For the ‘crow-cxn’, it could be ‘non-prototypical:

{crow}’ and for the ‘ostrich-cxn’, it could be ‘non-prototypical: {ostrich}’. In the type
hierarchy, an arc from ‘ostrich’ to ‘non-flying’ is added. The ‘fly-cxn’ is left unchanged,

with the feature-value pair ‘non-prototypical: {¬ non-flying}’ in the ‘?np-subject-unit’
on the conditional part. Through the type hierarchy, this feature blocks construction

application for ‘the ostrich flies’, but not for ‘the crow flies’ and ‘the magpie flies’.

A visualisation of this mechanism is shown in Figure 4.7. Matching links through the

type hierarchy are highlighted by black arrows, and the blocking link is highlighted in

red.

Interestingly, this grammar also allows ‘the bird flies’, as bird is a subtype of ‘flying’,

but not a subtype of ‘non-flying’. This shows how the prototypical relationship is

expressed here. Birds fly in general, but it is possible that specific subtypes of birds,

e.g. individuals or subgroups, don’t fly. Note that in section 4.2, it was stressed that

symbols carry no meaning other than the way they are used in the grammar. This is

still entirely true, if the type hierarchy is considered to be part of the grammar. For

this reason, it is also not inconsistent to have links from ostrich to both ‘flying’ and

‘non-flying’. There is no explicit notion of complementarity or mutual exclusivity for

symbols in the type-hierarchy. The fact that it might seem that ‘non-flying’ ‘overrides’

‘flying’ in this example is solely an effect of how the ‘flying’ and ‘non-flying’ categories

are used in the ‘fly-cxn’.

4.4.4 Entrenchment of Type Hierarchy Links

The links in a type hierarchy are weighted, and the weights indicate the degree of

entrenchment of the links in the grammar. In evolutionary experiments, the weight of

a link reflects the confidence that an agent has that the use of this link will contribute

to achieving successful communication. It can in this respect be compared to the score

of a construction (see 3.4.5). The weights range from 0 to 1, with 0 indicating that

the link is fully entrenched and 1 indicating that the use of this link will most likely

not lead to communicative success. In evolutionary experiments, new links that are

added to the type hierarchy are initialised with a weight of 0.5, and the weights are

updated after each communicative interaction, based on its outcome. The updating

of the weights of the type hierarchy links plays a crucial role in learning and aligning

the type hierarchies of the agents in a population, as will be shown in chapter 7.

Figure 4.8 shows an example of a type hierarchy in which the links are weighted. The

⨁
 fo

rm
:

sy
n-

ca
t:

se
m

-c
at

:

ar
gs

:
su

bu
nit

s:

tra
ns

ien
t s

tru
ct

ur
e

ro
ot

np
-u

ni
t-5 {m

ee
ts

(th
e-

6,
 o

st
ric

h-
6,

 n
p-

un
it-

5)
}

lex
-c

las
s:

{n
p}

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-c
las

s:
se

m
an

tic
-p

ro
pe

rti
es

:
no

n-
pr

ot
ot

yp
ica

l:

re
fe

rri
ng

-e
xp

re
ss

io
n

{p

hy
sic

al-
ob

jec
t}

{o
st

ric
h}

{n
on

-fl
yin

g}
[?

os
tri

ch
-3

1]
{th

e-
6,

 o
st

ric
h-

6}

os
tri
ch

-6

th
e-
6

Paul_Van_Eecke_def.indd 90 27/09/18 08:38

4.4. EXAMPLES 81
M
ea

ni
ng

:

BI
RD

PH
YS
IC
AL
-O
BJ
EC
T

CO
UN
T-
NO
UN

FL
YI
NG

CO
M
M
ON
-N
OU
N

OS
TR
IC
H

CR
OW

re
se

t

⨁
 s

em
-c

at
:

ar
gs

:
su

bu
nit

s:

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-c
las

s:
se

m
an

tic
-p

ro
pe

rti
es

:
no

n-
pr

ot
ot

yp
ica

l:

re
fe

rri
ng

-e
xp

re
ss

io
n

{p

hy
sic

al-
ob

jec
t}

{o
st

ric
h}

{n
on

-fl
yin

g}
[?

os
tri

ch
-3

1]
{th

e-
6,

 o
st

ric
h-

6}

os
tri
ch

-6

th
e-
6

C
om

pr
eh

en
di

ng
 "

th
e

os
tr

ic
h

fli
es

"

Ap
pl

yi
ng

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (5
)

Se
ar

ch

?s
-u

ni
t

se
m

-c
at

:

ar
gs

:
se

m
-c

at
:

sy
n-

ca
t:

m

ea
ni

ng
:

fo

rm
:

fo

rm
:

fly
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 d

es
cr

ip
tio

n

?n
p-

su
bj

ec
t-

un
it

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-p
ro

pe
rti

es
:

no
n-

pr
ot

ot
yp

ic
al

:

re
fe

rri
ng

-e
xp

re
ss

io
n

{fl

yi
ng

}
{¬

 n
on

-fl
yi

ng
}

[?
x]

se
m

an
tic

-p
ro

pe
rti

es
:

no
n-

pr
ot

ot
yp

ic
al

:
{fl

yi
ng

}
{¬

 n
on

-fl
yi

ng
}

le
x-

cl
as

s:
{n

p}

?fl
ie

s-
un

it
{fl

y(
?x

)}
{s

tri
ng

(?
fli

es
-u

ni
t,

"fl
ie

s"
)}

?s
-u

ni
t

∅
{m

ee
ts

(?
np

-s
ub

je
ct

-u
ni

t,
?fl

ie
s-

un
it,

 ?
s-

un
it)

}

⨀

np
-c

xn
 (c

xn
 0

.5
0)

th
e-

cx
n

(c
xn

 0
.5

0)

os
tri

ch
-c

xn
 (c

xn
 0

.5
0)

cr
ow

-c
xn

-3
 (c

xn
 0

.5
0)

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

*

M
ea

ni
ng

:

⊺
⋮⊳

⊲
≫

≪
LF

CG
2

⨁

fo
rm

:
sy

n-
ca

t:

se
m

-c
at

:

ar
gs

:
su

bu
ni

ts
:

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

np
-u

ni
t-
5

{m
ee

ts
(th

e-
6,

 o
st

ric
h-

6,
 n

p-
un

it-
5)

}

le
x-

cl
as

s:
{n

p}

se
m

an
tic

-fu
nc

tio
n:

se
m

an
tic

-c
la

ss
:

se
m

an
tic

-p
ro

pe
rti

es
:

no
n-

pr
ot

ot
yp

ic
al

:

re
fe

rri
ng

-e
xp

re
ss

io
n

{p

hy
si

ca
l-o

bj
ec

t}
{o

st
ric

h}
{n
on

-fl
yi
ng

}
[?

os
tri

ch
-3

1]
{th

e-
6,

 o
st

ric
h-

6}

os
tr
ic
h-

6

th
e-
6

F
ig
u
re
4
.6
:
C
a
n
ce
lla
ti
o
n
o
f
g
en
er
a
lis
a
ti
o
n
s
th
ro
u
g
h
in
fo
rm
a
ti
o
n
lo
ca
l
to
th
e
co
n
st
ru
ct
io
n
.
T
h
e
co
n
st
ru
ct
io
n
ca
n
n
o
t
a
p
p
ly
.
M
a
tc
h
in
g

fa
ils
b
ec
a
u
se
o
f
th
e
n
o
n
-p
ro
to
ty
p
ic
a
l
fe
a
tu
re
,
a
s
h
ig
h
lig
h
te
d
in
re
d
.

Paul_Van_Eecke_def.indd 91 27/09/18 08:38

82 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS
M
eaning:

BIRD

PHYSICAL-OBJECT
COUNT-NOUN

FLYING

COM
M
ON-NOUN

OSTRICH

NON-FLYING

CROW

reset

⨁
 form

:
syn-cat:

sem
-cat:

args:
subunits:

np-unit-7
{m

eets(the-8, ostrich-8, np-unit-7)}

lex-class:{np}

sem
antic-function:

sem
antic-class:

sem
antic-properties:

non-prototypical:

referring-expression
{physical-object}

{ostrich}
{ostrich}

[?ostrich-46]
{the-8, ostrich-8}

ostrich-8

the-8

C
om

prehending "the ostrich flies"

Applying

in com
prehension

initial structure

FC
G

 C
O

N
STR

U
C

TIO
N

 SET (5)

Search

?s-unit

sem
-cat:

args:
sem

-cat:

syn-cat:

m
eaning:

form
:

form
:

fly-cxn (cxn 0.50) show
 description

?np-subject-unit

sem
antic-function:

sem
antic-properties:

non-prototypical:

referring-expression
{flying}

{¬ non-flying}
[?x]

sem
antic-properties:

non-prototypical:
{flying}

{¬ non-flying}

lex-class:{np}

?flies-unit
{fly(?x)}

{string(?flies-unit, "flies")}

?s-unit
∅

{m
eets(?np-subject-unit, ?flies-unit, ?s-unit)}

 ⨀

np-cxn (cxn 0.50)

the-cxn (cxn 0.50)

ostrich-cxn (cxn 0.50)

crow
-cxn-3 (cxn 0.50)

⨁

transient structure

root

M
eaning:

⨁

form
:

syn-cat:

sem
-cat:

args:
subunits:

transient structure

root

np-unit-7
{m

eets(the-8, ostrich-8, np-unit-7)}

lex-class:{np}

sem
antic-function:

sem
antic-class:

sem
antic-properties:

non-prototypical:

referring-expression
{physical-object}

{ostrich}
{ostrich}

[?ostrich-46]
{the-8, ostrich-8}

ostrich-8

the-8

F
ig
u
re
4
.7
:
C
a
n
cella
tio
n
o
f
g
en
era
lisa
tio
n
s
th
ro
u
g
h
in
fo
rm
a
tio
n
in
th
e
typ
e
h
ierarch

y.
T
h
e
co
n
stru
ctio
n
ca
n
n
o
t
a
p
p
ly.
M
a
tch
in
g
fa
ils

b
eca
u
se
o
f
th
e
n
o
n
-p
ro
to
typ
ica
l
fea
tu
re,
o
f
w
h
ich
th
e
lin
k
th
ro
u
g
h
th
e
h
ierarch

y
is
h
ig
h
lig
h
ted
in
red
.

Paul_Van_Eecke_def.indd 92 27/09/18 08:38

⨁
 form

:
syn-cat:

sem
-cat:

transient structure

root

np-unit-7
{m

eets(the-8, ostrich-8, np-unit-7)}

lex-class:{np}

sem
antic-function:

sem
antic-class:

sem
antic-properties:

non-prototypical:

referring-expression
{physical-object}

{ostrich}
{ostrich}

ostrich-8

the-8

4.5. TYPE HIERARCHIES VERSUS TYPED FEATURE STRUCTURES 83Babel web interface

http://localhost:8000/

NOUN

VERB

GOOGLE
0.0

0.5

SEE

1.0

0.0
BIRD

0.0

1.0

reset
Figure 4.8: A type hierarchy showing the weights on the links that reflect their en-

trenchment in the grammar. More entrenched links are shown in a darker color and

minimally entrenched links are visualised using dotted arrows.

links from ‘bird’ and ‘google’ to ‘noun’ are fully entrenched as indicated by their weight

of 0.0, and the same holds for the link from ‘see’ to ‘verb’. The links from ‘bird’ to

‘verb’ and from ‘see’ to ‘noun’ have a weight of 1.0, indicating that the use of these

links is unlikely to lead to communicative success. Finally, the link from ‘google’ to

‘verb’ has just been created (like in ‘he googled him’), and has a score of 0.5. The

more entrenched a link is, the darker it is visualised, and minimally entrenched links

(with score 1.0) are visualised using dotted arrows.

4.5 Type Hierarchies versus Typed Feature Structures

Throughout this chapter, I have used the term ‘type hierarchy’ to refer to my imple-

mentation of a system for handling super- and subcategories in FCG. This use of the

term ‘type hierarchy’ deviates from its typical denotation when used in the context

of unification grammars. There, the term is usually used in relation to typed feature

structure grammars (Smolka and Ait-Kaci, 1989; Moens et al., 1989; Copestake, 2002;

Carpenter, 2005), where it denotes the data structure indicating the specialisation and

consistency of types. In that context, it is also sometimes referred to as sort hierar-

chy, type lattice or sort lattice. The next paragraphs will focus on the key differences

Paul_Van_Eecke_def.indd 93 27/09/18 08:38

84 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

between FCG’s implementation of type hierarchies and typed feature structures.

Typing of feature structures As suggested by its name, each feature structure in

a typed feature structure grammar is typed with a particular label. A type definition

system specifies for each type which features it allows, and for each of these features, of

which type its value should be. The type hierarchy defines the compatibilities (in terms

of unification) between the different types that are used. FCG’s type hierarchy system

does not type feature structures and, on purpose, does not specify which features can

appear in the value of another feature. The collection of features that is used, and of

possible values is open-ended and can be dynamically changed.

Closed World Assumption Typed feature structure grammars and their implemen-

tations usually assume a closed world, in the sense that all types that exist in a certain

grammar have a specified place in the type hierarchy (Pollard, 1997; Copestake, 2002).

A closed world assumption allows making additional inferences about types in the gram-

mar. For example, if the type hierarchy specifies that ‘plural’ and ‘singular’ are subtypes

of ‘number’ and you know that a certain value is of type ‘number’ and is not ‘singu-

lar’, it can be inferred that it is plural. In FCG’s type hierarchy system, there is no

closed world assumption, and no appropriateness restrictions for symbolic values. As a

consequence, no inferences based on a closed world should be made.

4.6 Conclusion

In this chapter, I have introduced a type hierarchy system for Fluid Construction Gram-

mar. The system aims to combine the main advantages of typed feature structures,

in particular the possibility to capture hierarchical relations among categories in the

grammar, with the advantages of untyped feature structures, in particular the dynamic,

constructivist and open-ended nature of the grammar. This was achieved by adding a

type hierarchy graph to the grammar, in which hierarchical relations between symbols

can be stored. FCG’s standard matching and merging algorithms were adapted, such

that they also succeed when two symbols are connected through the type hierarchy,

with the symbol in the construction being a supertype of the symbol in the transient

structure. Default matching and merging behaviour is kept for any symbols that do

not occur in, or are not connected through, the type hierarchy.

The type hierarchy system allows explicitly capturing generalisations over categories

in the grammar, and exploiting these generalisations when learning new constructions.

Paul_Van_Eecke_def.indd 94 27/09/18 08:38

4.6. CONCLUSION 85

For the case where a hierarchical relation between two categories is prototypical rather

than absolute, and exceptions need to be handled, two mechanisms for cancelling gen-

eralisations were presented. The first mechanism included non-prototypical categories

in the construction, whereas the second mechanism included the non-prototypical cat-

egories into the type hierarchy.

Finally, I have pointed out some key differences with typed feature structure grammars,

especially in the context of open-endedness and dynamicity. How these type hierarchies

can be learned from individual observations will be addressed in the next chapters.

Paul_Van_Eecke_def.indd 95 27/09/18 08:38

86 CHAPTER 4. A TYPE HIERARCHY SYSTEM FOR FCG SYMBOLS

Paul_Van_Eecke_def.indd 96 27/09/18 08:38

Chapter 5

Generalising Constructions

using Anti-Unification

5.1 Introduction . 88

5.2 Resolving Grammatical Impasses . 89

5.3 Anti-Unification . 91

5.3.1 Anti-Unification vs. Unification 91

5.3.2 A Basic Anti-Unification Algorithm 93

5.4 Anti-Unification for FCG Structures 95

5.4.1 About Pattern and Source 95

5.4.2 Integrating Cost Calculation 96

5.4.3 Pairing Units . 98

5.4.4 Anti-Unifying Features and Values 100

5.5 Demonstration . 102

5.5.1 Variable Decoupling . 102

5.5.2 Value Relaxation . 107

5.5.3 Feature/Predicate Deletion 107

5.5.4 Unit Deletion . 109

5.6 Anti-Unification and Type Hierarchies 111

5.7 Anti-Unification as a Debugging Tool in Grammar Engineering 112

5.7.1 Extending the Anti-Unification Algorithm 114

5.7.2 Example . 115

5.7.3 Integration into the FCG Environment 117

5.8 Conclusion . 118

87

Paul_Van_Eecke_def.indd 97 27/09/18 08:38

88 CHAPTER 5. GENERALISING CONSTRUCTIONS

5.1 Introduction

FCG implements language processing as a search process, in which the operators, in

this case constructions, are applied to state representations, in this case transient

structures, until a solution is found (see Figure 3.1 of Chapter 3). For the system to

return a solution, it is necessary that somewhere in the search space that is created

by all possible sequences of construction applications, there exists a solution state. In

other terms, a solution can only be found if the exact constructions that are necessary

for reaching a solution state are available in the construction inventory.

This will often not be the case when processing natural language, which is inherently

creative, dynamic and open-ended. Human speakers often use language elements in a

way that deviates from the way in which they are normally used. Consider for example,

the French utterance in (1), found in a discussion forum on the internet1.

(1) Tu
You.sg

es
are.sg

love
love

d’
of

elle,
her,

elle
she

le
it

sait
knows

pas,
not,

[...]
[...]

You are in love with her, she doesn’t know it, [...]

In this utterance, the word ‘love’ is used in a very unconventional way. ‘Love’ is

an English noun or verb, which is not commonly used in French. Semantically, the

utterance uses the word ‘love’ in the same way as it is used in the English phrase ‘to

be in love with someone’. Grammatically however, ‘love’ fills the adjective slot in the

‘être ADJ de NOUN’-cxn (‘to be ADJ of NOUN’-cxn) and not the noun slot in e.g.

‘tu es en love avec elle’ (you are in love with her) or the verb slot in e.g. ‘tu la loves’

(you love her). The ‘être ADJ de NOUN’-cxn was probably preferred by the French

speaker because of the influence of the alternative constructions ‘être amoureux de’

(to be in love with) and ‘être fou de’ (to be crazy about), which are very common in

French. The use of ‘love’ in the adjective slot is not limited to this construction, as it

also occurs in for example the ‘tomber love de’-cxn (‘fall in love with’-cxn).

Although the utterance in (1) might sound a bit unusual when encountered for the

first time, the French listener has no problem at all comprehending it. His language

processing system is robust enough to deal with the unexpected violation of usual con-

straints, here in particular the use of the word ‘love’ as an adjective. In FCG terms,

the speaker and listener flexibly apply the relevant constructions of their construction

inventory, relaxing a constraint on grammatical category. The flexible application of

constructions is crucial for computational construction grammar, both when used for

1http://www.jeuxvideo.com/forums/1-51-64360220-1-0-1-0-j-ai-like-sans-le-faire-

expres-la-photo.htm. Consulted on 27/07/2017.

Paul_Van_Eecke_def.indd 98 27/09/18 08:38

5.2. RESOLVING GRAMMATICAL IMPASSES 89

processing real-world data and when used in evolutionary experiments. When process-

ing real-world data, the input utterances will always feature new ways of using words,

or grammatical structures that were not foreseen in the grammar. When used in evo-

lutionary experiments, speakers often need to innovate their language, and listeners

need to be able to comprehend and adopt these innovations. The processing of unex-

pected input requires the possibility to flexibly apply the constructions of the grammar,

relaxing features that would otherwise block construction application.

In this chapter, I introduce concrete mechanisms for achieving flexible construction

application in FCG. The chapter is structured as follows. I will first discuss previous

work on resolving grammatical impasses in FCG and specify my own contributions

(5.2). Then, I will introduce the concept of anti-unification (5.3), discuss its relation

to unification (5.3.1) and present a basic anti-unification algorithm (5.3.2). Then,

I will present the innovative machinery for anti-unification-based flexible construction

application that I have developed for FCG (5.4). After that, I will demonstrate with

a variety of examples the kinds of generalisations that the algorithm makes (5.5).

Finally, I will show how the algorithms can be combined with the type hierarchy system

introduced in the previous chapter (5.6) and how the anti-unification machinery can

used as a debugging tool in grammar engineering (5.7).

5.2 Resolving Grammatical Impasses

There has been a large body of previous work on resolving grammatical impasses in

FCG, as they are at the core of the evolutionary linguistics experiments that the for-

malism was originally designed for (Steels, 2012b). A grammatical impasse occurs

when the grammar of an agent does not contain the constructions that are necessary

to provide a satisfactory processing result, i.e. an adequate meaning representation

in comprehension or an adequate utterance in formulation. In FCG, grammatical im-

passes are typically dealt with using a meta-layer architecture (see Section 3.5, as well

as Steels and van Trijp (2011); Steels (2012d); Beuls et al. (2012); Van Eecke and

Beuls (2017)), in a process that involves the following steps:

• Diagnosis The system needs to be able to detect and identify grammatical im-
passes during processing.

• Repair The system needs to be able to come up with a solution to the problems
that were diagnosed.

• Consolidation The system needs to store the solution to the problem in a way
that allows it to be reused for solving similar problems in the future.

Paul_Van_Eecke_def.indd 99 27/09/18 08:38

90 CHAPTER 5. GENERALISING CONSTRUCTIONS

Grammatical impasses can be diagnosed either system-internally or with reference to

a shared semantic context. In comprehension, system-internal diagnostics typically

check whether the resulting meaning network forms one integrated chunk, and whether

there are any strings left in the ‘root’ unit, which would mean that not all words in

the input utterance have been ‘consumed’ by morphological or lexical constructions.

System-external diagnostics typically check whether the comprehended meaning can

be interpreted in the world without leading to any inconsistencies. In formulation,

system-internal diagnostics check whether comprehending the formulated utterance

(re-entrance (Steels, 2003)) yields the original input meaning network and system-

external diagnostics can check whether the interpretation in the world of the meaning

network that is obtained through re-entrance yields the same result as the interpretation

of the original meaning network.

Just like diagnostics, repairs also function either system-internally or with reference to a

shared semantic context. The previous literature has focussed on resolving grammatical

impasses with reference to a shared context, and in particular on the sophisticated

semantic processing that is needed to achieve this (Beuls and Steels, 2013; Spranger,

2016; Garcia Casademont and Steels, 2016).

In this chapter, I introduce a complementary repair strategy that does not require access

to a shared semantic context. The strategy is particularly useful in cases of displaced

communication (e.g. telephone conversations), in cases where the participants lack a

substantial amount of prior common ground, or when the application of the existing

construction inventory does not lead to a plausible partial meaning hypothesis, and

therefore does not provide a semantic interpretation that a repair can work with (Steels

and Van Eecke, 2018).

The proposed strategy is based on flexible construction application. In standard FCG,

construction application (match and merge) either succeeds or fails. Even if a single

feature or value from the construction cannot be matched or merged with the transient

structure, the construction cannot apply. Using the flexible construction application

strategy introduced in this chapter, the units, features or values that block construction

application are relaxed, such that a construction can always apply. For controlling

construction application, a specific cost is assigned to the relaxation of different kinds

of constraints. The construction that can apply with the lowest cost, corresponding

to the smallest number of constraint relaxations that was needed, will be preferred.

Paul_Van_Eecke_def.indd 100 27/09/18 08:38

5.3. ANTI-UNIFICATION 91

5.3 Anti-Unification

The machinery for flexible construction application that I have developed and integrated

into FCG is based on anti-unification, more in particular first order syntactical anti-

unification (Plotkin, 1970, 1971; Reynolds, 1970). Anti-unification is an operation

that computes the opposite of unification. Whereas unification computes the most

general specialisation (MGS) of two or more terms, anti-unification computes the least

general generalisation (LGG) of two or more terms. The power of anti-unification to

generalise over structures has been applied in many domains, including machine learning

(Flach, 2012), inductive reasoning (Feng and Muggleton, 2014), information extraction

(Thomas, 1999), case-based reasoning (Armengol and Plaza, 2012), metaphor and

analogy detection (Gust et al., 2006), duplicate code detection (Bulychev and Minea,

2008) and generalisation over linguistic parse trees (Galitsky et al., 2011) and thickets

(Galitsky et al., 2014). In this dissertation, I apply the generalising power of anti-

unification to constructional language processing.

I will first introduce the concept of anti-unification and its relation to unification (5.3.1)

and then present a basic algorithm for the anti-unfication of two feature structures

(5.3.2).

5.3.1 Anti-Unification vs. Unification

Anti-unification is a rather intuitive concept for those familiar with unification. In

this section, we will have a look at two examples that show the differences between

unification and anti-unification while introducing the necessary vocabulary for the more

detailed discussion in the rest of this chapter. The terms that are used in the examples

are taken from Flach (1994)’s discussion on inductive reasoning and anti-unification

(p. 178).

Figure 5.1 demonstrates the unification operation, which computes the MGS of two

terms, called the pattern and the source. The pattern and the source consist of

variables, which start with a question mark, and/or constants, which don’t start with

a question mark. The unification operation computes a minimal set of bindings that,

after substitution, makes the two terms equal. In the example in Figure 5.1, the two

terms ‘2 · ?x = ?x + ?x’ and ‘?y · 3 = ?x + ?x’ can be made equal to each other
by binding ?x to 3 and ?y to 2. The set of bindings is notated as ((?x . 3) (?y .

2)). The resulting pattern, which is the most general specialisation of the two terms,

is computed by substituting the set of bindings obtained through unification in one of

the terms. In this case, the resulting pattern is ‘2 · 3 = 3 + 3’. If there exists no

Paul_Van_Eecke_def.indd 101 27/09/18 08:38

92 CHAPTER 5. GENERALISING CONSTRUCTIONS

2 · 3 = 3 + 3

((?x . 3) (?y . 2))

pattern source

resulting pattern

bindings

2 · ?x = ?x + ?x ?y · 3 = ?x + ?x

Unification

Figure 5.1: A schematic representation of the unification of a pattern and a source,

yielding a bindings list and a resulting pattern.

bindings list that makes the two terms equal, unification fails.

Figure 5.2 demonstrates the anti-unification operation, which computes the LGG of

two terms, called the pattern and the source. The pattern and the source consist

of constants and/or variables. The anti-unification operation computes two sets of

bindings, called the pattern-bindings and the source-bindings, as well as a resulting

pattern that is the least general generalisation of the two terms. In the example in

Figure 5.2, the pattern is ‘2 · 2 = 2 + 2’ and the source is ‘2 · 3 = 3 + 3’. The
resulting pattern, and thus the least general generalisation of the two terms, is ‘2 ·
?x = ?x + ?x’. The pattern-bindings are ((2 . ?x)) and the source-bindings are ((3 .

?x)). Note that unlike in the unification case, the resulting pattern cannot be reliably

computed through substitution of the bindings. This is because not every instance

of a symbol or variable occurring in the bindings necessarily needs to be substituted.

In the pattern in Figure 5.2 for example, only 3 of the 4 occurrences of 2 need to

be substituted by ?x to yield the least general generalisation. As a consequence, an

anti-unification algorithm always needs to compute the two sets of bindings and the

resulting pattern, whereas a unification algorithm only needs to compute a single set of

bindings. As opposed to unification, anti-unification always succeeds. In the extreme

case, the resulting pattern is then a single variable that is bound to the pattern in the

pattern bindings and to the source in the source bindings. The resulting pattern is also

guaranteed to unify with both terms.

Paul_Van_Eecke_def.indd 102 27/09/18 08:38

5.3. ANTI-UNIFICATION 93

2 · 2 = 2 + 2

2 · ?x = ?x + ?x

2 · 3 = 3 + 3

((3 . ?x))((2 . ?x))

pattern source

resulting pattern

pattern-bindings source-bindings

Anti-unification

Figure 5.2: A schematic representation of the anti-unification of a pattern and a source,

yielding a resulting pattern and two bindings lists.

5.3.2 A Basic Anti-Unification Algorithm

Implementing a basic algorithm that anti-unifies a pattern with a source is a rather

straightforward task, and many can be found in the literature, for example in Flach

(1994, p. 177). The algorithm synchronously goes through the pattern and source

and compares the terms that occur in the same position. If the terms are equal, the

algorithm proceeds to the next term. If the terms are different, they are substituted

by a new variable and the algorithm proceeds to the next term. The substitutions are

collected into two lists, one for the pattern-bindings and one for the source-bindings.

If the same two terms occur a second time in the pattern and the source, they are

substituted by the same variable as the first time (hence the necessity of storing the

bindings). An implementation of this algorithm is shown in Figure 5.3. In order to be

readily runnable and as concrete as possible, the algorithm is given in Common Lisp

code (the language is which FCG is implemented), rather than pseudo-code. The first

function does the actual anti-unification, the second function takes care of the recursive

nature of feature structures. As an illustration, a few inputs and outputs computed

by this algorithm are shown in Table 5.1. The first line shows an anti-unification

result where no generalisations were needed. The second, third and fourth line show

substitutions by new variables. The fifth line shows the reuse of substitutions. The

sixth line gives an example of variable decoupling and the last line shows an example

of the reuse of substitutions in nested structures.

Paul_Van_Eecke_def.indd 103 27/09/18 08:38

94 CHAPTER 5. GENERALISING CONSTRUCTIONS

(de fun a n t i− u n i f y (p a t t e r n s o u r c e &o p t i o n a l

(p a t t e r n− b i n d i n g s +no−b i nd i ng s+)
(s o u r c e− b i n d i n g s +no−b i nd i ng s+))

; ; A n t i− u n i f i e s p a t t e r n w i t h s o u r c e . Re tu rn s r e s u l t i n g− p a t t e r n ,
; ; p a t t e r n− b i n d i n g s and s o u r c e− b i n d i n g s .
(cond ((e qu a l p p a t t e r n s o u r c e) ; ; Case 1 : Pa t t e r n e q u a l s s o u r c e .

(v a l u e s p a t t e r n p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s))
; ; Case 2 : Reuse b i n d i n g s from p r e v i o u s s u b s t i t u t i o n .

((subs− l ookup p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s p a t t e r n s o u r c e

)

(v a l u e s (subs− l ookup p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s
p a t t e r n s o u r c e)

p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s))
; ; Case 3 : An t i−un i f y sub te rms as s equence .
((and (not (v a r i a b l e− p p a t t e r n)) (not (v a r i a b l e− p s ou r c e))

(l i s t p p a t t e r n) (l i s t p s o u r c e)

(e qua l p (feature−name sou r c e) (feature−name p a t t e r n))
(a n t i−un i f y− s e qu en c e p a t t e r n s o u r c e ’ ()

p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s))
(mu l t i p l e− v a l u e−b i n d (r e s u l t i n g− p a t t e r n

r e s u l t i n g− p a t t e r n− b i n d i n g s r e s u l t i n g− s o u r c e− b i n d i n g s)
(an t i−un i f y− s e qu en c e p a t t e r n s o u r c e ’ ()

p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s)
(v a l u e s r e s u l t i n g− p a t t e r n r e s u l t i n g− p a t t e r n− b i n d i n g s

r e s u l t i n g− s o u r c e− b i n d i n g s)))
; ; Case 4 : Rep l a c e te rms by new v a r i a b l e , and ex t end b i n d i n g s

.

(t (l e t ((v a r (make−var)))
(v a l u e s v a r

(e x t e n d−b i n d i n g s p a t t e r n v a r p a t t e r n− b i n d i n g s)
(e x t e n d−b i n d i n g s s o u r c e v a r s o u r c e− b i n d i n g s))))))

(de fun an t i−un i f y− s e qu en c e (p a t t e r n s o u r c e ac cumu l a to r

p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s)
; ; A n t i− u n i f i e s a s equence o f sub te rms
(cond ; ; Case 1 : Base case , r e t u r n ac cumu l a to r .

((and (n u l l p a t t e r n) (n u l l s o u r c e))

(v a l u e s a c cumu l a to r p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s))
; ; Case 2 : a n t i− u n i f y the f i r s t term , and a n t i− u n i f y the o t h e r
; ; t e rms as a s equence .

(t (mu l t i p l e− v a l u e−b i n d (r e s u l t i n g− p a t t e r n
r e s u l t i n g− p a t t e r n− b i n d i n g s

r e s u l t i n g− s o u r c e− b i n d i n g s)
(a n t i− u n i f y (f i r s t p a t t e r n) (f i r s t s o u r c e)

p a t t e r n− b i n d i n g s s o u r c e− b i n d i n g s)
(an t i−un i f y− s e qu en c e (r e s t p a t t e r n) (r e s t s o u r c e)

(pushend r e s u l t i n g− p a t t e r n ac cumu l a t o r

)

r e s u l t i n g− p a t t e r n− b i n d i n g s
r e s u l t i n g− s o u r c e− b i n d i n g s)))))

Figure 5.3: An implementation of a basic anti-unification algorithm.

Paul_Van_Eecke_def.indd 104 27/09/18 08:38

5.4. ANTI-UNIFICATION FOR FCG STRUCTURES 95

Table 5.1: Inputs fed to and outputs computed by the anti-unification algorithm in

Figure 5.3.

Pattern Source Result. Patt. Comment

(a b c) (a b c) (a b c) Pattern equals source.

(a b c) (a y c) (a ?v-1 c) Substitution by new variable.

(a b c d) (a y c z) (a ?v-1 c ?v-2) 2 substitutions by new vari-

ables.

(a b ?v-1) (a b ?v-2) (a b ?v-3) Substitution by new variable.

(a b c b) (a y c y) (a ?v-1 c ?v-1) Reuse of substitution.

(a ?v-1 c ?v-1) (a b c d) (a ?v-2 c ?v-3) Variable Decoupling

(a b (c (a b))) (a y (c (a y))) (a ?v-1 (c (a ?v-1))) Nesting + Reuse

5.4 Anti-Unification for FCG Structures

In the previous section, I have introduced the concept of anti-unification and presented

a basic anti-unification algorithm. In this section, I take up a more challenging task,

namely the development of an anti-unification algorithm for FCG structures. Con-

cretely, this algorithm gets as input a transient structure and a construction that does

not match the transient structure. The algorithm should return a construction that

is the least general generalisation of the construction with respect to the transient

structure and thus matches this transient structure. I will respectively discuss the con-

cepts of pattern and source (5.4.1), the calculation of an anti-unification cost (5.4.2),

the problem of unit pairing (5.4.3) and the anti-unification of particular feature types

(5.4.4).

5.4.1 About Pattern and Source

When introducing anti-unification in the previous section, I have used the words pattern

and source for designating the terms that were to be anti-unified. It might have seemed

a bit odd to use different names for the two terms, as the anti-unification operation that

I have described is a commutative operation. By using pattern and source, I was already

anticipating the application of the algorithm to FCG. In FCG, the operations involved in

construction application are not commutative. The match operation includes a subset

constraint. All units, features and values of the construction should unify with those

in the transient structure, but the transient structure can contain additional units,

features and values. Constructions can also include special operators (see section

3.4.3), whereas this is not possible in the case of transient structures.

As a consequence, the dual of the match operation, anti-unify-match, is not commuta-

tive either. The first argument to anti-unify-match, called the pattern, is always (a part

Paul_Van_Eecke_def.indd 105 27/09/18 08:38

96 CHAPTER 5. GENERALISING CONSTRUCTIONS

of) a construction, the second argument, the source, is always a transient structure.

The return value, called the resulting-pattern, which is the least general generalisation

of the pattern, is also (a part of a) construction.

The part of the construction that needs to be anti-unified depends on the direction of

construction application. In comprehension, it is the collection of comprehension locks

and in formulation the collection of formulation locks. As the mechanisms are exactly

the same in comprehension and formulation, I will abstract away from the specific

direction and call the collection of relevant locks the matching-pattern.

The concrete task of anti-unify-match is to operate on the matching-pattern of a

construction in a given direction and a transient structure, and to return a resulting-

pattern, which is the least general generalisation of the matching pattern that matches

the transient structure. After substitution of the matching-pattern in the construc-

tion2, the construction is guaranteed to match the transient structure.

5.4.2 Integrating Cost Calculation

As mentioned above, anti-unification never fails, but it might have to make generali-

sations that are so general that they become virtually meaningless. As a consequence,

it is a highly non-trivial problem to decide which construction to anti-unify with and

apply to a transient structure. In order to tackle this problem, a cost calculation sys-

tem was integrated into the anti-unification algorithm. The idea is that, with each

anti-unification result, the algorithm returns a cost, which reflects inhowfar the con-

struction needed to be generalised before it could apply to the transient structure. The

construction that required the least amount of generalisation will then be preferred by a

repair. The cost calculation system can be tuned to the needs of the user by assigning

different costs or cost functions to different types of generalisations.

The cost calculation parameters are passed to the anti-unify-match function with the

keyword :cost-params. The parameters are formatted as a list of lists. The first

element of each sublist is the label designating the type of generalisation. The rest of

the list consists of either one element, namely an integer representing the cost of the

generalisation, or two elements, namely the name of a cost function that will be called

and a parameter that will be passed to this function. The types of generalisations that

are supported and their default values are the following:

2In order to preserve all variable bindings in the construction that do not cause conflicts (i.e. between

locks or between the matching pattern and the contributing part), the variable substitutions that

were used when computing the resulting-pattern should also be applied to the other parts of the

construction.

Paul_Van_Eecke_def.indd 106 27/09/18 08:38

5.4. ANTI-UNIFICATION FOR FCG STRUCTURES 97

• equality 0: The pattern and the source are equal to each other. There is no
need for generalisation, so there is no associated cost.

• non-matching-unit 10: A unit from the pattern does not match with any unit
from the source. It will need to be paired (see 5.4.3) and generalised (5.4.4).

• subst-from-bindingslist 0: The pattern and source are different, but they
already have a common binding in the bindings list. They will be substituted by

this binding, but there is no additional cost.

• source-variable-pattern-in-bindingslist 1: The pattern has already has
a binding in the bindings list, the source is a variable. The pattern will be sub-

stituted by its binding, with a small cost.

• replace-by-new-var depth-of-pattern 1: An atomic or complex value in
the pattern needs to be generalised. The cost is equal to 1 + the depth of the

pattern. E.g. for ‘singular’, the cost will be 1, for ‘(TAM: (tense: (present: +))’,

the cost will be 3.

• discarded-feature 5: A feature from the pattern is not found in the source.
The feature is discarded in the resulting pattern.

• discarded-negated-feature 4: A negated feature from the pattern is found
in the source. The negated feature is discarded in the resulting pattern.

• removed-pattern-unit 20: A unit from the pattern is removed. This can for
example occur e.g. when an ‘Art+Adj+Noun’-cxn is generalised to an ‘Art+Noun’-

cxn.

The costs are cumulative. For example, if a unit of the pattern is paired with a unit in

the source with which it does not match, this will add a cost of 10 to the total cost of

the process. But then, this unit of the pattern will still need to be anti-unified with the

features of the unit of the source it is paired with. If for example one feature needs

to be discarded (+5) and one value needs to be replaced by a variable (+1) the total

cost for this unit will be 16 (10+5+1). Another possibility would be to remove the

unit from the pattern. This would however be more costly, at a cost of 20, thus the

pairing option will be preferred.

The default values of the cost parameters are set for demonstration purposes. Optimal

values are best experimentally determined and will depend on the specific grammar that

is used and on the type of input that is processed.

Paul_Van_Eecke_def.indd 107 27/09/18 08:38

98 CHAPTER 5. GENERALISING CONSTRUCTIONS

5.4.3 Pairing Units

The first step in the anti-unification process is to decide which units in the source will

be anti-unified with which units in the transient structure. Concretely, each unit in

the pattern needs to be paired with exactly one unit in the transient structure. The

pairing of units is a non-trivial problem, as the unit names in the pattern are variables
3 (see Section 3.4) and can therefore not be used for guiding the pairing. Moreover,

the transient structure most often consists of many more units than the construction.

Overall, there exist three possible pairing strategies for each unit in the pattern:

• If the unit matches a unit in the transient structure, these two units will be paired
with no cost. Additionally, the unit in the transient structure cannot be paired

any more with any other unit in the pattern.

• If the unit does not match any unit in the transient structure, it will be paired
with a unit in the transient structure that does not match one of the other units

in the pattern. This will most often lead to multiple alignment options, which

can be explored in parallel. For each unit that needs to be paired in this way, the

non-matching-unit cost is added to the total anti-unification cost.

• Alternatively, if the unit does not match any unit in the transient structure, the
unit can also be deleted from the pattern (unit-deletion). The pattern will then

have one unit less and the discarded-unit-cost will be added to the total

anti-unification cost.

The unit pairing process takes a matching pattern and a transient structure as input,

and its output is a list of unit alignment options. For each alignment option, each unit

in the pattern is either aligned with exactly one unit from the transient structure, or

discarded from the pattern. A schematic representation of how the unit pairing process

works is presented in Figure 5.4. The matching pattern of the construction consists

of three units (?unit-X, ?unit-Y and ?unit-Z) and is shown in the top-left corner. The

transient structure consists of 4 units (unit-1, unit-2, unit-3 and unit-4) and is shown

in the top-right corner. Blue lines connect the units that match each other ((?unit-X .

unit-4) and (?unit-Y . unit-2). Red lines indicate that ?unit-Y finds no matching units

in the transient structure. The bottom part of the Figure shows the three alignment

options that are possible. The first two options pair ?unit-Y from the construction with

a unit of from the transient structure that is at that moment still unpaired. Option 1

aligns ?unit-Y with unit-1 and option 2 aligns ?unit-Y with unit-3. Alignment 3 on the

other hand, discards ?unit-Y from the construction (unit-deletion).

3Except for the root unit, for which, by consequence, the unit pairing problem is trivial.

Paul_Van_Eecke_def.indd 108 27/09/18 08:38

5.4. ANTI-UNIFICATION FOR FCG STRUCTURES 99

Alignment 1

?unit-X

?unit-Y

?unit-Z

unit-4

unit-1

unit-2

Construction

?unit-X

?unit-Y

?unit-Z

Transient Structure

unit-1

unit-2

unit-3

unit-4

Alignment 2

?unit-X

?unit-Y

?unit-Z

unit-4

unit-3

unit-2

Alignment 3

?unit-X

?unit-Z

unit-4

unit-2

Pattern and Source

Unit Pairing
(no deletion)

Unit Pairing
(deletion)

matches
does not match
is aligned with

Figure 5.4: A schematic representation of the unit pairing process. Each of the three

units in the construction needs to be paired with one unit in the transient structure.

Two units can be paired with matching units. The third unit has two pairing possibilities

with the two left-over units in the transient structure or can be discarded from the

construction. The three alignment options are shown at the bottom.

Paul_Van_Eecke_def.indd 109 27/09/18 08:38

100 CHAPTER 5. GENERALISING CONSTRUCTIONS

The unit pairing process might seem a costly matter when applied to larger construc-

tions and transient structures. When multiple units from the construction find no

matching unit in a transient structure that contains many units, a combinatorial explo-

sion is not far away. While this is certainly true, it is not necessarily problematic. There

are very few grammatical impasses for which more than 2 units need to be paired. For

impasses caused by agreement problems (e.g. gender, case or number), all individual

units can most often be matched, as the problem resides in variable bindings between

units. For impasses caused by category mismatches (e.g. coercions), only a single unit

needs to be paired with a non-matching unit. For impasses caused by missing words or

markers, most often only a single unit needs to be discarded. If more than 2 units need

to be discarded or paired with non-matching units, which is reflected by a high cost, it

is probably a better idea to stop the anti-unification process for that construction and

try to anti-unify a different construction from the construction inventory. In general,

constructions that have been generalised too far carry no meaning any more and might

even do more harm than good.

5.4.4 Anti-Unifying Features and Values

The unit pairing process returns a pattern and a source consisting of the same number

of units, in the aligned order. Next, the features in these units need to be anti-unified.

Although the algorithm that performs the anti-unification is conceptually close to the

basic anti-unification algorithm presented in Section 5.3.2 and Figure 5.3, there are

quite a few additional difficulties. These are mainly due to the feature type system and

special operators that are used in FCG constructions.

As explained in Section 3.4.3, FCG constructions use feature types and special opera-

tors for influencing the behaviour of the unification algorithm, for example for subset

unification, negation and overwriting. In order to keep the anti-unified constructions

consistent with their original counterparts and in order to appropriately compare and

generalise features and values, the anti-unification algorithm also needs to take into

account the meaning of these feature types and special operators. This is done in the

following way:

• Unit Names Unit names in the pattern are treated just like any other variables.
As the unit names in the pattern will never be equal to those in the source, they

are always substituted. If the unit name already occurs in the substitutions list,

it will be replaced by its binding there, otherwise, it will be replaced by a free

variable and added to the substitutions list.

• Top-level Features Top-level features are the features that depend directly from

Paul_Van_Eecke_def.indd 110 27/09/18 08:38

5.4. ANTI-UNIFICATION FOR FCG STRUCTURES 101

the unit, i.e. they are not part of the value of another feature. The top-level

features of a unit are treated as a set. This means that for each top-level feature

in a unit of the pattern, the anti-unification algorithm will search for a top-level

feature in the paired unit of the source, with the same feature name. If such a

feature is found, their values are anti-unified. If no such feature is found, the

feature is discarded from the pattern.

• Default Feature Type For the default feature type, we distinguish between
atomic values and complex values. If the value of a feature of the default type

is atomic, it is compared to the value of this feature in the source. If the two

are equal, no action is taken. If they are not equal, the atom from the pattern

is replaced by its binding in the substitutions list (if applicable) or by a free

variable. In the case of a complex value, its features are treated as a set. Each

feature from the pattern is searched in the source. If it is found, their values are

anti-unified. If not, the feature is discarded from the pattern.

• Set The value of a feature of the type set is always a set of atoms, otherwise
the default feature type should be used. Each atom is searched in the value of

this feature in the source. If it is found, no action is taken. If it is not found,

it is replaced by its binding in the substitutions list (if applicable), or by a free

variable.

• Sequence The value of a feature of the type sequence can either be a sequence
of atoms are a sequence of feature-value pairs. In both cases, the elements

(atoms or feature-value pairs) from the pattern and the source are anti-unified

in the order in which they occur. If an element does not occur in the source,

it is replaced by its binding in the substitutions list (if applicable), or by a free

variable.

• Set-of-Predicates On anti-unification level, a set-of predicates is treated exactly
like a complex value of the default feature type. If a predicate with the same

predicate name is found in the source, they are anti-unified. If not, the predicate

is discarded from the pattern.

• Sequence-of-Predicates A sequence of predicates is treated like any other se-
quence. The predicates are anti-unified in the other in which they occur and

replaced by their binding in the substitutions list (if applicable) or a free variable.

• #-operator So-called ‘hashed’ features are searched in the ‘root’ unit of the
transient structure, instead of in the unit in which they occur in the construction.

In general, only top-level features can safely be hashed. Generalisation of these

features happens according to the description under top-level features.

Paul_Van_Eecke_def.indd 111 27/09/18 08:38

102 CHAPTER 5. GENERALISING CONSTRUCTIONS

• Negation Operator Features or values that are preceded by the negation op-
erator, which is notated as ‘NOT’, are treated as an element of a set in the

transient structure. If the feature or value is not found, no action is taken. If

the feature or value is found, it is added to the list of discarded features.

• Overwriting Operator The part written in front of the operator is anti-unified
with whatever occurs at the same place in the transient structure.

When the anti-unification machinery is used in combination with the type hierarchy

system introduced in chapter 4, the algorithm compares symbols not only in terms of

equality, but also in terms of super- and subtypes in the type hierarchy. Note that the

anti-unification algorithm can also be used for building type hierarchies. This topic will

be discussed in Section 5.6 below.

5.5 Demonstration

In this section, I present a selection of examples that illustrate the use of the anti-

unification algorithm in FCG and demonstrate the kinds of generalisation that it makes.

All examples feature simple French noun phrases. The grammar contains lexical con-

structions that can apply to each word in the input and a noun phrase construction

that tries to combine the lexical items into a noun phrase. In each example, the

noun phrase construction cannot apply for a different reason and a different kind of

generalisation is made by the anti-unification algorithm: variable decoupling, value

relaxation, feature/predicate deletion or unit deletion. A more concise discussion of

some of these examples has already been published by Steels and Van Eecke (2018).

In order to explore the examples in full detail, I highly recommend the reader to visit

the interactive web demonstration at https://www.fcg-net.org/demos/vaneecke-

phd/anti-unification.

The examples are chosen for their didactic nature and, for space reasons, only the

relevant features are shown in the printed figures. More elaborate examples in which the

anti-unification algorithm is embedded in the meta-layer architecture, and the system

needs to decide which construction of the construction inventory to apply, will be

discussed in Chapter 6.

5.5.1 Variable Decoupling

The first kind of generalisation that the anti-unification algorithm makes is called vari-

able decoupling. Variable decoupling happens when the same variable occurs at multiple

Paul_Van_Eecke_def.indd 112 27/09/18 08:38

5.5. DEMONSTRATION 103

places in the construction and different, non-unifying values occur at these places in

the transient structure, making unification fail. Anti-unification solves the problem by

‘decoupling the variables’, i.e. replacing the occurrences of the variable that cause

conflicts with new variables. Variable decoupling is often used to solve agreement

problems, e.g. gender agreement among the elements of the noun phrase or number

agreement between subject and verb. I will illustrate variable decoupling with two ex-

amples. In the first one, it is used to solve a gender mismatch, and in the second one

to handle a deviant word order.

Gender Mismatch

Consider a noun phrase construction (np-cxn) that combines an article, an adjective

and a noun into a noun phrase. One of the constraints in the np-cxn is that the article,

adjective and noun need to have the same number and gender. Consider now an input

utterance “une petit fille” (a small girl), in which “une” (a) is a feminine singular

article, “petit” (small) is a masculine singular adjective and “fille” (girl) is a feminine

singular noun. While the lexical class (article - adjective - noun) and number (sg, sg,

sg) of the three words are compatible with the construction, the gender (f, m, f) is

not and the construction cannot apply.

Figure 5.5 shows the original np-cxn in the top-left corner, with only the ‘?noun’ and

‘?adj’ units expanded. Gender and number of these two units need to be the same,

as required by the shared variables ‘?gender’ and ‘?number’ in the construction. The

transient structure on the left of the figure shows that the gender of the noun is

‘f’ and the gender of the adjective ‘m’, blocking construction application. This is

highlighted by red, dotted arrows. In the anti-unified construction in the bottom right

corner, the values of the gender feature are now two different variables (‘?gender-

5488’ and ‘?gender-5424’). After decoupling the variables, the construction can be

applied without further action, as highlighted by green arrows. Note that the number

agreement is unaffected in the anti-unified construction (variable ‘?number-3812’), as

there were no conflicts there.

Deviating Word Order

This example demonstrates how the anti-unification algorithm uses variable decoupling

for handling a word order problem. Consider an np-cxn that combines an article, an

adjective and a noun into a noun phrase. The construction specifies that the article

should be immediately left-adjacent to the adjective and that the adjective should be

Paul_Van_Eecke_def.indd 113 27/09/18 08:38

104 CHAPTER 5. GENERALISING CONSTRUCTIONS

fille-cxn (cxn 0.50)

diagnostic-triggered, cxn-applied
une-cxn (cxn 0.50)

⨀

syn-cat:

syn-cat:

transient structure

root

fille-31

lex-class:
agreement:

noun

number:
gender:

sg
f

petit-10

lex-class:
agreement:

adjective

number:
gender:

sg
m

une-28

anti-unified-np-cxn-29 (cxn 0.50)

Comprehending "une petit fille"

Applying

in comprehension

initial structure

application process

FCG CONSTRUCTION SET (8)

Search

?np-unit

syn-cat:

syn-cat:

np-cxn (cxn 0.50) show attributes

?noun

lex-class:
agreement:

noun

number:
gender:

?number
?gender

?art

?adj

lex-class:
agreement:

adjective

number:
gender:

?number
?gender

?np-unit

 ⨁

formidable-cxn (cxn 0.50)

petite-cxn (cxn 0.50)

petit-cxn (cxn 0.50)

un-cxn (cxn 0.50)

une-cxn (cxn 0.50)

diner-cxn (cxn 0.50)

fille-cxn (cxn 0.50)

⨁

transient structure

root

initial petit-cxn (cxn 0.50) fille-cxn (cxn 0.50)

⨀

resulting structure

Meaning:

?np-unit-74

syn-cat:

syn-cat:

anti-unified-np-cxn-29 (cxn 0.50) show description

?np-unit-74

?adj-777

lex-class:
agreement:

adjective

number:
gender:

?number-3812
?gender-5488

?noun-782

lex-class:
agreement:

noun

number:
gender:

?number-3812
?gender-5424

?art-158

 ⨁

⨁

transient structure

root

np-unit-21

fille-31

une-28

petit-10

Figure 5.5: An illustration of variable decoupling in the case of a gender mismatch.

The construction at top left corner requires the value of the gender feature of the

noun and the adjective to be the same. This is however not the case in the transient

structure (red dotted arrows). The anti-unification algorithm solves the problem by

decoupling the ‘?gender’ variables in the noun and the adjective (green arrows). The

anti-unified construction is shown at the bottom right corner.

Paul_Van_Eecke_def.indd 114 27/09/18 08:38

diagnostic-triggered, cxn-applied
une-cxn (cxn 0.50)

⨀

syn-cat:

syn-cat:

transient structure

root

fille-31

lex-class:
agreement:

noun

number:
gender:

sg
f

petit-10

lex-class:
agreement:

adjective

number:
gender:

sg
m

une-28

anti-unified-np-cxn-29 (cxn 0.50)

5.5. DEMONSTRATION 105

immediately left-adjacent to the noun. This construction is shown at the top of Figure

5.6. The word order constraints are expressed in the ‘?np-unit’ on the right-hand

side of the construction using ‘meets’ predicates. ‘meets(unit-a,unit-b)’ means that

‘unit-a’ should be immediately adjacent to ‘unit-b’. Within the ‘meets’ constraints

of the np-cxn, the orange, purple and grey colors of the ‘?art’, ‘?adj’ and ‘?noun’

variables indicate their coupling with the names of the article, adjective and noun units

respectively.

Now, consider the input utterance “une fille petite” (a girl small), in which the article

“the” ‘meets’ the noun “fille” and the noun “fille” ‘meets’ the adjective “petite”. This

transient structure is shown in the middle of Figure 5.6 with the variable couplings

highlighted in color. The word order constraints in the construction are incompatible

with the word order constraints in the transient structure. Therefore, the construction

cannot apply, as indicated with a red arrow in the figure. In order to overcome these

incompatibilities, the anti-unification algorithm decouples the conflicting variables in

the ‘meets’ constraints from the variables that serve as unit names. This is shown at

the bottom of Figure 5.6. The unit names of ‘?adj-1452’ (light green) and ‘?noun-

1452’ (yellow) do not occur in the ‘meets’ constraints any more, and are replaced

by the new variables ‘?adj-1468’ (dark green) and ‘?noun-1467’ (purple). With these

generalisations, the construction can apply, as indicated by the green arrow.

Note that only the occurrences of the ‘?adj’ and ‘?noun’ variables in the ‘meets’

constraints are decoupled. The occurrences of these variables in the subunits feature

on the left-hand side of the construction are still coupled to the unit names. This is

because these variable couplings did not cause any conflicts and should therefore not

be broken during the generalisation.

When studying the anti-unified construction at the bottom of Figure 5.6, one can

see that the word order constraints are not really meaningful any more. When the

construction would be used in production, there are no features left that would actually

constrain the word order. We will come back to this problem in Chapter 6, in which

we will present an algorithm that constrains generalised constructions back to the

observation for which they were generalised. In the case of deviating word order, the

new word order will then be incorporated into the construction.

Besides demonstrating generalisation through variable decoupling, this word order ex-

ample also clearly illustrates why it can be useful to handle word order just like any

other feature, as is usually done in FCG. This makes it possible to process, generalise

and learn word order with all the same techniques that are available for other features.

This view is rather uncommon in formal grammars, probably due to the central role

that word-order based tree structures have traditionally played in these formalisms.

Paul_Van_Eecke_def.indd 115 27/09/18 08:38

106 CHAPTER 5. GENERALISING CONSTRUCTIONS

to global variable *saved-cfs*

reset

⨀

form:

form:
syn-cat:

form:
syn-cat:

form:
syn-cat:

transient structure

root
{meets(fille-50, petite-38),
meets(une-47, fille-50)}

une-47
{string(une-47, "une")}

lex-class: article

fille-50
{string(fille-50, "fille")}

lex-class: noun

petite-38
{string(petite-38, "petite")}

lex-class: adjective

applied
constructions

resulting
structure

Meaning:

⨁

transient structure

root

une-47

fille-50

petite-38

fille-cxn (cxn 0.50)

une-cxn (cxn 0.50)

petite-cxn (cxn 0.50)

syn-cat:

subunits:

?np-unit-161

agreement:
number:
gender:

?number-4383
?gender-6060

{?art-262, ?adj-1452, ?noun-1451}

syn-cat:

syn-cat:

form:

syn-cat:

anti-unified-np-cxn-47 (cxn 0.50) show description

?art-262

lex-class: article

?adj-1452

lex-class: adjective

?np-unit-161
∅

{meets(?adj-1468, ?noun-1467),
meets(?art-262, ?adj-1468)}

?noun-1451

lex-class: noun

 ⨀

⨁

transient structure

root

np-unit-34

petite-38

fille-50

une-47

Comprehending "une fille petite"

Applying

in comprehension

initial structure

application
process

FCG CONSTRUCTION SET (8)

Search

syn-cat:

subunits:

?np-unit

agreement:
number:
gender:

?number
?gender

{?art, ?adj, ?noun}

syn-cat:

syn-cat:

syn-cat:

form:

np-cxn (cxn 0.50) show attributes

?noun

lex-class: noun

?art

lex-class: article

?adj

lex-class: adjective

?np-unit
∅

{meets(?adj, ?noun),
meets(?art, ?adj)}

 ⨀

formidable-cxn (cxn 0.50)

petite-cxn (cxn 0.50)

petit-cxn (cxn 0.50)

un-cxn (cxn 0.50)

une-cxn (cxn 0.50)

diner-cxn (cxn 0.50)

fille-cxn (cxn 0.50)

⨁

transient structure

root

initial fille-cxn
(cxn 0.50)

une-cxn
(cxn 0.50)

diagnostic-triggered,
cxn-applied

petite-cxn (cxn 0.50)

anti-unified-np-cxn-47
(cxn 0.50)

Figure 5.6: An illustration of variable decoupling in the case of a deviant word order.

The construction on top cannot apply to the transient structure in the middle because

the word order constraints don’t match (red arrow). This problem is solved in the

anti-unified construction at the bottom by decoupling the problematic variables from

the unit names (green arrow). For example, the unit name ‘?noun-1451’ (yellow) in

the anti-unified construction is decoupled from the free variable ‘noun-1467’ in the

meets constraint (purple).

Paul_Van_Eecke_def.indd 116 27/09/18 08:38

5.5. DEMONSTRATION 107

5.5.2 Value Relaxation

The second kind of generalisation made by the anti-unification algorithm is called

value relaxation. Value relaxation is applied when a value of a particular feature in the

construction is different from the value of that feature in the transient structure. The

value of the feature in the construction is then generalised by replacing it with a free

variable. The following example demonstrates how value relaxation is used in the case

of a non-matching grammatical category.

The np-cxn that we have used in the previous two examples combines three units into

a noun phrase. The values of the ‘lex-class’ feature of these units need to be ‘article’,

‘adjective’ and ‘noun’ respectively. This construction is shown in the top-right corner

of Figure 5.7. Now, suppose the grammar is used to comprehend the utterance “ma

petite fille” (my little daughter), in which “ma” (my) is not of ‘lex-class: article’,

but of ‘lex-class: possessive-pronoun’. The transient structure before application of

the np-cxn is shown at the left of Figure 5.7. A red dotted arrow indicates the two

values that don’t match (‘article’ and ‘possessive-pronoun’). The matching conflict is

solved by generalising the symbol ‘article’ from the construction into a free variable

‘?article-292’. The construction can now apply, as ‘?article-292’ can be bound to

‘possessive-pronoun’ during the matching process.

5.5.3 Feature/Predicate Deletion

The third kind of generalisation made by the anti-unification algorithm is called feature

deletion or predicate deletion. Feature or predicate deletion happens when a feature or

predicate in the construction is not found at the corresponding place in the transient

structure. The generalisation consists of deleting the feature or predicate from the

construction. This generalisation has been preferred over the substitution of the feature

or predicate with a variable, as this would obscure the FCG construction while being

virtually meaningless.

Figure 5.8 shows an example of feature deletion. The np-cxn in the top-right cor-

ner combines three units with ‘lex-class’ ‘article’, ‘adjective’ and ‘noun’ into a noun

phrase. Moreover, the construction matches on a ‘definite’ feature in the article unit.

The transient structure, shown on the left side of the figure, consists of three units

with ‘lex-class’ ‘article’, ‘adjective’ and ‘noun’, but the article unit does not contain a

‘definite’ feature. Hence, the construction cannot apply, as indicated by a red dotted

arrow. Anti-unification solves the problem by deleting the ‘definite’ feature from the

construction. The resulting generalised construction is shown in the bottom right cor-

Paul_Van_Eecke_def.indd 117 27/09/18 08:38

108 CHAPTER 5. GENERALISING CONSTRUCTIONS

resulting structure

Meaning:

Saved structure

to global variable *saved-cfs*

reset

⨁

transient structure

root

np-unit-39

fille-59

petite-47

ma-8

⨀

syn-cat:

syn-cat:

syn-cat:

transient structure

root

ma-8

lex-class: possessive-pronoun

fille-59

lex-class: noun

petite-47

lex-class: adjective

Comprehending "ma petite fille"

Applying

in comprehension

initial structure

application process

applied
constructions

FCG CONSTRUCTION SET (9)

Search

?np-unit

syn-cat:

syn-cat:

syn-cat:

np-cxn (cxn 0.50) show attributes

?noun

lex-class: noun

?art

lex-class: article

?adj

lex-class: adjective

?np-unit

 ⨁

formidable-cxn (lex 0.50)

petite-cxn (lex 0.50)

petit-cxn (lex 0.50)

un-cxn (lex 0.50)

ma-cxn (lex 0.50)

une-cxn (lex 0.50)

diner-cxn (lex 0.50)

fille-cxn (lex 0.50)

⨁

transient structure

root

initial * fille-cxn (lex 0.50), ma-cxn (lex 0.50), petite-cxn
(lex 0.50)

fille-cxn (lex 0.50)

ma-cxn (lex 0.50)

petite-cxn (lex 0.50)

resulting structure

Meaning:

Saved structure

?np-unit-190

syn-cat:

syn-cat:

syn-cat:

anti-unified-np-cxn-56 (cxn 0.50) show description

?np-unit-190

?art-568

lex-class: ?article-292

?noun-1571

lex-class: noun

?adj-1567

lex-class: adjective

 ⨁

⨁

transient structure

root

np-unit-39

fille-59

petite-47

ma-8

transient structure

root

Figure 5.7: An illustration of value relaxation for solving a mismatch in grammatical

category. The red arrow highlights that the value of the lex-class feature in the ‘?art’

unit of the construction (‘article’) does not match the value of the corresponding fea-

ture in the transient structure (‘possessive-pronoun’). The anti-unification algorithm

relaxes the value in the construction to a free variable (‘?article-292’). The green arrow

indicates that the construction can now apply by binding ‘?article-292’ to ‘possessive-

pronoun’.

Paul_Van_Eecke_def.indd 118 27/09/18 08:38

anti-unified-np-cxn-56
(cxn 0.50)

5.5. DEMONSTRATION 109

Comprehending "une petite fille"

Applying

in comprehension

initial structure

application
process

applied
constructions

FCG CONSTRUCTION SET (9)

Search

?np-unit

syn-cat:

syn-cat:

syn-cat:

np-cxn (cxn 0.50) show attributes

?noun

lex-class: noun

?art

lex-class:
definite:

article
?definite

?adj

lex-class: adjective

?np-unit

 ⨁

formidable-cxn (lex 0.50)

petite-cxn (lex 0.50)

petit-cxn (lex 0.50)

un-cxn (lex 0.50)

ma-cxn (lex 0.50)

une-cxn (lex 0.50)

diner-cxn (lex 0.50)

fille-cxn (lex 0.50)

⨁

transient structure

root

initial petite-cxn
(lex 0.50)

fille-cxn
(lex 0.50)

une-cxn
(lex 0.50)

petite-cxn (lex 0.50)

fille-cxn (lex 0.50)

une-cxn (lex 0.50)

Meaning:

Saved structure

to global variable *saved-cfs*

reset

⨁
np-unit-54

petite-52

fille-74

une-63

⨀

syn-cat:

syn-cat:

syn-cat:

transient structure

root

fille-74

lex-class: noun

petite-52

lex-class: adjective

une-63

lex-class: article

resulting structure

Meaning:

Saved structure

?np-unit-249

syn-cat:

syn-cat:

syn-cat:

anti-unified-np-cxn-69 (cxn 0.50) show description

?art-749

lex-class: article

?adj-1958

lex-class: adjective

?noun-1662

lex-class: noun

?np-unit-249

 ⨁

⨁

transient structure

root

np-unit-54

petite-52

fille-74

une-63

⨀

syn-cat:

syn-cat:

transient structure

root

fille-74

lex-class: noun

petite-52

lex-class: adjective

une-63

Figure 5.8: An illustration of feature deletion. The constructions matches on a ‘defi-

nite’ feature in the article unit. This feature is however not present in the article unit

in the transient structure, blocking construction application. Anti-unifications solves

the problem by deleting the the ‘definite’ feature from the construction.

ner of the figure. The green arrow indicates that the ‘une-63’ unit now matches the

‘?art-749’ unit.

5.5.4 Unit Deletion

The fourth kind of generalisation that is made by the anti-unification algorithm is

called unit deletion. Unit deletion consists of deleting a unit from the construction.

It is applied when a unit from the construction does not find a suitable unit in the

transient structure to match with. It is always considered as an option, but comes at

quite a high cost. It will only be returned as the best solution when the cost of deleting

a unit exceeds the cost of anti-unifying the features of that unit with any available unit

of the transient structure.

Paul_Van_Eecke_def.indd 119 27/09/18 08:38

110 CHAPTER 5. GENERALISING CONSTRUCTIONS

Meaning:

Saved structure

to global variable *saved-cfs*

reset

⨁

root

np-unit-48
fille-68

une-57

⨀
syn-cat:

syn-cat:

transient structure

root

fille-68

lex-class: noun

une-57

lex-class: article

Comprehending "une fille"

Applying

in comprehension

initial structure

application process

applied constructions

FCG CONSTRUCTION SET (9)

Search

?np-unit

syn-cat:

syn-cat:

syn-cat:

np-cxn (cxn 0.50) show attributes

?noun

lex-class: noun

?art

lex-class: article

?adj

lex-class: adjective

?np-unit

 ⨁

formidable-cxn (lex 0.50)

petite-cxn (lex 0.50)

petit-cxn (lex 0.50)

un-cxn (lex 0.50)

ma-cxn (lex 0.50)

une-cxn (lex 0.50)

diner-cxn (lex 0.50)

fille-cxn (lex 0.50)

⨁

transient structure

root

initial * fille-cxn (lex 0.50), une-cxn (lex 0.50)

fille-cxn (lex 0.50)

une-cxn (lex 0.50)

resulting structure

Meaning:

Saved structure

to global variable *saved-cfs*

reset

?np-unit-206
syn-cat:

syn-cat:

anti-unified-np-cxn-65 (cxn 0.50) show description

?np-unit-206

?art-655

lex-class: article

?noun-1628

lex-class: noun

 ⨁

⨁

transient structure

root

np-unit-48
fille-68

une-57

⨀
syn-cat:

syn-cat:

transient structure

root

fille-68

lex-class: noun

une-57

lex-class: article

Figure 5.9: An illustration of unit deletion. The np-cxn matches on three units, with

‘lex-class’ ‘article’, ‘adjective’ and ‘noun’. The transient structure only contains two

units, with ‘lex-class’ ‘article’ and ‘noun’. Anti-unification solves the problem by delet-

ing the unit with ‘lex-class’ ‘adjective’ from the construction.

Figure 5.9 demonstrates a case of unit deletion. The np-cxn, shown in the top right

corner of the figure, combines an article, an adjective and a noun into a noun phrase.

The input utterance is now “une fille” (a girl), consisting of an article and a noun. The

transient structure after application of the lexical constructions is shown at the left of

the figure. The ‘?art’ unit and ‘?noun’ unit in the construction can be matched with

the ‘une-57’ unit and ‘fille-68’ unit in the transient structure respectively, as indicated

by green arrows. The ‘?adj’ unit cannot be matched with any unit, as there are no units

left. This is indicated with a red ellipse. Anti-unification generalises the construction

into a construction with one unit less, now only requiring an article and a noun. The

‘?adj’ unit is deleted from the construction. The anti-unified construction is shown at

the bottom right of the figure.

Paul_Van_Eecke_def.indd 120 27/09/18 08:38

anti-unified-np-cxn-65 (cxn 0.50)

5.6. ANTI-UNIFICATION AND TYPE HIERARCHIES 111

5.6 Anti-Unification and Type Hierarchies

The anti-unification-based generalisation operator that was introduced and demon-

strated in the previous sections returns a new construction that constitutes the least

general generalisation of a construction that matches a given transient structure. All

generalisations are captured locally within this new construction. The current section

introduces a version of the operator that allows capturing certain generalisations in

the type hierarchy of the grammar, instead of in the new construction itself. This has

the advantage (i) that more fine-grained generalisations can be captured, (ii) that in

cases in which all necessary generalisations can be captured in the type hierarchy, no

new construction needs to be added to the construction inventory, and (iii) that the

generalisations that are captured can immediately be used by all constructions in the

grammar.

The generalisations that can be captured in the type hierarchy of a grammar are value

relaxations. As explained above, a value relaxation is performed when a constant in

a construction conflicts with a constant in the transient structure. In that case, the

standard generalisation operator will replace the constant in the construction with a

free variable in the anti-unified construction. This version of the operator will add both

constants to the type hierarchy of the grammar, as well as a link that indicates that

the constant in the transient structure is a subtype of the constant in the construction.

For example, imagine that an intransitive construction that matches on an NP with a

feature-value pair ‘lex-class: noun-phrase’ is anti-unified with with a transient structure

that contains a unit with a feature-value pair ‘lex-class: proper-name’. In this case the

constants ‘noun-phrase’ and ‘proper-name’ will be added to the type hierarchy of the

grammar, as well as a link from ‘proper-name’ to ‘noun-phrase’. From this moment

on, all constructions in the grammar that match on units containing ‘lex-class: noun-

phrase’ will be able to also match on units containing ‘lex-class: proper-noun’.

In order to achieve this behaviour, a number of changes need to be made to the

generalisation operator and the anti-unification algorithm it makes use of:

• The unit pairing algorithm now makes use of the matching algorithm that was
extended for being used with type hierarchies and that was introduced in Section

4.3.3.

• In addition to the resulting-pattern, pattern-bindings, source-bindings and cost,
the anti-unification algorithm will now also collect and return a set of required

type hierarchy links.

• The anti-unification algorithm treats constants that are connected through the

Paul_Van_Eecke_def.indd 121 27/09/18 08:38

112 CHAPTER 5. GENERALISING CONSTRUCTIONS

type hierarchy as if they were equal. No generalisation are performed for these

constants.

• When two constants are not equal or connected through the type hierarchy, the
anti-unification algorithm adds to the set of required type hierarchy links a link

from the constant in the source to the constant in the pattern. The resulting-

pattern, pattern-bindings and source-bindings are not altered.

• The operator now also includes a cost parameter for adding a new type hierarchy
link.

The use of this version of the generalisation operator is shown in Figure 5.10. In this

example, an NP construction matches on three adjacent units with the lex-classes ‘de-

terminer’, ‘adjective’ and ‘noun’. This construction cannot apply to the transient struc-

ture created by the application of the lexical constructions to the utterance “ma petite

fille”, as the value of the ‘lex-class’ feature in the ‘ma-3’-unit is ‘possessive-pronoun’.

This is indicated with a red, dotted arrow in the figure. The generalisation opera-

tor adds the constants ‘possessive-pronoun’ and ‘determiner’, as well as a link from

‘possessive-pronoun’ to ‘determiner’, to the type hierarchy of the grammar. Through

the type hierarchy, the construction can apply to the transient structure, as indicated

by the green arrows. There are no changes needed inside the NP construction, and

the generalisation that was incorporated into the type hierarchy of the grammar can

now be used by all constructions of the grammar.

The generalisations made by this version of the generalisation operator are much more

fine-grained then those made by the standard version, and it therefore greatly reduces

the risk of over-generalisation. It also allows the incremental build-up of the type

hierarchy of a grammar, gradually expanding the coverage of existing constructions.

This is particularly useful in evolutionary linguistics experiments, as will be discussed

and demonstrated in chapter 7.

5.7 Anti-Unification as a Debugging Tool in Grammar

Engineering

Apart from its applications in language processing and evolutionary experiments, anti-

unification also has a direct application in grammar engineering. When adding new

constructions to a grammar, or modifying existing ones, a grammar engineer often

needs to find out why a particular construction does not apply to a particular transient

structure. This is not an easy task, as it requires going through all units, features and

Babel web interface

initial
* petite-cxn
(lex 0.50), fille-cxn
(lex 0.50), ma-cxn
(lex 0.50)

Paul_Van_Eecke_def.indd 122 27/09/18 08:38

5.7. ANTI-UNIFICATION FOR DEBUGGING 113

in comprehension

initial
structure

application
process

FCG CONSTRUCTION SET (9)

Search

?np-unit

syn-cat:

syn-cat:

syn-cat:

np-cxn (cxn 0.50) show attributes

?noun

lex-class: noun

?art

lex-class: determiner

?adj

lex-class: adjective

?np-unit

 ⨀

formidable-cxn (lex 0.50)

petite-cxn (lex 0.50)

petit-cxn (lex 0.50)

un-cxn (lex 0.50)

ma-cxn (lex 0.50)

une-cxn (lex 0.50)

diner-cxn (lex 0.50)

fille-cxn (lex 0.50)

⨁

transient structure

root

succeeded,
status

source
structure

applied
construction

resulting
structure

resulting
bindings

((?x-91 . ?x-93) (?x-94 . ?x-91)
(?args . ?x-94) (?np-unit . np-unit-5)
(?adj . petite-5) (?noun . fille-5)
(?determiner . possessive-pronoun)
(?art . ma-3))

meaning

⨀

syn-cat:

syn-cat:

syn-cat:

transient structure

root

fille-5

lex-class: noun

petite-5

lex-class: adjective

ma-3

lex-class: possessive-pronoun

?np-unit-17

anti-unified-np-cxn-5 (cxn 0.50) show description

?art-154

?np-unit-17

?noun-39

?adj-34

 ⨁

⨁

transient structure

root

np-unit-5

fille-5

petite-5

ma-3

POSSESSIVE-PRONOUN

DETERMINER

reset

Figure 5.10: Illustration of the anti-unification-based generalisation operator perform-

ing value relaxation by capturing the hierarchical relation between two constants in the

type hierarchy of a grammar. The red arrow highlights that the value of the lex-class

feature in the ‘?art’ unit of the construction (‘determiner’) does not match the value

of the corresponding feature in the transient structure (‘possessive-pronoun’). The

anti-unification operator adds the constants ‘possessive-pronoun’ and ‘determiner’ to

the type hierarchy of the grammar, as well as a link between the two constants. The

green arrow indicates that the construction can now apply through the type hierarchy.

There are no changes needed in the construction itself.

Paul_Van_Eecke_def.indd 123 27/09/18 08:38

114 CHAPTER 5. GENERALISING CONSTRUCTIONS

values in the construction and the transient structure, keeping all bindings in mind,

until the conflict is found. Although experienced grammar engineers appear to have

developed a remarkably well-trained eye for spotting these conflicts, an automated tool

would still drastically cut development time.

The anti-unification machinery introduced in this chapter was specifically designed for

generalising over conflicts that block construction application. By extending the al-

gorithm with a few extra features, the machinery can be used to locate the conflicts

and provide detailed feedback about their nature. I have made these extensions and

integrated an anti-unification-based debugging tool into the FCG development envi-

ronment.

5.7.1 Extending the Anti-Unification Algorithm

For debugging purposes, the anti-unification algorithm needs to present the grammar

engineer with feedback about which specific features and values in the construction and

transient structure cause matching conflicts. Only very few extensions to the algorithm

are needed in order to achieve this. They can be summarized in the following three

points:

• First, the algorithm needs to deal with conflicting values in the pattern and the
source that are not variables, for example in (agreement (case nominative)) in the

pattern and (agreement (case accusative)) in the source. After anti-unification,

the algorithm loops through the pattern-bindings and the source-bindings and

looks for non-variable values that share a substitution. In our example, it finds

(nominative . ?var-6) and (accusative . ?var6), which means that the anti-

unification algorithm has substituted both ‘nominative’ in the pattern and ‘ac-

cusative’ in the source with ‘?var-6’. The algorithm can then give feedback to

the grammar engineer, specifying that ‘nominative’ is expected in the transient

structure where ‘accusative’ is found. If the anti-unified construction is also given

as feedback, the algorithm can also specify that the conflict is exactly located in

the original construction where ‘?var-6’ is found in the anti-unified construction.

Naturally, this works not only for atomic values, but also for complex values.

• Second, the algorithm needs to deal with variables that occur multiple times in
the pattern, where different values occur in the transient structure. This is for ex-

ample the case if (gender ?gender) occurs twice in the construction, and (gender

masculine) and (gender feminine) occur at those places in the transient structure.

The variables are found by looping through the pattern-bindings and collecting

the variables that occur more than once together with their substitutions. In our

Paul_Van_Eecke_def.indd 124 27/09/18 08:38

5.7. ANTI-UNIFICATION FOR DEBUGGING 115

example this would be (?gender . ?var-2) and (?gender . ?var-3). Then, the

algorithm searches for the substitutions of these variables in the source-bindings,

namely (masculine . ?var-2) and (feminine . ?var-3). The feedback given to

the grammar engineer specifies that the two occurrences of ‘?gender’ in the con-

struction correspond to two different values in the transient structure, namely

‘masculine’ and ‘feminine’. Here as well, the feedback can add that the con-

flict is exactly located in the original construction where ‘?var-2’ and ‘?var-3’ are

located in the anti-unified construction.

• Third, the algorithm needs to deal with discarded features. The discarded fea-
tures cannot be computed from the resulting-pattern, the pattern-bindings or the

source-bindings, as they do not appear in the anti-unification result at all. There-

fore, the anti-unification algorithm was modified in such a way that it collects all

features that are discarded into a list, which is also returned by the algorithm.

This list of discarded features can then be presented as feedback to the grammar

engineer.

When multiple unit pairing options are possible, multiple anti-unification analyses are

computed and ranked according to their cost. As the errors made by grammar engineers

are mostly small (in anti-unification terms), the first analysis is virtually always the

desired one. For cases where there are larger errors, the cost for unit-deletion is set to

a high value. This ensures that unit-deletion options are not considered as feedback,

because the grammar engineer is usually interested in conflicts in features and values

and not in deleting units.

5.7.2 Example

Figure 5.11 shows an example of the use of the anti-unification algorithm that was

extended for debugging purposes. The left side of the figure shows an ‘np-cxn’ that

combines a determiner and an adjacent noun into a noun phrase. The right side

of the figure shows a transient structure that was created by the application of the

lexical constructions for ‘une’ and ‘fille’ to the input utterance “une fille” (a girl). The

construction cannot apply to the transient structure, and anti-unification is used to

reveal the conflicts.

First, the units need to be paired, which is a straightforward task in this case. The

‘?noun’-unit in the construction matches the ‘fille-39’-unit in the transient structure.

After pairing these two units, only two other units, the ‘?det’-unit and the ‘une-13’-

unit are left, so these two units can be paired as well. Then, the paired units (?noun .

fille-39) and (?det . une-13) are anti-unified. This yields the following analysis:

Paul_Van_Eecke_def.indd 125 27/09/18 08:38

116 CHAPTER 5. GENERALISING CONSTRUCTIONS

Comprehending "une fille"

Applying

in comprehension

initial structure

application process

FCG CONSTRUCTION SET (3)

?np-unit

sem-cat:

args:
syn-cat:

sem-cat:

syn-cat:

args:
syn-cat:

np-cxn (cxn 0.50) show attributes

?det

sem-class:
definite:

identifier
?definite

[?args]

lex-class:
definite:
agreement:

determiner
?definite

number:
gender:

?number
?gender

?noun

sem-class: physical-object

agreement:
gender: ?gender

[?args]

lex-class:
agreement:

noun

number:
gender:

?number
?gender

?np-unit

 ⨁

une-cxn (cxn 0.50)

fille-cxn (cxn 0.50)

⨁

transient structure

root

initial fille-cxn (cxn 0.50)

succeeded, cxn-applied
une-cxn (cxn 0.50)

⨁

meaning:
form:
sem-cat:

syn-cat:

args:

meaning:
form:

transient structure

root

fille-39
{girl(?x-249)}

{string(fille-39, "fille")}

sem-class:
animate:

physical-object
+

lex-class:
agreement:

noun

number:
gender:

sg
f

[?x-249]

une-13
{exists(?x-250)}

{string(une-13, "une")}

Meaning:

The following elements in the cxn give conflicts in matching:

?gender

with the following elements in the transient structure:

f
m

The following features from the cxn were required but not found in the transient structure:

(definite ?definite-93)

Anti-Unification yielded multiple analyses, only the most probable one is shown.

Show entire anti-unification analysis

reset

⨁

transient structure

root

fille-39

une-13

in comprehension

initial structure

application process

applied constructions

resulting structure

une-cxn (cxn 0.50)

fille-cxn (cxn 0.50)

⨁

transient structure

root

initial fille-cxn (cxn 0.50)

succeeded, cxn-applied
une-cxn (cxn 0.50)

⨁

meaning:
form:
sem-cat:

syn-cat:

args:

meaning:
form:
sem-cat:

syn-cat:

args:

transient structure

root

fille-39
{girl(?x-249)}

{string(fille-39, "fille")}

sem-class:
animate:

physical-object
+

lex-class:
agreement:

noun

number:
gender:

sg
f

[?x-249]

une-13
{exists(?x-250)}

{string(une-13, "une")}

sem-class: identifier

lex-class:
agreement:

determiner

number:
gender:

sg
m

[?x-250]

fille-cxn (cxn 0.50)

une-cxn (cxn 0.50)

Figure 5.11: Example of the use of anti-unification for debugging purposes in FCG.

The ‘np-cxn’ construction on the left cannot apply to the transient structure on the

right. The anti-unification feedback report shows that the ‘?gender’ variable occurs in

the construction where both ‘f’ and ‘m’ occur in the transient structure and that the

‘definite’ feature required by the construction is not found in the transient structure.

Paul_Van_Eecke_def.indd 126 27/09/18 08:38

5.7. ANTI-UNIFICATION FOR DEBUGGING 117

• The discarded-features list returned by the anti-unification algorithm contains
the feature (definite ?definite-93). This feature is required by the construction,

but cannot be found in the transient structure and therefore blocks construction

application. The feature is highlighted in green in Figure 5.11. The grammar

engineer will either need to delete the feature from the ‘np-cxn’ or ensure that a

feature (definitie -) is added by the ‘une-cxn’.

• The list of pattern-bindings includes two substitutions for the ‘?gender’ variable
in the construction. These substitutions occur in the source-bindings as substi-

tutions for the values ‘m’ and ‘f’ in the transient structure. In Figure 5.11, the

‘?gender’ variable is highlighted in dark green and red arrows point to the con-

flicting values ‘m’ en ‘f’, highlighted in red and blue respectively. The grammar

engineer will see that the ‘une-cxn’ wrongly assigns the gender ‘m’ to the lexical

item and will easily be able to correct this error.

5.7.3 Integration into the FCG Environment

The debugging version of the anti-unification algorithm has been tightly integrated

into the FCG development environment. Grammar engineers heavily rely on an inter-

active web interface that visualises construction inventories, constructions, transient

structures, construction application processes and other FCG objects. When compre-

hending or formulating an utterance, the standard visualisation shows the utterance or

meaning representation to be processed, the construction inventory, the construction

application process, and the resulting meaning representation or utterance. In order

to manually apply a construction, the grammar engineer can search for it in the con-

struction inventory and drag and drop the construction onto a node in the construction

application process. When dragging and dropping a construction on a node to which it

cannot apply, a feedback field appears at the bottom of the web interface. This feed-

back field displays the different conflicts that block the application of the construction

to the transient structure.

The dragging and dropping of a construction from the construction inventory onto a

node in the construction application process for debugging purposes is demonstrated

in Figure 5.12. Just like in the example in the previous section, the utterance “une

fille” (a girl) is being comprehended. The ‘fille-cxn’ and ‘une-cxn’ apply, indicated by

the green boxes in the application process, but the ‘np-cxn’ doesn’t. The grammar

engineer would like to find out why, and he drags the ‘np-cxn’ (blue box) out of the

construction inventory and drops it on the last node in the construction application

process. The construction cannot apply, but a feedback field appears at the bottom of

Paul_Van_Eecke_def.indd 127 27/09/18 08:38

118 CHAPTER 5. GENERALISING CONSTRUCTIONS

the screen. In the feedback field, the debugging information that was explained in the

example in the previous section is shown. The first part specifies that the ‘?gender’

variable from the construction is bound to both ‘f’ and ‘m’ in the transient structure.

The second part specifies that the feature-value pair (definite ?definite) is expected in

the transient structure, but not present.

For any construction that is dragged and dropped onto any node in the construction

application process (not only the last one), the construction will either apply and

extend the application process tree, or a new debugging feedback field will appear at

the bottom of the screen.

5.8 Conclusion

Human language use is creative, open-ended and full of innovations. Moreover, a lan-

guage needs to be learned and needs to adapt to novel situations. In computational

construction grammar terms, this means that the grammar and processing mechanisms

that are used, need to be flexible enough to handle utterances and meaning represen-

tations that deviate from the norm that is encoded in the grammar. Previous work in

this area has mainly focussed on the sophisticated semantic processing that is needed

to overcome grammatical impasses with reference to a shared context. In this chapter,

I have introduced a complimentary strategy that can overcome these impasses without

needing access to a shared context. This is particularly useful in the case of displaced

communication, or when the necessary common ground between two agents has not

yet been established. The strategy is based on making construction application flexible.

The algorithms for flexible construction application that I have developed and inte-

grated into FCG are based on anti-unification. When a construction cannot apply

to a transient structure, anti-unification finds the least general generalisation of the

construction that can apply to the transient structure. Four different kinds of general-

isations can be made: variable decoupling, value relaxation, feature/predicate deletion

and unit deletion. Depending on the flavour of the algorithm, value relaxations are

captured within the anti-unified construction, or within the type hierarchy of the gram-

mar. Each kind of generalisation comes at a certain cost, so that the anti-unification

results of different constructions can be compared.

Apart from its applications in language processing and evolution experiments, the anti-

unification-based machinery for flexible construction application can also be used as a

debugging tool in grammar engineering. With a few extensions to the algorithm, it

helps the developer understand why a certain construction could not apply to a given

Paul_Van_Eecke_def.indd 128 27/09/18 08:38

5.8. CONCLUSION 119

Comprehending "une fille"

Applying

in comprehension

initial structure

application process

applied constructions

resulting structure

Meaning:
(exists ?x-181) (girl ?x-182)

The following elements in the cxn give conflicts in matching:

?gender

with the following elements in the transient structure:

f
m

The following features from the cxn were required but not found in the transient structure:

(definite ?definite-75)

Anti-Unification yielded multiple analyses, only the most probable one is shown.

Show entire anti-unification analysis

reset

FCG CONSTRUCTION SET (3)
np-cxn (cxn 0.50)

une-cxn (cxn 0.50)

fille-cxn (cxn 0.50)

⨁

transient structure

root

initial une-cxn (cxn 0.50) fille-cxn (cxn 0.50)

une-cxn (cxn 0.50)

fille-cxn (cxn 0.50)

⨁

transient structure

root

une-3

fille-29

Drag and Drop

Feedback field appears

Figure 5.12: A screen shot showing how the anti-unification-based debugging tool

has been integrated in the FCG development environment. In the web-interface, con-

structions (blue boxes) can be dragged and dropped onto nodes in the construction

application process (green boxes) to apply. If the construction cannot apply, a feedback

field with debugging information appears at the bottom.

Paul_Van_Eecke_def.indd 129 27/09/18 08:38

120 CHAPTER 5. GENERALISING CONSTRUCTIONS

transient structure.

Generalisation of constructions is a first important step in the learning of construc-

tions. The second step, namely specialisation of constructions, will be discussed in

the next chapter. Together, generalisation and specialisation will then be incorporated

in powerful diagnostics and repairs that facilitate the learning of constructions from

novel observations. The case study in chapter 7 will demonstrate the use of anti-

unification to build up the type hierarchy of a grammar in an evolution experiment on

the emergence of syntactic patterns.

Paul_Van_Eecke_def.indd 130 27/09/18 08:38

Chapter 6

Specialising Constructions using

Pro-Unification

6.1 Introduction . 121

6.2 Generalisation and Specialisation . 122

6.3 Anti-Unification and Pro-Unification 125

6.3.1 A General Pro-Unification Algorithm 126

6.3.2 Integration in FCG’s Meta-Layer Architecture 127

6.4 Demonstration: Learning Word Order Constraints 130

6.5 Conclusion . 133

6.1 Introduction

In the previous chapter, I have shown how the generalisation of existing constructions

can resolve grammatical impasses. Generalisation was operationalised through the anti-

unification of constructions with respect to novel observations. It provided a means to

relax those features in a construction that blocked its application, making construction

application more flexible. Suppose, for example, that a noun phrase construction

requires a specific word order and that an observation features a different word order.

In order to be able to apply the construction, its word order constraints are relaxed

through generalisation. Then, the construction can apply and processing can continue.

121

Paul_Van_Eecke_def.indd 131 27/09/18 08:38

122 CHAPTER 6. SPECIALISING CONSTRUCTIONS

While the generalisation of a construction can often overcome an impasse and lead to

a valid solution for the problem at hand, it is often too unconstrained to be stored for

later reuse. In the word order example, the generalised construction does not constrain

the word order any more. This means that the grammar might produce noun phrases

with any word order, while it should only produce those with the word order that was

observed or the one that was already known.

Apart from the generalisation step discussed in the previous chapter, learning new

constructions also requires a specialisation step. While the generalisation step relaxes

the conflicting elements of a construction, and makes the construction more general,

the specialisation step integrates specific elements from the observation into the new

construction. This ensures that the construction is constrained enough to be stored for

later reuse. In the word order example above, specialisation would typically incorporate

features encoding the observed word order into the new construction.

This chapter introduces a strategy for specialising constructions with respect to novel

observations, as well as a framework that integrates the generalisation, specialisation

and consolidation of constructions. It is structured as follows. First, I will discuss

the concepts of generalisation and specialisation from a learning point of view (6.2).

Then, I will introduce a mechanism for specialising constructions, called pro-unification

(6.3). Finally, I will present the integration of generalisation, specialisation and consol-

idation into FCG’s meta-layer framework (6.3.2) and demonstrate this with a number

of examples (6.4).

6.2 Generalisation and Specialisation

The hypothesis that learning can be achieved by generalising and specialising hypothe-

ses over observations has been exploited in many domains of machine learning. In

inductive learning and inductive logic programming, the hypothesis space is typically

structured in terms of generalisation and specialisation (Michalski, 1983; De Raedt

and Bruynooghe, 1992; Muggleton and De Raedt, 1994). This is also the case for

version space learning, in which positive and negative examples respectively generalise

and specialise the lower and upper bounds of the hypothesis space (Mitchell, 1978,

1982; Rendell, 1986; Dubois and Quafafou, 2002). Learning through generalisation

and specialisation has also been applied in (contextual) reinforcement learning, where

actions that were successful in certain contexts are generalised to new contexts and

unsuccessful actions are inhibited in specific contexts (Berthouze et al., 2007). When

it comes to language learning, grammar induction through generalisation and speciali-

sation has been extensively studied in the field of formal language theory (Kapur and

Paul_Van_Eecke_def.indd 132 27/09/18 08:38

6.2. GENERALISATION AND SPECIALISATION 123

Bilardi, 1992; Jain and Sharma, 1998; Oates et al., 2006), while linguistic theory and

the associated formalisms have traditionally less focussed on this topic. In the context

of learning typed feature structure grammars, Lüngen and Sporleder (1999) present

a method to automatically induce inheritance hierarchies for morphological and lexical

types, and Ciortuz (2002a, 2003) presents an extension to the LIGHT system (Cior-

tuz, 2002b) that implements generalisation and specialisation operators for inductively

learning attribute-path values inside type definitions, for example for HPSG grammars.

In the field of computational construction grammar, Chang (2008); Beuls et al. (2010);

Gerasymova and Spranger (2010) introduce mechanisms that create new constructions

by generalising over two existing constructions or by recombining structural elements

from two existing constructions.

In our case , the specific challenge is to generalise and specialise constructions with

respect to novel observations. Observations are represented as transient structures,

which are gradually expanded during comprehension and formulation by the subsequent

application of constructions (see chapter 3). When a novel observation is encountered,

by which is meant that an utterance (in comprehension) or meaning representation

(in production) cannot be completely processed in a satisfactory way by the existing

constructions of the grammar, one of the existing constructions will first be generalised

over the problematic transient structure, and then specialised towards this transient

structure. This ensures that the new construction is both general enough to cover the

novel observation and constrained enough to be stored in the construction inventory.

A schematic overview of this process and the algorithms involved is shown in Figure

6.1 (adapted from Steels and Van Eecke (2018)). The transient structure representing

the novel observation is shown in green at the bottom of the figure. An existing con-

struction is shown in blue at the left side of the figure. This construction cannot apply

to the transient structure because the matching phase fails. Using the anti-unification

algorithm discussed in the previous chapter, the least general generalisation of the

construction given the transient structure is computed. This generalised construction,

shown at the top of the figure, can apply to the construction, as the matching phase

succeeds. However, its generality may cause important side-effects if it would be stored

as such in the construction inventory. Therefore, it is constrained towards the transient

structure by a pro-unification process that will be explained in more detail in the next

section. Pro-unification will incorporate specific properties of the transient structure

into the construction. This will decrease the probability that the new construction will

inappropriately apply to observations in the future.

As for the properties of the generalised and specialised constructions, the generalised

construction can apply to all transient structures to which the existing construction

Paul_Van_Eecke_def.indd 133 27/09/18 08:38

124 CHAPTER 6. SPECIALISING CONSTRUCTIONS

Existing
Construction

Specialised
Construction

Generalised
Construction

Anti-Unification Pro-Unification

Match Fails Match succeeds

Match succeeds

Transient
Structure

Figure 6.1: A schematic representation of how a new construction can be learned by

generalising and specialising an existing construction with respect to a novel observa-

tion. The transient structure representing the novel observation is shown in green at

the bottom of the Figure. The existing construction shown at the left cannot apply

to this transient structure. It is first generalised over the transient structure using the

anti-unification algorithm discussed in the previous chapter, yielding the generalised

construction shown at the top. This construction can apply to the transient structure,

but may be to general to store in the construction inventory. Therefore, it is specialised

towards the transient structure using the pro-unification algorithm introduced later in

this chapter, yielding the specialised construction shown at the right.

Paul_Van_Eecke_def.indd 134 27/09/18 08:38

6.3. ANTI-UNIFICATION AND PRO-UNIFICATION 125

could apply, plus the transient structures that require the same generalisation as the

one that was required for covering the novel observation. The specialised construction

is guaranteed to apply to the transient structure representing the novel observation, but

cannot necessarily apply to all transient structures to which the original construction

could apply. In fact, it is well possible that it cannot apply to any of them. This might

be desirable as a new construction is often not meant to become a competitor of an

existing construction, but only to cover cases that the existing construction did not

cover.

6.3 Anti-Unification and Pro-Unification

I have called the process of generalising a construction over a transient structure anti-

unification, after the algorithm that performs the generalisation. Although the task of

designing an anti-unification algorithm that works on FCG constructions and transient

structures was certainly challenging, especially when it came to special operators and

the unit structure in which the unit names are variables, I could benefit from both an

established literature on well-understood anti-unification algorithms, and a clear idea

of what the least general generalisation of a construction should look like. Therefore,

it was possible to design and implement an algorithm that is very general in the sense

that it purely works on symbolic structures and does not need any grammar-specific or

problem-specific information.

For the specialisation of a construction towards a transient structure, the picture is

not so clear. The main problem is that it is difficult to define an adequate level of spe-

cialisation. While the specialisation process should incorporate additional constraints

from the transient structure into the construction, it cannot include all constraints,

as this would make the construction so specific that it would only be able to apply

to exactly the same observation, or possibly even to the exact same transient struc-

ture (e.g. if the unit names would be incorporated into the construction). On the

other hand, when not enough constraints are incorporated into the construction, the

side-effects of applying the construction where it is not appropriate still remain. The

choice of which elements from the transient structure to incorporate into the construc-

tion (e.g syntactic categories, word order constraints or extra units, ...) will often be

experiment-specific and grammar-specific, although more general mechanisms can also

be isolated. In analogy to the anti-unification process that generalises constructions

over transient structures, I will call the process of specialising constructions towards

transient structures pro-unification. While anti-unification was operationalised as a

single, very general algorithm, pro-unification should more be seen as a collection of

Paul_Van_Eecke_def.indd 135 27/09/18 08:38

126 CHAPTER 6. SPECIALISING CONSTRUCTIONS

strategies, some of which are more generally applicable, others of which are more

grammar-specific or experiment-specific.

6.3.1 A General Pro-Unification Algorithm

I will now introduce a general and powerful pro-unification algorithm. Like the anti-

unification algorithm, it purely works on symbolic structures and does not require any

grammar-specific or experiment-specific information. The algorithm proceeds as fol-

lows. It first matches the (generalised) construction against the transient structure

and collects the matching bindings. Then, it goes through these bindings and looks

whether there are variables (from the construction) that are bound to the same con-

stants (in the transient structure). If so, these variables in the construction are made

equal by replacing them with a single, new variable.

A minimal example is shown in Figure 6.3. Suppose that we are comprehending the

utterance “the book”. The two lexical constructions on the left side of the figure, ‘a-

cxn’ and ‘book-cxn’ apply, yielding the transient structure in the middle of the figure.

This transient structure contains two units, ‘a-6’ and ‘book-2’. ‘a-6’ contains a feature

‘lex-class: article’ and ‘book-2’ contains a feature ‘lex-class: noun’. Both units also

contain an agreement feature ‘number: singular’. The np-cxn in the upper right corner

matches on two units: ‘?art’, which requires a feature ‘lex-class: article’ and ‘?noun’,

which requires a feature ‘lex-class: noun’. Additionally, ‘?art’ also matches on an

agreement feature ‘number: ?number-article’ and ‘?noun’ matches on an agreement

feature ‘number: ?number-noun’. When applying the pro-unification algorithm, it will

first match the ‘np-cxn’ and the transient structure. The matching process yields

the bindings ‘((?art . a-6) (?noun . book-2) (?number-article . singular) (?number-

noun . singular))’. The algorithm then loops through these bindings and and detects

that both ‘?number-article’ and ‘?number-noun’ in the construction are bound to the

same constant ‘singular’ in the transient structure. It converts this information into the

following ‘renamings’ ((?number-article . ?number-noun-1) (?number-noun . ?number-

noun-1)). Then, the new, specialised construction is created, as shown in the bottom

right corner of the figure. In this construction, the ‘renamings’ have been applied,

meaning that throughout the construction, ‘?number-article’ and ‘?number-noun’ have

been substituted by a single, new variable ‘?number-noun-1’. Note that the substitution

has not only renamed the variables that were involved in matching, but all ‘?number-

noun’ and ‘?number-article’ variables in the construction, including the one in the ‘?np-

unit’ in the contributing part of the construction. By substituting the ‘?number-article’

and ‘?number-noun’ variables by the same, new variable, the pro-unification algorithm

has ensured that the specialised construction will only be able to apply when both

Paul_Van_Eecke_def.indd 136 27/09/18 08:38

6.3. ANTI-UNIFICATION AND PRO-UNIFICATION 127

units in the transient structure have the same value for the number feature, whereas

the original construction could apply to any two units. It has effectively induced this

equality constraint from the transient structure and incorporated it into the specialised

construction.

The Common Lisp implementation of the algorithm that I have included in Fluid Con-

struction Grammar is shown in Figure 6.2. The function apply-pro-unification deals

with extracting the matching-pattern from the construction, creating the new spe-

cialised construction, and substituting the renamings. The function pro-unify com-

putes the actual renamings based on the matching-pattern from the construction and

the transient structure.

6.3.2 Integration in FCG’s Meta-Layer Architecture

I have integrated the learning of new constructions using anti-unification and pro-

unification in FCG’s meta-layer architecture (Steels and Van Eecke, 2018; Van Eecke

and Beuls, 2017). As explained in Section 3.5 above, the meta-layer is FCG’s preferred

place to handle processing problems and learn solutions to these problems. The meta-

layer architecture is based on three concepts: diagnostics, repairs and consolidation

strategies. Diagnostics are tests that are run after each construction application and

which can signal problems of different types. Repairs are active at the meta-layer and

implement strategies that solve different types of problems. Consolidation strategies

ensure that successful solutions to these problems are stored in such a way that a

next occurrence of the same problem will not require meta-layer processing any more.

The integration of anti-unification and pro-unification in the meta-layer architecture

consisted in implementing the following diagnostic, repair and consolidation strategy:

• Diagnostic: ‘no-match-or-solution’. This diagnostic checks whether a node
is fully expanded, which means that no more constructions can apply1. If this

is the case, it checks whether all elements of the meaning representation (in

comprehension) or unit structure (in formulation) are connected into a single

network. If this is not the case, the diagnostic signals a problem of the type

‘no-match’.

• Repair: ‘anti-unify-pro-unify’. This repair applies to problems of the type ‘no-
match’. It first extracts the transient structure from the node. Then, it loops

1The diagnostic actually checks the ‘fully-expanded’ slot of the node object. This slot is set to nil

by default and set to true when, for this node, no more constructions are scheduled for application.

As this is a standard feature of FCG, the computational overhead created by the diagnostic is very

limited.

Paul_Van_Eecke_def.indd 137 27/09/18 08:38

128 CHAPTER 6. SPECIALISING CONSTRUCTIONS

(de fun a p p l y− p r o− u n i f i c a t i o n (cxn t s d i r e c t i o n)

; ; Re tu rn s a s p e c i a l i s e d c o n s t r u c t i o n wh ich i s the r e s u l t o f the

; ; p r o− u n i f i c a t i o n o f cxn w i t h t s i n comprehens i on o r f o rm u l a t i o n

(l e t ∗ (; ; Get p r o c e s s i n g c o n s t r u c t i o n , match i ng−pat t e rn and s ou r c e
(p r o c e s s i n g− c xn (ge t−p roce s s i ng−cxn cxn))
(match i ng−pat t e rn (match i ng−pa t t e rn p r o c e s s i n g− c xn d i r e c t i o n

))

(s o u r c e (l e f t− p o l e− s t r u c t u r e t s))

; ; P ro−un i f y match ing p a t t e r n and sou rce , c o l l e c t r enam ing s

(r enam ing s (p r o−un i f y match i ng−pat t e rn s o u r c e))

; ; Make a new c o n s t r u c t i o n by cop y i n g the e x i s t i n g one

(new−cxn (copy−ob j ec t p r o c e s s i n g− c x n)))
; ; Set the name o f the new c o n s t r u c t i o n

(s e t f (name new−cxn) (make− id (s t r i n g−append ”pro−unified−” (name

p r o c e s s i n g− c xn))))
; ; S u b s t i t u t e the v a r i a b l e s i n both p o l e s o f the c o n s t r u c t i o n

a c c o r d i n g to the o b t a i n e d r enam ing s

(s e t f (p o l e− s t r u c t u r e (l e f t− p o l e new−cxn))
(s u b s t i t u t e− b i n d i n g s r enam ing s (l e f t− p o l e− s t r u c t u r e

p r o c e s s i n g− c x n)))
(s e t f (p o l e− s t r u c t u r e (r i g h t− p o l e new−cxn))

(s u b s t i t u t e− b i n d i n g s r enam ing s (r i g h t− p o l e− s t r u c t u r e
p r o c e s s i n g− c x n)))

; ; Conve r t the p r o c e s s i n g− c x n i n t o an fcg−cxn
(process ing−cxn−>fcg−cxn new−cxn))

(de fun p r o−un i f y (p a t t e r n s o u r c e)

; ; Re tu rn s a l i s t o f p r o− u n i f i c a t i o n r enam ing s .

(l e t (; ; match p a t t e r n and sou rce , c o l l e c t b i n d i n g s

(ma t ch i ng−b i nd i ng s (f i r s t (ma t ch− s t r u c t u r e s p a t t e r n s o u r c e)))

(r enam ing s n i l))

(l o op f o r (v a r i a b l e . b i n d i n g) i n ma t ch i ng−b i nd i ng s
do ; ; For each p a i r , i f t he b i n d i n g o c c u r s more than once :

(when (binding−occurs−more−than−once−p v a r i a b l e b i n d i n g

mat ch i ng−b i nd i ng s)
(l e t ((b i nd i ng− i n− r e nam ing s (f i n d b i n d i n g r enam ing s : key ’

f i r s t)))

; ; and the b i n d i n g o c c u r s a l r e a d y i n the l i s t o f r enam ing s :

(i f b i n d i ng− i n− r e nam ing s
; ; Push i t i n t o the r enam ing s w i t h the same v a r i a b l e

(push ‘ (, b i n d i n g , v a r i a b l e , (t h i r d b i nd i ng− i n− r e nam ing s))
r enam ing s)

; ; E l s e , push i t i n t o the nenamings w i t h a new v a r i a b l e

(push ‘ (, b i n d i n g , v a r i a b l e , (make−var)) r enam ing s)))))
(i f r enam ing s

; ; Retu rn the r enam ing s i n the u s u a l b i n d i n g s fo rmat .

(mapcar #’(lambda (r) (cons (second r) (t h i r d r))) r enam ing s)

+no−b i nd i ng s+)))

Figure 6.2: FCG’s implementation of the general pro-unification algorithm.

20
/1

1/
20

17
, 1

8)
34

B
ab

el
 w

eb
 in

te
rf

ac
e

C
om

pr
eh

en
di

ng
 "

a
bo

ok
"

Ap
pl

yi
ng

20
/1

1/
20

17
, 1

8)
34

B
ab

el
 w

eb
 in

te
rf

ac
e

fo
rm

:

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

{s
eq

ue
nc

e(
a-

6,
 b

oo
k-

2)
,

m
ee

ts
(a

-6
, b

oo
k-

2)
,

pr
ec

ed
es

(a
-6

, b
oo

k-
2)

}

a-
6

20
/1

1/
20

17
, 1

8)
46

B
ab

el
 w

eb
 in

te
rf

ac
e

C
om

pr
eh

en
di

ng
 "

a
bo

ok
"

Ap
pl

yi
ng

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (3
)

se
ar
ch
...

Se
ar

ch

ar
gs

:
sy

n-
ca

t:

su
bu

ni
ts

:

?n
p-

un
it

[?
ar

gs
]

ph
ra

sa
l-c

at
:

ag
re

em
en

t:
np

nu
m

be
r:

?n
um

be
r-n

ou
n

{?

ar
t,

?n
ou

n}

ar
gs

:
sy

n-
ca

t:

ar
gs

:
sy

n-
ca

t:

np
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 a

ttr
ib

ut
es

?n
ou

n [?
ar

gs
]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

?n
um

be
r-n

ou
n

?a
rt

[?
ar

gs
]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

?n
um

be
r-a

rti
cl

e

?n
p-

un
it

⨀

20
/1

1/
20

17
, 1

8)
46

B
ab

el
 w

eb
 in

te
rf

ac
e

C
om

pr
eh

en
di

ng
 "

a
bo

ok
"

Paul_Van_Eecke_def.indd 138 27/09/18 08:38

6.3. ANTI-UNIFICATION AND PRO-UNIFICATION 129

C
om

pr
eh

en
di

ng
 "

a
bo

ok
"

Ap
pl

yi
ng

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (3
)

Se
ar

ch

ar
gs

:
sy

n-
ca

t:

su
bu

ni
ts

:

?n
p-

un
it

[?
ar

gs
]

ph
ra

sa
l-c

at
:

ag
re

em
en

t:
np

nu
m

be
r:

?n
um

be
r-n

ou
n

{?

ar
t,

?n
ou

n}

ar
gs

:
sy

n-
ca

t:

ar
gs

:
sy

n-
ca

t:

fo

rm
:

np
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 a

ttr
ib

ut
es

?n
ou

n [?
ar

gs
]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

?n
um

be
r-n

ou
n

?a
rt

[?
ar

gs
]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

?n
um

be
r-a

rti
cl

e

?n
p-

un
it

∅
{m

ee
ts

(?
ar

t,
?n

ou
n)

}

⨀

ar
gs

:
sy

n-
ca

t:

?b
oo

k-
un

it
[?

x]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

si
ng

ul
ar

m

ea
ni

ng
:

fo

rm
:

bo
ok

-c
xn

 (c
xn

 0
.5

0)
 s

ho
w

 a
ttr

ib
ut

es

?b
oo

k-
un

it
{o

bj
ec

t(b
oo

k,
 ?

x)
}

{s
tri

ng
(?

bo
ok

-u
ni

t,
"b

oo
k"

)}

⨀

ar
gs

:
sy

n-
ca

t:

?a
-u

ni
t [?
x]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

si
ng

ul
ar

m

ea
ni

ng
:

fo

rm
:

a-
cx

n
(c

xn
 0

.5
0)

 s
ho

w
 a

ttr
ib

ut
es

?a
-u

ni
t

{s
ta

tu
s(

in
de

fin
ite

, ?
x)

}
{s

tri
ng

(?
a-

un
it,

 "a
")}

⨀

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

in
iti

al
a-

cx
n

(c
xn

 0
.5

0)
bo

ok
-c

xn
 (c

xn
 0

.5
0)

np
-c

xn
 (c

xn
 0

.5
0)

to
 g

lo
ba

l v
ar

ia
bl

e
*s
av
ed
-c
fs
*

Sa
ve

d
co

ns
tru

ct
io

n

to
 g

lo
ba

l v
ar

ia
bl

e
*s
av
ed
-c
xn
*

re
se

t

⨀

fo
rm

:

m
ea

ni
ng

:
fo

rm
:

ar
gs

:
sy

n-
ca

t:

m
ea

ni
ng

:
fo

rm
:

ar
gs

:
sy

n-
ca

t:

ro
ot

{s
eq

ue
nc

e(
a-

6,
 b

oo
k-

2)
,

m
ee

ts
(a

-6
, b

oo
k-

2)
,

pr
ec

ed
es

(a
-6

, b
oo

k-
2)

}

a-
6

{s
ta

tu
s(

in
de

fin
ite

, ?
x-

12
)}

{s
tri

ng
(a

-6
, "

a"
)}

[?
x-

12
]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

si
ng

ul
ar

bo
ok

-2
{o

bj
ec

t(b
oo

k,
 ?

x-
13

)}
{s

tri
ng

(b
oo

k-
2,

 "b
oo

k"
)}

[?
x-

13
]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

si
ng

ul
ar

pr
o-

un
ifi

ed
-n

p-
cx

n-
1

(c
xn

 0
.5

0)

pr
o-

un
ifi

ed
-n

p-
cx

n-
1

(c
xn

 0
.5

0)

ar
gs

:
sy

n-
ca

t:

su
bu

ni
ts

:

?n
p-

un
it-

3
[?

ar
gs

-1
]

ph
ra

sa
l-c

at
:

ag
re

em
en

t:
np

nu
m

be
r:

?n
um

be
r-n

ou
n-

1

{?
ar

t-1
, ?

no
un

-6
}

ar
gs

:
sy

n-
ca

t:

fo

rm
:

ar
gs

:
sy

n-
ca

t:

pr
o-

un
ifi

ed
-n

p-
cx

n-
1

(c
xn

 0
.5

0)
 s

ho
w

 d
es

cr
ip

tio
n ?a

rt
-1

[?
ar

gs
-1

]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

?n
um

be
r-n

ou
n-

1

?n
p-

un
it-

3
∅

{m
ee

ts
(?

ar
t-1

, ?
no

un
-6

)}

?n
ou

n-
6

[?
ar

gs
-1

]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

?n
um

be
r-n

ou
n-

1

⨀

to
 g

lo
ba

l v
ar

ia
bl

e
*s
av
ed
-c
fs
*

Sa
ve

d
co

ns
tru

ct
io

n

to
 g

lo
ba

l v
ar

ia
bl

e
*s
av
ed
-c
xn
*

re
se

t

⨀

fo
rm

:

m
ea

ni
ng

:
fo

rm
:

ar
gs

:
sy

n-
ca

t:

m
ea

ni
ng

:
fo

rm
:

ar
gs

:
sy

n-
ca

t:

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

{s
eq

ue
nc

e(
a-

6,
 b

oo
k-

2)
,

m
ee

ts
(a

-6
, b

oo
k-

2)
,

pr
ec

ed
es

(a
-6

, b
oo

k-
2)

}

a-
6

{s
ta

tu
s(

in
de

fin
ite

, ?
x-

12
)}

{s
tri

ng
(a

-6
, "

a"
)}

[?
x-

12
]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

si
ng

ul
ar

bo
ok

-2
{o

bj
ec

t(b
oo

k,
 ?

x-
13

)}
{s

tri
ng

(b
oo

k-
2,

 "b
oo

k"
)}

[?
x-

13
]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

si
ng

ul
ar

pr
o-

un
ifi

ed
-n

p-
cx

n-
1

(c
xn

 0
.5

0)

pr
o-

un
ifi

ed
-n

p-
cx

n-
1

(c
xn

 0
.5

0)

ar
gs

:
sy

n-
ca

t:

su
bu

ni
ts

:

?n
p-

un
it-

3
[?

ar
gs

-1
]

ph
ra

sa
l-c

at
:

ag
re

em
en

t:
np

nu
m

be
r:

?n
um

be
r-n

ou
n-

1

{?
ar

t-1
, ?

no
un

-6
}

ar
gs

:
sy

n-
ca

t:

fo

rm
:

ar
gs

:
sy

n-
ca

t:

pr
o-

un
ifi

ed
-n

p-
cx

n-
1

(c
xn

 0
.5

0)
 s

ho
w

 d
es

cr
ip

tio
n ?a

rt
-1

[?
ar

gs
-1

]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

?n
um

be
r-n

ou
n-

1

?n
p-

un
it-

3
∅

{m
ee

ts
(?

ar
t-1

, ?
no

un
-6

)}

?n
ou

n-
6

[?
ar

gs
-1

]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

?n
um

be
r-n

ou
n-

1

⨀

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

sy
n-

ca
t:

su
bu

ni
ts

:

ph
ra

sa
l-c

at
:

ag
re

em
en

t:
np

nu
m

be
r:

?n
um

be
r-n

ou
n

{?

ar
t,

?n
ou

n}

ar
gs

:
sy

n-
ca

t:

fo

rm
:

?a
rt

[?
ar

gs
]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

?n
um

be
r-a

rti
cl

e

?n
p-

un
it

∅
{m

ee
ts

(?
ar

t,
?n

ou
n)

}

⨀

ar
gs

:
sy

n-
ca

t:

?b
oo

k-
un

it
[?

x]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

si
ng

ul
ar

bo
ok

-c
xn

 (c
xn

 0
.5

0)
 s

ho
w

 a
ttr

ib
ut

es

?b
oo

k-
un

it

⨁

ar
gs

:
sy

n-
ca

t:

?a
-u

ni
t [?
x]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

si
ng

ul
ar

a-
cx

n
(c

xn
 0

.5
0)

 s
ho

w
 a

ttr
ib

ut
es

?a
-u

ni
t

⨁

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

in
iti

al
a-

cx
n

(c
xn

 0
.5

0)
bo

ok
-c

xn
 (c

xn
 0

.5
0)

np
-c

xn
 (c

xn
 0

.5
0)

C
om

pr
eh

en
di

ng
 "

a
bo

ok
"

Ap
pl

yi
ng

in
 c

om
pr

eh
en

si
on

in
iti

al
 s

tru
ct

ur
e

ap
pl

ic
at

io
n

pr
oc

es
s

FC
G

 C
O

N
ST

R
U

C
TI

O
N

 S
ET

 (3
)

Se
ar

ch

ar
gs

:
sy

n-
ca

t:

su
bu

ni
ts

:

?n
p-

un
it

[?
ar

gs
]

ph
ra

sa
l-c

at
:

ag
re

em
en

t:
np

nu
m

be
r:

?n
um

be
r-n

ou
n

{?

ar
t,

?n
ou

n}

ar
gs

:
sy

n-
ca

t:

ar
gs

:
sy

n-
ca

t:

fo

rm
:

np
-c

xn
 (c

xn
 0

.5
0)

 s
ho

w
 a

ttr
ib

ut
es

?n
ou

n [?
ar

gs
]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

?n
um

be
r-n

ou
n

?a
rt

[?
ar

gs
]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

?n
um

be
r-a

rti
cl

e

?n
p-

un
it

∅
{m

ee
ts

(?
ar

t,
?n

ou
n)

}

⨀

ar
gs

:
sy

n-
ca

t:

?b
oo

k-
un

it
[?

x]

le
x-

cl
as

s:
ag

re
em

en
t:no

un

nu
m

be
r:

si
ng

ul
ar

bo
ok

-c
xn

 (c
xn

 0
.5

0)
 s

ho
w

 a
ttr

ib
ut

es

?b
oo

k-
un

it

⨁

ar
gs

:
sy

n-
ca

t:

?a
-u

ni
t [?
x]

le
x-

cl
as

s:
ag

re
em

en
t:ar

tic
le

nu
m

be
r:

si
ng

ul
ar

a-
cx

n
(c

xn
 0

.5
0)

 s
ho

w
 a

ttr
ib

ut
es

?a
-u

ni
t

⨁

⨁

tra
ns

ie
nt

 s
tru

ct
ur

e

ro
ot

in
iti

al
a-

cx
n

(c
xn

 0
.5

0)
bo

ok
-c

xn
 (c

xn
 0

.5
0)

np
-c

xn
 (c

xn
 0

.5
0)

Renamings: ((?number-article . ?number-noun-1)
 (?number-noun . ?number-noun-1))

F
ig
u
re
6
.3
:
A
m
in
im
a
l
p
ro
-u
n
ifi
ca
ti
o
n
ex
a
m
p
le
.
T
h
e
a
p
p
lic
a
ti
o
n
o
f
th
e
le
xi
ca
l
co
n
st
ru
ct
io
n
s
‘a
-c
xn
’
a
n
d
‘b
o
o
k
-c
xn
’
o
n
th
e
le
ft
yi
el
d
s

th
e
tr
a
n
si
en
t
st
ru
ct
u
re
in
th
e
m
id
d
le
,
co
n
ta
in
in
g
tw
o
u
n
it
s
w
it
h
a
fe
a
tu
re
‘(
n
u
m
b
er
si
n
g
u
la
r)
’.
T
h
e
‘n
p
-c
xn
’
in
th
e
ri
g
h
t
u
p
p
er
co
rn
er

m
a
tc
h
es
o
n
tw
o
u
n
it
s
w
it
h
th
e
fe
a
tu
re
s
‘(
n
u
m
b
er
?
n
u
m
b
er
-n
o
u
n
)’
a
n
d
‘(
n
u
m
b
er
?
n
u
m
b
er
-a
rt
ic
le
)’
re
sp
ec
ti
ve
ly
.
T
h
e
p
ro
-u
n
ifi
ca
ti
o
n

a
lg
o
ri
th
m
d
et
ec
ts
th
a
t
th
es
e
tw
o
va
ri
a
b
le
s
ar
e
b
o
u
n
d
to
th
e
sa
m
e
va
lu
e
in
th
e
tr
a
n
si
en
t
st
ru
ct
u
re
a
n
d
re
n
a
m
es
‘?
n
u
m
b
er
-n
o
u
n
’
a
n
d

‘n
u
m
b
er
-a
rt
ic
le
’
to
‘n
u
m
b
er
-n
o
u
n
-1
’
th
ro
u
g
h
o
u
t
th
e
co
n
st
ru
ct
io
n
.
T
h
e
sp
ec
ia
lis
ed
co
n
st
ru
ct
io
n
is
sh
o
w
n
in
th
e
lo
w
er
le
ft
co
rn
er
.

Paul_Van_Eecke_def.indd 139 27/09/18 08:38

130 CHAPTER 6. SPECIALISING CONSTRUCTIONS

through all grammatical constructions in the construction inventory and anti-

unifies each construction with the transient structure. After that, it takes the

construction that was anti-unified with the lowest cost and pro-unifies this anti-

unified construction with the transient structure. The resulting construction is

returned by the repair as a fix-cxn. The fix-cxn is then applied to the transient

structure and routine processing can continue.

• Consolidation Strategy: ‘add-cxn’. If a branch of the search tree leads to a
solution, all constructions that were the result of pro-unification in the ‘anti-unify-

pro-unify’ repair are added to the construction inventory. From that moment on,

they are treated as normal constructions and can apply in routine processing.

A schematic representation of the integration of these anti-unification and pro-unification

based diagnostics and repairs in FCG’s meta-layer architecture is shown in Figure 6.4.

In the bottom left corner, the initial transient structure TSt is shown. It is not a solu-

tion (Goal-test: nil) and triggers no problems (diagnose: nil). ‘Cxnm’ applies and a new

node is created, containing transient structure TSt+1. This construction is not a so-

lution and the diagnostic ‘no-match-or-solution’ signals a problem of type ‘no-match’,

as the node is fully expanded and not all elements of its meaning or unit structure are

connected into a single network. This transient structure and diagnostic are shown

in orange. The instantiation of a new problem triggers a jump to the meta-layer.

There, the repair ‘anti-unify-pro-unify’ becomes active, as shown in the green box in

the middle of the figure. All grammatical constructions of the construction inventory

are anti-unified with TSt+1 and the anti-unified construction with the lowest score is

‘a-u-cxnk’. This construction is then pro-unified with TSt+1, yielding the construction

‘p-u-a-u-cxnk’. This construction is than applied to TSt+1 and a new node TSt+2 is

created. This node is not a solution and the diagnostic signals no problems. Then,

routine processing applies CxnI to TSt+2 yielding TSt+3. This node triggers no prob-

lems and qualifies as a solution (Goal-test: t). As this branch of the search tree leads

to a solution, the consolidation phase adds the pro-unified anti-unified construction

‘p-u-a-u-cxnk’ to the construction inventory.

6.4 Demonstration: Learning Word Order Constraints

I will now demonstrate how the combination of generalisation and specialisation us-

ing anti- and pro-unification can be used to learn new constructions based on existing

constructions and novel observations. I will use an example very similar to the one

used in Section 5.5.1 above. In this example, an agent observes the utterance “un

d̂ıner formidable” (a splendid dinner). His construction inventory contains the lexical

Paul_Van_Eecke_def.indd 140 27/09/18 08:38

6.4. DEMONSTRATION: LEARNING WORD ORDER CONSTRAINTS 131

cxni cxnj cxnk cxnl cxnm cxnn cxno cxnp ... cxnz + p-u-a-u-cxnk cxn-inventory

a-u-cxnk p-u-a-u-cxnk

TSt TSt+1

diagnose: nil diagnose: no-match-or-solution

cxnm

Consolidate

TSt+3

diagnose: nil

TSt+2

diagnose: nil

cxnl

Goal-test: nilGoal-test: nil Goal-test: nil Goal-test: t

anti-unify(cxni-z , TSt+1)

pro-unify(a-u-cxnk , TSt+1)

unify(p-u-a-u-cxnk , TSt+1)

repair: anti-unify-pro-unify

Figure 6.4: A schematic representation of how the anti-unification and pro-unification

operators are integrated in FCG’s meta-layer architecture. When a diagnostic triggers

a problem of the type ‘no-match-or-solution’ (shown in orange), the repair ‘anti-unify-

pro-unify’ (shown inside the green box) will become active. It will loop though the

different grammatical constructions of the construction-inventory and anti-unify them

with the transient structure. The construction that could be anti-unified with the lowest

cost is then pro-unified with the transient structure. This pro-unified construction is

then unified with the transient structure, in order to create a new transient structure.

Routine processing is then resumed and if that branch in the search tree leads to a

solution, the pro-unified construction is consolidated by adding it to the construction

inventory.

Paul_Van_Eecke_def.indd 141 27/09/18 08:38

132 CHAPTER 6. SPECIALISING CONSTRUCTIONS

constructions for ‘un’ (a), ‘d̂ıner’ (dinner) and ‘formidable’ (splendid), and an ‘np-cxn’

that groups an article, an adjective and a noun, in that order, into a noun phrase.

The lexical constructions can apply to the utterance, but the ‘np-cxn’ cannot, as its

word order constraints are in conflict with the word order that was observed. Af-

ter the application of the lexical constructions, the ‘no-match-or-solution’ diagnostic

instantiates a problem of the type ‘no-match’. This is the case because no more gram-

matical constructions can apply and the meaning predicates in the transient structure

are not connected into a single network. At the meta-layer, the ‘anti-unify-pro-unify’

repair becomes active. It loops through the different grammatical constructions in

the construction inventory and anti-unifies them with the transient structure. The

anti-unification cost is the lowest for the ‘np-cxn’, as only two variables need to be

decoupled in the ‘meets’ constraints. The anti-unified ‘np-cxn’ is then pro-unified with

the transient structure, binding again the decoupled variables to unit names. The pro-

unified construction then applies to the transient structure and the resulting transient

structure qualifies as a solution. Finally, the pro-unified construction is added to the

construction inventory.

The transient structure and constructions involved in this example are shown in Figure

6.5. The transient structure for the observation “un d̂ıner formidable” is shown at the

bottom. The black circle highlights the ‘meets’ constraints that indicate that the article

immediately precedes the noun and that the noun immediately precedes the adjective.

At the left side, the existing ‘np-cxn’ is shown. The red circle highlights the ‘meets’

constraints that indicate that the article should immediately precede the adjective and

that the adjective should immediately precede the noun. Because of these conflicting

‘meets’ constraints, the ‘np-cxn’ cannot apply to the transient structure. The anti-

unified ‘np-cxn’ is shown at the top. The ‘meets’ constraints, highlighted by a grey

circle, have been relaxed by variable decoupling and now contain two variables that are

not coupled to unit names: ‘art-27’ and ‘noun-42’. This construction can apply to the

transient structure, but its ‘meets’ constraints do not constrain the word order any

more. The pro-unified construction is shown at the right. The ‘meets’ constraints,

highlighted by a green circle, have now been coupled again to unit names. They now

require that the article immediately precedes the noun, and that the noun immediately

precedes the adjective, as was observed in the utterance.

Note that, while the anti-unification process has relaxed the conflicting word order

constraints in the construction, and while the pro-unification process has effectively

incorporated constraints encoding the word order that was observed into the construc-

tion, the algorithms were not informed by any grammar- or feature-specific information.

In fact, they did not even need to know that they were dealing with features that affect

word order. It is this generality that makes anti- and pro-unification powerful as learn-

Paul_Van_Eecke_def.indd 142 27/09/18 08:39

6.5. CONCLUSION 133

ing operators in emergent grammars, in which the the type and function of features is

not known on beforehand and can evolve over time.

6.5 Conclusion

In this chapter, I have presented an operator that specialises FCG constructions to-

wards observations captured in transient structures, as well as an integration of this

specialisation operator and the generalisation operator presented in the previous chap-

ter into FCG’s meta-layer architecture. I have first argued that the specialisation of

constructions towards observations is a crucial step in learning new constructions. It

is complimentary to the generalisation step that was discussed in chapter 5 of this

dissertation. While an impasse during processing can often be overcome by general-

ising over the conflicting element in the construction, the generalised construction is

often too unconstrained to be added to the construction inventory. Therefore, a sub-

sequent specialisation step that constrains the generalised construction again towards

the observation is required. This construction can then be added to the construction

inventory, reducing the risk of overgeneralisation.

Then, I have introduced a pro-unification operator that performs the specialisation

of a construction towards a given transient structure. Like in the case of the anti-

unification-based generalisation operator introduced in chapter 5, the pro-unification

operator is very general. It works on symbolic structures only, and does not require any

grammar-specific or problem-specific information. This makes the algorithm suitable

for use in emergent grammars, in which the specific features and there functions are

not known on beforehand and can evolve over time.

Finally, I have presented the integration of the anti-unification and pro-unification op-

erators as a powerful repair in FCG’s meta-level architecture. I have demonstrated the

generality of this repair with an example in which an unknown word order occurred.

The generalisation operator first created a construction in which the values of features

that encode word order were generalised into free variables. After that, the special-

isation operator created a construction in which these variables were bound to the

correct unit names, as observed in the transient structure. Apart from the word order

constraints, which it took from the observation, the resulting construction contained

the exact same information as the original construction. It is worth noting that the

generalisation and specialisation operator works without any knowledge about the fea-

tures that it is handling. New word orders, agreement features, semantic categories

and syntactic functions are all handled in exactly the same way.

Paul_Van_Eecke_def.indd 143 27/09/18 08:39

134 CHAPTER 6. SPECIALISING CONSTRUCTIONS

A
nti-U

nification
P
ro-U

nification

M
atch Fails

M
atch succeeds

M
atch succeeds

03/12/2017, 13)32
B

abel w
eb interface

⨀

form
:

m
eaning:

form
:

syn-cat:

m
eaning:

form
:

syn-cat:

m
eaning:

form
:

syn-cat:

transient structure

root
{m

eets(dîner-1, form
idable-1),

m
eets(un-1, dîner-1)}

un-1
{status(indefinite, ?x-17)}

{string(un-1, "un")}

lex-class:article

form
idable-1

{property(splendid, ?x-16)}
{string(form

idable-1, "form
idable")}

lex-class:adjective

dîner-1
{m

eal(dinner, ?x-18)}
{string(dîner-1, "dîner")}

lex-class:noun

syn-cat:

subunits:

?np-unit

lex-class:np
{?art, ?adj, ?noun}

syn-cat:

syn-cat:

syn-cat:

form
:

np-cxn (cxn 0.50) show
 attributes

?noun

lex-class:noun

?artlex-class:article

?adj

lex-class:adjective

?np-unit{m
eets(?adj, ?noun),

m
eets(?art, ?adj)}

 ⨀

03/12/2017, 13)32
B

abel w
eb interface

Page 1 of 2
http://localhost:8000/

⨀

form
:

m
eaning:

form
:

syn-cat:

m
eaning:

form
:

syn-cat:

m
eaning:

form
:

syn-cat:

transient structure

root
{m

eets(dîner-1, form
idable-1),

m
eets(un-1, dîner-1)}

un-1
{status(indefinite, ?x-17)}

{string(un-1, "un")}

lex-class:article

form
idable-1

{property(splendid, ?x-16)}
{string(form

idable-1, "form
idable")}

lex-class:adjective

dîner-1
{m

eal(dinner, ?x-18)}
{string(dîner-1, "dîner")}

lex-class:noun

syn-cat:

subunits:

?np-unit

lex-class:np
{?art, ?adj, ?noun}

syn-cat:

syn-cat:

syn-cat:

form
:

np-cxn (cxn 0.50) show
 attributes

?noun

lex-class:noun

?artlex-class:article

?adj

lex-class:adjective

?np-unit{m
eets(?adj, ?noun),

m
eets(?art, ?adj)}

 ⨀

03/12/2017, 13)32
B

abel w
eb interface

Page 2 of 2
http://localhost:8000/

reset syn-cat:

subunits:

?np-unit-4

lex-class:np
{?art-5, ?adj-21, ?noun-26}

syn-cat:

syn-cat:

syn-cat:

form
:

anti-unified-np-cxn-1 (cxn 0.50) show
 description

?adj-21

lex-class:adjective

?art-5

lex-class:article

?noun-26

lex-class:noun

?np-unit-4
{m

eets(?adj-37, ?noun-42),
m

eets(?art-5, ?adj-37)}

 ⨀

syn-cat:

subunits:

?np-unit-7

lex-class:np
{?art-7, ?adj-39, ?noun-44}

form
:

syn-cat:

syn-cat:

syn-cat:

pro-unified-anti-unified-np-cxn-1-1 (cxn 0.50) show
 description

?np-unit-7
{m

eets(?noun-44, ?adj-39),
m

eets(?art-7, ?noun-44)}

?noun-44

lex-class:noun

?art-7

lex-class:article

?adj-39

lex-class:adjective

 ⨀

03/12/2017, 13)32
B

abel w
eb interface

Page 2 of 2
http://localhost:8000/

reset syn-cat:

subunits:

?np-unit-4

lex-class:np
{?art-5, ?adj-21, ?noun-26}

syn-cat:

syn-cat:

syn-cat:

form
:

anti-unified-np-cxn-1 (cxn 0.50) show
 description

?adj-21

lex-class:adjective

?art-5

lex-class:article

?noun-26

lex-class:noun

?np-unit-4
{m

eets(?adj-37, ?noun-42),
m

eets(?art-5, ?adj-37)}

 ⨀

syn-cat:

subunits:

?np-unit-7

lex-class:np
{?art-7, ?adj-39, ?noun-44}

form
:

syn-cat:

syn-cat:

syn-cat:

pro-unified-anti-unified-np-cxn-1-1 (cxn 0.50) show
 description

?np-unit-7
{m

eets(?noun-44, ?adj-39),
m

eets(?art-7, ?noun-44)}

?noun-44

lex-class:noun

?art-7

lex-class:article

?adj-39

lex-class:adjective

 ⨀

F
ig
u
re
6
.5
:
R
ela
xin
g
a
n
d
learn

in
g
w
o
rd
o
rd
er
co
n
stra
in
ts
th
ro
u
g
h
a
n
ti-
a
n
d
p
ro
-u
n
ifi
ca
tio
n
.
T
h
e
cxn
a
t
th
e
left
ca
n
n
o
t
a
p
p
ly
to
th
e

tra
n
sien
t
stru
ctu
re
a
t
th
e
b
o
tto
m
b
eca
u
se
o
f
co
n
fl
ictin
g
w
o
rd
o
rd
er
co
n
stra
in
ts
(art-n

o
u
n
-a
d
j
vs.
art-a

d
j-n
o
u
n
).
T
h
ey
are
fi
rst
rela
xed

th
ro
u
g
h
a
n
ti-u
n
ifi
ca
tio
n
(cxn

a
t
th
e
to
p
)
a
n
d
th
en
co
n
stra
in
ed
th
ro
u
g
h
pro
-u
n
ifi
ca
tio
n
(cxn

a
t
th
e
rig
h
t).

Paul_Van_Eecke_def.indd 144 27/09/18 08:39

03/12/2017, 13)32
B

abel w
eb interface

transient structure

Chapter 7

Case Study: the Origins of

Syntax

7.1 Introduction . 136

7.2 The Origins of Syntax . 137

7.3 Experimental Design and Implementation 138

7.3.1 World . 138

7.3.2 Population . 139

7.3.3 Interaction Script . 141

7.4 Learning Strategies . 144

7.4.1 Lexical Strategy . 144

7.4.2 Grouping Strategy . 149

7.4.3 N-gram Strategy . 154

7.4.4 Pattern Strategy . 159

7.5 Comparison and Discussion . 169

7.5.1 Communicative Success . 171

7.5.2 Coherence of the Language 172

7.5.3 Number of Grammatical Constructions 173

7.5.4 Search Effort . 174

7.5.5 Final Discussion . 176

7.6 Conclusion . 177

135

Paul_Van_Eecke_def.indd 145 27/09/18 08:39

136 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

7.1 Introduction

This chapter presents a case study in which the representations and mechanisms that

were introduced in the previous chapters are applied in a multi-agent experiment on

the origins of syntax. I will focus in particular on the following aspects:

• The use of anti-unification as a general meta-level operator for expanding the
coverage of a grammar by incrementally learning a type hierarchy.

• The learning advantages of capturing grammatical information in a grammar’s
type hierarchy instead of in its individual constructions.

• The learning advantages of shifting the competition between individual construc-
tions to the links that connect different categories in the type hierarchy.

The case study consists in an experiment that studies the emergence and evolution

of early grammatical patterns in a population of autonomous, artificial agents. The

experiment follows the language game paradigm (Steels, 1995, 1997, 1998, 2012b),

which is a well-established methodological framework for studying language emergence

and evolution through agent-based models. Each agent in the experiment is equipped

with the representations (Fluid Construction Grammar including type-hierarchies) and

mechanisms (meta-layer diagnostics and repairs including anti-unification) that were

introduced earlier in this dissertation. The experiment studies how a shared system of

syntactic patterns can emerge and evolve in a population of autonomous agents. The

primary function of the shared syntactic patterns is to minimize the referential ambigu-

ity of the language in the world, leading to a more effective and efficient communication

system.

The chapter is structured as follows. The first section presents a high-level overview

of the experiment, sketches its background and specifies its main objectives (7.2).

The second section provides a detailed description of the design and implementation

of the experiment (7.3). The third section presents different learning strategies that

the agents in the experiment use to introduce and adopt syntactic structures in their

language (7.4). The last section compares the performance of the four strategies

and discusses their results (7.5). Interactive visualisations of actual experimental runs

are included in the web demonstration that accompanies this dissertation (https:

//www.fcg-net.org/demos/vaneecke-phd).

Paul_Van_Eecke_def.indd 146 27/09/18 08:39

7.2. THE ORIGINS OF SYNTAX 137

7.2 The Origins of Syntax

In human languages, utterances are not simple bags of words, but highly structured

entities. There are two main mechanisms that are crucial for structuring utterances.

The first mechanism concerns the linear ordering of the elements that constitute the

utterance. In most languages, words, phrases and morphological entities such as af-

fixes do not appear in a random order1. In English for example, nouns precede their

derivational affixes (e.g. ‘luck’ + ‘y’) and main verbs follow their auxiliaries (e.g. ‘has’

+ ‘spoken’). The second mechanism for structuring utterances concerns the use of

markers that are shared between different elements in the utterance. In Latin for ex-

ample, it is the marking system, more strongly than the word order, that structures

utterances such as ‘Mari-a pulchr-am puell-ae ros-am dat. (‘Maria gives the girl a

beautiful flower’)’.

The existence of word order and markers and their importance in structuring utterances

is acknowledged in probably all theories of language, and has been extensively studied

in the linguistic literature (for a high-level overview, see Valin and LaPolla, 1997; Blake,

2001; Cinque and Kayne, 2005; Corbett, 2006; Malchukov and Spencer, 2009). Their

origins however, remain heavily debated. The view that was dominant until two decades

ago argues that these structures are innate and therefore constitute a stable universal

grammar that underlies all natural languages (Chomsky, 1986). The opposing view

argues that grammar is not innate or a priori present in the human brain, but that it is a

dynamic system that emerges through the communicative interactions of interlocutors

(Hopper, 1987; Jasperson et al., 1994). The experiment that we describe in this

chapter contributes to the latter view, as it presents a model of how word order can

emerge and evolve in a population of artificial agents, through repeated communicative

interactions.

Previous experiments on the emergence of syntactic structures have often focussed

on the learner’s bias, also called induction bias or generalisation bias (Batali, 1998;

Kirby, 1999, 2002b; Briscoe, 2000). These experiments aim to show that syntactic

structures are introduced by language learners, whose learning algorithms are biased

towards generalising and structuring any input that they get. In this view, generations

of learners iteratively impose more structure and regularity onto the language, until the

system stabilises. Steels and Garcia Casademont (2015a) on the other hand, argue

that the emergence of syntactic structures is motivated by the need to dampen the

combinatorial explosions that arise when comprehending and interpreting utterances in

1In many languages, the linear order these elements is considered so important that they are often clas-

sified according to it: prefixes, infixes and suffixes; prepositions, circumpositions and postpositions;

prenominal and postnominal modifiers; preverbal and postverbal subjects; etc.

Paul_Van_Eecke_def.indd 147 27/09/18 08:39

138 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

the world. Their experiments show that shared syntactic structures can emerge in a

population of agents in a single generation, based on the outcome of communicative

interactions that drive the “stepwise invention, adoption and alignment of linguistic

conventions” (Steels and Garcia Casademont, 2015a, p. 38).

The experiment that is presented in this case study builds further on the findings of

Steels and Garcia Casademont (2015a). First, it replicates the three baseline strategies

that are introduced in their paper, but provides a more detailed analysis of the results.

Then, it presents an improved version of the fourth, more realistic strategy. Apart

from confirming the results of Steels and Garcia Casademont (2015a), and presenting

a more powerful learning strategy, the case study also shows that the framework of

representations and mechanisms introduced in this dissertation allows a more general

and elegant implementation of this kind of evolutionary linguistics experiment.

7.3 Experimental Design and Implementation

I have implemented the experiment in Common Lisp using the Babel2 framework2

(Loetzsch et al., 2008). Babel2 is an open source software library that groups different

technologies that were specifically designed to be used in agent-based experiments

on the emergence and evolution of language. Specifically, the experiment employs

Babel2’s modules for running multi-agent interactions (experiment framework), for

language comprehension and production (Fluid Construction Grammar), for learning

(meta-layer learning), and for tracking and visualising the dynamics and results of the

experiment (monitors and web interface).

The experiment consists of three basic components, of which the design and implemen-

tation are presented in the following three sections: the world (7.3.1), the population

(7.3.2), and the interaction script (7.3.3). Once these three parts are in place, the

agent-based model is ready to run. However, a shared language will only start to emerge

and evolve when the agents are equipped with appropriate learning mechanisms (7.4).

7.3.1 World

The world of the experiment consists of a number of objects. The objects can be

perceived through a number of dimensions, which can have different values. The

possible dimensions and values are completely open-ended. For clarity reasons however,

the objects in the version of the experiment described here are geometrical figures,

2https://github.com/EvolutionaryLinguisticsAssociation/Babel2

Paul_Van_Eecke_def.indd 148 27/09/18 08:39

7.3. EXPERIMENTAL DESIGN AND IMPLEMENTATION 139

which are made up of dimensions such as shape, color and size. The values for these

dimensions can for example be ‘square’ or ‘circle’ for shape, ‘red’ or ‘blue’ for color and

‘small’ or ‘large’ for size. The world itself consists of all unique objects that can be

formed based on the given dimensions and values. The number of objects in the world

is thus equal to v d , in which d stands for the number of dimensions and v stands for

the number of possible values per dimension. An example world is shown in Figure 7.1.

In this world, the objects have three dimensions with two values each (shape: square,

circle; color: red, blue; size: small, huge), which means that the world consists of 8

unique objects (23). 07/04/2018, 18*26Babel web interface

Page 1 of 1http://localhost:8000/

syntax-world-13
object-1

□
SHAPE: SQUARE
COLOR: RED
SIZE: SMALL
syntax-object

object-2

○
SHAPE: CIRCLE
COLOR: RED
SIZE: SMALL
syntax-object

object-3

□
SHAPE: SQUARE
COLOR: BLUE
SIZE: SMALL
syntax-object

object-4

○
SHAPE: CIRCLE
COLOR: BLUE
SIZE: SMALL
syntax-object

object-5

□
SHAPE: SQUARE
COLOR: RED
SIZE: HUGE
syntax-object

object-6

○
SHAPE: CIRCLE
COLOR: RED
SIZE: HUGE
syntax-object

object-7

□
SHAPE: SQUARE
COLOR: BLUE
SIZE: HUGE
syntax-object

object-8

○
SHAPE: CIRCLE
COLOR: BLUE
SIZE: HUGE
syntax-object

syntax-world

reset
Figure 7.1: An example world: three dimensions (shape, color and size) with two pos-

sible values (square-circle, red-blue and small-huge) yields a world of 8 unique objects.

Unless otherwise indicated, the world in the experimental runs described in this chapter

consists of 64 objects, with the dimensions and values specified in Table 7.1. The

ontology of dimensions and values to be used for generating the world can be specified

by setting the :ontology key in the configuration of the experiment.

7.3.2 Population

The population of the experiment consists of a number of autonomous agents. The

agents are either embodied in physical robots or simulated in software. They are au-

tonomous in the sense that each individual agent perceives the world through its own

sensors (vision and hearing) and acts upon the world using its own actuators (speech

Paul_Van_Eecke_def.indd 149 27/09/18 08:39

140 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

Shape Color Size

Square Red Tiny

Circle Blue Small

Rectangle Yellow Large

Triangle Green Huge

Table 7.1: The default dimensions and values used for creating a world of 64 objects.

Unless otherwise indicated, this is the world used in the experimental runs presented in

this chapter.

and pointing). Each agent has its own grammar, represented by an FCG construc-

tion inventory. At the beginning of the experiment, the inventory contains all lexical

constructions that are needed to communicate about the dimensions of the objects in

the world, but not yet any grammatical constructions. Each lexical construction maps

between a particular value for a dimension that occurs in the world (e.g. square(?x))

and a Dutch word (e.g. ‘vierkant’)3. An example of a lexical construction is shown

in Figure 7.2. This construction maps between the string “blauw” and its meaning

‘blue(?x)’. The value of the lex-class feature is a unique symbol for each construction

of each agent and will later be used when creating grammatical patterns. The number

of agents in the population can be specified by setting the :population-size key

in the configuration of the experiment. Unless otherwise specified, the experiments

described below are run with a population of 10 agents.

Babel web interface

in formulation

initial structure

application
process

FCG CONSTRUCTION SET (12)

search... Search

reusachtig-cxn (lex 0.50 lexical-cxn t)

minuscuul-cxn (lex 0.50 lexical-cxn t)

groot-cxn (lex 0.50 lexical-cxn t)

klein-cxn (lex 0.50 lexical-cxn t)

groen-cxn (lex 0.50 lexical-cxn t)

args:
unit-type:
syn-cat:

?blauw-unit-11
[?x]

word

lex-class: blue-6

meaning:
form:

blauw-cxn (lex 0.50 lexical-cxn t) show attributes

?blauw-unit-11
{blue(?x)}

{string(?blauw-unit-11, "blauw")}

 ⨀

rood-cxn (lex 0.50 lexical-cxn t)

geel-cxn (lex 0.50 lexical-cxn t)

rechthoek-cxn (lex 0.50 lexical-cxn t)

driehoek-cxn (lex 0.50 lexical-cxn t)

cirkel-cxn (lex 0.50 lexical-cxn t)

vierkant-cxn (lex 0.50 lexical-cxn t)

⨁

transient structure

root

0, 0.00:
initial

* rood-cxn (lex 0.50 lexical-cxn t), cirkel-cxn (lex 0.50 lexical-cxn t),
driehoek-cxn (lex 0.50 lexical-cxn t)

Figure 7.2: A lexical construction that maps between the string “blauw” and the

meaning “blue(?x)”. Each lexical construction of each agent has a unique symbol as

the value of its lex-class feature.

3In this experiment, I focus on the emergence and evolution of early grammar only, and assume that a

shared vocabulary is already in place at the start. There has been a large body of previous experiments

that have studied the concrete mechanisms through which this kind of shared vocabulary can emerge

and evolve in a population of agents. For an overview, see Steels (2015).

Paul_Van_Eecke_def.indd 150 27/09/18 08:39

20/04/2018, 14)28

4, 4.00: geel-cxn
(lex 0.50 lexical-cxn t)

7.3. EXPERIMENTAL DESIGN AND IMPLEMENTATION 141

7.3.3 Interaction Script

The agents in the population participate in repeated communicative interactions, in

which one agent (the speaker) tries to draw the attention of another agent (the hearer)

on a number of objects in their world. These communicative interactions take place

according to a fixed interaction script. A single communicative interaction involves the

6 steps described below. A schematic visualization of the interaction script is shown

in Figure 7.5.

1. Agent and Role Selection (speaker and hearer)

Two agents are randomly selected from the population. One agent is randomly assigned

the role of speaker, the other agent is assigned the role of hearer.

2. Scene Selection (speaker and hearer)

The two agents are placed in a scene. The scene consists in a random subset of the

objects in the world. The speaker and hearer can directly perceive these objects, and

only these, during the communicative interaction. The minimum and maximum number

of objects in a scene can be specified using the :min-nr-of-objects-in-scene and

:max-nr-of-objects-in-scene keys in the configuration of the experiment. The

default values are 1 for the minimum number of objects in the scene and 64 (the

number of objects in the default world) for the maximum. All objects in the scene are

unique, in the sense that they differ in at least one dimension. Figure 7.3 shows an

example of a scene, generated based on the world shown in Figure 7.1. The scene

contains four objects: a small blue square, a small red circle, a huge blue square and a

huge red square.

Babel web interface

Interaction 1

Participants:
Speaker: agent 2
Hearer agent 5

Scene:

syntax-scene-20
object-3

□
SHAPE: SQUARE
COLOR: BLUE
SIZE: SMALL
syntax-object

object-2

○
SHAPE: CIRCLE
COLOR: RED
SIZE: SMALL
syntax-object

object-7

□
SHAPE: SQUARE
COLOR: BLUE
SIZE: HUGE
syntax-object

object-5

□
SHAPE: SQUARE
COLOR: RED
SIZE: HUGE
syntax-object

syntax-scene

Topic:

syntax-topic-16
object-3

□
SHAPE: SQUARE
COLOR: BLUE
SIZE: SMALL
syntax-object

object-5

□
SHAPE: SQUARE

Figure 7.3: An example scene of four objects, based on the world from Figure 7.1.

Paul_Van_Eecke_def.indd 151 27/09/18 08:39

142 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

3. Topic Selection and Conceptualisation (speaker)

The speaker randomly selects the topic of the interaction. The topic consists of one

or more objects in the scene. It will be the task of the speaker to draw the attention

of the hearer to these objects by describing them using language. In order to do this,

the speaker needs to conceptualise the topic, i.e. to come up with a meaning - a

selection of information - that he will convey to the other agent. Just like in human

communication, the speaker will be economical. He will not describe all properties of

the objects to which he refers, but only those that are necessary (cf. the Gricean

maxim of quantity (Grice, 1989)). In order to conceptualise the topic, the speaker

computes the minimal set of features that distinguishes the objects in the topic from

all other objects in the scene. Then, these discriminatory features are transformed into

a semantic network that represents the meaning that the speaker will convey to the

hearer.

The left side of Figure 7.4 shows a topic that is drawn from the scene shown in Figure

7.3. The topic consists here of two objects. The possible number of objects in the topic

is bounded by the :min-nr-of-objects-in-topic and :max-nr-of-objects-in-topic

parameters in the configuration of the experiment. The default values are 1 for the

minimum number of objects in the topic and 2 for the maximum. The discriminatory

features, i.e. the features that distinguish the objects from all other objects in the

scene, are highlighted in bold. For the small blue square and the huge red square re-

spectively, {small(object-3), blue(object-3)} and {red(object-5), huge(object-5)} are
sufficient to unambiguously identify these objects in the scene. The corresponding

semantic network is shown at right side of the Figure.

Interaction 1

Participants:
Speaker: agent 2
Hearer agent 5

Scene:

syntax-scene-20

syntax-scene

Topic:

syntax-topic-16

syntax-topic

Discriminatory Features

syntax-topic-16
object-3

□
SHAPE: SQUARE
COLOR: BLUE
SIZE: SMALL
syntax-object

object-5

□
SHAPE: SQUARE
COLOR: RED
SIZE: HUGE
syntax-object

syntax-topic

Conceptualized Meaning

(small object-3)

(blue object-3)

(huge object-5)

(red object-5)

Formulating

Applying

in formulation

initial structure

FCG CONSTRUCTION SET (6)

transient structure

Conceptualized Meaning

(small object-3)

(blue object-3)

(huge object-5)

(red object-5)

Formulating

Applying

in formulation

initial structure

FCG CONSTRUCTION SET (6)

transient structure

Figure 7.4: The left side of the Figure shows an example topic with two objects, drawn

from the scene presented in Figure 7.3. The minimal set of discriminatory features, i.e.

features that distinguish the objects from all other objects in the scene, is highlighted

in bold. The right side of the Figure shows the corresponding semantic network that

will be conveyed to the hearer.

Paul_Van_Eecke_def.indd 152 27/09/18 08:39

21/04/2018, 11)5721/04/2018, 11)57

7.3. EXPERIMENTAL DESIGN AND IMPLEMENTATION 143

4. Formulation (speaker)

The speaker now formulates an utterance that expresses the semantic network that

was the result of the conceptualisation process. He formulates the utterance using

the constructions in his FCG grammar (cf. Section 3.4.5). After each construction

application, a goal test checks whether the resulting transient structure qualifies as a

solution (cf. Section 3.4.6). The goal test is here a re-entrance test (Steels, 2003).

Conceptually, re-entrance consists in the speaker reflecting whether he would have

been able to correctly comprehend and interpret the utterance if he would have been

the hearer. Technically, after each construction application, the speaker will use his

grammar to comprehend the utterance that he has constructed so far, and interpret

the resulting meaning representation in the scene. If the interpretation of the meaning

representation in the scene only yields a single hypothesis, unambiguously identifying

the objects in the topic, the current node in the search tree is considered a solution,

and the utterance is passed on to the hearer. If the search tree has been exhaustively

explored and no solution has been found, a diagnostic signals the problem, which trig-

gers a jump to the meta-layer. At the meta-layer, the learning mechanisms described

in Sections 7.4.1 to 7.4.4 will become active and repair the problem by adding gram-

matical constructions or type hierarchy links that disambiguate the utterance. Then,

routine processing continues and when the goal test succeeds, the resulting utterance

is passed on to the hearer.

5. Comprehension and interpretation (hearer)

The hearer perceives the utterance formulated by the speaker and parses it using his

own FCG grammar. After each construction application, a goal test checks (i) whether

all strings have been processed and if so, (ii) whether the meaning extracted from this

node unambiguously identifies a number of objects in the scene. This is done by unifying

the semantic network with the agent’s model of the scene. If the unification returns

only one set bindings, the goal test succeeds and the hearer points to the objects that

correspond to these bindings. If the complete search tree has been explored and no

solution has been found, the hearer signals to the speaker that he could not understand

the utterance.

6. Feedback and Alignment (speaker and hearer)

After the hearer has either pointed to a number of objects or signalled that he could

not understand the utterance, the speaker gives feedback to the hearer. Two cases

Paul_Van_Eecke_def.indd 153 27/09/18 08:39

144 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

need to be distinguished:

• If the hearer pointed to the right objects, the speaker signals success. Both the
speaker and the hearer will reward the constructions or links in the type-hierarchy

that they have used, and punish competing constructions and links. The exact

updating rule and definition of competitors depends on the concrete learning

mechanisms that are used, and will be discussed in more detail below.

• If the hearer did not point to the right objects, the speaker signals failure and
points to the actual objects that form the topic. The speaker will punish the

constructions or links in the type hierarchy that he has used. Based on the feed-

back, the hearer learns one or more grammatical constructions or type hierarchy

links that disambiguate the utterance in the current scene.

7.4 Learning Strategies

With the world, the population and the interaction script in place, the language game

is ready to be played in a multi-agent experiment. However, the agents are at this

point not yet equipped with any mechanisms for inventing and adopting syntactic

structures. In the next sections, four different learning strategies are introduced. Each

strategy provides the agents with increasingly more powerful invention and adoption

mechanisms.

7.4.1 Lexical Strategy

The first strategy is called the lexical strategy. The lexical strategy does not put any

syntactic constraints on the words that constitute the utterances and only relies on

the words’ lexical meaning. This strategy serves as a baseline for the experiment, as it

investigates the properties of a non-syntactic language, to which the other strategies

will later be compared.

Diagnostics and Repairs

The agents are not provided with any diagnostics and repairs, as they do not need

to invent or adopt grammatical structures. In formulation, the speaker just applies

his lexical constructions to all meaning predicates that need to be expressed, and

utters the corresponding word forms in any order. The hearer will comprehend the

Paul_Van_Eecke_def.indd 154 27/09/18 08:39

7.4. LEARNING STRATEGIES 145

World

Scene

1. Agent and Role  
Selection

Speaker Hearer

Population

1. Agent and Role  
Selection

2. Scene Selection

3a. Topic Selection

 3b. Concep tualisation
Conceptualized Meaning

(small object-3)

(blue object-3)

(huge object-5)

(red object-5)

Formulating

Applying

in formulation

initial structure

application
process

constructional
dependencies

FCG CONSTRUCTION SET (6)

⨁

transient structure

root

0, 0.00:
initial

* reusachtig-cxn (lex 0.50 lexical-cxn t), blauw-cxn
(lex 0.50 lexical-cxn t), rood-cxn (lex 0.50 lexical-cxn t)

4, 4.00: klein-cxn
(lex 0.50 lexical-cxn t)

Conceptualized Meaning

(small object-3)

(blue object-3)

(huge object-5)

(red object-5)

Formulating

Applying

in formulation

initial structure

application
process

constructional
dependencies

FCG CONSTRUCTION SET (6)

⨁

transient structure

root

0, 0.00:
initial

* reusachtig-cxn (lex 0.50 lexical-cxn t), blauw-cxn
(lex 0.50 lexical-cxn t), rood-cxn (lex 0.50 lexical-cxn t)

4, 4.00: klein-cxn
(lex 0.50 lexical-cxn t)

4. Formulation

"small blue huge red"

5a. Comprehension

5b. Inter pretation

HypothesisChosen Topic

6. Feedback and Alignment

(small ?x)

(blue ?x)

(huge ?y)

(red ?y)

reset

(small ?x)

(blue ?x)

(huge ?y)

(red ?y)

reset

Figure 7.5: A schematic visualization of the interaction script that is used in the

origins-of-syntax experiment. The six steps are explained in detail in Section 7.3.3.

Paul_Van_Eecke_def.indd 155 27/09/18 08:39

146 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

http://localhost:8000/

constructions

resulting
structure

blauw-cxn (lex 0.50 lexical-cxn t blue blauw)

reusachtig-cxn (lex 0.50 lexical-cxn t huge reusachtig)

minuscuul-cxn (lex 0.50 lexical-cxn t tiny minuscuul)

driehoek-cxn (lex 0.50 lexical-cxn t triangle driehoek)

combination-3-cxn (cxn 0.50)

args:
unit-type:
subunits:

?combination-unit
[?x]

combination
{?lex-1-unit, ?lex-2-unit}

?lex-1-unit

?lex-2-unit

args:
unit-type:
unit-type:

args:
unit-type:
unit-type:

combination-2-cxn (cxn 0.50) show attributes

?lex-1-unit
[?x]

word
word

?lex-2-unit
[?x]

word
word

 ⨀

Figure 7.6: An example of a combination construction used in the lexical strategy. The

construction matches on two lexical items, which can occur anywhere in the utterance

and can have any ‘lex-class’ value.

utterance of the speaker using his lexical constructions, and make hypotheses about

the bindings of the variables in the resulting meaning network. Each time that a

hypothesis is generated, it is immediately tested. When its unification with the world

returns exactly one set of bindings, the hearer points to the corresponding objects.

In order to construct the hypotheses, we add two constructions to the construction

inventories of the agents. These constructions are called combination constructions

and their only purpose is to generate hypotheses about variable bindings. An example

of a combination construction is shown in Figure 7.6. It matches on two units, with

the only constraint that the units need to be lexical units, as expressed through the

‘unit-type’ feature, and that they need to have the same referent, as expressed through

the ‘args feature’. There are no constraints on where the words corresponding to these

units are located in the utterance.

Experimental Results

Figure 7.7 shows the results of a simulation in which the agents make use of the lexical

strategy. The graph aggregates over the outcome of all of games played by all agents

in the experiment. The x-axis represents the temporal dimension of the experiment,

with the ticks indicating the average number of games that an individual agent has

played at that point in time (either as speaker or hearer). The turquoise line indicates

on the left y-axis the extent to which the games were successful. Communicative

success is recorded as 1 (success) or 0 (failure) after each game, and is averaged

over the last 250 games. The graph shows that the average communicative success

stays at around 0.9 throughout the experiment. This means that the lexical strategy

leads to communicative success in 9 out of 10 games, whereas in 1 out of 10 games,

Paul_Van_Eecke_def.indd 156 27/09/18 08:39

Page 7 of 8

7.4. LEARNING STRATEGIES 147

the lexical strategy is not sufficient. The green line indicates the coherence of the

language, also on the left x-axis. The coherence is registered as 1 if for each object

in the scene, the hearer would have expressed the same meaning network as the one

expressed by the speaker using the exact same utterance, and as 0 otherwise. The

coherence is averaged over the last 500 games. The graph shows that in average

only 20% of the utterances were coherent, which is no surprise as the lexical strategy

does not impose any constraints on the word order. The yellow line indicates the

average number of grammatical constructions in the construction inventories of the

agents. Using the lexical strategy, their construction inventories contain at any moment

only the two combination constructions that were provided to them at the beginning

of the experiment. Communicative success, coherence and number of grammatical

constructions all remain constant over time, as there is no learning going on in the

agents.

While comprehending an utterance, the hearer will navigate through the search space

created by all grammatical constructions that can be applied. He will apply one con-

struction at a time and each time, a goal test will check whether the parsed meaning

has a single interpretation in the scene. The more ambiguous the language is, the larger

the search space will be. I will quantify here the ambiguity of the language given the

communicative task in terms of search effort, calculated by dividing the total number

of grammatical constructions that were applied (i.e. the total number of nodes in the

search tree) by the number of grammatical constructions that were applied in the path

to the solution (i.e. the depth of the solution node). A graph visualising this measure

for the lexical strategy is shown in Figure 7.8. Only successful games are included and

the values are averaged using a sliding window of 500 interactions. The graph shows

that the average size of the search space remains constant throughout the experiment

at about 11, which means that only 1 in 11 construction applications brings the agent

closer to the solution.

The huge search space is due to the enormous referential ambiguity of the language.

The referential ambiguity of an utterance in a scene corresponds to the number of

possible interpretations in that scene, of the semantic network that results from the

hearer’s comprehension process of that utterance. In other terms, it corresponds to

the number of different sets of objects in the scene that can be described using the

utterance. While the exact number depends on the specific scene, this number directly

correlates with the number of different variable bindings that can be made between

the predicates in the semantic network. When using the lexical strategy, the utterance

“blue square large” for example, allows for the 5 different possibilities listed in (2) to

(6) below.

Paul_Van_Eecke_def.indd 157 27/09/18 08:39

148 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

Co
m
m
un
ica

tiv
e
Su
cc
es
s

Gr
am

m
at
ica

lC
on
str
uc
tio
ns

pe
rA

ge
nt

Games per Agent

Lexical Strategy

Communicative Success
Language Coherence

Grammatical Constructions

Figure 7.7: Results of a simulation in which the agents use the lexical strategy. The

turquoise line indicates the communicative success (left y axis), the green line indi-

cates the language coherence, and the yellow line indicates the average number of

combination constructions in the inventories of the agents.

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000 3500 4000

Se
ar
ch

Games per Agent

Lexical Strategy

Search

Figure 7.8: Size of the search space that was explored using the lexical strategy. The

y-axis indicates that total number of nodes created by combination-cxns, divided by

the depth of the solution node.

Paul_Van_Eecke_def.indd 158 27/09/18 08:39

7.4. LEARNING STRATEGIES 149

(2) {blue(?obj-1), square(?obj-2), large(?obj-3)}

(3) {blue(?obj-1), square(?obj-2), large(?obj-1)}

(4) {blue(?obj-1), square(?obj-1), large(?obj-2)}

(5) {blue(?obj-1), square(?obj-2), large(?obj-2)}

(6) {blue(?obj-1), square(?obj-1), large(?obj-1)}

In general, the number of possible hypotheses corresponds to the number of possible

partitions of a set with as cardinality the number of variables in the semantic network,

which, in this experiment, also corresponds to the number of words in the utterance.

This number for a set of cardinality n is called the nth Bell number and can be calculated

using the formula in (7.1), in which
{
n
k

}
stands for the stirling number of the second

kind, i.e. the number of ways in which a set of cardinality n can be partitioned into k

non-empty subsets.

Bn =

n∑
k=0

{
n

k

}
(7.1)

The Bell number grows double exponentially, which means that while an utterance

of 3 words yields 5 possiblities, utterances of 6, 9 and 12 words yield 203, 21147

and 4213597 hypotheses respectively. Although the world certainly imposes certain

restrictions on the hypotheses (e.g. the same objects cannot be large and small at the

same time), it is clear that an efficient communication system will require an effective

way to deal with this combinatorial explosion.

7.4.2 Grouping Strategy

The grouping strategy offers a first way to dampen the referential ambiguity of the

language by introducing constraints on the linear ordering of the words that constitute

the utterances. The grouping strategy implies that words that refer to the same object

in the scene are linearly grouped together in the utterance. The order of the groups and

of the words within a group is not fixed. For example, the utterance corresponding to

{blue(obj-1), square(obj-2), large(obj-1)} could be formulated as “blue large square”,
“large blue square’, “square blue large” or “square large blue”. “Blue square large” and

“large square blue” would not be allowed, as blue and large have the same referent, but

do not belong to the same group in the utterance. Grouping together the co-referent

words reduces the number of possible variable bindings within a semantic network

Paul_Van_Eecke_def.indd 159 27/09/18 08:39

150 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

from the double exponentially growing Bell numbers to the simple exponential 2n−1, in

which n stands for the number of variables in the network. Not considering ontological

restrictions, utterances of 3, 6, 9 and 12 words now correspond to 4, 32, 256 and

2048 possible semantic networks. For example, the three-word utterance “blue square

large” that was discussed in the previous section now gives rise to the four semantic

networks shown in (2), (3), (5) and (6) above. When the grouping strategy is used,

the utterance is not compatible with the semantic network shown in (4), as blue and

large are not grouped together in the utterance and can therefore not have the same

referent.

Diagnostics and Repairs

In order to be able to use the grouping strategy, the agents in the experiment need

to be endowed with the necessary mechanisms to invent and adopt constructions that

group co-referent words. These mechanisms are implemented in the form of meta-

level diagnostics and repairs. There are slight differences between the diagnostics and

repairs that an agent uses when he is the speaker or when he is the hearer.

• Speaker: A diagnostic checks whether the formulation process leads to a solu-
tion, as defined by the re-entrance goal test described in Section 7.3.3 above.

If no solution is found, the diagnostic triggers a jump to the meta-layer. At

the meta-layer, a repair creates the necessary grammatical constructions, called

grouping-cxns. The grouping-cxns ensure that co-referent words are grouped

together in the formulated utterance. They are added to the construction inven-

tory of the speaker so that the formulation process can continue. Formulation

will now succeed and the resulting utterance is passed on to the hearer.

• Hearer: In the case of the hearer, a diagnostic becomes active at the very
end of the interaction, after feedback has been provided by the speaker. The

diagnostic checks whether the interaction was successful, and if this was not the

case, it triggers a jump to the meta-layer. At the meta-layer, a repair will create

new grouping-cxns based on the utterance and the topic that was provided as

feedback by the speaker. The constructions are then added to the construction

inventory of the hearer.

An example of a grouping construction is shown in Figure 7.9. This construction groups

together two lexical units. One unit matches on the lex-class ‘green-19’ and the other

on the lex-class ‘large-19’. These lex-classes correspond to the lex-classes of the units

that were created by the agent’s lexical constructions (cf. Figure 7.2), and are thus

used to match on specific words. The construction ensures that the value of the ‘args’

Paul_Van_Eecke_def.indd 160 27/09/18 08:39

7.4. LEARNING STRATEGIES 151

in formulation

initial
structure

application
process

constructional
dependencies

FCG CONSTRUCTION SET (14)

search... Search

grouping-green-19-tiny-19-rectangle-19-cxn (cxn 0.50 (rectangle-19 tiny-19 green-19) grouping-cxn)

args:
unit-type:
subunits:

?group-unit
[?x]

group
{?lex-1-unit, ?lex-2-unit}

?lex-1-unit

?lex-2-unit

args:
syn-cat:

syn-cat:

args:
syn-cat:

syn-cat:

form:

grouping-green-19-large-19-cxn (cxn 0.50 (large-19 green-19) grouping-cxn) show attributes

?lex-1-unit
[?x]

lex-class: green-19

lex-class: green-19

?lex-2-unit
[?x]

lex-class: large-19

lex-class: large-19

?group-unit
∅

{group(?lex-1-unit, ?lex-2-unit)}

 ⨀

reusachtig-cxn (lex 0.50 lexical-cxn t huge reusachtig)

minuscuul-cxn (lex 0.50 lexical-cxn t tiny minuscuul)

groot-cxn (lex 0.50 lexical-cxn t large groot)

klein-cxn (lex 0.50 lexical-cxn t small klein)

groen-cxn (lex 0.50 lexical-cxn t green groen)

blauw-cxn (lex 0.50 lexical-cxn t blue blauw)

rood-cxn (lex 0.50 lexical-cxn t red rood)

geel-cxn (lex 0.50 lexical-cxn t yellow geel)

rechthoek-cxn (lex 0.50 lexical-cxn t rectangle rechthoek)

driehoek-cxn (lex 0.50 lexical-cxn t triangle driehoek)

cirkel-cxn (lex 0.50 lexical-cxn t circle cirkel)

vierkant-cxn (lex 0.50 lexical-cxn t square vierkant)

⨁

transient structure

root

initial

* rechthoek-cxn
(lex 0.50 lexical-cxn t rectangle rechthoek),
minuscuul-cxn
(lex 0.50 lexical-cxn t tiny minuscuul),
groot-cxn
(lex 0.50 lexical-cxn t large groot), groen-
cxn (lex 0.50 lexical-cxn t green groen),
groen-cxn
(lex 0.50 lexical-cxn t green groen)

grouping-green-19-large-19-cxn
(cxn 0.50 (large-19 green-19) grouping-cxn)

Figure 7.9: An example of a grouping construction that matches on two lexical items

(lex-classes ‘green-19’ and ‘large-19’). In formulation, the construction ensures that

the two co-referent words are grouped together in the utterance. In comprehension, it

ensures that the two lexical items in the group are co-referent.

feature of the two units is the same, meaning that they refer to the same object. The

‘group’ constraint in the form feature of the group unit ensures that the two lexical

items occur in the same group in the utterance, i.e. they cannot be separated by a

word that refers to a different object. Grouping constructions can group any number

of co-referent words.

The number of constructions that is needed to be able to group each combination

of values for any number of dimensions can be computed using the formula shown in

(7.2), in which a stands for the number of dimensions of the objects in the world, and

v stands for the number of values that each dimension can have. For the experiment

described here (a = 3 and v = 4), this means that 112 different grouping constructions

are needed.

a∑
n=2

(
a

n

)
· vn (7.2)

Experimental Results

Figure 7.10 shows the results of a simulation in which the agents make use of the

grouping strategy. The turquoise line indicates again the communicative success on the

Paul_Van_Eecke_def.indd 161 27/09/18 08:39

152 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

left y-axis. The communicative success starts at 0.1 4 and increases until it reaches 1

after about 800 interactions per agent. From this moment on, all games succeed. The

yellow line indicates on the right y-axis the average number of grouping constructions

in the construction inventories of the agents. The number of grouping constructions

starts at 0 and climbs to 112, which is indeed the number predicted by the formula

in (7.2) (112 =
3∑
n=2

(
3
n

)
· 4n). The green line indicates the coherence of the language

on the left x-axis. The coherence starts at 0 and reaches 0.3 by the time that the

communicative success is at its maximum and remains constant after that. It is not

surprising that the coherence stays low, as the grouping constructions do not impose

an order on the lexical items that they group together.

The language that emerges when the agents employ the grouping strategy is powerful

enough to achieve full communicative success in the experiment. This means that given

an utterance, a scene and a complete set of grouping constructions, the utterance can

unambiguously be interpreted in the scene. It does however not mean that there is no

ambiguity in the language any more. In order to illustrate this, let us return to the scene

and topic that were shown in 7.3.3. The scene consisted of a small blue square, a small

red circle, a huge blue square and a huge red square. The topic consisted of a small blue

square and a huge red square. The minimal set of discriminatory features computed

by the speaker was {small(object-3), blue(object-3), huge(object-5), red(object-5)}.
One possible formulation of this semantic network using the grouping strategy is “small

blue huge red”. For the hearer, the grouping strategy could in theory lead to 2(4−1) =

8 possible semantic networks, as illustrated in (7) - (14). In practice however, the

grouping constructions that would license (12) - (14) will never be created by an

agent. The reason for that is that they are ontologically impossible, e.g. an object

cannot be red and blue at the same time. As a consequence, they will never lead to

communicative success and will never be created by a repair. Of the remaining five

hypotheses, four ((12) - (14)) lead to multiple interpretations in the world and will

thus not be considered a solution by the agent. Only hypothesis (11) leads to a single

set of bindings in the scene, and is thus considered a solution.

(7) {small(?obj-1), blue(?obj-2), huge(?obj-3), red(?obj-4)}

→ multiple sets of bindings

(8) {small(?obj-1), blue(?obj-2), huge(?obj-3), red(?obj-3)}

→ multiple sets of bindings

4The communicative success starts at 0.1 because about 10% of the utterances do not express more

then 1 dimension of the objects in the topic and can, as a consequence, be comprehended using the

lexical constructions only.

Paul_Van_Eecke_def.indd 162 27/09/18 08:39

7.4. LEARNING STRATEGIES 153

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Co
m
m
un
ica

tiv
e
Su
cc
es
s/

La
ng
ua
ge

Co
he
re
nc
e

#
Gr
am

m
at
ica

lC
on
str
uc
tio
ns

pe
rA

ge
nt

Games per Agent

Grouping Strategy

Communicative Success
Language Coherence

Grammatical Constructions

Figure 7.10: Results of a simulation in which the agents use the grouping strategy.

The turquoise line indicates the communicative success (left y axis), the green line

indicates the language coherence, and the yellow line indicates the average number of

grouping constructions in the inventories of the agents.

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000

Se
ar
ch

Games per Agent

Grouping Strategy

Search

Figure 7.11: Size of the search space that was explored while applying the grouping-

cxns. The y-axis indicates that total number of nodes created by grouping-cxns, divided

by the depth of the solution node.

Paul_Van_Eecke_def.indd 163 27/09/18 08:39

154 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

(9) {small(?obj-1), blue(?obj-2), huge(?obj-2), red(?obj-3)}

→ multiple sets of bindings

(10) {small(?obj-1), blue(?obj-1), huge(?obj-2), red(?obj-3)}

→ Multiple sets of bindings

(11) {small(?obj-1), blue(?obj-1), huge(?obj-2), red(?obj-2)}

→ Possible Solution

(12) {small(?obj-1), blue(?obj-2), huge(?obj-2), red(?obj-2)}

→ Ontologically impossible - incompatible with the world

(13) {small(?obj-1), blue(?obj-1), huge(?obj-1), red(?obj-2)}

→ Ontologically impossible - incompatible with the world

(14) {small(?obj-1), blue(?obj-1), huge(?obj-1), red(?obj-1)}

→ Ontologically impossible - incompatible with the world

Figure 7.11 shows the search effort required for processing the grouping strategy. The

graph shows that the amount of search needed starts at 1 (no search) and increases

with the growing number of grouping constructions that are created. When the max-

imum number of constructions is reached, the amount of search needed stabilises at

about 2.4.

7.4.3 N-gram Strategy

The third strategy is called the n-gram strategy. The n-gram strategy does not only

group together the co-referent words within an utterance, like the grouping strategy,

but also imposes a sequential order on the words inside the group. This has the po-

tential advantage of further reducing the number of parsing hypotheses, as the borders

between the groups become clearer. For example, imagine that an agent hears the

utterance “square large blue”. The baseline lexical strategy would give rise to the five

hypotheses shown in (15) - (19). Imagine now that the agent’s construction inven-

tory contains constructions that can combine “large blue square”, “large blue”, “large

square” and “blue square”. Using the grouping strategy, in which the groups are in-

ternally unordered, only hypotheses (15) - (18) remain. When the n-gram strategy

is used, in which the words are ordered, only hypotheses (15) and (16) remain. Hy-

potheses (17) and (18) are ruled out, as they are not licensed by the constructions of

the agent’s inventory, e.g. (17) would require a construction for “square large”, but

only a construction for “large square” is available. N-gram constructions have thus the

Paul_Van_Eecke_def.indd 164 27/09/18 08:39

7.4. LEARNING STRATEGIES 155

potential to reduce the referential ambiguity of the language to a greater extent then

grouping constructions.

(15) {square(?obj-1), large(?obj-2), blue(?obj-3)}

→ Lexical Strategy, Grouping Strategy, N-gram Strategy

(16) {square(?obj-1), large(?obj-2), blue(?obj-2)}

→ Lexical Strategy, Grouping Strategy, N-gram Strategy

(17) {square(?obj-2), large(?obj-2), blue(?obj-1)}

→ Lexical Strategy, Grouping Strategy

(18) {square(?obj-1), large(?obj-1), blue(?obj-1)}

→ Lexical Strategy, Grouping Strategy

(19) {square(?obj-1), large(?obj-2), blue(?obj-1)}

→ Lexical Strategy

Diagnostics and Repairs

The diagnostics and repairs that the agents need in order to be able use the n-gram

strategy closely resemble those that they needed for using the grouping strategy. The

only difference lies in the grammatical constructions that are created by the repairs.

The ‘group(?lex-1-unit, ?lex-2-unit)’ constraints, which ensured that the two lexical

items appeared in the same group in the utterance, are now replaced by ‘meets(?lex-

1-unit, ?lex-2-unit)’ constraints. This kind of constraint ensures that the lexical item

that matches ‘?lex-1-unit’ will appear immediately left-adjacent to the lexical item that

matches ‘?lex-2-unit’. Constructions that match on three units will have two meets

constraints, namely ‘meets(?lex-1-unit, ?lex-2-unit)’ and ‘meets(?lex-2-unit, ?lex-3-

unit)’ . When the speaker needs to invent a new construction, the order of the lexical

items is chosen randomly. When the hearer needs to create a new construction, it will

adopt the word order that was observed in the speaker’s utterance. An example of an

n-gram construction for “large red” is shown in Figure 7.12.

The minimum number of n-gram constructions that is needed to be able to express

any number of values for any number of dimensions, is the same as the minimum

number of grouping constructions that was needed (cf. formula (7.2)). However,

more constructions are possible now, as for example “large square” and “square large”

would be covered by the same grouping construction, but give rise to two different

n-gram constructions. The maximum number of possible n-grams is bounded by the

Paul_Van_Eecke_def.indd 165 27/09/18 08:39

156 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

http://localhost:8000/

Applying

in comprehension

initial
structure

FCG CONSTRUCTION SET (14)

search... Search

args:
unit-type:
subunits:

?n-gram-unit
[?x]

n-gram
{?lex-1-unit, ?lex-2-unit}

?lex-1-unit

?lex-2-unit

args:
syn-cat:

syn-cat:

args:
syn-cat:

syn-cat:

form:

n-gram-large-26-red-26-cxn (cxn 0.50 (large-26 red-26)) show attributes

?lex-1-unit
[?x]

lex-class: large-26

lex-class: large-26

?lex-2-unit
[?x]

lex-class: red-26

lex-class: red-26

?n-gram-unit
∅

{meets(?lex-1-unit, ?lex-2-unit)}

 ⨀

n-gram-yellow-26-triangle-26-cxn (cxn 0.50 (yellow-26 triangle-26))

reusachtig-cxn (lex 0.50 lexical-cxn t huge reusachtig)

minuscuul-cxn (lex 0.50 lexical-cxn t tiny minuscuul)

groot-cxn (lex 0.50 lexical-cxn t large groot)

klein-cxn (lex 0.50 lexical-cxn t small klein)

groen-cxn (lex 0.50 lexical-cxn t green groen)

blauw-cxn (lex 0.50 lexical-cxn t blue blauw)

rood-cxn (lex 0.50 lexical-cxn t red rood)

geel-cxn (lex 0.50 lexical-cxn t yellow geel)

rechthoek-cxn (lex 0.50 lexical-cxn t rectangle rechthoek)

driehoek-cxn (lex 0.50 lexical-cxn t triangle driehoek)

cirkel-cxn (lex 0.50 lexical-cxn t circle cirkel)

vierkant-cxn (lex 0.50 lexical-cxn t square vierkant)

Figure 7.12: An example of an n-gram construction that matches on two lexical items

(lex-classes ‘large-26’ and ‘red-26’). The ‘meets’ constraint imposes that the ‘?lex-

1-unit’ immediately precedes the ‘?lex-2-unit’ and the shared variable equality in the

‘args’ feature imposes the to lexical items to be co-referential.

formula in (7.3), in which a stands for the number dimensions and v for the number of

possible values per dimension. In our experiment, a = 3 and v = 4, which means that

the minimal number of n-gram constructions is 112 and the maximum number is 480.

a∑
n=2

(
a

n

)
· vn · n! (7.3)

Experimental Results

The results of a simulation in which the agents make use of the n-gram strategy are

visualised by the red lines in Figures 7.13 and 7.14. The dark red line in Figure 7.13

shows that the communicative success starts at about 0.1 and increases to 1 after

approximately 6000 interactions per agent. The bright red line in the same figure

indicates that the agents start with no n-gram constructions at all, and end up with an

inventory of over 320 such constructions. While the number of n-gram constructions

stabilises quite a bit below the theoretical maximum of 480, it goes far above the

optimal number of 112. The reason that it goes over 112 is that different word orders

are introduced by different agents, and that all these word orders propagate in the

population. The reason that it stays below 480 is that with a population of 10 agents,

Paul_Van_Eecke_def.indd 166 27/09/18 08:39

Page 6 of 8

7.4. LEARNING STRATEGIES 157

the constructions spread quite fast and the communicative task is solved before all word

orders have been invented. The larger the population is, the more variation in word

order is introduced, and the more constructions the agents end up with. The dashed

red line indicates the coherence of the language, which stabilises just below 0.4. The

red line in Figure 7.14 shows the amount of search that is performed by the agents,

starting at 1 and climbing to about 2.5 by the time at which the maximum number of

constructions is reached. While the amount of search is slightly lower than in the case of

the grouping strategy, and the language is slightly more coherent, there is no dramatic

improvement. N-gram constructions can indeed lead to clearer borders between the

groups and to a more stable word order, but this only holds when not all possible n-

gram constructions for a particular combination of words are available. For example,

the use of an n-gram construction for “large square” will only lead to a smaller search

space than a grouping construction for “large square”, if the construction inventory

does not contain an n-gram construction for “square large”. If all 480 possible n-gram

constructions are available, the amount of search that is needed equals the amount of

search that is needed in the case of the grouping strategy. Likewise, “large square” will

only be consistently used in that order if the construction inventory does not include

an n-gram construction for “square large”. The 320 constructions that are created in

this experimental run only avoid a limited number of n-gram constructions, which leads

to a slightly smaller search space and a slightly more coherent language.

The key to a more significant reduction of the search space and a more coherent

language is to minimize the word order variation among the agents of the population.

Let’s have a look at an improved version of the n-gram strategy, in which this is achieved

by the alignment step in the interaction script. After each interaction, the speaker and

hearer update the scores of the constructions in their construction inventory, based

on the outcome of the interaction. The particular updating rule that is used here is

based on lateral inhibition (De Vylder and Tuyls, 2006). The score of a construction

ranges from 0 (not usable) to 1 (well entrenched). Whenever an agent, whether it

is the speaker or the hearer, creates a new construction, this construction enters the

construction inventory with an initial score of 0.5. After each interaction, the scores

of the constructions are updated as follows.

• If the interaction succeeded, the speaker and hearer will both:

– increase the scores of the constructions that they used by the value of the

:li-incf-score parameter (default 0.1).

– decrease the scores of any competing constructions by the value of the

:li-decf-score parameter (default 0.2).

Paul_Van_Eecke_def.indd 167 27/09/18 08:39

158 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

Co
m
m
un
ica

tiv
e
Su
cc
es
s

#
Gr
am

m
at
ica

lC
on
str
uc
tio
ns

pe
rA

ge
nt

Games per Agent

N-gram Strategy

Communicative Success (no alignment)
Language Coherence (no alignment)

Grammatical Constructions per Agent (no alignment)
Communicative Success (lateral inhibition)

Language Coherence (lateral inhibition)
Grammatical Constructions per Agent (lateral inhibition)

Figure 7.13: Results of a simulation in which the agents use the n-gram strategy. The

dark lines indicate the communicative success with and without alignment mechanisms

(left y axis), and the lighter lines indicate the average number of n-gram constructions

in the inventories of the agents, with and without alignment mechanisms.

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Se
ar
ch

Games per Agent

N-gram Strategy

Search (no alignment)
Search (lateral inhibition)

Figure 7.14: Size of the search space that was explored while applying the n-gram-cxns

with and without alignment mechanisms. The y-axis indicates that total number of

nodes created by n-gram-cxns, divided by the depth of the solution node.

Paul_Van_Eecke_def.indd 168 27/09/18 08:39

7.4. LEARNING STRATEGIES 159

• If the interaction failed, the speaker will:

– decrease the scores of the constructions that he used by the value of the

:li-decf-score parameter (default 0.2).

Constructions with a higher score have a higher priority in the construction application

process. This is especially important in the case of the speaker, as he is the one who

formulates the utterance and thus chooses the order of the words that are used in that

interaction. Competing constructions are defined as constructions which match on the

exact same lexical units, but in a different order, for example constructions matching

on large square and square large.

The blue lines in Figures 7.13 and 7.14 visualise the results of a simulation in which

the agents use the updating rule above. The dark blue line in Figure 7.13 indicates the

communicative success, which goes from 0.1 to 1 in about 3000 interactions per agent.

This is about twice as fast as in the version of the experiment in which no alignment

took place. The reason for this is that the word order conventions are shared much

faster, and as a consequence, fewer n-gram constructions need to be learned by the

agents. The number of n-gram constructions (with a non-zero score) is indicated by

the bright blue line. It starts at zero and increases to about 180 after 400 interactions

per agent. Then, it starts to decrease and stabilises at 112, i.e. the minimal number

of n-gram constructions that is needed to cover all scenes that can be drawn from the

world. The royal blue line indicates the coherence of the language. It shows that full

coherence is reached after about 10000 interactions. This version of the experiment

effectively leads to a shared language in which all agents in the population consistently

use the same order for the same words. As for the amount of search, indicated by

the blue line in Figure 7.14, we can see that it follows the same dynamics as the

number of n-gram constructions. It starts at 1 and grows to about 1.9, after which it

decreases again, stabilising at about 1.7. Using lateral inhibition, the n-gram strategy

leads thus to the emergence of a coherent language with fewer constructions and a

lower referential ambiguity, which can be processed more efficiently.

7.4.4 Pattern Strategy

The pattern strategy is the fourth and final learning strategy. The main property that

differentiates the pattern strategy from the grouping and n-gram strategies is that the

constructions that are created by the pattern strategy do not match on individual words.

Instead, the constructions represent more general and abstract patterns that combine

words based on their syntactic categories. This reduces the number of constructions

Paul_Van_Eecke_def.indd 169 27/09/18 08:39

160 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

that is needed, while keeping the referential ambiguity of the language low. Importantly,

the syntactic categories of the words are not a given, but an outcome of the experiment.

The experiment is initialised in exactly the same way as before. At the start of the

experiment, the construction inventories of the agents contain an empty type hierarchy,

and one lexical construction for each word, i.e. for each possible value of each dimension

that occurs in the world. The lexical constructions are the same as those that were

used with the other strategies. An example construction for the word ‘blauw’/blue(?x)

was shown in Figure 7.2 above. In comprehension, this construction matches on the

string “blauw” and in formulation, it matches on the meaning predicate ‘blue(?x)’.

The construction creates a new unit (‘?blauw-unit-11’) and merges a feature ‘syn-cat:

lex-class: blue-6’ into this unit. The value of this feature is a unique symbol for each

word of each agent. The initial lexicon is thus not (yet) structured according to any

syntactic or semantic properties. Note that the fact that the value of the ‘lex-class’

symbol contains ‘blue’ has a purely mnemotechnic reason, and that the symbol has no

external meaning at all (see Section 4.2).

Diagnostics and Repairs

The diagnostics that are used by the speaker and the hearer remain the same as in

the previous strategies: in the case of the speaker, a diagnostic triggers based on the

result of the re-entrance goal test, and in the case of the hearer, a diagnostic triggers

when the interaction failed. The meta-layer repairs however, now make use of FCG’s

type hierarchy system and anti-unification operator, two of the main contributions of

this dissertation (see chapters 4 and 5). For the speaker as well as for the hearer, the

repair process looks as follows:

1. The agent goes through the objects in the topic, and for each object, he looks

up whether his construction inventory contains a pattern-cxn that matches on

as many lexical units as the number of dimensions that need to be expressed for

that object (in the case of the speaker) or that are expressed for that object (in

the case of the hearer). For example, if the agent needs to express {small(obj-
5), triangle(obj-5), green(obj-5)} (as speaker), or needs to comprehend “small
green triangle” (as hearer), he will inspect whether his construction inventory

contains a pattern construction that matches on three lexical units. If this is not

the case, he proceeds to step 2. If it already contains such a construction, he

immediately proceeds to step 3.

2. The agent creates a pattern-cxn that matches on as many lexical units as the

number of dimensions that need to be expressed (in the case of the speaker)

Paul_Van_Eecke_def.indd 170 27/09/18 08:39

7.4. LEARNING STRATEGIES 161

or that are expressed (in the case of the hearer). An example pattern-cxn with

three slots is shown in Figure 7.15. This construction matches on 3 lexical

units that are adjacent (‘meets’ constraints) and co-referent (‘args’ features),

and that have the lex-classes ‘first-slot-14’, ‘second-slot-14’ and ‘third-slot-14’

respectively. Again, the names of these symbols are chosen for mnemotechnic

reasons only. For the creation of a new pattern-cxn that matches on n units,

three cases need to be distinguished:

• The construction inventory does not yet contain any constructions for
shorter or longer patterns. In this case, the agent creates a new con-

struction matching on n adjacent units. The value of the ‘lex-class’ feature

of each unit is a new and unique symbol.

• The construction inventory already contains at least one construction for
a longer pattern. In this case, the agent creates all possible pattern con-

structions of length n that match on linearly adjacent units of which the

values of the ‘lex-class’ features are an ordered subset of the values of

those features in the longest construction. For example, imagine that a

pattern-cxn matching on 2 units needs to be created and that the longest

construction contained in the construction inventory matches on 3 units

with lex-classes ‘slot-a’, ‘slot-b’ and ‘slot-c’. 3 new pattern constructions

matching on 2 units are created, namely constructions matching on units

with the lex-classes ‘slot-a’ and ‘slot-b’, the lex-classes ‘slot-a’ and ‘slot-c’

, and the lex-classes ‘slot-b’ and ‘slot-c’.

• The construction inventory does not yet contain any constructions for longer
patterns, but already contains one or more constructions for shorter pat-

terns. In this case, the agent creates a construction matching on n units

by adding one or more units to a copy of the longest pattern-cxn in the

construction inventory. The new units can either be added to the front

or the back of the pattern and the values of their ‘lex-class’ features are

new, unique symbols. Apart from this new pattern-cxn of length n, addi-

tional pattern-cxns of length < n are also created if a construction of this

length was already present in the construction inventory. These additional

constructions ensure that also for the shorter patterns, combinations in-

cluding the new ‘lex-class’ values are created. For example, imagine that

a pattern-cxn with length 3 needs to be created and that there is already

a pattern-cxn with length 2 in the construction inventory, which matches

on the lex-classes ‘slot-a’ and ‘slot-b’. First, a new pattern-cxn of length

3 is created. This construction matches on lex-classes ‘slot-a’, ‘slot-b’ and

Paul_Van_Eecke_def.indd 171 27/09/18 08:39

162 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

‘slot-c’ (or alternatively on ‘slot-c’, ‘slot-a’ and ‘slot-b’). Additionally, two

more constructions of length 2 are created, matching on ‘slot-a’ and ‘slot-c’

and on ‘slot-b’ and ‘slot-c’ (or alternatively on ‘slot-c’ and‘slot-a’ and on

‘slot-c’ and ‘slot-b’).

This way of creating new constructions might seem complex at a first glance,

but it is actually equivalent to maintaining a single construction in which units

are made optional (when shorter patterns occur) or in which additional optional

units are added (when longer patterns occur). For example, the extension of a

pattern A-B to A-B-(C) is equivalent to the addition of patterns A-B-C, A-C

and B-C. This technical solution is used because FCG’s routine processing does

not support the application of constructions with optional units, for efficiency

reasons.

3. For each object in the topic, the agent anti-unifies the lexical units in the transient

structure that refer to the object, with the pattern construction that matches

on the same number of units. The anti-unification process returns the mini-

mal set of new nodes and links that need to be added to the type hierarchy

of the construction inventory for the pattern-cxn to be able to apply. If there

are multiple pattern constructions that match on the required number of units,

the anti-unification process is performed for each construction and the result

of the anti-unification process that could be performed with the lowest cost is

selected (see Section 5.4.2). Once the resulting nodes and links are added to

the type-hierarchy of the agent, the construction can apply and routine process-

ing continues. For the example above, in which the speaker needed to express

{small(obj-5), triangle(obj-5), green(obj-5)} or the hearer needed to compre-
hend “small green triangle”, imagine that the agent created the new pattern-cxn

in Figure 7.15, and that his type hierarchy is still empty. The anti-unification

of this construction with the lexical units for ‘small’, ‘triangle’ and ‘green’ will

return 6 new nodes and 3 new links. The nodes are the ‘lex-class’ values of the

3 lexical units in the transient structure and of the 3 lexical units in the pattern

construction. The links connect each ‘lex-class’ value in the transient structure

to a ‘lex-class’ value in the construction. The resulting type-hierarchy is shown in

Figure 7.16. The arrows indicate that ‘first-slot-14’, ‘second-slot-14’ and ‘third-

slot-14’ in the construction can respectively match on ‘small-23’, ‘green-23’ and

‘triangle-23’ in the transient structure (which were the lex-classes introduced by

lexical constructions). The weights on the edges represent the entrenchment

of the individual links. The weights range from 0 to 1, with 0 meaning that

the association between the two symbols is very strong (completely entrenched),

and 1 meaning that the association is very weak. When a link is added to the

Paul_Van_Eecke_def.indd 172 27/09/18 08:39

7.4. LEARNING STRATEGIES 163

21/05/2018, 17*40Babel web interface

Page 9 of 11http://localhost:8000/

FCG CONSTRUCTION SET (16)

search... Search

args:
unit-type:
subunits:

?pattern-unit
[?x]

pattern
{?lex-1-unit, ?lex-2-unit, ?lex-3-unit}

?lex-1-unit

?lex-2-unit

?lex-3-unit

args:
syn-cat:

syn-cat:

args:
syn-cat:

syn-cat:

args:
syn-cat:

syn-cat:

form:

pattern-first-slot-14-second-slot-14-third-slot-14-cxn (cxn 0.50 (first-slot-14 second-slot-14 third-slot-14)) show attributes

?lex-1-unit
[?x]

lex-class: first-slot-14

lex-class: first-slot-14

?lex-2-unit
[?x]

lex-class: second-slot-14

lex-class: second-slot-14

?lex-3-unit
[?x]

lex-class: third-slot-14

lex-class: third-slot-14

?pattern-unit
∅

{meets(?lex-1-unit, ?lex-2-unit),
meets(?lex-2-unit, ?lex-3-unit)}

 ⨀

pattern-second-slot-14-third-slot-14-cxn (cxn 0.50 (second-slot-14 third-slot-14))

pattern-first-slot-14-third-slot-14-cxn (cxn 0.50 (first-slot-14 third-slot-14))

pattern-first-slot-14-second-slot-14-cxn (cxn 0.50 (first-slot-14 second-slot-14))

reusachtig-cxn (lex 0.50 lexical-cxn t huge reusachtig)

minuscuul-cxn (lex 0.50 lexical-cxn t tiny minuscuul)

groot-cxn (lex 0.50 lexical-cxn t large groot)

klein-cxn (lex 0.50 lexical-cxn t small klein)

groen-cxn (lex 0.50 lexical-cxn t green groen)

blauw-cxn (lex 0.50 lexical-cxn t blue blauw)

rood-cxn (lex 0.50 lexical-cxn t red rood)

geel-cxn (lex 0.50 lexical-cxn t yellow geel)

rechthoek-cxn (lex 0.50 lexical-cxn t rectangle rechthoek)

driehoek-cxn (lex 0.50 lexical-cxn t triangle driehoek)

cirkel-cxn (lex 0.50 lexical-cxn t circle cirkel)

vierkant-cxn (lex 0.50 lexical-cxn t square vierkant)

Figure 7.15: An example of an pattern construction with three slots. The ‘meets’

constraints impose that ‘lex-1-unit’, ‘lex-2-unit’ and ‘lex-3-unit’ occur in a sequence.

The shared variables in the ‘args’ features of these units ensure that they are co-

referential. The ‘lex-class’ features will be matched through the type hierarchy.

type hierarchy, it receives an initial weight of 0.50. If more than one new type

hierarchy link needs to be added, the speaker will randomly assign the lex-classes

in the transient structure to the slots in the construction. The hearer will of

course use the word order that he observed.

Type Hierarchy Build-Up

Using the diagnostics and repairs described above, the agents rapidly establish a set

of pattern constructions matching on 2 to a lexical units, with a being the maximum

number of properties that need to be expressed about a single object in the topic. In

our experimental set-up, this number equals the number of dimensions of the objects

in the world. The exact number of patterns can be calculated using the formula in

(7.4).

a∑
n=2

(
a

n

)
(7.4)

Paul_Van_Eecke_def.indd 173 27/09/18 08:39

164 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

Page 6 of 11http://localhost:8000/

GREEN-23 SECOND-SLOT-140.50

SMALL-23 FIRST-SLOT-140.50

TRIANGLE-23 THIRD-SLOT-140.50

in comprehension

initial structure

application
process

constructional
dependencies

groen-cxn (lex 0.50 lexical-cxn t green groen)

blauw-cxn (lex 0.50 lexical-cxn t blue blauw)

rood-cxn (lex 0.50 lexical-cxn t red rood)

geel-cxn (lex 0.50 lexical-cxn t yellow geel)

rechthoek-cxn (lex 0.50 lexical-cxn t rectangle rechthoek)

driehoek-cxn (lex 0.50 lexical-cxn t triangle driehoek)

cirkel-cxn (lex 0.50 lexical-cxn t circle cirkel)

vierkant-cxn (lex 0.50 lexical-cxn t square vierkant)

⨁

transient structure

root

0, 0.00:
initial

* groen-cxn (lex 0.50 lexical-cxn t green groen), klein-cxn
(lex 0.50 lexical-cxn t small klein), driehoek-cxn (lex 0.50 lexical-cxn t triangle driehoek)

4, 5.50:

Figure 7.16: Through the type hierarchy, the values of the ‘lex-class’ features in the

pattern-cxn (‘first-slot-14’, ‘second-slot-14’, ‘third-slot-14’) can match on the values

of the ‘lex-class features’ in units created by lexical constructions (‘small-23’, ‘green-

23’, ‘triangle-23’).

Let us now have a closer look at how these pattern constructions interact with the

lexical constructions in the grammar. As explained above, each lexical construction

introduces a unit with as value for its ‘lex-class’ feature a symbol that is unique to

that construction. This means that there exist v a different ‘lex-class’ values in the

lexicon. The pattern constructions match, as a result of step 2 of the repair above,

on units which can have a different ‘lex-class’ values. These values are symbols that

only occur in the pattern constructions, and not in any other constructions of the

grammar. As a consequence, the application of a pattern construction to any units

that were created by lexical constructions will always need to make use of the type

hierarchy of the grammar. In other terms, it is the type hierarchy of the grammar that

specifies which lexical items can fill which slots of which pattern constructions.

The build-up of the type hierarchy is handled by the anti-unification process described

in step 3 of the repair above. Where it is needed, the repair will add new nodes, which

are ‘lex-class’ values, to the type hierarchy, as well as links from the av ‘lex-class’

values that occur in the lexical constructions to the a ‘lex-class’ values that occur in

the pattern constructions. When the experiment is run as such, the type hierarchies

of the agents will eventually contain all ‘lex-class’ values from the lexical and pattern

constructions, and equal weight links from each ‘lex-class’ value that occurs in the

lexicon to almost all ‘lex-class’ values that occur in the pattern constructions. A type

hierarchy of this kind is shown in Figure 7.17. The (almost) fully connected graph and

the equal weight links visualise that the agent has no preferential associations between

his lexical items and the specific slots in his pattern constructions. This makes the

language incoherent, in the sense it will never converge on a single word order.

For a coherent language to emerge and evolve, an alignment rule like the one that was

used with the n-gram strategy is put in place. The updating rule is again based on

lateral inhibition, but the weights of the links in the type hierarchy are now updated,

Paul_Van_Eecke_def.indd 174 27/09/18 08:39

7.4. LEARNING STRATEGIES 165

28/05/2018, 16*22Babel web interface

Page 5 of 6http://localhost:8000/

TINY-43

FIRST-SLOT-43

0.50

SECOND-SLOT-43

0.50

THIRD-SLOT-43

0.50

RED-43

0.50

0.50

0.50

CIRCLE-43

0.50

0.50

0.50

GREEN-43

0.50

0.50

HUGE-43

0.50

0.50

0.50

SMALL-43

0.50

0.50

0.50

LARGE-43

0.50

0.50

0.50

SQUARE-43

0.50

0.50RECTANGLE-43

0.50

0.50

0.50

BLUE-43

0.50

0.50

0.50

YELLOW-43

0.50

0.50

0.50

TRIANGLE-43

0.50

0.50

0.50

in comprehension

initial
structure

application
process

constructional
dependencies

categorisation-first-slot-43-second-slot-43-third-slot-43-cxn

geel-cxn

geel-cxn

cirkel-cxn

klein-cxn

?lex-1-unit

?lex-2-unit

?lex-3-unit

?categorisation-unit

?geel-unit

?cirkel-unit

?klein-unit

⨁

transient structure

root

0, 0.00:
initial

* klein-cxn (lex 0.50 lexical-cxn t small klein), klein-cxn
(lex 0.50 lexical-cxn t small klein), vierkant-cxn
(lex 0.50 lexical-cxn t square vierkant), cirkel-cxn
(lex 0.50 lexical-cxn t circle cirkel), geel-cxn
(lex 0.50 lexical-cxn t yellow geel), geel-cxn
(lex 0.50 lexical-cxn t yellow geel)

9, 7.00: categorisation-first-slot-43-second-slot-43-third-slot-43-cxn
(cxn 0.50 (first-slot-43 second-slot-43 third-slot-43))

8, 7.00: categorisation-first-slot-43-second-slot-43-third-slot-43-cxn
(cxn 0.50 (first-slot-43 second-slot-43 third-slot-43))

7, 7.00: categorisation-first-slot-43-second-slot-43-
third-slot-43-cxn
(cxn 0.50 (first-slot-43 second-slot-43 third-slot-43))

10, 8.00: categorisation-first-slot-43-second-slot-
43-third-slot-43-cxn
(cxn 0.50 (first-slot-43 second-slot-43 third-slot-43))

Figure 7.17: Type hierarchy of an agent using the pattern strategy without alignment

mechanisms. The network is almost fully connected with equal weight links, which

means that there exist no preferential associations between the lexical items and specific

slots in the pattern constructions. This leads to a language that is incoherent in the

sense that it does not converge on a single word order.

Paul_Van_Eecke_def.indd 175 27/09/18 08:39

166 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

rather then the weights of the constructions themselves. The following rule is used:

• If the interaction succeeded, the speaker and hearer will both:

– increase the scores of the links in the type hierarchy that they used in the

matching phase by the value of the :li-decf-weight parameter (default

0.1).

– decrease the scores of any competing links in the type hierarchy by the value

of the :li-incf-weight parameter (default 0.2).

• If the interaction failed, the speaker will:

– decrease the links links in the type hierarchy that he used in the matching

phase by the value of the :li-decf-weight parameter (default 0.2).

Competing links are defined in relation to the construction that they were used in.

For each link that was used during the construction application process, any link that

goes from the same symbol in the transient structure to a different symbol in the con-

struction is considered a competitor. For example, imagine that a pattern construction

matches on two units with ‘lex-class’ values ‘first-slot-3’ and ‘second-slot-3’ and that

these values are matched through the type hierarchy with the symbols ‘green-12’ and

‘square-12’ respectively. Any links that go from ‘green-12’ or ‘square-12’ to any other

symbols in the construction would in this case be considered competitors. Taking into

account the repair strategy that was used, the only links that could possibly have been

added to the type hierarchy are those that connect ‘green-12’ with ‘second-slot-3’ and

‘square-12’ with ‘first-slot-3’. If these links are present in the type hierarchy, they will

be subject to punishment.

During the construction application process, type hierarchy links with a lower weight

are prioritised over links with a higher weight. Concretely, construction application

results (which correspond to nodes in the construction application process) of which

the average weight of the type hierarchy links that were used is lower, get a higher

priority in the queue and are thus explored earlier. This is especially important in

formulation, as it ensures that the speaker uses his preferred word order.

Experimental Results

The results of a simulation in which the agents make use of the pattern strategy are

shown in Figures 7.18 and 7.19. The turquoise line in Figure 7.18 shows that the

population reaches full communicative success after about 225 interactions per agent.

The green line indicates that the language of the agents reaches full coherence after

Paul_Van_Eecke_def.indd 176 27/09/18 08:39

7.4. LEARNING STRATEGIES 167

about 400 interactions per agent. The yellow line indicates that the average number of

pattern constructions in the construction inventories of the agents goes from 0 to 4 in

only a few interactions, and then stays constant throughout the rest of the experiment.

The number of pattern constructions is indeed in accordance with the formula in (7.4),

as the number of dimensions in the experimental set-up is 3 (4 =
3∑
n=2

(
3
n

)
). The fact

that the agents have acquired all four constructions after only a few interactions is

not surprising, as they only need to have participated in one interaction in which 2

dimensions of an object are expressed, and one interaction in which 3 dimensions of an

object are expressed, in order to have learned all 4 constructions. All further learning

is achieved by creating new links in the type hierarchy and updating the weights of

these links. If the world and population remain the same, no new links will be added

after the communicative success reaches 1, as the diagnostics only trigger in case of

communicative failure. Likewise, if the world and population remain the same, the

word order that the agents use will not change any more after the coherence of the

language has reached 1, as there is no longer competition between the agents. From

that moment on, the weights on the links will only be reinforced to 0 for preferential

associations or 1 for non-preferential associations, while the preferential associations

themselves remain the same.

The blue line in Figure 7.19 visualises the amount of search that is needed during

the hearer’s comprehension process, as calculated by dividing the number of explored

nodes created by the application of pattern constructions by the number of nodes in

the shortest path to the solution. Starting at 1, this number quickly rises to about 5,5

as more constructions and type hierarchy links become available. After reaching a peak

at about 50-100 interactions per agent, the amount of search that is needed decreases

as the language starts to get more coherent. Once the language is fully coherent, the

average amount of search needed stabilises at about 3.9.

Let us now have a closer look at the language that emerges during simulations in which

the agents use the pattern strategy. In the experiment, objects have 3 observable di-

mensions, with 4 possible values each. The agents start with 12 lexical constructions,

namely one construction for each value. When a lexical construction applies, it in-

troduces a unit with as ‘lex-class’ value a symbol that is unique to the construction

(e.g. ‘green-70’). Note that the construction contains no information at all about the

dimension of the value that it expresses. Once the experiment starts, the diagnostics

and repairs of the agents rapidly construct 4 grammatical constructions, which match

on 2 or 3 units (called ‘slots’) with as ‘lex-class’ values all ordered subsets of three

different symbols (e.g. ‘first-slot-54’, ‘second-slot-54’ and ‘third-slot-54’). Over the

course of further communicative interactions, the diagnostics and repairs add all these

Paul_Van_Eecke_def.indd 177 27/09/18 08:39

168 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

Co
m
m
un
ica

tiv
e
Su
cc
es
s/

La
ng
ua
ge

Co
he
re
nc
e

#
Gr
am

m
at
ica

lC
on
str
uc
tio
ns

pe
rA

ge
nt

Games per Agent

Pattern Strategy

Communicative Success
Language Coherence

Grammatical Constructions per Agent

Figure 7.18: Results of a simulation in which the agents use the pattern strategy.

The turquoise and green line indicate communicative success and lexical coherence

respectively (left x-axis). The yellow line indicates the average number of grammatical

constructions in the construction inventories of the agents.

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500

Se
ar
ch

Games per Agent

Pattern Strategy

Search

Figure 7.19: Size of the explored search space during a simulation in which the agents

use the pattern strategy.

Paul_Van_Eecke_def.indd 178 27/09/18 08:39

7.5. COMPARISON AND DISCUSSION 169

symbols to the type hierarchy of the agent, and construct links from ‘lex-class’ values

in the lexical constructions to ‘lex-class’ values in the grammatical constructions (e.g.

‘green-70 → third-slot-54’). As there is a large amount of freedom in the creation of

new links, there is initially a lot of variation in the population and the type hierarchies

of the agents are almost fully connected graphs, like the one that was shown in Figure

7.17 above. At this point, the population reaches full communicative success. How-

ever, the language is still incoherent and its processing requires a lot of search effort, as

almost each lexical item is equally likely to fill almost each slot in the pattern construc-

tions. In order to make the language more coherent, the agents adjust the weights on

the type hierarchy links after each interaction using a lateral inhibition updating rule.

This effectively leads to a language in which each lexical item is strongly associated

with a single slot in the pattern constructions.

A graph showing the type hierarchy of an agent after 400 interactions is presented

in Figure 7.20. The lower the weight of a link is, the darker it is visualised. The

graph shows that each ‘lex-class’ value from a lexical construction has indeed one

link of maximum strength with a ‘lex-class’ value that represents a slot in the pattern

constructions. All other links have become minimally strong. While the type hierarchy

of every agent is different, as it contains the agent’s own categories and is shaped by

the agent’s own past interactions, the preferential links of each agent are equivalent

when the language reaches coherence. Remarkably, the lexical items associated to the

different slots are grouped per dimension. In this case, all size values are linked to the

first slot, all shape values to the second slot, and all color values to the third slot. Note

that this is solely a consequence of the fact that the objects in the world can never be

discriminated using two values on the same dimension (e.g. an object is never ‘large’

and ‘small’) and that this information is never explicitly provided to the agents.

7.5 Comparison and Discussion

This section compares the results of the simulations using the four learning strategies

that were presented in the previous section and discusses their strengths and weaknesses

in terms of communicative success (7.5.1), language coherence (7.5.2), required num-

ber of grammatical constructions (7.5.3) and required search effort (7.5.4). Finally, a

more general discussion closes the section (7.5.5).

Paul_Van_Eecke_def.indd 179 27/09/18 08:39

170 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

28/05/2018, 16*33Babel web interface

Page 3 of 4http://localhost:8000/

SMALL-70

FIRST-SLOT-54

0.01

SECOND-SLOT-54

1.00

THIRD-SLOT-54

1.00

TRIANGLE-70

0.01

1.00

LARGE-70

0.01

1.00

RECTANGLE-70

1.00

0.01

TINY-700.01

1.00

YELLOW-70

1.00

0.01

HUGE-70

0.01

1.00

1.00

RED-70

1.00

1.00

0.01

BLUE-70

1.00

0.01 SQUARE-700.01GREEN-70

1.00

0.01

CIRCLE-70

0.01

1.00

in comprehension

initial structure

application process

constructional
dependencies

categorisation-second-slot-54-third-slot-54-cxn

driehoek-cxn

geel-cxn

?lex-1-unit

?lex-2-unit

?categorisation-unit

?driehoek-unit

?geel-unit

applied constructions

resulting structure

⨁

transient structure

root

0, 0.00:
initial

* geel-cxn (lex 0.50 lexical-cxn t yellow geel), driehoek-cxn
(lex 0.50 lexical-cxn t triangle driehoek)

3, 4.98: categorisation-second-slot-54-third-slot-54-cxn
(cxn 0.50 (second-slot-54 third-slot-54))

geel-cxn (lex 0.50 lexical-cxn t yellow geel)

driehoek-cxn (lex 0.50 lexical-cxn t triangle driehoek)

categorisation-second-slot-54-third-slot-54-cxn (cxn 0.50 (second-slot-54 third-slot-54))

⨁

transient structure

root

categorisation-unit-50766
geel-3676

Figure 7.20: Type hierarchy of an agent using the pattern strategy and type hierarchy

alignment mechanisms after 400 interactions under the default experimental condi-

tions. Edges with a lower weight are visualised darker. The graph clearly shows the

preferred associations between the ‘lex-cat’ values of the words and the ‘lex-cat’ values

of the different slots in the pattern construction. Not only is there a single preferred

association of each word with each slot, the associations are also semantically relevant

(size, shape, color).

Paul_Van_Eecke_def.indd 180 27/09/18 08:39

Page 3 of 4

7.5. COMPARISON AND DISCUSSION 171

7.5.1 Communicative Success

The primary goal of the learning strategies is to allow the agents in the population to

emerge and evolve a language with which they can successfully communicate. Hence,

the percentage of interactions in which the agents achieve communicative success can

be seen as the most important metric for evaluating the learning strategies. Apart from

the success rate itself, also the number of interactions that it takes until a certain rate

of success is attained is an important metric. The faster the maximum success rate

is attained, the better the learnt structures generalise to novel observations. Clearly,

the generality of the learnt structures and consequently their applicability in novel

situations are important factors for any learning system that has to interact with the

real world. A graph comparing the experimental results for the four strategies in terms

of communicative success is shown in Figure 7.21.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

Co
m
m
un
ica

tiv
e
Su
cc
es
s

Games per Agent

Communicative Success

Lexical Strategy
Grouping Strategy
N-gram Strategy
Pattern Strategy

Figure 7.21: Graph comparing the four learning strategies in terms of communicative

success.

The graph shows that the pattern strategy, the grouping strategy and the n-gram

strategy all three attain a success rate of 100%. In the case of the lexical strategy, the

success rate stagnates at about 90%. This means that under the current experimental

conditions, the disambiguating power of first three strategies is sufficient to completely

solve the communicative task, whereas the disambiguating power of lexical strategy is

not sufficient in 1 out of 10 situations. The number of interactions that it takes in

order to reach the maximum success rate is very different for the four strategies. The

lexical strategy achieves its success rate of 90% immediately. The pattern strategy

Paul_Van_Eecke_def.indd 181 27/09/18 08:39

172 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

achieves 100% communicative success after only 250 interactions per agent. The

grouping strategy and n-gram strategy achieve a 100% success rate after 700 and 3000

interactions per agent respectively. In terms of the generality of the learnt structures,

this means that the constructions used in the lexical strategy are the most general ones,

followed by those used in the pattern, grouping and n-gram strategies respectively.

Indeed, the lexical strategy only needs 2 constructions, which are applied as such in all

cases. The pattern strategy needs to learn at least one type hierarchy link for each word

that is used. The grouping strategy needs to learn a different grouping construction

for each combination of words that is used, and the n-gram strategy needs to learn a

different n-gram construction for each combination of words in each order that is used.

7.5.2 Coherence of the Language

A second important factor for the evaluation of the learning strategies is the degree of

coherence of the language that emerges. I have defined coherence above as the prob-

ability that the hearer would have expressed the same conceptualisations for the same

objects, with the exact same utterances as the speaker. Coherence is an important

property of an efficient language, because it increases the predictability of its utter-

ances. The effects of language coherence and predictability are not directly studied

in this experiment, but there is a wide consensus in the psycholinguistic and neurolin-

guistic literature that prediction plays an important role in human language processing

(see e.g. DeLong et al., 2005; Pickering and Garrod, 2013). A graph comparing the

experimental results for the four strategies in terms of language coherence is shown in

Figure 7.22.

The graph shows that the lexical strategy and the grouping strategy do not lead to a

coherent language. The probability of the hearer using the exact same utterance as the

speaker is between 0.2 and 0.3. The pattern strategy and the n-gram strategy on the

other hand, both lead to a fully coherent language. In the case of the pattern strategy,

full coherence is reached after about 400 interactions. At this moment, all preferential

associations between the individual words and the slots in the pattern constructions

are shared by all agents in the population. In the case of the n-gram strategy, full

coherence is only reached after about 10000 interactions. The reason that the n-gram

strategy needs many more interactions to reach coherence is due to the fact that

for each combination of words, a preferential word order needs to propagate in the

population.

Paul_Van_Eecke_def.indd 182 27/09/18 08:39

7.5. COMPARISON AND DISCUSSION 173

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

La
ng
ua
ge

Co
he
re
nc
e

Games per Agent

Coherence of the Language

Lexical Strategy
Grouping Strategy
N-gram Strategy
Pattern Strategy

Figure 7.22: Graph comparing the four learning strategies in terms of coherence of the

emerged language.

7.5.3 Number of Grammatical Constructions

The number of grammatical constructions that are created using the different learning

strategies is again related to the generality of the learnt structures. The more general

the structures are, the fewer constructions are needed for covering the same expres-

sions, and the more specific the structures are, the more constructions are needed. A

graph comparing the experimental results for the four strategies in terms of number of

grammatical constructions is shown in Figure 7.23.

The graph shows that the lexical strategy requires the lowest number of grammatical

constructions, namely 2. These very general constructions are not learned, but pro-

vided to the agents at the beginning of the experiment. The pattern strategy needs 4

constructions for covering all expressions. These constructions are already learnt dur-

ing the first interactions. The pattern constructions are very specific, but the addition

of links to the type hierarchy gradually expands their coverage to novel words. The

grouping strategy needs 112 constructions, namely one construction per possible com-

bination of words. All grouping constructions are learnt by the time the communicative

success reaches 100%, after about 700 interactions. Finally, the n-gram strategy ini-

tially leads to an inventory of almost 180 constructions, after which the inventory is

also reduced to 112 constructions. The final number of constructions is only attained

after the language has reached full coherence, after about 10000 interactions.

Paul_Van_Eecke_def.indd 183 27/09/18 08:39

174 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

0
20
40
60
80
100
120
140
160
180

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

#
Gr
am

m
at
ica

lC
on
str
uc
tio
ns

Games per Agent

Number of Grammatical Constructions

Lexical Strategy
Grouping Strategy
N-gram Strategy
Pattern Strategy

Figure 7.23: Graph comparing the four learning strategies in terms of the required

number of grammatical constructions.

7.5.4 Search Effort

The last measure for comparing the learning strategies is the amount of search that

the comprehension process requires. As explained above, the required search effort

is calculated by dividing the number of visited nodes in the search tree created by all

possible construction applications by the depth of the solution node. A lower number

means that the language is less ambiguous and can therefore be processed more effi-

ciently. A graph comparing the experimental results for the four strategies in terms of

search effort is shown in Figure 7.25.

The graph shows that the lexical strategy requires the largest search effort. In average,

11 construction applications need to be performed for each construction application

that brings the agent closer to the solution. This is not surprising, as the lexical strategy

puts no restrictions on which words in an utterance can refer to the same or different

objects. The n-gram strategy can be processed most efficiently. Once the language

has reached full coherence, the search effort stabilises just under 2. The search effort

required by the grouping strategy is a little bit higher, about 2.5. This is in line with

the larger number of hypotheses that the grouping strategy yields. Finally, the search

effort required for processing the pattern strategy stabilises between 3 and 4.

The search effort required for processing the n-gram strategy and the pattern strat-

egy is higher in this experimental set-up than it theoretically necessary. The reason

Paul_Van_Eecke_def.indd 184 27/09/18 08:39

7.5. COMPARISON AND DISCUSSION 175

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000

Se
ar
ch

Games per Agent

Search Effort

Lexical Strategy
Grouping Strategy
N-gram Strategy
Pattern Strategy

Figure 7.24

Figure 7.25: Graph comparing the four learning strategies in terms of required search

effort.

has to do with constructions with score 0 in the case of the n-gram strategy, and

with type hierarchy links with weight 1 in the case of the pattern strategy. In this

experimental set-up, constructions that reach the lowest score and type hierarchy links

that reach the highest weight do not disappear from the grammar. As the priority

of these constructions and links is as low as it can be, they will not be used by the

agents in formulation. In comprehension however, they sometimes become part of the

search space. For example, imagine that the speaker uses the pattern strategy and

refers to a large, yellow square and to something small with the words “large yellow

square small”. If the hearer first combines ‘large yellow’, which is possible as it has the

same cost as combining ‘large yellow square’ (namely 0), he will still try to apply all 3

pattern constructions of length 2 to ‘square small’ before backtracking and combining

‘large yellow square’. The three pattern constructions can apply, as the required links

are part of the type-hierarchy, albeit with weight 1 for two of the three constructions.

Simply removing constructions with score 0 or type hierarchy links with weight 1 re-

duces indeed the search space, but also limits the flexibility of the language. Good

heuristics and optimisation strategies, such as applying constructions that span more

words earlier, can certainly be designed and implemented, not only for the pattern and

n-gram strategies, but for all strategies that were discussed. These would however

justify a study in their own right and fall outside the scope of this case study.

Paul_Van_Eecke_def.indd 185 27/09/18 08:39

176 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

7.5.5 Final Discussion

The results of this case study can be summarised as follows. The lexical strategy is

the simplest strategy and requires the fewest grammatical constructions, but scores far

worse than the other strategies in terms of communicative success, language coherence

and required search effort. The grouping strategy attains full communicative success

fast and allows for relatively efficient processing, but leads to an incoherent language

and requires a large construction inventory. The n-gram strategy allows for very effi-

cient processing and leads to a coherent language, but it requires a large construction

inventory and, due to its very specific constructions, full communicative success and

coherence are only attained after a very large number of interactions. Finally, the

pattern strategy reaches full communicative success and coherence fast, requires a

small number of grammatical constructions, and can still be processed relatively ef-

ficiently, although it requires somewhat more search than the grouping and n-gram

strategies. These results are in line with the hypothesis that natural languages employ

phrasal structure in order to reduce their referential ambiguity, which brings important

advantages in terms of communicative success and processing effort.

The results show that the pattern strategy outperforms the other strategies in terms of

the number of constructions that is needed and in terms of the number of interactions

that it takes until full communicative success and coherence are attained, while still

allowing to be processed efficiently. This was achieved by (i) shifting the competition

from the grammatical constructions, like in the grouping and n-gram strategies, to

the associations between the lexical items and the individual slots in the grammatical

constructions, and (ii) making pattern constructions of different length share the same

slots. This facilitates the reuse of the information on the association between lexical

items and slots in the grammatical patterns, that is learned after each interaction, for

the processing of other word combinations of any length that share at least one of

these words.

The pattern strategy could be elegantly implemented thanks to the hierarchical type

system and anti-unification operator that I implemented for FCG. The type hierarchy

allows capturing the associations between the lexical items and the slots in the pattern

constructions, as well as the competition between these associations, and the anti-

unification operator is crucial for adding new links to the type hierarchy. As the type

hierarchies that are build-up during the experiment, such as the one shown in Figure

7.20, represent the associations between words and slots in grammatical constructions,

they actually capture something close to syntactic categories. An experiment that

makes use of the pattern strategy can therefore also be seen as an experiment on the

emergence of syntactic categories.

Paul_Van_Eecke_def.indd 186 27/09/18 08:39

7.6. CONCLUSION 177

The results obtained by Steels and Garcia Casademont (2015a) for the lexical, grouping

and n-gram strategies are in line with the results obtained in this case study. For

the pattern strategy, the authors report that it leads to fewer patterns and faster

convergence than the n-gram strategy, which is also in line with our results. The impact

of the coercion and reuse operations that are used in their experiment is difficult to

determine, which makes a further comparison difficult. However it is clear that our

pattern strategy leads to considerably fewer patterns and a faster convergence as

compared to the n-gram strategy than their pattern strategy. Also, the number of

pattern constructions and type hierarchy links that emerge in our experiment is stable

and predictable, whereas the number of constructions that emerges in their experiment

varies widely over different experimental runs.

7.6 Conclusion

This chapter reported on a case study in which the representations and mechanisms

that were introduced in the previous chapters, in particular the high-level FCG notation,

the type hierarchy system and the anti-unification operator, were applied in a multi-

agent experiment on the origins of syntax. The experiment studied four different

strategies that a population of autonomous agents could use for reducing the referential

ambiguity of their language by introducing primitive syntactic structures. The baseline

lexical strategy did not make use of any syntactic constraints, which led to an inefficient

language that was not powerful enough to solve the communicative task. The grouping

strategy grouped together the co-referential words inside the utterances, and stored

the individual groups in the form of constructions, so that they could be reused later.

This led to a language that was powerful enough to solve the communicative task, and

that could be processed efficiently, but that was incoherent. Like the grouping strategy,

the n-gram strategy also grouped the co-referential words inside the utterances, but

stored the groups including their internal word order. This led to a language that was

powerful enough to solve the task, that could be processed efficiently and that was

coherent, but that emerged only after a very large number of interactions. Finally, the

pattern strategy focussed on learning associations between individual words and slots

in pattern constructions. This led to a language that could be processed efficiently,

that was powerful enough to solve the task, that was coherent and that emerged fast.

The power of the pattern strategy stems from the fact that the competition is shifted

from entire constructions to associations between individual symbols, in this case the

lexical categories that are contributed by the lexical constructions and the lexical cate-

gories on which the lexical units of the pattern constructions match. The type hierarchy

Paul_Van_Eecke_def.indd 187 27/09/18 08:39

178 CHAPTER 7. CASE STUDY: THE ORIGINS OF SYNTAX

system can elegantly capture these associations and their competition, and the anti-

unification operator offers a general way to detect new associations that need to be

added to the type hierarchy. The case study is meant in the first place as a demonstra-

tion of the application of type hierarchy system and the anti-unification operator in an

evolutionary linguistics experiment. However, it also makes an important contribution

to the field of evolutionary linguistics by proposing a new methodology for modelling

the emergence of syntactic categories and presenting a first experiment that makes

use of this methodology.

Paul_Van_Eecke_def.indd 188 27/09/18 08:39

Chapter 8

Conclusions

8.1 Introduction . 179

8.2 Achievements . 180

8.2.1 A High-Level Notation for Fluid Construction Grammar . . . 181

8.2.2 Integration of a Meta-Level Architecture 181

8.2.3 A Type Hierarchy System for FCG Symbols 182

8.2.4 Generalisation and Specialisation operators 183

8.2.5 An Agent-Based Experiment on the Origins of Syntax 183

8.3 Future Research . 184

8.4 Final Remarks . 186

8.1 Introduction

The primary objective of this dissertation, as formulated in the introduction, was to

improve the representations and mechanisms that are used in agent-based models of

language evolution, and extend them with more powerful and general learning oper-

ators. These improved representations and mechanisms are intended to constitute a

general framework that provides powerful building blocks for conducting more advanced

experiments on the emergence and evolution of grammar. A secondary objective was

to make use of this framework to conduct an agent-based experiment that studies

how early syntactic structures can emerge and evolve in a population of agents, and

179

Paul_Van_Eecke_def.indd 189 27/09/18 08:39

180 CHAPTER 8. CONCLUSIONS

how these structures can improve the expressiveness, coherence and efficiency of the

language.

I have situated these objectives within the state of the art in the field of cultural

language evolution, in particular in relation to the language game paradigm (Steels,

1995). The language game paradigm employs agent-based models to determine the

exact invention, adoption and alignment mechanisms with which the agents in a pop-

ulation need to be endowed, so that a shared language exhibiting human language-like

properties can emerge and evolve through local, communicative interactions. In the

past, the language game paradigm has been extensively applied to the emergence and

evolution of vocabularies and conceptual systems, which has led to a good understand-

ing of the mechanisms that are involved (Steels, 2011b). More recently, the same

paradigm has also been successfully applied to the emergence and evolution of gram-

matical structures, but the understanding of the mechanisms that are involved there is

still much more limited. A major challenge in these experiments is to endow the agents

with a powerful and flexible grammar processing engine, and with general operators for

inventing, adopting and aligning grammatical structures. This has not been achieved

in the experiments on grammar evolution that have previously been conducted, as the

learning operators that were used were always very specific and ad hoc.

The framework that I have introduced in this dissertation provides high-level repre-

sentations and general and powerful meta-level operators for inventing, adopting and

aligning grammatical structures. This framework is integrated in Fluid Construction

Grammar (FCG), the grammar formalism that is most widely used in agent-based ex-

periments on the emergence and evolution of grammar. The case study that I have

conducted shows that the framework can be directly used to model the emergence and

evolution of early syntactic structures, and the experiment confirms that these struc-

tures effectively improve the expressiveness, coherence and efficiency of the language.

In the remainder of this chapter, I will first discuss the achievements of this dissertation

in more detail (8.2) and then present a number of future research routes that build

further on these achievements (8.3).

8.2 Achievements

The objectives of this dissertation have materialised into five concrete achievements,

which are discussed in the next sections. These achievements consist in the imple-

mentation of a high-level notation for FCG (8.2.1), the integration of a meta-level

architecture (8.2.2), the design and implementation of a type hierarchy system for

Paul_Van_Eecke_def.indd 190 27/09/18 08:39

8.2. ACHIEVEMENTS 181

FCG symbols (8.2.3), the design and implementation of meta-level generalisation and

specialisation operators (8.2.4), and the design and implementation of an agent-based

experiment on the origins of syntax (8.2.5).

8.2.1 A High-Level Notation for Fluid Construction Grammar

I have implemented a high-level notation for Fluid Construction Grammar (FCG), a

computational platform that provides the basic building blocks for representing and

processing construction grammars. The implementation of this notation consists in

an interface between the notation introduced by Steels (2017) and the processing

engine that was build using the FCG notation described by Steels (2011a). During the

process of implementing this notation, I have also made major contributions to the

design of the notation itself. The high-level notation is more intuitive and easier to

read and write, as it does not need inline special operators, does not separate transient

structures into poles, automatically handles footprints, and graphically distinguishes

between conditional and contributing units instead of relying on an obscure ‘J-unit’

notation. The high-level notation is used by the FCG user for all interfacing with

the processing engine. The constructions are written in the high-level notation, and

the visualisations of constructions, transient structures and construction application

processes are presented in the high-level notation to the user.

The implementation of the high-level notation has already had a considerable impact

in the computational construction grammar and evolutionary linguistics communities.

It has in the meantime become FCG’s standard notation and has been used in various

publications by different researchers (i.a. Marques and Beuls, 2016; Beuls et al., 2017;

van Trijp, 2017; Cornudella Gaya, 2017). The source code is distributed via the Babel2

github page1, and a few example grammars are made available online via the FCG

Interactive web service (https://www.fcg-net.org/fcg-interactive).

8.2.2 Integration of a Meta-Level Architecture

I have integrated a general meta-level architecture into Fluid Construction Grammar.

The meta-level architecture separates an agent’s routine processing abilities from his

problem solving and learning capacities. In FCG, routine processing is implemented as

a search process, in which the constructions of a grammar are applied until a solution

is found. The meta-layer monitors the routine processing by running a set of diag-

nostics after each construction application. If a diagnostic triggers a problem, routine

1https://github.com/EvolutionaryLinguisticsAssociation/Babel2

Paul_Van_Eecke_def.indd 191 27/09/18 08:39

182 CHAPTER 8. CONCLUSIONS

processing is interrupted and meta-level processing becomes active. At the meta-level,

repair strategies try to solve the problem, producing a fix (e.g. a new construction

or type hierarchy link). The fix is then applied and routine processing resumes. If the

branch of the search tree in which the fix was applied leads to a solution, the fix is

consolidated by storing it in the construction inventory of the agent, so that it can

later be reused in routine processing.

The separation between routine processing and meta-level reasoning is common in

cognitive architectures such as Soar (Laird et al., 1987) and MIDCA (Cox et al.,

2016). There also exists ample psycholinguistic and neurolinguistic evidence for such a

distinction, for example the P600 and N400 event-related potentials that are associated

with syntactic and semantic anomalies respectively (for an overview, see Kutas et al.,

2006). The tight integration of a meta-layer architecture into FCG provides a concrete

operationalisation of the distinction between routine processing and meta-layer problem

solving in computational construction grammar (Van Eecke and Beuls, 2017).

8.2.3 A Type Hierarchy System for FCG Symbols

I have designed and implemented a type hierarchy system for FCG symbols. While stan-

dard FCG represents all information inside the individual constructions of a grammar,

the type hierarchy system allows capturing systematic, hierarchical relations between

symbols that occur in different constructions of the grammar. In order to operationalise

the type hierarchy system, a graph is added to the construction inventory. The nodes

in the graph are the symbols that occur in the constructions, and the edges repre-

sent the relations between these symbols. FCG’s matching and merging algorithms

are adapted to take these relations into account. The edges are weighted in order to

reflect the strength of the association between two symbols, very much like the scores

of constructions reflect their entrenchment. The weights on the edges allow modelling

competing associations, which is useful in evolutionary linguistics experiments, in which

the type hierarchies of the different agents of the population need to be build up and

need to get aligned through communicative interactions.

The type hierarchy system allows capturing hierarchical relations between symbols in a

very fine-grained way. This avoids the need to duplicate certain information that should

otherwise systematically occur in the constructions of a grammar. For example, if every

‘mass noun’ is also a ‘common noun’ and every ‘common noun’ is also a ‘noun’, this

systematic relationship can be included in the type hierarchy of the grammar instead of

being explicitly expressed in the individual lexical constructions. Another advantage of

capturing relations in the type hierarchy system instead of in individual constructions

Paul_Van_Eecke_def.indd 192 27/09/18 08:39

8.2. ACHIEVEMENTS 183

is that new associations can immediately be used by multiple constructions. This can

considerably speed up the learning and alignment processes, as was shown in the case

study in chapter 7.

8.2.4 Generalisation and Specialisation operators

I have designed and implemented two general meta-level operators for generalising and

specialising FCG constructions with respect to novel observations. The generalisation

operator is based on anti-unification and finds the least general generalisation of an

FCG construction that matches a given transient structure. The generalisations can

either be captured in the construction itself, for example by decoupling two variables or

by replacing a constant with a variable, or they can be captured in the type hierarchy

of the grammar by adding one or more links from constants in the transient structure

to constants in the construction. The fact that fine-grained generalisations can be

captured in the type hierarchy of a grammar greatly reduces the risk of overgeneral-

isation. The generalisation operator also includes a flexible cost calculation system.

The cost reflects the number and kind of generalisations that were needed during the

anti-unification process, and is crucial in determining whether a generalised construc-

tion is a good candidate to be used or not. The specialisation operator implements a

process that is called pro-unification. It specialises a construction towards an observa-

tion, for example by coupling different variables in a construction that are bound to the

same constants in a transient structure. This way, constraints that are systematically

observed can be incorporated into a construction.

Together with the high-level notation, the integrated meta-level architecture and the

type hierarchy system, the generalisation and specialisation operators provide a gen-

eral framework that implements powerful building blocks for conducting agent-based

experiments on language evolution. This contrasts with previous experiments on the

emergence and evolution of grammar, which relied on specific and ad hoc invention,

adoption and alignment mechanisms.

8.2.5 An Agent-Based Experiment on the Origins of Syntax

I have conducted an agent-based experiment that investigates how first-order syntac-

tic structures can emerge and evolve in a population of agents through local, com-

municative interactions. The experiment demonstrates how the representations and

mechanisms introduced in this dissertation, in particular the high-level FCG notation,

the type hierarchy system and the general meta-level operators, can be directly used

Paul_Van_Eecke_def.indd 193 27/09/18 08:39

184 CHAPTER 8. CONCLUSIONS

to model the invention, adoption and alignment of syntactic patterns. The results of

the experiment show how shared grammatical patterns can emerge and evolve in a

population and confirm the hypothesis that these patterns improve the expressiveness,

coherence and efficiency of the language.

The case study built further on previous experiments by Steels and Garcia Casademont

(2015a). In a first step, I have reimplemented the lexical, grouping and n-gram strate-

gies and measured the expressiveness, coherence and efficiency of the languages that

emerged. The lexical strategy led to an incoherent language that was not expressive

enough to solve the communicative task and that required a lot of processing effort.

The grouping strategy led to a more expressive and efficient language that emerged

fast, but that was still incoherent. Finally, the n-gram strategy led to an efficient

language, that was coherent and expressive, but that emerged and converged very

slowly.

In a second step, I have designed and implemented an improved version of the pattern

strategy introduced in the same paper. Instead of using the highly intricate and ad hoc

learning mechanisms that were used in the original experiment, I have implemented a

pattern strategy that makes use of the general framework that was presented in this

dissertation. This strategy relies on the meta-level generalisation operator to detect

the minimal generalisations that need to be made to a construction in order to expand

its coverage to a novel observation. In this case, these generalisations allow a specific

word to be used in a specific slot of a pattern construction. They are stored in the type

hierarchy of the grammar and can be used by all constructions. After each game, the

links in the type hierarchy are updated based on the outcome of the interaction, which

causes the type hierarchies of the different agents to align. The pattern strategy leads

to an expressive, coherent and relatively efficient language that emerges after only a

limited number of interactions.

8.3 Future Research

Four of the five achievements of this dissertation together form a framework that

provides improved representations, processing mechanisms and learning operators for

computational construction grammars. The fifth achievement is a case study that

shows how this framework can be used in a concrete evolutionary linguistics experiment

that studies the emergence of early syntactic structures. The contributions presented

in this dissertation open many possibilities for further research.

A first path that will be pursued is to make use of this framework to conduct more

Paul_Van_Eecke_def.indd 194 27/09/18 08:39

8.3. FUTURE RESEARCH 185

advanced experiments on the evolution of grammar. As a first step, an experiment

will be set up, in which the pattern strategy described in the case study is extended

from first-order syntactical structures to recursive hierarchical structures that express

relations between objects. As a next step, the pattern strategy will be combined with

a marker strategy such as the one introduced by Beuls and Steels (2013). This ex-

periment will allow investigating the interplay between different language strategies,

and shed light on how a certain strategy can emerge, become dominant and disappear

again as a different strategy emerges. Further experiments will study processes of

grammaticalisation, in which lexical words specialise in a specific function and become

grammatical markers, like in English the lexical verb ‘will’ specialised into an auxiliary

that marks future tense (Heine and Kuteva, 2002; Traugott and Trousdale, 2013). The

results of these experiments will contribute to a better understanding of the mecha-

nisms through which language can emerge, evolve and adapt to the communicative

needs of the language users.

Secondly, the framework presented in this dissertation will be used to build intelligent

systems that solve concrete communicative tasks, for example question answering. In

a first project, it will be used in a visual question answering system that comprehends

the question of a user, interprets it in an image and formulates an answer. The

grammar is used to map between utterances and functional programs that represent

the meaning of these utterances as a combination of primitive operations that are

implemented as modular symbolic or subsymbolic operations (Andreas et al., 2015;

Johnson et al., 2017). For example, the question “are there more cats than dogs in

the picture” might correspond to a program that calls a neural network that returns

a mask indicating the cats in the picture, calls a neural network that returns a mask

indicating the dogs in the picture, passes these masks to a neural network that counts

objects, and finally calls a function that compares the resulting numbers. FCG is a

very good candidate to be used in such a system, as the meaning representation can

be designed to directly correspond to the primitive functions that are available. The

combination of symbolic and subsymbolic approaches allows exploiting at the same time

the explainability and higher-level reasoning capabilities of symbolic approaches, and

the strong pattern recognition capacities of subsymbolic approaches. The modularity

of the system also increases its explainability, and allows combining the same primitive

operations for solving many different problems, which contrasts with large end-to-

end neural network architectures. Once a grammar is in place, two kinds of multi-

agent experiments will be set up. The first kind will investigate which mechanisms a

population of agents needs in order to learn this grammar, and the second kind will

study which mechanisms a population of agents needs in order to develop its own

grammatical system that can map between natural language utterances and these

Paul_Van_Eecke_def.indd 195 27/09/18 08:39

186 CHAPTER 8. CONCLUSIONS

functional programs.

8.4 Final Remarks

This dissertation has introduced a framework that provides powerful building blocks for

representing, processing and learning robust and flexible construction grammars, and

has presented a case study that uses this framework in an evolutionary linguistics exper-

iment on the emergence of syntactic structures. While the results of this dissertation

already provide some insight into how grammatical systems can emerge and evolve, I

am convinced that the tools that were introduced will greatly help further, more ad-

vanced experiments, which will ultimately lead to an understanding of how languages

with human language-like expressiveness, robustness, flexibility and adaptiveness can

emerge and evolve. In the future, this understanding will be crucial in building truly

intelligent artificial systems.

Paul_Van_Eecke_def.indd 196 27/09/18 08:39

Bibliography

Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2015). Deep compositional

question answering with neural module networks. CoRR, abs/1511.02799.

Appelt, D. E. (1985). Planning English Sentences. Cambridge University Press, New

York, NY, USA.

Arbib, M. (2012). How the Brain Got Language: The Mirror System Hypothesis.

Studies in the evolution of language. Oxford University Press, USA.

Armengol, E. and Plaza, E. (2012). Symbolic explanation of similarities in case-based

reasoning. Computing and informatics, 25(2-3):153–171.

Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., and Steels, L. (2006). Sharp

transition towards shared vocabularies in multi-agent systems. Journal of Statistical

Mechanics: Theory and Experiment, 2006(06):P06014.

Barres, V. (2017). Template construction grammar: A schema-theoretic computa-

tional construction grammar. In 2017 AAAI Spring Symposium Series, pages 139–

146.

Batali, J. (1998). Computational simulations of the emergence of grammar. In Hurford,

J., Studdert-Kennedy, M., and Knight, C., editors, Approaches to the Evolution of

Language, pages 405–426. Cambridge University Press.

Bergen, B. and Chang, N. (2005). Embodied construction grammar in simulation-

based language understanding. In Fried, M. and Östman, J., editors, Construction

grammars: cognitive grounding and theoretical extensions, pages 147–190. John

Benjamins, Amsterdam.

Berthouze, L., Prince, C., Littman, M., Kozima, H., and Balkenius, C. (2007). Gener-

alization and specialization in reinforcement learning. In Proceedings of the Seventh

International Conference on Epigenetic Robotics: Modeling Cognitive Development

in Robotic Systems.

187

Paul_Van_Eecke_def.indd 197 27/09/18 08:39

188 BIBLIOGRAPHY

Beuls, K. (2012). Inflectional patterns as constructions: Spanish verb morphology in

fluid construction grammar. Constructions and Frames, 4(2):231–252.

Beuls, K. (2017). An open-ended computational construction grammar for Spanish

verb conjugation. Constructions and Frames, 9(2):278–301.

Beuls, K., Gerasymova, K., and van Trijp, R. (2010). Situated learning through the use

of language games. In Proceedings of the 19th Annual Machine Learning Conference

of Belgium and The Netherlands (BeNeLearn).

Beuls, K., Knight, Y., and Spranger, M. (2017). Russian verbs of motion and their

aspectual partners in Fluid Construction Grammar. Constructions and Frames,

9(2):302–320.

Beuls, K. and Steels, L. (2013). Agent-based models of strategies for the emergence

and evolution of grammatical agreement. PloS one, 8(3):e58960.

Beuls, K., Van Eecke, P., and Marques, T. (2018). Bidirectional language processing

and planning using a construction-based architecture. In Preparation.

Beuls, K., Van Trijp, R., and Wellens, P. (2012). Diagnostics and repairs in Fluid

Construction Grammar. In Steels, L., editor, Language Grounding in Robots, pages

215–234. Springer, Berlin.

Bickerton, D. and Szathmáry, E. (2009). Biological foundations and origin of syntax.

Strungmann Forum Reports. Mit Press.

Blake, B. J. (2001). Case. Cambridge Textbooks in Linguistics. Cambridge University

Press, 2 edition.

Bleys, J. (2016). Language strategies for the domain of colour. Language Science

Press.

Bleys, J., Loetzsch, M., Spranger, M., and Steels, L. (2009). The grounded colour

naming game. In Proceedings of the 18th IEEE International Symposium on Robot

and Human Interactive Communication (Ro-man 2009).

Bleys, J. and Steels, L. (2009). Linguistic selection of language strategies. In European

Conference on Artificial Life, pages 150–157. Springer.

Boas, H. C. and Sag, I. A. (2012). Sign-based construction grammar. CSLI Publica-

tions/Center for the Study of Language and Information.

Boullier, P. (2000). Range concatenation grammars. In Proceedings of the Sixth

International Workshop on Parsing Technologies (IWPT2000), pages 53–64.

Paul_Van_Eecke_def.indd 198 27/09/18 08:39

BIBLIOGRAPHY 189

Briscoe, T. (2000). Grammatical acquisition: Inductive bias and coevolution of lan-

guage and the language acquisition device. Language, 76(2):245–296.

Bulychev, P. and Minea, M. (2008). Duplicate code detection using anti-unification.

In Spring Young Researchers Colloquium on Software Engineering, pages 51–54.

Bundy, A. and Wallen, L. (1984). Procedural attachment. In Catalogue of Artificial

Intelligence Tools, pages 98–99. Springer.

Cangalovic, V. S. (2018). Cooking up a grammar. incremental grammar extension for

domain-specific parsing. Bachelor Report. Department of Linguistics, University of

Bremen.

Carpenter, B. (2005). The logic of typed feature structures: with applications to uni-

fication grammars, logic programs and constraint resolution, volume 32. Cambridge

University Press.

Chang, N. C.-L. (2008). Constructing grammar: A computational model of the emer-

gence of early constructions. PhD thesis, University of California, Berkeley.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions

on information theory, 2(3):113–124.

Chomsky, N. (1957). Syntactic structures. Mouton.

Chomsky, N. (1986). Knowledge of language: Its nature, origin, and use. Greenwood

Publishing Group.

Christiansen, M. H., Chater, N., and Reali, F. (2009). The biological and cultural

foundations of language. Communicative & integrative biology, 2(3):221–222.

Cinque, G. and Kayne, R. S. (2005). The Oxford handbook of comparative syntax.

Oxford University Press.

Ciortuz, L. (2002a). A framework for inductive learning of typed-unification grammars.

Grammatical Inference: Algorithms and Applications, pages 334–338.

Ciortuz, L. (2002b). Light–a constraint language and compiler system for typed-

unification grammars. In KI 2002: Advances in Artificial Intelligence: 25th Annual

German Conference on AI, KI 2002, Aachen, Germany, September 16-20, 2002.

Proceedings, volume 25, page 3. Springer Science & Business Media.

Ciortuz, L.-V. (2003). Inductive learning of attribute path values in typed-unification

grammars. Sci. Ann. Cuza Univ., 13:105–126.

Paul_Van_Eecke_def.indd 199 27/09/18 08:39

190 BIBLIOGRAPHY

Copestake, A. (2002). Implementing typed feature structure grammars, volume 110.

CSLI publications Stanford.

Corbett, G. G. (2006). Agreement, volume 109 of Cambridge Textbooks in Linguistics.

Cambridge University Press.

Cornudella, M., Poibeau, T., and Van Trijp, R. (2016). The role of intrinsic motivation

in artificial language emergence: a case study on colour. In 26th International

Conference on Computational Linguistics (COLING 2016), pages 1646–1656.

Cornudella Gaya, M. (2017). Autotelic Principle: the role of intrinsic motivation in the

emergence and development of artificial language. Theses, Université de recherche

Paris Sciences et Lettres.

Cox, M. T., Alavi, Z., Dannenhauer, D., Eyorokon, V., Munoz-Avila, H., and Perlis, D.

(2016). Midca: A metacognitive, integrated dual-cycle architecture for self-regulated

autonomy. In AAAI, pages 3712–3718.

Cox, M. T. and Raja, A. (2011). Metareasoning: An introduction. In Cox, M. T. and

Raja, A., editors, Metareasoning: Thinking about thinking, pages 3–14. MIT Press,

Cambridge, MA.

Croft, W. (2001). Radical construction grammar: Syntactic theory in typological

perspective. Oxford University Press.

De Beule, J. (2007). Compositionality, hierarchy and recursion in language. A case

study in fluid construction grammar. PhD thesis, Vrije Universiteit Brussel, Unpub-

lished PhD thesis.

De Beule, J. (2012). A formal deconstruction of Fluid Construction Grammar. In

Steels, L., editor, Computational Issues in Fluid Construction Grammar. Springer

Verlag, Berlin.

De Raedt, L. and Bruynooghe, M. (1992). A unifying framework for concept-learning

algorithms. The Knowledge Engineering Review, 7(3):251–269.

De Vylder, B. and Tuyls, K. (2006). How to reach linguistic consensus: A proof of

convergence for the naming game. Journal of theoretical biology, 242(4):818–831.

Dediu, D. (2007). Non-spurious Correlations Between Genetic and Linguistic Diversi-

ties in the Context of Human Evolution. University of Edinburgh.

DeLong, K. A., Urbach, T. P., and Kutas, M. (2005). Probabilistic word pre-activation

during language comprehension inferred from electrical brain activity. Nature neuro-

science, 8(8):1117.

Paul_Van_Eecke_def.indd 200 27/09/18 08:39

BIBLIOGRAPHY 191

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271.

Dominey, P., Mealier, A.-L., Pointeau, G., Mirliaz, S., and Finlayson, M. (2017). Dy-

namic construction grammar and steps towards the narrative construction of mean-

ing. In 2017 AAAI Spring Symposium Series, pages 163–170.

Dor, D., Knight, C., and Lewis, J. (2014). The Social Origins of Language. Oxford

Studies in the Evolution of Language. Oxford University Press.

Dubois, V. and Quafafou, M. (2002). Concept learning with approximation: Rough

version spaces. In International Conference on Rough Sets and Current Trends in

Computing, pages 239–246. Springer.

Fanselow, G. (1993). The parametrization of universal grammar, volume 8. John

Benjamins Publishing.

Feldman, J., Dodge, E., and Bryant, J. (2009). Embodied construction grammar.

In Heine, B. and Narrog, H., editors, The Oxford Handbook of Linguistic Analysis,

pages 121–146. University Press, Oxford.

Feng, C. and Muggleton, S. (2014). Towards inductive generalisation in higher order

logic. In Proceedings of the ninth international workshop on Machine learning, pages

154–162.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208.

Fillmore, C. J., Kay, P., and O’connor, M. C. (1988). Regularity and idiomaticity in

grammatical constructions: The case of let alone. Language, pages 501–538.

Fitch, W. (2010). The Evolution of Language. Cambridge University Press.

Flach, P. (1994). Simply Logical. Intelligent Reasoning by Example. John Wiley &

Sons.

Flach, P. (2012). Machine learning: the art and science of algorithms that make sense

of data. Cambridge University Press.

Fodor, J. and Sakas, W. (2017). Learnability. In Roberts, I., editor, The Oxford

Handbook of Universal Grammar. University Press, Oxford.

Galitsky, B., De La Rosa, J. L., and Dobrocsi, G. (2011). Mapping syntactic to

semantic generalizations of linguistic parse trees. In Proceedings of the Twenty-

Fourth International Florida Artificial Intelligence Research Society Conference.

Paul_Van_Eecke_def.indd 201 27/09/18 08:39

192 BIBLIOGRAPHY

Galitsky, B. A., Ilvovsky, D., Kuznetsov, S. O., and Strok, F. (2014). Finding maxi-

mal common sub-parse thickets for multi-sentence search. In Graph Structures for

Knowledge Representation and Reasoning, pages 39–57. Springer.

Garcia Casademont, E. and Steels, L. (2016). Insight grammar learning. Journal of

Cognitive Science, 17(1):27–62.

Garoufi, K. and Koller, A. (2010). Automated planning for situated natural language

generation. In Proceedings of the 48th Annual Meeting of the Association for Com-

putational Linguistics, pages 1573–1582. Association for Computational Linguistics.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985). Generalized phrase

structure grammar. Harvard University Press.

Gerasymova, K. and Spranger, M. (2010). Acquisition of grammar in autonomous

artificial systems. In Coelho, M., Studer, R., and Woolridge, M., editors, Proceedings

of the 19th European Conference on Artificial Intelligence (ECAI-2010), pages 923–

928. IOS Press.

Gianollo, C., Guardiano, C., and Longobardi, G. (2008). Three fundamental issues in

parametric linguistics. The limits of syntactic variation, pages 109–142.

Goldberg, A. E. (1995). Constructions: A construction grammar approach to argument

structure. University of Chicago Press.

Goldberg, A. E. (2006). Constructions at work: The nature of generalization in lan-

guage. Oxford University Press.

Grice, H. P. (1989). Studies in the Way of Words. Harvard University Press.

Griffiths, T. L. and Kalish, M. L. (2007). Language evolution by iterated learning with

bayesian agents. Cognitive science, 31(3):441–480.

Gust, H., Kühnberger, K.-U., and Schmid, U. (2006). Metaphors and heuristic-driven

theory projection (hdtp). Theoretical Computer Science, 354(1):98–117.

Heine, B. and Kuteva, T. (2002). World lexicon of grammaticalization. Cambridge

University Press.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Martin, P. (1993). Interpretation as

abduction. Artificial Intelligence, 63(1-2):69–142.

Hopper, P. (1987). Emergent grammar. In Annual Meeting of the Berkeley Linguistics

Society, volume 13, pages 139–157.

Paul_Van_Eecke_def.indd 202 27/09/18 08:39

BIBLIOGRAPHY 193

Jablonka, E. and Lamb, M. (2005). Evolution in Four Dimensions: Genetic, Epigenetic,

Behavioral, and Symbolic Variation in the History of Life. Life and mind. MIT Press.

Jain, S. and Sharma, A. (1998). Generalization and specialization strategies for learning

re languages. Annals of Mathematics and Artificial Intelligence, 23(1):1–26.

Jasperson, R., Hayashi, M., and Fox, B. (1994). Semantics and interaction: Three

exploratory case studies. Text-Interdisciplinary Journal for the Study of Discourse,

14(4):555–580.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and Girshick,

R. (2017). Clevr: A diagnostic dataset for compositional language and elementary

visual reasoning. In CVPR.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjunct grammars. Journal

of computer and system sciences, 10(1):136–163.

Kallmeyer, L. (2010). Parsing beyond context-free grammars. Springer, Heidelberg.

Kaplan, R. M. and Bresnan, J. (1982). Lexical-functional grammar: A formal system

for grammatical representations. In Bresnan, J., editor, The Mental reprsentations

of grammatical relations, pages 173–281. MIT Press.

Kapur, S. and Bilardi, G. (1992). Language learning without overgeneralization.

STACS 92, pages 245–256.

Kay, P. and Fillmore, C. J. (1999). Grammatical constructions and linguistic general-

izations: the what’s x doing y? construction. Language, pages 1–33.

Kirby, S. (1999). Syntax out of learning: The cultural evolution of structured commu-

nication in a population of induction algorithms. In Floreano, D., Nicoud, J.-D., and

Mondada, F., editors, Advances in Artificial Life, pages 694–703, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Kirby, S. (2001). Spontaneous evolution of linguistic structure-an iterated learning

model of the emergence of regularity and irregularity. IEEE Transactions on Evolu-

tionary Computation, 5(2):102–110.

Kirby, S. (2002a). Learning, bottlenecks and the evolution of recursive syntax. In

Linguistic Evolution Through Language Acquisition. Cambridge University Press.

Kirby, S. (2002b). Learning, bottlenecks and the evolution of recursive syntax. In

Briscoe, T., editor, Linguistic Evolution through Language Acquisition: Formal and

Computational Models, pages 173–204. Cambridge University Press.

Paul_Van_Eecke_def.indd 203 27/09/18 08:39

194 BIBLIOGRAPHY

Kirby, S., Cornish, H., and Smith, K. (2008). Cumulative cultural evolution in the

laboratory: An experimental approach to the origins of structure in human language.

Proceedings of the National Academy of Sciences, 105(31):10681–10686.

Kirby, S., Griffiths, T., and Smith, K. (2014). Iterated learning and the evolution of

language. Current opinion in neurobiology, 28:108–114.

Knight, C., Studdert-Kennedy, M., and Hurford, J. (2000). The Evolutionary Emer-

gence of Language: Social Function and the Origins of Linguistic Form. Cambridge

University Press.

Kübler, S., McDonald, R., and Nivre, J. (2009). Dependency Parsing. Morgan and

Claypool.

Kutas, M., Van Petten, C. K., and Kluender, R. (2006). Psycholinguistics electrified ii

(1994–2005). In Handbook of Psycholinguistics (Second Edition), pages 659–724.

Elsevier.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: An architecture for

general intelligence. Artificial intelligence, 33(1):1–64.

Lestrade, S. (2015a). A case of cultural evolution: The emergence of morphological

case. Linguistics in the Netherlands, 32(1):105–115.

Lestrade, S. (2015b). Simulating the development of bound person marking. In Baayen,

H.; Jäger, G.; Köllner, M.(ed.), Proceedings of the 6th Conference on Quantitative

Investigations in Theoretical Linguistics. Tuebingen: University of Tuebingen.

Lestrade, S. (2016). The emergence of argument marking. In Roberts, S., Cusk-

ley, C., McCrohon, L., Barceló-Coblijn, L., Fehér, O., and Verhoef, T., editors,

The Evolution of Language: Proceedings of the 11th International Conference

(EVOLANGX11). Online at http://evolang.org/neworleans/papers/36.html.

Lestrade, S. (2017). Mole: Modeling language evolution. R package. https://CRAN.R-

project.org/package=MoLE.

Liu, R.-R., Jia, C.-X., Yang, H.-X., and Wang, B.-H. (2009). Naming game on small-

world networks with geographical effects. Physica A: Statistical Mechanics and its

Applications, 388(17):3615–3620.

Loetzsch, M., Bleys, J., and Wellens, P. (2009). Understanding the dynamics of

complex lisp programs. In Proceedings of the 2nd European Lisp Symposium, pages

59–69.

Paul_Van_Eecke_def.indd 204 27/09/18 08:39

BIBLIOGRAPHY 195

Loetzsch, M., Wellens, P., De Beule, J., Bleys, J., and Van Trijp, R. (2008). The

babel2 manual. Technical Report AI-Memo 01-08.

Lüngen, H. and Sporleder, C. (1999). Automatic induction of lexical inheritance hier-

archies. Multilinguale Corpora. Codierung, Strukturierung, Analyse. Prague: Enigma

Corporation.

Maes, P. and Nardi, D. (1988). Meta-level architectures and reflection. Elsevier Science

Pub. Co. Inc., New York, NY.

Malchukov, A. and Spencer, A. (2009). The Oxford handbook of case. Oxford Uni-

versity Press.

Malik Ghallab, C. I., Penberthy, S., Smith, D., Sun, Y., and Weld, D. (1998). Pddl-the

planning domain definition language. Technical report, Technical report, Yale Center

for Computational Vision and Control.

Marques, T. and Beuls, K. (2016). A construction grammar approach for pronom-

inal clitics in european portuguese. In International Conference on Computational

Processing of the Portuguese Language, pages 239–244. Springer.

Michalski, R. S. (1983). A theory and methodology of inductive learning. Artificial

intelligence, 20(2):111–161.

Mitchell, T. (1978). Version spaces: an approach to concept learning. Technical

report, Stanford University Department of Computer Science.

Mitchell, T. (1982). Generalization as search. Artificial intelligence, 18(2):203–226.

Moens, M., Calder, J., Klein, E., Reape, M., and Zeevat, H. (1989). Expressing gen-

eralizations in unification-based grammar formalisms. In Proceedings of the Fourth

Conference on European Chapter of the Association for Computational Linguistics,

EACL ’89, pages 174–181, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Muggleton, S. and De Raedt, L. (1994). Inductive logic programming: Theory and

methods. The Journal of Logic Programming, 19:629–679.

Newell, A., Shaw, J. C., and Simon, H. A. (1957). Empirical explorations of the logic

theory machine: A case study in heuristic. In Papers Presented at the February

26-28, 1957, Western Joint Computer Conference: Techniques for Reliability, IRE-

AIEE-ACM ’57 (Western), pages 218–230, New York, NY, USA. ACM.

Nilsson, N. (1971). Problem-Solving Methods in Artificial Intelligence. McGraw-Hill

Pub. Co.

Paul_Van_Eecke_def.indd 205 27/09/18 08:39

196 BIBLIOGRAPHY

Nivre, J. (2006). Inductive Dependency Parsing. Springer.

Oates, T., Armstrong, T., Bonache, L. B., and Atamas, M. (2006). Inferring grammars

for mildly context sensitive languages in polynomial-time. In ICGI, volume 4201,

pages 137–147. Springer.

Pauw, S. et al. (2013). Size Matters: Grouding Quantifiers in Spatial Perception.

ILLC.

Pauw, S. and Hilferty, J. (2012). The emergence of quantifiers. Experiments in cultural

language evolution, 3:277.

Pednault, E. P. (1987). Formulating multiagent, dynamic-world problems in the clas-

sical planning framework. Reasoning about actions and plans, pages 47–82.

Pereira, F. C. and Warren, D. H. (1980). Definite clause grammars for language

analysis—a survey of the formalism and a comparison with augmented transition

networks. Artificial intelligence, 13(3):231–278.

Pickering, M. J. and Garrod, S. (2013). Forward models and their implications for

production, comprehension, and dialogue. Behavioral and Brain Sciences, 36(4):377–

392.

Plotkin, G. D. (1970). A note on inductive generalization. Machine intelligence,

5(1):153–163.

Plotkin, G. D. (1971). A further note on inductive generalization. Machine intelligence,

6(101-124).

Pollard, C. (1997). Lectures on the foundations of hpsg.

https://www1.essex.ac.uk/linguistics/external/clmt/papers/hpsg/pollard-

foundations.ps.

Pollard, C. and Sag, I. A. (1994). Head-driven phrase structure grammar. University

of Chicago Press.

Powers, D. M., Matsumoto, T., and Jarrad, G. (2003). Application of search algo-

rithms to natural language processing. In Australasian Language Technology Work-

shop 2003. Australian Language Technology Associations.

Puglisi, A., Baronchelli, A., and Loreto, V. (2008). Cultural route to the emer-

gence of linguistic categories. Proceedings of the National Academy of Sciences,

105(23):7936–7940.

Rendell, L. (1986). A general framework for induction and a study of selective induc-

tion. Machine Learning, 1(2):177–226.

Paul_Van_Eecke_def.indd 206 27/09/18 08:39

BIBLIOGRAPHY 197

Reynolds, J. C. (1970). Transformational systems and the algebraic structure of atomic

formulas. Machine intelligence, 5:135–152.

Roberts, I. (2017). The Oxford Handbook of Universal Grammar. University Press,

Oxford.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice

Hall Press, Upper Saddle River, NJ, USA, 3rd edition.

Schmill, M., Oates, T., Anderson, M. L., Josyula, D., Perlis, D., Wilson, S., and

Fults, S. (2008). The role of metacognition in robust ai systems. In Workshop on

Metareasoning at the Twenty-Third AAAI Conference on Artificial Intelligence.

Schueller, W. and Oudeyer, P.-Y. (2016). Active control of complexity growth in

naming games: Hearer’s choice. In Roberts, S., Cuskley, C., McCrohon, L.,

Barceló-Coblijn, L., Fehér, O., and Verhoef, T., editors, The Evolution of Lan-

guage: Proceedings of the 11th International Conference (EVOLANGX11). Online

at http://evolang.org/neworleans/papers/105.html.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language. In

Philosophy, Language, and Artificial Intelligence, pages 79–89. Springer.

Sierra-Santibáñez, J. (2012). A logic programming approach to parsing and production

in Fluid Construction Grammar. In Steels, L., editor, Computational Issues in Fluid

Construction Grammar. Springer Verlag, Berlin.

Sierra-Santibáñez, J. (2014). An agent-based model studying the acquisition of a

language system of logical constructions. In Proceedings of the National Conference

on Artificial Intelligence, pages 350–357.

Sierra-Santibáñez, J. (2018). An agent-based model of the emergence and evolution of

a language system for boolean coordination. Autonomous Agents and Multi-Agent

Systems, 32(4):417–458.

Smith, K. (2002). The cultural evolution of communication in a population of neural

networks. Connection Science, 14(1):65–84.

Smith, K. (2004). The evolution of vocabulary. Journal of theoretical biology,

228(1):127–142.

Smith, K., Brighton, H., and Kirby, S. (2003). Complex systems in language evolution:

the cultural emergence of compositional structure. Advances in Complex Systems,

6(4):537–558.

Paul_Van_Eecke_def.indd 207 27/09/18 08:39

198 BIBLIOGRAPHY

Smolka, G. and Ait-Kaci, H. (1989). Inheritance hierarchies: Semantics and unification.

Journal of Symbolic Computation, 7(3-4):343–370.

Spranger, M. (2012). The co-evolution of basic spatial terms and categories. In Steels,

L., editor, Experiments in Cultural Language Evolution, number 3 in Advances in

Interaction Studies, pages 111–141. John Benjamins.

Spranger, M. (2016). The evolution of grounded spatial language. Language Science

Press.

Spranger, M., Loetzsch, M., and Steels, L. (2012a). A perceptual system for language

game experiments. In Steels, L. and Hild, M., editors, Language Grounding in

Robots, pages 89–110. Springer.

Spranger, M., Pauw, S., and Loetzsch, M. (2010). Open-ended semantics co-evolving

with spatial language. In Smith, A. D. M., Schouwstra, M., de Boer, B., and Smith,

K., editors, The Evolution of Language (Evolang 8), pages 297–304, Singapore.

World Scientific.

Spranger, M., Pauw, S., Loetzsch, M., and Steels, L. (2012b). Open-ended Procedural

Semantics. In Steels, L. and Hild, M., editors, Language Grounding in Robots, pages

153–172. Springer.

Steedman, M. (2000). The syntactic process. MIT press.

Steels, L. (1995). A self-organizing spatial vocabulary. Artificial life, 2(3):319–332.

Steels, L. (1997). Self-organizing vocabularies. In Artificial Life V, pages 179–184.

Steels, L. (1998). Synthesising the origins of language and meaning using co-evolution,

self-organisation and level formation. Approaches to the Evolution of Language,

pages 384–404.

Steels, L. (1999). The puzzle of language evolution. Kognitionswissenschaft,

8(4):143–150.

Steels, L. (2000). The emergence of grammar in communicating autonomous robotic

agents. In Horn, W., editor, ECAI 2000: Proceedings of the 14th European Confer-

ence on Artificial Life, pages 764–769, Amsterdam. IOS Publishing.

Steels, L. (2003). Language-reentrance and the ‘inner voice’. Journal of Consciousness

Studies, 10(4-5):173–185.

Steels, L. (2007). The recruitment theory of language origins. In Lyon, C., Nehaniv,

C. L., and Cangelosi, A., editors, Emergence of Language and Communication,

pages 129–151. Springer, Berlin.

Paul_Van_Eecke_def.indd 208 27/09/18 08:39

BIBLIOGRAPHY 199

Steels, L., editor (2011a). Design Patterns in Fluid Construction Grammar. John

Benjamins, Amsterdam.

Steels, L. (2011b). Modeling the cultural evolution of language. Physics of Life

Reviews, 8(4):339–356.

Steels, L., editor (2012a). Computational Issues in Fluid Construction Grammar.

Springer Verlag, Berlin.

Steels, L. (2012b). Experiments in cultural language evolution, volume 3. John Ben-

jamins Publishing.

Steels, L. (2012c). Self-organization and selection in cultural language evolution. In

Steels, L., editor, Experiments in Cultural Language Evolution, pages 1–37. John

Benjamins, Amsterdam.

Steels, L. (2012d). Self-organization and selection in cultural language evolution. In

Steels, L., editor, Experiments in Cultural Language Evolution. John Benjamins,

Amsterdam. John Benjamins, Amsterdam.

Steels, L. (2015). The Talking Heads experiment: Origins of words and meanings,

volume 1. Language Science Press.

Steels, L. (2017). Basics of fluid construction grammar. Constructions and frames,

9(2):178–225.

Steels, L., Belpaeme, T., et al. (2005). Coordinating perceptually grounded categories

through language: A case study for colour. Behavioral and brain sciences, 28(4):469–

488.

Steels, L. and De Beule, J. (2006). Unify and merge in fluid construction grammar.

In Symbol grounding and beyond, pages 197–223. Springer.

Steels, L. and Garcia Casademont, E. (2015a). Ambiguity and the origins of syntax.

The Linguistic Review, 32(1):37–60.

Steels, L. and Garcia Casademont, E. (2015b). How to play the syntax game. In

Proceedings of the European Conference on Artificial Life, pages 479–486.

Steels, L. and Loetzsch, M. (2012). The grounded naming game. Experiments in

cultural language evolution, 3:41–59.

Steels, L. and Spranger, M. (2008). The robot in the mirror. Connection Science,

20(4):337–358.

Paul_Van_Eecke_def.indd 209 27/09/18 08:39

200 BIBLIOGRAPHY

Steels, L. and Van Eecke, P. (2018). Insight grammar learning using pro-unification

and anti-unification in fluid construction grammar. Submitted.

Steels, L. and van Trijp, R. (2011). How to make construction grammars fluid and

robust. In Steels, L., editor, Design Patterns in Fluid Construction Grammar, pages

301–330. John Benjamins, Amsterdam.

Tesnière, L. (1965). Eléments de syntaxe structurale. éd. Klincksieck, Paris.

Thomas, B. (1999). Anti-unification based learning of t-wrappers for information

extraction. In Proc. AAAI-99 Workshop on Machine Learning for Information Ex-

traction.

Tomasello, M. (2003). Constructing a Language: A Usage-Based Theory of Language

Acquisition. Harvard University Press.

Traugott, E. C. and Trousdale, G. (2013). Constructionalization and constructional

changes, volume 6. Oxford University Press.

Valin, R. D. v. and LaPolla, R. J. (1997). Syntax: Structure, Meaning, and Function.

Cambridge Textbooks in Linguistics. Cambridge University Press.

Van Eecke, P. (2015). Achieving robustness through the integration of production

in comprehension. In Proceedings of the EuroAsianPacific Joint Conference on

Cognitive Science, pages 187–192.

Van Eecke, P. (2017). Robust processing of the Dutch verb phrase. Constructions

and Frames, 9(2):226–250.

Van Eecke, P. and Beuls, K. (2017). Meta-layer problem solving for computational

construction grammar. In 2017 AAAI Spring Symposium Series, pages 258–265.

Van Eecke, P. and Beuls, K. (2018). Exploring the creative potential of computational

construction grammar. Zeitschrift für Anglistik und Amerikanistik, 66(3):341–355.

van Trijp, R. (2008). The emergence of semantic roles in fluid construction grammar.

In The Evolution Of Language, pages 346–353. World Scientific.

van Trijp, R. (2011). Feature matrices and agreement: A case study for German

case. In Steels, L., editor, Design Patterns in Fluid Construction Grammar, pages

205–235. John Benjamins, Amsterdam.

van Trijp, R. (2012). A reflective architecture for robust language processing and learn-

ing. In Steels, L. and Hild, M., editors, Computational issues in Fluid Construction

Grammar, pages 51–74. Springer.

Paul_Van_Eecke_def.indd 210 27/09/18 08:39

BIBLIOGRAPHY 201

van Trijp, R. (2013). Linguistic assessment criteria for explaining language change:

A case study on syncretism in german definite articles. Language Dynamics and

Change, 3(1):105–132.

van Trijp, R. (2014). Long-distance dependencies without filler- gaps: a cognitive-

functional alternative in fluid construction grammar. Language and Cognition,

6(02):242–270.

van Trijp, R. (2016). The evolution of case grammar. Language Science Press.

van Trijp, R. (2017). A computational construction grammar for English. In 2017

AAAI Spring Symposium Series, pages 266–273.

Vera, J. (2018). An agent-based model for the role of short-term memory enhancement

in the emergence of grammatical agreement. Artificial life, 24(02):119–127.

Vijay-Shanker, K., Weir, D. J., and Joshi, A. K. (1987). Characterizing structural

descriptions produced by various grammatical formalisms. In Proceedings of the

25th annual meeting on Association for Computational Linguistics, pages 104–111.

Association for Computational Linguistics.

Wellens, P. (2011). Organizing constructions in networks. In Steels, L., editor, Design

Patterns in Fluid Construction Grammar, pages 181–201. John Benjamins, Amster-

dam.

Wellens, P. (2012). Adaptive Strategies in the Emergence of Lexical Systems. PhD

thesis.

Zock, M., Francopoulo, G., and Laroui, A. (1988). Language learning as problem

solving: Modelling logical aspects of inductive learning to generate sentences in

french by man and machine. In Proceedings of the 12th conference on Computational

linguistics-Volume 2, pages 806–811. Association for Computational Linguistics.

Paul_Van_Eecke_def.indd 211 27/09/18 08:39

202 BIBLIOGRAPHY

Paul_Van_Eecke_def.indd 212 27/09/18 08:39

Appendix A

List of Publications

The papers that I have published during my PhD project (2014-2018) are listed below.

A complete list of my talks, posters and research activities is accessible via https:

//ai.vub.ac.be/members/paul.

• Beuls, Katrien, Steels, Luc & Van Eecke, Paul. (forthcoming). Strategies for
interactive task learning and teaching. In: Interactive Task Learning: Agents,

Robots, and Humans Acquiring New Tasks through Natural Interactions, edited

by K. A. Gluck and J. E. Laird. Strüngmann Forum Reports, vol. 26, J. R. Lupp,

series editor. Cambridge, MA: MIT Press.

• Shah, Julie, Gluck, Kevin, Belpaeme, Tony, Koedinger, Kenneth, Rohlfing, Katha-
rina, van der Maas, Han, Van Eecke, Paul, VanLehn, Kurt, Vollmer, Anna-Lisa

& Yee-King, Matthew. (forthcoming). Task Instruction. In: Interactive Task

Learning: Agents, Robots, and Humans Acquiring New Tasks through Natural

Interactions, edited by K. A. Gluck and J. E. Laird. Strüngmann Forum Reports,

vol. 26, J. R. Lupp, series editor. Cambridge, MA: MIT Press.

• Van Eecke, Paul & Beuls, Katrien. (2018). Exploring the creative potential of
computational construction grammar. Zeitschrift für Anglistik und Amerikanistik

66(3): 341-355.

• Van Eecke, Paul. (2017). Robust processing of the Dutch verb phrase. Con-
structions and Frames 9(2): 226-250.

• Van Eecke, Paul & Beuls, Katrien. (2017). Meta-Layer problem solving for
computational construction grammar. The 2017 AAAI 2017 Spring Symposium

on Computational Construction Grammar and Natural Language Understanding.

203

Paul_Van_Eecke_def.indd 213 27/09/18 08:39

204 APPENDIX A. LIST OF PUBLICATIONS

Technical Report SS-17-02 : 258-265.

• Hoorens, Sébastien, Van Eecke, Paul & Beuls, Katrien. (2017). Constructions
at work! Visualising linguistic pathways for computational construction grammar.

Proceedings of the 29th Benelux Conference on Artificial Intelligence: 224-237.

• Van Eecke, Paul & Fernandez, Raquel. (2016). On the influence of gender
on interruptions in multiparty dialogue. Proceedings of Interspeech 2016 : 2070-

2074.

Van Eecke, Paul & Steels, Luc. (2016). The role of pro- and anti-unification

in insight grammar learning. BeNeLearn: Belgian and Netherlands Conference

on Machine Learning.

• Adrian, Kemo, Bilgin, Aysenur & Van Eecke, Paul. (2016). A semantic dis-
tance based architecture for a guesser agent in ESSENCE’s location taboo chal-

lenge. Diversity @ ECAI International Workshop on Diversity-Aware Artificial

Intelligence Workshop Proceedings: 33-39.

• Cornudella, Miquel, Van Eecke, Paul & van Trijp, Remi. (2015). How intrinsic
motivation can speed up language emergence. Proceedings of the European

Conference on Artificial Life 2015 : 571-578.

• Van Eecke, Paul. (2015). Achieving Robustness through the Integration of
Language Production in Comprehension. Proceedings of the EuroAsianPacific

Joint Conference on Cognitive Science. CEUR Workshop Proceedings 141 : 187-

192.

Paul_Van_Eecke_def.indd 214 27/09/18 08:39

Index

operator, 43

agent, 141

alignment, 143

anti-unification, 91

Babel2, 23

coherence, 172

communicative success, 171

comprehension lock, 35

conditional part, 40

consolidation, 52

construction, 39

construction application, 46

construction inventory, 46

construction network, 47

construction score, 48

construction set, 47

contributing part, 40

cultural language evolution, 18

debugging, 112

diagnostics, 51

evolutionary linguistics, 16

expansion operator, 44

FCG, see Fluid Construction Grammar

FCG Interactive, 54

feature deletion, 107

feature types, 41

feedback, 143

Fluid Construction Grammar, 32

footprints, 45

formulation lock, 35

generalisation, 122

goal test, 49

grouping strategy, 149

hashing, 48

initial transient structure, 38

interpretation, 143

iterated learning, 18

language games, 19

lateral inhibition, 157, 166

lexical strategy, 144

meaning representation, 50

meets constraint, 38

meta-layer, 51

MoLe, 23

n-gram strategy, 154

origins of syntax, 137

overwriting operator, 44

pattern strategy, 159

population, 139

precedes constraint, 38

predicate deletion, 107

pro-unification, 125

procedural attachment, 44

repairs, 51

205

Paul_Van_Eecke_def.indd 215 27/09/18 08:39

206 INDEX

scene, 141

search, 46, 174

specialisation, 122

topic, 142

transient structure, 36

type hierarchy, 66

unit deletion, 109

unit pairing, 98

value relaxation, 107

variable decoupling, 102

word order constraints, 38

world, 138

Paul_Van_Eecke_def.indd 216 27/09/18 08:39

		2018-09-27T08:45:04+0200
	Preflight Ticket Signature

