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Abstract— Individuals suffering from cognitive impairment 
require early diagnosis and frequent follow-up. However, as the 
healthcare system is overburdened, contact moments with patients 
are sparse. Digital biomarkers are a form of non-intrusive 
continuous measurements of cognitive health, found in daily 
activities. They can help in the diagnosis and follow-up of cognitive 
impairments. Playing videogames is an example of these daily 
activities which requires cognitive effort, hence carrying cognitive 
information. However, extracting these digital biomarkers from 
commercial games tends to be challenging. To this end, we 
explored capturing digital biomarkers from  existing card games 
through computer vision. A toolkit was designed for the standard 
Microsoft Solitaire Collection, allowing for unobtrusively 
measuring digital biomarkers. Results show that this technique 
allows for real-time processing of cognitive digital biomarkers. 
Digital biomarkers were captured from 44 participants in three 
age groups. An initial data exploration supports the promise of 
these digital biomarkers as bearers of cognitive information. 
Differences were seen amongst the age groups caused by age-
related cognitive changes. These results suggest that digital 
biomarkers in commercial games can be used for unobtrusive 
long-term cognitive monitoring with minimal burden on patient 
and physician, potentially leading to a more complete, clear 
cognitive profile. 

Keywords— Digital Biomarkers, Cognitive Health, Game 
Analysis, Card Games, Image Processing 

 

 

 

 

I. INTRODUCTION 

Worldwide millions of people suffer from cognitive 
disorders such as depression (322 million), anxiety (264 
million), or dementia (50 million)[1], [2]. Even milder cognitive 
impairments such as Mild Cognitive Impairment (MCI) can 
hamper several cognitive functions such as attention, executive 
functioning or social cognition. Depression alone accounts for 
4.3% of the Global Burden of Disease, making it the largest 
cause of disability worldwide [3]. The cost of dementia, not 
including the emotional stress on families, was estimated at 818 
billion dollars in 2015 [1]. Anxiety and depression combined 
account for a global cost of 1.15 trillion dollars per year [4]. 

Hence, early diagnosis and frequent follow-up of mental 
health problems is crucial to managing the disease, allowing for 
timely treatment and disease progression mitigation. It ensures 
finding the best sources of support and making informed 
decisions about the future, even if the disorder is untreatable [5]–
[9]. For some cognitive ailments, especially dementia, diagnosis 
is often non-existent or made in a later stage of the disease. A 
study in 2015 reported that 58% of all dementia cases in the USA 
go undiagnosed [10]. This is why, in 2017, the World Health 
Organization (WHO) endorsed the Global action plan on the 
public health response to dementia focusing amongst others on 
diagnosing cognitive impairments in an earlier stage.  

A considerable part of diagnosis and follow-up in traditional 
medicine involves the use of biomarkers. Biomarkers are 
defined by the WHO as “any substance, structure, or process that 
can be measured in the body or its products,  and that influences 
or predicts the incidence of outcome or disease” [11]. They are 
an objective way to indicate biological and pathogenic processes 
or responses to therapeutic interventions, utilized in the fields of 
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disease prediction, diagnosis, and prognosis [12]. A well-known 
biomarker used in medical diagnosis is e.g., the presence of 
Amyloid beta in cerebral spinal fluid for Alzheimer’s Disease 
[12],[13]. Asides from biomarkers to aid in the screening, 
diagnosis, and follow-up of mental health illness, which are 
often expensive and invasive, neuropsychological tests are 
common practice. Well-known cognitive tests to aid in the 
screening for cognitive impairments are e.g., the Mini-Mental 
State Examination (MMSE) or the Montreal Cognitive 
Assessment (MoCA) are used to screen for dementia [14], [15]. 
While these tests are less invasive and less expensive than 
capturing biomarkers, they are also characterized by lower 
specificity and sensitivity [16]–[22]. That is why there is an 
increasing interest in digital biomarkers. Digital biomarkers are 
defined as “objective, quantifiable physiological and behavioral 
data that are collected and measured by means of digital devices 
such as portables, wearables, implants or digestibles” [23]. 

 Digital biomarkers have the possibility to give deeper 
insight to specialists and patients, providing a source of data 
from text interactions, home data, GPS location, but also games. 
Mandryk and Birk point out that a variety of activity traces can 
be gathered from in-the-wild gameplay of COTS games and 
considered as digital biomarkers of cognitive health [24]. The 
contribution of this paper is to explore gameplay as an additional 
medium to capture digital biomarkers for mental health. In 
particular, this paper presents a new method of defining digital 
biomarkers in games and a toolkit for collecting digital 
biomarkers of cognitive impairment through gameplay. The 
toolkit and method are developed to work with existing card 
games, i.e. the Microsoft Solitaire Suite, that people already play 
and enjoy. Finally, an exploratory data analysis is shown to 
demonstrate the feasibility of the toolkit. 

II. BACKGROUND 

In this section, we first explore the potential digital 
biomarkers for mental health. Next, we present games as a 
viable source for capturing these digital biomarkers. Next, we 
explore challenges when games are used that are developed by 
research labs. Finally, we present the opportunities of using 
commercial-of-the-shelves games as a source of digital 
biomarkers. 

 

A. Digital Biomarkers 

Today, in the cross-domain of computer science, 
engineering, biomedicine, regulatory science, and informatics, 
interest is growing in the digital counterparts of biomarkers. The 
surge in interest has sparked the founding of a journal by Karger 
in September 2017 [23] dedicated to this topic only.  Compared 
to classical pen-and-paper tests, the use of digital biomarkers has 
shown advantages such as reduced cost, unobtrusive 
measurement and the possibility of continuous data gathering.  
In contrast to episodic measurements of classical biomarker and 
pen-and-paper tests, which are often taken biannually or yearly, 
digital biomarkers can be captured on a  daily basis. This makes 
the findings more robust to patients having a momentary lapse, 
feeling stressed, examined, or being tired because of a bad nights 
rest. It has also been shown that pen-and-paper tests are 
vulnerable to practice effects due to the fixed course of the tests 
[25]–[27]. More reliable and comprehensive cognitive test 
batteries do exist, but these lengthy tests have to be 
administrated by a trained health professional and require the 
often frail participant to go to a specialized institution. In these 
specialized institutions, often one specialist is assigned to 
follow-up the disease progression as intra-rater reliability is 
proven to be better than inter-rater reliability [28]. However, 
even these specialists suffer from bias, reducing the overall 
precision of these follow-up tests [29]. Moreover, as these 
specialists are overburdened, contact moments can be sparse. As 
shown by the Digital Biomarkers Department of Roche in Fig. 
1, sparse contact moments can cause neuropsychologist to miss 
the bigger picture as patients tend to recall symptoms for smaller 
time periods than the follow-up period actually spans [30]. For 
people suffering from mental degeneration, remembering and 
evaluating the severity of symptoms can prove even more 
difficult.  

Digital biomarkers possibly solve many of these problems. 
They may increase the ecological validity by increasing the 
temporal and spatial resolution of the captured behavior during 
activities of daily life [31]. Secondly, they may unlock previous 
unobtainable sources of behavioral, social, environmental, and 
physiological data [32] with minimal effort required from 
physician and patient. Finally, as these digital biomarkers are 
captured by digital devices, they are less prone to human bias 
and less susceptible to the white-coat effect[33].  

 

Fig. 1. Limited contact moments can cause physicians to miss the bigger picture [18] 
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The advantages of digital biomarkers have sparked several 
initiatives on diverse platforms using various sensors.  Redfield 
et al. used accelerometers of smartphones to measure gait, finger 
tapping, voice, and balance as a measure for Parkinson disease 
[34].  Saeb et al. found strong evidence that mobile phone sensor 
data such as GPS and phone usage correlates to depression [35].  
Faurholt-Jepsen et al. and Beiwinkel et al. did research on 
biomarkers and bipolarity, correlating smartphone information 
such as calls, text messages, and GPS with mental disorders 
[36][37]. In a study using the Beiwe app, schizophrenia relapses 
were correlated with anomalies in patient behavior prior to 
relapse [38]. Hagler et al. created an in-home monitoring system 
to assess gait, a predictor of cognitive decline [39]. While in 
most cases the sample sizes were too small to draw conclusions 
about the general population, these experiments show promise 
of continuous monitoring of at-risk populations with minimal 
effort required from the user.  

B.  Digital Biomarkers and Games 

Games are a natural source of information on behavior, 
cognitive performance, motor performance, social behavior and 
affect, for people of all ages [24]. According to Suits, games are 
interactive systems, where players present “a voluntary attempt 
to overcome unnecessary obstacles”[40] Through playful 
design, and intuitive rules, players are motivated to push their 
own boundaries [41]. In certain cases, it can even cause a state 
of flow [42], a gratifying state where players lose track of time 
and place because the challenging game activity necessitates all 
of their attention and skills. This flow experience is found 
enjoying and makes games autotelic, players are intrinsically 
motivated to play [40]. As research has shown that decrease in 
motivation has an effect on participant performance of classical 
pen-and-paper cognitive tests[43], the potential of games to 
maximize motivation makes them a suitable medium for 
capturing digital cognitive biomarkers. 

There are already many examples of gamified collect digital 
biomarkers which may be indicative for cognitive performance. 
Episodix, a gamificated California Verbal Learning Test, 
manages to classify individuals into three categories: healthy, 
mild cognitively impaired, and Alzheimer Dementia [44]. A 
mirror game designed by Słowiński et al. captures digital 
diagnostic biomarkers in the form of non-verbal synchrony and 
neuromotor functions. Utilizing statistical learning techniques, 
they could discern users suffering from schizophrenia from their 
healthy counterparts, with an accuracy of 93% and a specificity 
of 100% [45]. Neuro-World, a collection of 3D mobile games 
by Jung et al. [46], estimates Mini-Mental State Examination 
scores from gameplay metrics such as score, time to clear a 
stage, and the number of cleared levels. Their games test 
perception, object memory, sequential memory, selective 
attention, vigilance attention, and visual investigation. Leduc-
McNiven et al. developed WarCAT and Lock Picking [47]. 
WarCAT, a card game based on War, measures recognition and 
recall while Lock Picking measures problem-solving skills by 
letting the user search for an optimal score. Smartkuber, the 
augmented reality game for cognitive screening made by 
Boletsis and McCallum [48] uses five minigames to screen for 
cognitive impairments, revealing significant correlations and 
comparable validity to the Montreal Cognitive Assessment, a 

popular neuropsychological screening test for Mild Cognitive 
Impairment. 

C. Challenges with serious games 

These games fall under the category serious games, defined 
as “Games that a serious goal, rather than entertainment, 
enjoyment or fun, as their primary purpose”[49]. In this case, 
their primary purpose is to provide information on cognitive 
performance. Unfortunately, research shows that these tailor-
made serious games suffer from disadvantages. First, these 
games made in research labs often miss the funding and 
development time of commercial games. Developing a serious 
game that can compare to commercial games in quality, is often 
out of reach due to differences in manpower, budget, and 
expertise. As research cycles differ from game release schemas, 
it is likely that the game will be outdated by the time the game 
is programmed, funding is gathered, and medical ethical 
clearance is approved [50]. Maintaining the game and shipping 
updates also prove difficult as this is not the main goal of 
research labs. 

Secondly, despite the efforts to make them as enjoyable as 
possible, research has shown that custom-made games for 
cognitive training still fall short in engagement and suffer from 
attrition in longitudinal studies. The repetitiousness of many 
gamified assessments and training can lead to participant 
disengagement, possibly impacting the data quality [51] [52] 
Furthermore, it has been reported that it is the affectionate bond 
with the experimenter and not the cognitive training per se that 
motivated participants to continue [53]. This suggests that there 
is a mismatch between the serious games being developed for 
cognitive functioning and the games people effectively enjoy 
playing. It may be that serious games, while valid with respect 
to the mental health purpose, perhaps do not provide 
‘meaningful play’[54]. 

D. Opportunities of Commercial-Of-The-Shelves games   

The playing of commercial games is weaved into the fabric 
of everyday lives; such games are part of the socio-cultural 
environment[54]. As mentioned above, the power of digital 
biomarkers lies in its frequent, longitudinal measurement, 
stressing the importance of the autotelic nature of games. Boot 
et al. discovered during post-intervention surveys that the games 
of the control condition, such as word and puzzle games, were 
found more enjoyable than those of the gamified test group [55]. 
This enjoyment of the game led to higher motivation to adhere 
to the cognitive training, indicating that commercial games may 
be a better fit for capturing digital biomarkers. This may make 
COTS games a more valid, suitable medium to gather digital 
biomarkers for cognitive performance [56]. However, the 
downside of using these commercial, off-the-shelf (COTS) 
games is that they gameplay is less ‘controlled’, they may 
demand  more complex and variable actions from players, 
simultaneously addressing multiple cognitive functions from the 
players. This interplay of different cognitive functions may 
introduce undesired non-therapeutic effects or add uncertainties 
in screening and in detecting impairments in cognitive 
functioning [57].  
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We are not the first to promote the use of commercial, off-
the-shelf (COTS) games for assessment of cognitive 
performance. Jimison et al. showed that there is a correlation 
between Mild Cognitive Impairment and performance in the 
game FreeCell. They found that higher variability in scores and 
more sensitivity to game difficulty are indicative of cognitive 
impairment[27]. Thompson et al. explored the relation between 
common puzzle games and standard neuropsychological tests 
and found that performance on these smartphone-based games 
is indicative of cognitive ability across several cognitive 
domains[56]. Furthermore, working memory was correlated to 
sudoku performance by Grabbe, showing the potential of this 
popular game for measuring cognitive performance [58].  

However, as aforementioned, capturing digital biomarkers in 
COTS games can be troublesome, as altering the code of the 
game is impossible without the permission of the game 
developer. An alternative is recording and annotating gameplay 
manually, reviewing hours of gameplay and manually tagging 
digital biomarkers. Yet, manually annotating game data 
reintroduces the limitations of the aforementioned classic tests. 
It reintroduces human error, as manually timing of events is 
more inaccurate and inconsistent. Secondly, manually 
annotating is a time-consuming and tedious task. Finally, it 
limits the number of metrics captured, it refrains from capturing 
certain digital biomarkers. More fine-grained biomarkers such 
as speed or certainness of execution are not measurable from 
manually annotating gameplay alone. Moreover, if the 
researchers want to explore previously uncaptured biomarkers, 
the annotating process starts anew.  

This paper explores a different method for capturing digital 
biomarkers, namely computer vision and more specifically 
image processing algorithms.  By utilizing machine learning and 
image processing, gameplay can be analyzed in real-time and 
digital biomarkers can be extracted and processed in an efficient 
manner. In order to explore the viability of image processing to 
capture digital biomarkers on a COTS game, a multithreaded 
C++ desktop application was developed that utilizes the Open 
Source Computer Vision Library (OpenCV) [59]. It is built as a 
generic toolkit to capture and analyze card game play data. It 
acts as a silent watcher which unobtrusively captures, processes, 
and analyses gameplay from the standard Microsoft 10 Solitaire 
Collection. Currently, the code of the game rules is implemented 
for Klondike Solitaire and FreeCell versions. In the next 
sections, we will demonstrate how the toolkit operates by using 
FreeCell as an example.  

III. TOOLKIT CONCEPTS 

This section contains information necessary to grasp the 
mechanisms behind the toolkit. First, the rules and board space 
of FreeCell are illustrated. Secondly, the method of defining 
digital biomarkers is explained. Finally, the global concept of 
capturing digital biomarkers in gameplay is described. 

A. The FreeCell Board Space 

FreeCell is a well-known and popular Solitaire variant. It is 
played with all 52 cards in a deck, which are all dealt face-up, at 
the beginning of the game. This transparency of the board makes 
that almost all FreeCell games are solvable. Of the original 

32000 different starts of the FreeCell game (the Microsoft 32K 
variant), only one is deemed impossible to solve, making 
approximately 99.99% of all FreeCell deals solvable [60].  

As seen in Fig. 2, the playing board consists of three parts. 
The large section at the bottom is called the build stack, where 
all fifty-two cards reside at the start of the game,  divided over 
eight stacks. The part at the top left of the board is called the 
storage stack. Here, a card can be temporarily stored during the 
game. The last section of the board, at the top right, is called the 
suit stack. The goal of the game is to move all the cards here. 
Playing cards comprise four suits: clubs, diamonds, hearts, and 
spades. On the corresponding suit stack, the cards need to be 
placed per suit in ascending order: starting with the ace, then 
two, three etc., ending with the king. When all the cards are 
placed on the suit stack, the game is won. 

To accomplish this goal, some rules have to be followed. It 
is allowed to move cards from one build stack to another if 1) its 
rank is one lower than the current top card of the pile and 2) of 
the opposite color. For example, a nine of (red) hearts can be 
placed on a ten of (black) clubs. The general rule is that only one 
card is allowed to move at once. However, cards moved on top 
of each other with alternating colors and descending rank are 
allowed to move to a new location, given that there are enough 
free spots on the build stack and/or storage stack. The maximum 
number of cards that are allowed to be moved in one single move 
can be calculated with the following equation: #	movable	cards	 = (1 + #	free	spots) × 2(#	 	 ). 
B. From Game to Digital Biomarker 

As aforementioned, measuring digital biomarkers from 
COTS games can be troublesome since these games 
simultaneously require multiple cognitive functions, in contrast 
to gamified tests which are custom made to capture a specific 
cognitive function. Therefore, it is imperative to outline the 
methods that were used to explore, extract and define specific 
digital biomarkers from gameplay. In order to translate 
gameplay into digital biomarkers, we applied a methodical 
approach existing of three phases. We first started by creating an 
exhaustive list of game events. In the second phase, we 
converted them into player mistakes. In the third phase, we 
quantified these mistakes to transform them into possible digital 
biomarkers. 

 

 
Fig. 2. The FreeCell Board Space 
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For the first phase, two researchers in the field of human-
computer interaction (KG and VV, co-authors of this paper) and 
two master students (JK and CD, also co-authors of this paper) 
created a list of all possible game events for the game FreeCell. 
The literature on the topic of FreeCell and its rules was gathered, 
studied, and processed [61]–[66]. This literature ranged from 
optimal solvers, to previous cognitive studies, to hardness 
analysis. This gave insight into the common pitfalls, optimal 
solving strategies, and cognitive studies previously done on the 
subject. Next, to this literature study, the game was played in 
several sessions. In a series of iterations, a list of game events 
was drafted and refined until no more game events were found. 
Through this processed literature, in combination with the 
information gathered through the extensive gameplay, a 
thorough, comprehensive list of game events was generated. 
These game events consisted among others of game outcomes 
(e.g. game won or lost), player moves (e.g. storing a card in the 
storage), and incorrect player moves (e.g. placing a card on 
another card with the same color on the build stack).  

In the second phase, to reduce this list and prevent duplicate 
records for the same event (e.g. positively and negatively 
phrased game outcomes), all game events were converted as 
player actions that may be indicative of cognitive impairment. 
For example: ‘User makes a correct move’ was translated into 
the player mistake ‘User makes an incorrect move’. Next, player 
actions were further specified. For example ‘User makes an 
incorrect move’ was further detailed, into ‘User makes a rank 
error’ and ‘User makes a suit error’. This resulted in a set of 16 
possible player actions indicative of cognitive performance. 
Next, this set of player actions was reviewed again, and only 
those actions that can be captured unambiguously via playing 
behavior were retained. Therefore, player actions which 
required insight into the current mindset of the player were not 
captured. Additionally, only player actions which are 
unquestionably erroneous remained. For example, “Player 
stores a card with no clear advantage.” was omitted as well. 

Finally, in the third phase of our systematic approach, these 
remaining player actions were quantified. In other words, for 
each player action, the measurable element was determined as 
well as the type and range of (i.e. the game outcome that is 
measurable on a quantitative scale). These final elements are 
considered as potential digital biomarkers as they can be 
unambiguously captured and are potentially influenced by 
cognitive status. For FreeCell, 10 digital biomarkers were 
defined. Next to these biomarkers, metadata concerning the 
games and moves are captured. Table 1 shows all 10 digital 
biomarkers and metadata as captured in FreeCell. 

All digital biomarkers are designed to measure at the lowest 
level as possible. In this manner, they can become the building 
blocks of more complex composite digital biomarkers. For 
example, digital biomarkers such as ‘Think time before making 
an erroneous move’ or ‘longest error streak’, can always be 
extracted as a combination of these original digital biomarkers. 
Furthermore, metadata of the x- and y- coordinates can be used 
to calculate the speed of moves. By capturing this information 
at the lowest level, there are few limitations on the number of 
derivates or combinations of digital biomarkers.  

C. Efficiently Capturing Digital Biomarkers 

To efficiently capture digital biomarkers, the toolkit should 
not process images when the user is not interacting with the 
game (e.g. thinking of the next move). Therefore, event-driven 
interrupts are programmed to ensure optimal performance. 
These events are triggered by the user and consist of a 
combination of keyboard, controller or mouse input. As 
FreeCell is solely played with the left mouse button, the event-
driven interrupts consist of left-clicking, double-clicking, and 
dragging. 

TABLE 1. DIGITAL BIOMARKERS AND METADATA CAPTURED IN FREECELL 

Digital 
Biomarker 

Explanation Value 

Suit Error (SE) This error is prompted when a 
card is placed on another card 
with incompatible suits. 

total 

Rank Error 
(RE) 

This error is prompted when a 
card is placed on another card 
with incompatible ranks. 

total 

Moved Too 
Many Cards 
Error (MMCE) 

This error is prompted when a 
card or a group of cards is 
moved when there is not enough 
room to execute said move. 

total 

Unmovable 
Card Error 
(UCE) 

This error is prompted when the 
user tries to move a card which 
is unmovable (i.e. there are still 
cards above the card that need to 
be moved before the original 
card can be moved). 

total 

Think Time 
(TT) 

Think Time is defined as the 
time between the last card 
placed and the first card touched 
to make a new move.  

ms 

Move Time 
(MT) 

This is the time necessary for a 
user to move a card from one 
place to the other.  

ms 

Game Result 
(GR) 

The outcome of the game, 
whether the user was able to 
place all cards on the four suit 
stacks and won the game.  

WON/ 
LOST 

End of Game 
(EoG) 

Whether the user gave up or the 
game indicated that there were 
no more moves. 

YES/NO 

Number of 
undo’s (NU) 

The number of undo’s requested 
by the user. 

total 

Number of 
hints (NH) 

The number of hints requested 
by the user. 

total 

Move Details  Metadata of each move is stored 
such as x- and y-coordinates, the 
selected card, source location, 
destination location and the 
number of cards moved. 

x-coordinate, y-
coordinate, 
rank/suit (e.g. 5H 
for five of hearts), 
location (0-15)  

Game 
Information 

Metadata concerning the game: 
difficulty of the game, seed to 
generate the deal, the starting 
time, and the end time of the 
game is logged 

Easy/Normal/Hard, 
seed number, 
UNIX Timestamp 
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The general program flow can be seen in Fig. 3. First, the 
program waits for user events.  Secondly, when these events 
arise, the program immediately captures the screen and 
corresponding user input. This combination is crucial to 
determine the action and outcome of the user. Thirdly, image 
processing is utilized to capture any visual cues of the outcome 
(e.g. the program cards that have been moved). Finally, the user 
input is combined with the visual cues of the game to evaluate 
the event. It is crucial that when such a game event happens, the 
program stops any calculations it is doing at that point (e.g. 
processing previous moves). To solve this, three threads are 
started at the beginning of the program. The first thread is the 
main thread, it processes inputs and screenshots, stores the 
digital biomarkers and handles other critical information such as 
coordinates of important locations. The second thread is purely 
dedicated to listening and capturing user input. The third thread 
is triggered by the user input and captures the next stable 
screenshot. This last thread has the highest priority of all threads, 
as capturing the screen as soon as possible after the user has 
made a move is crucial to determine the outcome.  

IV. IMPLEMENTATION 

This section contains information concerning the 
implementation of the program. First, the setup is illustrated, 
explaining all necessary steps to play the game. Secondly, the 
card region extraction algorithm is clarified. Thirdly, how single 
cards are extracted is described. Fourthly, the card classification 
algorithm is explained. Finally, performance metrics of the 
program are given. 

A. Setup 

Once the program is activated, it starts the Microsoft 
Solitaire Collection. From there on, the program continuously 
monitors the state it is in: playing, choosing a game, selecting a 
difficulty, starting a game, ending a game, etc. To determine the 
state, the program follows the state diagram as illustrated in Fig. 
4. Depending on the specific state of the game, interactions of 
the user will be interpreted in a different way. For example, in 
the PLAYING state, double-clicking will trigger an event to 
detect changes in the playing board state. While in the 
MAINMENU state double-clicking is ignored. To prevent 
essential board information from being obfuscated by pop-ups 
or animations, and to ensure move stability, hints need to be 
turned off in the settings, as well as single tap to move, alerts, 
tutorial, background animations, and end animations.  

As some players may have the game open prior to launching 
the program, the game does an initial check on whether the 
starting state is MAINMENU or PLAYING. The central state of 
the program is the PLAYING state. Unless the player accesses 
the menu, requests hints, or starts a new game, the program will 
just follow the natural game progress. The program processes 
these changes in state by detecting button clicks. For these 
buttons, the dynamic position of the button is extracted through 
contour detection.  

B. Card Region Extraction 

At the beginning of a game, each card is clearly visible. But 
as the game progresses, some card stacks tend to grow larger and 
cards tend to overlap (Fig. 5). Due to this overlap, each card 
needs to be extracted (i.e. the visible portion of each card needs 
to be separated) and classified (i.e. the rank and suit need to be 
determined) at the start of the game. This way, a model of the 
entire playing field is mapped. During the rest of the game, only 
the top cards are extracted and classified to monitor the progress 
of the game. 

 
Fig. 3. General program flow 

 
Fig. 4. State diagram of the program 

 
Fig. 5. At the start of the game, the rank and suit of each card is clearly 
visible (left). After the game progresses, the rank and suit can be hidden 
by overlapping cards (right) 
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To extract all cards, the screenshot of the board will be split 
into different pieces according to the card regions. For FreeCell, 
as aforementioned, there are eight regions on the build stacks, 
four on the storage stacks and four on the suit stacks. The 
coordinates of these 16 card regions will be used to determine 
the actual region the user interacts with. To find these regions, 
the screenshot of the board is first converted to grayscale, and 
next, by thresholding converted to a binary image (Fig. 6). 
Thresholding is an image segmentation technique that creates a 
binary image of a grayscale image based on a manually selected 
threshold. Then, all the contours of this image are found using 
the contour detection algorithms of OpenCV. Contours are the 
curves of continuous points that have the same color or intensity 
[67]. After filtering, only the contours that are larger than the 
size of a card (i.e. the card stacks) remain. We can draw a 
rectangle around each of these contours. The coordinates of 
these rectangles are then stored into a vector. This way, we can 
compare them with the coordinates of each click, thus being able 
to detect the cards the users interact with. 

C. Unique Card Extraction 

With the card regions defined, each card can be extracted and 
classified. The width of the cards is defined based on the width 
of the card region contours. As the ratio between the card width 
and height is resolution independent, the height can be inferred 
from the width. Then, the screenshot is divided into sixteen card 
regions as seen in Fig. 7.  

 Since cards are stacked, not all are completely visible on the 
screen. At the start of the game, cards that are partially visible 
have an aspect ratio of 0.4 (width over length). This way, if we 
extract card images of 0.4 times the card height, we can extract 
the card sections with the rank and the suit clearly visible (Fig. 
8). These sections are split in rank and suit using contour 
detection, they are stored in separate vectors and are ready for 
classification.  

D. Card Classification 

To classify the rank and suit, three algorithms are applied, as 
shown in Fig. 9. First, the contours of the rank are extracted as 
individual images. Secondly, the images are rescaled to a 
standard size (40x50 pixels for ranks, 50x50 for suits). Finally, 
the images are converted into a binary black and white image. 
These binary images are classified using a k-nearest neighbors 
classifier trained on different sets of rank and suit images. With 
every rank and suit classified, a digital representation of the 
board can be build and consecutive player actions can be 
interpreted. 

E. Performance 

To test the resource efficiency of our toolkit, a performance 
test was done on a computer (8GB RAM, i7 Intel Core 2.7 GHz). 
The extraction and classification performance of the whole 
board was tested over 10 different boards. Classification of the 
whole board, necessary at the start of the games, took on average 
51ms. The classification of all top cards, necessary for 
interpreting moves, took on average 32.1ms. Finally, the 
extraction and classification of the game seed number on the top 
right took on average 260.3 ms. This performance allows for 
near real-time evaluation of gameplay, with response times that 
are lower than the theoretical limits of what can be perceived by 
players[68]. This was confirmed during the exploratory study 
(see chapter V). Participants of the exploratory tests did not 
notice any interference of the program while playing the game. 

 
Fig. 6. A threshold image of FreeCell. All relevant information is shown 
in white while all noise is eliminated. 

 

Fig. 7. The 16 Card Regions of FreeCell. 
 

 
Fig. 8. An extracted card region with the first card extracted through the 
aspect ratio 

 
Fig. 9. (a) detecting the contours of the rank and suit (b) Extracted rank 
and suit. (c) The binary image of rank and suit ready for classification 
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V. EXPLORATORY DATA ANALYSIS 

To explore the potential of the toolkit for capturing digital 
biomarkers, a first exploratory study was conducted. Digital 
biomarkers were captured from three different age groups. 
According to literature on cognitive performance, age-related 
cognitive decline is a natural process [69]–[71]. Primarily 
working memory, motor control, episodic memory, spatial 
ability, reasoning, and processing speed deteriorate as people 
grow older [71], [72]. In other words, people need more time to 
complete tasks and find it harder to keep important information 
in mind.  Hence, the impact of age on player actions through 
digital biomarkers was explored as it may be indicative of 
cognitive performance. We aimed to explore whether digital 
biomarkers could discriminate among age groups,  and possibly 
show a decline for the older groups. The biomarkers were 
categorized into three groups: Time-related, Error-related, and 
Outcome-related Digital Biomarkers. 

A. Method 

Digital biomarkers were captured from users across three 
different age groups (18-25,45-55,65+). The first age group, 
from now on referred to as youth, contained 21 participants. The 
middle group, referred to as middle-aged, contained 12 
participants. The oldest group, referred to as elderly, contained 
11 participants. Each of these participants lived independently, 
had no known cognitive impairments or prior cognitive 
complaints. In addition, all participants were new to FreeCell.  

As they had no previous FreeCell experience, each 
participant was first briefed about the rules and mechanics of 
FreeCell via a fixed presentation. After this presentation, each 
participant got to play a practice game (seed number #25001) 
[73]. During this practice game, questions were allowed 
concerning the game rules. After this practice game, each 
participant played the same identical games (seeds #34898, 
#2365418 and #8840193). The choice for identical seeds 
eliminated differences in game performance due to the chance 
of having a more ‘generous’ deal. During these three games, 
questions were not allowed and players continued playing until 
they either finished the game, the game ended because of a lack 
of possible moves or until the user deemed that he/she was stuck 
and requested to end that game.  

B. Results 

This data was visually explored to give insight into age-
related playing differences. The goal is to show the possibilities 
of the toolkit. The information is divided into three distinct 
categories: time-related digital biomarkers, outcome-related 
digital biomarkers, and error-related digital biomarkers. 

1) Time-related Digital Biomarkers 
We were most interested in the digital biomarkers related to 

time spent thinking before making a move as this can possibly 
correlate to important cognitive functions for daily activities 
such as attention, executive function, and planning. The ‘young’ 
age group has an average think-duration of 6871.84ms (sd: 
2467.59 ms). The middle-aged group has an average think-
duration of 10383.40ms (sd: 5816.19 ms), while the ’elderly’ 
have an average think-duration of 13423.65ms (sd: 7089.50 ms) 
(Fig. 10).  

We explored the difference in time spent thinking before an 
erroneous or successful move, as seen in Fig. 11 and Fig. 12. For 
successful moves, players in the youth category thought on 
average 6805.76 ms (sd: 2402.36 ms), players in the mid age 
category 10755.85 ms (sd: 5840.93 ms); and the oldest group 
13241.61 ms (6750.04 ms). For erroneous moves, players in the 
youth category thought on average 7337.47 ms (sd: 4881.20 
ms), players in the mid age category 8487.77 ms (sd: 5462.14 
ms); and the oldest group 15448.09 ms (13395.10 ms). For all 
age groups, except for the mid age group, time spent thinking 
before making a successful move was shorter than for an 
erroneous move. The average think-duration of each move in 
time is shown in Fig. 16. The x-axis indicates the move number 
of the game, meaning, the first value on the x-axis corresponds 
to the first move of the game. The y-axis corresponds to the 
average think-duration of that specific move. Concerning Move 
Time, as shown in Fig. 13, people in the young category took on 
average 1578.82 ms (sd: 809.52) to move a card. For the middle-
aged category this was 1661.28 ms (sd:791.49 ms). The oldest 
category took 2103.04 ms (sd: 1298.41 ms) on average to make 
a move.  

2) Error-related Digital Biomarkers 
Errors made during gameplay may be indicative of planning, 

executive functioning, and attention as players are required to 
think ahead, processing the next couple of moves. The average 
total amount of errors made by each age group van be seen in 
Fig. 14. On average, the youth group made 12.2 mistakes, the 
middle-aged group 12.4 mistakes, and the elderly made 7.1 
mistakes. Concerning Rank Errors, the youngest group made 5.3 
errors on average, the middle-aged group 5.0 errors, and the 
oldest group 3.7 errors. For Suit Errors, 3.5, 3.6, and 1.6 errors 
were made on average for the youngest, middle, and oldest 
category. In regard to Unmovable Card Errors, the youngest, 
middle aged, and oldest category made 1.2, 1.3, and 0.5 errors 
respectively. Regarding the Too Many Cards Moved errors, the 
youngest age group made 2.3 errors on average, the middle-aged 
group 4.3 errors and the eldest group 2.5 errors. For requesting 
hints an average of 0.04 was found for the youngest group, 0.25 
for the middle-aged group, and 1.00 for the oldest group. For 
correcting unwanted moves, on average, 0.86 was found for the 
youngest group, 0.31 for the middle-aged group, and 0.39 for the 
oldest group. 

3) Outcome-related Digital Biomarkers 
Fig. 15 shows the percentages of the game won and lost. The 

results display that the win rate decreases with the increase of 
age group. The percent of games won by youth, mid age and 
elderly is, 91.3%, 77.1% and 60.9% respectively. 

VI. DISCUSSION 

Today, many cognitive impairments go undiagnosed, and 
those patients who have been diagnosed have sparse follow-up 
moments with neuropsychologists, due to restricted time and 
funding. This problem may be mitigated by adding digital 
biomarkers to the toolbox of neuropsychological assessment. 
Previous research has shown that daily interactions with 
technology can provide a trail of information on cognitive 
performance. This may be an efficient method of gathering 
digital biomarkers whilst reducing the effort from the user and 
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Fig. 10. Average Think Time. The vertical line resembles the 95%  
confidence interval 

 
Fig. 12. Average Think Time for a successful move 

 
Fig. 14. Average Total Errors 

 
Fig. 11. Average Think Time for an error 

 
Fig. 13.  Average Move Time 

 
Fig. 15. Total Percentage of games won 

 
Fig. 16. Average Think Time on the xth move 
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the healthcare system. Such digital biomarkers can help fill in 
the gap between consultations and can potentially help in 
screening, diagnosis, and prognosis of cognitive health. 

In this paper, we explored a novel way of capturing digital 
biomarkers via gameplay of card games, by utilizing image 
processing. The contribution of our work lies in the presentation 
of the generic toolkit using image processing, and a first 
exploration of player actions that can be indicative of cognitive 
performance. 

We built a generic image processing toolkit for card games 
to collect digital biomarkers on cognitive health. We chose the 
Microsoft Solitaire Collection, coded general image processing 
algorithms to detect cards, and implemented game rules for two 
games: Klondike Solitaire and FreeCell. As these card games are 
popular amongst young and old, and weaved in the daily lives 
of people, it may be a good fit to capture digital biomarkers. 
Modularity of the program was kept in mind while 
programming, such that this toolkit can easily be extended to 
other card games such as TriPeaks and Pyramid. The card 
detection algorithm is generalizable for all card games in the 
Microsoft Solitaire set, only the game rules need to be 
implemented. Performance tests showed that this toolkit is able 
to capture digital biomarkers at real-time with minimum stress 
on the computer. All participants of the exploratory tests did not 
notice any interference of the program while playing the game. 
No visual or auditory queues came up. The program did not 
stress the performance of the computer, gameplay remained as 
smooth as if the toolkit’s software program was not there. 
However, technical improvements can still be made for the 
toolkit. Up to date, threshold values are manually selected. This 
can be set automatically using techniques such as Otsu 
Thresholding, making the program more resilient to changes 
[74]. Furthermore, currently, all animations need to be turned off 
to ensure image stability during processing. Hence, updates 
could be made to make the toolkit more durable and less 
susceptible to animations. Moreover, more advanced machine 
learning techniques, such as deep learning, can be explored to 
further improve the robustness of classification [75]–[77]. The 
toolkit can also be adapted to other 2D-games with minor 
adjustments. New game rules need to be implemented and the 
machine learning models need to be retrained to detect new 
targets. Furthermore, new digital biomarkers need to be defined 
as not all digital biomarkers from this study are generalizable for 
all games. 

As a first exploratory study, data from 44 participants from 
three different age groups was captured. In this paper, we limited 
us to visualizing the data and descriptive statistics. Results from 
this exploratory study suggest that data gathered via the generic 
toolkit can discriminate among different age groups of 
cognitively healthy participants, and possibly provide 
information on cognitive performance. At a group level, all 
time-related digital biomarkers show a steady decline the older 
the age group. This can be expected as cognitive functions 
critical to cognitive aging such as processing speed and working 
memory tend to decline[78]. As expected, the older the age 
group, the less games were won on average. However, for Error-
related digital biomarkers, the reverse was true. Older adults 
made less errors than their younger and middle aged 
counterparts. This could indicate that older adults need more 

time to think of a move, but make their moves with more 
caution. 

However, as this is a first, exploratory investigation, this 
study also has its shortcomings and any interpretations need to 
be done in a conditional manner.  First, the groups were small 
and unbalanced, making results not generalizable to a wider 
population. Secondly, we compared cognitive healthy age 
groups as opposed to groups with cognitive impairments. 
Thirdly, differences were found at the group level only, no 
investigation was carried out at the individual level. If daily 
interactions are going to be predictors of cognitive performance, 
results should be obtained at the individual level. To this end, 
data should be captured over a longer period of time. Results 
should be compared inter-group and intra-individually. In this 
manner, a more accurate analysis of digital biomarkers as 
bearers of cognitive information can be performed (i.e. 
improving sensitivity and specificity). Hence, in the future, data 
should be captured over a longer period of time from larger 
populations, and populations with cognitive impairments. 
Ultimately, with the help of machine learning models, 
cognitively healthy participants could be discerned from their 
impaired counterparts, on the basis of multiple combined digital 
biomarkers. Finally, more complex composite digital 
biomarkers should be explored.  

VII. CONCLUSION 

Early diagnosis and frequent follow-up of cognitive health 
problems is crucial to managing disease progression, allowing 
for timely treatment. Digital biomarkers obtained via gameplay 
have potential to aid in early diagnosing of cognitive health 
issues. To this end, we developed a generic toolkit for card 
games, using image processing, to capture digital biomarkers 
indicative of cognitive performance. First, we applied a 
methodical approach to define 10 digital biomarkers indicative 
of cognitive performance. Next, we implemented the toolkit, on 
the top of the Microsoft 10 Solitaire Collection, as a 
multithreaded C++ desktop application, utilizing the Open 
Source Computer Vision Library to unobtrusively monitor 
games. Performance tests showed that this toolkit is able to 
capture digital biomarkers at real-time with minimum stress on 
the CPU. Finally, we conducted an exploratory user study to 
verify whether we can discriminate amongst different age 
groups, characterized by different cognitive performance due to 
normal cognitive ageing. The results of the exploratory study 
suggest, at a group level, that age groups differ. Time-based 
digital biomarkers and outcome related measures show a steady 
decline the older the age group. Although this is only a first 
exploratory study, the results suggest promise of the use of 
games, weaved in the daily life of players, for the capturing of 
digital biomarkers for cognitive health. 

VIII. SOURCECODE 

We would like to invite all researchers to build on, 
repurpose, and utilize this tool. All source code can be found on 
https://github.com/kgielis/ImageProcessingMicrosoftSolitaireC
ollection. All work based on this code should be referenced 
correctly. Fair use and modification is allowed, as described by 
The GNU General Public License v3.0. 
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