

Polyhedral results and
branch-and-cut
for the resource loading
problem

KBI_1908

Song G, Kis T, Leus R.

FACULTEIT ECONOMIE EN BEDRIJFSWETENSCHAPPEN

Polyhedral results and branch-and-cut

for the resource loading problem

Guopeng Song1, Tamás Kis2, Roel Leus1∗

1ORSTAT, Faculty of Economics and Business, KU Leuven, Belgium
2Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest, Hungary

Abstract

We study the resource loading problem, which arises in tactical capacity planning. In this

problem, one has to plan the intensity of execution of a set of orders so as to minimize a cost

function that penalizes the resource usage above given capacity limits and the completion of

the orders after their due dates. Our main contributions include a novel mixed-integer linear-

programming (MIP) based formulation, the investigation of the polyhedra associated with the

feasible intensity assignments of individual orders, and a comparison of our branch-and-cut

algorithm based on the novel formulation and the related polyhedral results with other MIP

formulations. The computational results demonstrate the superiority of our approach. In our

formulation and in one of the proofs, we use fundamental results of Egon Balas on disjunctive

programming.

Keywords: capacity planning, mixed-integer programming, facets, branch-and-cut

1 Introduction

In the resource loading problem (RLP), a portfolio J of n independent orders (jobs) is to be

executed over a time horizon, which is discretized into equal-length time periods (for instance, days

or weeks) indexed by t (t = 1, . . . ,H). A pre-specified regular workforce capacity Ct is available in

each period t. Each order j (j = 1, . . . , n) has a work content denoted as pj (e.g., man-hours), a

release date (period) rj in which it can start and a due date (period) dj , where 1 ≤ rj ≤ dj ≤ H.

Each order must be executed without preemption. During the execution of order j, an upper

bound UBj and a lower bound LBj are imposed on the intensity (fraction) of its work content to

be performed in each period (with 0 < LBj ≤ UBj ≤ 1); thus the duration of an order is not fixed,

∗Corresponding author. E-mail: guopeng.song@kuleuven.be (G. Song), kis.tamas@sztaki.mta.hu (T. Kis),
roel.leus@kuleuven.be (R. Leus).

1

but rather dependent on the intensity assigned to it in each period of execution. A feasible solution

specifies an intensity assignment yjt for each order j and time period t such that there is a starting

period sj and finishing period fj with the following properties: (i) yjt = 0 when t < sj or t > fj ,

(ii) LBj ≤ yjt ≤ UBj for t ∈ {sj , . . . , fj}, (iii) sj ≥ rj , (iv)
∑

t yjt = 1. To express the objective

function, let zt = max{0,
∑

j yjtpj − Ct}, and Tj = max{0, fj − dj}. The goal is to find a feasible

solution which minimizes the cost
∑

j wjTj + σ
∑

t zt, where wj is the tardiness penalty per time

period for order j, and σ the unit cost of non-regular capacity.

Example 1. Given a planning horizon with H = 5, with a regular capacity Ct = 3 in each period t,

there are three orders with p1 = p3 = 4 and p2 = 5; r1 = r2 = 1, r3 = 2; d1 = d2 = 3 and d3 = 4.

As for lower and upper bounds, LB1 = 1/4, UB1 = 1/2; LB2 = 1/5, UB2 = 3/5; LB3 = 1/4,

UB3 = 3/4. The tardiness penalties per period are w1 = w2 = w3 = 5, and the unit cost of

non-regular capacity in each period is σ = 2. An optimal solution is depicted in Figure 1 with

execution intensities (1/2, 1/4, 1/4, 0, 0)T for order 1, (2/5, 2/5, 1/5, 0, 0)T for order 2 and

(0, 0, 1/4, 3/4, 0)T for order 3, where one unit of non-regular capacity is used in the first period,

rather than delaying any order.

1 2 3 4 5

1

2

3

4

1

2
3

t

C

Figure 1: Graphical illustration of an optimal solution to Example 1

The RLP appears in tactical capacity planning, for instance in a multi-project environment. It

has been motivated by many real-world applications, e.g., capacity planning at the Royal Nether-

lands Navy Dockyard [11] and workforce staffing and scheduling for aircraft maintenance [6].

Talla Nobibon et al. [27] study the RLP without allowing order tardiness, and prove the gen-

eral setting with non-preemption constraint to be NP-complete in the strong sense, while many

special cases allowing preemption are shown to be solvable in (pseudo-)polynomial time. Hans

2

studies the RLP in his PhD thesis [18], where preemption is allowed and precedence constraints are

considered, and Kis [19] investigates the same problem under the term “project scheduling with

variable-intensity activities,” and proposes an efficient branch-and-cut algorithm. Some LP-based

heuristic methods are proposed in Gademann and Schutten [16] for the preemptive RLP. Wullink

et al. [29] incorporate uncertainty into the preemptive RLP and apply a scenario-based approach

to solve it.

Some aspects of the RLP have been investigated in other problems by different researchers. The

scheduling problem of malleable tasks on parallel processors is studied by B lażewicz et al. [8], where

a task may be executed by several processors simultaneously and the processing speed of a task is a

nonlinear function of the number of processors allocated to it. Nattaf et al. [23] study a continuous

energy-constrained scheduling problem aiming to minimize the total resource consumption under

a continuous-time setting, where at any time a minimum and maximum energy requirement is

considered for each task, but no job tardiness or non-regular resource usage is allowed. Project

scheduling with work-content constraints has been addressed by several authors. Fündeling and

Trautmann [15] consider a minimum and maximum amount of resource usage once the activity is

started. Naber and Kolisch [22] investigate the resource-constrained project scheduling problem

(RCPSP) with flexible resource profiles, and the authors compare several MIP formulations for

solving this problem. For a survey of further related work, we refer the interested readers to

Talla Nobibon et al. [27].

The remainder of the paper is organized as follows. In Section 2, we describe multiple time-

indexed formulations for the RLP, and we propose valid inequalities to improve the formulations. A

novel execution-interval formulation is introduced in Section 3, for which a class of valid inequalities

is derived that provides a complete description of the polytope of feasible intensity assignments

for individual orders, and a polynomial-time separation algorithm is presented. In Section 4,

computational results are reported that show the effectiveness of the branch-and-cut algorithm

based on our polyhedral results. Finally, we provide a summary and conclusions in Section 5.

3

2 Time-indexed formulations

In operational scheduling with fixed job processing times, time-indexed formulations have been

extensively studied. Sousa [25] discusses various time-indexed formulations for single machine

scheduling, and establishes the equivalence of the formulations in terms of the strength of their LP

relaxation. For RCPSP, similar polyhedral results are presented by Artigues [3]. Computational

results for time-indexed MIP formulations of different variants of RCPSP have also been reported

(see Burgelman and Vanhoucke [9] and Naber and Kolisch [22], for example).

Decisions in the RLP, however, involve when to execute each order and how to fit the intensities

of the orders into each time period. The RLP is formulated using three different sets of time-

indexed variables in this section. Different from scheduling with fixed job durations, for each

order, an execution interval (consecutive time periods in which the order is executed) needs to be

identified.

2.1 Pulse formulation

The first model uses the binary pulse variables sjt ∈ {0, 1} and fjt ∈ {0, 1} for each order j,

which take value 1 only if the order starts, respectively finishes, in time period t. This modeling

choice has been extensively applied for scheduling problems (such as in [10, 20, 21, 24, 26]), where

only the start pulse is needed for each job if the job durations are given and fixed. We also use

continuous variables yjt ∈ [0, 1] denoting the intensity (fraction) of order j in period t, variables Tj

representing the tardiness of each order j, and zt the non-regular capacity required for time period t.

A formulation for RLP with pulse variables can be stated as follows.

min
∑
j∈J

wjTj + σ ·
H∑
t=1

zt (1)

s.t.

H∑
t=rj

sjt =

H∑
t=rj

fjt = 1 ∀j ∈ J (2)

t∑
k=rj

fjk ≤
t∑

k=rj

sjk ∀j ∈ J, t = rj , . . . ,H (3)

Tj ≥
H∑
t=rj

fjt · t− dj ∀j ∈ J (4)

4

LBj · (
t∑

k=rj

sjk −
t−1∑
k=rj

fjk) ≤ yjt ≤ UBj · (
t∑

k=rj

sjk −
t−1∑
k=rj

fjk) ∀j ∈ J, t = rj , . . . ,H (5)

H∑
t=rj

yjt = 1 ∀j ∈ J (6)

zt ≥
∑
j∈J

yjt · pj − Ct t = 1, . . . ,H (7)

yjt ≥ 0 ∀j ∈ J, t = rj , . . . ,H (8)

zt ≥ 0 t = 1, . . . ,H (9)

Tj ≥ 0 ∀j ∈ J (10)

sjt, fjt ∈ {0, 1} ∀j ∈ J, t = rj , . . . ,H (11)

The objective function (1) consists of two terms representing the penalty for order tardiness and

the cost of hiring non-regular capacity, respectively. Constraints (2) stipulate that each order

has exactly one start time and one finish time. Constraints (3) enforce that orders cannot finish

before their start times. Constraints (4) determine the tardiness of each order, and (5) set the

bounds on the working intensity for each order in each time period within its time window, which

also guarantees that the order is executed without preemption. The term
∑t

k=rj
sjk −

∑t−1
k=rj

fjk

in (5), indicates the processing status of order j in period t (whether order j is executed in period t).

Constraints (6) ensure that each order is finished within the time horizon. Constraints (7) determine

the amount of non-regular resource capacity required in each time period.

2.2 Step formulation

In the second formulation, we use binary step variables sajt ∈ {0, 1} and fajt ∈ {0, 1}, denoting

whether order j has started, resp. finished, by period t. In other words, sajt takes value 1 only if

order j starts in a time period before or in t, and fajt = 1 only when order j is completed before or

in t. Step variables have also been used in the scheduling literature (see for example [7, 22]). With

sajt and fajt, the processing status of order j in time period t is sajt − faj,t−1. We formulate the RLP

with step variables as follows.

min (1)

5

s.t. (6)–(10)

sajt ≤ saj,t+1 ∀j ∈ J, t = rj , . . . ,H − 1 (12)

fajt ≤ faj,t+1 ∀j ∈ J, t = rj , . . . ,H − 1 (13)

sajH = fajH = 1 ∀j ∈ J (14)

fajt ≤ sajt ∀j ∈ J, t = rj , . . . ,H (15)

Tj ≥ (H −
H∑
t=rj

fajt + 1)− dj ∀j ∈ J (16)

LBj · (sajt − faj,t−1) ≤ yjt ≤ UBj · (sajt − faj,t−1) ∀j ∈ J, t = rj , . . . ,H (17)

sajt, f
a
jt ∈ {0, 1} ∀j ∈ J, t = rj , . . . ,H (18)

Constraints (12) and (13) impose that once an order has started or finished, the status is retained

until the end of the planning horizon. Constraints (14) stipulate that the orders have to be executed

by the end of the planning horizon. Equations (15) imply that orders cannot finish before they

have started. Constraint sets (16) and (17) correspond with constraints (4) and (5).

2.3 Mask formulation

The third time-indexed formulation involves binary decision variables xjt indicating whether order j

is executed in time period t (in which case xjt = 1); these are commonly referred to as mask (on/off)

variables. Since preemption is not allowed, a feasible binary vector xj for order j has consecutive 1s

in a specific time interval and 0s for all the other entries. This modeling choice has been used for the

RLP by Talla Nobibon et al. [27], and has also been widely applied for other scheduling problems

(see for example [2, 19, 25]). With the mask variables, the RLP can be formulated as follows.

min (1)

s.t. (6)–(10)

ujH ≥ xjH ∀j ∈ J (19)

ujt ≥ xjt − xj,t+1 ∀j ∈ J, t = rj , . . . ,H − 1 (20)

H∑
t=rj

ujt = 1 ∀j ∈ J (21)

6

Tj ≥
H∑
t=rj

ujt · t− dj ∀j ∈ J (22)

LBj · xjt ≤ yjt ≤ UBj · xjt ∀j ∈ J, t = rj , . . . ,H (23)

ujt ≥ 0 ∀j ∈ J, t = rj , . . . ,H (24)

xjt ∈ {0, 1} ∀j ∈ J, t = rj , . . . ,H (25)

Constraints (19)–(21) use auxiliary variables ujt to indicate when each order finishes, and guarantee

that there is only one finish period throughout the planning horizon so that the non-preemption

constraint is respected. These constraints imply that the non-zero mask variables should always be

consecutive. Constraints (22) and (23) are in accordance to constraints (4) and (5) respectively.

2.4 Strength of the formulations

Proposition 1. In terms of LP relaxation, the three time-indexed formulations are equivalent.

Proof. Any feasible solution to the LP relaxation of the pulse formulation can be transformed into

a feasible solution to the LP relaxation of the mask formulation, with xjt =
∑t

k=rj
sjk −

∑t−1
k=rj

fjk

and ujt = fjt. The inverse transformation can be given as sjt = xjt − xj,t−1 + uj,t−1 and fjt = ujt.

Therefore, the LP relaxations of the pulse and the mask formulation lead to the same lower bound

on the optimum.

Similarly, for the pulse and step formulation, we have sajt =
∑t

k=rj
sjk and fajt =

∑t
k=rj

fjk,

and conversely the inverse transformation is sjt = sajt − saj,t−1 and fjt = fajt − faj,t−1. Given any

fractional solution to the LP relaxation of the step formulation, the transformation always provides

a feasible solution to the LP relaxation of the pulse formulation, and vice versa. Therefore, the LP

relaxations yield the same lower bound.

The mutual transformations between the mask formulation and the step formulation are given

by xjt = sajt − faj,t−1, ujt = fajt − faj,t−1, and by sajt = xjt +
∑t−1

k=rj
ujk, f

a
jt =

∑t
k=rj

ujk, which

completes the proof.

Proposition 1 generalizes the previous results on the equivalence of “pulse,” “mask” and “step”

formulation for scheduling problems with fixed activity durations [3, 25] to scheduling variable-

duration activities.

7

2.5 Valid inequalities

In this section, two classes of valid inequalities are proposed to strengthen the time-indexed for-

mulations. Since the three sets of variables are mutually transformable, we present the inequalities

with the pulse variables; equivalent inequalities can be applied in the other two formulations using

the aforementioned affine transformations.

From the intensity of order execution, a lower and upper bound on the length of the execution

interval for each order can be derived as lj = d1/UBje and lj = b1/LBjc. The following set of

inequalities can strengthen the formulation.

lj ≤
H∑
t=rj

(fjt − sjt) · t+ 1 ≤ lj ∀j ∈ J (26)

Proposition 2. Constraints (26) are valid inequalities for the RLP.

Proof. Inequalities (26) indicate that the execution-interval length of each order j cannot be shorter

than lj nor longer than lj . Equivalently, ∀j ∈ J , in the mask formulation inequality lj ≤
∑H

t=rj
xjt ≤

lj is valid, and lj ≤
∑H

t=rj
(sajt − fajt) + 1 ≤ lj is valid for the step formulation.

A set of disaggregated inequalities is also introduced below to further tighten the formulation.



sjt −
min{H, t+lj−1}∑

k=t+lj−1

fjk ≤ 0 ∀j ∈ J, t = rj , . . . ,H

t−lj+1∑
k=max{rj , t−lj+1}

sjk − fjt ≥ 0 ∀j ∈ J, t = rj , . . . ,H

(27)

Proposition 3. Constraints (27) are valid inequalities for the RLP.

Proof. Given any feasible solution expressed by the pulse variables and an arbitrary order j, there

is one start period t∗ such that sjt∗ = 1 and sjt|t6=t∗ = 0. The finish period of this order j then lies

within interval [t∗ + lj − 1, t∗ + lj − 1], and therefore inequality sjt ≤
∑min{H, t+lj−1}

k=t+lj−1 fjk is valid

for any time period in the horizon. In a similar way, we can show that
∑t−lj+1

k=max{rj , t−lj+1} sjk ≥ fjt

is also valid.

Constraints (26) and (27) both require that the execution-interval length be between lj and lj ,

8

but neither set can replace the other as they cut off different fractional solutions.

Proposition 4. Neither (26) nor (27) implies the other.

Proof. Given an order j on a planning horizon with five periods, where rj = 1 with UBj = 1 (lj = 1)

and LBj = 0.5 (lj = 2), a fractional solution sj = (0.5, 0, 0.5, 0, 0)T and fj = (0, 0, 1, 0, 0)T

is feasible for (26), but cut off by (27). Another fractional solution sj = (0.4, 0.2, 0, 0.4, 0)T and

fj = (0, 0.4, 0, 0.2, 0.4)T, on the other hand, respects (27) but not (26). Therefore, inequalities (26)

and (27) are not interchangeable.

3 Execution-interval formulation and polyhedral results

In this section, we propose a novel execution-interval formulation for the RLP, and we aim to

provide a complete description of the convex hull of the feasible intensity assignments for each

individual order by means of facet-defining inequalities.

3.1 Execution-interval formulation

A feasible execution interval of consecutive time periods {k, . . . , `} for order j must satisfy rj ≤ k ≤

` ≤ H, (`−k+1)·LBj ≤ 1, and (`−k+1)·UBj ≥ 1. Denote the set of all feasible execution intervals

of order j as Ej , where each tuple (k, `) ∈ Ej refers to the execution interval {k, . . . , `}. In a valid

plan, exactly one execution interval (k, `) ∈ Ej is chosen for each order j, and the intensity yjt of

order j satisfies yjt = 0 for t 6∈ {k, . . . , `}, LBj ≤ yjt ≤ UBj for all t ∈ {k, . . . , `}, and
∑H

t=1 yjt = 1.

The variables ajk` indicate this choice, i.e., ajk` = 1 if and only if the chosen execution interval for

order j is (k, `) ∈ Ej . The tardiness T jk` associated to execution interval (k, `) ∈ Ej is max{0, `−dj}.

With these preliminaries, the execution-interval formulation is as follows:

min
∑
j∈J

∑
(k,`)∈Ej

wj · T jk` · a
j
k` + σ ·

H∑
t=1

zt (28)

s.t. (6)–(9)

LBj ·
∑

(k,`)∈Ej : k≤t≤`

ajk` ≤ yjt ≤ UBj ·
∑

(k,`)∈Ej : k≤t≤`

ajk` j ∈ J, t = rj , . . . ,H (29)

∑
(k,`)∈Ej

ajk` = 1 j ∈ J (30)

9

ajk` ∈ {0, 1} j ∈ J, (k, `) ∈ Ej (31)

Proposition 5. The execution-interval formulation is stronger than the time-indexed formulations.

Proof. Since the time-indexed formulations are equivalent regarding their relaxation strength, we

take the pulse formulation and compare with the execution-interval formulation. Denote the set of

feasible solutions of the LP relaxation of the pulse formulation augmented with the inequalities (26)

and (27) by Ppulse, and for the execution-interval formulation by PEI . Any solution in PEI can be

projected to Ppulse with sjt =
∑

(t,`)∈Ej a
j
t` and fjt =

∑
(k,t)∈Ej a

j
kt. This transformation is not in-

vertible in general, we can have PEI ⊂ Ppulse. An example is established here to illustrate the proper

inclusion: given an order j on a planning horizon with seven periods, where rj = 1 with UBj = 1/2

(lj = 2) and LBj = 1/3 (lj = 3). Consider the vector yj = (0.36, 0.24, 0.24, 0, 0.008̄, 0.075̄, 0.075̄).

If we set sj = (0.72, 0, 0.026̄, 0, 0.026̄, 0.226̄, 0) and fj = (0, 0.026̄, 0.72, 0, 0.026̄, 0, 0.226̄),

then (yj , sj , fj) ∈ Ppulse, but there exists no vector aj such that (yj , a
j) ∈ PEI .

Similarly, we have xjt =
∑

(k,`)∈Ej : k≤t≤` a
j
k` for the mask variables, and for the step variables

sajt =
∑t

k=rj

∑
(k,`)∈Ej a

j
k` and fajt =

∑t
`=rj

∑
(k,`)∈Ej a

j
k`. Therefore, the execution-interval formula-

tion is stronger than the time-indexed formulations.

One can interpret the execution-interval formulation as a disjunctive program (see [5]), where

for each order j there is a set Ej of alternatives from which exactly one must be chosen.

3.2 Convex hull for individual orders and valid inequalities

Given an arbitrary order j, we consider the following subsystem, where index j is omitted for

brevity:

LB ·
∑

(k,`)∈E:k≤t≤`

ak` ≤ yt ≤ UB ·
∑

(k,`)∈E:k≤t≤`

ak` t = 1, . . . ,H (32)

H∑
t=1

yt = 1 (33)

∑
(k,`)∈E

ak` = 1 (34)

yt ≥ 0 t = 1, . . . ,H (35)

10

ak` ∈ {0, 1} (k, `) ∈ E (36)

Let S be the set of feasible solutions, i.e., the set of all (y, a) ⊆ RH+×{0, 1}|E| vectors that satisfy

the constraints (32)–(34). Our goal is to determine all the facets of the polyhedron P = conv(S).

We start with stronger lower and upper bounds on each intensity variable yt:

yt ≤
∑

(k,`)∈E:k≤t≤`

UBk` · ak` (37)

yt ≥
∑

(k,`)∈E:k≤t≤`

LBk` · ak` (38)

where UBk` and LBk` are defined as follows:

UBk` := min{UB, 1− LB · (`− k)} (39)

LBk` := max{LB, 1− UB · (`− k)} (40)

Proposition 6. Inequalities (37) and (38) are valid for P .

Proof. First we verify (37). Given any feasible solution in S, there is exactly one execution interval

{k∗, . . . , `∗} selected. Given any period t, if k∗ ≤ t ≤ `∗, there are two easy upper bounds on yt:

UB, and the remaining fraction when the lower bound is taken for each period {k∗, . . . , `∗} \ t,

which is 1−LB · (`∗− k∗). If t ∈ {1, . . . ,H} \ {k∗, . . . , `∗} then yt = 0. Therefore, for any period t,

summing over all execution intervals including t leads to inequality (37), which is thus valid for S,

and thus for P . Analogously, inequalities (38) are also valid for P .

More generally, for an arbitrary subset S ⊆ {1, . . . ,H} of time periods, the intensity assigned

to set S can be bounded in a similar way. If we define the complement S̄ := {1, . . . ,H} \ S then

the bounds on the intensity assigned to S can be computed as follows:

∑
τ∈S

yτ ≤
∑

(k,`)∈E

ak` ·min
{
UBk` ·

∣∣S ∩ {k, . . . , `}∣∣, 1− LBk` ·
∣∣S̄ ∩ {k, . . . , `}∣∣} (41)

∑
τ∈S

yτ ≥
∑

(k,`)∈E

ak` ·max
{
LBk` ·

∣∣S ∩ {k, . . . , `}∣∣, 1− UBk` ·
∣∣S̄ ∩ {k, . . . , `}∣∣} (42)

11

Proposition 7. Inequalities (41) and (42) are valid for P .

Proof. A generalization of Proposition 6, the proof is omitted.

Proposition 8. The inequality (41) for a fixed set S is equivalent to the inequality (42) for S̄.

Proof. Given
∑H

τ=1 yτ =
∑

τ∈S yτ +
∑

τ∈S̄ yτ = 1,
∑

(k,`)∈E ak` = 1, and the lower bounding

inequality (42) on an arbitrary set S:

∑
τ∈S̄

yτ = 1−
∑
τ∈S

yτ ≤ 1−
∑

(k,`)∈E

ak` ·max
{
LBk` ·

∣∣S ∩ {k, . . . , `}∣∣, 1− UBk` ·
∣∣S̄ ∩ {k, . . . , `}∣∣}

=
∑

(k,`)∈E

ak` −
∑

(k,`)∈E

ak` ·max
{
LBk` ·

∣∣S ∩ {k, . . . , `}∣∣, 1− UBk` ·
∣∣S̄ ∩ {k, . . . , `}∣∣}

=
∑

(k,`)∈E

ak` ·min
{

1− LBk` ·
∣∣S ∩ {k, . . . , `}∣∣, UBk` · ∣∣S̄ ∩ {k, . . . , `}∣∣}

This is exactly the upper bounding inequality (41) for the corresponding complement set S̄. In the

same way, inequality (41) on set S also implies inequality (42) for its complement S̄.

3.3 A linear representation of P

Consider polyhedron P :=
{

(y, a) ∈ RH+ × [0, 1]|E| | (y, a) satisfies (33), (34) and (42) for all S ⊆

{1, . . . ,H}
}

. Our goal is to show that P is equivalent to P . In order to achieve this, we first

establish a necessary and sufficient condition for a solution (y, a) to be in P .

Based on a given solution (y, a), we define a capacitated network G(y, a) = (V,E, b, c), with

the set of nodes V consisting of the source node s, the sink q, a node vk` for each (k, `) ∈ E and

a node wt for each t ∈ {1, . . . ,H}. Each node vk` is connected from the source s with capacity

c(s, vk`) = ak`, while each node wt is linked to the sink q with capacity c(wt, q) = yt. From each vk`,

there is an arc pointed to every t ∈ {k, . . . , `}, and the flow through arc (vk`, wt) has lower bound

b(vk`, wt) = ak`LBk` and upper bound c(vk`, wt) = ak`UBk`, respectively. The lower bounds on all

other arcs are 0. Figure 2 shows how network G(y, a) is constructed.

Lemma 1. (y, a) ∈ P if and only if there exists a feasible flow in G(y, a) of value 1.

Proof. For each (k, `) ∈ E , construct the following polyhedron P(k,`) =
{

(y, a) ∈ RH+×[0, 1]|E| | ak` =

1,
∑

(k′,`′)∈E\(k,`) ak′`′ = 0,
∑`

t=k yt = 1, LBk` ≤ yt ≤ UBk` if t ∈ {k, . . . , `} and yt = 0 otherwise
}

.

12

s vk`

w1

wt

wk

w`

w
H

q1 ak` (ak`LBk`, ak`UBk`)

yt

Figure 2: An illustration of network G(y, a)

Let conv
(⋃

(k,`)∈E P(k,`)

)
denote the convex hull of the union of the polytopes P(k,`). Clearly, this

is the set of those vectors (y, a) ∈ RH+ × [0, 1]|E|, for which there exist vectors (y(k,`), a(k,`)) ∈

RH+ × [0, 1]|E|, (k, `) ∈ E satisfying

(y, a)−
∑

(k,`)∈E

(y(k,`), a(k,`)) = 0

∑
(k′,`′)∈E\(k,`)

a
(k,`)
k′`′ = 0 (k, `) ∈ E

∑̀
t=k

y
(k,`)
t = a

(k,`)
k` (k, `) ∈ E (43)

a
(k,`)
k` · LBk` ≤ y

(k,`)
t ≤ a(k,`)

k` · UBk` t ∈ {k, . . . , `}, (k, `) ∈ E∑
t/∈{k,...,`}

y
(k,`)
t = 0 (k, `) ∈ E

∑
(k,`)∈E

a
(k,`)
k` = 1

One can easily verify that system (43) describes exactly a feasible flow of value 1 in network

G(y, a). Based on the theorem on the convex hull of the union of polyhedra in disjunctive program-

ming (see Theorem 2.1 of Balas [4]), P = conv
(⋃

(k,`)∈E P(k,`)

)
, and (43) is an extended formulation

for P .

In order to remove the lower bounds on all the arcs (vk`, wt) in network G(y, a), one can

transform G(y, a) into G′(y, a) in the following manner: for each (k, `) ∈ E and each t ∈ {k, . . . , `},

introduce an arc connecting s to wt with capacity c(s, wt) = ak`LBk`; change the capacity of the

13

arc linking the corresponding nodes vk` and wt to c(vk`, wt) = ak`(UBk`−LBk`); and add a new arc

from each vk` to q with capacity c(vk`, q) = ak`(`− k + 1)LBk`. The transformed network G′(y, a)

of G(y, a) is illustrated in Figure 3. This is a standard transformation (see section 6.7 of Ahuja

et al. [1]), which leads to the following lemma.

s vk`

w1

wt

wk

w`

w
H

q

ak`(`− k + 1)LBk`

1 +
∑

(k,`)∈E ak`(`− k + 1)LBk` ak`

ak`LBk`

ak`(UBk` − LBk`)

yt

Figure 3: The transformed network G′(y, a) of G(y, a)

Lemma 2. There exists a feasible flow in G(y, a) of value 1 if and only if one can find a feasible

flow in G′(y, a) of value 1 +
∑

(k,`)∈E ak`(`− k+ 1)LBk` with all arcs (s, wt) and (vk`, q) saturated.

Theorem 1. P = P .

Proof. Since inequalities (33), (34), and (42) are all valid for P , one can straightforwardly get

P ⊆ P, thus we focus on proving P ⊆ P .

Hereinafter, we use vk` and (k, `) ∈ E , wt and period t interchangeably. Following Lemma 1 and

2, we consider an arbitrary s-q cut
[
{s}∪Sv∪Sw, {q}∪S̄v∪S̄w

]
in G′(y, a), which corresponds with a

partition of V , where nodes vk` are partitioned into sets Sv and S̄v and the wt are partitioned into Sw

and S̄w. Based on the MAX-FLOW MIN-CUT Theorem of Ford and Fulkerson [14], there exists a

feasible flow of 1+
∑

(k,`)∈E ak`(`−k+1)LBk` in G′(y, a) if and only if the capacity c(Sv∪Sw, S̄v∪S̄w)

14

of any cut
[
{s} ∪ Sv ∪ Sw, {q} ∪ S̄v ∪ S̄w

]
is not smaller than 1 +

∑
(k,`)∈E ak`(`− k + 1)LBk`:

c(Sv ∪ Sw, S̄v ∪ S̄w) =
∑
t∈S̄w

∑
(k,`)∈E|t∈{k,...,`}

ak` · LBk` +
∑

(k,`)∈S̄v

ak` +
∑

(k,`)∈Sv

ak` · (`− k + 1) · LBk`

+
∑

(k,`)∈Sv

∑
t∈S̄w∩{k,...,`}

ak` · (UBk` − LBk`) +
∑
t∈Sw

yt

≥ 1 +
∑

(k,`)∈E

ak` · (`− k + 1) · LBk`

(44)

With the terms rearranged, we obtain the following:

∑
t∈Sw

yt ≥−
∑
t∈S̄w

∑
(k,`)∈E|t∈{k,...,`}

ak` · LBk` − (1−
∑

(k,`)∈Sv

ak`)−
∑

(k,`)∈Sv

ak` · (`− k + 1) · LBk`

−
∑

(k,`)∈Sv

∑
t∈S̄w∩{k,...,`}

ak` · (UBk` − LBk`) + 1 +
∑

(k,`)∈E

ak` · (`− k + 1) · LBk`

= −
∑

(k,`)∈E

∑
t∈S̄w∩{k,...,`}

ak` · LBk` +
∑

(k,`)∈Sv

ak` +
∑

(k,`)∈S̄v

ak` · (`− k + 1) · LBk`

−
∑

(k,`)∈Sv

∑
t∈S̄w∩{k,...,`}

ak` · (UBk` − LBk`) (45)

=
∑

(k,`)∈Sv

ak` ·

− ∑
t∈S̄w∩{k,...,`}

LBk` + 1−
∑

t∈S̄w∩{k,...,`}

(UBk` − LBk`)


+

∑
(k,`)∈S̄v

ak` ·

− ∑
t∈S̄w∩{k,...,`}

LBk` + (`− k + 1) · LBk`


=

∑
(k,`)∈Sv

ak` ·
(
1− UBk` ·

∣∣S̄w ∩ {k, . . . , `}∣∣)+
∑

(k,`)∈S̄v

ak` ·
(
LBk` ·

∣∣Sw ∩ {k, . . . , `}∣∣)

where
∑

t∈S̄w

∑
(k,`)∈E|t∈{k,...,`} ak` · LBk` =

∑
(k,`)∈E

∑
t∈S̄w∩{k,...,`} ak` · LBk`, and

∑
(k,`)∈S̄v

ak` +∑
(k,`)∈Sv

ak` =
∑

(k,`)∈E ak` = 1.

If we substitute set Sw with S, the cut derived in (45) is very similar to (42), except that

the coefficient of ak` depends on whether (k, `) ∈ Sv or not. It is
(
1− UBk` ·

∣∣S̄w ∩ {k, . . . , `}∣∣)
if (k, `) ∈ Sv, and

(
LBk` ·

∣∣Sw ∩ {k, . . . , `}∣∣) if (k, `) ∈ S̄v. Clearly, we get a stronger cut if

(k, `) ∈ Sv whenever
(
1− UBk` ·

∣∣S̄w ∩ {k, . . . , `}∣∣) > (
LBk` ·

∣∣Sw ∩ {k, . . . , `}∣∣) , and (k, `) ∈ S̄v

otherwise. With this choice of Sv (with respect to Sw) we get precisely (42). On the other hand,

if
(
1− UBk` ·

∣∣S̄w ∩ {k, . . . , `}∣∣) is bigger (smaller) than
(
LBk` ·

∣∣Sw ∩ {k, . . . , `}∣∣), but (k, `) ∈ S̄v

15

((k, `) ∈ Sv), then the pair (Sv, Sw) induces a dominated cut, which is superfluous in the description

of P . It is therefore sufficient to include the inequalities (42) in the linear description of P , which

completes the proof.

3.4 The dimension of P

In this section, in order to further explore the structure of P and its facets, we determine the

dimension of P . To this end, we need some more definitions. Let EB the subset of those (k, `) ∈ E

such that (`−k+1)LBk` = 1 or (`−k+1)UBk` = 1. Notice that in either case, when ak` = 1, then

the y variables are uniquely determined by yt = 1/(` − k + 1) for t ∈ {k, . . . , `}, and 0 otherwise.

Now, let TB := {t ∈ {1, . . . ,H} : @(k, `) ∈ E \ EB such that t ∈ {k, . . . , `}}, which includes all

periods with no flexibility on the intensities. Clearly, the following equations are satisfied by all

(y, a) ∈ P :

yt −
∑

(k,`)∈E,k≤t≤`

ak`/(`− k + 1) = 0, t ∈ TB. (46)

The reason is that for t ∈ TB, yt takes the value 1/(`− k + 1) if ak` = 1 for any (k, `) ∈ EB and 0

otherwise.

Lemma 3. If E = EB then TB = {1, . . . ,H}, otherwise TB = ∅.

Proof. If E = EB then the definition of set TB implies TB = {1, . . . ,H}. Now suppose that EB

is a proper subset of E . We claim that for each t ∈ {1, . . . ,H}, there exists (k, `) ∈ E \ EB such

that t ∈ {k, . . . , `}. Since E 6= EB, there exists some (k′, `′) ∈ E such that (`′ − k′ + 1)LBk` < 1 <

(`′ − k′ + 1)UBk`. Since E contains all the feasible execution intervals of order j, there must exist

(k, `) ∈ E such that `− k = `′ − k′, and k ≤ t ≤ `.

Theorem 2.

dim(P) =

 |E| − 1, if EB = E

|E|+H − 2, if EB ⊂ E , EB 6= E

Proof. First suppose EB = E . Then TB = {1, . . . ,H} by Lemma 3. The valid equations for P

are then the following: (33), (34), and (46). Notice that (34) and (46) are linearly independent,

but (33) can be expressed as a linear combination of the former two classes of equations. To see

this, it suffices to take the sum of the equations (46), leading to
∑H

t=1 yt −
∑

(k,`)∈E ak` = 0. The

16

second term equals 1 for any (y, a) ∈ P , since (34) is valid for P . This shows that dim(P) ≤

|E| − |TB| + H − 1 = |E| − 1. To finish the proof of this case, we provide |E| affinely independent

points in P . For each (k, `) ∈ E , we define a point with ak` = 1 and yt = 1/(` − k + 1) for

t ∈ {k, . . . , `}, and 0 otherwise. These points are affinely independent, since for each (k, `) ∈ E ,

there is a unique point with ak` = 1.

Now suppose that EB is a proper subset of E . Then TB = ∅ by Lemma 3. We argue that any

equation αy+βa = δ that is satisfied by all points (y, a) ∈ P must be a linear combination of (33),

and (34).

First we claim that αt1 = αt2 for all t1, t2 ∈ {1, . . . ,H}. To prove this, observe that in E there

must be execution intervals of length at least 2, otherwise EB = E and we are in the previous case.

Since E contains all the feasible execution intervals, there is a chain of intervals (k1, `1), . . . , (ks, `s) ∈

E \ EB, each of length at least 2, such that k1 = 1, `s = H and `i ≥ ki+1 for each i = 1, . . . , s− 1.

For each of these intervals it holds that (`i−ki+1)LBk` < 1 < (`i−ki+1)UBk`, since (ki, `i) 6∈ EB

by definition. Hence, setting aki`i = 1 and yt = 1/(`i − ki + 1) for t ∈ {k, . . . , `} and 0 otherwise

yields a point in P . Moreover, there exists ε > 0 such that for any t1 6= t2 ∈ {k, . . . , `}, increasing

yt1 by ε and decreasing yt2 by the same amount also yields a point in P . Hence αt1 = αt2 . By the

choice of the execution intervals (k1, `1), . . . , (ks, `s), our claim follows.

Now we claim that βk` = βk′`′ for all (k, `), (k′, `′) ∈ E . To see this, notice that for each execution

interval (k, `) ∈ E , and for any point (y, a) ∈ P with ak` = 1, the expression αy is of the same

value, say v, since y satisfies (33), and αt1 = αt2 for any t1, t2 ∈ {1, . . . ,H}. Hence, βk` = δ− v for

each (k, `) ∈ E , and the claim is proved.

Finally, notice that the above two claims imply the theorem.

3.5 Facets of P

In this section, we aim to determine when inequality (42) defines a facet of P . To this end, necessary

and sufficient conditions are established. Throughout this section, we assume that TB = ∅, and

thus by Theorem 2, dim(P) = |E| + H − 2. Inequality (42) associated to set S induces a facet of

17

the polyhedron P if the dimension of the face

F =
{

(y, a) ∈ P :
∑
τ∈S

yτ =
∑

(k,`)∈E

ak` ·max
{
LBk` ·

∣∣S ∩ {k, . . . , `}∣∣, 1− UBk` ·
∣∣S̄ ∩ {k, . . . , `}∣∣}}

equals dim(P)− 1.

We partition E into three disjoint subsets. Let Eall1 consist of all the execution intervals (k, `) ∈ E

such that either S∩{k, . . . , `} = ∅, and (`−k+1)·LBk` < 1 < (`−k+1)·UBk`, or S∩{k, . . . , `} 6= ∅

and LBk` ·
∣∣S∩{k, . . . , `}∣∣ > 1−UBk` ·

∣∣S̄∩{k, . . . , `}∣∣. Let Eall2 consist of all the execution intervals

(k, `) ∈ E such that S ∩{k, . . . , `} 6= ∅ and LBk` ·
∣∣S ∩{k, . . . , `}∣∣ < 1−UBk` ·

∣∣S̄ ∩{k, . . . , `}∣∣. The

remaining execution intervals, if any, constitute the third subset.

Observe that if (k, `) ∈ Eall1 , then for any vector (y, a) ∈ F such that ak` = 1, yτ = LBk` for

τ ∈ S ∩ {k, . . . , `} and yτ = 0 for S \ {k, . . . , `}. Analogously, if (k, `) ∈ Eall2 , then for any vector

(y, a) ∈ F such that ak` = 1, yτ = UBk` for τ ∈ S̄∩{k, . . . , `} and yτ = 0 for S̄ \{k, . . . , `}. Finally,

for each (k, `) ∈ E \ (Eall1 ∪ Eall2), there exists a unique vector (y, a) ∈ F such that ak` = 1. That is,

if LBk` · (` − k + 1) = 1 or UBk` · (` − k + 1) = 1, then yτ = 1/(` − k + 1) for all τ ∈ {k, . . . , `}

and 0 otherwise; and if LBk` · |S ∩ {k, . . . , `}| = 1− UBk` · |S̄ ∩ {k, . . . , `}|, then yτ = LBk` for all

τ ∈ S ∩ {k, . . . , `}, yτ = UBk` for all τ ∈ S̄ ∩ {k, . . . , `}, and 0 otherwise.

Theorem 3. The inequality (42) associated to set S defines a facet of P if and only if the following

conditions hold:

i) If |S̄| ≥ 2, then Eall1 6= ∅ , and for any t ∈ {1, . . . ,H}, either {1, . . . , t} ∩ S̄ = ∅, or {t +

1, . . . ,H} ∩ S̄ = ∅, or there exists (k, `) ∈ Eall1 such that {1, . . . , t} ∩ S̄ ∩ {k, . . . , `} 6= ∅ and

{t+ 1, . . . ,H} ∩ S̄ ∩ {k, . . . , `} 6= ∅.

ii) If |S| ≥ 2, then Eall2 6= ∅ , and for any t ∈ {1, . . . ,H}, either {1, . . . , t} ∩ S = ∅, or {t +

1, . . . ,H} ∩ S = ∅, or there exists (k, `) ∈ Eall2 such that {1, . . . , t} ∩ S ∩ {k, . . . , `} 6= ∅ and

{t+ 1, . . . ,H} ∩ S ∩ {k, . . . , `} 6= ∅.

Proof. Necessity: Assume that F is a facet, but at least one of the conditions i) and ii) does not

hold. Without loss of generality, assume that |S̄| ≥ 2, and there exists t ∈ {1, . . . ,H} such that

{1, . . . , t} ∩ S̄ 6= ∅, {t + 1, . . . ,H} ∩ S̄ 6= ∅, and for each (k, `) ∈ Eall1 , if any, the set S̄ ∩ {k, . . . , `}

is either a subset of {1, . . . , t} or a subset of {t + 1, . . . ,H}. Now we define two new equations

18

satisfied by all points in F , but linearly independent from the other equations valid for F . The two

equations take the following form:

∑
τ∈S̄∩{1,...,t}

yτ =
∑

(k,`)∈E

βk`ak` (47)

∑
τ∈S̄∩{t+1,...,H}

yτ =
∑

(k,`)∈E

γk`ak` (48)

To determine the βk`, notice that if (k, `) ∈ E \ Eall1 , the coordinates yτ (τ ∈ S̄) of any vector

(y, a) ∈ F such that ak` = 1 are fixed, so βk` is just the sum of these fixed values. Now suppose

that (k, `) ∈ Eall1 . If S̄ ∩ {k, . . . , `} is a subset of {1, . . . , t}, then yτ = 0 (τ ∈ S̄ ∩ {t+ 1, . . . ,H}) for

any (y, a) ∈ F such that ak` = 1, and thus
∑

τ∈S̄∩{1,...,t} yτ = 1− |S ∩ {k, . . . , `}| ·LBk`. Therefore,

βk` = 1− |S ∩ {k, . . . , `}| · LBk` will do. If S̄ ∩ {k, . . . , `} is a subset of {t+ 1, . . . ,H}, then yτ = 0

(τ ∈ S̄∩{1, . . . , t}), and βk` = 0. The calculation of the coefficients γk` are analogous. Since |S̄| ≥ 2

by assumption, the equations (47) and (48) are linearly independent from the equations (33), (34)

and (42) for S. But then, F must have a lower dimension than dim(P) − 1, so it is not a facet,

which leads to a contradiction.

Sufficiency: Under the conditions of the theorem, we construct dim(P) affinely independent

points in F . Firstly, observe that the conditions ensure that if Eall1 6= ∅, then we can choose a

subset E1 ⊆ Eall1 and an ordering (k1, `1), . . . , (k|E1|, `|E1|) of the members of E1 such that for tmin1,h =

min{t : t ∈ S̄∩{kh, . . . , `h}} and tmax1,h = max{t : t ∈ S̄∩{kh, . . . , `h}} we have tmin1,h ≤ tmax1,h−1 < tmax1,h

for h ∈ {2, . . . , |E1|}, where tmax1,0 = tmin1,1 . Similarly, if Eall2 6= ∅, then we can choose a subset

E2 ⊆ Eall2 and an ordering (k′1, `
′
1), . . . , (k′|E2|, `

′
|E2|) such that for tmin2,h = min{t : t ∈ S ∩{k′h, . . . , `′h}}

and tmax2,h = max{t : t ∈ S ∩ {k′h, . . . , `′h}}, we have tmin2,h ≤ tmax2,h−1 < tmax2,h for h ∈ {2, . . . , |E2|}, where

tmax2,0 = tmin2,1 .

For each (k, `) ∈ E \ (E1 ∪ E2), we define a point in F as follows. If S ∩ {k, . . . , `} = ∅, then

let ak` = 1, and yt = 1/(` − k + 1), for t ∈ {k, . . . , `}, while all the remaining entries are set

to 0. If S ∩ {k, . . . , `} 6= ∅, then let ak` = 1, yτ = max
{
LBk` ·

∣∣S ∩ {k, . . . , `}∣∣, 1 − UBk` ·
∣∣S̄ ∩

{k, . . . , `}
∣∣}/∣∣S∩{k, . . . , `}∣∣ for τ ∈ S∩{k, . . . , `}, and yt = min

{
1−LBk` ·

∣∣S∩{k, . . . , `}∣∣, UBk` ·∣∣S̄ ∩ {k, . . . , `}∣∣}/∣∣S̄ ∩ {k, . . . , `}∣∣ for each t ∈ S̄ ∩ {k, . . . , `}, while all the remaining entries are

set to 0. All these points are in F , since
∑

τ∈S yτ =
∑

(k,`)∈E ak` ·max
{
LBk` ·

∣∣S ∩ {k, . . . , `}∣∣, 1−

19

UBk` ·
∣∣S̄ ∩ {k, . . . , `}∣∣} holds. Since E1 ∩ E2 = ∅, we obtain |E| − |E1| − |E2| linearly independent

points in F .

Now we define additional linearly independent points in F based on the subset E1 ⊆ E . Denote

ε > 0 a sufficiently small positive value. For any (kh, `h) ∈ E1, we construct |S̄ ∩ {tmax1,h−1, . . . , t
max
1,h }|

new points in F . If S ∩ {kh, . . . , `h} = ∅, then by definition (`h − kh + 1) · LBkh,`h < 1 <

(`h− kh + 1) ·UBkh,`h , and for each τ ∈ S̄ ∩{tmax1,h−1, . . . , t
max
1,h }, we define a point in F with ak` = 1,

yτ = 1/(`h−kh+1)+(`h−kh) ·ε and yt = 1/(`h−kh+1)−ε for t ∈ {kh, . . . , `h}\{τ}, and all other

components are set to 0. If S ∩ {kh, . . . , `h} 6= ∅, then by definition LBkh,`h ·
∣∣S ∩ {kh, . . . , `h}∣∣ >

1−UBkh,`h ·
∣∣S̄∩{kh, . . . , `h}∣∣, and for each τ ∈ S̄∩{tmax1,h−1, . . . , t

max
1,h }, we define a point with ak` = 1,

yt = LBkh,`h for t ∈ S ∩ {kh, . . . , `h}, yτ = (1 − LBkh,`h ·
∣∣S ∩ {kh, . . . , `h}∣∣)/∣∣S̄ ∩ {kh, . . . , `h}∣∣ +

(
∣∣S̄ ∩{kh, . . . , `h}∣∣−1) · ε and yt = (1−LBkh,`h ·

∣∣S ∩{kh, . . . , `h}∣∣)/∣∣S̄ ∩{kh, . . . , `h}∣∣− ε, for every

t ∈ S̄ ∩ {kh, . . . , `h} \ {τ}. It is easy to verify that all these points are in F . Let M be a matrix

containing all these points without the coordinates fixed to LBk` (t ∈ S ∩ {k, . . . , `}):

M =


M1

M2

...

 =



a+ b a . . . a 1

a a+ b . . . a 1

...
...

. . .
...

...

a a . . . a+ b 1

c . . . c+ d . . . c 1

...
. . .

...
. . .

...
...

c . . . c . . . c+ d 1

...


where a, b, c and d are all positive values. One can verify that M has full row rank. Hence, we

have constructed |S̄ ∩ {tmax1,h−1, . . . , t
max
1,h }| linearly independent points for each (kh, `h) ∈ E1. Thus

in total, we have defined
∑|E1|

h=1 |S̄ ∩ {t
max
1,h−1, . . . , t

max
1,h }| = |S̄|+ |E1| − 1 linearly independent points

in F based on E1.

Analogously to the previous case, additional linearly independent points can be constructed in

F based on E2 ⊆ E . For each (ki, `i) ∈ E+
2 we construct |S ∩ {tmax2,i−1, . . . , t

max
2,i }| points. For each

(ki, `i) ∈ E2, by definition LBki,`i ·
∣∣S ∩ {ki, . . . , `i}∣∣ < 1 − UBki,`i ·

∣∣S̄ ∩ {ki, . . . , `i}∣∣, and for each

20

τ ∈ S∩{tmax2,i−1, . . . , t
max
2,i }, we define a point with ak` = 1, yτ = (1−UBki,`i ·

∣∣S̄∩{ki, . . . , `i}∣∣)/∣∣S∩
{ki, . . . , `i}

∣∣+(
∣∣S∩{ki, . . . , `i}∣∣−1) ·ε, yt = (1−UBki,`i ·

∣∣S̄∩{ki, . . . , `i}∣∣)/∣∣S∩{ki, . . . , `i}∣∣−ε, t ∈
S∩{ki, . . . , `i}\{τ}, and yt = UBk` for t ∈ S̄∩{ki, . . . , `i}. Similarly to the previous case, all these

points are linearly independent. Therefore, set E2 yields
∑|E2|

h=1 |S∩{t
max
2,h−1, . . . , t

max
2,h }| = |S|+|E2|−1

new, linearly independent points in F .

To finish the proof, we count the number of linearly independent points that have been con-

structed. If |S| ≥ 2 and |S̄| ≥ 2, we got |E1|+ |E2|+H − 2 new linearly independent points in F in

addition to the |E|−|E1|−|E2| points constructed for (k, `) ∈ E\(E1∪E2), giving a total of |E|+H−2

linearly independent points. If |S| = 1, then E2 = ∅, |S̄| + |E1| − 1 = |E1| + H − 2, and again, we

got |E|+H − 2 linearly independent points. Finally, the case when |S̄| = 1 is analogous.

Example 2. Consider the polytope P of feasible intensity assignments for LB = 0.25 and UB = 0.5

for H = 4 time periods. Then E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, which implies P ⊆

[0, 1]10, and dim(P) = 8. For S = {1}, the corresponding inequality is

y1 ≥ 0.5a12 + 0.25a13 + 0.25a14. (49)

In fact, we can apply Theorem 3 to show that this inequality induces a facet of P . With E1 =

{(1, 3), (2, 4)} and E2 = ∅ we obtain eight linearly independent points in P satisfying (49):

E S S̄ {1, . . . , |E|}

1 2 3 4 1 2 3 4 5 6

(1,2) 0.5 0.5 0 0 1 0 0 0 0 0

(1,3) 0.25 0.375 + ε 0.375− ε 0 0 1 0 0 0 0

(1,3) 0.25 0.375− ε 0.375 + ε 0 0 1 0 0 0 0

(1,4) 0.25 0.25 0.25 0.25 0 0 1 0 0 0

(2,3) 0 0.5 0.5 0 0 0 0 1 0 0

(2,4) 0 0.334 0.333 + ε 0.333− ε 0 0 0 0 1 0

(2,4) 0 0.334 0.333− ε 0.333 + ε 0 0 0 0 1 0

(3,4) 0 0 0.5 0.5 0 0 0 0 0 1

For S = {2} we obtain the facet-defining inequality

y2 ≥ 0.5a12 + 0.25a13 + 0.25a14 + 0.5a23, (50)

21

certified by E1 = {(2, 4)}, E2 = ∅ (details omitted).

Finally, for S = {1, 2}, we derive the inequality

y1 + y2 ≥ a12 + 0.5a13 + 0.5a14 + 0.5a23. (51)

The only choice for E1 is {(2, 4)}, while E2 must be empty. However, the construction of Theorem 3

yields only seven linearly independent points, and in fact, (51) is the sum of (49) and (50), so it

cannot induce a facet of P .

3.6 Separation of the valid inequalities

As has been shown in Proposition (8) and Theorem (1), it suffices to considered only inequali-

ties (42). There is one lower bounding constraint (42) for any S ⊆ {1, . . . ,H}, the total number

of which is exponential. Therefore, it is not practical to generate all inequalities (42) and include

them in the model from the start, and a separation procedure needs to be designed.

Theorem 4. Inequalities (42) can be separated in polynomial time.

Proof. Given the current fractional solution (ỹ, ã) ∈ RH+ × [0, 1]|E|, the goal is to check whether

there is any violated inequality in (42). By Theorem 1, if (ỹ, ã) /∈ P , one cannot find a feasible flow

of value 1 in network G(ỹ, ã).

Therefore, to solve the separation problem, we determine the maximum s-q flow value in the

transformed network G′(ỹ, ã) of G(ỹ, ã), and if it is smaller than 1 +
∑

(k,`)∈E ãk`(` − k + 1)LBk`,

identify the subset S ⊆ {1, . . . ,H} of the minimum capacity s-q cut and in the node partition along

with s. One can construct inequality (42) based on set S, which cuts off current solution (ỹ, ã).

The separation problem thus requires the solution of a maximum flow problem in a network of size

polynomial in H and |E|. Since the maximum s-q flow and the corresponding minimum cut can be

determined in a runtime that is polynomial in the size of the network [1], the entire procedure has

polynomial time complexity in H and |E|.

3.7 On the facets of the execution-interval formulation

In the foregoing, we have examined the polyhedron P and its facets for one individual order; we are

now interested to know how strong the facets of P are for the polyhedron of the execution-interval

22

formulation. In this section, we prove that the inequalities that induce facets of the polyhedra of

feasible intensity assignments of individual orders also induce facets of the polyhedron associated

with the execution-interval formulation. Let

Q := conv{(y, a, z) | (y, a, z) is a feasible solution of (6)–(9), (29)–(31)}.

Furthermore, let Pj be the polyhedron P for order j. We have the following:

Theorem 5. Let Fj := {(yj , aj) ∈ Pj | αyj + γaj = β} be a facet of Pj induced by the inequality

αyj + γaj ≤ β valid for Pj. Then F := {(y, a, z) ∈ Q | αyj + γaj = β} is a facet of Q.

Proof. (sketch) First notice that the dimension of Q is at most H +
∑n

j=1 dim(Pj). Hence, the

dimension of any of its facets is no more than H − 1 +
∑n

j=1 dim(Pj). Without loss of generality,

assume that j = 1, and F1 is a facet of P1. We construct H +
∑n

j=1 dim(Pj) affinely independent

points in F , which proves the theorem, since F 6= Q by the choice of αyj + γaj ≤ β.

Let z0 = (M, . . . ,M) ∈ RH , where M =
∑n

j=1 pj , and et the unit vector in RH with a 1 in

position t and 0 in all other positions. Let v1
0, . . . , v

1
dim(F1) be dim(F1) + 1 = dim(P1) affinely

independent points in F1, and vj0, . . . , v
j
dim(Pj) be dim(Pj) + 1 affinely independent points in Pj for

j = 2, . . . , n (such points must exist by the basic properties of dimension of polyhedra). Consider

the following points in Q:

• (v1
0, v

2
0, . . . , v

n
0 , z

0),

• (v1
0, v

2
0, . . . , v

n
0 , z

0 + et), t = 1, . . . ,H,

• (v1
i , v

2
0, . . . , v

n
0 , z

0), i = 1, . . . ,dim(F1),

• (v1
0, v

2
0, . . . , v

j
i , . . . , v

n
0 , z

0), for j = 2, . . . , n, and i = 1, . . . ,dim(Pj).

This is a set of H + 1 + dim(F1) +
∑n

j=2 dim(Pj) = H +
∑n

j=1 dim(Pj) affinely independent points

in Q, all of which satisfy αa1 + γy1 ≤ β at equality, and the theorem follows.

From this theorem, it follows that those inequalities in (42) that induce facets of Pj , induce

facets of Q as well.

23

4 Computational experiments

4.1 Experimental setup

The computational experiments are performed on a PC equipped with Intel Core i7-4790 CPU at

3.6 GHz with 16 GB of RAM on a Windows 10 64-bit OS. All formulations are solved with CPLEX

12.6.3 implemented with C++ using Concert Technology. The CPLEX solver is set to use only one

thread with all other parameters set to their default values.

To the best of our knowledge, there are no benchmark datasets for the RLP, so we have generated

our own instance sets. The instances are generated for |J | = n = 20, 40, 60, 80, and 100, on a

planning horizon with H = 50 periods. The work content pj for each order j is drawn as an integer

from a uniform distribution U(100, 200). Instead of parameterizing the bounds on the intensity in

each period for the orders, we set the bounds on the execution-interval length for each order. Each lj

is generated from the uniform distribution U(2, 10). As the difference between lj and lj determines

most of the flexibility for the timing of the orders, it has direct impact on the size of the solution

space. Two different levels are given for generating lj − lj , with uniform distributions U(2, 6) and

U(8, 12), and the bounds on the execution intensity UBj and LBj take the reciprocals of lj and lj

correspondingly. The release period rj of each order j is drawn uniformly from [1, H− lj −1]. The

slack periods of an order are defined as slackj = dj − rj − lj + 1, which is a factor shown to have an

impact on the difficulty of the instances in Hans [18] and Kis [19]. The parameter slackj is generated

uniformly from three different intervals [1, 5], [6, 10] and [11, 15], and the due date of each order j

is then obtained as dj = min{H, rj+ lj+slackj−1}. The unit cost for non-regular capacity usage σ

takes the value 0.5, and the tardiness cost per period wj for each order j is either set as a fixed

value 5 or drawn from uniform distribution U(1, 10). The available capacity Ct in each period t

is generated uniformly from interval [
∑

j∈J pj/H · 0.9,
∑

j∈J pj/H · 1.1]. For each combination of

the above factors, 20 instances are generated, which gives a total number of instances equal to

5 × 2 × 3 × 2 × 20 = 1200. The time-indexed mask, pulse and step formulations are tested and

compared, together with the execution-interval reformulation with and without cuts (42) separated.

The runtime limit for each formulation on each instance is set at 1800 seconds (30 minutes).

24

Table 1: Results of five methods on instances with different values of n

n

Mask Pulse Step

opt time gap(%) opt time gap(%) opt time gap(%)

20 227 161.74 26.09 236 79.05 12.95 240 6.10 0.00
40 207 302.52 28.64 225 170.35 12.32 236 69.31 3.84
60 189 414.44 31.21 212 264.57 13.83 225 169.41 6.24
80 191 397.14 23.39 220 198.11 12.33 225 157.04 8.18
100 194 370.85 26.89 212 240.22 12.82 217 209.26 8.30

Overall 1008 329.34 27.39 1105 190.46 12.94 1143 122.22 7.41

n

EI EI cut

opt time gap(%) opt time gap(%)

20 237 51.17 8.73 240 5.45 0.00
40 225 139.51 3.39 240 19.33 0.00
60 219 196.46 2.40 240 45.07 0.00
80 226 131.73 1.61 238 43.49 1.31
100 218 191.82 1.63 233 104.87 0.50

Overall 1125 142.14 2.48 1191 43.64 0.68

4.2 Computational results

In Table 1, computational results for five different methods are aggregated and reported for each n

value. We use Mask, Pulse and Step to denote the time-indexed mask, pulse and step formulation

respectively, and the valid inequalities in Section 2.5 and their equivalent forms are incorporated in

all of the three time-indexed formulations. EI stands for the plain execution-interval formulation,

while EI cut denotes the branch-and-cut method based on the execution-interval formulation with

cuts (42) generated. The maximum flow problem in the separation routine is solved by the preflow

algorithm by Goldberg and Tarjan [17], using the LEMON library [13]. Cuts (42) are separated

in the search tree of EI cut in the nodes on the first five levels and every fifth level, and we also

incorporate the generalized upper bound (GUB) branching scheme [28] to further enhance the

algorithm. Columns labeled by opt show the number of instances solved to optimality within the

time limit, out of 240 instances per n value, and columns labeled time contain the average CPU

time over the 240 instances in seconds. Entries gap show, for the unsolved instances, the average

gap between the upper and lower bounds reported by the solver when the runtime limit is reached.

Table 1 shows that EI cut is the clear winner out of the five methods. It solves all instances

with up to 60 orders, and is only unable to solve two and seven instances respectively for n = 80

and n = 100. The average runtime of EI cut is mostly a fraction of the runner-up method, and it

25

Table 2: Results of EI cut on instances with n = 60 across different settings

l − l slack

w = 5 w ∼ U(1, 10)

opt time gap(%) opt time gap(%)

[2, 6] [1, 5] 20 136.95 0.00 20 77.84 0.00
[6, 10] 20 7.03 0.00 20 3.24 0.00
[11, 15] 20 2.83 0.00 20 2.97 0.00

[8, 12] [1, 5] 20 228.41 0.00 20 72.30 0.00
[6, 10] 20 2.45 0.00 20 2.91 0.00
[11, 15] 20 1.82 0.00 20 2.17 0.00

provides the smallest gap for those unsolved instances. Among the three time-indexed formulations,

Step outperforms the other two, despite the fact that the three time-indexed formulations are

equally strong in terms of LP relaxation. One advantage of Step over Pulse is that branching on

a step variable is equivalent to branching on the sum of a group of pulse variables due to their

mutual transformation, which coincides with the idea of GUB branching. A similar pattern of the

computational behavior of these time-indexed formulations has been observed by other researchers;

see, e.g., Burgelman and Vanhoucke [9], Naber and Kolisch [22]. We should also point out that the

best solutions found by the time-indexed formulations are not as far from the optimal solutions

as indicated by the values in gap, e.g., the average gap of Mask for n = 60 can be brought down

to 2.90 from 31.21, when compared with the optimal solutions found by EI cut. This also proves

that one main disadvantage of the time-indexed formulations is the inferior lower bound. The plain

execution-interval formulation EI does not always outperform the time-indexed formulations, but

it does on average provide a better optimality gap thanks to its stronger LP bound.

In order to show how the difficulty of the instances scales with different parameter settings,

Table 2 details the results of EI cut on instances with n = 60 for different levels of l− l and slack,

and different choices for the generation of w. Clearly, instances with low slackness are hard to

solve, and this is true for all formulations and for each value of n. The reason is that in case of low

slackness, the choice between delaying an order (incurring a tardiness penalty) and invoking non-

regular capacity is crucial, and the trade-off becomes difficult. Comparing the left and right half of

the table, we see that instances with identical unit tardiness cost w tend to be more difficult than

those with heterogeneous w values. This is possibly because with w homogeneous among different

orders, there are many similar solutions and thus a larger feasible space needs to be examined.

26

Table 3: Results of five methods on selected difficult instances

n

Mask Pulse Step

opt time node opt time node opt time node

20 (14) 1 1703.56 133431.93 10 726.92 145272.36 14 58.26 5889.00
40 (34) 1 1759.15 103747.41 19 1030.18 135218.74 30 466.51 23552.38
60 (51) 0 1800.00 67016.61 23 1169.77 114530.65 36 783.60 27103.71
80 (49) 0 1800.00 55277.88 29 906.17 62623.43 34 742.25 16174.90
100 (46) 0 1800.00 49502.76 18 1182.98 65889.59 23 1057.87 20420.37

n

EI EI cut

opt time node opt time node cut

20 (14) 11 584.76 547724.14 14 25.26 1245.93 908.14
40 (34) 19 962.12 475328.12 34 120.17 4281.71 1107.09
60 (51) 30 915.79 352199.51 51 201.42 7780.43 1142.14
80 (49) 35 636.59 231829.41 47 199.46 4743.94 838.84
100 (46) 24 990.21 285042.22 39 529.25 11614.96 1348.65

Table 3 reports the results for selected difficult instances, which at least one method fails to

solve. The number of the selected instances for each value of n is indicated between parentheses.

Columns labeled by node contain the average number of nodes examined in the branch-and-bound

tree, and column cut of EI cut presents the average number of valid inequalities (42) separated for

solving these instances. We clearly see that for these difficult instances, EI cut dominates all other

methods, since on average it consumes the least solving time and explores the lowest number of

nodes. Without the enhancements, the average number of nodes examined for EI is in fact the

largest among all five methods. Between the three time-indexed formulations, Mask and Pulse are

outperformed by Step, and we should point out that Mask and Pulse cannot solve a single instance

that is not solved by Step.

4.3 Results on instances with precedence constraints

In order to examine the flexibility of the different models for incorporating various practical schedul-

ing extensions, we compare the model Step and our branch-and-cut EI cut, which are the two best

performers, on instances with general precedence constraints. The aim is to show the difference

in effectiveness of the models in handling the more generalized problem setting. The instances are

generated for n = 60, and the precedence graphs are generated by the RanGen software by De-

meulemeester et al. [12], with three levels of order strength OS = 0.2, 0.4 and 0.6 (order strength is

a measure for the density of the graph). For each order j, lj is generated from uniform distribution

27

U(2, 10), and lj − lj is drawn from uniform distribution U(2, 6). We take the planning horizon

as the length of the critical path calculated by lj , multiplied by a factor CPL with three choices

CPL = 1.2, 1.4 and 1.6, and rounded down to the nearest integer. The tardiness cost wj per

period of each order j is set as a fixed value 5, the release period rj is set as the earliest start time

ESj and the due date dj is set as the first quartile between the earliest finish time EFj and the

latest finish time LFj , rounded down to the nearest integer. The other parameters are generated

in the same way as described before. For each combination of factor OS and CPL, 20 instances

are generated, leading to 3× 3× 20 = 180 instances in total.

We incorporate the precedence constraints in the Step formulation as follows: the set of all

immediate precedence relationships is denoted as set E, such that order pair (i, j) ∈ E iff order i

is a direct predecessor of order j, meaning that i must be completed before the start of j. Step can

be extended with precedence constraints as follows:

saj,t+1 ≤ fait t = 1, . . . ,H − 1, ∀(i, j) ∈ E (52)

sajt = 0 t = ESj − 1, ∀j ∈ J (53)

sajt = 1 t = LSj , ∀j ∈ J (54)

fajt = 0 t = EFj − 1, ∀j ∈ J (55)

fajt = 1 t = LFj , ∀j ∈ J (56)

The same set of constraints are also applied in EI cut, using the affine transformation described in

Proposition 5.

Table 4 presents the results of Step and EI cut on the instances with precedence constraints,

with columns labeled by 1% containing the number of instances with optimality gap less than one

percent by the runtime limit. EI cut solves half of the instances with OS = 0.2, and fails for only

two with OS = 0.6. It also closes the optimality gap to less than 1% for all but one of the instances,

within the runtime limit. On the other hand, Step fails nearly completely and is clearly dominated

by EI cut in all aspects. Considering how the difficulty scales with the parameters, instances with

lower OS and higher CPL values tend to be harder to solve.

28

Table 4: Results of Step and EI cut on instances of n = 60 with precedence constraints

OS CPL

Step EI cut

opt time gap(%) 1% opt time gap(%) 1%

0.2

1.2 1 1782.87 6.53 4 10 1246.51 0.49 19
1.4 0 1800.00 12.18 1 13 1048.14 0.45 20
1.6 0 1800.00 23.75 0 7 1510.02 0.25 20

0.4
1.2 1 1731.58 5.43 3 16 748.15 0.47 20
1.4 0 1800.00 18.85 0 15 902.91 0.54 20
1.6 0 1800.00 25.61 0 17 887.57 0.27 20

0.6
1.2 1 1757.18 6.58 3 20 292.06 0.00 20
1.4 0 1800.00 12.73 0 19 448.09 0.46 20
1.6 0 1800.00 16.99 0 19 572.63 0.27 20

Overall 3 1785.74 14.43 11 136 850.67 0.40 179

5 Conclusions

In this paper, we model and solve the RLP with different MIP formulations: the time-indexed

mask, pulse and step formulation, and a novel execution-interval formulation. The strength of

these formulations is compared based on polyhedral analysis, and valid inequalities are proposed

to further enhance the formulations. Based on the execution-interval formulation, a complete

description of the polytope of feasible intensity assignments for individual orders is established,

along with a polynomial-time separation algorithm. The computational results show that the

proposed branch-and-cut algorithm provides superior performance. Topics for future research are

manifold, such as establishing polyhedral results for the incorporation of precedence constraints

among the orders, and the consideration of uncertainty on the work content of orders.

Acknowledgments

This work was supported by the CELSA joint research funding program (project CELSA/17/007).

The research of Tamás Kis has been supported by the National Research, Development and Inno-

vation Office of Hungary–NKFIH, grant no. SNN 129178, and ED 18-2-2018-0006.

29

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Upper Saddle River, New Jersey, 1993.

[2] A. Alfieri, T. Tolio, and M. Urgo. A project scheduling approach to production planning with

feeding precedence relations. International Journal of Production Research, 49(4):995–1020,

2011.

[3] C. Artigues. On the strength of time-indexed formulations for the resource-constrained project

scheduling problem. Operations Research Letters, 45(2):154–159, 2017.

[4] E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete

Applied Mathematics, 89(1-3):3–44, 1998.

[5] E. Balas. Disjunctive Programming. Springer, 2018.

[6] J. Beliën, B. Cardoen, and E. Demeulemeester. Improving workforce scheduling of aircraft

line maintenance at Sabena Technics. Interfaces, 42(4):352–364, 2012.

[7] L. Bianco and M. Caramia. A new formulation for the project scheduling problem under

limited resources. Flexible Services and Manufacturing Journal, 25(1-2):6–24, 2013.

[8] J. B lażewicz, M. Machowiak, J. Weglarz, M. Y. Kovalyov, and D. Trystram. Scheduling mal-

leable tasks on parallel processors to minimize the makespan. Annals of Operations Research,

129(1-4):65–80, 2004.

[9] J. Burgelman and M. Vanhoucke. Maximising the weighted number of activity execution modes

in project planning. European Journal of Operational Research, 270(3):999–1013, 2018.

[10] C. C. Cavalcante, C. C. de Souza, M. W. Savelsbergh, Y. Wang, and L. A. Wolsey. Scheduling

projects with labor constraints. Discrete Applied Mathematics, 112(1):27–52, 2001.

[11] R. De Boer. Resource-constrained multi-project management. PhD thesis, University of

Twente, The Netherlands, 1998.

30

[12] E. Demeulemeester, M. Vanhoucke, and W. Herroelen. Rangen: A random network generator

for activity-on-the-node networks. Journal of Scheduling, 6(1):17–38, 2003.

[13] B. Dezső, A. Jüttner, and P. Kovács. LEMON–an open source c++ graph template library.

Electronic Notes in Theoretical Computer Science, 264(5):23–45, 2011.

[14] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of

Mathematics, 8(3):399–404, 1956.

[15] C. Fündeling and N. Trautmann. A priority-rule method for project scheduling with work-

content constraints. European Journal of Operational Research, 203:568–574, 2010.

[16] N. Gademann and M. Schutten. Linear-programming-based heuristics for project capacity

planning. IIE Transactions, 37:153–165, 2005.

[17] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal of

the ACM, 35(4):921–940, 1988.

[18] E. Hans. Resource loading by branch-and-price techniques. PhD thesis, University of Twente,

The Netherlands, 2001.

[19] T. Kis. A branch-and-cut algorithm for scheduling of projects with variable-intensity activities.

Mathematical Programming, 103(3):515–539, 2005.

[20] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for the resource-

constrained project scheduling problem based on a new mathematical formulation. Manage-

ment Science, 44(5):714–729, 1998.

[21] R. H. Möhring, A. S. Schulz, F. Stork, and M. Uetz. Solving project scheduling problems by

minimum cut computations. Management Science, 49(3):330–350, 2003.

[22] A. Naber and R. Kolisch. MIP models for resource-constrained project scheduling with flexible

resource profiles. European Journal of Operational Research, 239:335–348, 2014.

[23] M. Nattaf, M. Horváth, T. Kis, C. Artigues, and P. Lopez. Polyhedral results and valid inequal-

ities for the continuous energy-constrained scheduling problem. Discrete Applied Mathematics,

258:188–203, 2019.

31

[24] A. A. B. Pritsker, L. J. Watters, and P. M. Wolfe. Multiproject scheduling with limited

resources: A zero-one programming approach. Management Science, 16(1):93–108, 1969.

[25] J. P. Sousa. Time indexed formulations of non-preemptive single-machine scheduling problems.

PhD thesis, Université Catholique de Louvain, Belgium, 1989.

[26] J. P. Sousa and L. A. Wolsey. A time indexed formulation of non-preemptive single machine

scheduling problems. Mathematical Programming, 54(1-3):353–367, 1992.

[27] F. Talla Nobibon, R. Leus, K. Nip, and Z. Wang. Resource loading with time windows.

European Journal of Operational Research, 244(2):404–416, 2015.

[28] L. A. Wolsey. Integer Programming. Wiley-Interscience Series in Discrete Mathematics and

Optimization, John Wiley & Sons, New York, 1998.

[29] G. Wullink, A. Gademann, E. W. Hans, and A. van Harten. Scenario-based approach for

flexible resource loading under uncertainty. International Journal of Production Research, 42

(24):5079–5098, 2004.

32

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	voorbl-OZrapport-sjabloon.docx
	RLP_new
	Introduction
	Time-indexed formulations
	Pulse formulation
	Step formulation
	Mask formulation
	Strength of the formulations
	Valid inequalities

	Execution-interval formulation and polyhedral results
	Execution-interval formulation
	Convex hull for individual orders and valid inequalities
	A linear representation of
	The dimension of P
	Facets of P
	Separation of the valid inequalities
	On the facets of the execution-interval formulation

	Computational experiments
	Experimental setup
	Computational results
	Results on instances with precedence constraints

	Conclusions

	achterbl-OZrapport-_sjabloon

