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Abstract

Research on the analysis of real-world sports data dates back at least to
1958 (Lindsey 1959; Rubin 1958). Advances in technology have caused an
explosion of the amount of sports-related data about sports. The abundance of
data has attracted the interest of both the academic community and the industry.
The aim of this sports analytics community is to leverage the available data to
help decision makers to gain a competitive advantage (Alamar and Mehrotra
2011). The advent of wearable technology has yielded a new data source that still
has a lot of unexplored potential. These data can assist practitioners to monitor
athletes during daily life activities (Kwapisz et al. 2011) and rehabilitation (Um
et al. 2017; Whelan et al. 2016), to quantify their training loads (Bourdon et al.
2017; Halson 2014; Jaspers, Brink, et al. 2017), and to analyze their risk of
injury (Gabbett and Ullah 2012).

From a data science perspective, these continuous monitoring data pose several
interesting data challenges. First, combining the data of different athletes is
non-trivial due to inter-individual differences. Second, because the behavior of
athletes can change and because often only limited individual data are available,
it is also non-trivial to model the data on an individual level. Third, the use of
subjective measures to quantify certain aspects of the athlete (e.g., perceived
wellness), confounding factors (e.g., running speed), and missing values further
complicate the analysis of these data.

In this thesis we evaluated how data science techniques can provide value to the
analysis and interpretation of athletes’ training load data. Our main focus is
on the analysis of training load data from soccer players and outdoor runners.
Specifically, we examined three relevant relationships. First, we studied how
soccer players perceive external loads. Second, we modeled the relationship
between external and internal load, and perceived wellness of soccer players.
Third, we analyzed the relationship between biomechanical movement data of
outdoor runners and their perceived fatigue status.
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We presented three types of evidence to support the dissertation statement.
First, we found that both data-driven feature selection methods and simple
statistical features can complement expert knowledge. Second, we illustrated
that group models can be used to individually monitor an athlete when limited-
to-no prior data are available for that athlete. Third, we showed that machine
learning techniques are well suited to model the complex relationships that are
relevant for the analysis of athletes’ training load data: non-linear relationships,
relationships between objective and subjective variables, and relationships where
multicollinearity exists among the input variables.

Additionally, we formulated some lessons learned for data scientists. We argued
that modeling the context of and athlete’s data, either explicitly or implicitly, can
improve the performance of predictive models by adjusting for inter- and intra-
subject differences and external factors. We presented several such strategies:
standardizing features relative to an individual baseline, predicting a normalized
target variable instead of the originally reported target variable, and adding the
previous state as a feature. Moreover, we identified subtle data dependencies,
that hinder obtaining an unbiased estimation of a model’s ability to generalize
to unseen data.

We identified three limitations of the current thesis. First, we evaluated the
methodologies to monitor soccer players on the data of only one club. Second,
the data collection protocol to collect outdoor data from runners experimentally
controlled for total distance, intensity, and running surface and might have
introduced a bias towards reporting higher fatigue scores near the end of the
protocol. Third, RPE, a subjective measure used in every relationship of this
thesis, quantify muscular fatigue, as well as cardiovascular and psychological
fatigue.

Future research in this area can benefit from an interdisciplinary collaboration
between data scientists, sports scientists and other domain experts. A close
collaboration throughout all phases of the data science process can further
advance the state of the art. First, it will improve the quality of the data that
is being collected. Second, it can help to properly contextualize the data when
modeling relevant relationships. Third, it will allow obtaining an unbiased
estimation of these predictive models.



Beknopte Samenvatting

Onderzoek omtrent de analyse van gegevens van sporters tijdens competitie
gebeurde reeds in 1958 (Lindsey 1959; Rubin 1958). Technologische
vooruitgangen zorgden voor een explosie aan gegevens binnen de sport. De
overvloed aan gegevens in de meeste sporten heeft de interesse gewekt van zowel
de academische gemeenschap als van de industrie. Het doel van deze sportanalyse
gemeenschap is om de beschikbare gegevens te gebruiken om beslissingsmakers
een competitief voordeel te bezorgen (Alamar en Mehrotra 2011). De opkomst
van draagbare technologie heeft voor een nieuwe gegevensbron gezorgd die
nog veel potentieel heeft. Deze gegevens kunnen beslissingsmakers helpen
om: atleten op te volgen tijdens dagelijkse activiteiten (Kwapisz e.a. 2011),
revalidatie (Um e.a. 2017; Whelan e.a. 2016), om hun trainingsbelastingen te
quantificeren (Bourdon e.a. 2017; Halson 2014; Jaspers, Brink e.a. 2017), en om
hun risico op blessures te analyseren (Gabbett en Ullah 2012).

Vanuit een data science perspectief zorgen deze continue monitoring gegevens
van atleten voor verscheidene uitdagingen. Ten eerste is het niet triviaal
om gegevens van verschillende atleten te combineren omwille van individuele
verschillen. Ten tweede is het niet triviaal om deze gegevens op een individueel
niveau te modelleren omdat het gedrag van atleten kan veranderen en omdat
er vaak maar een beperkte hoeveelheid individuele gegevens beschikbaar zijn.
Ten derde wordt de analyse verder bemoeilijkt door het gebruik van subjectieve
maatstaven om bepaalde aspecten van atleten te quantificeren (v.b., welzijn) en
de aanwezigheid van verstorende factoren (v.b., loopsnelheid).

In deze thesis evalueerden we hoe data science technieken een meerwaarde
kunnen bieden voor de analyse en interpretatie van trainingsbelastingsgegevens
van atleten. We spitsten ons toe op de analyse van trainingsbelasting van
voetballers en de bewegingen van outdoor lopers. Meer specifiek onderzochten
we drie relevante relaties. Ten eerste bestudeerden we hoe voetballers externe
belasting waarnemen. Ten tweede modelleerden we de relatie tussen externe
en interne belasting enerzijds, en het gerapporteerde welzijn van voetballers
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anderzijds. Ten derde analyseerden we de relatie tussen biomechanische
bewegingen van outdoor lopers en hun gerapporteerde vermoeidheidstoestand.

We onderbouwden de thesisstelling op drie manieren. Ten eerste vonden we dat
gegevensgestuurde feature selectie methodes en eenvoudige statistische features
complementair kunnen zijn aan de kennis van experten. Ten tweede illustreerden
we dat groepsmodellen gebruikt kunnen worden om een atleet individueel op te
volgen, zelfs wanneer er weinig gegevens van die atleet beschikbaar zijn. Ten
derde toonden we aan dat machine learning technieken goed geschikt zijn voor
het modelleren van de complexe relaties die relevant zijn voor de analyse van
trainingsbelastingsgegevens van atleten: niet-lineaire relaties, relaties tussen
objectieve en subjectieve variabelen, en relaties waarbij de invoer variabelen
aan elkaar gecorreleerd zijn. Daarnaast formuleerden we ook enkele lessen
voor data scientists. We argumenteerden dat de prestaties van voorspellende
modellen verbeterd kunnen worden door de context van atleten expliciet of
impliciet mee in rekening te nemen. We stelden verschillende strategieën voor:
door het standardiseren van features ten opzichte van een individuele baseline,
door een genormaliseerde doelvariabele te voorspellen in plaats van de origineel
gerapporteerde variabele, en door de vorige toestand als feature toe te voegen.
Verder identificeerden we ook subtiele afhankelijkheden in de gegevens die een
correcte evaluatie van hoe goed een model veralgemeent verhinderen.

We lichtten ook drie limitaties van de huidige thesis toe. Ten eerste evalueerden
we de methodologieën voor het monitoren van voetballers met de gegevens van
één club. Ten tweede controleerde het outdoor lopers protocol experimenteel
voor de totale afgelegde afstand, intensiteit en ondergrond en mogelijk zorgde
het protocol ervoor dat lopers de neiging hadden om naar het einde toe hogere
RPE scores te rapporteren. Ten derde is RPE, een subjectieve schaal die in elke
gemodelleerde relatie in deze thesis werd opgenomen, een maat die niet alleen
spiervermoeidheid, maar ook de cardiovasculaire en psychologische vermoeidheid
meet.

Toekomstig onderzoek in dit domein kan profiteren van een interdisciplinaire
samenwerking tussen data scientists, sports scientists en andere domein experten
tijdens alle stappen van het data science proces. Ten eerste zal het de kwaliteit
van gegevens verbeteren. Ten tweede zullen de gegevens in de juiste context
geplaatst kunnen worden om relevante relaties te modelleren. Ten derde zal het
toelaten om een correcte evaluatie van de voorspellende modellen te bekomen.
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Chapter 1

General Introduction

1.1 Introduction

Research on the analysis of real-world sports data dates back at least to
1958 (Lindsey 1959; Rubin 1958). Over the years, advances in technology have
caused an explosion of the amount of data collected about sports. Written
scouting reports, box scores and raw camera footage have evolved to much
richer data sources:

Event stream data These data capture all game events (e.g., passes, dribbles,
tackles) in a structured format. For each event, the format lists, the
players involved, its timestamp, and location (Opta Sports 2018).

Positional data Motion capture systems (SciSports 2018; STATS’ SportVU
2018) allow tracking the position of athletes up to 100 times per second
during competition (Alamar and Mehrotra 2011).

This abundance of data has attracted the interest of both the academic
community and the industry. The aim of the sports analytics community
is to leverage the available data to help decision makers to gain a competitive
advantage (ibid.).

Over the years, the analysis of these data have evolved from descriptive statistics
to advanced predictive models. Data science techniques have found their way
into several popular forms of data analytics:

1
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Match outcome prediction Models to predict the outcome of games have
been proposed for soccer (Van Haaren and Davis 2015), basketball (Zim-
mermann et al. 2013), ice hockey (Marek et al. 2014) and tennis (Spanias
and Knottenbelt 2013).

Player projections Models to forecast how players will perform in the future
were proposed for soccer (Vroonen et al. 2017), basketball (Hwang 2012),
and ice hockey (Liu and Schulte 2018).

Action rating Researchers developed models to quantify actions of players
in soccer (Bransen et al. 2018; Decroos, Bransen, et al. 2018),
basketball (Cervone et al. 2014), ice hockey (Schulte et al. 2017), and
volleyball (Bagley and Ware 2017).

Strategy analysis The available spatio-temporal data showed the potential
to reveal strategical patterns in soccer (Lucey et al. 2013; Van Haaren,
Dzyuba, et al. 2015), basketball (Miller et al. 2014), volleyball (Van
Haaren, Horesh, et al. 2016), tennis (Wei et al. 2015), and marathon
running (Smyth and Cunningham 2018).

Advanced metrics Advanced metrics such as the expected goals metric
have been introduced. This metric computes the likelihood of scoring
given a description of the game state. Variants of the metric exist
for soccer (Decroos, Dzyuba, et al. 2017), ice hockey (Macdonald
2012), American football (Pasteur and Cunningham-Rhoads 2014), and
basketball (Chang et al. 2014).

While the sports analytics community has largely focused on the analysis of
performance during competition, the advent of wearable technology (see section
2.1) has yielded a new data source that still has a lot of unexplored potential.
These continuous monitoring data capture other aspects such as:

GPS data GPS sensors (Catapult 2018; STATSports 2018) track the position
of athletes up to 10 times per second. These sensors can quantify distance
covered, running speed, accelerations and decelerations during competition
and training.

Biomechanical data Inertial motion units quantify biomechanical parame-
ters (Shimmer 2019) (e.g., impacts, accelerations, jumps) and daily life
activities (Fitbit 2019).

Physiological data Heart rate monitors (Polar 2019) and other wearable
sensors track physiological signals (e.g., heart rate, skin temperature, and
galvanic skin response) (Li et al. 2017).



INTRODUCTION 3

Questionnaire data Mobile apps are a convenient tool to allow athletes
to track other aspects (e.g., nutritional data, wellness data, ratings of
perceived exertion) in the form of questionnaires and digital diaries.

These data can assist practitioners to monitor athletes during daily life
activities (Kwapisz et al. 2011) and rehabilitation (Um et al. 2017; Whelan et al.
2016), to quantify their training loads (see section 2.2) (Bourdon et al. 2017;
Halson 2014), and to analyze their risk of injury (Gabbett and Ullah 2012).

From a data science perspective, these continuous monitoring data from athletes
pose several interesting data challenges:

Small sample sizes It is not always feasible to collect a lot of data about
each individual. In a research context, it can be time consuming to
attach the sensors and to record and read out the data. Moreover, it
is not always possible to collect data of multiple athletes at the same
time. In a real-world sports setting the total number of sessions that can
be monitored during a season is limited because of regulations, player
transfers, injuries, international weeks, or coach preferences. Thus, when
these longitudinal data are aggregated per session, individual data sets are
often small. Small data sets in combination with intra-subject differences,
noise and confounding factors can make it non-trivial to construct accurate
individual models. Therefore, it is often necessary to construct models
using data of multiple athletes.

Individual characteristics of athletes Individual characteristics (e.g., age,
anthropometrics, strength, injury history) of athletes add complexity to the
data analysis because they introduce inter- and intra-subject differences
in the data. Inter-subject differences in the data arise because these
individual characteristics determine how athletes move (e.g., running style),
how they respond to a load that they are subjected to, and what type of
injuries they are susceptible to. Thus, combining data of different athletes
is non-trivial. Intra subject differences arise because some individual
characteristics of an athlete fluctuate over time. Thus, an athlete’s
movements, load response, and injury risk profile evolve over time which
complicates the analysis on an individual level.

Subjective data Subjective measures are popular to quantify an athlete’s
perception of training load as well as aspects of the athlete’s wellbeing.
However, the subjectivity of these data complicates their analysis because
an athlete’s perception is individual and can evolve over time.

External factors External factors further complicate data analysis. Sensor
positioning and attachment can introduce noise and motion artifacts
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into the data. Confounding factors such as running speed, terrain, and
temperature can influence the data as well. In a real-world setting it is not
always feasible to control for these variables. Thus, it is often necessary
to adjust for these variables when analyzing the data.

Missing data Several factors can introduce missing data. Some missing values
are introduced at random (e.g., no GPS signal, sensor defect) and can
typically be imputed. However, other types of missing data are non-
trivial to impute (e.g., missing values because players did not fill out their
questionnaire on match days and recovery days).

In this thesis we focus on the analysis of training load data of soccer players
and outdoor runners.

The core principle of training is that it causes biological adaptations in athletes.
These changes improve the fitness of the athlete and as a result can improve
the athlete’s performance potential (Soligard et al. 2016).

Unfortunately, both poor management of training loads and non-sport stressors
can cause maladaptations in athletes. These maladaptations can lead to
decreased performance and injuries. This underscores the importance of
monitoring loads (i.e., stimuli that are applied to a human biological system)
that are applied to athletes, understanding how athletes respond to these loads
and assessing whether they need recovery or extra training (ibid.).

Measures of training load (i.e., loads applied during a training session) measure
either external load (i.e., all locomotor activities performed by athlete) or
internal load (i.e., how the athlete responds to a given external load) (Bourdon
et al. 2017). External load can be characterized using objective variables (e.g.
total distance covered). Internal load can be measured using both objective (e.g.,
heart rate) and subjective measurements (e.g., rating of perceived exertion).
Yet, the subjective measures are often more practical to use, more specific (Brink
et al. 2010) and more sensitive (Saw, Main, et al. 2016) compared to available
objective measures for internal load.

Different subjective internal load measures are being used. The global rating of
perceived exertion (i.e., RPE) is a subjective and holistic measure to capture
an overall feeling of fatigue. This global RPE score simultaneously captures the
cardiovascular, mechanical and psychological fatigue of an athlete. Differential
RPE or dRPE (Vanrenterghem et al. 2017) breaks down the global concept of
fatigue into different more specific components that are scored separately (e.g.,
cardiovascular, biomechanical and technical demands). Three popular scales
to measure ratings of perceived exertion are being used to study runners and
soccer players: the original Borg RPE scale (Schütte, Seerden, et al. 2018), the
CR10-scale, and the CR100-scale (Fanchini et al. 2016). Wellness questionnaires
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can be used to capture acute and chronic changes in athlete wellness (e.g.,
fatigue, general muscle soreness and sleep quality) in response to load (Saw,
Main, et al. 2016).

While seemingly similar, the different internal load measurements can actually
complement each other. Typically, the global RPE measure is used to quantify
the internal load of an entire training session. Measuring the global RPE score
repeatedly during a session allows studying the evolution of the internal load
within a session. The dRPE can either replace the global RPE measurement, or
can be used jointly with the global RPE to explain the global RPE measurement.
Wellness questionnaires are typically filled out by athletes before the first training
session of the day and capture the response to all sports and non-sports loads
of the preceding days (Thorpe et al. 2017). The wellness state of the athlete
influences how the athlete responds to the subsequent external load that the
athlete is subjected to.

While measuring the external loads helps to accurately dose the load an athlete
is subjected to, the internal load helps to assess whether the response to the
external load matches the intended response. The internal-load-to-external
load ratio can be used to infer the training status of an athlete (i.e., does the
athlete need more recovery or more training) (Buchheit, Racinais, et al. 2013).
An increase in internal load to a standardized external load indicates that the
athlete is more fatigued, whereas a decrease in internal load reveals an increase
in fitness of the athlete (Bourdon et al. 2017). In practice, standardized external
loads can be approximated by the use of standardized conditioning tests (e.g.,
the yo-yo intermittent recovery test (Bangsbo et al. 2008)). However, it is not
feasible to frequently conduct these tests as they are time consuming and they
can disrupt an athlete’s training program. Therefore, it would be valuable to
assess the training status of athletes from the internal-to-external-load ratio
of normal training sessions. However, external load is characterized by many
external load indicators. Thus, the ratio between the internal load and all these
indicators should be evaluated simultaneously. This is a non-trivial task as no
such normative data exists.

In this thesis we use data science approaches to model this relationship. The
use of data science techniques to analyze the data that are collected in these
fields is still limited.

In the field of training load monitoring most models are hand crafted and only
consider one input variable at a time (Banister et al. 1975; Buchheit, Racinais,
et al. 2013; Hulin et al. 2016). These models make simplifications or assumptions
that might not hold in a real world setting (Hellard et al. 2006; Jobson et al.
2009). However, recently, the training load community acknowledged the
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potential of machine learning (see section 2.3) techniques (Bourdon et al. 2017).
Previously, artificial neural networks (ANNs) were used to predict the training
response of Australian football players (Bartlett et al. 2017). Yet, these models
only used a small set of hand selected input variables.
Over the past years, the field of biomechanics showed an increasing interest in
machine learning techniques (Halilaj et al. 2018). Yet, the protocols employed
in these studies often experimentally control for confounding factors such as
running speed (E. Mitchell et al. 2015) or artificially induce asymmetries (ibid.)
or fatigue (Buckley et al. 2017). Therefore, analyzing more realistic data might
reveal new interesting data challenges.

1.1.1 Dissertation Statement

In this thesis we evaluate the following statement:

“Data science techniques can provide value to the analysis and interpretation of
training load data of athletes”.

To evaluate this statement we examine the following questions:

1. Is a data driven approach to identify important variables complementary
to expert knowledge?

2. Do group models provide value for the individual monitoring of athletes?

3. Are machine learning models well suited to model continuous monitoring
data of athletes?

1.1.2 Contributions

To summarize, the main contributions of this thesis are:

• We identify the external load indicators that are perceived as most exerting
by soccer players

• We show that group models can be used for individual monitoring of the
training load response of soccer players.

• We find that acute external and internal load in combination with
preceding perceived wellness are most predictive of future perceived player
wellness.
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• We present a methodology that effectively accounts for running speed,
the subjectivity of the target variable and inter- and intra-individual
differences between runners.

• We show that the fatigue status of a runner can accurately be predicted
with limited or no prior labeled data of a runner using a set of simple
features computed on the data of one IMU-sensor attached to the wrist.

1.1.3 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 provides the reader of this thesis with the necessary background to
read the subsequent Chapters.

In Chapters 3 through 5 we focus on three applications where we apply data
science approaches to analyse training load data in close collaboration with
domain experts.

All three applications adhere to the same general methodology that consists
of five steps. First, we define research questions that are relevant for the
domain. Second, we decide on the most suitable data set to analyse. Third, we
define relevant subsets of the data that will be used to learn predictive models.
Fourth, we design an evaluation strategy to obtain an unbiased estimation of
the accuracy of the predictive models. Fifth, we construct predictive models
for each subset using various popular traditional machine learning algorithms.
These algorithms learn a model from a set of feature vectors. This approach
increases the buy-in of domain experts as it allows the use of both meaningful
features and interpretable models. This is important because the use of data
science approaches to analyse training load data is still novel.

More specifically, Chapter 3 contributes to the evaluation of the training status
of players. In this Chapter we model the relationship between the rating of
perceived exertion (i.e., RPE) (Borg 1982; Borg 1998) reported 30 minutes after
a training session and the external load performed during the training session.
We examine the importance of the available external load indicators and assess
the role of individual characteristics of players. This chapter was previously
published as:

Jaspers, A.*, Op De Beéck, T.*, Brink, M., Frencken, W., Staes, F., Davis, J.+,
Helsen, W.+ (2018). Relationships between the External and Internal Training
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Load in Professional Soccer: What can We Learn from Machine Learning?
International journal of sports physiology and performance, 13(5), 625-630.
(*) denotes shared first authorship, (+) denotes shared last authorship

Chapter 4 contributes to the longitudinal wellness monitoring of athletes. In
this Chapter we model how an athlete’s perceived wellness is affected by the
preceding training load. We evaluate the impact of both acute and chronic
training loads. We quantify these training loads using internal and external
load indicators. We also examine the potential of extra contextualization of the
data. This Chapter was previously published as:

Op De Beéck, T.*, Jaspers, A.*, Brink, M., Frencken, W., Staes, F., Davis,
J.+, Helsen, W.+ (2019). Predicting Future Perceived Wellness in Professional
Soccer: The Role of Preceding Load and Wellness. International journal of
sports physiology and performance, 1-25.
(*) denotes shared first authorship, (+) denotes shared last authorship

Chapter 5 adds to the real-time monitoring of athletes. We collected a
longitudinal outdoor data set of runners wearing multiple IMU sensors during an
all out 3200m test. We examine how the fusion of these multiple biomechanical
motion sensors reflects the fatigue status of the runner. We show how to deal
with the subjectivity of the target label and the inter-individual differences
between runners. We also show that the evaluation of these data is non-trivial.
This Chapter was previously published as:

Op De Beéck, T., Meert, W., Schütte, K., Vanwanseele, B., Davis, J. (2018).
Fatigue Prediction in Outdoor Runners Via Machine Learning and Sensor
Fusion. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (pp. 606-615). ACM.

Chapter 6 reflects on Chapters 3 to 5. We revisit the dissertation statement,
formulate lessons learned, discuss the limitations and point out potential
directions for future research.
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1.1.4 Other Research Conducted

To present a coherent story, this thesis focuses on the research related to the
analysis of continuous monitoring data of athletes using data science techniques,
where I am a first author. Yet, this is only a subset of the research that I have
performed during my PhD. This section gives a short summary of the other
publications that I have contributed to.

Mining Hierarchical Pathology Data using Inductive Logic Program-
ming. In this study (Op De Beéck et al. 2015), we proposed a methodology
based on inductive logic programming to extract novel associations from
pathology excerpts. We discussed the challenges posed by analyzing these
data and discussed how we addressed them. As a case study, we applied our
methodology to Dutch pathology data for discovering possible causes of two
rare diseases: cholangitis and breast angiosarcomas.

Published as: Op De Beéck, T., Hommersom, A., Van Haaren, J., van der
Heijden, M., Davis, J., Lucas, P., Nagtegaal, I. (2015, June). Mining Hierarchical
Pathology Data using Inductive Logic Programming. In Conference on Artificial
Intelligence in Medicine in Europe (pp. 76-85). Springer, Cham.

Data Fusion of Body-worn Accelerometers and Heart Rate to Predict
VO2max during Submaximal Running. In this study (De Brabandere et al.
2018) we presented a model for recreational runners to estimate their VO2max
from submaximal running on a treadmill. It requires two body-worn sensors: a
heart rate monitor and an accelerometer positioned on the tibia.

Published as: De Brabandere, A., Op De Beéck, T., Schütte, K., Meert, W.,
Vanwanseele, B., Davis, J. (2018). Data Fusion of Body-worn Accelerometers
and Heart Rate to Predict VO2max during Submaximal Running. PloS One,
13(6).

AMIE: Automatic Monitoring of Indoor Exercises. In this study (De-
croos, Schütte, et al. 2018) we examined the feasibility of a system that
automatically provides feedback on correct movement patterns for patients
performing physical therapy exercises. We introduced AMIE, a machine learning
pipeline that detects the exercise being performed, the exercise’s correctness,
and if applicable, the mistake that was made.

Published as: Decroos, T., Schütte, K., Op De Beéck, T. , Vanwanseele, B.,
Davis, J. (2018, September). AMIE: Automatic Monitoring of Indoor Exercises.
In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases (pp. 424-439). Springer, Cham.

Surface Effects on Dynamic Stability and Loading During Outdoor
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Running using Wireless Trunk Accelerometry. The purpose of this
study (Schütte, Aeles, et al. 2016) was to investigate outdoor surface effects
on dynamic stability and dynamic loading during running using tri-axial trunk
accelerometry. The results suggested that woodchip trails disrupt aspects
of dynamic stability and loading that are detectable using a single trunk
accelerometer.

Published as: Schütte, K. H., Aeles, J., Op De Beéck, T., van der Zwaard,
B., Venter, R., Vanwanseele, B. (2016). Surface Effects on Dynamic Stability
and Loading During Outdoor Running using Wireless Trunk Accelerometry.
Gait & posture, 48, 220-225.

Monitoring the Crus for Physical Therapy. The goal of this study (Van
Craenendonck et al. 2014) was to investigate whether a 3D camera, such as the
Microsoft Kinect, can be used to monitor the lower limbs of patients performing
physical therapy exercises. This study presented two particle-filtering based
algorithms for accurate tracking.

Published as: Van Craenendonck, T., Op De Beéck, T., Meert, W.,
Vanwanseele, B., Davis, J. (2014). Monitoring the Crus for Physical Therapy.
In 1st International Workshop on Machine Learning for Urban Sensor Data (pp.
1-16).



Chapter 2

Background

In this chapter we provide an overview of the background that is necessary to
read the subsequent chapters of this thesis. First, we give more information on
the wearables that were used for this thesis. Second, we introduce the concept
of training load and motivate why the load of athletes should be monitored.
Third, we explain several important machine learning concepts and provide an
overview of the different machine learning algorithms that we use in chapters 3
to 5.

2.1 Wearable Sensors in Sports

This section gives more background on GPS sensors, accelerometers, and
gyroscopes in the context of data collection for sports applications. Typically,
two sensor characteristics should be considered when evaluating a sensor.

First, the sample rate (i.e., the number of measurements per second) is important
because it determines how fine grained the data are. Higher sampling rates will
allow capturing events that happen in a short amount of time (e.g., heel strike
while running). However, there is a trade-off between the sampling rate on the
one hand, and the battery life and storage capacity of the sensor on the other
hand.

Second, the range of the sensor is important as it defines the minimum and
maximum values that can be measured. When the actual values exceed this
range, the sensor will clip the measured values to either the minimum or
maximum value. Clipping introduces inaccuracies as noise in the data.

11
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Throughout this thesis we analyzed data collected using the following three
sensors:

GPS A GPS sensor can measure the speed and position of athletes. For
runners, a typical GPS sensor has a sampling rate between 1/10 Hz and
1 Hz. A GPS to track athletes in team sports requires a sampling rate
of 10 Hz to capture the changes of direction as well as accelerations and
decelerations (M. Scott et al. 2016).

Accelerometer A (tri-axial) accelerometer can measure accelerations in three
directions (i.e., in Gs). The sampling rate should be high (i.e., 500-1000
Hz (Willy 2018)) when it is important to detect gait events (e.g. initial
foot contact during a running step). The range of the sensor should be
between -20 Gs and 20 Gs (ibid.) to avoid clipping of the acceleration
signals measured at the tibia (i.e., the shin) while running.

Gyroscope A gyroscope can measure rotations per second (i.e., degrees/s)
along three axes (i.e., pitch, roll, yaw). Both the sampling rate
and range of the sensor determine its applicability. Gyroscopes used
to monitor movements of athletes during teamsports and research
applications currently use a range between 250 and 2000 degrees per
second and a sampling rate between 100 and 1000 Hz to capture subtle
movements (Catapult 2018; Shimmer 2019).

When collecting data in sports, several other factors influence the quality of the
data of accelerometers and gyroscopes.

First, the sensor location affects the data that can be recorded. To capture
impacts while running for example, an accelerometer on the foot will register
higher impacts compared to an accelerometer on the upper back. When the
runner’s foot hits the ground, a shock wave will travel upwards throughout the
runner’s body. As a mechanism to protect the brain from shocks, the runner’s
body will have already absorbed part of the shock wave by the time it reaches
the sensor on the upper back.

Second, the orientation of the sensor relative to the structure it is attached to
affects the data. Accelerometers and gyroscopes measure according to a local
reference system (i.e., three axes). To not complicate the interpretation of the
data it is important to align these axes with the structure the sensor is attached
to (e.g. the shin). To avoid variation in the data, the same sensor position
and sensor orientation should be used for each recording (e.g., when collecting
longitudinal data).

Third, it is important that the sensor remains in place during movement. A
combination of moving at high speeds, high accelerations or decelerations,
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and sweating have the potential to move the sensor (i.e., sensor rotation or
translation). High impacts can cause elastic movement of the sensor (i.e., the
sensor moves relative to the structure, but returns to its original position with
some delay). These type of movements can create artificial movement artifacts
in the data.

2.2 Training Load Monitoring

Getting athletes in top shape while keeping them injury free is not an easy task.
Practitioners should use a holistic approach to monitor their athletes (Verhagen
and Gabbett 2019). First, they need to track the load that they apply to their
athletes. Second, they should assess their load capacity (i.e., how much load
can an athlete tolerate). Third, they have to follow up on their health and
performance statuses. Fourth, they need to consider the individual context and
environment of each athlete (ibid.). These four categories are not independent
of each other. Figure 2.1 illustrates these dependencies on a high level. In
this simplistic model, some relationships reflect a positive influence from one
category on another (shown by solid lines), whereas other relationships reflect a
negative influence from one category on another (shown by dashed line). In the
following sections we will zoom in on different aspects of this model.

Figure 2.1: Relationships between load, load capacity, health and performance,
redrawn from (Verhagen and Gabbett 2019). Solid lines indicate a positive
relationship. Dashed lines indicate a negative relationship.
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2.2.1 Training Load

Training load is a stimulus applied to a human biological system. This stressor
can be physiological, psychological, or mechanical in nature (Soligard et al.
2016). The concept of training load can be broken down into external and
internal load (see Figure 2.2). External load represents the dose performed by
the athlete. Internal load represents the psychophysiological stress experienced
by the athlete. The model in Figure 2.2 describes the training outcome as the
consequence of the internal load. Two athletes performing the same external
load can experience a different internal load. Individual characteristics of these
athletes can explain this difference (Impellizzeri, Rampinini, and Marcora 2005).

Figure 2.2: Model describing the relationship between individual characteristics
of athletes, the external load, internal load and training outcome, redrawn
from (Impellizzeri, Rampinini, and Marcora 2005).

2.2.2 Balancing Training Load and Training Load Capacity

A load that exceeds an athlete’s load capacity, will induce training adaptations.
The athlete’s body will try to adapt to better deal with similar loads in the
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future. This load versus load capacity relationship is delicate. A correct load
results in health and performance benefits. In turn, these will increase the load
capacity of the athlete. Yet, an excessive load or a load that is too low increases
the risk for detrimental health effects (Verhagen and Gabbett 2019). When the
health of an athlete drops, this is detrimental to the athlete’s performance and
it harms the athlete’s load capacity (ibid.).

2.2.3 The Temporal Aspects of Training Load Monitoring and
Injury Risk

Practitioners need to decide what the correct load is for a particular athlete at
a given time. Yet, the athlete’s context and environment influence load, load
capacity and their balance. Both the context and environment change over
time. These interactions influence the athlete’s health status and risk for injury.
The injury aetiology model in Figure 2.3 (Windt et al. 2017) describes these
temporal relationships in more detail.

The athlete’s internal risk factors or individual characteristics determine the
athlete’s context. This context predisposes the athlete for certain type of injuries.
A training load results in a training outcome and elicits training effects. These
training effects influence the athlete’s modifiable internal risk factors. Other
internal risk factors remain unaffected by these training effects.

Training load also exposes athletes to external risk factors (i.e., the environment).
Yet, to sustain an injury, there needs to be an inciting event (e.g., an off-balance
between load and load capacity).

A more recent conceptual framework (see Figure 2.4) breaks down the concept
of training load into physiological and biomechanical load. Both types of load
lead to adaptations of the athlete’s biological system. In turn, these adaptations
will influence, the individual characteristics of the athlete.

2.2.4 Appropriate Training Load Management: Structure-
specific Load Capacity versus Sport-specific Load De-
mands

Assessing an athlete’s risk of specific injuries, requires detailed monitoring of
athletes. In this thesis we do not try to predict the risk of an athlete directly.
Yet, we focus on the relationships between the different aspects of training load
monitoring. A better understanding of these relationships can help to further
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Figure 2.3: Model describing the aetiology of injuries and the temporal aspects
of individual characteristics, redrawn from (Windt et al. 2017).

optimize and individualize the training programs of athletes by prescribing more
appropriate loads to each athlete.

To understand why it is non-trivial to determine appropriate loads, it is
important to realize that a practitioner should assess two aspects of his athlete.
First, he should track structure (i.e. muscle, tendon or bone) specific loads.
Second, he should assess the structure-specific load capacities. To avoid injuries
each structure should tolerate the sport-specific load demands. If these are out
of sync, the athlete is at high risk of sustaining an injury to that structure.
Robust physical capabilities provide an athlete with high structure-specific load
capacities. Yet, to develop these physical capabilities, the athlete needs to
endure high loads. This circular causation (see Figure 2.5) motivates a gradual
increase in training loads (Gabbett, Nielsen, et al. 2018).

In an applied setting, it is not always possible to measure structure-specific
load. Nor is it possible to measure structure-specific load capacities. Yet, it is
possible to track these two aspects through several proxies. First, a practitioner
could track capacity related variables (e.g., strength). Second, he could measure
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Figure 2.4: The model illustrates that both physiological and biomechanical
loads lead to fitness and fatigue effects in athletes, redrawn from (Vanrenterghem
et al. 2017).

variables that influence the magnitude of the structure-specific load (e.g. body
weight, impacts). Third, he could track how the athlete distributes the load
(e.g. scapular control while throwing). The practitioner can then examine the
relationships between these variables and training load. The conceptual model
in Figure 2.6 visualizes these interactions within a training session (Nielsen et al.
2018).

2.3 Machine Learning

This section provides an overview of several important machine learning concepts
and introduces the machine learning algorithms that are used in the subsequent
chapters.
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Figure 2.5: The circular causation between physical capabilities of an athlete
and load tolerance motivates a gradual increase in training load, redrawn from
(Gabbett, Nielsen, et al. 2018).

Figure 2.6: Within session relationships related to structure-specific load and
load capacity, redrawn from (Nielsen et al. 2018).

2.3.1 Supervised Learning

The goal of a supervised machine learning algorithm is to learn a predictive
model M . This model should mimic the behavior of a real-world system S.
The system S itself, is a black box. Yet, a learning algorithm can learn more
about S by observing its behavior. The learner can observe the output yi that
S produces, given a set of input values or features xi1 , xi2 , xi3 , ..., xin

. Thus,
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such an observation provides a learning example for the learner. After observing
enough learning examples (i.e., the learning set), the learner should be able to
learn a model M that mimics S. To learn M , the learner should be able to
generalize from the provided learning examples to deal with unseen examples
(i.e., the testing set) that are sampled from the same population. To perform this
generalization step the learner needs to make assumptions about the behavior
of M (i.e., the learner has a certain bias for choosing one generalization over
another (T. Mitchell 1980)).

2.3.2 Model Evaluation

When the predictions of a model M are close to the observed outputs of S,
M models the behavior of S well. A set of held-aside examples provide an
estimation of M ’s ability to generalize to unseen data. This testing set is not
consulted by the learning algorithm while learning.

In the context of continuous monitoring data there are several dependencies
among the learning examples. First, there are time dependencies between trials
(i.e., a data recording session of an athlete). Second, there can be multiple
trials per athlete and per trial there can be multiple learning examples. These
dependencies should be respected when selecting a learning set and testing set.
Otherwise, information about the testing examples is available when learning
the model. This would result in an unrealistic assessment of the performance of
M .

Two popular evaluation methodologies exist:

Train-Test. This approach splits the set of all observations into a learning set
and a testing set while respecting the dependencies that are present.

Cross-validation This strategy evaluates the performance of M using disjoint
folds of the set of examples. Each fold selects one part of the examples for
testing, the other part for learning. Two cross-validation approaches are in
particular relevant for this thesis, because they allow to maximally use the data
for both learning and model evaluation.

Leave-one-subject-out This approach creates one fold per subject. Each fold
uses the examples of one subject for testing and the examples from all
other subjects for learning.

Leave-one-trial-out The approach creates a fold per trial. Each fold selects
the examples of one trial for testing and the examples from all other trials
for learning.
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2.3.3 Learning Algorithms

This section provides an overview of the different machine learning algorithms
that are used in this thesis.

Least Absolute Shrinkage and Selection Operator (LASSO) LASSO is a
more advanced linear regression technique (Tibshirani 1996). It employs a
mechanism that forces the regression coefficients for the variables toward zero.
Thus the model will consist of all variables that have non-zero coefficients. More
technically, LASSO, minimizes the following loss function:

n∑
i=1

(yi −
p∑

j=1
xijβj)2 + λ1

p∑
j=1
|βj |,

where y denotes the output of the system, x, the input variables, β the regression
coefficients, p the number of coefficients, and λ1 the weight assigned to the
L1-penalty. Thus, the technique has a preference towards associating coefficients
with each variable subject to two competing factors:

1. the coefficients should model the data well, as measured by the squared
error of the predictions on the learning data; and

2. it wants weights that are the coefficients need to be small, that is, close
to zero.

The motivation behind (2) is that small coefficients should help the model to
make better predictions on future data. Specifically, LASSO’s main innovation
is on (2) where it imposes what is known as an L1 penalty on the magnitude of
the coefficients. This contrasts with the older Ridge Regression technique (Hoerl
and Kennard 1970) which imposes what is called an L2 penalty (λ2

∑p
j=1 β

2
j )

on the magnitude of the regression coefficients, which also has a preference for
small coefficients, but is less likely to set coefficients to zero. The coefficients
are determined via a mathematical optimization procedure that determines the
optimal coefficients subject to the trade off between these two factors.

Elastic Net Elastic Net (Zou and Hastie 2005) combines the L1 penalty of
LASSO with the L2 penalty of Ridge regression and minimizes the following
loss function:

n∑
i=1

(yi −
p∑

j=1
xijβj)2 + λ1

p∑
j=1
|βj |+ λ2

p∑
j=1

β2
j ,
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where y denotes the output of the system, x, the input variables, β the regression
coefficients, p the number of coefficients, λ1 the weight assigned to the L1-penalty,
and λ2 the weight assigned to the L2-penalty.

The L1 penalty encourages the learner to set coefficients to zero. Yet, in case of
a group of correlated variables, L1 will keep at most one of the variables of that
group. The L2 penalty allows the learner to shrink coefficients of correlated
variables together. Yet, L2 is unable to set the coefficients to zero and discard
variables. By combining L1 and L2, Elastic Net leverages the strengths of both
methods. Thus, Elastic Net can keep or remove entire groups of correlated
variables.

Artificial Neural Networks (ANN) An artificial neural network (ANN) (Basheer
and Hajmeer 2000) consists of a network of neurons (see Figure 2.7). Each
neuron is a simple processing unit that combines and transforms its inputs
into an output. The output of one neuron can serve as the input of the
neurons of other layers. When the neurons use a non-linear activation function,
connecting multiple neurons yield the ability to express complicated non-linear
functions (Cybenko 1989).

To learn such a non-linear function, the ANN learning algorithm learns weights
for the input of each neuron. As small changes to these weights can have a
big impact on the output of the network, one needs efficient computational
techniques (i.e., stochastic gradient descent and backpropagation) to optimize
these weights. While ANNs often perform well, they have two main drawbacks.
First, the networks are hard to interpret because it is non-trivial to identify
which features are important and it quickly becomes complicated to understand
how features are combined to come to a prediction. Second, the learner requires
a high number of learning examples to learn an accurate model.

Figure 2.7: High level overview of a possible ANN network. Circles represent
neurons. This network consists of one input layer, two hidden layers and one
output layer.
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Gradient Boosted Regression trees (GBRT) A GBRT model consists of
multiple simple decision tree models that are learned sequentially using
boosting (Friedman 2001).

Decision trees are learned using a top-down stepwise process. Each step selects
the single best input variable according to some score criteria (e.g., mean squared
error) and adds it to the model. Then, it partitions the data based on this
variable’s value, and recursively finds the best variable in each partition. This
process helps with multi-collinearity because highly-correlated variables will
have similar scores. Therefore, after adding one of these variables to the model,
the others are unlikely to be included because they will not help to further
partition the data. A drawback of decision trees is their high variation (i.e.,
small changes in the data result in a completely different model) (Hastie et al.
2009).

Combining a set of decision trees has been shown to be more robust to overfitting
(i.e., the model fits the learning data too closely and fails to generalize to unseen
data) compared to a single tree (Domingos 2000).

Boosting is a popular method to combine decision trees into a model. The
resulting model can make a prediction by adding the prediction of each
tree. Intuitively, boosting learns trees sequentially, such that each model
can compensate for the errors made by the previous model.

More technically, in each iteration, the boosting method fits a decision tree
to the “pseudo”-residuals (i.e., the negative gradient of the loss function
being minimized) for each of the data points that are being selected in that
iteration (Friedman 2002). Furthermore, each iteration only uses a random
subset of the learning set as this has been shown to increase the model’s
performance (ibid.). This iterative process stops when a predefined number of
trees are learned.
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3.1 Abstract

Purpose: Machine learning may contribute to understanding the relationship
between the external load and internal load in professional soccer.
Therefore, the relationship between external load indicators and the
rating of perceived exertion (RPE) was examined using machine learning
techniques on a group and individual level.

Methods: Training data were collected from 38 professional soccer players over
two seasons. The external load was measured using global positioning
system technology and accelerometry. The internal load was obtained using
the RPE. Predictive models were constructed using two machine learning
techniques, artificial neural networks (ANNs) and least absolute shrinkage
and selection operator (LASSO), and one naive baseline method. The
predictions were based on a large set of external load indicators. Using each
technique, one group model involving all players and one individual model
for each player was constructed. These models’ performance on predicting
the reported RPE values for future training sessions was compared to the
naive baseline’s performance.

Results: Both the ANN and LASSO models outperformed the baseline.
Additionally, the LASSO model made more accurate predictions for the
RPE than the ANN model. Furthermore, decelerations were identified
as important external load indicators. Regardless of the applied machine
learning technique, the group models resulted in equivalent or better
predictions for the reported RPE values than the individual models.

Conclusions: Machine learning techniques may have added value in predicting
the RPE for future sessions to optimize training design and evaluation.
Additionally, these techniques may be used in conjunction with expert
knowledge to select key external load indicators for load monitoring.

3.2 Introduction

Nowadays, professional soccer clubs monitor training and match load to optimize
physical fitness and reduce injury risk (Akenhead and Nassis 2016). When
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considering training and match loads, it is typical to distinguish between the
external and internal load (Impellizzeri, Rampinini, and Marcora 2005). The
external load represents the dose performed and the internal load represents the
psychophysiological stress experienced by the player (ibid.). The external load
is generally defined as all locomotor and non-locomotor activities performed
by players (Gabbett 2016; Impellizzeri, Rampinini, and Marcora 2005. Global
positioning systems (GPS) and inertial sensors are used for monitoring external
load indicators (ELIs) such as the distance covered and jumps (Gabbett 2016).
The internal load can be quantified using the rating of perceived exertion (RPE),
which is often considered a good indicator of the global internal load (Impellizzeri,
Rampinini, Coutts, et al. 2004). Due to differences in individual characteristics
(e.g., training history and actual physical fitness), similar external loads can
result in different internal loads for players. Insights into the relationship
between the external and internal load can improve load management and help
to optimize physical fitness and support injury prevention (Drew et al. 2016).

To date, several studies about team sports have focused on the relationship
between the external and internal load. In these studies, the data were
analyzed using traditional statistical methods such as Pearson correlation
coefficients, multiple regression and general linear models with partial correlation
coefficients (Gaudino et al. 2015; T. Lovell et al. 2013; B. Scott et al. 2013).
Recently, a study in Australian football (AFL) found that artificial neural
networks (ANNs), a machine learning approach, more accurately predicted the
RPE in response to ELIs compared to traditional statistics (Bartlett et al. 2017).
Other machine learning techniques could be used for this task as well, and each
technique has strengths and weaknesses (Bishop 2006).

In general, the data-driven approach of machine learning is able to capture
linear and non-linear relationships between various ELIs and the response
variable RPE (ibid.). Given a large set of ELIs, machine learning approaches
can automatically identify the specific ELIs that are most predictive of the RPE,
often without correcting for multicollinearity or using expert knowledge to hand
select a set of ELIs. This can aid in evaluating newly developed external load
metrics that come with improved tracking systems such as GPS technology and
inertial movement sensors (J. Malone, R. Lovell, et al. 2017).

Another advantage of machine learning is its ability to detect possible inter-player
differences. In the AFL study using machine learning techniques, various ELIs
were examined to determine their predictive value for each player’s RPE (Bartlett
et al. 2017). Inter-player differences were found for ELIs and their contribution
to an individual’s RPE (ibid.). For most players, the distance covered was
the most predictive ELI for the RPE. However, for some players, the distance
covered per minute or distance covered at high-speed (>14.4 km/h) had a higher
predictive value, indicating that individual differences should be considered
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when evaluating dose and response to training load (Bartlett et al. 2017).

Even though AFL and soccer are both running-based team sports, each sport
imposes different physical demands on players due to differences in rules, pitch
dimensions, player rotations versus substitutions, and playing time (Varley,
Gabbett, et al. 2014). In comparison to soccer players, AFL players typically
cover 2.6 times greater distance (1322 m versus 517 m) at very high-speed
(19.8-25.1 km/h) and 3.5 times greater distance (328m versus 93m) at sprinting
speed (>25.2 km/h) in matches. When comparing the absolute number of
maximal acceleration efforts (>2.78 m/s2) to the absolute number of high-speed
efforts (19.8-25.1 km/h), AFL players show a 1:1 ratio whereas soccer players
exhibit a ratio of 1.7, indicating that numerous accelerations during matches do
not result in high-speed efforts. Based on this comparison, it may be unlikely
that the results regarding the most predictive ELIs and inter-player differences
in AFL will generalize to professional soccer. To our knowledge, no prior study
in professional soccer has investigated the relationship between ELIs and RPE
using machine learning techniques to determine which ELIs are most predictive
of the RPE or to examine possible inter-player differences.

In summary, the current study evaluates the ability of machine learning
techniques to:

1. Predict the RPE from a given set of ELIs;

2. Identify which ELIs for soccer players contribute most to the RPE;

3. Evaluate both group and individual models to examine possible inter-
player differences regarding the relationship between ELIs and RPE.

3.3 Methods

3.3.1 Subjects

Data from 38 professional soccer players (22.7 ±3.4 years, 1.83 ±0.06 m, 77.0
±6.7 kg, and 10.3 ±1.8% body fat) competing for a team in the highest league
in the Netherlands were included. Goalkeepers’ data were excluded from the
study due to different physical demands. The study was conducted according
to the requirements of the Declaration of Helsinki and was approved by the KU
Leuven ethics committee (file number: s57732).
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3.3.2 Design

Data were collected from pre-season and in-season training sessions over two
seasons (2014-2015 and 2015-2016). Similar to Bartlett et al., (Bartlett et
al. 2017) this study focused on the relationship between ELIs and RPE in
training sessions. Therefore, data from matches, on-field recovery sessions, and
rehabilitation sessions were excluded from the analysis. For each training session,
the external load was measured using 10 Hz GPS and 100 Hz accelerometer
technology (Optimeye S5, Catapult Sports, Melbourne) in accordance with the
recommendations for collecting and processing GPS data in sports (J. Malone, R.
Lovell, et al. 2017). The internal load was measured using the RPE. Each player
reported his RPE approximately 30 minutes after the training session using the
modified Borg CR-10 scale (Foster et al. 2001). All players were familiarized
with the use of RPE before the beginning of the study and were instructed to
rate their perceived effort for the whole training session (Impellizzeri, Rampinini,
Coutts, et al. 2004). Furthermore, each player was asked in isolation for his
RPE to minimize the influence of factors such as peer pressure (J. Malone,
Di Michele, et al. 2015).

The first season contained data from 23 players. The number of sessions recorded
per player ranges from 35 to 160 with a mean and standard deviation of 125
±34 sessions. The second season contained data from 28 players. The number
of sessions recorded per player ranged from 51 to 163 with a mean and standard
deviation of 109 ±33 sessions. As players frequently switch teams in professional
football, only 13 players appeared in both seasons.

3.3.3 Methodology

To examine the relationship between the external load and RPE using machine
learning, a set of 67 ELIs that could be exported from the manufacturer’s
software (Sprint version 5.1.7, Catapult Sports, Melbourne, Australia) was
selected to capture the external load of a training session. The set of ELIs can be
divided into high-level categories about duration, distance, speed, acceleration
and deceleration, PlayerLoad (i.e., a metric based on accelerometry), and
repeated high-intensity effort (RHIE) activity (Table 3.1). The first goal was to
identify the ELIs that are most predictive of the RPE. Therefore, a model was
constructed that accurately predicts what a player’s reported RPE (internal
load) will be based on the observed value for all ELIs in a training session.

The mean absolute error (MAE) was used to assess a model’s predictive
performance. This metric calculates the mean of the absolute errors (i.e.,
|(reported RPE value) – (predicted RPE value)| ) over all predictions. The
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Table 3.1: Set of ELIs. Abbreviations: #, number of; ELI, external load
indicator; RHIE, repeated high-intensity effort.
Category
(# ELIs) Definition

Duration
(1 ELI) This ELI defines the duration of the training session.

Distance
(17 ELIs)

These ELIs capture the total distance covered,
distances covered in different speed zones, and
percentages of distances covered at different speeds.
The different speed zones considered are: 0-1 km/h,
1-7 km/h, 7-12 km/h, 12-15 km/h, 15-20 km/h,
20-25 km/h, and >25 km/h.

Speed
(8 ELIs)

This group contains ELIs that describe
the distance covered per minute and
the number of efforts in different speed zones.

Acceleration
and
deceleration
(18 ELIs)

These ELIs capture the accelerations and decelerations,
as well as the accelerating and decelerating distance.
The ELIs regarding accelerating and decelerating efforts
and distance are divided into different zones
based upon magnitude (0-1 m/s2, 1-2 m/s2,
2-3.5 m/s2 and >3.5 m/s2).

PlayerLoad
(10 ELIs)

This category consists of ELIs based on measures of
PlayerLoad. PlayerLoad 3D is calculated based on the
changes in accelerations of a player in the X, Y and
Z axis.
PlayerLoad per meter (i.e, PlayerLoad 3D
per total distance covered) and the PlayerLoad per
minute are included as well.
Furthermore, it includes PlayerLoad 1D
(i.e., PlayerLoad values per axis).

RHIE
(13 ELIs)

An RHIE bout was defined as three or more sprints,
high-magnitude accelerations or a combination of both
within 21 seconds (Austin et al. 2011; Spencer et al. 2004).
This category included measures based
on RHIE such as RHIE bout recovery, RHIE duration,
RHIE per bout, and RHIE total bouts.
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MAE is easy to interpret as it uses the same unit as the RPE value: a MAE of
1 means that, on average, the predicted RPE is one value below or above the
reported RPE. While a MAE of zero is unrealistic, the goal is to minimize a
model’s MAE.

To construct predictive models, two standard machine learning techniques were
considered as well as one naive baseline method:

Artificial neural networks (ANN) ANNs are a standard approach for
constructing non-linear models that often exhibit good predictive
performance (Bishop 2006). However, a disadvantage of ANNs is that the
resulting models are difficult to interpret (i.e., they do not provide insight
into the interactions that are modelled among ELIs).

Least absolute shrinkage and selection operator (LASSO) This tech-
nique is an advanced version of linear regression (Tibshirani 1996). When
setting the regression coefficients, LASSO contains a mechanism that
biases many of them to be zero. Consequently, LASSO only selects a
subset of the ELIs, those with a non-zero coefficient, to be included in the
model. This results in both better interpretability and more robustness
to multicollinearity among the input variables than traditional linear
regression. As LASSO constructs a linear model, it is more robust to
small sample sizes compared to the more expressive ANNs.
Additionally, a well-known LASSO-based approach can be used to compute
importance scores of the ELIs (Meinshausen and Bühlmann 2010). The
importance scores are calculated as the probability that an ELI is selected
by the LASSO model and fall in the range of zero to one. Higher scores
denote more important ELIs. In general, the presence of collinearity
among the input ELIs tends to result in lower importance scores.

Baseline This model does not consider the external load and always predicts
the average RPE value over all training sessions used to construct the
model. This model assumes that none of the ELIs are predictive of the
RPE. While a MAE of zero is a lower bound (i.e., a perfect predictive
model), the baseline provides a realistic upper bound for the MAE. A
valuable predictive model should have a lower MAE than this baseline.

3.4 Data Analysis

Two experiments were conducted. Each one employed standard machine learning
methodology and subdivided the data into two disjoint sets: the learning set and
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testing set. Each machine learning approach used the data in the learning set to
construct a model. The independent testing set was used to estimate a model’s
predictive performance on unseen (that is, future) data. Specifically, each model
made a prediction for the reported RPE associated with every training sessions
in the testing set, and the MAE was computed for these predictions. In addition,
90% confidence intervals (CI) and effect sizes were calculated (Hopkins 2002;
Hopkins et al. 2009).

The first experiment evaluated the value of group models. The temporal nature
of the data was preserved by partitioning the data based on seasons: data from
the first season served as the learning set and the data from the second season as
the testing set. A consequence of the seasonal split was that each model made
predictions for unseen players, that is, players who had no data in the learning
set. One group model was constructed using each learning approach. The most
predictive ELIs were identified by inspecting the most accurate learned model.

The second experiment examined the impact of accounting for inter-player
differences. As only a few players appeared in both seasons, there was insufficient
data to consider season-based partitioning of the data. Therefore, season 1 and
season 2 were treated separately. Each season’s data was subdivided temporally
such that the first 75% served as the learning set and the last 25% served
as the testing set. Using each learning approach, both one group model and
an individual model for each player was constructed. The group model was
constructed using data from all the players in the learning set. An individual
model for each player was constructed by only considering that specific player’s
training session data in the learning set. A global mean of the absolute errors
of all individual models was calculated so that the metric aligned with how the
group model’s MAE was computed.

For automated preprocessing and advanced analysis, custom Python scripts
were developed using Python Pandas for data handling and Sklearn for machine
learning (McKinney 2010; Pedregosa et al. 2011).

3.5 Results

The average RPE for all 5917 analyzed training sessions was 3.59 ±1.46 AU.
The following descriptive statistics were calculated for these commonly reported
ELIs: duration 70 ±16 minutes, total distance covered 4614 ±1576 m, distance
covered at high-speed (>15 km/h) 426 ± 351 m, and total distance covered per
minute 65 ±14 m.min-1.

Table 3.2 shows the MAEs and 90% CIs for the group models constructed using
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the data from season 1 and evaluated on the data from season 2. In addition,
the effect sizes are shown for the MAEs of ANN and LASSO group models
compared to the baseline’s MAE. Both the ANN and LASSO models outperform
the baseline. Compared to the baseline, the LASSO model resulted in a 29.8%
reduction in the MAE when predicting the RPE of unseen training sessions
from season 2. Moreover, the LASSO model made more accurate predictions
than the ANN model. A trivial effect size was found for ANNs compared to
the baseline, while a small effect size was found for the LASSO group model
compared to the baseline.

Table 3.2: Machine learning group models and baseline constructed on season
1 and evaluated on season 2: MAEs, 90% CIs, % diff vs LASSO, and effect
sizes of MAEs vs baseline. Abbreviations: % diff, percentage difference; ANN,
artificial neural networks; CI, confidence interval; d, standardized difference;
LASSO, least absolute shrinkage and selection operator; MAE, mean absolute
error; vs, versus.

Method Aggregation MAE
(90% CI)

% diff
vs
LASSO

d Effect
size

ANN Group 1.09 (1.07-1.11) 26.6 0.06 trivial
LASSO Group 0.80 (0.78 - 0.82) 0.44 small
Baseline Group 1.14 (1.12 - 1.16) 29.8

Table 3.3 displays the ELIs, and their corresponding importance scores, selected
by the LASSO group model (learned on the data from season 1) that most
contribute to predicting the RPE.

Table 3.4 reports the MAEs and 90% CIs for individual and group models
that were constructed and evaluated on season 1 and season 2 separately.
Additionally, the effects sizes are presented for the comparison of the MAEs
of ANN and LASSO models (i.e., both individual and group models) with
the baseline. In all eight cases, the learned models had a lower MAE score
than the baseline. Regardless of learning method, the group models resulted in
equivalent or even more accurate predictions of the reported RPE values than
the individual models.

3.6 Discussion

This study aimed to evaluate the ability of machine learning techniques to predict
the RPE of soccer training sessions from a set of ELIs. Additionally, it aimed
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Table 3.3: Overview of ELIs and importance score selected by the LASSO group
model. Abbreviations: ELI, external load indicator; LASSO, least absolute
shrinkage and selection operator; RHIE, repeated high-intensity effort.

ELI Importance
score Definition

Acceleration
zone 4 efforts 0.515 Number of acceleration

efforts above 3.5 m/s2

RHIE
per bout - mean 0.513

Average of repeated
high-intensity efforts
per bout of 21 seconds

Deceleration
zone 3 distance 0.510 Decelerating distance

between -3.5 and -2 m/s2

Velocity
zone 5 distance 0.507 Distance covered between

15-20 km/h
Acceleration
zone 3 efforts 0.507 Number of acceleration efforts

between 2 and 3.5 m/s2

PlayerLoad 0.487 Accumulated PlayerLoad
measured by accelerometry

Velocity
zone 4 distance 0.487 Distance covered between

12-15 km/h
Minutes 0.471 Training duration
Deceleration
zone 4 distance 0.466 Decelerating distance below

-3.5 m/s2

PlayerLoad
1D side 0.458

Accumulated PlayerLoad
for sideways movements
(or medio-lateral axis)
measured by accelerometry

Velocity
zone 6 efforts 0.428 Efforts between 20-25 km/h

PlayerLoad
2D 0.384

Accumulated PlayerLoad with
exclusion of up- and downwards
movements (or longitudinal axis)
measured by accelerometry

to identify the ELIs which are most predictive of RPE within a professional
soccer context. Finally, it attempted to explore inter-player differences for how
ELIs contribute to each player’s RPE.

The constructed ANN and LASSO models outperformed the baseline indicating
that it is possible to construct machine learning models that capture a part of
the relationship between ELIs and RPE in professional soccer. Additionally, it
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Table 3.4: Machine learning models and baseline for season 1 and season
2: MAEs, 90% CIs, % diff vs LASSO, and effect sizes of MAEs vs baseline.
Abbreviations: % diff, percentage difference; ANN, artificial neural networks; CI,
confidence interval; d, standardized difference; LASSO, least absolute shrinkage
and selection operator; MAE, mean absolute error; vs, versus.

Season Method Aggregation MAE
(90% CI)

% diff
vs
LASSO

d Effect
size

1

ANN Individual 0.84
(0.82 - 0.86) 3.6 0.21 small

Group 0.81
(0.79-0.83) 2.5 0.26 Small

LASSO Individual 0.81
(0.76 - 0.86) 0.26 Small

Group 0.79
(0.75 - 0.83) 0.30 Small

Baseline Group 0.99
(0.94 - 1.04) 20.2

2

ANN Individual 0.85
(0.83 -0.87) 0 0.33 Small

Group 0.83
(0.81 - 0.85) -2.4 0.34 Small

LASSO Individual 0.85
(0.80 - 0.90) 0.33 Small

Group 0.85
(0.80 - 0.90) 0.33 Small

Baseline Group 1.11
(1.05 - 1.17) 23.4

suggests that a good strategy is to start with a large set of ELIs, as opposed
to hand selecting a small number of ELIs to reduce the chance of discarding a
relevant ELI. Moreover, a strength of machine learning techniques is their ability
to automatically select a subset of predictive ELIs, often without correcting
for multicollinearity. Therefore, this method may provide new insights and
support expert knowledge in the selection of key load indicators for monitoring
strategies.

The LASSO technique identified various ELIs as contributing the most to
the perceived exertion in professional soccer (Table 3.3). These ELIs are
partly in line with earlier findings in professional soccer using a smaller set of
ELIs (Gaudino et al. 2015; B. Scott et al. 2013). However, as GPS devices from
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different manufacturers are used in the other studies, it is difficult to compare
findings (J. Malone, R. Lovell, et al. 2017).

The novel important ELIs are indicators regarding decelerations. The results of
this study indicate that this type of load, next to other ELIs, may contribute to
a player’s RPE. Previously, mainly concentric, energy-demanding efforts were
associated with higher RPE values in professional soccer (Gaudino et al. 2015; B.
Scott et al. 2013). Decelerating efforts are related to eccentric activity (Nédélec
et al. 2012). This type of muscle activity has a lower energy cost in comparison
with concentric muscle activity (Lindstedt et al. 2001). However, this type of
eccentric contractions might more easily induce muscle damage (Lindstedt et al.
2001; Nédélec et al. 2012). Therefore, monitoring ELIs concerning decelerations
can be particularly important.

Both individual and group models captured part of the relationship between
ELIs and RPE. In contrast to Bartlett et al., (Bartlett et al. 2017) we found that
group models using ANN and LASSO techniques demonstrate an equivalent or
superior accuracy for both season 1 and 2 compared to individual models when
predicting RPE based on ELIs. A combination of diverse underlying factors
may explain these results.

First, these findings are in contrast to the theoretical model of Impellizzeri et al.,
which states that the internal load (RPE) results from the interaction between
the external load (ELIs) and individual characteristics (Impellizzeri, Rampinini,
and Marcora 2005). The results of our study may indicate that there is less
variation in the external loads and individual characteristics of professional
soccer players than in AFL so there is less impact on the reported RPE. It is
possible that there are greater differences in positional activity profiles and in
individual characteristics (e.g., body composition and aerobic capacity) in AFL
compared to professional soccer, which result in a more heterogeneous group
in AFL (Coutts et al. 2015; Varley, Gabbett, et al. 2014). The descriptive
statistics for the ELIs and RPE clearly exhibit lower average values and less
variation for professional soccer training sessions compared to AFL training
sessions (Bartlett et al. 2017). These inter-sport differences may partly explain
the results indicating the presence of other ELIs that mutually determine the
RPE for (most of) the players within a professional soccer team.

On the other hand, the sample size (i.e., the number of data points used to
construct the model) is another factor which may have contributed to the
equivalent performance of the group models. The group models are learned
using a much larger sample size of more than 2000 data points compared
to the individual models which typically relied on less than 100 data points.
Nonetheless, we find that individual models constructed with the LASSO method
perform similarly to the group models as the technique is robust to small sample
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sizes. If more data were available for each player, we would expect the individual
models’ performance to improve. However, from a practical perspective this
does not seem realistic. In professional soccer, only 100-150 training sessions
(i.e., data points) are conducted per season per player. Additionally, players are
often transferred which makes it difficult to obtain data over multiple seasons.

The current study focused on the relationship between ELIs and RPE for
training sessions and matches were thus excluded. In future research, the same
method could be applied to examine if similar ELIs influence the RPE for
matches, or if different ELIs determine the RPE values of matches. However,
as mentioned, machine learning requires sufficient amounts of data to build
accurate predictive models. This could be a limitation due to the relative
small number of games in a season. Additionally, the RPE for matches may be
influenced by contextual factors (Brito et al. 2016).

Recently, the differential RPE (dRPE) has demonstrated its added value by
quantifying respiratory and muscular perceived exertion (Los Arcos et al. 2014;
McLaren et al. 2017; Weston et al. 2015). Using the dRPE may further clarify if
specific ELIs have a higher impact on central (i.e., breathlessness) or local (i.e.,
leg muscle exertion) perceived exertion. These insights can aid in optimizing
load and adaptation in terms of physiological (i.e., cardiorespiratory system)
and biomechanical (i.e., musculoskeletal system) pathways (Vanrenterghem et al.
2017).

Additionally, measures of recovery and psychosocial factors were not considered.
Therefore, the inclusion of measures such as pre-training perceived wellness and
recovery may further clarify the RPE outcome for a given external training
load (Gallo et al. 2016; Saw, Main, et al. 2016).

The identification of key ELIs may aid in the evaluation of players’ training
dose and response over time using efficiency ratios (i.e., the proportion between
RPE and ELIs) (Akubat et al. 2014; Buchheit, Cholley, et al. 2016). For
example, some ELIs may be perceived as less exerting at the end of pre-season
or a rehabilitation process compared to the beginning due to improvements
in physical fitness. Consequently, a consistent deviation between the expected
and reported RPE may be used as an efficiency ratio. This ratio could be used
to exhibit if players evolve over time in their ability to deal with the external
load. However, further research is needed regarding efficiency ratios relating to
changes in fitness or fatigue.
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3.7 Practical Applications

Machine learning techniques may have added value in predicting the RPE
for future training sessions and in selecting key ELIs for load monitoring in
professional soccer. This study identified novel ELIs that should be considered
such as high-magnitude decelerations that contribute to the RPE.

In addition, group models may have an added value in predicting the RPE for
individual players: they can be applied to any player whereas an individual
model is only applicable to that specific player. Hence, group models can make
predictions for newly transferred or youth players, for whom there is often little
(or no) available data. From a monitoring perspective, a dashboard for player
monitoring may initially be made with similar ELIs for the players within a
team. In case more data is available for a specific player, an individual model
can be constructed and a customized dashboard can be monitored.

3.8 Conclusion

Our study confirmed that machine learning techniques are able to predict
RPE based on a large set of ELIs collected during two seasons in professional
soccer. Secondly, these techniques can be applied to support expert knowledge
for the selection of key ELIs such as decelerations and, accordingly, improve
load management strategies. Lastly, group models predicted the RPE with an
equivalent or even better accuracy than individual models. Possible limitations of
the applied machine learning approaches were discussed. In addition, guidelines
for future machine learning research and practical applications were provided.
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4.1 Abstract

Purpose: The influence of preceding load and perceived wellness on the future
perceived wellness of professional soccer players is unexamined. This
chapter simultaneously evaluates the external and internal load for different
time frames in combination with pre-session wellness to predict future
perceived wellness using machine learning techniques.

Methods: Training and match data were collected from a professional soccer
team. The external load was measured using global positioning system
technology and accelerometry. The internal load was obtained using the
RPE multiplied by duration. Predictive models were constructed using
gradient boosted regression trees (GBRT) and one naive baseline method.
The individual predictions of future wellness items (i.e., fatigue, sleep
quality, general muscle soreness, stress levels, and mood) were based
on a set of external and internal load indicators in combination with
pre-session wellness. The external and internal load was computed for
acute and cumulative time frames. The GBRT model’s performance
on predicting the reported future wellness was compared to the naive
baseline’s performance by means of absolute prediction error and effect
size.

Results: The GBRT model outperformed the baseline for the wellness items
fatigue, general muscle soreness, stress levels and mood. Additionally,
only the combination of external load, internal load, and pre-session
perceived wellness resulted in non-trivial effects for predicting future
wellness. Including the cumulative load did not improve the predictive
performances.

Conclusions: The findings may indicate the importance of including both acute
load and pre-session perceived wellness in a broad monitoring approach
in professional soccer.

4.2 Introduction

Monitoring team-sport athletes is considered important for understanding
responses to training and match load, and accordingly, for optimizing loads to
ensure competition readiness (Halson 2014). Consequently, various player
tracking tools are employed to continuously monitor training and match
load (Bourdon et al. 2017). Furthermore, these loads elicit responses, such as
fitness, fatigue and a certain need for recovery (Bourdon et al. 2017; Buchheit,
Racinais, et al. 2013). These athletes’ responses are often measured by perceived
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wellness questionnaires (Bourdon et al. 2017; Buchheit, Racinais, et al. 2013).
In professional soccer, several studies have provided evidence for using perceived
wellness questionnaires to quantify the outcome of a training or match load by
assessing players’ fatigue statuses (Buchheit, Cholley, et al. 2016; Fessi, Nouira,
et al. 2016; Moalla et al. 2016; Thorpe et al. 2015, 2017). It is assumed that
changes in perceived wellness influence both on-field performance and injury
risk (Laux et al. 2015; Saw, Main, et al. 2016).

Two studies have evaluated the external load in relation to changes in perceived
player wellness, and both focused on the distance covered at high speed (HSR;
>14.4 km/h) (Thorpe et al. 2015, 2017). Other external load indicators such
as total distance, distance covered at very high speed (VHSR; >20.0 km/h),
accelerations, and decelerations remain unexamined. Most studies examining
the relationship between load and perceived wellness use the session rating
of perceived exertion (sRPE), (Fessi, Nouira, et al. 2016; Moalla et al. 2016)
which is derived by multiplying the RPE by duration, and is considered a global
measure of the internal load (Impellizzeri, Rampinini, Coutts, et al. 2004).

To date, perceived wellness studies in professional soccer have focused on either
external or internal load indicators. A simultaneous evaluation of external and
internal load indicators has not been conducted yet. Thus, a combined approach
that simultaneously evaluates different load indicators and their relationship
with perceived wellness can help identify relevant load indicators. This may
improve load management strategies for optimizing perceived player wellness in
professional soccer.

Similarly, the impact of loads accumulated over several days on perceived
wellness needs further exploration. One study in professional soccer focused
on the cumulative external load as measured by HSR over the previous 2, 3,
and 4 days (Thorpe et al. 2017). However, considering the cumulative load
did not improve the strength of the relationship between HSR and changes
in perceived player wellness (ibid.). Still, evaluating load indicators beyond
HSR over different time periods has not been conducted and could help better
understand the influence of cumulative loads on perceived wellness.

Recently, research in Australian rules football, (Gallo et al. 2016) American
college football, (Govus et al. 2018) and professional soccer (S. Malone et al.
2018) has provided evidence that perceived pre-training wellness influences
the subsequent training output. In view of the model of Impellizzeri and
colleagues, (Impellizzeri, Rampinini, and Marcora 2005) the pre-training
wellness status may be considered as an individual characteristic that impacts
the performed external load but also the main stimulus for the training
outcome, the perceived internal load. Following the rationale of the training
process model, one can argue that pre-training wellness may also influence
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the outcome of training or match load. Consequently, it is possible that pre-
training wellness, in addition to training and match load, may influence future
perceived wellness (Impellizzeri, Rampinini, and Marcora 2005). However, to
our knowledge, the influence of pre-training wellness on future perceived wellness
remains unexplored.

Finally, the relationships between load and perceived wellness can be examined
for both each individual wellness item on the questionnaire, (Buchheit, Cholley,
et al. 2016; Buchheit, Racinais, et al. 2013; Fessi, Nouira, et al. 2016; Moalla
et al. 2016; Thorpe et al. 2015, 2017) and a global wellness measure computed
as the summed score over all items (Buchheit, Racinais, et al. 2013; Moalla et al.
2016). One limitation of a global wellness measure is the limited capability to
identify specific relationships between load indicators and wellness items (Gallo
et al. 2016; Govus et al. 2018). Relationships between load indicators and
various perceived wellness items have been examined for different season periods
in professional soccer. However, except for a frequently observed relationship
between higher loads and an increased perceived fatigue, the relationships
between load and other wellness items such as sleep quality and general muscle
soreness are less clear (Moalla et al. 2016; Thorpe et al. 2015, 2017). Furthermore,
the relationships between diverse load indicators and wellness items have not
been investigated over the course of a full season. Therefore, an explorative
examination of relationships between load and wellness items over a longer
period can provide additional insights into typical load-wellness response profiles
for each wellness item over a season.

It is generally recognized that the relationship between load and perceived
wellness may be non-linear (Gallo et al. 2016; S. Malone et al. 2018). Therefore,
linear statistical techniques used in earlier research may be incapable of
elucidating these relationships. Non-linear statistical models or machine learning
techniques may provide additional insights in relationships between load and
training outcomes. Machine learning (ML) techniques are suited for these
analyses and corresponding data because they often account for multicollinearity
and can model non-linear relationships among large sets of variables (Bishop
2006).

This study will apply ML techniques to construct individual predictive models
for professional soccer players to:

1. Examine simultaneously the relationship between external (EL) and
internal load (IL) indicators on future perceived wellness (FPW) items as
measured on the next day;

2. Investigate the impact of both acute and cumulative loads on FPW items;
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3. Evaluate the influence of pre-session perceived wellness (PPW) on FPW
items.

4.3 Methods

4.3.1 Subjects

Data from 26 professional male soccer players (mean ± SD age: 23.2±3.7 years,
weight: 77.5±7.4 kg, height: 1.82±0.06 m, body fat: 10.4±1.9%) competing for
the same team at the highest level in the Netherlands were collected during the
2015-2016 season, both pre-season and in-season. Written informed consent was
obtained according to the Helsinki declaration. The study was approved by the
ethical committee of KU Leuven (file number: s57732).

4.3.2 Training and Match Load

External load was measured individually during all field training sessions
and matches throughout the season. Data were obtained using an athlete
tracking system with an integrated 10 Hz global positioning system (GPS)
and accelerometer technology (Optimeye S5, Catapult Sports, Melbourne,
Australia). This system is considered a reliable tool for measuring external load
that obtains an acceptable level of accuracy for quantifying various locomotor
activities (M. Scott et al. 2016). The minimum effort duration to detect velocity
was 0.6 seconds, and 0.4 seconds for acceleration with a smoothing filter of 0.2
seconds (J. Malone, R. Lovell, et al. 2017; Varley, Jaspers, et al. 2017). The
data were processed using the manufacturer’s software (SprintTM version 5.1.7,
Catapult Sports, Melbourne, Australia). Based upon earlier research, (Barrett
et al. 2014; Jaspers, Kuyvenhoven, et al. 2018) the included external load
indicators were training and match duration, total distance covered, PlayerLoad,
distance covered at high speed (>20 km/h), the number of acceleration efforts
>1 m/s2 and deceleration efforts <-1 m/s2.

The internal load was obtained for all players after the training sessions and
matches using the sRPE method (Impellizzeri, Rampinini, Coutts, et al. 2004).
In order to ensure that the perceived effort would reflect the session in total,
rather than the most recent exercise intensity, each player was separately asked
30 minutes after every training session or match to rate his perceived exertion
using a category ratio scale of 0-10 with verbal anchors (with 0 rated as ‘rest’, 1
rated as ‘very, very easy’ and 10 rated as ‘maximal’) (Foster et al. 2001). All
players were familiarized with the scale before the study commenced. Each
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player’s sRPE in arbitrary units (AU) was derived by multiplying the RPE
with the training or match duration in minutes (Foster et al. 2001). The entire
duration of a training session was used including the transition time between
drills. For matches, the sum of the warm-up and match time was used. The
time between the warming-up and the start of the match as well as the half
time break were excluded.

4.3.3 Perceived Player Wellness Questionnaire

The perceived player wellness data were individually collected using a custom-
designed iPad-based electronic survey (TopSportsLabTM, Leuven, Belgium)
each morning prior to any session. Players were not asked to report wellness
scores on match and rest days. The survey contained five questions about
fatigue, sleep quality, general muscle soreness, stress levels, and mood that were
used in earlier research (Buchheit, Cholley, et al. 2016; Buchheit, Racinais,
et al. 2013). The responses were reported on a 5-point scale (with 1 and 5
representing poor and very good ratings), with 0.5-point increments (Buchheit,
Racinais, et al. 2013). The players were familiarized with the questionnaire
before the start of the study.

4.3.4 Data Analysis

This study applied a widely used machine learning pipeline to construct
individual predictive models for each player (Bishop 2006). An individual
model was constructed by ignoring the data from all other players. The goal
was to predict a training session’s outcome, which was represented by the future
value of a perceived wellness (FPW) item. Specifically, the models predicted
what perceived wellness score a player would report for an item prior to the
next day’s first session. Combinations of three sets of input variables were
considered: external load indicators (EL), internal load indicators (IL), and
pre-session perceived wellness (PPW) items.

Figure 4.1 illustrates the input variables that were computed to predict the FPW
prior to the first session on day DF P W . Based upon earlier research, the EL and
IL variables of training sessions and matches were summed over four different
time frames: 1 day (acute), 2 days, 3 days and 4 days (Thorpe et al. 2017).
Additionally, because the weekly load is often related to an increased injury
risk, the EL and IL variables were summed over the previous 7 days (Gabbett
2016). The PPW was defined as the pre-session perceived player wellness that
was reported before the first session on day DF P W -1 (i.e., a time frame of 1
day).
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Figure 4.1: Overview of the parameters that are computed to predict future
perceived wellness.

The data was split chronologically to respect its sequential nature: the first 80%
of a player’s data was used to construct the model (i.e., the learning set). The
remaining 20% was used for model evaluation (i.e., the testing set). For each of
the five time frames, seven combinations of variable classes were considered: EL,
PPW, IL, EL + PPW, IL + PPW, EL + IL, and EL + IL + PPW. For each
of the five FPW items (fatigue, sleep quality, general muscle soreness, stress
levels, and mood), one model per player was learned for each of the 35 input
variable time frame combinations.

The individual predictive models were constructed from the learning set using the
Gradient Boosted Regression Tree (GBRT) algorithm in Scikit Learn (Friedman
2001; Pedregosa et al. 2011). GBRTs can handle both high-dimensional data
and mixed variable types. A GBRT model contains a number of decision
trees. Decision trees are learned using a top-down stepwise process. Each step
selects the single best input variable according to some score criteria and adds
it to the model. Then, it partitions the data based on this variable’s value,
and recursively finds the best variable in each partition. This process helps
with multi-collinearity because highly-correlated variables will have similar
scores. Therefore, after adding one of these variables to the model, the others
are unlikely to be included because they will not help to further partition
the data. Additionally, ensembles of decision trees tend to be robust to
overfitting (Domingos 2000).

To assess if the learned individual models captured any dependencies between
the input variables and the FPW, a naive baseline model was constructed that
ignores all input variables. This model simply predicted a player’s FPW as the
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average of all FPW values in his learning set. A learned model only outperforms
this baseline if it captures some relationship between the input variables and
the FPW.

An individual model’s predictive performance was evaluated by making a
prediction for each of the player’s reported wellness scores in the testing set
and then computing the mean absolute error (MAE) for these predictions.
The predictive performance for a given set of input variables was computed
as the macro average of all the MAEs for the individual models that were
constructed using that set of input variables. Per wellness item, and for each
combination of input parameters and time frames, two comparisons were done.
First, the macro MAE of the GBRT models was compared to the macro MAE
of the baseline models. Second, the effect sizes between the macro MAE of the
GBRT models and the macro MAE of the baseline models were calculated to
evaluate the meaningfulness of the predictive performances using Cohen’s d: d =
(macro MAEBASELINE −macro MAEGBRT )/(pooled SDBASELINE,GBRT ).
The threshold values for effect sizes were trivial (0.0-0.19); small (0.2-0.59);
moderate (0.6-1.19); large (1.2-1.99); and very large (>2.0) (Hopkins 2002).

Initially, the dataset contained data collected from 6110 training sessions or
matches across all 26 players. Before the above methodology was applied to the
dataset, four preprocessing steps were required, as illustrated in Figure 2.

First, perceived wellness scores were not reported on most rest and match days.
Consequently, these days FPW value was unknown. Hence, these days were
excluded from the learning and testing set. However, the EL and IL variables
were monitored on these days and were used to calculate the cumulative external
and internal loads.

Second, sometimes it was not possible to calculate the 7-day cumulative load for
EL or IL due to missing EL and IL data (e.g., the first week after the off-season,
international qualifiers, etc.). While these instances did not occur at random,
they were excluded because the missing loads could not be realistically imputed.

Third, even if the FPW was known, the PPW was missing sometimes. The
PPW was imputed using the last observation carried forward method, and
hence set to be the reported perceived wellness score on day DF P W -2 (Engels
and Diehr 2003). If no scores were reported on DF P W -2, then the session was
excluded. While a match or training session on DF P W -2 affects the perceived
wellness of the player on DF P W -1, this is a common imputation approach for
temporal data because it respects the chronological dependencies present in
the data. This necessary imputation step should be taken into account when
analyzing the results. Other popular imputation strategies were also considered.
However, because the data was not missing at random and its chronological
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Figure 4.2: Overview of the preprocessing steps before application of GBRT.

dependencies need to be respected, not enough data instances were available to
apply potentially more accurate imputation strategies.

Fourth, models were only learned for players where 80 data instances could
be constructed to ensure that sufficient data was available for learning and
evaluating the models. After preprocessing, the final dataset contained data
from 14 players with an average of 98 data instances per player (range 84-119).
On average each player’s learning data contained 78 data instances (range 67-95)
and testing data contained 20 data instances (range 17-24).
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Figure 4.3: Mean absolute errors for each of the combinations per time frame
for perceived wellness item “fatigue”.

4.4 Results

Figures 4.3, 4.4, 4.5, and 4.6 shows graphs for the four wellness items (fatigue,
general muscle soreness, stress levels and mood) with at least one small effect
size found for one of the five considered time frames. Because only trivial effect
sizes were found for sleep quality, no plot is shown for it. A small effect size
indicates that the GBRT model obtained better predictive performance than
the baseline model. For each wellness item, the plot shows the MAEs for each
of the seven combinations of EL, PPW and IL as a function of the time frame.
A decrease in the MAE over time indicates a better predictive performance
when including the cumulative load over the previous days.
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Figure 4.4: Mean absolute errors for each of the combinations per time frame
for perceived wellness item “general muscle soreness”.

4.5 Discussion

This study applied machine learning techniques to evaluate the influence of
external and internal load indicators, both for acute and cumulative loads, along
with pre-session perceived wellness on changes in future perceived wellness.
When comparing EL and IL by absolute prediction error, EL exhibited a better
performance for fatigue, general muscle soreness and stress levels. In general,
the combination of EL and IL did not result in better predictive performances
than EL alone.

Moreover, none of the predictive performances for EL, IL or EL+IL exhibited
effect sizes above the trivial level. These effect sizes indicate that the external
load and internal load, separately and in combination, do not have sufficient
predictive ability for FPW items. However, in earlier research, these external
and internal load indicators were related to changes in perceived wellness items
and revealed various results, including non-significant and significant correlations
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Figure 4.5: Mean absolute errors for each of the combinations per time frame
for perceived wellness item “stress levels”.

with the magnitude of correlation ranging from trivial to large (Fessi, Nouira,
et al. 2016; Moalla et al. 2016; Thorpe et al. 2015, 2017). The difference with
earlier findings could arise from the type of analysis performed. Prior work used
analyses to quantify the strength of the linear associations among variables. In
contrast, our study uses predictive models, that given EL and IL data collected
at some future time point would make accurate predictions for that data’s FPW
values. Therefore, the current study’s findings complement the earlier works.

Cumulative loads alone did not result in better predictive performances, which
is in accordance with earlier findings that loads beyond the previous day’s
training are not meaningfully linked to wellness responses (Thorpe et al. 2017).
As Thorpe and colleagues suggest, (ibid.) professional soccer’s periodization
of training and match load with an alternation between demanding sessions
and easy or recovery sessions, may be responsible for the large influence of the
previous day’s training or match load.
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Figure 4.6: Mean absolute errors for each of the combinations per time frame
for perceived wellness item “mood”.

Including PPW in combination with EL, IL and EL+IL clearly showed small
effect sizes for most time frames for fatigue, general muscle soreness, and stress
levels. For mood, the results were more ambiguous and only the combination
of acute load for EL and PPW and EL+PPW+IL resulted in a small effect
size. To date, no research in professional soccer has focused on the relationship
between load and mood, therefore, little information is available to compare
results. Additionally, other factors such as match result, match location and
quality of opposition may influence mood (Abbott et al. 2018). Potentially,
mood is influenced after prolonged overload and therefore it might be interesting
to study periods longer than 7 days. In conclusion, the findings reveal that PPW
along with EL and/or IL resulted in the best predictive performances for FPW,
thereby indicating the usefulness of monitoring perceived wellness. Therefore,
PPW in combination with training and match load may be considered for a
broad monitoring approach to improve training prescription and evaluation.

The perceived wellness items fatigue, general muscle soreness and stress levels
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were predicted by the input variables. For the perceived wellness items sleep
quality and mood, almost all predictive performances exhibited trivial effect
sizes. Some studies found small to large positive correlations between sRPE and
sleep quality, (Fessi, Nouira, et al. 2016; Moalla et al. 2016) while other studies
revealed trivial relationships between HSR and sleep quality (Thorpe et al. 2015,
2017). This may indicate that factors beyond load and PPW have a greater
impact on these items. Recent research in professional soccer has indicated that
the match result, location and quality of opposition impact sleep quality and
mood (Abbott et al. 2018; Fessi and Moalla 2018). Nevertheless these items
can be useful for assessing a player’s status and to support decision-making
regarding load management.

A strength of the current study is the using of GBRT machine learning
technique, which can capture non-linear relationships, to construct an individual
predictive model per player (De’Ath 2007). Furthermore, GBRTs can handle
long tailed distributions, outliers and are robust to the presence of irrelevant
input variables (Friedman 2001). Furthermore, GBRTs allowed evaluating a
broad monitoring approach by examining simultaneously the impact of EL, IL
and PPW on FPW. These techniques and corresponding findings complement
the statistical methods used in earlier research (Fessi, Nouira, et al. 2016; Moalla
et al. 2016; Thorpe et al. 2015, 2017) and help to evaluate the usefulness of
perceived wellness in monitoring strategies.

The analysis revealed that individual predictive models are more accurate than
average player thresholds, which are commonly used. Therefore, such models
could improve monitoring strategies, by comparing the reported wellness to
the predicted player wellness after each practice. If the reported wellness and
predicted wellness differ substantially (i.e., higher or lower scores), this may be a
sign to zoom in on the load and responses of a player for detailed interpretations.
Moreover, it may aid in individualizing a training program as the models can
simulate how a player with a certain wellness status will respond to a given
external load.

Some limitations should be acknowledged.
First, a large part of the data could not be used to construct and evaluate the
predictive models because the wellness scores were not reported on match and
rest days. Since these days do not occur at random, an imputation strategy
was necessary to examine the impact of past wellness. This solution provides
a reasonable estimation while respecting the data’s chronological ordering.
Moreover, using this imputation outperformed the baseline method (i.e., small
effect sizes were found) which can be considered as the current state of the
art when predicting wellness scores for held-aside data samples. Currently, the
applied models are not designed to make predictions when the previous three
days only contain a combination of match and rest days. However, they do
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support all combinations of match, rest- and practice days, when at least one of
the previous three days is a practice day. Thus, these models are already versatile
enough to be practically useful and the results underscore the importance of
daily wellness monitoring.

Second, the load of strength training sessions was not included and may influence
the perceived wellness. However, besides the normal injury prevention programs,
there were only a small number of separate strength training sessions, and
therefore, their influence on the results may be limited.

Third, the perceived wellness questionnaire used in the current study was
previously examined in various studies, revealing relationships between load
and the wellness items (Buchheit, Cholley, et al. 2016; Buchheit, Racinais, et al.
2013). The custom items of this perceived wellness questionnaire have not been
extensively studied concerning their reliability and validity (Saw, Kellmann,
et al. 2017). Therefore, there possibly exists a more adequate composition of
perceived wellness items for a questionnaire to monitor fatigue and recovery
status (ibid.).

Finally, the direction of the relationship between input variables (i.e., EL, IL,
and PPW) and FPW is not presented in the current study. In earlier research,
higher loads were related to lower perceived wellness (Fessi, Nouira, et al. 2016;
Moalla et al. 2016; Thorpe et al. 2015, 2017). The correlation and interactions
of input variables complicate the interpretation of non-linear models (Auret
and Aldrich 2012). Nevertheless, the findings indicate that a combination of
EL and/or IL together with PPW resulted in the best predictive performances
of FPW. As presented by Bittencourt and colleagues, (Bittencourt et al. 2016)
a complex interaction among a web of determinants may be related to injury
occurrence and adaptation. Similarly, this may be the case for perceived wellness.
In future research, more extensive analyses using partial dependence plots (Auret
and Aldrich 2012) and including other mediating or moderating factors (Windt
et al. 2017) may provide additional insights in the direction of relationships
between EL, IL, PPW, and FPW.

4.6 Practical Applications

The current study’s findings indicate the importance of including both load and
preceding perceived wellness in a broad monitoring approach. Additionally, the
wellness items fatigue, general muscle soreness and stress levels are the most
useful items for assessing the combined impact of load and current wellness status
on future wellness. These insights may improve load management strategies
in professional soccer. Machine learning techniques may have added value
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for analyzing load-wellness relationships and daily practice by the comparison
of predicted/expected versus actual wellness scores. Meaningful differences
between these scores may be used for load management strategies. However,
more research is warranted to indicate the direction of relationships and the
influence of specific load indicators.

4.7 Conclusion

The current chapter focused on predicting of future perceived wellness based on
preceding load and perceived wellness in professional soccer using individual
machine learning models. It was found that the external and/or internal load
in combination with preceding perceived wellness resulted in the best predictive
performances, indicating the importance of daily wellness status assessment.
Including cumulative load for previous days did not improve the predictive
performances.
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5.1 Abstract

Running is extremely popular and around 10.6 million people run regularly
in the United States alone. Unfortunately, estimates indicated that between
29% to 79% of runners sustain an overuse injury every year. One contributing
factor to such injuries is excessive fatigue, which can result in alterations in how
someone runs that increase the risk for an overuse injury. Thus being able to
detect during a running session when excessive fatigue sets in, and hence when
these alterations are prone to arise, could be of great practical importance. In
this chapter, we explore whether we can use machine learning to predict the
rating of perceived exertion (RPE), a validated subjective measure of fatigue,
from inertial sensor data of individuals running outdoors. We describe how
both the subjective target label and the realistic outdoor running environment
introduce several interesting data science challenges. We collected a longitudinal
dataset of runners, and demonstrate that machine learning can be used to learn
accurate models for predicting RPE.

5.2 Introduction

Worldwide, recreational running is one of the most popular forms of physical
activity. In the United States alone, 10.5 million people run regularly, and
around 36 million people in total participate in running each year (Messier et al.
2008). While running regularly has many health benefits, injuries hamper these
benefits and can even be detrimental for the runner. Unfortunately, runners are
prone to overuse injuries, with estimates indicating that anywhere from 29% to
79% of runners suffer at least one overuse injury per year (Gent et al. 2007).
Overuse injuries arise due to the repetitive nature of the movements performed
during running. These movements repeatedly stress (i.e., apply force to) the
same structures (e.g., muscle tissues, tendons or joints) in the body. The effects
of the stress accumulate over time, and may eventually exceed the structure’s
stress tolerance, resulting in an injury (Hreljac et al. 2000; L Bertelsen et al.
2017). Typical overuse injuries in running include pain under the foot (plantar
fasciitis) and pain on either the front (patellofemoral pain syndrome) or side
(iliotibial band friction syndrome) of the knee (Taunton et al. 2002).

While current research is inconclusive, three categories of factors have been
linked to overuse injuries. First are anatomical factors such as high arches,
which are inherent to a person. Second are training factors such as excessive
long-distance running. Third are biomechanical factors such as the symmetry
between the right and left side in a person’s running movement. For the
third factor, the onset of running fatigue plays a crucial role as it can alter
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a person’s running style, that is, the movement pattern performed from one
step to the next while running. Changes in style can introduce irregularities
such as asymmetries between the left and right side, which can elevate the risk
of an overuse injury (Schütte, Seerden, et al. 2016). Because these movement
alterations are very subtle, they are often not consciously observed by the
runner.

Thus, predicting an individual’s fatigue state based on his currently observed
running style has the potential to reduce the risk of overuse injury. While
this task can naturally be posed as a supervised machine learning problem,
several factors make this an extremely challenging task. First, we need to
monitor and characterize running style in “the wild”, that is, in a real-world
outdoor setting (e.g., variations in weather, running speeds, etc.) in contrast to
traditional, controlled laboratory conditions (e.g., running at a fixed-speed on
a treadmill). Second, due to several inherent physiological and morphological
differences, individuals will respond differently to the same type of exercise.
Third, measuring the fatigue state is highly non-trivial. Within the sport science
literature, researchers distinguish between different types of fatigue, such as
cardiovascular fatigue, biomechanical fatigue, respiratory fatigue, or mental
fatigue among others. Which type of fatigue is relevant depends on the task.
While heart rate can capture cardiovascular fatigue, overuse injuries are related
to biomechanical fatigue. Therefore, we focus on measuring biomechanical
fatigue, which can be invasive and expensive (e.g., blood lactate), or represent
a subjective measurement of fatigue (e.g., rating of perceived exertion or RPE).

In this chapter, we present a machine learning approach for predicting a
runner’s RPE, a subjective fatigue measure, based on fusing inertial motion
data. We introduce this as an interesting and important data science
challenge. In particular, it involves challenges such as analyzing noisy real-world
data, handling partial ground truth labels, and reasoning about subjective
judgments that vary over time. Our approach is based on defining a variety
of biomechanically relevant features that characterize a person’s running style.
We then build regression models to predict the RPE value at a specific point
in time. We evaluated our approach on a longitudinal data set of 29 runners.
Each subject completed at least three maximal effort running tests on an
outdoor track while wearing four inertial motion units (IMU). We found that,
on average, we are able to accurately predict a runner’s fatigue state. We found
no substantial benefits to fusing the data from multiple sensors compared to
using inertial motion data captured from the wrist. Furthermore, we showed
that we could effectively deal with the subjectivity of the target variable and
the noise introduced by variable running speeds and inter and intra individual
differences.

To summarize, this chapter’s contributions are:
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1. Introducing fatigue prediction in runners as an interesting and important
data science problem;

2. Highlighting a number of data science challenges that we encountered
while working on this problem;

3. Describing a supervised learning pipeline for this problem that addresses
these challenges;

4. Presenting the results of predicting RPE on a real-world longitudinal data
set; and

5. Illustrating that several techniques can, to some extent, account for the
subjectivity of the target variable and inter and intra individual differences.

5.3 Fatigue Prediction: Definition and Data Sci-
ence Challenges

This chapter aims to solve the following problem:

Given: Multiple signals collected by inertial sensors placed on a runner.

Do: Learn a model to predict the runner’s fatigue state at a given point in
time.

This section begins by defining fatigue and how to measure it, then describes
our data, and finishes with a discussion of the challenges posed by this task.

5.3.1 Measuring Fatigue

The first issue is measuring an individual’s running-based fatigue state, which can
be thought of as a hidden variable with a continuum of possible values. Running
induced fatigue implies a decrease in running performance (i.e., decreased
average speed) due to physiological limitations (i.e., low aerobic capacity, low
lactate threshold, or poor running economy) that bring about biomechanical
compensations (i.e., alterations in the running kinematics). Several possibilities
or markers exist for capturing a runner’s fatigue state, yet not all of them are
appropriate or suitable for our task. Hence, we developed four primary criteria
for selecting the most ideal measure of running fatigue:
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Non-invasive. That is, the measurement method or device does not involve the
introduction of instruments into the runner’s body. Examples of invasive
measurements of fatigue include blood lactate (Stoudemire et al. 1996),
creatine kinase (Kobayashi et al. 2005), or rectal temperature (Crewe
et al. 2008).

Unobtrusive. That is, the measurement method or device does not hinder
the runner’s comfort in any way and does not interfere with the fluidity
of the runner’s movement. For instance, obtrusive measurements may
include metabolic systems that measure gas exchange (i.e., volume of
oxygen consumed (VO2) or carbon dioxide produced (VCO2)). Although
some of these more portable metabolic systems are wearable, they require
a constrained harness, a heavy battery pack, and an uncomfortable face
mask that often hinder a runner’s comfort.

Non-interruptive. That is, collecting the measure does not interfere with the
runner’s performance or continuity. Interruptive measures would include
both invasive such as blood lactate, as well as non-invasive measurements
such as heart rate variability which is known to be inaccurate during
dynamic activity (Dong 2016). Interruptive also implies unnecessary
physical or mental effort is required by the runner. For instance, more
sophisticated rating scales that subjectively quantify fatigue include the
Hooper’s Index (Hooper and Mackinnon 1995) or the profile of mood
states (POMS) (Williams et al. 1991), which are time consuming and
require cognitive loads that force measurements to be attained prior or
post running.

Fatigue Specificity. That is, while running the measurement or device
provides insights into the musculoskeletal response, which has closer
links to overuse injury. For instance, at low to medium aerobic intensities,
a runner’s biomechanical loading can gradually accumulate and movement
compensations may arise while heart rate (HR) can remain relatively
stable, suggesting a “mismatch” in fatigue between the musculoskeletal and
cardiovascular systems. Thus, although other measures such as HR may
fulfill the criteria of being non-invasive, unobtrusive, and non-interruptive,
it lacks specificity by only providing insights into the cardiovascular, rather
than the musculoskeletal response to running.

Consequently, we measure fatigue using the rating of perceived exertion
(RPE), a subjective measure of fatigue that is widely used in running research
specifically, and within sport science more generally. Specifically, we use the
Borg scale (Borg 1982), where subjects indicate their perception of exertion
between 6 (i.e., no exertion) and 20 (maximal exertion). Because it is subjective,
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RPE should be viewed a partial truth label. However, RPE has several
advantages because it is non-invasive, unobtrusive, and non-interruptive due to
its measurement simplicity. Importantly, RPE also has fatigue specificity, given
that it provides a more holistic view of fatigue that is said to represent feedback
from cardiovascular, respiratory and musculoskeletal systems (Crewe et al. 2008).
Furthermore, RPE has been shown to model a runner’s performance better
in the real-world compared to heart rate which is less responsive to different
terrain types (Borg 1998). Thus, RPE is an appropriate and validated marker
of a runner’s fatigue (Borg 1982).

5.3.2 Data

The data used to train our model consists of longitudinal data for 29 runners.
Of these 29 runners, six runners were self-identified as novice runners, 19 as
recreational, and four as sub-elite. Moreover, six runners were self-reported
as untrained, 17 as moderately trained, and six runners as well-trained. The
average age of the runners was 24 with a standard deviation of 6.6 years and a
range between 18 and 55. In total, data from 98 trials was collected, where 20
runners completed three trials, seven completed four trials, and two completed
five trials. Each trial consists of completing a 3200 meter run on an outdoor
track (one lap is 400 meters). Each runner was instructed to use a self-selected
pacing strategy to run the trial such that they were fatigued by the end of the
run and would reach a RPE between 16 and 20 (very exerted). Running outdoors
means the test more naturally mimics the running style of a runner’s regular
training sessions compared to running on a treadmill at a controlled speed. The
study protocol was designed in collaboration with biomechanics researchers with
extensive expertise in collecting and analyzing running data. From a sports
science perspective, this is a larger data set than usual because data collection is
very time consuming, with this collection effort taking > 4 months. The study
was conducted according to the requirements of the Declaration of Helsinki and
was approved by the KU Leuven ethics committee (file number: s59353).

Prior to starting the run, we explained the RPE scale. The scale ranges from 6
through 20 inclusive and the runner is free to pick any integer value in this range.
To help the runners understand the scale, we provided verbal fatigue anchors
(e.g., 15 = "hard", 17 = "very hard", 19 = "extremely hard") for every odd
number on the scale. Then each participant ran one warm up lap followed by the
3200 meter test. The runners reported their RPE after each lap, including the
warm up lap, yielding nine RPE values per trial. Figure 5.1 visually illustrates
the protocol. Per lap RPE was thought to be a reasonable time-frame to capture
fatigue changes without hampering the runner’s performance (e.g., additional
mental fatigue or distractions caused by frequent RPE measurements).
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During the test, six 1024Hz inertial motion unit (IMU) (Shimmer 3, Shimmer,
Dublin) and a strap-based heart rate monitor (Garmin Forerunner 210, Garmin,
Schaffhausen) at 1 Hz were attached to the runner. Each IMU contains an
accelerometer, gyroscope and magnetometer that measures one signal for each
of the three orthogonal axes per sensor type, resulting in nine signals per IMU.
One IMU was attached to each of the left and right: shin bone (anteromedial
aspect for the distal tibia), wrist (dorsal carpal ligament) and arm (at the level
of the mid-point between the acromiale and the radiale, on the mid-line of the
lateral surface of the arm). Unfortunately, sensor errors sometimes caused the
data from one of the wrist or arm sensors to be lost. Therefore, only data from
one wrist and one upper arm sensor was used. If available, we used the left
wrist and left arm sensors. Otherwise, we used the right wrist or right arm
sensors. Thus four sensors were considered in total. Finally, each lap time was
recorded by a hand-held stop watch.

5.3.3 Challenges in Fatigue Prediction

Using a subjective measure of fatigue as the target label introduces several
challenges:

C1: Subjectiveness of Target Label. Different runners will rate their exer-
tion level differently. Moreover, it is often hard for runners to accurately
assess the gradual and subtle increases of their exertion level throughout
the test.

C2: Accommodation to the Test Protocol. Runners were instructed to
run in a way that resulted in a RPE score between 16 and 20 by the end
of the trial. Consequently, some runners likely reported a high RPE score
at the end because this was the expected behavior, and not a score that
reflected their true RPE.

C3: Evolution in Reporting RPE. Most subjects were unfamiliar with the
RPE prior to the study, and were perhaps unsure how to use it at first.
The longitudinal nature of the study means that runners became more
familiar with the scale as they ran more tests, and therefore their use of
the RPE potentially evolved across consecutive running tests. This issue
is similar to problems associated with working on rating data (e.g., for
movie prediction) in machine learning (Koren 2010).

Employing a study protocol that mimics normal running (e.g., outdoors, self-
select speed), introduces a number of challenges into the data that should be
accounted for:
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C4: Pacing Strategies Runners apply different pacing strategies during the
test. Experienced runners are able to maintain a nearly constant speed
over a test. In contrast, many novice runners start fast, slow down in
the middle, and speed up at the end. Furthermore, subjects use past
experience to alter their running strategy for subsequent tests. Thus there
are both inter and intra subject differences in pacing strategies.

C5: Variable Running Speed Running speed, and changes in it, impact the
measured inertial motion data (e.g., higher speed means higher acceleration
measurements). As we are only interested in fatigue induced changes in
the data we need methods that are robust to speed changes.

C6: Individual Running Style Individual characteristics (e.g., weight, height,
fitness level, strength, flexibility and training background) mean that
runners will have different running styles. These unique styles affect
parameters such as step length, step frequency, and arm movement.

5.4 Our Approach to Fatigue Prediction

In this section, we outline our approach to fatigue prediction. First, we discuss
which signals we consider. Second, we describe how to construct examples and
how to address the challenges described in Subsection 2.3. Third, we describe
which features we compute for each example. Fourth, we discuss how to build
models. Figure 5.1 provides an overview of our approach.

5.4.1 Signals Considered

Our data originally contained heart rate, accelerometer, gyroscope, and
magnetometer signals. We altered this in three ways. First, as discussed
in Subsection 5.3.1, the heart rate was of limited value because it plateaus
quickly. Therefore, we omitted the heart rate data. Second, we also omitted
the magnetometer data as this signal, in isolation, does not provide information
about running style. Third, we augmented the data by deriving five additional
signals from the accelerometer data from an IMU sensor that are commonly
used in sport science:

Total Acceleration. This signal is less dependent on the exact attachment
of the sensor as it combines the x, y and z acceleration signals at time ti,
and is defined as:√

axi
2 + ayi

2 + azi
2.
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Figure 5.1: Overview of protocol, data preprocessing and feature extraction.

Combined Acceleration. The following three signals were found to work
well for gait identification because they are less sensitive to the device’s
attachment (Gafurov et al. 2006). Each signal computes the alignment
of the accelerations along one particular axis with respect to the total
acceleration. We compute these combined signals, by comparing each of
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the x, y, or z axes to the total acceleration:

C(vi) = arcsin
(

avi√
axi

2 + ayi
2 + azi

2

)
.

Player Load™. This signal was developed by Catapult to monitor the changes
of accelerations in team sports using an IMU-unit attached to the upper
back (Boyd et al. 2011). However, to our knowledge, this signal has neither
been used for runners nor calculated based on data collected on the tibia,
wrist or arm. In contrast to team sports, where player loads are often
aggregated over a training session, we compute an instantaneous change
at time ti as:√

(axi
−axi−1 )2+(ayi

−ayi−1 )2+(azi
−azi−1 )2

100 .

Alternatively, the raw accelerometer signals can be rotated from a device
reference system to an earth reference system (Madgwick 2010). As a result of
this process, the z-axis is always perpendicular to the earth’s surface. However,
early experiments showed that this rotation was not valuable for solving this
task. Therefore, it was omitted from all experiments. The reason it was not
necessary is that in our protocol, each sensor was firmly attached to a limb.
Hence, the sensor moved minimally, if at all, during the course of the trial,
meaning that the sensor’s relative position was fixed. The relative movement
contains all the relevant information and it directly expresses movement in,
for example, the left-right direction while the rotation would obfuscate this
information.

In summary, each IMU generated three raw and five computed accelerometer
signals and three raw gyroscope signals. Thus, with four IMUs, each trial is
described by 44 time series signals.

5.4.2 Example Construction and Data Preprocessing

We construct examples by dividing the collected sensor signals into non-
overlapping 10 second windows. A 10 second window was chosen because it is
sufficiently small to process the data quickly, and represents the typical amount
of time used previously with respect to fatigue and running biomechanics (Morin
et al. 2011).

Because runners only report the RPE every 400 meters (mean and standard
deviation of lap time: 110s ± 18s and range: 72s–177s), we assign an RPE to
each example by linearly interpolating between the RPE values reported at the



OUR APPROACH TO FATIGUE PREDICTION 63

end of the previous and current lap. RPE is known to linearly change with
exercise intensity and running fatigue (Borg 1982).

To deal with the challenges C1-C3 related to the subjective nature of the RPE
outlined in Subsection 2.3, we apply min-max normalization to the RPE value
based on the current test. This normalization helps to account for inter and
intra subject differences in RPE. First, each runner may interpret the scale
differently and report a different range of values. Second, the first RPE value
reported in a trial may serve as an anchor for subsequent ratings in that trial.
The minimum value is the RPE reported after the warm up lap (mean and
standard deviation of the RPE after first lap: 10.57± 1.97 and range; 7-15) and
the maximum value is 20, which is the highest RPE value on the Borg scale. We
used this value because using the final RPE value from the test would cause the
current label to depend on future data, which is not methodologically sound.

Two other challenges mentioned in Subsection 2.3 are that runners employed
different pacing strategies (C4) and varied their running speed during the trials
(C5). To help mitigate the effect of these issues, we standardized every signal
within an example. For each signal in an example, we subtract the example’s
mean value for that signal and divide it by the signal’s standard deviation in
that example.

On average, each trial generates 78 examples, which results in 7,607 examples
in total across all runners and trials. For ten second windows and a sampling
rate of 1024Hz, an example consists of 44 time series signals, with 10,240
measurements per signal, and 450,560 measurements in total.

5.4.3 Feature Construction

We want to define features that describe fatigue-related changes in a runner’s
style. Specifically, because running is a cyclical repetitive movement, and
deviations from a runner’s pattern may arise due to excessive fatigue, we want
to design features that capture changes in the movement pattern.

We consider three broad categories of features: (1) Simple statistical features,
which describe aspects of a runner’s movement pattern, (2) more advanced
sport science features (Jordan et al. 2007; Moe-Nilssen and Helbostad 2004;
Tochigi et al. 2012), which capture to what extent a runner is able to copy
his movement from one stride (i.e., cyclical motion of one leg) to another, and
(3) expert-defined symmetry features (Schütte, Seerden, et al. 2016), which
explicitly compare the movement of the left and right leg. While the first two
categories are computed by analyzing one sensor’s signal, the symmetry features
are computed based on two signals (i.e., one from each tibia sensor).



64 FATIGUE PREDICTION IN OUTDOOR RUNNERS VIA MACHINE LEARNING AND SENSOR FUSION

Statistical Features. First, we compute for each signal a set of 15 basic
features. We consider four standard features of the signal: The minimum,
maximum, skew, and kurtosis. We also compute the average absolute difference
(AAD), which computes the average absolute difference between each value in a
signal and the signal’s mean value (Kwapisz et al. 2011)

We compute ten features based on constructing a binned distribution of the
signal (ibid.). The signal is divided into ten equal sized bins based on its
minimum and maximum value. There is one feature per bin which is equal to
the proportion of the signal’s values that fall in that bin.

Additionally, for the total acceleration, we construct two features based on
the time between peaks, which was found to be a useful feature in activity
recognition (ibid.). Since we only have one activity which is cyclical, a window
can be more accurately partitioned into consecutive strides by applying peak
detection on the total acceleration signal. The average stride duration and the
consistency of the stride durations within a window are then captured by two
features: the mean and standard deviation of the stride durations.

Sport Science Features. Second, we compute for each signal three more
advanced self-similarity features:

Sample Entropy. This feature measures the complexity of a time-series T =
t1, t2, ..., tn as −logA

B . Given a length m subsequence in T seq(x) = tx . . . tx+m,
B is the number of length m pairs such that d(seq(i), seq(j)) < r where d is
the Chebychev distance, and r is a tolerance threshold. Given the set of similar
length m pairs, A is the number of pairs that after being extended to length
m + 1, remain similar (i.e., d(seq(i), seq(j)) < r) (Richman and Moorman
2000). Furthermore, it was shown to capture running-fatigue related decline
in physiological variability of movement patterns (Schütte, Maas, Exadaktylos,
et al. 2015).

Detrended Fluctuation Analysis (DFA). This feature divides the signal into
segments of equal length l and quantifies the fluctuations of the signal after
subtracting local trends (i.e., by fitting a polynomial curve) for each segment.
This process is repeated for multiple values of l to plot the signal’s fluctuations
as a function of l. The feature’s value is the slope of the linear curve fitted
through these points (Bryce and Sprague 2012).

Stride Regularity. This feature captures the similarity of consecutive strides.
It calculates the value of the first peak in the unbiased autocorrelation signal,
which corresponds to comparing the original signal with a copy that was shifted
by one stride (Moe-Nilssen and Helbostad 2004). The unbiased autocorrelation
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signal is constructed by varying m = 1 . . . N , and for each m computing:

1
N − |m|

·
N−|m|∑

i=0
xi · xi+m,

where N is the number of data points.

Symmetry Features. Third, we compute symmetry features by fusing the
signals from the two tibia sensors to capture to what extent a runner is able to
replicate his movement from one leg to the other as asymmetries between the left
and right side can elevate the risk of an overuse injury (Schütte, Seerden, et al.
2016). Specifically, each symmetry feature is computed as the log difference of
the absolute value of the single leg feature calculated on the right side and the
absolute value of the single leg feature calculated on the left side (Wetherell
1986).

Normalization. We express the value of each feature relative to a trial-specific
baseline for two reasons. First, we expect gradual changes over time of the
feature values relative to a non-fatigued state to capture alterations in running
style due to fatigue. Second, individual characteristics may affect the observed
signal and hence the derived features. After exponentially smoothing all feature
values (α = 0.4), we use the first six windows to derive a range (i.e., min and
max) for each feature. This represents a feature’s baseline value for the runner’s
starting fatigue state. Using this range, we apply min-max normalization to
all subsequent values of the feature. To account for inter and intra individual
differences we take the absolute value of the normalized feature values.

Summary. To summarize, each IMU has 11 signals. We compute 15 basic
features and three sport science features per signal. For the total acceleration
signal, two additional features are derived. This means that there are 200
features per IMU. If both tibia sensors are used, then there are 200 additional
symmetry features.

5.4.4 Learning Models

We consider three different learning settings, each learned based on different
subsets of the data:
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1. All Runners Model (AM). This setting learns a model using data
from all runners. This model attempts to leverage all the data with the
assumption that multiple subjects will have similar changes in style as a
response to fatigue.

2. Other Runners Only Model (OM). This setting builds one model for
each runner using only data from other runners. That is, no data is used
about the runner for whom predictions will be made. The goal of this
setting is to assess how accurate predictions will be if we have no training
data available for a specific runner. This is interesting because for first
time runners, there will not be data. Furthermore, some runners may not
provide RPE value, which are needed to train an individual (or group)
model.

3. Individual Model (IM). This setting builds one personalized model
for each subject using only data from that subject. This model would
work well if each subject has a unique alteration in style in response to
increasing fatigue.

5.5 Experimental Evaluation

The goal of the empirical evaluation is to assess the viability of predicting
RPE in a real-world outdoor setting, provide insights into the input data, and
discuss the practical impact of the results. Specifically, we address the following
questions:

Q1: How accurately can we predict a runner’s RPE based on inertial motion
signals?

Q2: How does the location of the sensor’s placement on the body affect
predictive performance?

Q3: Does fusing the data from multiple sensor locations improve predictive
performance?

Q4: Can runners rate their RPE consistently and according to the BORG
scale?

Q5: Can we further improve the results using more advanced sport science
features and expert knowledge?

Q6: What preprocessing steps are important for accurately predicting RPE?
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5.5.1 Experimental Details

We now describe the details of our experiments.

Learners We evaluated four regression techniques: Gradient Boosted Regres-
sion Trees (GBRT), Artificial Neural Network (ANN), Linear Regression with
Elastic Net regularization (EN), and Linear Regression with Least Absolute
Shrinkage and Selection Operator regularization (LASSO). For all models, we
used the implementation available in scikit-learn (Pedregosa et al. 2011). For the
GBRT, we used the default settings for all parameters except for the following
two, because changing them was shown to reduce overfitting (Friedman 2002;
Ho 1998): subsample = 0.4, max_features = 0.9. For ANN, we used the default
parameter settings. For EN and LASSO we used the default parameter settings
except for one parameter. For EN we tuned the L1 − ratio parameter, while for
LASSO we tuned the alpha parameter. Both were tuned using five fold cross
validation on the training set.

Additionally, we consider two baseline predictors. The first baseline model
(MIDDLE) always predicts 13, which is the value in the middle of the Borg
scale. The second is a personalized, trial-dependent baseline (TD-Baseline)
that always predicts the average of the runner’s RPE score after the warm up
lap and the maximum value of the Borg Scale (i.e., 20). Both of these models
can be thought of as predicting the average of a range (i.e., full Borg scale or
trial-dependent) assuming that each value in the range is reported the same
number of times. We have to use the maximum value of the Borg scale for the
top end of the range because when the trial starts, we do not know what the
subject’s highest reported RPE value will be for that trial.

All four regression techniques and the two baseline models were considered for
addressing Q1 and Q2. For the subsequent experiments, we only considered
GBRTs because the results from Q1 clearly indicated that GBRT outperform
the other techniques on this task.

Features and RPE To answer Q1, Q2, Q3, Q4 and Q6, we train all
models on the set of statistical features. To answer Q5, we learn models
for different combinations of the statistical, sport science and symmetry features.
Additionally, we always train the models using the normalized RPE values,
except for in Q4 where we consider the original RPE values as well.

Evaluation We evaluate these models using a cross validation scheme that
leaves the last trial of one runner out (i.e., the test set consists of all examples
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generated from the last trial for one runner). Because our data is longitudinal,
this scheme avoids information leakage between the training set and the testing
set arising from the future data of a runner appearing in the training set.
Moreover, in the Individual Model setting, this ensures that at least two trials
can be used to construct the model. All preprocessing (e.g., standardization of
the feature values) is solely done on the training data. The predictions of every
model are exponentially smoothed (α = 0.6).

To assess the model’s accuracy, we report the mean absolute error (MAE).
Because we train on the normalized RPE values, we need to convert the
predicted RPE value, rpepredicted, back to the original BORG scale using:
(20− rpewarmup)× rpepredicted + rpewarmup where rpewarmup is the RPE reported
by the runner after the warmup lap. When computing the MAE, there are
several factors that may influence the computation. First, the time a runner
needs to complete the protocol can vary across trials. Second, within one trial,
variations in speed mean that each lap takes a different amount of time to run.
Third, runners have completed a different number of trials. As we do not want
our calculation to be unduly influenced by one lap, one trial, or one runner,
we calculate a global distance based MAE in two steps. First, we compute for
each running test the MAE per lap by assigning each window to a lap. When
a window spans two laps, we assign it to the lap in which the majority of the
time resides. Second, for each runner, we then compute the average MAE over
all laps of that runner. The global MAE is then calculated as the average MAE
over all runners. The first step, accounts for different pacing strategies and for
variable running speeds within a test, that result in variable lap durations. The
second step, accounts for the fact that some runners completed more than three
tests.

5.5.2 Experiment and Results for Q1 and Q2

The purpose of this experiment is two-fold. First, we want to evaluate the
predictive performance of each learner and each learning setting, that is, the All
Runners Model (AM), Other Runners Only Model (OM), and Individual Model
(IM) on this task. Second, we want to evaluate the efficacy of the different
sensor locations (i.e., the arm (A), wrist (W), and tibia (T)) as it is unclear
from the sport science literature where sensors should be placed.

Table 5.1 shows the MAE for all learned models. In terms of learners, GBRTs
consistently outperform the other approaches irrespective of the model or
sensor location. ANNs clearly perform worse on this task compared to the
other learners, probably because ANNs typically require very large amounts of
training data (i.e,. more than the 7000 examples we have). The higher MAEs
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of the LASSO and EN models compared to the GBRT models suggest that the
movement alterations are better captured using non-linear relationships between
the features and the target or that the GBRT technique is more effectively
dealing with the high number of features. It is also reassuring to see that the
GBRT model outperforms both baseline models in all nine scenarios. This
illustrates that the performance of these models is non-trivial.

From a more theoretical standpoint, reaching an MAE of 0 is probably not
realistic either, as the RPE is a holistic measure that simultaneously captures
cardiovascular, respiratory and musculoskeletal fatigue, whereas the IMU sensors
only measure musculoskeletal movement patterns.

From a learning setting perspective, using data from all runners results in
the best predictions, with slight decreases when only data from other runners
is considered. In the vast majority of cases, learning an individual model
results in worse predictive performance. The predictive performance of the
learners in the AM and OM settings are encouraging as it may be difficult to
collect large amounts of data for any given individual in practice. Thus, even
if a runner provides no labeled fatigue data it is possible to make reasonably
accurate predictions. Furthermore, our methodology already takes into account
constraints required by the future real-time prediction system (i.e. no future
data is used and many of the calculations are parallelizable).

In terms of sensor location, GBRT achieve the best performance using data
from the wrist and has slightly worse results on data from the tibia and arm.
This contrasts to LASSO and EN which do better on the arm and tibia than the
wrist. Practically, it is encouraging that data from the arm and wrist results in
accurate predictions as these are locations where a runner may commonly wear
a sensor, either in the form of a watch or an attachment of the smartphone to
the arm. In contrast, attaching a sensor to the tibia is less common outside of
lab setups and possibly more cumbersome, as it might cause pain to the shins
and runners may bump into the sensor with their opposite foot while running.

To evaluate the learned GBRT models in a classification setting, we constructed
ROC curves by thresholding the predicted RPE to make a fatigued versus
not-fatigued prediction. For the ground truth fatigue state, we considered any
reported RPE greater than or equal to 16 as representing a truly fatigued runner.
This rating corresponds to hard to very hard on the Borg scale. Figure 5.2
shows the ROC curves for the GBRT models learned in the AM setting for each
of the three sensor locations. The computed AUC-ROC scores show that all
three sensors perform similarly for classifying between non-fatigued and fatigued.
Because each point on a ROC-curve corresponds to a threshold for distinguishing
between non-fatigued/fatigued, the selected threshold could be set according
to the individual needs of the runner. When selecting a threshold in practice,
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the following are some important considerations. From an injury prevention
perspective, a runner might be better off with a threshold that corresponds to a
higher TPR at the cost of a slightly higher FPR. As a consequence, the runner
will sometimes be advised to stop running before it is actually necessary. Such
a threshold choice would be particularly advisable for novice runners, as most
running injuries are mainly due to running too far, too fast, too soon (Ballas
et al. 1997). More advanced and competitive runners could be less conservative
and use a threshold that results in a lower FPR at the cost of a slightly lower
TPR.

Figure 5.2: ROC Curves for classifying a runner as being either not-fatigued
or fatigued. The results are for the All Runners Model trained using only the
statistical features and GBRT for the Arm, Wrist and Tibia sensor locations.

5.5.3 Experiment and Results for Q3

We hypothesized that movement alterations affect the movements of the legs,
wrists and upper arms simultaneously while running. Therefore, we assume
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Table 5.1: The MAE for predicting RPE for all possible combinations of the four
learners, three sensor locations and three learning setting. The three learning
settings are the All Runners Model (AM), Other Runners Only Model (OM),
and Individual Model (IM).

AM OM IM
Model Sensor MAE MAE MAE

GBRT
Arm 1.99 2.03 1.98
Wrist 1.89 2.04 2.15
Tibia 1.98 2.08 2.02

ANN
Arm 2.92 3.32 14.16
Wrist 6.48 5.54 19.04
Tibia 4.37 4.5 42.93

ELASTIC NET
Arm 2.28 2.34 2.90
Wrist 3.16 3.24 2.38
Tibia 2.09 2.11 3.66

LASSO
Arm 2.33 2.38 2.94
Wrist 2.96 2.92 2.41
Tibia 2.09 2.12 3.68

MIDDLE BASELINE None 3.00
TD-BASELINE None 2.60

that training the GBRT models using features constructed from multiple sensor
locations will improve predictive performance. To test this hypothesis, we
learned one GBRT model for each learning setting and for each combination of
sensor locations.

Table 5.2 shows the MAEs of these models. Combining multiple sensors seems to
result in slight improvements in predictive performance, in each learning setting.
Practically, there is a trade-off between improved accuracy and the convenience
and cost of wearing multiple sensors. It is unlikely that many recreational
runners will buy and wear multiple sensors during each run. Therefore, it
is reassuring that there are no substantial benefits to fusing the data from
multiple sensors. In the future, the evolution of e-textiles means it may be
worth revisiting this question as it becomes easier to embed multiple IMU
sensors in running apparel.

5.5.4 Experiment and Results for Q4

Because RPE is a subjective measure, different runners might rate their RPE
differently. Therefore, we hypothesized that normalizing the RPE values for
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Table 5.2: Comparison of the MAE for models learned on all combinations of
the four sensor locations: arm, wrist, left tibia, and right tibia. Results for
all three learning settings are shown. The models are trained using only the
statistical features with a GBRT.

AM OM IM
SENSORS MAE MAE MAE
Arm (A) 1.99 2.03 1.98
Wrist (W) 1.89 2.04 2.15
Tibia (T) 1.98 2.08 2.02
T-T 1.84 1.90 2.10
W-A 1.89 1.95 2.02
T-A 1.98 2.16 1.89
T-W 1.84 2.01 1.98
T-W-A 1.92 1.98 1.97
T-T-A 1.89 2.00 1.96
T-T-W 1.74 1.88 2.06
T-T-W-A 1.83 1.90 1.99

training to account for these inter-individual differences will improve predictive
performance.

For each learning setting and sensor location, we trained two GBRT models.
The first model was trained using the normalized RPE values, like is done in
all other experiments in this chapter. The second model was trained using the
originally reported RPE values. Table 5.3 reports the MAE for both approaches
for each sensor location. Normalizing the RPE clearly improves the MAEs
in the AM and OM learning settings. However, when considering Individual
Models, there is no real difference between using NRPE and RPE. These results
suggest that runners, at least to some extent, consistently report RPE during
consecutive tests. However, different people seem to interpret the BORG scale
differently. This might be because the runners had no previous experience with
the BORG scale. While previous research found that a learning protocol can
improve the validity of the BORG scale (Soriano-Maldonado et al. 2014), it is
interesting to see that we can account for these subjective differences between
runners, as most runners seem to use their warmup RPE as an anchoring point
to rate the remainder of the test.
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Table 5.3: The effect of training the model using the normalized RPE (NRPE)
values, as is done in all other experiments, and the original RPE values. The
normalization is performed to control for the consistency and subjectiveness
of the reported RPE values. Results for all three learning settings and each of
the three sensor locations are shown. The models are trained using only the
statistical features with a GBRT.

AM OM IM
NRPE RPE NRPE RPE NRPE RPE

Sensors MAE MAE MAE MAE MAE MAE
Arm (A) 1.99 2.31 2.03 2.38 1.98 2.11
Wrist (W) 1.89 2.24 2.04 2.40 2.15 2.12
Tibia (T) 1.98 2.12 2.08 2.29 2.02 1.97

5.5.5 Experiment and Results for Q5

As the sport science literature has used complex features to study running gait,
we hypothesized that these features could complement the set of statistical
features and result in improved performance when predicting RPE. Furthermore,
we assumed that explicitly describing the symmetry between the movement of
the left and the right tibia would capture additional useful information.

In each learning setting, we learned one GBRT model for each combination of
feature types: (1) statistical, (2) sports science, (3) statistical and symmetry, (4)
sports science and symmetry, (5) statistical and sports science, and (6) statistical,
sports science and symmetry. We considered two sensor combinations: wrist
(W) and right tibia-left tibia-wrist-arm (T-T-W-A). Note that the symmetry
features are only applicable for the second sensor combination.

Table 5.4 reports the MAE for all the different models. The statistical features
alone result in the best or close to the best performance in all three learning
settings. There are only small changes in the MAE when considering the more
advanced features. These results impact the real-world applicability, as the
simple statistical features are computationally less expensive to compute. That
is, they can easily be computed in real-time and within the resource constraints
of a mobile computing platform worn by a runner.

5.5.6 Experiment and Results for Q6

Both running speed and inter and intra individual differences between runners
add noise to the computed feature values. Therefore, we hypothesized that we
can improve the prediction of RPE by both (1) standardizing the signals per



74 FATIGUE PREDICTION IN OUTDOOR RUNNERS VIA MACHINE LEARNING AND SENSOR FUSION

Table 5.4: The effect of different combinations of statistical, sports science and
symmetry features on the MAE. Results for all three learning settings using the
data from the wrist (W) and the combined data from the arm, wrist, left tibia
and right tibia (T-T-W-A) are shown. The models are trained using GBRT.

AM OM IM
Type W T-T-W-A W T-T-W-A W T-T-W-A
Stat. 1.89 1.83 2.04 1.90 1.98 1.99
Sport &
Symm. / 1.99 / 2.06 / 2.02

Stat. &
Symm. / 1.84 / 1.97 / 2.16

Sport 2.14 1.92 2.21 2.07 2.09 2.03
Stat. &
Sport 1.99 1.80 2.05 2.04 2.09 2.01

Stat. &
Sport &
Symm.

/ 1.84 / 1.91 / 1.97

window before calculating the features and (2) normalizing the feature values
with respect to a trial-specific individual baseline for the runner. For each
combination of including or excluding these two preprocessing steps, we trained
one GBRT model per learning setting using the statistical features calculated
on the combined arm, wrist, left tibia and right tibia data.

Table 5.5 reports the MAE for each combination of the two preprocessing steps.
The results indicate that normalizing the feature values with respect to the
baseline of a runner is an important step that positively impacts predictive
performance. This is in accordance with our hypothesis that running style is
highly runner specific. However, the standardization of the signal per window
has a limited impact on the results.

5.5.7 Discussion

We now revisit the questions posed at the beginning of this section. We can
positively answer Q1 as our evaluation showed that our predictive models
have a non-trivial performance when predicting RPE while running. Accurate
predictions can be made based on a single sensor that could be located on the
wrist, arm or tibia, with the wrist yielding the best results (Q2). Furthermore,
when evaluating Q3, we found that fusing data collected from sensors at
multiple locations only resulted in slightly improved predictive performance.
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Table 5.5: Impact of standardization and normalization with respect to a trial-
specific individual baseline on the MAE. Results for all three learning settings
using the combined data from the arm, wrist, left tibia and right tibia are shown.
The models are trained using the statistical features and GBRT.

AM OM IM
Standardize
Signals

Normalize w.r.t.
Individual Baseline MAE MAE MAE

yes yes 1.83 1.90 1.99
no 2.12 2.48 1.95

no yes 1.81 2.00 1.96
no 2.08 2.50 1.93

Somewhat surprisingly, considering advanced features coming from the sports
science literature (Q5) did not result in improved performance compared to
only considering standard statistical features. We identified several meaningful
preprocessing steps that were important to perform in order to account for both
inter and intra individual differences and the subjectivity of the RPE scale (Q4
and Q6). To summarize, it is encouraging that promising results are possible
using a single sensor attached to the wrist and a set of computationally efficient
features.

In terms of moving more towards deploying such a system "in the wild,"
considering the impact of external factors such as running surface and weather
conditions and internal factors such as individual characteristics and pacing
strategies would be important. These factor might, for example, influence the
interpolation strategy used to assign an RPE value to each window. Furthermore,
exploring the relationship between the accumulated load of the impacts endured
while running (both in and across multiple training sessions) and RPE, as has
been studied for other sports like professional soccer (Jaspers, Op De Beéck,
et al. 2018), would be worthwhile.

5.6 Conclusion

This chapter introduced fatigue prediction in runners as a new non-trivial,
interesting, and impactful data science problem. Specifically, its non-trivial
challenges arise from analyzing sensor data collected in an uncontrolled outdoor
environment and the need to resort to a subjective partial and evolving truth
label for fatigue. More specifically, we showed that the fatigue status of a
runner can accurately be predicted with limited or no prior labeled data of
a runner using a set of simple features computed on the data of one IMU-
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sensor attached to the wrist. Moreover, our methodology effectively accounts
for running speed, the subjectivity of the target variable and inter and intra
individual differences between runners. Thus, the results presented in this work
are useful and represent a solid start for moving into a real-world application
for monitoring the fatigue level of outdoor runners using wearable sensors.



Chapter 6

General Discussion

In this chapter we first discuss the results from Chapters 3 through 5. Afterwards,
we revisit this thesis’ dissertation statement, followed by a summary of the
lessons we have learned. We then identify the limitations of this thesis and
discuss potential future research directions. Finally, we end with an overall
conclusion.

6.1 Discussion Research Results

This section summarizes the most important results of Chapters 3 through
5. Moreover, we highlight where the methodology of the individual chapters
deviates from the general methodology that was outlined in the introduction.

6.1.1 Results of Modeling the Relationships Between the
External and Internal Training Load in Professional
Soccer

Chapter 3 shows that machine learning models are able to predict RPE based
on a large set of external load indicators collected during two seasons from
a professional soccer club. Moreover, the use of interpretable models allows
identifying the external load indicators that were perceived to be the most
exerting by the players. This can help to improve current load management
strategies. Lastly, the chapter illustrates the potential of group models as a

77
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tool to individually monitor athletes when limited or no individual data are
available.

While this chapter only reports the results of models that are learned using
ANN and LASSO, it should be noted that we also experimented with other
models such as GBRTs.

Evaluating the GBRT model according to the first experimental setup of Chapter
3 that learns a model on the data of season 1 and evaluates this model on the
data of season 2, we obtained an MAE of 0.84.

When the second experimental setup of the chapter is followed that performs a
temporal split per season, we obtained an MAE of 0.81 for the GBRT group
model and an MAE of 0.78 for the GBRT individual models for the analysis of
season 1. For season 2 we found an MAE of 0.81 for the GBRT group model
and a MAE of 0.83 for the GBRT individual models.

As the GBRT models did not outperform the LASSO models, we did not include
these results in the chapter to not overcomplicate the story. We did report the
results of the ANN models to compare to the related work of Bartlett et al.
2017. Furthermore, we did experiment with Elastic Net regularization as well
but this technique did not improve the results either.

For the sake of reproducability it is worth adding that we tuned the ANN,
LASSO and Elastic Net models on the last 20 percent of the learning set. For
ANN we used the scikit-neuralnetwork package (Scikit-neuralnetwork 2019).
The ANN network consisted of one hidden sigmoid layer and one linear output
layer. Before learning the ANN models we normalized the feature values to
values between 0 and 1. We then tuned the number of units [5, 10, 50, 100],
learning rate [0.05, 0.01, 0.005, 0.001], and number of iterations [5,10,50,100].
All other parameters were set to the default values. For LASSO and Elastic Net
we used the implementation available in Scikit-learn (Pedregosa et al. 2011) and
standardized all feature values. For each LASSO model, we tuned the alpha
parameter [0.1, 0.2, ...,1] and for each Elastic Net model we trained both the
alpha [0.1, 0.2, ..., 1] and the l1-ratio [0.1, 0.2, ..., 1] parameters. For the GBRT
models we used the same settings as reported in Chapter 5.

In the second experimental setup, we perform an analysis per season. For each
season used a temporal 75-25 train-test split which deviates from the more
common 80-20 split. To compare group and individual models on the same test
data we chose one shared time split for all players per season. By choosing this
time split at 75% instead of at 80%, we increased the size of the test set by five
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percent to validate the individual models on more examples, given the limited
number of training session a player participates in each season.

The chapter presents similar or better results using LASSO compared to using
an ANN. Several factors might explain these results. Since LASSO learns a
linear model, it needs fewer learning examples compared to an ANN model. The
ANN model is more likely to overfit as it can express more complex relationships
between the input variables. Moreover, the L1-regularization of LASSO allows
the technique to deal with multicollinearity among the input variables. ANNs
do not have this property by default. One obvious extension would be to first
use L1-regularization to perform feature selection and reduce the size of the
input space before training the ANN network.

According to the first experimental setup of Chapter 3 that learns a model on
the data of season 1 and evaluates this model on the data of season 2, we found
that this approach does improve the MAE of an ANN group model from 1.09
to 0.85. Yet, when the second experimental setup is followed that performs a
temporal split per season, this approach does increase the MAE of the group
model and the individual models for the analysis of season 1. For the analysis
on season 2 the MAEs of the group model (MAE 0.83) and individual models
(MAE 0.82) do not change much. Because these results do not show a clear
improvement, we decided to keep the methodology closer to related work of
Bartlett et al. 2017.

6.1.2 Results of Predicting Future Perceived Wellness in
Professional Soccer

This chapter focuses on predicting future perceived wellness based on preceding
load and perceived wellness in professional soccer using individual machine
learning models. The chapter shows that the external and/or internal load in
combination with the preceding perceived wellness results in the best predictive
performances. This highlights the importance of a daily wellness status
assessment. Including cumulative load for previous days does not improve
the predictive performances.

In this chapter we do not report any results for group models for two reasons.
First, we want to focus on the comparison between acute and cumulative loads.
Because machine learning techniques are still not commonly used in training
load literature, adding a comparison between individual and group models
would overcomplicate the chapter’s story from a sports science perspective.
Only reporting group models is not an option either as domain experts currently
believe that individual models are always the best choice. As an extra experiment



80 GENERAL DISCUSSION

we compared group models, that were trained on the data of other soccer players
only, with individual models, that were trained separately for each player. To
perform this analysis, we used the same time split for all players. We found
that these group models did not outperform the individual models nor the
baseline model that uses a player’s average wellness score as the prediction.
Furthermore, we also tried to learn models using LASSO and Elastic Net. Yet,
these techniques did not improve the results.

Finally, we select the ELIs based on the results of Chapter 3. We could have
used the entire set of available ELIs as we did in the previous chapter. Yet,
the main goal of the chapter is to compare the role of different time frames.
Computing the entire set of available ELIs for each time frame would have
considerably increased the total number of features. While this has the potential
to improve the results even further, we already found satisfactory results with
the current set.

6.1.3 Results of Fatigue Prediction in Outdoor Runners via
Machine Learning and Sensor Fusion

This chapter introduces fatigue prediction in runners as a new non-trivial,
interesting, and impactful data science problem. Specifically, its non-trivial
challenges arise from analyzing sensor data collected in an uncontrolled outdoor
environment and the need to resort to a subjective partial and evolving ground
ruth label for fatigue. More specifically, we show that the fatigue status of
a runner can accurately be predicted with limited or no prior labeled data
of a runner using a set of simple features computed on the data of one IMU-
sensor attached to the wrist. Moreover, our methodology effectively accounts
for running speed, the subjectivity of the target variable and inter- and intra-
individual differences between runners. Thus, the results presented in this work
are useful and represent a solid start for moving into a real-world application
for monitoring the fatigue level of outdoor runners using wearable sensors.

6.2 The Added Value of Data Science Techniques
for the Analysis and Interpretation of Continu-
ous Monitoring Data of Athletes

In this section, we try to support the dissertation statement by focusing on
three aspects of the analysis of training load data of athletes where we identified
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Table 6.1: MAEs of machine learning group models and baseline constructed
on season 1 and evaluated on season 2: Hand picked features versus data-driven
feature selection. Abbreviations: ANN, artificial neural networks; LASSO, least
absolute shrinkage and selection operator; MAE, mean absolute error.

Method Aggregation Bartlett
(MAE)

Data-driven
(MAE)

ANN Group 1.45 1.09
LASSO Group 0.85 0.80
Baseline Group 1.14

the added value of data science techniques: to select features, to leverage the
data of other athletes, and to model complex relationships.

6.2.1 Complementing Expert Knowledge Using Data-driven
Feature Selection Methods

One benefit of using machine learning techniques is that they can learn
models that consider multiple input variables. Simultaneously monitoring
several variables has been previously identified by the training load monitoring
community as one of the keys to successful athlete monitoring (Bourdon et al.
2017). Yet, the question in this case is: “Which variables should be monitored?”.
Throughout this thesis we evaluated two different hypotheses:

Data-driven Feature Selection or a Set of Hand Picked Features? In
Chapters 3 to 5 we consistently used data-driven methods to select a subset
of the available features. A second way to select features is to hand select a
number of them, which is the approach taken in related work (Bartlett et al.
2017). Tables 6.1 and 6.2 show the comparison of the models presented in
Chapter 3 to models that only have access to a set of hand picked ELIs. One
can see that the Bartlett setting always results in a worse performance. This
illustrates that a data-driven approach to select ELIs can improve the predictive
performance of the models.

Simple Statistical Features or Features Based on Domain Knowledge?
Chapter 5 evaluates this hypothesis. We compared both sets of features to learn
models that predict the RPE of runners. We showed that the simple statistical
features outperform both domain features (e.g., stride regularity) and features
that explicitly encode domain knowledge (e.g., the asymmetry while running).
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Table 6.2: MAEs of machine learning models and baseline for season 1 and
season 2. Abbreviations: ANN, artificial neural networks; LASSO, least absolute
shrinkage and selection operator; MAE, mean absolute error.
Method Aggregation Season 1 Season 2

Bartlett
(MAE)

Data-driven
(MAE)

Bartlett
(MAE)

Data-driven
(MAE)

ANN
Individual 1.10 0.84 0.96 0.85
Group 1.01 0.81 0.90 0.83

LASSO
Individual 0.84 0.81 0.89 0.85
Group 0.86 0.79 0.88 0.85

Baseline
Group 0.99 1.11

This finding yields three benefits. First, the simple features are more efficient
to compute. Second, feature construction is a time-consuming part of the data
science pipeline. Since, these features also perform well in other applications on
movement data (Decroos, Schütte, et al. 2018; Kwapisz et al. 2011), they have
the potential to serve as a go-to set of features in many applications. Third, we
can compute these features for every signal of every sensor. Training a model
on these features can be a simple method to fuse data of multiple signals and
sensors (i.e., on the feature level). Moreover, it can help identify which sensor
locations or signals are most predictive. Yet, this does not imply that domain
knowledge is unnecessary. The results of Chapter 5 suggest that other parts of
the data science pipeline should first deserve our focus. First, domain knowledge
should help to design a correct evaluation methodology. Second, understanding
the domain helps to understand which context (e.g., by defining an individual
baseline, the subjectivity of the target label) could provide value (see 6.3.1).

6.2.2 Individual Monitoring of Athletes Using Group Models

In Chapter 3 and 5, we showed that group models can be valuable to make
predictions for athletes with little to no data. The group models of Chapter 3
performed as well as or better than individual models. This suggests that group
models can leverage the data of other athletes that behave similarly. In Chapter
5 we obtained the best results when combining the data of a runner with the
data of other runners. Here it is important to note that we first applied several
strategies to adjust for the differences between runners.
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Individual models are likely to outperform group models for cases where a lot
of data about the individual are available. Learning individual models can be
considered as a strategy to implicitly encode context about the athlete. Yet,
in sports, having a lot of individual data is not always feasible (e.g., due to
injuries or transfers).

6.2.3 Modeling Complex Relationships to Interpret Continu-
ous Monitoring Data

Responses to training as well as movements while running can be non-
linear (Bourdon et al. 2017; Schütte, Maas, Venter, et al. 2015). Therefore, we
hypothesized that machine learning techniques that can capture these types of
relationships have the potential to work well and outperform linear models. The
results from Chapter 5 did indeed support this hypothesis. In Chapter 4 we found
a nontrivial effect using a non-linear GBRT model. Yet, in Chapter 3 we found
that the linear LASSO technique performed slightly better compared to the
ANN models. This shows that linear models can still be useful, especially when
relatively limited data is available. We should note here that a traditional least
square approach did not work because the input variables are not independent of
each other. This highlights another benefit of many machine learning techniques:
their ability to deal with multicollinearity among the input variables. While
the training load community cautioned that the benefits of machine learning
come at the cost of a loss of interpretability (Bourdon et al. 2017), we showed
that there exist other advanced techniques beyond ANNs that perform well but
are still interpretable to some extent.

6.3 Lessons Learned for Data Scientists

Throughout this thesis we have identified several challenges that arise when
analyzing continuous monitoring data of athletes. In this section we try to
formulate some lessons learned that can hopefully help other data scientists
that want to work in this field.

6.3.1 Contextualization of the Data Is Important

Contextualization of data can help to improve their interpretation. Raw data
are hard to interpret, as for most real-world data no normative data exists. Thus,
we should evaluate raw data in a broader context. The term context can refer
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to many confounding factors. Yet, within the scope of this thesis, we mainly
focused on accounting for the intra-and inter-individual differences between
athletes that are caused by both the individual characteristics of athletes and
the dynamic nature of these characteristics.

We found that incorporating domain knowledge by modeling the context of
the data was more effective compared to using domain knowledge to find good
features. This thesis employs several technical strategies to encode context
either explicitly or implicitly.

In Chapter 5 we have used two explicit strategies to adjust for inter- and
intra-individual differences. As one strategy, we defined the first 60 seconds of
the data of a runner as the runner’s personal baseline on that day. This baseline
captures the runner’s running style and allows to standardize the feature values
of the remaining windows. As another strategy, we corrected for the subjectivity
of the target label. We trained the models on normalized RPE scores instead of
the reported RPE scores.

In Chapter 4 we employed one explicit strategy to encode context: by adding the
previous state as an input (i.e., the wellness score reported before the session).
This strategy depends on the quality of the data. If data of the preceding
examples are missing, it is not always trivial to impute the previous state. Thus,
small details in the data collection protocol can have a big impact on the data
analysis (e.g., not reporting wellness scores on match and rest days).

We also experimented with this strategy in Chapter 5 by adding the previously
reported RPE score as a feature. While including the previous state improved
the predictive accuracy of the models, we found that the predictive models only
relied on the previous state feature. Thus, these models learned the study’s
protocol. Since we wanted to model the relationship between biomechanical
movements and RPE, we omitted this strategy.

In Chapter 4 we also applied an implicit strategy. By training individual models
for every athlete we implicitly adjusted for a player’s subjectivity of the RPE
and wellness scores.
In Chapter 3 we employed another implicit strategy by excluding the data from
matches from the analysis to focus on the relationship between external load
indicators and RPE of training sessions following the methodology of related
work (Bartlett et al. 2017).

Including match data would have been only possible for the data of season 2 as
GPS data was not collected during matches in season 1. Table 6.3 shows the
results of this analysis in case match data would have been included. There are
two things to note from these results.
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Table 6.3: MAE of machine learning models and baseline for season 2 with
and without matches. Abbreviations: ANN, artificial neural networks; CI,
confidence interval; LASSO, least absolute shrinkage and selection operator;
MAE, mean absolute error.

Method Aggregation
Practices
MAE
(90% CI)

Practices
+
Matches
MAE
(90% CI)

ANN
Individual 0.85 (0.83 - 0.87) 0.87 (0.83-0.91)
Group 0.83 (0.81 - 0.85) 0.86 (0.82-0.90)

LASSO
Individual 0.85 (0.80-0.90) 0.87 (0.83-0.91)
Group 0.85 (0.80-0.90) 0.87 (0.83-0.91)

Baseline
Group 1.11 (1.05-1.17) 1.39 (1.33-1.45)

First, including the match data results in only a slight increase of the MAE for
the machine learning models. This illustrates that these models can to some
extent account for these implicit context differences. This further strengthens
our belief that the machine learning models are able to partly capture the
relationship between ELIs and RPE.

Second, the baseline model’s MAE increases substantially when match data is
included. This increase is because the RPE of matches raises the average RPE
of the learning set from 3.48 to 3.96. This average falls somewhere between the
training session average and the match average. Therefore, the baseline will
both underpredict the RPE of matches and overpredict the RPE of training
sessions. This may, in addition to the recent papers of Brito et al. (Brito et al.
2016) and Nassis et al. (Nassis et al. 2017), provide support for a separate
evaluation of RPE for matches, as the RPE can be influenced by match-related
variables such as location, results, and opponent.
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6.3.2 Evaluation of Machine Learning Models in the Context
of Continuous Monitoring Data of Athletes Is Non-
trivial

In this thesis we have focused on designing evaluation strategies that result in
an unbiased assessment of the model’s ability to generalize to unseen data. As
highlighted in section 2.3.2 it is important that no information is leaked between
the learning and testing sets. In Chapters 3 and 4 we used a temporal split of
the data. In Chapter 5 we employed a leave-last-trial-of-runner-out validation.

In Chapters 4 and 5 we accounted for the fact that athletes can have a different
number of learning examples. In both chapters we required a minimum number
of trials per athlete to make sure that enough learning examples were available.
We first aggregated the absolute prediction error of each testing example per
athlete. Then we aggregated the MAE per athlete over all athletes. In Chapter
5 we added another aggregation step before aggregating the scores per runner.
Because the target variable was sampled per lap and not every lap resulted
in the same number of examples, we first aggregated the scores per lap. In
Chapter 3 we did not explicitly account for the different number of examples per
player to more closely match the methodology of related work (Bartlett et al.
2017). Due to the limited overlap of players between seasons and by repeating
the analysis for two seasons we believe we still managed to obtain a realistic
evaluation.

To interpret the computed performance metrics (e.g., Mean Absolute Error)
we compared them to the performance metrics computed for a naive baseline
model. In Chapters 3 and 4 we computed effect sizes to assess whether the mean
performance of our predictive models was different from the mean performance
of the baseline’s performance.

6.4 Actionable Insights and Lessons Learned for
Sports Scientists and Practitioners

While the previous section highlighted technical contributions that can be useful
for data scientists, this section summarizes some actionable insights and lessons
learned that can be of value for practitioners and sports scientists:

• Machine learning techniques can provide insight into the relationships
between continuous monitoring variables: e.g., decelerations were identified
as important to model the relationship between external load and RPE
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and data collected from one sensor attached to the wrist could accurately
predict the fatigue status of runners.

• Group models can be used when limited or no data are available for an
athlete. Yet, this does not imply that an individual approach for the
continuous monitoring of athletes is unnecessary. We believe that an
individualized approach for monitoring is beneficial. After every practice,
match, or window, a practitioner can compare the reported score (e.g.,
wellness score, RPE score) to the score that was predicted by the predictive
models. Large deviations between the predicted and reported values may
identify problems early on.

• Machine learning models such as GBRTs can capture non-linear
relationships, and are robust to multi-collinearity while still providing
interpretability.

• Assessing how predictive models generalize is crucial to draw meaningful
conclusions. Yet, the challenges we have identified when evaluating these
models were often subtle. Thus, the evaluation methodology should be
well thought of and clearly reported.

• As pointed out in the consensus statement on load monitoring (Bourdon
et al. 2017), it is non-trivial for practitioners to translate results from
literature and apply them to their own population of athletes. Machine
learning could provide a good tool to assist with this translation step.
A practitioner can copy the methodology from a paper, but retrain and
evaluate the models based on data collected in house.

• The quality of the data can have a big impact on the quality of the
analysis. Often, simple measures can drastically improve the data quality.
Therefore, it is important to already think about the entire data science
pipeline during the design of the data collection protocol.

6.5 Limitations

In retrospect, several limitations can be identified when reflecting on Chapters 3
to 5. First, we evaluated the methodology of Chapter 3 and 4 on the data of only
one club. Second, while data of two seasons were available for Chapter 3, only
data of one season could be used in Chapter 4. Moreover, because wellness-scores
were not reported on recovery days and match days this drastically reduced the
amount of available data.
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We should also acknowledge some limitations of the 3200m all-out protocol of the
study on runners. While the outdoor setting introduced interesting challenges
that do not arise when collecting treadmill data, one could argue that this
protocol still controls the environment of the runners to some extent: all runners
ran on the same surface, they ran the same distance and supposedly ran at
maximum intensity. In the real-world runners can change surface, distance and
intensity. This will likely introduce more challenges. The linear interpolation
of the RPE scores for example, might no longer be realistic when the intensity
between reported RPE scores varies. Furthermore, this protocol might have
introduced a bias toward reporting higher RPE scores near the end of the
running test as runners were instructed to run in a way that resulted in a RPE
score between 16 and 20 by the end of the trial. Another limitation is that we
could not perform the analysis on data captured at the location of the sacrum
because during many of the trials, the sensor that we attached on this position
came loose due to sweating. This type of analysis has a lot of potential because
the more complex features that we computed in Chapter 5 where validated in
the literature at this position (Schütte, Seerden, et al. 2018).

Since all three papers use the RPE scale either as a feature or as the target
it is interesting to reflect on the use of this measure. RPE is a holistic
measure that does not only quantify muscular fatigue, but also cardiovascular
and psychological fatigue. As a result, it is unrealistic to expect a perfect
RPE prediction based on external load parameters or the description of
biomechanical movements. Therefore, it would be interesting to consider more
specific subjective measures, such as differential RPE, that differentiate between
physiological and biomechanical fatigue pathways (Vanrenterghem et al. 2017).

6.6 Future Work

It would be interesting to evaluate the methodology of Chapters 3 and 4 on data
of other clubs. When more data and time would be available this would allow
for several additional experiments. First, we could explore the potential of group
models to predict player wellness. Second, it could be advantageous to adjust for
the subjectivity of the RPE and wellness scores of soccer players, similarly to the
strategy used in Chapter 5. Third, adding other individual characteristics of the
athlete as features or learning models for athletes that are similar (e.g., based
on demographics, position, running style, or more data-driven similarities) have
the potential to further improve our results. Fourth, modeling other aspects
of the context could be explored as well (e.g. weather conditions, surface,
schedule, running speed). Fifth, multi-task learning (Caruana 1997), i.e., where
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multiple predictive tasks are learned simultaneously, could be another approach
to leverage the similarities between athletes.

While we already explored some aspects of in-session monitoring of athletes in
Chapter 5 to analyze the data of runners, more detailed in-session monitoring has
the potential to further advance the field of training load monitoring. Currently,
most data in this field are aggregated on a session level. As a result, a lot of
subtleties are lost. Two athletes with the same aggregated total loads (e.g.,
total distance) could have reached these loads in a completely different way.
Simultaneously monitoring load variables as we did in this thesis is one way
to improve the level of detail at which two sessions can be compared. Yet,
monitoring how each load variable evolves over time throughout the session
will render a more complete picture. Analyzing both the raw GPS and raw
accelerometer and gyroscope data of soccer players could help to reveal new
interesting patterns that provide insights for training load monitoring. Other
improvements would be possible when internal load measurements would be
reported more frequently during a training session or when the data of training
sessions would be digitally annotated (e.g., with the type of drill). This would
for example allow to build models per drill if enough data would be available.

6.7 Conclusion

In retrospect, this thesis contributes to the field of athlete monitoring by
showcasing the benefits of using data science techniques to identify important
variables, to leverage the data of other athletes to monitor athletes individually,
and to model complex (non-linear) relationships that are relevant for the
continuous monitoring of athletes. The thesis also contributes to the field
of data science by presenting strategies to deal with inter- and intra-subject
differences and to correctly evaluate models for the continuous monitoring of
athletes. Future research in this area can benefit from an interdisciplinary
collaboration between data scientists, sports scientists and domain experts
throughout all phases of the data science process to increase the quality of the
data that is being collected, to properly contextualize the data, to model relevant
relationships and to correctly evaluate and interpret the resulting models.
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