
Transferring Obligations Through
Synchronizations
Jafar Hamin
imec-DistriNet, Department of Computer Science, KU Leuven, Belgium
jafar.hamin@cs.kuleuven.be

Bart Jacobs
imec-DistriNet, Department of Computer Science, KU Leuven, Belgium
bart.jacobs@cs.kuleuven.be

Abstract
One common approach for verifying safety properties of multithreaded programs is assigning
appropriate permissions, such as ownership of a heap location, and obligations, such as an obligation
to send a message on a channel, to each thread and making sure that each thread only performs
the actions for which it has permissions and it also fulfills all of its obligations before it terminates.
Although permissions can be transferred through synchronizations from a sender thread, where
for example a message is sent or a condition variable is notified, to a receiver thread, where that
message or that notification is received, in existing approaches obligations can only be transferred
when a thread is forked. In this paper we introduce two mechanisms, one for channels and the other
for condition variables, that allow obligations, along with permissions, to be transferred from the
sender to the receiver, while ensuring that there is no state where the transferred obligations are
lost, i.e. where they are discharged from the sender thread but not loaded onto the receiver thread
yet. We show how these mechanisms can be used to modularly verify deadlock-freedom of a number
of interesting programs, such as some variations of client-server programs, fair readers-writers locks,
and dining philosophers, which cannot be modularly verified without such transfer. We also encoded
the proposed separation logic-based proof rules in the VeriFast program verifier and succeeded in
verifying the mentioned programs.

2012 ACM Subject Classification Theory of computation → Separation logic; Software and its
engineering → Deadlocks; Software and its engineering → Process synchronization; Software and
its engineering → Formal software verification; Theory of computation → Hoare logic

Keywords and phrases Hoare logic, separation logic, modular program verification, synchronization,
transferring obligations, deadlock-freedom.

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.22

Funding This research received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731453 (project VESSEDIA), as well as Flemish
Research Fund project grant G.0962.17N.

Acknowledgements We thank three anonymous reviewers for their careful reading of our manuscript
and their many insighful comments and suggestions, and also Amin Timany for his guidance on Coq.

1 Introduction

One common approach for verifying safety properties of multithreaded programs, such as
absence of data races and deadlock, is assigning appropriate permissions [3, 37] and obligations
[29, 33, 1] to each thread and making sure that each thread only performs the actions for
which it has permissions and it also fulfills all of its obligations before it terminates. In
a separation logic-based approach [42], for example, the ownership of a heap location is
a permission for accessing that location, which is assigned to the thread allocating that
location. Since there is only one instance of such permission, only one thread, the one having

© Jafar Hamin and Bart Jacobs;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 22; pp. 22:1–22:58

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5701-9111
mailto:jafar.hamin@cs.kuleuven.be
https://orcid.org/0000-0002-3605-249X
mailto:bart.jacobs@cs.kuleuven.be
https://doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Transferring Obligations Through Synchronizations

such permission, can access that location, which ensures absence of data races. Absence of
deadlock, as another example, can be verified by making sure that for any waitable object
o, such as a lock, a channel, or a condition variable, for which a thread is waiting there is
a thread obliged to fulfill an obligation for that object (which only waits for objects whose
levels, some arbitrary numbers1 associated with waitable objects, are lower than the level of
o) [33, 2, 24, 15]. In this setting a thread can discharge an obligation for a lock, a channel, or
a condition variable by releasing that lock, sending a message on that channel, or notifying
that condition variable (under some conditions), respectively.

Permissions can be transferred through synchronizations [33, 34] by consuming them in
the sender thread, where for example a message is sent or a condition variable is notified,
and producing them in the receiver thread, where that message or that condition variable is
received. However, this technique cannot be used for transferring obligations because the
transferred obligations are lost if no thread receives them. Additionally, even in the presence
of a receiver there might be a state where these obligations are discharged from the sender
but not received by the receiver yet. If the obligations are transferred through channels,
for example, if the receive is not scheduled to be executed immediately after the send then
there would be a state where no thread holds the transferred obligations, which makes the
approach unsound. Note that in the case that the send operation is synchronous [29], i.e.
the sender thread is suspended until a thread receives the sent message, sending obligations
through channels is perfectly fine because these obligation are never lost.

In this paper we introduce two mechanisms allowing threads to transfer their obligations
through synchronizations while ensuring that there is no state where these obligations are lost,
i.e. where they are discharged from the sender thread but not loaded onto the receiver thread
yet. The main idea behind the first mechanism is that when the transferred obligations are
discharged from the sender thread the levels of these obligations have been already loaded
onto a (receiver) thread. These levels are discharged from the receiver thread when it receives
the transferred obligations. In the second mechanism, which is specifically for condition
variables, the obligations are discharged from a notifying thread only if there is a waiting
thread which is notified and receives these obligations. We show that using these mechanisms
in some modular approaches, verifying finite blocking [2] and deadlock-freedom of channels
and locks [33, 24], semaphores [21], and monitors [15], enables them to verify a wider range
of interesting programs, such as some variations of client-server programs, fair mutexes,
fair readers-writers locks, and dining philosophers. We encoded the proposed proof rules in
the VeriFast program verifier [25, 26, 22] and succeeded in verifying the programs above2.
Additionally, we proved the soundness of both mechanisms (see Appendixes C and D): the
soundness proof of the second mechanism is machine-checked with Coq3.

In the rest of this paper Sections 2 and 3 introduce two mechanisms for transferring
obligations through channels and notifications, Section 4 discusses related work, and Section
5 draws a conclusion.

1 In this paper, for simplicity we use numbers as levels, but any partially ordered set can be used as the
set of levels.

2 The proof of these programs, verified by the VeriFast program verifier, can be found in [17].
3 The soundness proof of the second mechanism, machine-checked in Coq, can be found in [17].



J. Hamin and B. Jacobs 22:3

2 Transferring Obligations Through Channels

In this section we first review an approach, introduced by Leino et al. [33], which modularly
verifies deadlock-freedom of channels. Then we extend this approach such that it also allows
obligations to be transferred from the thread sending on a channel to the thread receiving
from that channel. Lastly, we provide some variations of a client-server program which can
be verified thanks to such extension.

2.1 Verifying Channels
Leino et al. [33] introduced a modular approach to verify deadlock-freedom of programs
which communicate through channels. The main idea in this approach is to associate with
each thread a bag4 of channels, namely the bag of obligations of that thread, which must be
empty when that thread terminates. A thread can discharge an obligation for a channel by
either sending a message on that channel or delegating that obligation to a forked thread.
This approach guarantees absence of deadlock by making sure that for any thread trying to
receive a message from a channel ch there is either a message in ch or an obligation for ch in
the bag of obligations of a thread which only waits for objects whose levels are lower than
the level of ch (preventing circular dependencies). This constraint is applied by making sure
that if a thread tries to receive from a channel ch then 1) it spends a credit for ch, where
a thread can obtain a credit for ch by adding ch to the bag of its obligations, and 2) the
level of ch is lower than the levels of the obligations of that thread. Note that a credit for a
channel in this approach indicates that there is either a message on that channel or there is
a thread holding an obligation for that channel.

As an example, consider the deadlock-free program shown in the left hand side of Figure
1, where after creating a channel ch, the main thread first forks a receiver thread, trying to
receive a message from ch, and then sends a message on ch. The verification of this program
is shown in the right hand side of this figure, where we use separation logic [42] to reason
about the ownership of permissions. The verification of this program is started with an empty
bag of obligations, denoted by obs({[]}). As indicated below each command, by creating a
channel a (duplicable and leakable) permission channel for accessing that channel is produced
and an arbitrary level, denoted by a function R, is assigned to that channel. Before forking
the receiver thread, using a ghost command5 g_credit, a credit and an obligation for this
channel are loaded onto the main thread. The former is given to the forked thread, where
this credit is spent by the command receive(ch), and the latter is discharged by the main
thread when it executes the command send(ch, 12).

The separation logic-based proof rules, introduced by Jacobs et al. [23, 24], used to
verify this program are shown in Figure 2. Note that the postcondition of each command in
this figure is a lambda expression that given the return value of that command returns the
assertion held after execution of that command. When a channel is created, as shown in
Rule NewChannel, any arbitrary level can be assigned to that channel by the proof author.
Note that, generally, this level must be chosen such that the constraint number 2, mentioned
above, is met at each receive operation. Sending a message on a channel, as shown in Rule
Send, discharges an obligation for that channel. As shown in Rule Receive, a thread can

4 We model bags of objects as functions from objects to natural numbers. We also use ] indicating the
union (i.e. the pointwise sum) of two bags.

5 The ghost commands are inserted into the program for verification purposes and have no effect on the
program’s behavior.

ECOOP 2019



22:4 Transferring Obligations Through Synchronizations

ch := new_channel();
fork(receive(ch));
send(ch, 12)

{obs({[]})}
ch := new_channel();
{obs({[]}) ∗ channel(ch) ∧ R(ch)=r}
g_credit(ch);
{obs({[ch]}) ∗ channel(ch) ∗ credit(ch)}
fork(
{obs({[]}) ∗ channel(ch) ∗ credit(ch) ∧ ch ≺ {[]}}
receive(ch)
{obs({[]})}

);
{obs({[ch]}) ∗ channel(ch)}
send(ch, 12)
{obs({[]})}

Figure 1 Verification of deadlock-freedom of channels, where O in obs(O) is the bag of obligations
of the running thread, R(ch) denotes the level of ch, and ch ≺ O ⇔ ∀o∈O. R(ch) < R(o).

try to receive a message from a channel ch only if that thread spends a credit for ch and
the level of ch is lower than the levels of all obligations of that thread. As shown in Rule
Fork, a thread can transfer a part of its permissions and obligations to a forked thread,
provided that the forked thread discharges all the delegated obligations. Lastly, as shown in
Rule Credit, using a ghost command g_credit a thread can obtain a credit for a channel if
that channel is loaded onto the bag of the obligations of that thread.

It can be proved that any program verified by the mentioned proof rules, where the
verification starts from an empty bag of obligations and also ends with such bag, never
deadlocks, i.e. it always has a running thread, not waiting for any channel, until it terminates.
We know that for any channel ch all of these proof rules preserve the following invariant,
where Ct(ch) and Ot(ch) denote the total number of credits and obligations for ch in the
system, respectively, and size(ch) denotes the number of messages in ch:

Ct(ch) 6 Ot(ch) + size(ch) (1)

Now consider a deadlocked state, where each thread of a verified program is waiting for
a channel. Among all of these channels take the one having a minimal wait level, namely
chmin. Since size(chmin)=0 and there exists a credit for chmin in the system held by the
waiting thread, according to the invariant above and the constraint number 2, there exists a
thread having an obligation for chmin that is waiting for a channel whose level is lower than
the level of chmin, which contradicts minimality of the level of chmin.

2.2 Transferring Permissions and Obligations Through Channels
The approach presented in the previous section fails to verify some applications of channels
where some obligations must be transferred from a thread sending on a channel to the thread
receiving from that channel. Consider the client-server program shown in Figure 3, for
example, where the server waits to receive a message that consists of a client request, which
must be processed by the server, and a client channel, from which the client expects to receive
the response of the server. Although the client routine in this example is deadlock-free, the
Leino et al. approach fails to verify this program, since the routine main cannot give any
credit for the channel ch′, which is created inside the client, to the client. This program can
be verified if after creating ch′ a credit and an obligation for ch′ are loaded onto the client



J. Hamin and B. Jacobs 22:5

NewChannel
{true} new_channel {λch. channel(ch) ∧ R(ch)=r}

Send
{obs(O) ∗ channel(ch)} send(ch,m) {λ_. obs(O−{[ch]}) ∗ channel(ch)}

Receive
{obs(O) ∗ channel(ch) ∗ credit(ch) ∧ ch ≺ O} receive(ch) {λ_. obs(O) ∗ channel(ch)}

Fork
{a ∗ obs(O)} c {λ_. obs({[]})}

{a ∗ obs(O]O′)} fork(c) {λ_. obs(O′)}

Credit
{obs(O) ∗ channel(ch)} g_credit(ch) {λ_. obs(O]{[ch]}) ∗ channel(ch) ∗ credit(ch)}

Figure 2 Proof rules ensuring deadlock-freedom of channels

routine server(channel ch){
(req, ch′) := receive(ch);
result := process(req);
send(ch′, result)}

routine client(channel ch){
ch′ := new_channel();
send(ch, (request(), ch′));
receive(ch′)}

routine main(){
ch := new_channel();
fork(server(ch));
client(ch)}

Figure 3 A client-server program

such that the latter is transferred to the server through the client’s request and the former is
spent for the command receive(ch′) executed in the client.

Similar to permissions, two necessary conditions for transferring obligations are: 1) when
a thread sends a message on a channel ch the transferred obligations of ch, which are
transferred through ch, are discharged from the bag of the obligations of that thread, and 2)
when a thread receives a message from a channel ch the transferred obligations of ch are
loaded onto the bag of the obligations of that thread. However, these conditions are not
sufficient because these obligations are lost if no thread receives from ch. Additionally, even
in the presence of a receiver if the receive(ch) is not scheduled to be executed immediately
after the send(ch,m) then there would be a state where no thread holds the transferred
obligations, which makes the approach unsound.

To address this problem, in addition to the bag of obligations, we associate with each
thread a new bag, namely the bag of importers of that thread, which consists of the channels
that transfer (import) some obligations to that thread. Similar to the bag of obligations,
the bag of importers of a thread must be empty when that thread terminates and a thread
can wait for a channel ch only if the level of ch is lower than the levels of all obligations
which are possibly imported by all importers of that thread except for ch itself. Having this
bag, we enforce an additional condition, numbered 3, when a thread sends some obligations
on an importer channel, which imports some obligations, this channel must be already in
the bag of importers of a (receiver) thread. This importer channel is discharged from the
receiver thread as it receives a message from this channel. This additional condition is met
by making sure that any thread sending on an importer channel ch spends a transferring
credit for ch, where a thread can obtain a transferring credit of ch by adding ch to the bag

ECOOP 2019



22:6 Transferring Obligations Through Synchronizations

of its importers.
Formally, the third condition, which holds for any importer channel ch, ensures that for

any transferring credit of ch or any message in ch (which means a transferring credit of ch
has been spent by sending a message on ch and no thread has received it yet), there exists
an instance of ch in the bag of importers of a (receiver) thread. This invariant is shown in
the following as Invariant 2, where Mr(ch) denotes the bag of the levels of the obligations
which are possibly imported by ch, Tt(ch) denotes the total number of transferring credits of
ch in the system, It(ch) denote the number of occurrences of ch in the bags of importers of
all threads in the system, and size(ch) denotes the number of messages in the queue of ch.

∀ch. Mr(ch)6={[]} ⇒ Tt(ch) + size(ch) 6 It(ch) (2)

Additionally, the two first conditions mentioned above, as well as the ones mentioned in
the previous section, ensure that if a thread waits on a channel ch′ then there is either an
obligation of ch′ in the system, or a message on ch′, or a message in the queue of a channel
through which an obligation of ch′ is transferred (which means an obligation of ch′ has
been transferred through this message and no thread has received it yet). This invariant is
formally shown in the following as Invariant 3, where Ot(ch) and Ct(ch) denote the total
number of obligations and credits of ch in the system, queue(ch) denotes the list of messages
in the channel ch, and M′(ch) is a function, that given a message, specifies the bag of the
obligations which are transferred through that message in ch. Note that the levels of these
obligations must be in the bag of the levels of the obligations which are possibly imported by
ch, as shown formally in Invariant 4, where levels(O) maps each element of O to its level.

∀ch′. Ct(ch′) 6 Ot(ch′) + size(ch′) +
∑
ch

∑
m∈queue(ch)

M′(ch)(m)(ch′) (3)

∀ch,m∈queue(ch). levels(M′(ch)(m)) ⊆ Mr(ch) (4)

It can be proved that any program preserving such invariants never deadlocks, i.e. it always
has a running thread, not waiting for any channel, until it terminates. Consider a deadlocked
state, where each thread of a program is waiting for a channel. Among all of these channels
take the one having a minimal wait level, namely chmin. Since size(chmin)=0 and there
exists a credit for chmin in the system held by the waiting thread, according to Invariant 3,
there exists either 1) a thread having an obligation of chmin that is waiting for a channel
whose level is lower than the level of chmin, or 2) there exists a message m on a channel
ch through which an obligation of chmin is transferred, i.e. 0<M′(ch)(m)(chmin) which by
Invariant 4 implies R(chmin)∈Mr(ch), where R(chmin) denotes the level of chmin. In the first
case minimality of the level of chmin is contradicted. In the second case, since 0<size(ch)
and Mr(ch) 6={[]}, by Invariant 2, there exists a thread having an importer channel ch that is
waiting for a channel whose level is lower than the level of chmin (because ch imports an
obligation of level of chmin), which again contradicts minimality of chmin.

The proof rules enforcing such invariants are shown in Figure 4, where Mr(ch) denotes the
bag of the levels of the obligations which are possibly imported by ch, and the parameters M
and M ′ in the permission channel of a channel are two functions that given a message return
the permissions and the obligations which are transferred through that message. When a
channel ch is created, as shown in Rule NewChannel, the value of these functions for this
channel can be specified arbitrarily. As shown in Rule Send, when a message m is sent on
ch, the permissions which are transferred through m as well as one transferring credit of



J. Hamin and B. Jacobs 22:7

NewChannel
{true} new_channel {λch. channel(ch,M,M ′) ∧ R(ch)=r ∧Mr(ch)=R}

Send
{obs(O, I) ∗ channel(ch,M,M ′) ∗M(m) ∗ (Mr(ch)={[]} ∨ trandit(ch)) ∧

levels(M ′(m)) ⊆ Mr(ch)} send(ch,m)
{λ_. obs(O−{[ch]}−M ′(m), I) ∗ channel(ch,M,M ′)}

Receive
{obs(O, I) ∗ channel(ch,M,M ′) ∗ credit(ch) ∧ ch ≺ O ∧ ch ≺r I} receive(ch)

{λm. obs(O]M ′(m), I−{[ch]}) ∗ channel(ch,M,M ′) ∗M(m)}

Fork
{a ∗ obs(O, I)} c {λ_. obs({[]}, {[]})}

{a ∗ obs(O]O′, I]I ′)} fork(c) {λ_. obs(O′, I ′)}

Credit
{obs(O) ∗ channel(ch,M,M ′)} g_credit(ch)

{λ_. obs(O]{[ch]}) ∗ channel(ch,M,M ′) ∗ credit(ch)}

Trandit
{obs(O, I) ∗ channel(ch,M,M ′)} g_trandit(ch)

{λ_. obs(O, I]{[ch]}) ∗ channel(ch,M,M ′) ∗ trandit(ch)}

Figure 4 The updated proof rules ensuring deadlock-freedom of importer channels, where Mr(ch)
denotes the bag of the levels of the obligations which are possibly imported by ch; M and M ′ in
the permission channel of a channel are functions, that given a message, return the permissions and
the obligations which are transferred through that message, respectively; bag I in the permission
obs(O, I) of a thread denotes the channels importing some obligations onto that thread; levels(O)
maps each element of O to its level; and ch ≺r I ⇔ ∀ch′∈I. ch=ch′ ∨ ch ≺ Mr(ch′).

ch, denoted by trandit(ch), (if ch is an importer channel) are consumed and the obligations
which are transferred through m as well as an obligation of ch are discharged from the bag of
the obligations. Additionally, this rule makes sure by adding m to the queue of ch Invariant
4 is still preserved. As shown in Rule Receive, when a thread tries to receive a message m
from ch the level of ch must be lower than the levels of the obligations of the thread and
also the levels of the obligations which are possibly imported by all importers of that thread
except for ch itself, i.e. ∀ch′∈I. ch=ch′ ∨ ch ≺ Mr(ch′) where I is the bag of the importers
of the receiving thread. Additionally, a credit of ch is consumed, the permissions which are
transferred through m are produced, ch is discharged from the bag of the importers, and
the obligations which are transferred through m are loaded onto the bag of the obligations.
As shown in Rule Fork, a thread can transfer a part of its permissions, obligations, and
importer channels to a forked thread, provided that the forked thread discharges all of the
delegated obligations and importer channels. As shown in Rule Trandit a thread can obtain
a transferring credit of ch by loading ch onto the bag of its importers.

The verification of the program in Figure 3 using the proposed proof rules is illustrated
in Figure 5. Note that for the sake of readability we elide repeated occurrences of the
permissions channel in the proof of the given programs. As shown in the precondition and
the postcondition of the routine server, denoted by req and ens, this routine discharges an

ECOOP 2019



22:8 Transferring Obligations Through Synchronizations

importer channel ch, where a message from ch is received. Since this routine tries to wait
on ch, it requires a credit and a permission channel for ch. The permission channel in the
precondition of this routine indicates that along with the client’s request the server receives
an obligation and a permission channel for the client’s channel through which no permission
or obligation is transferred. The specification of the routine client indicates that this routine
discharges an obligation for the server channel ch, since it sends a request to this channel. As
it is shown in the verification of this routine, after creating the client channel ch′ and before
sending it to the server, one obligation and one credit for ch′ are loaded onto the system.
The former is transferred to the server, where it is discharged by sending a response on ch′,
and the latter is spent in the rest of this routine for receiving from ch′. The routine main
in this program is successfully verified, since starting with an empty bag of obligations and
importers the verification of this routine is finished with such bags too.

2.3 Conditional Channels
A different variation of a client-server program is shown in Figure 6, where a server keeps
accepting the clients’ requests until it receives a specific message done. The verification of
this program using the proposed proof rules is illustrated in Figure 7. Note that if the client
sends a message done to the server the session is finished and the client should not transfer
an obligation of ch′ through this message, i.e an obligation of ch′ is transferred through a
message sent on ch only if that message is not a message done. Since in this program a
client can send multiple requests to the server and for each request it requires a permission
trandit(ch), the server sends this permission to the client each time it replies to the client, i.e.
a permission trandit(ch) is transferred through the client’s channel ch′. Additionally, since
the server might wait for ch more than once and for each wait it requires a credit(ch), before
replying to the client a credit and an obligation for ch are loaded onto the server and the
loaded obligation is transferred to the client, where this obligation is discharged by sending
on ch, i.e. an obligation for ch is transferred through the client’s channel ch′. Since the
channel ch′ transfers some obligations from the server to the client, the server requires a
permission trandit(ch′) before sending on ch′, which can be obtained from the client through
the channel ch, i.e. if the client sends a request (and not a message done) to the server it
also sends a permission trandit(ch′) to the server.

2.4 Server Channels
Another variation of a client-server program is shown in Figure 8, where a server infinitely
accepts the clients’ requests through a server channel s. A desired property of these kinds
of programs is that if they have a thread waiting for a non-server channel they also have a
running thread, not waiting for any channel. In other words, a program can be considered as
a terminated program even if there are still some specific threads, namely daemon threads,
such as a server thread or a garbage collector thread, which are not terminated. In Java
these threads are terminated by the JVM when there is no longer any user thread running.

To achieve the mentioned property we only need to make sure that if a thread tries to
receive from a server channel s it has no obligation and the bag of the importers of this
thread only contains s.

It can be proved that any program verified by enforcing the constraint above meets the
mentioned desired property, i.e. if this program has a thread waiting for a non-server channel
it also has a running thread, not waiting for any channel. Consider an undesired state, where
each thread is waiting for a channel while some of these channels are non-server channels.



J. Hamin and B. Jacobs 22:9

Mch ::= λm. channel(snd(m), λ_. true, λ_. {[]}) ∧Mr(snd(m))={[]}
M′ch ::= λm. {[snd(m)]}

routine server(channel ch){
req : {obs({[]}, {[ch]}) ∗ channel(ch,Mch,M′ch) ∗ credit(ch)}
(req, ch′) := receive(ch);
{obs({[ch′]}, {[]}) ∗ channel(ch′, λ_. true, λ_. {[]}) ∧Mr(ch′)={[]}}
result := process(req);
send(ch′, result)
ens : {obs({[]}, {[]})}}

routine client(channel ch){
req : {obs({[ch]}, {[]}) ∗ channel(ch,Mch,M′ch) ∗ trandit(ch) ∧Mr(ch)={[1]}}
ch′ := new_channel();
{obs({[ch]}, {[]}) ∗ channel(ch′, λ_. true, λ_. {[]}) ∗ trandit(ch) ∧ R(ch′)=1 ∧Mr(ch′)={[]}}
g_credit(ch′);
{obs({[ch, ch′]}, {[]}) ∗ trandit(ch) ∗ credit(ch′)}
send(ch, (request(), ch′));
{obs({[]}, {[]}) ∗ credit(ch′)}
receive(ch′)
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]})}
ch := new_channel();
{obs({[]}, {[]}) ∗ channel(ch,Mch,M′ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
g_credit(ch);
{obs({[ch]}, {[]}) ∗ credit(ch)}
g_trandit(ch);
{obs({[ch]}, {[ch]}) ∗ credit(ch) ∗ trandit(ch)}
fork(
{obs({[]}, {[ch]}) ∗ credit(ch)}
server(ch)
{obs({[]}, {[]})});
{obs({[ch]}, {[]}) ∗ trandit(ch)}
client(ch)
ens : {obs({[]}, {[]})}}

Figure 5 Verification of the program in Figure 3

routine cserver(channel ch){
(req, ch′) := receive(ch);
while(req 6= done){

send(ch′, process(req));
(req, ch′) := receive(ch) }}

routine client(channel ch){
ch′ := new_channel();
send(ch, (request(), ch′));
receive(ch′);
send(ch, (done, ch′))}

routine main()
{
ch := new_channel();
fork(cserver(ch));
client(ch)}

Figure 6 A server keeps serving a client until receiving a specific message done

ECOOP 2019



22:10 Transferring Obligations Through Synchronizations

Mch(ch) ::= λm. channel(snd(m), λ_. trandit(ch), λ_. {[ch]}) ∧Mr(snd(m))={[1]} ∗
fst(m)=done ? true : trandit(snd(m))

M′ch ::= λm. fst(m)=done ? {[]} : {[snd(m)]}

routine cserver(channel ch){
req : {obs({[]}, {[ch]}) ∗ channel(ch,Mch(ch),M′ch) ∗ credit(ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
(req, ch′) := receive(ch);
{obs(req=done ? {[]} : {[ch′]}, {[]}) ∗ channel(ch′, λ_. trandit(ch), λ_. {[ch]}) ∗
(req=done ? true : trandit(ch′)) ∧Mr(ch′)={[1]}}
while(req 6= done){
inv : {Mr(ch′)={[1]} ∧ req=done ? obs({[]}, {[]}) : (obs({[ch′]}, {[]}) ∗ trandit(ch′))}

g_trandit(ch); g_credit(ch);
{obs({[ch′, ch]}, {[ch]}) ∗ trandit(ch′) ∗ trandit(ch) ∗ credit(ch)}
send(ch′, process(req));
{obs({[]}, {[ch]}) ∗ credit(ch)}
(req, ch′) := receive(ch)
}ens : {obs({[]}, {[]})}}

routine client(channel ch){
req : {obs({[ch]}, {[]}) ∗ channel(ch,Mch(ch),M′ch) ∗ trandit(ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
ch′ := new_channel();
{obs({[ch]}, {[]}) ∗ trandit(ch) ∗ channel(ch′, λ_. trandit(ch), λ_. {[ch]}) ∧ R(ch′)=1 ∧
Mr(ch′)={[1]}}
g_credit(ch′); g_trandit(ch′);
{obs({[ch, ch′]}, {[ch′]}) ∗ trandit(ch) ∗ credit(ch′) ∗ trandit(ch′)}
send(ch, (request(), ch′));
{obs({[]}, {[ch′]}) ∗ credit(ch′)}
receive(ch′);
{obs({[ch]}, {[]}) ∗ trandit(ch)}
send(ch, (done, ch′))
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]})}
ch := new_channel();
{obs({[]}, {[]}) ∗ channel(ch,Mch(ch),M′ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
g_credit(ch) ; g_trandit(ch);
{obs({[ch]}, {[ch]}) ∗ credit(ch) ∗ trandit(ch)}
fork(
{obs({[]}, {[ch]}) ∗ credit(ch)}
cserver(ch)
{obs({[]}, {[]})});
{obs({[ch]}, {[]}) ∗ trandit(ch)}
client(ch)
ens : {obs({[]}, {[]})}}

Figure 7 Verification of the program in Figure 6, where a ? b : c evaluates to b if the value of a is
true, and otherwise to c.



J. Hamin and B. Jacobs 22:11

routine server(channel s){
while(true){

(req, ch′) := receive(s);
send(ch′, process(req))
}}

routine client(channel s){
ch′ := new_channel();
send(s, (request(), ch′));
receive(ch′)
}

routine main(){
s := new_channel();
fork(server(s));
fork(client(s));
client(s)}

Figure 8 A server keeps serving clients

NewChannel
{true} new_channel {λch. channel(ch,M,M ′) ∧ R(ch)=r ∧Mr(ch)=R ∧ S(ch)=b}

Receive
{obs(O, I) ∗ channel(ch,M,M ′) ∗ (S(ch) ∨ credit(ch)) ∧ ch ≺ O ∧ ch ≺r I ∧

(¬S(ch) ∨ (O={[]} ∧ ∀ch′∈I. ch′=ch))} receive(ch)
{λm. obs(O]M ′(m), I−{[ch]}) ∗ channel(ch,M,M ′) ∗M(m)}

Trandits
{obs(O, I) ∗ channel(ch,M,M ′)} g_trandits(ch)

{λ_. obs(O, I]{[ch∞]}) ∗ channel(ch,M,M ′) ∗ trandit∞(ch)}

Figure 9 The updated proof rules ensuring deadlock-freedom of server channels, where S is a
function that given a channel specifies whether that channel is a server channel or not, and o∞

represents an infinite number of occurrences of o.

Among all of these non-server channels take the one having a minimal wait level, namely
chmin. Since size(chmin)=0 and there exists a credit for chmin in the system held by the
waiting thread, by Invariant 3, either 1) there exists a thread having an obligation of chmin
that is waiting for a channel ch whose level is lower than the level of chmin, or 2) there
exists a message m in a channel ch through which an obligation of chmin is transferred,
i.e. 0<M′(ch)(m)(chmin) which by Invariant 4 implies R(chmin)∈Mr(ch), where R(chmin)
denotes the level of chmin. The first case contradicts minimality of the level of chmin, because
in this case ch is a non-server channel, since that thread is waiting for ch while it has some
obligations. In the second case, since 0<size(ch) and Mr(ch) 6={[]}, by Invariant 2, there exists
a thread t having an importer channel ch that is waiting for a channel ch1 whose level is
lower than the level of chmin (because ch imports an obligation of level of chmin). Since
0<size(ch) we know ch1 6=ch. Accordingly, ch1 cannot be a server channel (because t is trying
to receive from ch1 while it has an importer channel ch which is not equal to ch1), which is
a contradiction.

The proof rules which need to be updated are shown in Figure 9. As shown in Rule
NewChannel, when a channel is created it must be specified whether this channel is a
server channel or not, which is denoted by a function S. As shown in Rule Receive, if a
thread tries to receive from a server channel ch the bag of the obligations of this thread
must be empty and the bag of the importer channels of this thread must only contain ch.
Note that a thread does not need to spend a credit for waiting on a server channel. We also
introduce a new ghost command g_trandits(ch), shown in Rule Trandits, which produces
an infinite number of transferring credits of ch, denote by trandit∞(ch), by loading an infinite
number of ch, denoted by ch∞, onto the importers. The verification of the program in
Figure 8 using these rules is shown in Figure 10, where the server does not need any credit

ECOOP 2019



22:12 Transferring Obligations Through Synchronizations

Ms(s) ::= λm. channel(snd(m), λ_. trandit(s), λ_. {[]}) ∧Mr(snd(m))={[]}
M′s ::= λm. {[snd(m)]}

routine server(channel s){
req : {obs({[]}, {[s∞]}) ∗ channel(s,Ms(s),M′s) ∧Mr(s)={[1]} ∧ S(s)}
while(true){
inv : {obs({[]}, {[s∞]})}

(req, ch′) := receive(s);
{obs({[ch′]}, {[s∞]}−{[s]}) ∗ channel(ch′, λ_. trandit(s), λ_. {[]}) ∧Mr(ch′)={[]}}
g_trandit(s);
{obs({[ch′]}, {[s∞]}) ∗ trandit(s)}
send(ch′, process(req))
{obs({[]}, {[s∞]})}
}
ens : {false}}

routine client(channel s){
req : {obs({[]}, {[]}) ∗ channel(s,Ms(s),M′s) ∗ trandit(s) ∧Mr(s)={[1]}}
ch′ := new_channel();
{obs({[]}, {[]}) ∗ trandit(s) ∗ channel(ch′, λ_. trandit(s), λ_. {[]}) ∧ R(ch′)=1 ∧Mr(ch′)={[]}}
g_credit(ch′);
{obs({[ch′]}, {[]}) ∗ trandit(s) ∗ credit(ch′)}
send(s, (request(), ch′));
{obs({[]}, {[]}) ∗ credit(ch′)}
receive(ch′)
{obs({[]}, {[]}) ∗ trandit(s)}
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]}}
s := new_channel();
{obs({[]}, {[]}) ∗ channel(s,Ms(s),M′s) ∧Mr(s)={[1]}}
g_trandits(s);
{obs({[]}, {[s∞]}) ∗ trandit∞(s)}
fork(
{obs({[]}, {[s∞]})}
server(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
fork(client(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
client(s)
ens : {obs({[]}, {[]})}}

Figure 10 Verification of the program in Figure 8



J. Hamin and B. Jacobs 22:13

routine server(channel s){
while(true){

(thr, ch′) := receive(s);
ch := new_channel();
send(ch′, (through, ch));
fork(cserver(ch))
}}

routine client(channel s){
ch′ := new_channel();
send(s, (through, ch′));
(thr, ch) := receive(ch′);
send(ch, (request(), ch′));
(res, ch) := receive(ch′);
send(ch, (done, ch′))}

routine main()
{
s := new_channel();
fork(server(s));
fork(client(s));
client(s)
}

Figure 11 A server keeps serving clients through separate conditional channels

for waiting on the server channel s. Note that this verification ensures neither termination
nor deadlock-freedom. It actually ensures that if this program has a thread waiting for the
non-server channel ch′ it also has a running thread, not waiting for any channel.

Using the proposed proof rules it is also possible to verify some other variations of
client-server programs such as the one shown in Figure 11, where a server infinitely serves
clients’ request through separate conditional channels (see Appendix A illustrating the proof
of this program). Note that the definition of the function cserver in this figure is similar to
the one shown in Figure 6.

3 Transferring Obligations Through Notifications

In this section we introduce a mechanism which allows obligations to be transferred from
a thread notifying a condition variable (CV) to the notified thread. The main idea behind
this mechanism is based on this unique feature of condition variables that when a sender
thread notifies a CV, if there is a receiver thread waiting for that CV, the receiver thread
immediately receives this notification. Accordingly, if there exists a thread waiting for a
condition variable v, it is safe to discharge the transferred obligations of v when v is notified
and load these obligations to the receiver thread as it is notified. Note that a notification on
a condition variable is lost if there is no thread waiting for that condition variable.

The number of threads waiting for a condition variable can be tracked by using the
approach introduced by Hamin et al. [15, 16], which modularly verifies deadlock-freedom
of programs synchronized by monitors. Since this approach only allows permissions to be
transferred from a notifying thread to the one notified, it cannot verify some interesting
programs such as a particular implementation of fair readers-writers locks, shown in Figure
19, and dining philosophers (see Appendix B). In the following we first review this approach
and then we extend this approach such that it also allows transferring of obligations, enabling
it to verify a wider range of programs such as the ones we just mentioned.

3.1 Verifying Monitors
Hamin et al. [15, 16] introduced a modular approach for verifying deadlock-freedom of
programs synchronized by condition variables (CVs), where executing a command wait(v, l)
on a CV v, which is associated with a lock l, releases l and suspends the running thread, and
executing a command notify(v)/notifyAll(v) wakes up one/all thread(s) waiting for CV v, if
any. This approach ensures absence of deadlock by making sure that for any CV v for which
a thread is waiting there is a thread obliged to fulfill an obligation for v which only waits for
waitable objects whose levels are lower than the level of v. In this approach when a thread
acquires a lock l, the total number of waiting threads, and the total number of obligations of
any CV v associated with l, denoted by Wt(v) and Ot(v) respectively, can be mentioned in

ECOOP 2019



22:14 Transferring Obligations Through Synchronizations

NewLock
{true} newlock {λl. ulock(l, {[]}, {[]}) ∧ R(l)=r}

InitLock
{ulock(l,Wt, Ot) ∗ inv(Wt, Ot) ∗ obs(O)} g_initl(l) {λ_. lock(l) ∗ obs(O) ∧ I(l)=inv}

Acquire
{lock(l) ∗ obs(O) ∧ l ≺ O} acquire(l)

{λ_. ∃Wt, Ot. locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[l]})}

Release
{locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[l]})} release(l) {λ_. lock(l) ∗ obs(O)}

NewCV
{true} new_cvar {λv. ucond(v) ∧ R(v)=r}

InitCV
{ucond(v) ∗ ulock(l,Wt, Ot)} g_initc(v) {λ_. cond(v,M) ∗ ulock(l,Wt, Ot) ∧ L(v)=l}

Wait
{cond(v,M) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt]{[v]}, Ot) ∗ obs(O]{[l]}) ∧
l=L(v) ∧ v ≺ O ∧ l ≺ O ∧ enoughObs(v,Wt]{[v]}, Ot)} wait(v, l)

{λ_. cond(v,M) ∗ obs(O]{[l]}) ∗ ∃Wt′, Ot′. locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗M}

Notify
{cond(v,M) ∗ locked(L(v),Wt, Ot) ∗ (Wt(v)=0 ∨M)} notify(v)

{λ_. cond(v,M) ∗ locked(L(v),Wt−{[v]}, Ot)}

NotifyAll

{cond(v,M) ∗ locked(L(v),Wt, Ot) ∗ (
Wt(v)
∗
i:=1

M)} notifyAll(v)
{λ_. cond(v,M) ∗ locked(L(v),Wt[v:=0], Ot)}

ChargeObligation
{obs(O) ∗ ulock/locked(L(v),Wt, Ot)} g_chrg(v)
{λ_. obs(O]{[v]}) ∗ ulock/locked(L(v),Wt, Ot]{[v]})}

DischargeObligation
{obs(O) ∗ ulock/locked(L(v),Wt, Ot) ∧ enoughObs(v,Wt, Ot−{[v]})} g_disch(v)

{λ_. obs(O−{[v]}) ∗ ulock/locked(L(v),Wt, Ot−{[v]})}

Figure 12 Proof rules verifying deadlock-freedom of monitors, where Wt(v) and Ot(v) denote
the total number of threads waiting for v and the total number of obligations for v, respectively;
the parameter M in the permission cond of a condition variable denotes the permissions which are
transferred from the thread notifying that condition variable to the one(s) notified; L(v) denotes the
lock associated with the condition variable v; enoughObs(v,Wt, Ot)⇔ (Wt(v)>0⇒ Ot(v)>0); and
v ≺ O ⇔ ∀o∈O. R(v) < R(o).



J. Hamin and B. Jacobs 22:15

the proof of that thread. In order to ensure the mentioned constraint this approach makes
sure that 1) if a command wait(v, l) is executed then 0 < Ot(v), i.e. there is an obligation of
v in the system, 2) if an obligation of v is discharged then after this discharge the invariant
0 < Wt(v)⇒ 0 < Ot(v) holds, i.e. if there is a thread waiting for v then after this discharge
there are still some obligations for v in the system, and 3) a thread executes a command
wait(v, l) only if the level of v is lower than the levels of the obligations of that thread.

A program in this approach can be successfully verified if each lock associated with some
CVs has an appropriate invariant such that for any CV v associated with that lock this
invariant implies 0 < Wt(v)⇒ 0 < Ot(v). Accordingly, in this approach each lock invariant
is parametrized over the bags Wt and Ot, which map all CVs associated with that lock to
the number of their waiting threads and obligations, respectively.

The proof rules proposed in this approach are shown in Figure 12. As shown in Rule
NewLock, when a lock l is created an arbitrary level is assigned to that lock and an
uninitialized lock permission ulock(l, {[]}, {[]}) is produced. The second and the third parameters
of this permission are two bags mapping the CVs associated with l to their number of waiting
threads and obligations, respectively. As shown in Rule InitLock, this uninitialized lock
permission can be converted to a (duplicable and leakable) lock permission lock(l) if the
assertion resulting from applying the invariant of that lock, denoted by I(l), to the bags
stored in the permission ulock is consumed (the permissions described by the invariant of this
lock are transferred from the thread to the lock). As shown in Rule Acquire, when a thread
acquires this lock the permissions described by the invariant of this lock are transferred from
the lock to the thread. Additionally, a permission locked(l,Wt, Ot) is provided for the thread,
where Wt and Ot are two bags mapping the CVs associated with l to their number of waiting
threads and obligations, respectively, and are existentially quantified in the postcondition.
Note that to prevent circular dependencies the precondition of this rule enforces that the
level of l be lower than the levels of the obligations of the acquiring thread. Additionally,
this lock is added to the bag of the obligations of this thread. As shown in rule Release,
when this lock is released it is discharged from the bag of the obligations and the assertion
resulting from applying the invariant of this lock to the bags stored in the permission locked
is consumed. Additionally, the permission locked is converted to a permission lock.

As shown in Rule NewCV, when a CV is created an arbitrary level is assigned to it
and an uninitialized permission ucond for that CV is produced. As shown in Rule InitCV,
this permission can be converted to a (duplicable and leakable) permission cond if a lock is
associated to this CV, denoted by L(v). Additionally, the transferred permissions of this
CV, which are transferred from the notifying thread to the one notified, are also specified in
this rule, denoted by M in the permission cond. These permissions are consumed when a
command notify(v) is executed (if there is a thread waiting for v; see the precondition of Rule
Notify), and are produced when a command wait(v, l) is executed (see the postcondition of
Rule Wait). Note that notifyAll(v) transfers Wt(v) instances of these permissions, denoted

by
Wt(v)
∗
i:=1

M (see the precondition of Rule NotifyAll). As shown in Rule Wait, when a
command wait(v, l) is executed, since l is going to be released and the number of threads
waiting for v is going to be increased, the result of applying the invariant of lock l to bags
Wt]{[v]} and Ot must be consumed, where Wt and Ot are the bags stored in the permission
locked of l. Additionally, the level of v must be lower than the levels of all obligations of
the thread except for l. Note that the level of l must be lower than the levels of these
obligations, too, since when the thread is woken up it tries to reacquire l. As previously
mentioned, the precondition of this rule also makes sure that 0 < Ot(v), which is enforced
by the invariant enoughObs(v,Wt]{[v]}, Ot). This invariant follows from I(l)(Wt]{[v]}, Ot)

ECOOP 2019



22:16 Transferring Obligations Through Synchronizations

InitCV
{ucond(v) ∗ ulock(l,Wt, Ot)} g_initc(v)

{λ_. cond(v,M,M ′) ∗ ulock(l,Wt, Ot) ∧ L(v)=l}

Wait
{cond(v,M,M ′) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt]{[v]}, Ot) ∗ obs(O]{[l]}) ∧
l=L(v) ∧ v≺O ∧ l≺O]M ′ ∧ enoughObs(v,Wt]{[v]}, Ot)} wait(v, l)

{λ_. cond(v,M,M ′) ∗ obs(O]{[l]}]M ′) ∗ ∃Wt′, Ot′. locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗M}

Notify
{obs(O](0<Wt(v) ? M ′ : {[]})) ∗ cond(v,M,M ′) ∗ locked(L(v),Wt, Ot) ∗ (Wt(v)=0 ∨M)}

notify(v) {λ_. obs(O) ∗ cond(v,M,M ′) ∗ locked(L(v),Wt−{[v]}, Ot)}

NotifyAll

{cond(v,M, {[]}) ∗ locked(L(v),Wt, Ot) ∗ (
Wt(v)
∗
i:=1

M)} notifyAll(v)
{λ_. cond(v,M, {[]}) ∗ locked(L(v),Wt[v:=0], Ot)}

Figure 13 New proof rules verifying deadlock-freedom of monitors allowing transferring obligations
through notifications, where the parameter M ′ in the permission cond of a condition variable denotes
the obligations which are transferred from the thread notifying that condition variable to the one
notified.

if the invariant of l is properly defined such that for any CV v′ associated with l and any
Wt′ and Ot′, we have I(l)(Wt, Ot)⇒ enoughObs(v′,Wt, Ot). Lastly the precondition of this
command makes sure that v is associated with lock l, which is enforced by L(v)=l. As
shown in Rules Notify/NotifyAll, when a CV v is notified, one/all instance(s) of v is/are
removed from the bag Wt stored in the permission locked of the lock associated with v,
if any. Unlike the Leino et al. approach [33], this approach has no notion of credits and
an obligation for a CV v is loaded/unloaded when that obligation is also loaded/unloaded
onto/from the bag Ot stored in the permission locked of the lock associated with v, as shown
in Rules ChargeObligation and DischargeObligation. However, an obligation for v is
discharged only if after this discharge we have 0 < Wt(v)⇒ 0 < Ot(v), which is enforced by
the invariant enoughObs in the precondition of the rule DischargeObligation.

3.2 Transferring Obligations Through Notifications

In this subsection we extend the Hamin et al. approach [15] such that it also allows obligations
to be transferred from the notifying thread to the one notified. To this end we make sure
that 1) when a thread notifies a CV v the transferred obligations of v, which are transferred
through a notification on v, are discharged from the thread only if there is a thread waiting
for v which is notified, that is 0<Wt(v), 2) when a thread waits for a CV v the transferred
obligations of v are loaded onto the bag of obligations of that thread as that thread is notified,
and 3) when a thread waits for a CV v the level of the lock associated with v is lower than
the levels of the transferred obligations of v, too, since when the thread wakes up, where
these obligations are loaded onto the bag of the obligations of the thread, this lock must be
reacquired. For the sake of simplicity, any CV v on which notifyAll(v) is performed must
have no transferred obligations. The proof rules which need to be updated are shown in
Figure 13.



J. Hamin and B. Jacobs 22:17

routine new_mutex(){
l := new_lock;
v := new_cvar;
mutex(l:=l, v:=v,
b:=new_bool(false))
}

routine enter_cs(mutex m){
acquire(m.l);
while(m.b)

wait(m.v,m.l);
m.b := true;
release(m.l)}

routine exit_cs(mutex m){
acquire(m.l);
m.b := false;
notify(m.v);
release(m.l)
}

Figure 14 Mutexes

routine main(){
m := new_mutex();
fork(

while(1){
enter_cs(m); /* CS */
exit_cs(m)});

enter_cs(m); /* CS */
exit_cs(m)}

Figure 15 The main thread is starved if it is scheduled only when the forked thread is in the CS.

It can be proved that any program verified by the mentioned proof rules, where the
verification starts from an empty bag of obligations and also ends with such bag, never
deadlocks, i.e. it always has a running thread, not waiting for any waitable object such as a
condition variable or a lock, until it terminates. We know that for any waitable object o all
of these proof rules preserve the invariant 0 < Wt(o)⇒ 0 < Ot(o), where Wt(o) and Ot(o)
denote the total number of waiting threads and obligations for o in the system, respectively.
Note that this invariant holds even when some obligations are transferred because these
obligations are immediately transferred from the notifying thread to the one notified. Now
consider a deadlocked state, where each thread of a verified program is waiting for an object.
Among all of these objects take the one having a minimal wait level, namely omin. By the
invariant above, there exists a thread having an obligation for omin that is waiting for an
object whose level is lower than the level of omin, which contradicts minimality of the level
of omin.

routine new_mutex(){
l := new_lock;
v := new_cvar;
mutex(l:=l, v:=v,
b:=new_bool(false),
w:=new_int(0))

}

routine enter_cs(mutex m){
acquire(m.l);
if(m.b){
m.w := m.w+1;
wait(m.v,m.l)}

else
m.b := true;

release(m.l)}

routine exit_cs(mutex m){
acquire(m.l);
m.b := false;
if(0<m.w){
m.w := m.w−1;
m.b := true;
notify(m.v)}

release(m.l)}

Figure 16 Fair mutexes on top of fair monitors

ECOOP 2019



22:18 Transferring Obligations Through Synchronizations

mutex(mutex m,waitobj o) = lock(m.l) ∗ cond(m.v, true, {[m.v]}) ∧
I(m.l)=linv(m) ∧ L(m.v)=m.l ∧ R(m.l) < R(m.v) ∧ o=m.v

linv(mutex m) =
λWt. λOt. ∃b, w. m.b 7→ b ∗m.w 7→ w ∧Wt(m.v)=w ∧ (b ? 0 < Ot(v) : Wt(v) = 0)

routine new_mutex(){
req : {true}
l := new_lock;
{ulock(l, {[]}, {[]}) ∧ R(l)=r−1}
v := new_cvar; g_initc(v);
{ulock(l, {[]}, {[]}) ∗ cond(v, true, {[v]}) ∧ R(v)=r ∧ L(v)=l}
m := mutex(l:=l, v:=v, b:=new_bool(false), w:=new_int(0)); g_initl(l); m
ens : {λm. ∃o. mutex(m, o) ∧ R(o)=r}}

routine enter_cs(mutex m){
req : {obs(O) ∗mutex(m, o) ∧ o ≺ O}
acquire(m.l);
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
if(m.b){
m.w := m.w+1;
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt]{[m.v]}, Ot)}
wait(m.v,m.l)
{obs(O]{[m.l,m.v]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}}

else{
m.b := true; g_chrg(m.v)
{obs(O]{[m.l,m.v]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
};
{obs(O]{[m.l,m.v]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
release(m.l)
ens : {obs(O]{[o]}) ∗mutex(m, o)}}

routine exit_cs(mutex m){
req : {obs(O]{[o]}) ∗mutex(m, o) ∧ o ≺ O}
acquire(m.l);
{obs(O]{[m.v,m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
m.b := false;
if(0<m.w){
m.w := m.w−1; m.b := true; notify(m.v)
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}}

else{
g_disch(m.v)
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}};

release(m.l)
ens : {obs(O) ∗mutex(m, o)}}

Figure 17 Verification of the fair mutexes implementation shown in Figure 16



J. Hamin and B. Jacobs 22:19

3.3 Fair Mutexes

In this section we show how our extension helps to verify a fair implementation of a mutex,
in which threads are synchronized by CVs. Before introducing this implementation, consider
a simple (unfair) implementation of a mutex, shown in Figure 14. In this implementation a
mutex consists of a boolean variable b, indicating whether the critical section (CS) is executed
by any thread or not, a lock l, protecting this variable from concurrent accesses, and a CV
v, preventing threads from entering the CS if there is a thread running that CS. As shown
in the routine enter_cs, when a thread tries to enter a CS, protected by a mutex m, it first
acquires the mutex’s lock and while there is a thread running the CS it releases that lock and
suspends itself. If that thread is notified (and reacquires the mutex’s lock) while there is no
thread running the CS it changes the value of the variable b to true, preventing other threads
from entering the CS, and releases the mutex’s lock. Before leaving the critical section, as
shown in routine exit_cs, this thread acquires the mutex’s lock, changes the value of the
variable b to false, allowing other threads to enter the CS, notifies the condition variable of
the mutex, waking up a waiting thread, if any, and finally releases the mutex’s lock.

However, one problem with this implementation is that a thread might be in starvation;
it might infinitely wait for entering the CS. For example, consider the program in Figure 15,
where the main thread is starved if it is scheduled only when the forked thread is in the CS.
In this situation, when the forked thread exits the CS, since m.b=false, this thread without
waiting for m.v again changes m.b to true and enters the CS. To address this problem a
new variable w can be added to the structure of the mutex, tracking the number of threads
waiting for that mutex. Introducing this variable, the operations enter_cs and exit_cs can
be updated, as shown in Figure 16. As shown in the routine enter_cs(m), when a thread
tries to enter a CS, if the CS is currently executed by another thread (m.b=true) this thread
increases the variable m.w and waits for a notification on m.v. Otherwise, this threads
changes m.b to true and continue its execution. As shown in the routine exit_cs(m), when a
thread leaves a CS it first changes m.b to false and if there is a thread waiting for this CS
it decreases the number of the waiting threads, changes m.b to true and notifies a thread
waiting for m.v. Having this implementation, the forked thread in Figure 15 cannot enter
the critical section if the main thread is already waiting to enter. Note that this mutex is
fair under the assumption that the monitor primitives are fair, i.e. the lock and condition
variable wait queues are FIFO.

This implementation can be verified against the expected specifications, shown in Figure
17, if an obligation of m.v is transferred from the thread leaving the CS to the next thread
entering the CS. This transfer is necessary because one of the desired invariants of such
program is m.b⇒ 0 < Ot(m.v), that is if the CS is executed by any thread there exists an
obligation of m.v in the system. Since in the fair implementation of exit_cs before notifying
m.v the variable m.b is changed to true, an obligation of m.v must be loaded onto the system.
This obligation can be transferred to the notified thread, which is going to enter the CS.
Note that this transfer is sound since it is only performed when 0 < m.w, that is there is a
thread waiting for m.v which immediately receives the transferred obligation.

3.4 Fair Readers-Writers Locks

In this section we show how our extension makes it possible to verify a fair implementation
of a readers-writers lock, which is synchronized by CVs. Before that, consider a naive
implementation of a readers-writers lock (writers-preference), shown in Figure 18, which
can be verified by the Hamin et al. [15] approach. This lock consists of three variables

ECOOP 2019



22:20 Transferring Obligations Through Synchronizations

routine new_rdwr(){
l := new_lock();
vw := new_cvar;
vr := new_cvar;
rdwr(l:=l, vw:=vw, vr:=vr,

aw := new_int(0), ww := new_int(0),
ar := new_int(0))}

routine acquire_write(rdwr b){
acquire(b.l);
while(b.aw+b.ar>0){
b.ww := b.ww+1;
wait(b.vw, b.l);
b.ww := b.ww−1 };

b.aw := b.aw+1;
release(b.l)}

routine release_write(rdwr b){
acquire(b.l);
b.aw := b.aw−1;
notify(b.vw);
if(b.ww = 0)

notifyAll(b.vr);
release(b.l)}

routine acquire_read(rdwr b){
acquire(b.l);
while(b.aw+b.ww>0)

wait(b.vr, b.l);
b.ar := b.ar+1;
release(b.l)}

routine release_read(rdwr b){
acquire(b.l);
b.ar := b.ar−1;
notify(b.vw);
release(b.l)}

routine main(){
rw := new_rdwr();
fork(

while(1){
acquire_read(rw); /* reading ... */
release_read(rw)

);
while(1){

acquire_write(rw); /* writing ... */
release_write(rw)
}}

Figure 18 Readers-writers locks synchronized by condition variables

aw,ww, and ar, keeping track of the total number of active writers, waiting writers, and
active readers respectively, a lock l, protecting these variables from concurrent accesses, a
condition variable vw, preventing writers from writing while other threads are reading or
writing, and a condition variable vr, preventing readers from reading while there is another
thread writing or waiting to write.

However, in this implementation due to the same reason mentioned in the previous section
a writer might be starved by other writers, where for example a writer continuously releases
the writing lock and without waiting for the CV vw immediately reacquires it.

A solution to solve this problem is that when a writer releases the writing lock, if there is
a waiting writer, in addition to notifying that waiting writer, it also increases the number
of active writers. In other words, if there is a waiting writer in the system, the number of
the active writers is increased in advance by the thread releasing the writing lock (or the
reading lock) and not by the thread acquiring the writing lock. A fair implementation of
the readers-writers lock (writers-preference) following this idea along with the details of the
specifications of each routine is shown in Figure 196. When a readers-writers lock b is created,
a permission rw(b,Ow, Or) is provided, where Ow and Or are two bags of waitable objects
whose levels are in an arbitrary client-specified range R. A thread can acquire a writing lock
of b if the levels of objects in Ow are lower than the levels of all obligations of that thread.
When that lock is acquired the objects in Ow are loaded onto the bag of the obligations of

6 We inserted assert(e) commands, shorthand for while(¬e){} (loop forever if e is false), to simplify the
proof. They can be eliminated using ghost state [27]. The verification of this program without using
the assert commands can be found in [17].



J. Hamin and B. Jacobs 22:21

rw(rdwr b, bag〈waitobj〉 Ow, bag〈waitobj〉 Or) =
lock(b.l) ∗ cond(b.vr, true, {[]}) ∗ cond(b.vw, true, {[b.vw]}) ∧ I(ch.l)=linv(b) ∧
R(b.l) < R(b.vw) < R(b.vr) ∧Ow={[b.vr, b.vw]} ∧Or={[b.vw]}

linv(rdwr b) =
λWt. λOt. ∃ar, aw,ww. b.ar 7→ ar ∗ b.aw 7→ aw ∗ b.ww 7→ ww ∧ L(b.vr)=L(b.vw)=b.l ∧
0 6 ar ∧ 0 6 aw ∧ 0 6 ww ∧Wt(b.vw)=ww ∧
ar + aw 6 Ot(b.vw) ∧ (Wt(b.vw) = 0 ∨ 0 < ar + aw) ∧
aw + ww 6 Ot(b.vr) ∧ (Wt(b.vr) = 0 ∨ 0 < aw + ww)

routine new_rdwr()
req : {R ∼=< Q}
ens : {λb. ∃Ow, Or. rw(b,Ow, Or) ∧
levels(Ow) ⊆ R ∧ levels(Or) ⊆ R}
{l := new_lock();
vw := new_cvar; g_initc(vw);
vr := new_cvar; g_initc(vr);
b := rdwr(l:=l, vw:=vw, vr:=vr,

aw:=new_int(0), ww:=new_int(0),
ar:=new_int(0)); g_initl(l);

b}

routine acquire_write(rdwr b)
req : {obs(O) ∗ rw(b,Ow, Or) ∧Ow ≺ O}
ens : {obs(O]Ow) ∗ rw(b,Ow, Or)}
{acquire(b.l); g_chrg(b.vr);
if(b.aw+b.ar>0){
b.ww := b.ww+1;
wait(b.vw, b.l)
}
else{ b.aw := b.aw+1; g_chrg(b.vw)};
release(b.l)}

routine release_write(rdwr b)
req : {obs(O]Ow) ∗ rw(b,Ow, Or) ∧Ow ≺ O}
ens : {obs(O) ∗ rw(b,Ow, Or)}
{acquire(b.l);
assert(0 < b.aw);
b.aw := b.aw−1;
if(b.ww > 0){

notify(b.vw);
b.ww := b.ww−1;
b.aw := b.aw+1
}
else{ notifyAll(b.vr); g_disch(b.vw)};
g_disch(b.vr);
release(b.l)}

routine acquire_read(rdwr b)
req : {obs(O) ∗ rw(b,Ow, Or) ∧Or ≺ O}
ens : {obs(O]Or) ∗ rw(b,Ow, Or)}
{acquire(b.l);
while(b.aw+b.ww>0)

wait(b.vr, b.l);
b.ar := b.ar+1; g_chrg(b.vw);
release(b.l)}

routine release_read(rdwr b)
req : {obs(O]Or) ∗ rw(b,Ow, Or) ∧Or ≺ O}
ens : {obs(O) ∗ rw(b,Ow, Or)}
{acquire(b.l);
assert(0 < b.ar);
b.ar := b.ar−1;
if(b.ar = 0 ∧ b.ww > 0){

notify(b.vw);
b.ww := b.ww−1;
b.aw := b.aw+1
} else g_disch(b.vw);
release(b.l)}

routine main()
req : {obs({[]})}
ens : {obs({[]})}
{rw := new_rdwr();
fork(

while(1){
acquire_read(rw); /* reading ... */
release_read(rw)
}

);
while(1){

acquire_write(rw); /* writing ... */
release_write(rw)
}
}

Figure 19 Fair readers-writers locks on top of fair monitors, where R ∼=< Q indicates that R is
order-isomorphic to the rational numbers.

ECOOP 2019



22:22 Transferring Obligations Through Synchronizations

this thread, which are discharged when this thread releases this lock. Similar to a writing
lock, a reading lock of b can be acquired if the levels of the objects in Or are lower than the
levels of the obligations of the reading thread. When this lock is acquired the objects in Or
are loaded which are discharged when this lock is released. Note that in this program one of
the desired invariants is b.ar + b.aw 6 Ot(b.vw). Accordingly, since the variable tracking the
number of active writers (aw) is increased in the thread notifying vw and not in the notified
one, it is necessary to load an obligation of vw onto the notifying thread and then transfer
this obligation to the notified thread, through the notification.

4 Related Work

Permissions

One common approach to prove safety properties of a program is assigning permissions to the
threads of that program and to make sure that each thread only performs actions for which
that thread has permissions [3]. This approach has been adopted by concurrent separation
logic [37], where a thread can access a heap location only if it owns that location. This logic
has been extended to handle dynamic thread creation [11, 19, 13], rely/guarantee [48, 8],
reentrant locking [12], and channels [18, 40].

Jung et al. [27] proposed a concurrent separation logic, namely Iris, for reasoning about
safety of concurrent programs, as the logic in logical relations, and to reason about type
systems and data abstraction, among other things. In this logic user-defined protocols on
shared state are expressed through partial commutative monoids and are enforced through
invariants. However, the Iris program logic and many other logics such as [41, 36] only
prove per-thread safety (i.e. no thread ever crashes): their adequacy theorems state that the
program does not reach a state where some thread cannot make a step. This works because
these logics do not consider blocking constructs, where a thread may legitimately be stuck
temporarily. It follows that these logics do not support programs that use primitive blocking
operations. Recently, an extension of Iris, namely Iron [1], exploits a notion of obligation to
prove absence of resource leaks, but not deadlock-freedom. The adequacy theorem of this
logic only considers the state reached by a program after it is completely finished (i.e. all
threads have reduced to a value), and it proves that in that state all resources have been
freed.

Deadlock

Several approaches to verify termination [35, 14, 43], total correctness [4], and lock-freedom
[20] of concurrent programs have been proposed. These approaches are only applicable to
non-blocking algorithms, where the suspension of one thread cannot lead to the suspension
of other threads. Consequently, they cannot be used to verify deadlock-freedom of programs
using condition variables or channels, where the suspension of a notifying/sending thread
might cause a waiting thread to be infinitely blocked. In [39] a compositional approach to
verify termination of multi-threaded programs is introduced, where rely-guarantee reasoning
is used to reason about each thread individually while there are some assertions about other
threads. In this approach a program is considered to be terminating if it does not have any
infinite computations. As a consequence, it is not applicable to programs using condition
variables because a waiting thread that is never notified cannot be considered as a terminating
thread. There are some other works on verifying deadlock-freedom and starvation-freedom
of concurrent objects with partial methods, which do not return under certain circumstances



J. Hamin and B. Jacobs 22:23

such as acquiring a held lock [34]. In addition to locks these approaches allows to verify other
concurrent objects such as sets, stacks and queues. However, this approach is not applicable
to condition variables because of lost notifications, i.e. a notification on a condition variable
is lost if no thread is waiting for that condition variable. Note that releasing a lock, pushing
an item into stack, and enqueueing an item when there is no thread waiting for the related
concurrent object is not lost, since the next thread, which tries to acquire/pop/dequeue the
concurrent object, will not be blocked.

There are also some other approaches addressing some common synchronization bugs of
programs in the presence of condition variables. In [49], for example, an approach to identify
some potential problems of concurrent programs using condition variables is presented.
However, it does not take the order of execution of theses commands into account. In other
words, it might accept an undesired execution trace where the waiting thread is scheduled
after the notifying thread, that might lead the waiting thread to be infinitely suspended. [28]
uses Petri nets to identify some common problems in multithreaded programs such as data
races, lost signals, and deadlocks. However the model introduced for condition variables in
this approach only covers the communication of two threads and it is not clear how it deals
with programs having more than two threads communicating through condition variables.
Recently, [6, 9] have introduced an approach ensuring that every thread synchronizing under
a set of condition variables eventually exits the synchronization block if that thread eventually
reaches that block. This approach succeeds in verifying one of the applications of condition
variables, namely the buffer. However, since this approach is not modular and relies on a
Petri net analysis tool to solve the termination problem, it suffers from a long verification
time when the size of the state space is increased, such that the verification of a buffer
application having 20 producer and 18 consumer threads, for example, takes more than two
minutes.

There are several verification techniques and type systems to check deadlock-freedom
of programs that either synchronize via locks [10, 32, 47] or communicate via messages
[7, 30]. Kobayashi [30, 29] proposed a type system for deadlock-free processes, ensuring
that a well-typed process that is annotated with a finite capability level is deadlock-free.
He extended channel types with the notion of usages, describing how often and in which
order a channel is used for input and output. In his type system, which works in the context
of π-calculus, the send operation is synchronous; i.e. the thread sending on a channel is
suspended until the sent message is received by another thread. However, this approach and
other approaches, such as [31, 5, 38], verifying deadlock-freedom in the context of π-calculus
are not straight forwardly applicable to imperative programming languages.

Obligations

Inspired by the notion of capabilities [30, 29] and implicit dynamic frames [46, 44, 45], Leino et
al. [33] later integrated deadlock prevention into a verification system for an object-oriented
and imperative programing language. In this approach each thread trying to receive a
message from a channel must spend one credit for that channel, where a credit for a channel
is obtained if a thread is obliged to discharge an obligation for that channel. A thread can
discharge an obligation for a channel if it either sends a message on that channel or delegates
that obligation to another thread. This approach supports asynchronous send operations,
where sending on a channel does not suspend the sender thread and there might be a state
where a message is sent but not received by any thread. The notion of obligations is used in
other verification approaches, which verify deadlock-freedom of semaphores [21], monitors
[15, 16] and channels in a separation logic-based system [23, 24], and finite blocking in non-

ECOOP 2019



22:24 Transferring Obligations Through Synchronizations

terminating programs [2]. However, these approaches allow obligations to be transferred only
when a thread is forked. In other words, unlike permissions which can be transfered through
synchronizations, transferring obligations through synchronizations in these approaches is
forbidden. In this paper we provide two mechanisms that allow these approaches to transfer
obligations, along with permissions, through synchronization. Our approach can be used to
verify deadlock-freedom of imperative programs where some obligation must be transferred
through notifications and channels (with asynchronous send operations).

5 Conclusion

This paper introduces two techniques to transfer obligations through synchronization, while
ensuring that there is no state where the transferred obligations are lost, i.e. where they are dis-
charged from the sender thread and not loaded onto the receiver thread yet. These techniques
allow the obligation-based verification approaches, which modularly verify deadlock-freedom
and liveness properties of programs, to transfer obligations, along with permissions, between
threads, enabling them to verify a wider range of interesting programs, where obligations
must be transferred through synchronizations. We encoded the proposed proof rules in
the VeriFast program verifier and succeeded in verifying deadlock-freedom of a number of
interesting programs, such as some variations of client-server programs, fair readers-writers
locks and dining philosophers, which cannot be modularly verified without such transfer.
Integrating the two mechanisms introduced in this paper is an area of future work. Addition-
ally, designing a new variant of Iris for programs with primitive blocking constructs on top
of which our presented approach can be built is another important area of future work.

References

1 Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. Iron: Managing obligations
in higher-order concurrent separation logic. To appear in POPL 2019: ACM SIGPLAN
Symposium on Principles of Programming Languages, Lissabon, Portugal, 2019.

2 Pontus Boström and Peter Müller. Modular verification of finite blocking in non-terminating
programs, volume 37. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

3 John Boyland. Checking interference with fractional permissions. In International Static
Analysis Symposium, pages 55–72. Springer, 2003.

4 Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland.
Modular termination verification for non-blocking concurrency. In ESOP, pages 176–201, 2016.

5 Ornela Dardha and Simon J Gay. A new linear logic for deadlock-free session-typed processes.
In International Conference on Foundations of Software Science and Computation Structures,
pages 91–109. Springer, 2018.

6 Pedro de Carvalho Gomes, Dilian Gurov, and Marieke Huisman. Specification and verification
of synchronization with condition variables. In International Workshop on Formal Techniques
for Safety-Critical Systems, pages 3–19. Springer, 2016.

7 Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou.
Session types for object-oriented languages. In European Conference on Object-Oriented
Programming, pages 328–352. Springer, 2006.

8 Xinyu Feng. Local rely-guarantee reasoning. In ACM SIGPLAN Notices, volume 44, pages
315–327. ACM, 2009.

9 Pedro de C Gomes, Dilian Gurov, Marieke Huisman, and Cyrille Artho. Specification and
verification of synchronization with condition variables. Science of Computer Programming,
163:174–189, 2018.



J. Hamin and B. Jacobs 22:25

10 Colin S Gordon, Michael D Ernst, and Dan Grossman. Static lock capabilities for deadlock
freedom. In Proceedings of the 8th ACM SIGPLAN workshop on Types in language design
and implementation, pages 67–78. ACM, 2012.

11 Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. Local
reasoning for storable locks and threads. In Asian Symposium on Programming Languages
And Systems, pages 19–37. Springer, 2007.

12 Christian Haack, Marieke Huisman, and Clément Hurlin. Reasoning about java’s reentrant
locks. In Asian Symposium on Programming Languages And Systems, pages 171–187. Springer,
2008.

13 Christian Haack and Clément Hurlin. Separation logic contracts for a java-like language with
fork/join. In International Conference on Algebraic Methodology and Software Technology,
pages 199–215. Springer, 2008.

14 Jafar Hamin and Bart Jacobs. Modular verification of termination and execution time
bounds using separation logic. In Information Reuse and Integration (IRI), 2016 IEEE 17th
International Conference on, pages 110–117. IEEE, 2016.

15 Jafar Hamin and Bart Jacobs. Deadlock-free monitors. In European Symposium on Program-
ming, pages 415–441. Springer, 2018.

16 Jafar Hamin and Bart Jacobs. Deadlock-free monitors: extended version. TR CW712,
Department of Computer Science, KU Leuven, Belgium. Full version available at
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW712.abs.html, 2018.

17 Jafar Hamin and Bart Jacobs. Deadlock-free monitors and channels. zenodo,
http://doi.org/10.5281/zenodo.3241454, 2019. URL: http://doi.org/10.5281/zenodo.
3241454, doi:10.5281/zenodo.3241454.

18 Tony Hoare and Peter O’Hearn. Separation logic semantics for communicating processes.
Electronic Notes in Theoretical Computer Science, 212:3–25, 2008.

19 Aquinas Hobor, Andrew W Appel, and Francesco Zappa Nardelli. Oracle semantics for
concurrent separation logic. In European Symposium on Programming, pages 353–367. Springer,
2008.

20 Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative reasoning for proving lock-
freedom. In Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium
on, pages 124–133. IEEE, 2013.

21 Bart Jacobs. Provably live exception handling. In Proceedings of the 17th Workshop on Formal
Techniques for Java-like Programs, page 7. ACM, 2015.

22 Bart Jacobs. Verifast 18.02. zenodo, http://doi.org/10.5281/zenodo.1182724, 2018. URL:
http://doi.org/10.5281/zenodo.1182724, doi:10.5281/zenodo.1182724.

23 Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. Modular termination verification. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 37. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

24 Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. Modular termination verification of single-
threaded and multithreaded programs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 40(3):12, 2018.

25 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. Verifast: A powerful, sound, predictable, fast verifier for c and java. NASA Formal
Methods, 6617:41–55, 2011.

26 Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the verifast program verifier.
Programming Languages and Systems, pages 304–311, 2010.

27 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
ACM SIGPLAN Notices, 50(1):637–650, 2015.

28 Krishna M Kavi, Alireza Moshtaghi, and Deng-Jyi Chen. Modeling multithreaded applications
using petri nets. International Journal of Parallel Programming, 30(5):353–371, 2002.

ECOOP 2019

http://doi.org/10.5281/zenodo.3241454
http://doi.org/10.5281/zenodo.3241454
http://dx.doi.org/10.5281/zenodo.3241454
http://doi.org/10.5281/zenodo.1182724
http://dx.doi.org/10.5281/zenodo.1182724


22:26 Transferring Obligations Through Synchronizations

29 Naoki Kobayashi. A type system for lock-free processes. Information and Computation,
177(2):122–159, 2002.

30 Naoki Kobayashi. A new type system for deadlock-free processes. In International Conference
on Concurrency Theory, pages 233–247. Springer, 2006.

31 Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks.
Information and Computation, 252:48–70, 2017.

32 Duy-Khanh Le, Wei-Ngan Chin, and Yong-Meng Teo. An expressive framework for verifying
deadlock freedom. In International Symposium on Automated Technology for Verification and
Analysis, pages 287–302. Springer, 2013.

33 K Rustan M Leino, Peter Müller, and Jan Smans. Deadlock-free channels and locks. In
European Symposium on Programming, pages 407–426. Springer, 2010.

34 Hongjin Liang and Xinyu Feng. Progress of concurrent objects with partial methods. Proceed-
ings of the ACM on Programming Languages, 2(POPL):20, 2017.

35 Hongjin Liang, Xinyu Feng, and Zhong Shao. Compositional verification of termination-
preserving refinement of concurrent programs. In Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), page 65. ACM,
2014.

36 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. Communic-
ating state transition systems for fine-grained concurrent resources. In European Symposium
on Programming Languages and Systems, pages 290–310. Springer, 2014.

37 Peter W O’Hearn. Resources, concurrency, and local reasoning. Theoretical computer science,
375(1-3):271–307, 2007.

38 Luca Padovani. Type-based analysis of linear communications. Behavioural Types: from
Theory to Tools, page 193, 2017.

39 Corneliu Popeea and Andrey Rybalchenko. Compositional termination proofs for multi-
threaded programs. In TACAS, volume 12, pages 237–251. Springer, 2012.

40 David Pym and Chris Tofts. A calculus and logic of resources and processes. Formal Aspects
of Computing, 18(4):495–517, 2006.

41 Azalea Raad, Jules Villard, and Philippa Gardner. Colosl: Concurrent local subjective logic.
In European Symposium on Programming Languages and Systems, pages 710–735. Springer,
2015.

42 John C Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on, pages 55–74. IEEE,
2002.

43 Reuben NS Rowe and James Brotherston. Automatic cyclic termination proofs for recursive
procedures in separation logic. In Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs, pages 53–65. ACM, 2017.

44 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. In Proceedings of the
10th ECOOP Workshop on Formal Techniques for Java-like Programs, pages 1–12, 2008.

45 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In European Conference on Object-Oriented Programming, pages
148–172. Springer, 2009.

46 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. ACM Transactions on
Programming Languages and Systems (TOPLAS), 34(1):2, 2012.

47 Kohei Suenaga. Type-based deadlock-freedom verification for non-block-structured lock
primitives and mutable references. In Asian Symposium on Programming Languages and
Systems, pages 155–170. Springer, 2008.

48 Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic.
In International Conference on Concurrency Theory, pages 256–271. Springer, 2007.

49 Chao Wang and Kevin Hoang. Precisely deciding control state reachability in concurrent
traces with limited observability. In VMCAI, pages 376–394. Springer, 2014.



J. Hamin and B. Jacobs 22:27

A Proof of Conditional Server Channels

In this section the verification of the program shown in Figure 11 is illustrated in Figures 20
and 21.

B Proof of Dining Philosophers

Transferring obligations through notifications allows to verify some other interesting programs
such as some variants of dining philosophers, where a number of philosophers sit at a round
table, think, get hungry, and eat if their neighbors are not eating (due to the limited number
of forks). An implementation of this program is shown in Figures 227, and 23, where a
dining_philosophers structure consists of phs, a circular doubly linked list of philosopher, size,
the size of this list, and a lock (l), where a philosopher structure consists of pre, a pointer to
the previous philosopher, next, a pointer to the next philosopher, a condition variable v, and
a state which can be Thinking, Hungry, or Eating. Calling new_dining_philosophers(size)
creates size philosophers which are initially thinking. Calling pickup(dp, i) makes the ith
philosopher in dp start eating if he/she is already hungry and none of its neighbors are eating.
Calling putdown(dp, i) makes the ith philosopher in dp stop eating if he/she is already eating,
and also makes this philosopher’s neighbors eat if they are hungry and their neighbors are
not eating.

The specification of the routine new_dining_philosophers in this figure indicates that
creating a number of dining philosophers dp produces a permission dp(dp, cvs), where cvs is a
list of condition variables associated with philosophers whose levels are assigned arbitrarily. A
philosopher can try to start eating only if the level of the CV associated with that philosopher
is lower than the levels of the obligations of the running thread. When this philosopher
starts eating the CV associated with his/her left and right neighbors are loaded onto the
bag of the obligations of the running thread. These obligations are discharged when this
philosopher stops eating.

One desired invariant in this program is that the number of obligations for a CV as-
sociated with a philosopher ph is greater than the number of his/her neighbors which
are eating, that is st(pre.state) + st(next.state) 6 Ot(ph.v), where st(Eating)=1 and
st(Thinking)=st(Hungry)=0. Since the state of a hungry philosopher ph waiting in a sus-
pended thread t is changed to Eating in a thread t′ where its neighbor stops eating, an
obligation of ph.v must be loaded onto the bag of the obligations of t′ and be transferred to
t as t′ notifies t. This requires transferring obligations through notifications which is possible
using our proposed extension. Accordingly, as shown in Figure 22, this program can be
verified if for any condition variable v of a philosopher ph, when v is notified the obligations
{[ph.pre.v, ph.next.v]} are transferred.

C Transferring Obligations Through Channels: Soundness Proof

In this appendix we provide a formalization and soundness proof for the approach introduced
in Section 2. However, unfortunately, there are a few technical differences between this
formalization and the one proposed in Section 2 such that in this formalization the ghost
information, such as level and transferred permissions and obligations, are associated with

7 For simplicity, in the proof of this program we avoid writing the heap ownership permissions

ECOOP 2019



22:28 Transferring Obligations Through Synchronizations

Mch′ ::= λm. channel(snd(m),Mch,M′ch) ∗ trandit(snd(m)) ∧ R(snd(m))=1 ∧
Mr(snd(m))={[1]}
M′ch′ ::= λm. {[snd(m)]}

Mch ::= λm. channel(snd(m),Mch′,M′ch′) ∗ (fst(m)=done ? true : trandit(snd(m))) ∧
Mr(snd(m))={[1]} ∧ ¬S(snd(m))

M′ch ::= λm. fst(m)=done ? {[]} : {[snd(m)]}

Ms ::= λm. channel(snd(m),Mch′,M′ch′) ∗ trandit(snd(m))∧Mr(snd(m))={[1]}∧¬S(snd(m))
M′s ::= λm. {[snd(m)]}

routine server(channel s){
req : {obs({[]}, {[s∞]}) ∗ channel(s,Ms,M′s) ∧Mr(s)={[1]} ∧ S(s)}
while(true){
inv : {obs({[]}, {[s∞]})}

(thr, ch′) := receive(s);
{obs({[ch′]}, {[s∞]}) ∗ channel(ch′,Mch′,M′ch′) ∗ trandit(ch′) ∧Mr(ch′)={[1]} ∧ ¬S(ch′)}
ch := new_channel();
{obs({[ch′]}, {[s∞]}) ∗ trandit(ch′) ∗ channel(ch,Mch,M′ch) ∧ R(ch)=1 ∧Mr(ch)={[1]} ∧
¬S(ch)}
g_credit(ch); g_trandit(ch);
{obs({[ch′, ch]}, {[s∞, ch]}) ∗ trandit(ch′) ∗ credit(ch) ∗ trandit(ch)}
send(ch′, (through, ch));
{obs({[]}, {[s∞, ch]}) ∗ credit(ch)}
fork(cserver(ch))
{obs({[]}, {[s∞]})} }

ens : {false}}

routine client(channel s){
req : {obs({[]}, {[]}) ∗ channel(s,Ms,M′s) ∗ trandit(s)}
ch′ := new_channel();
{obs({[]}, {[]}) ∗ trandit(s) ∗ channel(ch′,Mch′,M′ch′) ∧ R(ch′)=1 ∧Mr(ch′)={[1]} ∧ ¬S(ch′)}
g_credit(ch′); g_trandit(ch′);
{obs({[ch′]}, {[ch′]}) ∗ trandit(s) ∗ credit(ch′) ∗ trandit(ch′)}
send(s, (through, ch′));
{obs({[]}, {[ch′]}) ∗ credit(ch′)}
(thr, ch) := receive(ch′); if(thr 6=through) abort();
{obs({[ch]}, {[]}) ∗ channel(ch,Mch,M′ch) ∗ trandit(ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
g_credit(ch′); g_trandit(ch′);
{obs({[ch, ch′]}, {[ch′]}) ∗ trandit(ch) ∗ credit(ch′) ∗ trandit(ch′)}
send(ch, (request(), ch′));
{obs({[]}, {[ch′]}) ∗ credit(ch′)}
(res, ch1) := receive(ch′); if(res=through ∨ ch6=ch1) abort();
{obs({[ch]}, {[]}) ∗ trandit(ch)}
send(ch, (done, ch′))
ens : {obs({[]}, {[]})}}

Figure 20 Verification of the program in Figure 11 (part one of two)



J. Hamin and B. Jacobs 22:29

routine main(){
req : {obs({[]}, {[]}}
s := new_channel();
{obs({[]}, {[]}) ∗ channel(s,Ms,M′s) ∧Mr(s)={[1]} ∧ S(s)}
g_trandits(s);
{obs({[]}, {[s∞]}) ∗ trandit∞(s)}
fork(
{obs({[]}, {[s∞]})}
server(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
fork(client(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
client(s)
ens : {obs({[]}, {[]})}}

Figure 21 Verification of the program in Figure 11 (part two of two)

channel addresses via the channel permissions rather than via global functions8. The proof
rules associated with this formalization and the verification of the program in Figure 3,
proved using these rules, are shown in Sections C.4 and C.6, respectively.

C.1 Syntax and Semantics of Programs

The syntax of our programming language is defined in Figure 24, where val(e) is a command
that simply yields the value of e as its result and has no side effects, let(x, c1, c2) is syntactic
sugar for x:=c1; c2, fork(c) creates a thread executing c, while(c) keeps executing c while c
evaluates to true, if(e, c1, c2) executes c1 if e evaluates to true and otherwise it executes c2,
send and receive are used for sending and receiving on channels, and wait, which cannot be
used by programmers, indicates that the related thread has tried to receive from an empty
channel. Additionally, instead of defining three ghost commands g_credit, g_trandit, and
g_trandits, we define a single ghost command nop which is inserted into the program for
verification purposes and has no effect on the program’s behavior. The expressions used in
the syntax of programs can be evaluated and substituted as shown in Figure 25.

The small step semantics, defined in Figure 27, relates two configurations, defined in
Figure 26. A configuration consists of a heap, which maps a channel identifier to the list
of messages of that channel; a thread table, which maps a thread identifier to the pair
command-context related to that thread; and a list of server channels.

ECOOP 2019



22:30 Transferring Obligations Through Synchronizations

dp(dining_philosophers dp, list〈waitobj〉 cvs) =
lock(dp.l) ∗ phs_cvs(dp.phs, dp.phs.pre, cvs) ∧
I(dp.l)=linv(dp) ∧ L(dp.l)=new_dp ∧ size(cvs)=dp.size ∧ ∀06i6size. R(rl) < R(rs[i])

phs_cvs(ph, ph′, cvs) =
ph=ph′ ? cvs=[ph.v] : ∃cvs′, cvs=[ph.v :: cvs′] ∗ phs_cvs(ph.next, ph′, cvs′)

linv(dp dp) = λWt. λOt. philosophers(dp.phs, dp.phs.pre,Wt,Ot, dp.l)

philosophers(ph, ph′,Wt,Ot, l) = philosopher(ph,Wt,Ot, l, ph.pre, ph.next) ∗
ph=ph′ ? true : philosophers(ph.next, ph′,Wt,Ot, l)

philosopher(ph,Wt,Ot, l, pre, next) = cond(ph.v, true, {[pre.v, next.v]}) ∧
pre=ph.pre ∧ next=ph.next ∧ ph 6=pre ∧ ph6=next ∧ pre6=next ∧
next.pre=ph ∧ pre.next=ph ∧ L(ph.v)=l ∧ 0 6Wt(ph.v) ∧Wt(ph.v) 6 1 ∧
(ph.state=Hungry ∨Wt(ph.v) 6 0) ∧ (ph.state 6=Hungry ∨ 0 < Wt(ph.v)) ∧
(Wt(ph.v) 6 0 ∨ 0 < st(pre.state) + st(next.state)) ∧
st(pre.state) + st(next.state) 6 Ot(ph.v)

st(state) ::= state=Eating ? 1 : 0

routine new_dining_philosophers(int size){
req : {∀06i<size. rl < rs[i] ∧ size(rs)=size ∧ 2 < size}
ens : {λdp. dp(dp, cvs) ∧ size(cvs)=size ∧ R(dp.l)=rl ∧ ∀06i<size. R(cvs[i])=rs[i]}
phs := philosopher(state:=new_cell(Thinking), v:=new_cvar,
pre:=new_cell(null), next:=new_cell(null));

ph1 := philosopher(state:=new_cell(Thinking), v:=new_cvar,
pre:=new_cell(null), next:=new_cell(null));

ph2 := philosopher(state:=new_cell(Thinking), v:=new_cvar,
pre:=new_cell(null), next:=new_cell(null));

phs.pre := ph2; phs.next := ph1;
ph1.pre := phs; ph1.next := ph2;
ph2.pre := ph1; phs.next := phs;
l := new_lock; i := 3
while(i<size){
ph:=philosopher(state:=new_cell(Thinking), v:=new_cvar, pre:=phs, next:=phs.next);
phs.next.pre := ph;
phs.next = ph;
i := i+1
};
dining_philosophers(phs:=phs, l:=l, size:=size)}

Figure 22 Dining philosophers (part one of two)



J. Hamin and B. Jacobs 22:31

routine pickup(dining_philosophers dp, int i){
req : {obs(O) ∗ dp(dp, cvs) ∧ cvs[i] ≺ O ∧ 06i<size(cvs)}
ens : {obs(O]{[cvs[(i+n−1)%n], cvs[(i+1)%n]]}) ∗ dp(dp, cvs) ∧ n=size(cvs)}
acquire(dp.l);
ph := dp.phs;
j := new_int(0);
while(j < i){
ph := ph.next;
j := j+1
};
if(ph.state 6= Thinking)

abort;
ph.state := Hungry;
if(ph.next.state=Eating ∨ ph.pre.state=Eating)

wait(ph.v, dp.l)
else
ph.state := Eating;

release(dp.l)}

routine putdown(dining_philosophers dp, int i){
req : {obs(O) ∗ dp(dp, cvs) ∧ 06i<size(cvs)}
ens : {obs(O−{[cvs[(i+n−1)%n], cvs[(i+1)%n]]}) ∗ dp(dp, cvs) ∧ n=size(cvs)}
acquire(dp.l);
ph := dp.phs;
j := new_int(0);
while(j < i){
ph := ph.next;
j := j+1
};
if(ph.state 6= Eating)

abort;
ph.state := Thinking;
test_and_notify(ph.next);
test_and_notify(ph.pre);
release(dp.l)}

routine test_and_notify(philosopher ph)
{if(ph.next.state 6=Eating ∧ ph.pre.state6=Eating ∧ ph.state=Hungry){
ph.state := Eating;
notify(ph.v)
}}

Figure 23 Dining philosophers (part two of two)

ECOOP 2019



22:32 Transferring Obligations Through Synchronizations

c ∈ Commands, e ∈ Expressions, z ∈ Z, b ∈ Booleans, x ∈ Variables
e ::= z | x | e1+e2 | (e1, e2) | fst(e) | snd(e)

| true | e1 = e2 | e1 6 e2 | ¬e
c ::= val(e) | let(x, c1, c2) | fork(c) | while(c) | if(e, c1, c2)

| new_channel(b) | send(e1, e2) | receive(e) | wait(e) | nop

Figure 24 Syntax of the programming language

C.2 Syntax and Semantics of Assertions

The syntax of assertions is defined in Figure 289. Note that the location of a channel ch
consists of the obligation of ch and the permissions and the obligations which are transferred
through a specific message sent on ch, denoted by M(ch) and M′(ch). Also note that the
permissions which are transferred through a specific message sent on ch, denoted by M(ch),
are specified through an index (as well as the required arguments) pointing to a table in
which each element is a function that given a list of arguments and a message returns an
assertion. This makes it possible for the predicates specifying these permissions to recursively
refer to themselves or to each other, as in Figure 2010. The obligation of a location ch,
denoted by O(ch), consists of the address of that location, denoted by A(ch), as well as other
related information such as the level of ch, denoted by R(ch); the bag of the levels of the
obligations which are possibly imported by ch, denoted by Mr(ch); and whether ch is a server
channel or not, denoted by S(ch).

The proposed assertions describe some ghost resources, namely p, Õ, Ĩ, C, T , that keep
track of allocated channels, and the current thread’s obligations, importers, credits, and
trandits, respectively, shown in Figure 29.

C.3 Weakest Precondition of Commands

The weakest precondition of a command c for n>0 steps w.r.t. a postcondition Q (with a
given predicate table, specified by pt), denoted by wpn,pt(c,Q) is defined in Figure 30. Note
that wp(c,Q)0,pt = true. Also note that for the sake of simplicity the index pt is elided.
Having this definition, we define the weakest precondition of a context and the weakest
precondition of a command-context as shown in Definitions 1 and 2. Having these definitions,
we can prove some auxiliary lemmas, shown in Lemmas 4, 5, 6, and 7, which are used to
prove Theorem 13.

8 The reason is to make this formalization consistent with the one in Appendix D which is machine-checked
with Coq, where ghost information is associated with lock and condition variable addresses via the
lock and cond permissions. However, we believe one way to formalize the precise approach of Section 3
would be to define assertions as functions from ghost information to separating conjunctions of chunks.
In the soundness proof, one would track these as partial functions whose domain is the set of allocated
addresses. The functions passed into the assertions would be totalizations of these partial functions. An
assertion is true if it is true for all totalizations of the functions.

9 Note that we use a shallow embedding: assertions have no variables; to model quantifications, we use
meta-level functions from values to assertions.

10An alternative approach is to use a step-indexed domain of assertions, as in Iris [27]. There, I Assertions
could be used instead of Indexes × Lists(Arguments), where I is Iris’s guard for guarded recursive
definitions.



J. Hamin and B. Jacobs 22:33

v ∈ Values ::= z | b | (v, v)
JK ∈ Expressions → Values

JzK=z
JxK=0
Je1+e2K=Je1K+Je2K
J(e1, e2)K=(Je1K, Je2K)
JtrueK=true
J(e1 = e2)K=(Je1K = Je2K)
J(e1 6 e2)K=(Je1K 6 Je2K)
J(¬e)K=(¬JeK)

Jfst(e)K =
{

Je1K if e=(e1, e2)
0 otherwise

Jsnd(e)K =
{

Je2K if e=(e1, e2)
0 otherwise

z[v/x] = z

x[v/x′] = x if x 6= x′

x[v/x] = v

(e1+e2)[v/x] = e1[v/x]+e2[v/x]
(e1, e2)[v/x] = (e1[v/x], e2[v/x])
true[v/x] = true
(e1 = e2)[v/x] = (e1[v/x] = e2[v/x])
(e1 6 e2)[v/x] = (e1[v/x] 6 e2[v/x])
(¬e)[v/x] = (¬e[v/x])
fst(e)[v/x] = fst(e[v/x])
snd(e)[v/x] = snd(e[v/x])

val(e)[v/x] = val(e[v/x])
let(x, c1, c2)[v/x] = let(x, c1, c2)
let(x, c1, c2)[v/x′] = let(x, c1[v/x′], c2[v/x′]) if x 6= x′

fork(c)[v/x] = fork(c[v/x])
while(c)[v/x] = while(c[v/x])
if(e, c1, c2)[v/x] = if(e[v/x], c1[v/x], c2[v/x])
new_channel(b)[v/x] = new_channel(b)
send(e1, e2)[v/x] = send(e1[v/x], e2[v/x])
receive(e)[v/x] = receive(e[v/x])
nop[v/x] = nop

Figure 25 Evaluation of expressions and substitution of expressions and commands

ECOOP 2019



22:34 Transferring Obligations Through Synchronizations

m ∈ Messages = Values
Addresses = Z
ThreadIds = Z
h ∈ Heaps = Addresses ⇀ Lists(Messages)
ξ ∈ Contexts ::= done | let′(x, c, ξ) | while′(c, ξ)
θ ∈ ThreadConfigurations ::= (c; ξ)
t ∈ ThreadTables = ThreadIds ⇀ ThreadConfigurations
s ∈ ServerChannelsSets = Sets(Addresses)
κ ∈ Configurations = Heaps × ThreadTables × ServerChannelsSets

Figure 26 Configurations

(t[id:=new_channel(b); ξ], h[z:=∅], s) (t[id:=val(z); ξ], h[z:=[]], b=true ? s∪{z} : s)
(t[id:=send(e1, e2); ξ], h[Je1K:=M ], s) (t[id:=tt; ξ], h[Je1K:=M ·[Je2K]], s)
(t[id:=receive(e); ξ], h[JeK:=[m]·M ], s) (t[id:=val(m); ξ], h[JeK:=M ], s)
(t[id:=receive(e); ξ], h[JeK:=[]], s) (t[id:=wait(e); ξ], h[JeK:=[]], s)
(t[id:=wait(e); ξ], h[JeK:=[m]·M ], s) (t[id:=val(m); ξ], h[JeK:=M ], s)
(t[id:=fork(c); ξ, id′:=∅], h, s) (t[id:=tt; ξ, id′:=c; done], h, s)
(t[id:=let(x, c1, c2); ξ], h, s) (t[id:=c1; let′(x, c2, ξ)], h, s)
(t[id:=val(e); let′(x, c, ξ)], h, s) (t[id:=c[JeK/x]; ξ], h, s)
(t[id:=val(e); done], h, s) (t[id:=∅], h, s)
(t[id:=if(e, c1, c2); ξ], h, s) (t[id:=c1; ξ], h, s) if JeK = true
(t[id:=if(e, c1, c2); ξ], h, s) (t[id:=c2; ξ], h, s) if JeK 6= true
(t[id:=while(c); ξ], h, s) (t[id:=c; while′(c, ξ)], h, s)
(t[id:=val(e); while′(c, ξ)], h, s) (t[id:=c; while′(c, ξ)], h, s) if JeK = true
(t[id:=val(e); while′(c, ξ)], h, s) (t[id:=tt; ξ], h, s) if JeK 6= true
(t[id:=nop; ξ], h, s) (t[id:=tt; ξ], h, s)

Figure 27 Semantics of programs, where tt stands for val(0), and [m] represents a list with one
element m, and M1·M2 appends two lists M1 and M2.



J. Hamin and B. Jacobs 22:35

n ∈ N
NF ::= n | ∞
Bags(A) = A→ NF
Indexes = Z
Arguments = Z
r ∈ Levels = R
o ∈ Obligations = Addresses × Levels × Bags(Levels)× Booleans
l ∈ Locations =

Obligations × (Indexes × Lists(Arguments)),Messages → Bags(Obligations)
O, I ∈ Bags(Obligations)
b ∈ Booleans
v̂ ∈ AValues ::= z | r | b | l | o | O
α ∈ AValues → Assertions
a ∈ Assertions ::= channel(l) | credit(z) | trandit(z) | trandit∞(z) | obs(O, I)

| b | a1 ∧ a2 | a1 ∨ a2 | a1 ∗ a2 | a1 −∗ a2 | ∀α | ∃α

pt : PredicateTables = Indexes → Lists(Arguments)→ Messages → Assertions
O : Locations → Obligations , where O((A,R,Mr, S),M,M ′) = (A,R,Mr, S)
A : Locations → Addresses , where A((A,R,Mr, S),M,M ′) = A

R : Locations → Levels , where R((A,R,Mr, S),M,M ′) = R

Mr : Locations → Bags(Levels) , where Mr((A,R,Mr, S),M,M ′) = Mr

S : Locations → Booleans , where S((A,R,Mr, S),M,M ′) = S

M : Locations → Messages → Assertions
where M((A,R,Mr, S), (M1,M2),M ′) = pt(M1,M2)

M′ : Locations → Messages → Bags(Obligations) , where M′((A,R,Mr, S),M,M ′) = M ′

Ro : Obligations → Levels , where Ro(A,R,Mr, S) = R

Figure 28 Syntax of assertions

ECOOP 2019



22:36 Transferring Obligations Through Synchronizations

p ∈ PermissionHeaps = Locations ⇀ {channel}
Option(A) ::= s | ∅ , where s ∈ A
Õ, Ĩ ∈ Option(Bags(Obligations))
C, T ∈ Bags(Addresses)

p, Õ, Ĩ, C, T |= channel(l) ⇔ p(l) = channel
p, Õ, Ĩ, C, T |= credit(z) ⇔ 0 < C(z)
p, Õ, Ĩ, C, T |= trandit(z) ⇔ 0 < T (z)
p, Õ, Ĩ, C, T |= trandit∞(z) ⇔ T (z) =∞
p, Õ, Ĩ, C, T |= obs(O, I) ⇔ Õ = O ∧ Ĩ = I

p, Õ, Ĩ, C, T |= b ⇔ b = true
p, Õ, Ĩ, C, T |= a1 ∧ a2 ⇔ p, Õ, Ĩ, C, T |= a1 ∧ p, Õ, Ĩ, C, T |= a2
p, Õ, Ĩ, C, T |= a1 ∨ a2 ⇔ p, Õ, Ĩ, C, T |= a1 ∨ p, Õ, Ĩ, C, T |= a2
p, Õ, Ĩ, C, T |= a1 ∗ a2 ⇔ ∃p1, p2, Õ1, Õ2, Ĩ1, Ĩ2, C1, C2, T1, T2.

p=p1]p2 ∧ Õ=Õ1]̃Õ2 ∧ Ĩ=Ĩ1]̃Ĩ2 ∧ C=C1]C2 ∧ T=T1]T2 ∧
p1, Õ1, Ĩ1, C1, T1 |= a1 ∧ p2, Õ2, Ĩ2, C2, T2 |= a2

p, Õ, Ĩ, C, T |= a1 −∗ a2 ⇔ ∀p1, Õ1, Ĩ1, C1, T1. p1, Õ1, Ĩ1, C1, T1 |= a1 ∧
Õ ⊥ Õ1 ∧ Ĩ ⊥ Ĩ1 ⇒ (p]p1), (Õ]̃Õ1), (Ĩ]̃Ĩ1), (C]C1), (T]T1) |= a2

p, Õ, Ĩ, C, T |= ∀α ⇔ ∀v̂∈AValues. p, Õ, Ĩ, C, T |= α(v̂)
p, Õ, Ĩ, C, T |= ∃α ⇔ ∃v̂∈AValues. p, Õ, Ĩ, C, T |= α(v̂)

a1 ` a2 ⇔ (∀p, Õ, Ĩ, C, T. p, Õ, Ĩ, C, T |= a1 ⇒ p, Õ, Ĩ, C, T |= a2)

where for any p1, p2 ∈ A ⇀ B and Õ1, Õ2 ∈ Option(Bags(A)) and B1, B2 ∈ Bags(A)

Õ1 ⊥ Õ2 ⇔ Õ1 = ∅ ∨ Õ2 = ∅

p1 ] p2 = λv.

{
p1(v) if p2(v)=∅
p2(v) otherwise

Õ1]̃Õ2 =


Õ1 if Õ2=∅
Õ2 if Õ1=∅
undefined otherwise

B1 ]B2 = λv.

{
∞ if B1(v)=∞ or B2(v)=∞
B1(v) +B2(v) otherwise

Figure 29 Satisfaction relation



J. Hamin and B. Jacobs 22:37

wp ∈WeakestPreconditions =
Commands → (Values → Assertions)→ N→ PredicateTables → Assertions

levels(O) = {[Ro(o) | o ∈ O]}
o ≺′ R⇔ ∀r∈R. Ro(o) < r

o ≺ O ⇔ o ≺′ levels(O)
o ≺r I ⇔ ∀o′∈I. o=o′ ∨ o ≺′ Mr(o′)

wpn(val(e), Q) = Q(JeK)
wpn(new_channel(b), Q) = ∀z. ∃r,Mr,M,M ′. channel((z, r,Mr, b),M,M ′) −∗ Q(z)
wpn(send(e1, e2)) = ∃O, I, ch,m. (obs(O, I) ∗ channel(ch) ∗M(ch)(m) ∗

(Mr(ch)={[]} ∨ trandit(A(ch))) ∧ levels(M′(ch)(m))⊆Mr(ch) ∧ A(ch) = Je1K ∧m = Je2K)
∗ ((obs(O−{[O(ch)]}−M′(ch)(m), I) ∗ channel(ch)) −∗ Q(tt))

wpn(receive(e)) = ∃O, I, ch. (obs(O, I) ∗ channel(ch) ∗ ((S(ch) ∨ credit(A(ch))) ∧
O(ch)≺O ∧ O(ch)≺rI ∧ (¬S(ch) ∨ (O={[]} ∧ ∀o∈I. o=O(ch))) ∧ A(ch) = JeK)) ∗
∀m. ((obs(O]M′(ch)(m), I−{[O(ch)]}) ∗M(ch)(m)) −∗ Q(m))

wpn(wait(e)) = wpn(receive(e))
wpn(fork(c), Q) = ∃O1, O2, I1, I2. obs(O1]O2, I1]I2) ∗ (obs(O1, I1) −∗ Q(tt)) ∗

(obs(O2, I2) −∗ wpn−1(c, λ_. obs({[]}, {[]})))
wpn(if(e, c1, c2), Q) = (JeK = true) ? wpn−1(c1, Q) : wpn−1(c2, Q)
wpn(while(c), Q) = wpn−1(c, (λvl. vl 6=true ? Q(tt) : wpn−1(while(c), Q)))
wpn(nop) =
as g_credit

(∃O, I, ch. obs(O, I) ∗ channel(ch) ∗
((obs(O]{[O(ch)]}, I) ∗ channel(ch) ∗ credit(A(ch))) −∗ Q(tt))) ∨

as g_trandit
(∃O, I, ch. obs(O, I) ∗ channel(ch) ∗

((obs(O, I]{[O(ch)]}) ∗ channel(ch) ∗ trandit(A(ch))) −∗ Q(tt))) ∨
as g_trandits

(∃O, I, ch. obs(O, I) ∗ channel(ch) ∗
((obs(O, I](λo. o=O(ch) ?∞ : 0)) ∗ channel(ch) ∗ trandit∞(A(ch))) −∗ Q(tt)))

Figure 30 Weakest precondition, where tt stands for 0.

ECOOP 2019



22:38 Transferring Obligations Through Synchronizations

I Definition 1 (Weakest Precondition of a Context).

wpxn(ξ) =


λ_. obs({[]}, {[]}) if ξ=done
λv. wpn(c[v/x],wpxn(ξ′)) if ξ=let′(x, c, ξ′)
λv. v 6= true ? wpn(tt,wpxn(ξ′)) : wpn(c,wpxn−1(ξ)) if ξ=while′(c, ξ′)

I Definition 2 (Weakest Precondition of a command-context).

wpcxn(c, ξ) = wpn(c,wpxn(ξ))

I Lemma 3 (Weakening Postcondition).

∀n, c,Q,Q′, p, Õ, Ĩ, C, T. p, Õ, Ĩ, C, T |= wpn(c,Q) ∧ (∀z. Q(z) ` Q′(z))⇒
∀n′6n. p, Õ, Ĩ, C, T |= wpn′(c,Q′)

Proof. By induction on n and case analysis of c. J

I Lemma 4 (Weakest Precondition of new_channel).

∀b, ξ, p, O, I, C, T.
p,O, I, C, T |= wpcxn(new_channel(b), ξ)⇒ ∀z.(∀l. A(l) = z ⇒ p(l) = ∅)⇒
∃r,Mr,M,M ′, ch. p[ch:=channel], O, I, C, T |= wpcxn(val(z), ξ) ∧
A(ch) = z ∧ R(ch)=r ∧Mr(ch)=Mr ∧M(ch)=M ∧M′(ch)=M ′ ∧ S(ch)=b

I Lemma 5 (Weakest Precondition of send).

∀n, e1, e2, ξ, p, O, I, C, T. p,O, I, C, T |= wpcxn(send(e1, e2), ξ)⇒
∃p1, p2, C1, C2, T1, T2, Te, ch,m. p = p1]p2 ∧ C = C1]C2 ∧ T = T1]T2 ∧ Te = T2(Je1K)
∧ A(ch) = Je1K ∧m = Je2K ∧ (Mr(ch) = {[]} ∨ 0 < Te) ∧ levels(M′(ch)(m)) ⊆ Mr(ch) ∧
p2(ch) = channel ∧
p1,∅,∅, C1, T1 |= M(ch)(m) ∧
(Mr(ch) = {[]} ⇒ p2, O−{[O(ch)]}−M′(ch)(m), I, C2, T2 |= wpcxn(tt, ξ)) ∧
(Mr(ch) 6= {[]} ⇒ p2, O−{[O(ch)]}−M′(ch)(m), I, C2, T2[Je1K:=Te−1] |= wpcxn(tt, ξ))

I Lemma 6 (Weakest Precondition of receive).

∀n, e, ξ, p, O, I, C, T. p,O, I, C, T |= wpcxn(receive(e), ξ)⇒
∃ch. p(ch) = channel ∧ (S(ch) = true ∨ 0 < C(JeK)) ∧ O(ch) ≺ O ∧ O(ch) ≺r I ∧
(¬S(ch) ∨ (O = {[]} ∧ ∀o ∈ I. o = O(ch))) ∧ A(e) = JchK ∧
∀m, p1, C1, T1. p1,∅,∅, C1, T1 |= M(ch)(m)⇒
p]p1, O]M′(ch)(m), I−{[O(ch)]}, C[JeK:=C(JeK)−1]]C1, T]T1 |= wpcxn(val(m), ξ)

I Lemma 7 (Weakest Precondition of fork).

∀n, c, ξ, p, O, I, C, T. p,O, I, C, T |= wpcxn(fork(c), ξ)⇒
∃p1, p2, O1, O2, I1, I2, C1, C2, T1, T2.

p=p1]p2 ∧O=O1]O2 ∧ I=I1]I2 ∧ C=C1]C2 ∧ T=T1]T2 ∧
p1, O1, I1, C1, T1 |= wpcxn(tt, ξ) ∧
p2, O2, I2, C2, T2 |= wpn−1(c, λ_.obs({[]}, {[]}))



J. Hamin and B. Jacobs 22:39

NewChannel
{true} new_channel {λa. channel((a, r,R, b), (Mindex,Margs),M ′)}

Send
{obs(O, I) ∗ channel(ch) ∗M(ch)(m) ∗ (Mr(ch)={[]} ∨ trandit(a)) ∧

levels(M′(ch)(m)) ⊆ Mr(ch) ∧ A(ch) = a} send(a,m)
{λ_. obs(O−{[O(ch)]}−M′(ch)(m), I) ∗ channel(ch)}

Receive
{obs(O, I) ∗ channel(ch) ∗ (S(ch) ∨ credit(a)) ∧ O(ch) ≺ O ∧ O(ch) ≺r I ∧

(¬S(ch) ∨ (O={[]} ∧ ∀o∈I. o=O(ch))) ∧ A(ch) = a} receive(a)
{λm. obs(O]M′(ch)(m), I−{[O(ch)]}) ∗ channel(ch) ∗M(ch)(m)}

Credit
{obs(O) ∗ channel(ch)} nop {λ_. obs(O]{[O(ch)]}) ∗ channel(ch) ∗ credit(A(ch))}

Trandit
{obs(O, I) ∗ channel(ch)} nop {λ_. obs(O, I]{[O(ch)]}) ∗ channel(ch) ∗ trandit(A(ch))}

Trandits
{obs(O, I) ∗ channel(ch)} nop {λ_. obs(O, I]{[O(ch)∞]}) ∗ channel(ch) ∗ trandit∞(A(ch))}

Figure 31 The proof rules ensuring deadlock-freedom of importer channels, where ghost informa-
tion is associated with channel addresses via the channel permissions.

C.4 Correctness of Commands
We define correctness of commands, as shown in Definition 8, ensuring that each proposed
proof rule, where correctpt(P , c,Q) is abbreviated as {P} c {Q}, respects the definition of
the weakest precondition. Having this definition we prove the proposed proof rules, ensuring
deadlock freedom of importer channels, as well as some other necessary proof rules shown in
Theorems 9, 10, and 11.

I Definition 8 (Correctness of Commands). A command is correct w.r.t a precondition P

and a postcondition Q if and only if P implies the weakest precondition of that command
w.r.t Q.

correctpt(P , c,Q)⇔ ∀n. P ⇒ wpn,pt(c,Q)

I Theorem 9 (Rule Sequential Composition).

correct(P , c1, Q) ∧ (∀z. correct(Q(z), c2[z/x], R))⇒ correct(P , let(x, c1, c2), R)

I Theorem 10 (Rule Consequence).

correct(P , c,Q) ∧ (P ′ ` P ) ∧ (∀z. Q(z) ` Q′(z))⇒ correct(P ′, c,Q′)

I Theorem 11 (Rule Frame).

correct(P , c,Q)⇒ correct(P ∗ F , c, λz. Q(z) ∗ F )

As previously mentioned, since in this formalization ghost information is associated with
channel addresses via the channel permissions rather than via global functions, we provide a
new version of the proof rules, proposed in Section 2, associated with this formalization as
shown in Figure 31.

ECOOP 2019



22:40 Transferring Obligations Through Synchronizations

C.5 Validity of a Configuration
We define validity of a configuration, shown in Definition 12, and prove that 1) starting
from a valid configuration, all the subsequent configurations of the execution are also valid
(Theorem 13), 2) a valid configuration is not deadlocked (Theorem 14), and 3) if a program
c is verified by the proposed proof rules, where the verification starts from empty bags of
obligations and importers and ends with such bags too, then the initial configuration, where
the heap is empty, denoted by 0=λ_.∅, and there is only one thread with the command
c (and a context done), and the list of server channels is empty, is a valid configuration
(Theorem 16).

I Definition 12 (Validity of a Configuration). A configuration (t, h, s) is valid for n steps,
denoted by validn(t, h, s), if there exists a set of augmented threads A, consisting of the
identifier (id), the program (c), the context (ξ), the permission heap (p), the obligations (O),
the importers (I), the credits (C), and the trandits (T ) associated with each thread such that
all of the following conditions hold:
1. ∀id, c, ξ. t(id) = (c; ξ)⇔ ∃p,O, I, C, T. (id, c, ξ, p, O, I, C, T ) ∈ A
2. ∀(id1, c1, ξ1, p1, O1, I1, C1, T1) ∈ A, (id2, c2, ξ2, p2, O2, I2, C2, T2) ∈ A. id1 = id2 ⇒

(id1, c1, ξ1, p1, O1, I1, C1, T1) = (id2, c2, ξ2, p2, O2, I2, C2, T2)
3. ∀l1, l2. Pt(l1) 6= ∅ ∧ Pt(l2) 6= ∅ ∧ A(l1) = A(l1)⇒ l1 = l2
4. ∀l. Pt(l) 6= ∅⇒ h(A(l)) 6= ∅ and ∀z. (∀l. A(l) = z ⇒ Pt(l) = ∅)⇒ h(z) = ∅
5. ∀ch. Pt(ch)=channel⇒

a. Mr(ch) 6= {[]} ⇒ Tt(A(ch)) + sizeh(ch) 6 It(ch) ∧
b. ∀m ∈ queueh(ch). levels(M′(ch)(m)) ⊆ Mr(ch) ∧
c. S(ch) = false⇒

Ct(A(ch))6Ot(ch)+sizeh(ch)+
∑
ch′ where Pt(ch′)=channel

∑
m∈queueh(ch′) M′(ch′)(m)(ch)

6. ∀(id, c, ξ, p, O, I, C, T ) ∈ A. p,O, I, C, T |= wpcxn(c, ξ)
7. ∀z ∈ s. ∃ch. Pt(ch) = channel ∧ S(ch) = true ∧ A(ch) = z

8. ∀ch. Pt(ch) = channel ∧ S(ch) = true⇒ A(ch) ∈ s
where

sizeh(ch) returns the number of the messages in the channel ch, i.e. |h(A(ch))|
queueh(ch) returns the messages in the channel ch, i.e. h(A(ch))
levels(O) returns the levels of the obligations in O, i.e. {[r | (a, r) ∈ O]}
Pt = ]

(id,c,ξ,p,O,I,C,T )∈A
p and Wt = ]

(id,wait(l),ξ,p,O,I,C,T )∈A
{[l]}

Ct = ]
(id,c,ξ,p,O,I,C,T )∈A

C and Ot = ]
(id,c,ξ,p,O,I,C,T )∈A

O

Tt = ]
(id,c,ξ,p,O,I,C,T )∈A

T and It = ]
(id,c,ξ,p,O,I,C,T )∈A

I

I Theorem 13 (Small Steps Preserve Validity of Configurations). Each step of the execution
preserves validity of configurations.

(t, h, s) (t′, h′, s′) ∧ validn+1(t, h, s)⇒ validn(t′, h′, s′)

Proof. By case analysis of the small step relation  .
Case (t[id:=new_channel(b); ξ], h[z:=∅], s) (t[id:=val(z); ξ], h[z:=[]], b=true ? s∪{z} : s):
By valid(t[id:=new_channel(b); ξ], h[z:=∅], s) we have an augmented thread set A consisting
of an element (id, new_channel(b), ξ, p, O, I, C, T ) which satisfies all the conditions in the
definition of validity of configurations, including p,O, I, C, T |= wpcx(new_channel(b), ξ).
valid(t[id:=val(z); ξ], h[ch:=[]], b=true ? s∪{z} : s) holds because by Lemma 4 there exists an
augmented thread set A′=A−(id, new_channel(b), ξ, p, O, I, C, T )∪(id, val(z), ξ, p[l:=channel]



J. Hamin and B. Jacobs 22:41

, O, I, C, T ) which satisfies all the conditions in the definition of validity of configurations.

Case (t[id:=send(e1, e2); ξ], h[JchK:=M ], s) (t[id:=tt; ξ], h[Je1K:=M.[Je2K]], s):
By valid(t[id:=send(e1, e2); ξ], h[JchK:=M ], s) we have an augmented thread set A consisting of
an element (id, send(e1, e2), ξ, p, O, I, C, T ) which satisfies all the conditions in the definition
of validity of configurations, including p,O, I, C, T |= wpcx(send(e1, e2), ξ). valid(t[id:=tt; ξ],
h[Je1K:=M.[Je2K]], s) holds because by Lemma 5 there exists an augmented thread set
A′=A−(id, send(e1, e2), ξ, p, O′, I ′, C, T )∪ (id, tt, ξ, p2, O]M′(ch)(m), I−{[ch]}, C2, T2) which
satisfies all the conditions in the definition of validity of configurations.

Case (t[id:=receive(e); ξ], h[JeK:=[m].M ], s) (t[id:=val(m); ξ], h[JeK:=M ], s):
By valid(t[id:=receive(e); ξ], h[JeK:=[m].M ], s) we have an augmented thread set A consisting
of an element (id, receive(e), ξ, p, O, I, C, T ) which satisfies all the conditions in the definition of
validity of configurations, including p,O, I, C, T |= wpcx(receive(e), ξ). valid(t[id:=val(m); ξ],
h[JeK:=M ], s) holds because by Lemma 6 there exists an augmented thread set A′=A−(id,
receive(e), ξ, p, O, I, C, T )∪(id, val(m), ξ, p2, O]M′(ch)(m), I−{[ch]}, C2, T2) which satisfies all
the conditions in the definition of validity of configurations.

Case (t[id:=fork(c); ξ, id′:=∅], h, s) (t[id:=val(tt); ξ, id′:=c; done], h, s):
By validn(t[id:=fork(c); ξ, id′:=∅]; ξ, h, s) we have an augmented thread set A consisting of an
element (id, fork(c), ξ, p, O, I, C, T ) which satisfies all the conditions in the definition of valid-
ity of configurations, including p,O, I, C, T |= wpcxn(fork(c), ξ). valid(t[id:=val(tt); ξ, id′:=c;
done], h, s) holds because by Lemma 7 there exists an augmented thread set A′=A−(id, fork(c)
, ξ, p, O, I, C, T )∪(id, tt, ξ, p1, O1, I1, C1, T1)∪(id′, c, done, p2, O2, I2, C2, T2) which satisfies all
the conditions in the definition of validity of configurations.

Case (t[id:=let(x, c1, c2); ξ], h, s) (t[id:=c1; let′(x, c2, ξ)], h, s):
By validn(t[id:=let(x, c1, c2); ξ], h) we have an augmented thread set A consisting of an element
(id, let(x, c1, c2), ξ, p, O, g) which satisfies all the conditions in the definition of validity of con-
figurations, including p,O, I, C, T |= wpcxn(let(x, c1, c2), ξ). Since wpcxn(let(x, c1, c2), ξ) =
wpn−1(c1, λz. wpn−1(c2[z/x], Q)), we have p,O, I, C, T |= wpn−1(c1, λz. wpn−1(c2[z/x], Q)).
Consequently valid(t[id:=c1; let′(x, c2, ξ)], h, s) holds because there exists an augmented thread
set A′=A−(id, let(x, c1, c2), ξ, p, O, I, C, T ) ∪ (id, c1, let′(x, c2, ξ), p, O, I, C, T ) which satisfies
all the conditions in the definition of validity of configurations. The rest of the cases can be
proved similarly. J

I Theorem 14 (A Valid Configuration Is Not Deadlocked). If a valid configuration has some
threads then either all threads in this configuration are waiting for some server channels, or
there exists a thread in this configuration which is not waiting for an empty channel.

validn(t, h, s) ∧ ∃id. t(id) 6= ∅⇒ NotDeadlock(t, h, s)

where NotDeadlock(t, h, s)⇔ AllWaitingToServe(t, s) ∨ ∃id′. ¬is_waiting(fst(t(id′)), h), where
AllWaitingToServe(t, s)⇔ ∀id. t(id) 6= ∅⇒ ∃e. fst(t(id)) = wait(e) ∧ JeK ∈ s
is_waiting(c, h)⇔ ∃e. c = wait(e) ∧ h(JeK) = [].

Proof. By contradiction; we assume that all threads in t are waiting for some empty channels
where some of these channels are not server channels, i.e. ∀id. ∃e. fst(t(id))=wait(e) ∧
h(e)=[] ∧ ∃id′, e′. fst(t(id′))=wait(e′) ∧ Je′K /∈ s. Since (t, h, s) is a valid configuration and all
threads in this configuration are waiting for a channel, there exists a set of valid augmented

ECOOP 2019



22:42 Transferring Obligations Through Synchronizations

threads A from which we produce a valid bag G = valid_bag(A), where valid_bag maps
any element (id,wait(e), ξ, p, O, I, C, T ) ∈ A to an element (JeK,Addresses(O),Addresses(I))
where Addresses(O) = {[A(o) | o ∈ O]}. By Lemma 15, we have G={[]}, implying A={},
implying t=0 which contradicts the hypothesis of the theorem.

Note that in the definition of validity of a configuration we also keep track of all locations
whose addresses are allocated, which makes it possible to provide the functions R,Mr, and
S, mapping channel addresses to their ghost information, for Lemma 15. Additionally, the
hypotheses H2, H3, H4, and H5 ∨ H6 in Lemma 15 are met as follows. For each element
(id,wait(e), ξ, p, O, I, C, T ) ∈ A we have p,O, I, C, T |= wpcx(wait(e), ξ), which implies 0 <
C(JeK) and there exists a channel ch with address JeK such that ch ≺ O (which implies H2)
and ch ≺r I (which implies H3), and S(ch) = true ⇒ O = {[]} ∧ ∀o1.0 < I(o1) ⇒ o1 = ch

(which implies H4). Additionally, by 0 < C(JeK) we have 0 < Ct(JeK), which (by 4.c in
validity of configurations) implies if S(ch) = false either 1) 0 < Ot(ch) (which implies H5), or
2) there exists a message m in a channel ch′ through which an obligation of ch is transferred,
i.e. 0 < size(ch′) and m ∈ queueh(ch′) and 0<M′(ch′)(m)(ch). By m ∈ queueh(ch′) and 4.b
we have levels(M′(ch′)(m)) ⊆ Mr(ch′), which by {[ch]}∈M′(ch′)(m) implies R(ch) ∈ Mr(ch′).
Additionally, by Mr(ch′) 6= {[]}, and 0 < size(ch′), and 4.a we have 0 < It(ch′) (which implies
H6). J

Lemma 15 ensures that in any state of the execution if all the desired invariants are
respected then it is impossible that all threads of the program are waiting for some empty
channels where some of these channels are not server channels. In this lemma G is a bag of
waitable object-obligations-importers triples such that each element t of G is associated with
a thread in a state of the execution, where the first element of t is associated with the address
of the object for which t is waiting, the second element is associated with the addresses of
obligations of t, and the third element is associated with the addresses of importers of t.

I Lemma 15 (A Valid Bag of Augmented Threads Is Not Deadlocked).

∀ G : Bags(Addresses × Bags(Addresses)× Bags(Obligations)),
R : Addresses → Levels,
Mr : Addresses → Bags(Levels),
S : Addresses → Booleans.

H1 ∧ ∀(o,O, I) ∈ G. H2 ∧H3 ∧H4 ∧ (H5 ∨H6)⇒ G = {[]}

where
H1 : ∃(o,O, I) ∈ G. S(o) = false
H2 : o ≺ O
H3 : o ≺r I
H4 : S(o) = true⇒ O = {[]} ∧ ∀o1. 0 < I(o1)⇒ o1 = o

H5 : S(o) = false⇒ 0 < Ot(o)
H6 : S(o) = false⇒ ∃o1. R(o) ∈ Mr(o1) ∧Wt(o1) = 0 ∧ 0 < It(o1)
where Wt = ]

(o,O,I)∈G
{[o]} and Ot = ]

(o,O,I)∈G
O and It = ]

(o,O,I)∈G
I

Proof. By H1 we know ∃(om, O1, I1) ∈ G where S(om) = false and ∀(o,O, I) ∈ G. S(o) =
false ⇒ R(om) 6 R(o). By (H5 ∨ H6) there are two cases: 1) ∃(o2, {[om]}]O2, I2) ∈ G,
or 2) ∃(o3, O3, {[o1]}]I3) ∈ G. R(om) ∈ Mr(o1) ∧Wt(o1) = 0. In the first case by H4 we
have S(o2) = false, which implies R(om) 6 R(o2), that contradicts the hypothesis H2, i.e
o2 ≺ {[om]}]O2. In the second case by Wt(o1) = 0 we have o1 6= o3 (because 0 < Wt(o3)), and
consequently by H4 we have S(o3) = false, which implies R(om) 6 R(o3), that contradicts
the hypothesis H3, i.e. o3 ≺r {[o1]}]I3 (because R(om) ∈Mr(o1)). J



J. Hamin and B. Jacobs 22:43

I Theorem 16 (The Initial Configuration Is Valid).

correct(obs({[]}, {[]}), c, λ_.obs({[]}, {[]}))⇒ ∀n, id. validn(0[id:=c; done],0, [])

Proof. The goal is achieved because there exists an augmented thread set A=[(id, c, done,0, 0
, 0 , 0 , 0 )], such that all the conditions in the definition of validity of configurations are met,
where 0 = λ_.∅ and 0 = λ_.0. J

C.6 An Example Proof

In this section we show how the program in Figure 3 can be verified using the proof rules in
Figure 31, as shown in Figure 32.

D Transferring Obligations Through Notifications: Soundness Proof

In this appendix we provide a formalization and soundness proof, machine-checked with
Coq11, for the approach introduced in Section 3. However, unfortunately, there are a few
technical differences between this formalization and the system of Section 3 such that in this
formalization the ghost information, such as level and transferred permissions and obligations,
are associated with lock and condition variable addresses via the lock and cond permissions
rather than via global functions12. The proof rules associated with this formalization and
the verification of the program in Figure 16, proved using these rules, are shown in Sections
D.4 and D.6, respectively.

D.1 Syntax and Semantics of Programs

We define the syntax of our programming language as indicated in Figure 33. In this syntax
an arithmetic expression, e, can be an integer value, z, a variable, x, an addition of two
expressions, or a negation of an expression. An integer value can be substituted for a
free variable in an expression or a command, and each expression can be evaluated to an
integer value, as shown in Figure 34. Commands include commands val(e) which simply
yield the value of e as their result and have no side effects, memory allocations13, memory
reads, memory writes, conditionals, loops, parallel composition, sequential composition, lock
creations, lock acquisitions, lock releases, condition variable creations, waits, and notifications.
We also define some extra commands waiting4lock, indicating that the related thread is waiting
for a lock, and waiting4cvar, indicating that the related thread has executed wait; these are not
supposed to appear in the source program and appear only during execution. Additionally,
instead of defining all the ghost commands introduced in Section 3, we define a single ghost
command nop which is inserted into the program for verification purposes and has no effect
on the program’s behavior. The small step semantics, defined in Figure 36, relates two
configurations, defined in Figure 35.

ECOOP 2019



22:44 Transferring Obligations Through Synchronizations

ob(a) ::= (a, 1, {[1]}, false)
ob′(a) ::= (a, 1, {[]}, false)
loc(a) ::= (ob(a), (Mch, []), λm. {[ob′(snd(m))]})
loc′(a) ::= (ob′(a), (Mch′, []), λ_. {[]})
pt(Mch, args) ::= λm. channel(loc′(snd(m)))
pt(Mch′, args) ::= λm. true

routine server(channel a){
req : {obs({[]}, {[ob(a)]}) ∗ channel(loc(a)) ∗ credit(a)}
(req, a′) := receive(ch);
{obs({[ob′(a′)]}, {[]}) ∗ channel(loc′(a′))}
result := process(req);
send(a′, result)
ens : {obs({[]}, {[]})}}

routine client(channel a){
req : {obs({[ob(a)]}, {[]}) ∗ channel(loc(a)) ∗ trandit(a)}
a′ := new_channel();
{obs({[ob(a)]}, {[]}) ∗ channel(loc′(a′)) ∗ trandit(a)}
nop; //Rule Credit
{obs({[ob(a), ob′(a′)]}, {[]}) ∗ trandit(a) ∗ credit(a′)}
send(a, (request(), a′));
{obs({[]}, {[]}) ∗ credit(a′)}
receive(a′)
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]})}
a := new_channel();
{obs({[]}, {[]}) ∗ channel(loc(a))}
nop; //Rule Credit
{obs({[ob(a)]}, {[]}) ∗ credit(a)}
nop; //Rule Trandit
{obs({[ob(a)]}, {[ob(a)]}) ∗ credit(a) ∗ trandit(a)}
fork(
{obs({[]}, {[ob(a)]}) ∗ credit(a)}
server(a)
{obs({[]}, {[]})});
{obs({[ob(a)]}, {[]}) ∗ trandit(a)}
client(a)
ens : {obs({[]}, {[]})}}

Figure 32 Verification of the program in Figure 3 using the rules in Figure 31.



J. Hamin and B. Jacobs 22:45

c ∈ Commands, e ∈ Expressions, z ∈ Z, x ∈ Variables
e ::= z | x | e1+e2 | −e
c ::= val(e) | new_int(z) | lookup(e) | mutate(e1, e2)

| if(c, c1, c2) | while(c, c1) | let(x, c1, c2) | fork(c) | new_lock | acquire(e) | release(e)
| new_cvar | wait(e1, e2) | notify(e) | notifyAll(e)
| waiting4lock(e) | waiting4cvar(e1, e2) | nop

Figure 33 Syntax of the programming language

JK ∈ Expressions → Z

JzK=z
JxK=0
Je1+e2K=Je1K+Je2K
J−eK=− JeK

z[z′/x] = z

x[z/x′] = x if x 6= x′

x[z/x] = z

(e1+e2)[z/x] = e1[z/x]+e2[z/x]

val(e)[z/x] = val(e[z/x])
let(x, c1, c2)[z/x] = let(x, c1, c2)
let(x, c1, c2)[z/x′] = let(x, c1[z/x′], c2[z/x′]) if x 6= x′

fork(c)[z/x] = fork(c[z/x])
new_lock[z/x] = new_lock
new_int(z′)[z/x] = new_int(z′)
lookup(e)[z/x] = lookup(e[z/x])
mutate(e1, e2)[z/x] = mutate(e1[z/x], e2[z/x])
acquire(e)[z/x] = acquire(e[z/x])
release(e)[z/x] = release(e[z/x])
new_cvar[z/x] = new_cvar
wait(e1, e2)[z/x] = wait(e1[z/x], e2[z/x])
notify(e)[z/x] = notify(e[z/x])
notifyAll(e)[z/x] = notifyAll(e[z/x])
waiting4lock(e)[z/x] = waiting4lock(e[z/x])
waiting4cvar(e1, e2)[z/x] = waiting4cvar(e1[z/x], e2[z/x])
while(c, c1)[z/x] = while(c[z/x], c1[z/x])
if(c, c1, c2)[z/x] = if(c[z/x], c1[z/x], c2[z/x])
nop[z/x] = nop

Figure 34 Evaluation of expressions and substitution of expressions and commands

ECOOP 2019



22:46 Transferring Obligations Through Synchronizations

Addresses = Z
ThreadIds = Z
h ∈ Heaps = Addresses ⇀ Z
ξ ∈ Contexts ::= done | let′(x, c, ξ) | if′(c1, c2, ξ)
θ ∈ ThreadConfigurations ::= (c; ξ)
t ∈ ThreadTables = ThreadIds ⇀ ThreadConfigurations
κ ∈ Configurations = Heaps × ThreadTables

Figure 35 Configurations

(t[id:=new_int(n); ξ], h[z...z+n−1:=∅]) (t[id:=val(z); ξ], h[z...z+n−1:=0])
(t[id:=lookup(e); ξ], h[JeK:=z]) (t[id:=val(z); ξ], h[JeK:=z])
(t[id:=mutate(e1, e2); ξ], h) (t[id:=tt; ξ], h[Je1K:=Je2K])
(t[id:=if(c, c1, c2); ξ], h) (t[id:=c; if ′(c1, c2, ξ)], h)
(t[id:=val(e); if ′(c1, c2, ξ)], h) (t[id:=c1; ξ], h) if 0<JeK
(t[id:=val(e); if ′(c1, c2, ξ)], h) (t[id:=c2; ξ], h) if JeK60
(t[id:=while(c, c1); ξ], h) (t[id:=if(c, let(x, c1,while(c, c1)), tt), ξ], h)
where x is not free in c and c1

(t[id:=fork(c); ξ, id′:=∅], h) (t[id:=tt; ξ, id′:=c; done], h)
(t[id:=let(x, c1, c2); ξ], h) (t[id:=c1; let′(x, c2, ξ)], h)
(t[id:=val(e); let′(x, c, ξ)], h) (t[id:=c[JeK/x]; ξ], h)
(t[id:=val(e); done], h) (t[id:=∅], h)
(t[id:=new_lock; ξ], h[z:=∅]) (t[id:=val(z); ξ], h[z:=1])
(t[id:=acquire(e); ξ], h[JeK:=1]) (t[id:=tt; ξ], h[JeK:=0])
(t[id:=acquire(e); ξ], h[JeK:=0]) (t[id:=waiting4lock(e); ξ], h[JeK:=0])
(t[id:=waiting4lock(e); ξ], h[JeK:=1]) (t[id:=tt; ξ], h[JeK:=0])
(t[id:=release(e); ξ], h) (t[id:=tt; ξ], h[JeK:=1])
(t[id:=new_cvar; ξ], h[z:=∅]) (t[id:=val(z); ξ], h[z:=0])
(t[id:=wait(e1, e2); ξ], h) (t[id:=waiting4cvar(e1, e2); ξ], h[Je2K:=1])
(t[id:=notify(e); ξ, id′:=waiting4cvar(e1, e2); ξ′], h) 

(t[id:=val(tt); ξ, id′:=waiting4lock(e2); ξ′], h) if JeK = Je1K
(t[id:=notify(e); ξ], h) (t[id:=tt; ξ], h) if nowaiting(JeK, t)
(t[id:=notifyAll(e); ξ], h) (wkup(JeK, t[id:=val(tt); ξ]), h)
(t[id:=nop; ξ], h) (t[id:=tt; ξ], h)
where

wkup(z, t) = λid.

{
waiting4lock(l); ξ if t(id) = waiting4cvar(v, l); ξ ∧ JvK = z

t(id) otherwise

nowaiting(z, t)⇔6 ∃id, ξ, l, v. JvK=z ∧ t(id)=waiting4cvar(v, l); ξ

Figure 36 Semantics of programs, where tt stands for val(0).



J. Hamin and B. Jacobs 22:47

Bags(A) = A→ N
Wt, Ot ∈ Bags(Z)
Indexes = Z
Arguments = Z
r ∈ Levels = R
o ∈ Obligations = Addresses × Levels ×Addresses
l ∈ Locations = Obligations × (Indexes × Lists(Arguments))×

(Indexes × Lists(Arguments))× Bags(Obligations)
O ∈ Bags(Obligations)
b ∈ Booleans
v̂ ∈ AValues ::= z | r | b | l | o | O
α ∈ AValues → Assertions
π ∈ Fractions
a ∈ Assertions ::= l

π7−→ z | ulock(l,Wt, Ot) | lock(l) | locked(l,Wt, Ot) | ucond(l) | cond(l)
| obs(O) | ctr(z, n) | tic(z)
| b | a1 ∧ a2 | a1 ∨ a2 | a1 ∗ a2 | a1 −∗ a2 | ∀α | ∃α

pt : PredicateTables = Indexes → Lists(Arguments)→
Bags(Obligations)→ Bags(Obligations)→ Assertions

O : Locations → Obligations , where O((A,R,L), I,M,M ′) = (A,R,L)
A : Locations → Addresses , where A((A,R,L), I,M,M ′) = A

R : Locations → Levels , where R((A,R,L), I,M,M ′) = R

L : Locations → Addresses , where L((A,R,L), I,M,M ′) = L

I : Locations → Bags(Obligations)→ Bags(Obligations)→ Assertions
where I((A,R,L), I,M,M ′) = pt(fst(I), snd(I))

M : Locations → Assertions,
where M((A,R,L), I,M,M ′) = pt(fst(M), snd(M), {[]}, {[]})

M′ : Locations → Bags(Obligations) , where M′((A,R,L), I,M,M ′) = M ′

Figure 37 Syntax of assertions

ECOOP 2019



22:48 Transferring Obligations Through Synchronizations

k ∈ Knowledge ::= cell(π, z) | ulock(Wt, Ot) | lock | locked(Wt, Ot) | ucond | cond
p ∈ PermissionHeaps = Locations ⇀ Knowledge
GhostIdentifications = Z
gv ∈ GhostValues ::= Option(N)× N
g ∈ GhostHeaps = GhostIdentifications ⇀ GhostValues
Option(A) ::= s | ∅ , where s ∈ A
Õ ∈ Option(Bags(Obligations))

p, Õ, g |= l
π7−→ z ⇔ p(l) = cell(π, z)

p, Õ, g |= ulock(l,Wt, Ot) ⇔ p(l) = ulock(Wt, Ot)
p, Õ, g |= lock(l) ⇔ p(l) = lock()
p, Õ, g |= locked(l,Wt, Ot) ⇔ p(l) = locked(Wt, Ot)
p, Õ, g |= ucond(l) ⇔ p(l) = ucond
p, Õ, g |= cond(l) ⇔ p(l) = cond
p, Õ, g |= obs(O) ⇔ Õ = O

p, Õ, g |= ctr(z, n) ⇔ ∃n1. g(z) = (n, n1)
p, Õ, g |= tic(z) ⇔ ∃n, ñ. g(z) = (ñ, n+1)
p, Õ, g |= b ⇔ b = true
p, Õ, g |= a1 ∧ a2 ⇔ p, Õ, g |= a1 ∧ p, Õ, g |= a2
p, Õ, g |= a1 ∨ a2 ⇔ p, Õ, g |= a1 ∨ p, Õ, g |= a2
p, Õ, g |= a1 ∗ a2 ⇔ ∃p1, p2, Õ1, Õ2, g1, g2. p=p1]p2 ∧ Õ=Õ1]̃Õ2 ∧ g=g1]g2 ∧
p1, Õ1, g1 |= a1 ∧ p2, Õ2, g2 |= a2

p, Õ, g |= a1 −∗ a2 ⇔ ∀p1, Õ1, g1. p1, Õ1, g1 |= a1 ⇒
∀p2, Õ2, g2. p2=p]p1 ∧ g2=g]g1 ∧ Õ2=Õ]Õ1 ⇒ p2, Õ2, g2 |= a2

p, Õ, g |= ∀α ⇔ ∀v̂∈AValues. p, Õ, g |= α(v̂)
p, Õ, g |= ∃α ⇔ ∃v̂∈AValues. p, Õ, g |= α(v̂)

a1 ` a2 ⇔ (∀p, Õ, g. p, Õ, g |= a1 ⇒ p, Õ, g |= a2)

Figure 38 Satisfaction relation



J. Hamin and B. Jacobs 22:49

O1, O2 ∈ Bags(A)
Õ1, Õ2 ∈ Option(A)
gv1, gv2 ∈ GhostValues
g1, g2 ∈ GhostIdentifications ⇀ GhostValues
k1, k2 ∈ Knowledge
p1, p2 ∈ PermissionHeaps

O1 ]O2 = λv. O1(v) +O2(v)

Õ1 ] Õ2 =


Õ1 if Õ2=∅
Õ2 if Õ1=∅
undefined otherwise

Õ1]̃Õ2 =


Õ1 if Õ2 = ∅
Õ2 if Õ1 = ∅
Õ1 ] Õ2 otherwise

gv1]gv2 =


(m̃1]m̃2, n1+n2) if gv1 = (m̃1, n1) ∧ gv2 = (m̃2, n2) ∧

(m̃1]m̃2 = n⇒ n > n1+n2)
undefined otherwise

g1 ] g2 =
{
λl. g1(l)]̃g2(l) if ∃g. ∀l. g(l) = g1(l)]̃g2(l)
undefined otherwise

k1 ] k2 =



cell(π+π′, z) if k1=cell(π, z) ∧ k2=cell(π′, z) ∧ π+π′ 6 1
lock if k1=lock ∧ k2=lock
locked(Wt, Ot) if k1=lock ∧ k2 = locked(Wt, Ot)
locked(Wt, Ot) if k1 = locked(Wt, Ot) ∧ k2=lock
cond if k1=cond ∧ k2=cond
undefined otherwise

p1 ] p2 =
{
λl. p1(l)]̃p2(l) if ∃p. ∀l. p(l) = p1(l)]̃p2(l)
undefined otherwise

Figure 39 Operations on ghost resources

ECOOP 2019



22:50 Transferring Obligations Through Synchronizations

pheap_heap(p, h)⇔
(∀z. (∀l. A(l) = z ⇒ p(l) = ∅)⇒ h(z) = ∅) and
∀l.
p(l) = ∅ or
∀z. (∃π. p(l) = cell(π, z))⇒ h(A(l)) = z and
(∃O1, O2. p(l) = ulock(O1, O2))⇒ h(A(l)) = 1 and
p(l) = lock⇒ h(A(l)) = 1 and
(∃O1, O2. p(l) = locked(O1, O2))⇒ h(A(l)) = 0 and
p(l) = cond⇒ h(A(l)) 6= ∅ and
p(l) = ucond⇒ h(A(l)) 6= ∅

Figure 40 Permission heaps corresponding to concrete heaps

D.2 Syntax and Semantics of Assertions

The syntax of assertions is defined in Figure 3714. Note that a location l of an object o
consists of the obligation of o (if o is a lock or a CV); the lock invariant of o (if o is a lock),
denoted by I(l); and the permissions and the obligations which are transferred through a
notification on o (if o is a CV), denoted by M(l) and M′(l) respectively. Also note that
permissions described by invariants of locks as well as permissions which are transferred
through notifications are specified through an index (as well as the required arguments)
pointing to a table in which each element is a function that given a list of arguments returns
an assertion. This makes it possible to quantify over locations in assertions15. The obligation
of a location l, denoted by O(l), consists of the address of that location, denoted by A(l), as
well as other ghost information such as the level of l, denoted by R(l); and the lock associated
with l (if l is the location of a CV), denoted by L(l).

These assertions describe some ghost resources, namely p, O, and g that keep track of
heap locations, obligations, and ghost counters, respectively, shown in Figure 38, where some
operations and relations defined on these resources are shown in Figures 39, 40.

D.3 Weakest Precondition of Commands

The weakest precondition of a command c for n>0 steps w.r.t. a postcondition Q (with a
given predicate table, specified by pt), denoted by wpn,pt(c,Q) is defined in Figures 41 and
42. Note that wp(c,Q)0,pt = true. Also note that for the sake of simplicity the index pt
is elided. Having this definition, we define the weakest precondition of a context and the

11The soundness proof of the second mechanism, machine-checked in Coq, can be found in [17].
12Note that one way to formalize the precise approach of Section 3 would be to define assertions as

functions from ghost information to separating conjunctions of chunks. In the soundness proof, one
would track these as partial functions whose domain is the set of allocated addresses. The functions
passed into the assertions would be totalizations of these partial functions. An assertion is true if it is
true for all totalizations of the functions.

13Note that new_int(n) allocates n consecutive memory locations and returns the address of the first one.
14Note that we use a shallow embedding: assertions have no variables; to model quantifications, we use

meta-level functions from values to assertions.
15An alternative approach is to use a step-indexed domain of assertions, as in Iris [27]. There, I Assertions

could be used instead of Indexes × Lists(Arguments), where I is Iris’s guard for guarded recursive
definitions.



J. Hamin and B. Jacobs 22:51

wp ∈WeakestPreconditions =
Commands → (Z→ Assertions)→ N→ PredicateTables → Assertions

wpn(val(e), Q) = Q(JeK)
wpn(new_lock, Q) = ∀z. ∃r. ulock(((z, r, z), (0, []), (0, []), {[]}), {[]}, {[]}) −∗ Q(z)
wpn(acquire(e), Q) = ∃O, l. (lock(l) ∗ obs(O) ∧ O(l)≺O ∧ A(l) = JeK) ∗

(∀Wt, Ot. (obs(O]{[O(l)]}) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt, Ot)) −∗ Q(tt))
wpn(waiting4lock(e), Q) = wpn(acquire(e), Q)
wpn(release(e), Q) = ∃Wt, Ot,O, l. (locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[O(l)]}) ∧

A(l) = JeK) ∗ ((lock(l) ∗ obs(O)) −∗ Q(tt))
wpn(new_cvar, Q) = ∀z. ∃r. ucond(((z, r, z), (0, []), (0, []), {[]})) −∗ Q(z)
wpn(wait(e1, e2), Q) = ∃Wt, Ot,O, v, l. (cond(v) ∗ locked(l,Wt, Ot) ∗

I(l)(Wt]{[A(v)]}, Ot) ∗ obs(O]{[O(l)]}) ∧ L(v)=A(l) ∧ O(v)≺O ∧ O(l)≺O]M′(v) ∧
enoughObs(v,Wt]{[A(v)]}, Ot) ∧ A(v) = Je1K ∧ A(l) = Je2K) ∗
(∀Wt′, Ot′. (cond(v) ∗ locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗
obs(O]{[O(l)]}]M′(v)) ∗M(v)) −∗ Q(tt))

wpn(waiting4cvar(e1, e2), Q) = ∃O, v, l. (cond(v) ∗ lock(l) ∗ obs(O) ∧
O(v)≺O ∧ O(l)≺O]M ′ ∧ L(v)=A(l) ∧ A(v)=Je1K ∧ A(l) = Je2K) ∗
(∀Wt, Ot. (cond(v) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗
obs(O]{[O(l)]}]M′(v)) ∗M(v)) −∗ Q(tt))

wpn(notify(e), Q) = ∃Wt, Ot,O, v. (cond(v) ∗ locked(L(v),Wt, Ot) ∗
obs(O](0<Wt(A(v)) ? M′(v) : {[]})) ∗ (Wt(A(v))=0 ∨M(v)) ∧ A(v) = JeK) ∗
((cond(v) ∗ locked(L(v),Wt−{[A(v)]}, Ot) ∗ obs(O)) −∗ Q(tt))

wpn(notifyAll(e), Q) = ∃Wt, Ot,O, v, l. (cond(v) ∗ locked(l,Wt, Ot) ∗ (
Wt(v)
∗
i:=1

M(v)) ∧
M′(v) = {[]} ∧ A(v)=JeK ∧ L(v)=A(l)) ∗ ((cond(v) ∗ locked(l,Wt[A(v):=0], Ot)) −∗ Q(tt))

wpn(let(x, c1, c2), Q) = wpn−1(c1, λz. wpn−1(c2[z/x], Q))
wpn(fork(c), Q) = ∃O1, O2. obs(O1]O2) ∗ (obs(O1) −∗ Q(tt)) ∗ (obs(O2) −∗

wpn−1(c, λ_. obs({[]})))
wpn(if(c, c1, c2), Q) = wpn−1(c, (λz. 0<z ? wpn−1(c1, Q) : wpn−1(c2, Q)))
wpn(while(c, c1), Q) = wpn−1(c, (λz. z60 ? Q(tt) :

wpn−1(c1, (λ_. wpn−1(while(c, c1), Q)))))

Figure 41 Weakest precondition, where tt stands for 0 (part one of two).

ECOOP 2019



22:52 Transferring Obligations Through Synchronizations

wpn,pt(nop) =
as g_initl

(∃Wt, Ot,O, a, r, I. ulock(((a, r, a), (0, []), (0, []), {[]}),Wt, Ot) ∗ pt(I)(Wt, Ot) ∗ obs(O) ∗
((lock(((a, r, a), I, (0, []), {[]})) ∗ obs(O)) −∗ Q(tt))) ∨

as g_initc
(∃Wt, Ot, a, r, l,M,M ′. ucond((a, r, a), (0, []), (0, []), {[]}) ∗ ulock(l,Wt, Ot) ∗

((cond((a, r,A(l)), (0, []),M,M ′) ∗ ulock(l,Wt, Ot)) −∗ Q(tt))) ∨
as g_load

(∃v, l. (cond(v) ∗ ulock/locked(l,Wt, Ot) ∗ obs(O) ∧ L(v)=A(l)) ∗
((cond(v) ∗ ulock/locked(l,Wt, Ot]{[A(v)]}) ∗ obs(O]{[O(v)]})) −∗ Q(tt)))

as g_discharge
(∃v, l. (cond(v) ∗ ulock/locked(l,Wt, Ot) ∗ obs(O) ∧ enoughObs(v,Wt, Ot−{[A(v)]}) ∧
L(v)=A(l)) ∗ ((cond(v) ∗ ulock/locked(l,Wt, Ot−{[A(v)]}) ∗ obs(O−{[O(v)]})) −∗ Q(tt)))∨

as g_new_ctr (∀gv. ctr(gv, 0) −∗ Q(tt)) ∨
as g_inc (∃n, gv. ctr(gv, n) ∗ ((ctr(gv, n+1) ∗ tic(gv)) −∗ Q(tt))) ∨
as g_dec (∃n, gv. ctr(gv, n) ∗ tic(gv) ∗ (ctr(gv, n−1) −∗ Q(tt)))

Figure 42 Weakest precondition (part two of two).

weakest precondition of a command-context as shown in Definitions 17 and 18. Having these
definitions, we can prove some auxiliary lemmas, shown in Lemmas 20, 21, 22, 23, and 24,
which are used to prove Theorem 31.

I Definition 17 (Weakest Precondition of a Context).

wpxn(ξ) =


λ_. obs({[]}) if ξ=done
λz. wpn(c[z/x],wpxn(ξ′)) if ξ=let′(x, c, ξ′)
λz. 0<z ? wpn(c1, (wpxn(ξ′))) : wpn(c2, (wpxn(ξ′))) if ξ=if′(c1, c2, ξ

′)

I Definition 18 (Weakest Precondition of a command-context).

wpcxn(c, ξ) = wpn(c,wpxn(ξ))

I Lemma 19 (Weakening Postcondition).

p, Õ, g |= wpn(c,Q) ∧ (∀z. Q(z) ` Q′(z))⇒ ∀n′6n. p, Õ, g |= wpn′(c,Q′)

Proof. By induction on n and case analysis of c. J

I Lemma 20 (Weakest Precondition of Wait).

∀n, e1, e2, ξ, p, O, g. p,O, g |= wpcxn(wait(e1, e2), ξ)⇒
∃p1, p2, g1, g2, O1, v, l,Wt, Ot. p=p1]p2 ∧O=O1]{[O(l)]} ∧ g=g1]g2 ∧
A(v) = Je1K ∧ A(l) = Je2K ∧ p1(l)=locked(Wt, Ot) ∧ p1(v)=cond ∧
p2,∅, g2 |= I(l)(Wt]{[A(v)]}, Ot) ∧ O(v) ≺ O1 ∧ O(l) ≺ O1]M′(v) ∧ L(v)=A(l) ∧
enoughObs(v,Wt]{[A(v)]}, Ot) ∧
p1[l:=lock], O1, g1 |= wpcxn(waiting4cvar(e1, e2), ξ)



J. Hamin and B. Jacobs 22:53

I Lemma 21 (Weakest Precondition of Notify).

∀n, e, ξ, p, O, g. p,O, g |= wpcxn(notify(e), ξ)⇒ ∃p1, pM , g1, gM , O1, v, l,Wt, Ot.
p=p1]pM ∧ g=g1]gM ∧O=O1](0<Wt(A(v)) ? M′(v) : {[]})
∧ A(v) = JeK ∧ L(v) = A(l) ∧ p1(v)=cond ∧ p1(l)=locked(Wt, Ot) ∧
(0<Wt(A(v)) ? pM ,∅, gM |= M(v) : (pM=0 ∧ gM=0)) ∧
p1[l:=locked(Wt−{[A(v)]}, Ot)], O1, g1 |= wpcxn(tt, ξ)

I Lemma 22 (Weakest Precondition of waiting4cvar).

∀n, e1, e2, ξ, p, O, g. p,O, g |= wpcxn(waiting4cvar(e1, e2), ξ)⇒
∃v, l. p(v)=cond ∧ (p(l)=lock ∨ ∃Wt, Ot. p(l)=locked(Wt, Ot)) ∧ L(v)=A(l) ∧ O(v) ≺ O
∧ O(l) ≺ O]M′(v) ∧ A(v) = Je1K ∧ A(l) = Je2K ∧
∀pM , gM . pM ,∅, gM |= M(v)⇒ p]pM , O]M′(v), g]gM |= wpcxn(waiting4lock(e2), ξ)

I Lemma 23 (Weakest Precondition of g_discharge).

∀n, ξ, p,O, g. p,O, g |= wpcxn(g_discharge, ξ)⇒
∃O1,Wt, Ot, v, l. O=O1]{[O(v)]} ∧ p(l)=locked(Wt, Ot) ∧ p(v)=cond ∧
enoughObs(v,Wt, Ot−{[A(v)]}) ∧ L(v)=A(l) ∧
p[l:=locked(Wt, Ot−{[A(v)]})], O1, g |= wpcxn(tt, ξ)

I Lemma 24 (Weakest Precondition of fork).

∀n, c, ξ, p, O, g. p,O, g |= wpcxn(fork(c), ξ)⇒
∃p1, p2, g1, g2, O1, O2. p=p1]p2 ∧ g=g1]g2 ∧O=O1]O2 ∧
p1, O1, g1 |= wpcxn(tt, ξ) ∧ p2, O2, g2 |= wpn−1(c, λ_.obs({[]}))

I Lemma 25 (Frame in Weakest Precondition).

∀n, c,Q, F, p, Õ, g. p, Õ, g |= wpn(c,Q) ∗ F ⇒ ∀n′6n. p, Õ, g |= wpn′(c, (λz. Q(z) ∗ F ))

Proof. By induction on n and case analysis of c. J

D.4 Correctness of Commands
We define correctness of commands, as shown in Definition 26, ensuring that each proposed
proof rule, where correctpt(P , c,Q) is abbreviated as {P} c {Q}, respects the definition of
the weakest precondition. Having this definition we prove the proposed proof rules, ensuring
deadlock freedom of importer channels, as well as some other necessary proof rules shown in
Theorems 27, 28, and 29.

I Definition 26 (Correctness of Commands). A command is correct w.r.t a precondition P
and a postcondition Q if and only if P implies the weakest precondition of that command
w.r.t Q.

correctpt(P , c,Q)⇔ ∀n. P ⇒ wpn,pt(c,Q)

I Theorem 27 (Rule Sequential Composition).

correct(P , c1, Q) ∧ (∀z. correct(Q(z), c2[z/x], R))⇒ correct(P , let(x, c1, c2), R)

I Theorem 28 (Rule Consequence).

correct(P , c,Q) ∧ (P ′ ` P ) ∧ (∀z. Q(z) ` Q′(z))⇒ correct(P ′, c,Q′)

ECOOP 2019



22:54 Transferring Obligations Through Synchronizations

I Theorem 29 (Rule Frame).

correct(P , c,Q)⇒ correct(P ∗ F , c, λz. Q(z) ∗ F )

As previously mentioned, since in this formalization ghost information is associated with
lock and condition variable addresses via the lock and cond permission rather than via global
function, we provide a new version of the proof rules, proposed in Section 3, regarding this
formalization as shown in Figure 43.

D.5 Validity of a Configuration
We define validity of a configuration, shown in Definition 30, and prove that 1) starting
from a valid configuration, all the subsequent configurations of the execution are also valid
(Theorem 31), 2) a valid configuration is not deadlocked (Theorem 32), and 3) if a program
c is verified by the proposed proof rules, where the verification starts from an empty bag
of obligations and ends with such a bag too, then the initial configuration, where the heap
is empty, denoted by 0=λ_.∅, and there is only one thread with the command c (and a
context done), is a valid configuration (Theorem 34).

IDefinition 30 (Validity of a Configuration). A configuration (t, h) is valid for n steps, denoted
by validn(t, h), if there exist a list of augmented threads A, consisting of the identification
(id), the program (c), the context (ξ), the permission heap (p), the ghost resource heap (g)
and the obligations (O) associated with each thread; a list of lock-invariant pairs Linv, storing
the locks which are not held along with their invariants; three permission heaps pi (associated
with the invariants of the locks which are not held), pl (the part of the permission heap which
is leaked), and pA (the union of all permission heaps in A and pi as well as pl); three ghost
resource heaps gi (associated with the invariants of the locks which are not held), gl (the part
of the ghost resource heap which is leaked), gA (the union of all ghost resource heaps in A
and gi as well as gl); and locs (the set of locations for which a memory has been allocated),
such that all of the following conditions hold:

1. ∀id, c, ξ. t(id) = (c; ξ)⇔ ∃p,O, g. (id, c, ξ, p, O, g) ∈ A
2. ∀(id1, c1, ξ1, p1, O1, g1) ∈ A, (id2, c2, ξ2, p2, O2, g2) ∈ A. id1 = id2 ⇒

(id1, c1, ξ1, p1, O1, g1) = (id2, c2, ξ2, p2, O2, g2)
3. pA = pi]pl] ]

(id,c,ξ,p,O,g)∈A
p ∧ gA = gi]gl] ]

(id,c,ξ,p,O,g)∈A
g

4. ∀l1, l2. pA(l1) 6= ∅ ∧ pA(l2) 6= ∅ ∧ A(l1) = A(l1)⇒ l1 = l2
5. ∀l. pA(l) 6= ∅⇔ l ∈ locs
6. pheap_heap(pA, h)
7. pi,∅, gi |= ∗

(l,inv)∈Linv
inv

8. pA(l) = lock ∧ ¬heldh(l)⇒ (l, I(l)(Wtl,A, Otl,A)) ∈ Linv
9. (l, inv) ∈ Linv ⇒ pA(l) = lock ∧ ¬heldh(l)

10. ∀o ∈ OA. ∃l. O(l)=o ∧ (pA(l)=cond ∨ pA(l)=lock ∨ ∃Wt, Ot. pA(l)=locked(Wt, Ot))
11. pA(l)=ulock(Wt, Ot) ∨ pA(l)=locked(Wt, Ot)⇒Wt=Wtl,A ∧Ot=Otl,A
12. pA(l)=lock ∨ pA(l)=ulock(Wt, Ot) ∨ pA(l)=locked(Wt, Ot)⇒heldh(l)⇒ l ∈ OA
13. ∀(id, c, ξ, p, O, g)∈A.

a. p,O, g |= wpcxn(c, ξ)
b. c = waiting4cvar(e1, e2)⇒ enoughObs(Je1K,WtJe2K,A, OtJe2K,A)

where
OA = ]

(id,c,ξ,p,O,g)∈A
O



J. Hamin and B. Jacobs 22:55

NewLock
{true} newlock {λa. ulock(((a, r, a), (0, []), (0, []), {[]}), {[]}, {[]})}

InitLock
{ulock(((a, r, a), (0, []), (0, []), {[]}),Wt, Ot) ∗ pt(Iindex, Iargs)(Wt, Ot) ∗ obs(O)} nop

{λ_. lock(((a, r, a), (Iindex, Iargs), (0, []), {[]})) ∗ obs(O)}

Acquire
{lock(l) ∗ obs(O) ∧ O(l) ≺ O ∧ A(l) = al} acquire(al)

{λ_. ∃Wt, Ot. locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[O(l)]})}

Release
{locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[O(l)]}) ∧ A(l) = al} release(al)

{λ_. lock(l) ∗ obs(O)}

NewCV
{true} new_cvar {λa. ucond(((a, r, a), (0, []), (0, []), {[]}))}

InitCV
{ucond((a, r, a), (0, []), (0, []), {[]}) ∗ ulock(l,Wt, Ot)} nop

{λ_. cond((a, r,A(l)), (0, []), (Mindex,Margs),M ′) ∗ ulock(l,Wt, Ot)}

Wait
{cond(v) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt]{[A(v)]}, Ot) ∗ obs(O]{[O(l)]}) ∧ A(v) = av ∧ A(l) = al
∧ A(l)=L(v) ∧ O(v)≺O ∧ O(l)≺O]M′(v) ∧ enoughObs(A(v),Wt]{[A(v)]}, Ot)} wait(av, al)
{λ_. cond(v) ∗ obs(O]{[O(l)]}]M′(v)) ∗ ∃Wt′, Ot′. locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗M(v)}

Notify
{obs(O](0<Wt(A(v)) ? M′(v) : {[]})) ∗ cond(v) ∗ locked(l,Wt, Ot) ∗ (Wt(A(v))=0 ∨M(v)) ∧

A(l)=L(v) ∧ A(v) = av} notify(av) {λ_. obs(O) ∗ cond(v) ∗ locked(l,Wt−{[A(v)]}, Ot)}

NotifyAll

{cond(v) ∗ locked(l,Wt, Ot) ∗ (
Wt(A(v))
∗
i:=1

M(v)) ∧M′(v)={[]} ∧ A(l)=L(v) ∧ A(v) = av}
notifyAll(av) {λ_. cond(v) ∗ locked(l,Wt[v:=0], Ot)}

ChargeObligation
{obs(O) ∗ cond(v) ∗ ulock/locked(l,Wt, Ot) ∧ A(l)=L(v)} nop
{λ_. obs(O]{[O(v)]}) ∗ cond(v) ∗ ulock/locked(l,Wt, Ot]{[A(v)]})}

DischargeObligation
{obs(O) ∗ cond(v) ∗ ulock/locked(l,Wt, Ot) ∧ enoughObs(A(v),Wt, Ot−{[A(v)]})
∧ A(l)=L(v)} nop {λ_. obs(O−{[O(v)]}) ∗ ulock/locked(l,Wt, Ot−{[A(v)]})}

Figure 43 Proof rules verifying deadlock-freedom of importer monitors, where ghost information
is associated with lock and channel addresses via lock and cond permissions.

ECOOP 2019



22:56 Transferring Obligations Through Synchronizations

Otl,A = λv. L(v)=l ? OA(v) : 0 , and Wtl,A = ]
(id,c,ξ,p,O,g)∈A∧waiting_forh(c)=v∧L(v)=l

{[v]}

waiting_forh(c) returns the object for which c is waiting, if any, i.e.

waiting_forh(c, h) =


Je1K if c=waiting4cond(e1, e2)
JeK if c=waiting4lock(e) ∧ h(JeK)6=1
∅ otherwise

heldh(l) returns true if and only if the lock l is held, i.e. heldh(l)⇒ h(A(l)) 6= 1

Each item in this definition ensures some properties as follows: (1) and (2) ensure that
the list of augmented threads A is correctly associated with the thread tables t, (3) ensures
that the union of all permission heaps as well as the union of all ghost resource heaps in A
are defined, (4) ensures that any two allocated locations which have the same address are
equal, (5) locs is the set of locations for which a memory has been allocated (having this set
it is possible to map addresses to their ghost information) (6) ensures that pA corresponds
to the concrete heap h, (7) ensures that pi and gi model the separating conjunction of the
invariants of the locks which are not held, and these invariants do not assert any obligation,
(8) ensures that any lock which is not held along with its invariant exist in Linv, (9) ensures
that the locks in Linv are not held, (10) ensures that any obligation in A is associated with
the address of a condition variable or a lock which has been initialized, (11) ensures that
the parameters Wt and Ot stored in the permissions ulock and locked of any lock store the
total number of waiting threads and obligations of the condition variables associated with
that lock, respectively, (12) ensures that any lock l which is held exists in the union of the
obligations of A, (13-a) the permission heap, the obligations, and the ghost resource heap
of each thread model the weakest precondition of the command of that thread w.r.t. the
postcondition in which there is no obligation, and (13-b) for any condition variable for which
a thread is waiting the invariant enoughObs holds.

I Theorem 31 (Small Steps Preserve Validity of Configurations). Each step of the execution
preserves validity of configurations.

(t, h) (t′, h′) ∧ validn+1(t, h)⇒ validn(t′, h′)

Proof. By case analysis of the small step relation  . J

I Theorem 32 (A Valid Configuration Is Not Deadlocked). If a valid configuration has some
threads then there exists a thread in this configuration neither waiting for a condition variable
nor a lock.

validn(t, h) ∧ ∃id. t(id) 6= ∅⇒ ∃id′. waiting_for(fst(t(id′)) = ∅

Proof. We assume that all threads in t are waiting for a condition variable or a lock. Since
(t, h) is a valid configuration there exists a valid list of augmented threads A with a corres-
ponding valid bag G = valid_bag(A), where valid_bag maps any element (id, c, ξ, p, O, g) to
an element (waiting_for(c), O). By Lemma 33, we have G={[]}, implying A={}, implying t=0
which contradicts the hypothesis of the theorem.

Note that in the definition of validity of a configuration we also keep track of all locations
whose addresses are allocated, which makes it possible to provide the function R, mapping
lock and condition variable addresses to their levels, for Lemma 33. The first hypothesis
in this lemma is met by the constraint 13-a in the definition of validity of a configuration.
Additionally, the second hypothesis in this lemma is met by the constraints 12 or 13-b, where
the related thread is waiting for a lock or a condition variable, respectively. J



J. Hamin and B. Jacobs 22:57

ol(m, r) ::= (m.l, r,m.l)
ov(m, r) ::= (m.v, r,m.l)
l(m, r) ::= (ol(m, r), (linv, [m]), (0, []), {[]})
v(m, r) ::= (ov(m, r), (0, []), (M, []), {[ov(m, r)]})

mutex(mutex m,waitobj o) = lock(l(m,R(o)−1)) ∗ cond(o) ∧ o = v(m,R(o))

pt(linv, [m]·args) = λWt. λOt. ∃b, w. m.b 7→ b ∗m.w 7→ w ∧Wt(m.v)=w ∧
(0 < b ? 0 < Ot(v) : Wt(v) = 0)
pt(M, args) = λWt. λOt. true

Figure 44 Verification of the fair mutexes implementation shown in Figure 16 using the proof
rules in Figure 43 (part one of two).

Lemma 33 ensures that in any state of the execution if all the desired invariants are
respected then it is impossible that all threads are waiting for an object. In this lemma G is
a bag of object-obligations pairs such that each element t of G is associated with a thread in
a state of the execution, where the first element of t is associated with the object for which t
is waiting and the second element is associated with the obligations of t.

I Lemma 33 (A Valid Bag of Augmented Threads Is Not Deadlocked).

∀ G : Bags(Addresses × Bags(Addresses)), R : Addresses→Levels.
(∀(o,O)∈G. o ≺ O ∧ (∃o′, O′. (o′, {[o]}]O′) ∈ G))⇒ G = {[]}

Proof. By contradiction; assume that ∃(om, O1) ∈ G where ¬∃(o,O) ∈ G. R(o) < R(om). By
H2 we have ∃o′, O′. (o′, {[om]}]O′) ∈ G and by H1 we have o′ ≺ {[om]}]O′, which contradicts
minimality of the level of om. J

I Theorem 34 (The Initial Configuration Is Valid). The initial configuration, consisting of an
empty heap and a single thread whose program is verified by the proposed proof rules, is a
valid configuration.

correctsp(obs({[]}), c, λ_.obs({[]}))⇒ ∀n, id. validn(0[id:=c; done],0)

Proof. The goal is achieved because there are an augmented thread list T=[(id, c, done,0, {[]}
,0)], a list of lock-invariant pairs Linv=[], two permission heaps pi=0 and pl=0, and two
ghost resource heaps gi=0 and gl=0, such that all the conditions in the definition of validity
of configurations are met. J

D.6 An Example Proof
In this section we show how the program in Figure 16 can be verified using the proof rules in
Figure 43, as shown in Figures 44 and 4516.

16Note that for this program we assume a straightforward extension of the programming language with
immutable structures, i.e. tuples with named components.

ECOOP 2019



22:58 Transferring Obligations Through Synchronizations

routine new_mutex(){
req : {true}
l := new_lock;
{ulock(((l, r−1, l), (0, []), (0, []), {[]}), {[]}, {[]})}
v := new_cvar; nop; //Rule InitCV
{ulock(((l, r−1, l), (0, []), (0, []), {[]}), {[]}, {[]}) ∗ cond((v, r, l), (0, []), (M, []), {[(v, r, l)]})}
m := mutex(l:=l, v:=v, b:=new_int(1), w:=new_int(1)); nop; //Rule InitLock
m ens : {λm. ∃o. mutex(m, o) ∧ R(o)=r}}

routine enter_cs(mutex m){
req : {obs(O) ∗mutex(m, o) ∧ O(o) ≺ O}
acquire(m.l);
// Let l = l(m,R(o)−1) and ol = ol(m,R(o)−1)
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}
if(m.b){
m.w := m.w+1;
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt]{[m.v]}, Ot)}
wait(m.v,m.l)
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}}

else{ m.b := 1; nop; //Rule ChargeObligation
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}};
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}
release(m.l)
ens : {obs(O]{[O(o)]}) ∗mutex(m, o)}}

routine exit_cs(mutex m){
req : {obs(O]{[O(o)]}) ∗mutex(m, o) ∧ O(o) ≺ O}
acquire(m.l);
// Let l = l(m,R(o)−1) and ol = ol(m,R(o)−1)
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}
m.b := 0;
if(0<m.w){ m.w := m.w−1; m.b := 1; notify(m.v)
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}}

else{ nop //Rule DischargeObligation
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}};

release(m.l)
ens : {obs(O) ∗mutex(m, o)}}

Figure 45 Verification of the fair mutexes implementation shown in Figure 16 using the proof
rules in Figure 43 (part two of two).


	Introduction
	Transferring Obligations Through Channels
	Verifying Channels
	Transferring Permissions and Obligations Through Channels
	Conditional Channels
	Server Channels

	Transferring Obligations Through Notifications
	Verifying Monitors
	Transferring Obligations Through Notifications
	Fair Mutexes
	Fair Readers-Writers Locks

	Related Work
	Conclusion
	Proof of Conditional Server Channels
	Proof of Dining Philosophers
	Transferring Obligations Through Channels: Soundness Proof
	Syntax and Semantics of Programs
	Syntax and Semantics of Assertions
	Weakest Precondition of Commands
	Correctness of Commands
	Validity of a Configuration
	An Example Proof

	Transferring Obligations Through Notifications: Soundness Proof
	Syntax and Semantics of Programs
	Syntax and Semantics of Assertions
	Weakest Precondition of Commands
	Correctness of Commands
	Validity of a Configuration
	An Example Proof


