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ABSTRACT
The relationship between technology and healthcare due to the
rise of Intelligent Internet of Things (IoT) and the rapid public
embracement of medical-grade wearables has been dramatically
transformed in the past few years. Powered by IoT, technology
brought disruptive changes and unique opportunities to the health-
care industry including personalized services, tailored content, im-
proved availability and accessibility, and cost-effective delivery. De-
spite these exciting advancements in transition from clinic-centric
to patient-centric healthcare, many challenges still need to be tack-
led. The key to successfully unlock and enable this digital shift is
adopting a holistic architecture to provide high-level of quality
in attributes such as latency, availability, and real-time analytics
processing. In this paper, we discuss applicability of Intelligent
IoT based on Collaborative Machine Learning in healthcare and
medicine by presenting a holistic multi-layer architecture. This so-
lution enables real-time actionable insights which ultimately im-
proves decision-making powers of patients and healthcare providers.
The feasibility of such architecture is investigated by a case study,
ECG-based arrhythmia detection, based on deep learning and Con-
volutional Neural Network (CNN) methods distributed across end-
point IoT Devices, Edge (Fog) nodes, and Cloud servers.

CCS CONCEPTS
• Computer systems organization→ Real-time systems; Em-
bedded systems.
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1 INTRODUCTION
The healthcare and technology industries have been highly inter-
linked for a long time. However, Intelligent Internet ofThings (IoT)
tsunami is taking increasingly a big leap in almost all healthcare
processes. The popularity of miniature wearable devices, public
embracement of Artificial Intelligence (AI) and Machine Learning
(ML) as well as the rapid growth of Big Data Analytics are creat-
ing promising opportunities and unique prospects in customized
healthcare services.

The integration of IoT and Cloud Computing has created a para-
digm, the Cloud-based Internet ofThings, to partially resolve some
of the major challenges of IoT such as limited processing capa-
bilities and storage. Over past few years, many players have also
started to replace traditional business intelligence tools for process-
ing health data. In this context, companies have started leverag-
ing artificial intelligence-in particular, machine learning-into their
eHealth application.

In Cloud-based IoT eHealth model, the massive amount of data
needs to be transferred from the devices to the Cloud, demands a
considerable amount of available communication bandwidth.More-
over, Cloud Computing incurs large latency due to data exchange
between Cloud servers and devices. Therefore, Cloud-based IoT
model cannot meet the strict computing time requirement in la-
tency critical applications demanding real-time operation.Recently,
Edge or Fog computing has emerged as a solution to address the
drawbacks of Cloud-based IoT eHealth models. This architecture
enables us to keep up with the real-time responsiveness demanded
by eHealth applications by reducing the latency that arises when
senor readouts travels between endpoint IoT devices and Cloud.

Although AI is the key to unlock IoT eHealth potentials, effi-
cient techniques to distribute the intelligence across the entire IoT
network fromDevice, and Edge to Cloud is highly required. Indeed,
each of these elements (Device, Edge, and Cloud) plays an impor-
tant role in the technology ecosystem, despite the proliferation of
Edge and Cloud Computing today. Although this sort of vertical
integration and “Collaborative” machine learning and intelligence
across Device-Edge-Cloud brings tremendous benefits, it results in
several design and development issues. In this paper, we propose
a novel multi-layer architecture for IoT eHealth applications based
on the concept of Collaborative machine learning. We investigate
and examine traditional centralized Cloud-based IoT eHealth ar-
chitectures and discuss how a hierarchical Device-Edge-Cloud ar-
chitecture can be accurately leveraged to achieve low energy con-
sumption, and low latency. Finally, a real-time arrhythmia moni-
toring and classification system is implemented as a case study to
better demonstrate the details of the proposed architecture. The

https://doi.org/10.1145/3312614.3312644
https://doi.org/10.1145/3312614.3312644


COINS, May 5–7, 2019, Crete, Greece Farahani et al.

Remote monitoring | More complex ML algorithms | 
Integration with 3rd party applications

Real-time | Save bandwidth & energy | Lower 
transmission time | Lightweight ML

Edge/Fog CloudEndpoint IoT Device

Figure 1: Overall architecture of eHealth IoT: distributed in-
telligence.

feasibility of taking advantage of machine learning algorithms to
study the heart electrical activities has been reported in previous
contributions. To name a few of them, Linear Discriminant (LD)
[3], AdaBoost [12], Genetic Algorithm-Back Propagation Neural
Network (GA-BPNN) [7], Multi-Layer Perceptron (MLP) [5, 8], and
Support Vector Machines (SVM) [10, 15] have been successfully
employed to analyze ECG signals. However, to the best of our
knowledge, none of them has been tailored to address the require-
ments of IoT applications.

The rest of the paper is organized as follow: In Section II, we out-
line the proposed architecture. Then, we present the details of our
architecture using an ECG-based arrhythmia monitoring in Sec-
tion III. Evaluations and experimental results are discussed in Sec-
tion IV, while Section V concludes the paper.

2 OUTLINE OF THE PROPOSED
ARCHITECTURE

Fig. 1, outlines the general architectural elements of IoT which is
partitioned into three main tiers namely, IoT eHealth Device Layer,
IoT eHealth Fog Layer and IoT eHealth Cloud Layer.

IoT eHealth Device Layer: there is a vast variety of physical or
virtual health sensors such as ECG/EKG monitor, heart rate mon-
itor, glucose monitor, blood pressure monitor, body temperature
monitor, hemoglobin monitor, and activity monitor [2, 13, 14] to
monitor health conditions. The rich set of IoT health devices en-
ables individuals to monitor their health conditions in real-time,
and synchronize their data securely with the Cloud.

IoT eHealth Cloud Layer: currently the status quo approach em-
ployed in most intelligent applications provided by cutting-edge
solution providers is to store all sensor data in the Cloud and per-
form machine learning processing. The two worlds of IoT (incl.
eHealth IoT) andCloud experienced a swift and independent progress.
However, the complementary features of IoT and Big Data gener-
atedmany new opportunities and advantages.Themain drivers for
integration of IoT and Cloud are listed below:

• Communication: Cloud platform can be leveraged with the
help of IoT to deliver scalable domain-independent services
by providing appropriate service oriented domain media-
tors.

• Resource pooling: Physical resources of IoT can be integrated
in Cloud resource pool enabling us to allocate and share
themon-demand like regular Infrastructure as a Service (IaaS).
• Storage: IoT drives a real tsunami of big characterized by
volume, variety, and velocity. In this context, IoT benefits
from large-scale and long-lived storage of Cloud.
• Computation: Data processing is typically a very resource
hungry task.Therefore, IoT can benefit from virtually unlim-
ited processing resource of Cloud to aggregate data and ex-
ecute batch and/or real-time analytics on the collected data.

IoT eHealth Fog Layer: by emergence of more powerful and en-
ergy efficient wearable devices and the introduction of the Edge
Intelligence (EI) concept, the conventional Health IoT Cloud para-
digm is transforming. In this context, we present a novel Edge/Fog
driven computing architecture for Health IoT. The major benefits
of Edge Intelligence include:

• Real-time: decisions can be takenmore quickly and efficiently
by positioning machine learning algorithms in the endpoint
IoT devices or Edge nodes.
• Roundtrip delay: placing local decision makers in the Device
or at the Edge results in smaller roundtrip delay on decision-
making.
• Communication cost: rather than raw data, by a pre-processing
phase at Edge, only important feedbacks, alarms, or deci-
sions are transferred to the Cloud servers. This approach
minimizes communication and message overhead, resulting
in lower communication costs.
• Local policy: local regulations and access control policies
can be applied better during data processing.

Although, migrating more intelligence to Edge significantly im-
prove many tasks, several important questions arise here. In par-
ticular, how to make a tradeoff between these extremes (Edge and
Cloud) and deploy advanced machine learning algoritums across
the aforementioned layers. To address this, we introduce the Col-
laborative Intelligence concept which enables us to have the best
of different worlds. Collaborative Intelligence is a novel concept
which considers all major aspects of Device-Edge-Cloud Intelli-
gence enabling us to have the best of different worlds.The key idea
of Collaborative Intelligence is to distribute the intelligence across
Device-Edge-Cloud to achieve an optimal solution while satisfying
the given constrations.

3 CASE STUDY: ARRHYTHMIA DETECTION
To justify the proposed multi-layer collaborative intelligence, we
present a novel online arrhythmia detection as a case study. Due to
capability of Artificial Neural Networks (ANN) to achieve higher
performance, they have become progressively popular as the core
machine learning technique in several applications such as classifi-
cation. Therefore, in this case study, we rely on ANN as the core of
our intelligence. In particular, we use a shallow feed-forward neu-
ral network as machine learning on-chip and a Convolutional Neu-
ral Network (CNN) as the core intelligence at the Edge.This flexible
distributed solution enables us to compromise between Accuracy,
Communication latency (transmition time), Processing time, and En-
ergy consumption. For instance, a lightweight machine learning
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on-chip algorithm has a lower accuracy compared to complex ma-
chine learning algorithms at the Edge and in the Cloud. However,
it minimizes the communication latency and energy consumption
for data transmission acrossDevice-Edge-Cloud. On the other hand,
heavy computation tasks such as training the machine learning
models are fully performed in the Cloud servers which have unlim-
ited processing, memory, and storage resources. Machine learning
models at the Edge/Fog nodes can be periodically updated by the
Cloud to enable personalization in the decision making consider-
ing the unique features of each patient.

3.1 Machine Learning on Chip
Formachine learning on-chipwe utilize a shallowANNwith amin-
imumnumber of features to keep the final algorithm less computational-
intensive, so it can be ported to a low-end IoT device to perform the
detection on-demand. To detect the abnormal activity of the heart,
we combined the abnormal classes of ECG signals (supraventric-
ular ectopic beat (S), ventricular ectopic beat (V), fusion (F), and
unknown beat [1]) into one group, so we trained our model by the
input of two groups of data: normal beats and abnormal beats.

3.1.1 Signal Pre-processing. Signal pre-processing is an impor-
tant task prior to feature extraction to remove unwanted noises
from ECG recordings. In this study, the following steps have been
applied to ECG signals:
• DC noise removal: first, the dc noise of the ECG signals are
removed by subtracting the mean of the ECG signals from
each sample point. The output of this step is an ECG signal
which its amplitude is pulled back to the zero level.
• High frequency noise removal: high frequency noise can be
appeared in ECG signals due to several phenomena such
as patients muscle contractions during ECG monitoring. To
remove high frequency noises, we use a low-pass filter (LPF)
to attenuate signals with frequencies higher than the cutoff
frequency.
• Low frequency noise removal: several factors such as respi-
ration of the patient can contribute to low frequency noises.
To tackle low frequency noises, we exploit a derivative based
(high pass) filter to attenuate unwanted frequencies from
the ECG signals.
• Power line interference removal: as studied in [4], power
line interference that has 60Hz pickup and harmonics can
appear in the ECG signals.Therefore, to handle this unwanted
noises, we use a band-stop filter to remove those harmonics
from the ECG signals.

3.1.2 Feature Engineering. Because the objective of this study
is to implement the ECG signal processing on an IoT wearable de-
vice, the feature extraction was performed in a way to obtain the
lowest possible number of working features to train an ML model
effectively.

A typical normal ECG signal is depicted in Fig. 2. First, the R-R
intervals [3] are computed according to the time difference of the
following beats similar to the work of Mondéjar-Guerra et al. [10].
This includes four features [10]:
• Pre-RR: backward time difference of two consequent heart-
beats.

R

S
Q

TP

QT interval

PR interval

ST segment

QRS
complex

Figure 2: A typical normal ECG wave.

• Post-RR: forward time difference of two consequent heart-
beats.
• Local-RR: the average of 10 consequent Pre-RR values.
• Global-RR: similar to Local-RR but for last 20 minutes in-
stead of last 10 values.

In addition to these 4 features, we could employ their normal-
ized values as separate features to generate 8 features as a total.

Second, Mondéjar-Guerra et al. [10] proposed a novel morpho-
logical descriptor to extract 4 features of ECG signals, which are
calculated based on the distance between the R-peak and four points
of the beat [10]:
• morph1: max(beat[0, 40]).
• morph2: min(beat[75, 85]).
• morph3: min(beat[95, 105]).
• morph4: max(beat[150, 180]).

Another candidate is higher-order statistics (HOS) algorithm,
which groups the beats into 5 subgroups and applies HOS tech-
niques on each one to compute skewness and kurtosis [10]. Thus,
this algorithm generates 10 features. Higher order statistics has
been incorporated successfully in the previous studies to extract
features of the QRS complex of ECG signals [11].

Table 1 shows the tested combination of these features and the
number of features in each test. This approach helped us to gener-
ate a fewer number of feature, which consequently, requires less
computational resources on the low-end devices in comparison to
the feature extractions found in the literature.

3.1.3 Artificial Neural Network. as mentioned, based on sev-
eral experiments, a shallow artificial neural network has been se-
lected for machine learning on chip. Fig. 3 illustrated the architec-
ture of the ANN as an ECG classifier. The input layer processes the
features X and relay them to the hidden layers. At the latest layer,
there is one neuron for each class ci and the corresponding output
Zci is expressed as:

Zci (h,θ) =

Nhl+1∑
j=1

h
(l)
j θ j,i ,

1 ≤ i ≤ Nc ,

1 ≤ l ≤ NL , (1)
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Table 1: Combination of feature extraction algorithms.

Model No. Combination Number of Features Total Features
1 HOS + R-R + Norm R-R 10 + 4 + 4 18
2 R-R + Norm R-R + Custom morph 4 + 4 + 4 12
3 R-R + Custom morph 4 + 4 8

S
o
f
t

m
a
x

X
P(ci)

hL
Nh+1

1,1
h1 

Zc1

ZcNc

Figure 3: Machine learning on-chip.

where h(l)j is the output of the activation function of neuron j in
the hidden layer l and θ j,i is the weight from neuron j to the output
class ci , NL is the number of hidden layers, and Nc is the number
of ECG classes. Note that the outputs of ANN are connected to
a softmax activation function to compute the probability of each
class P(ci ):

P(ci |h,θ) =
eZci (h,θ )∑Nc
j=1 e

Zcj (h,θ )
(2)

It is worth mentioning that finding an appropriate number of
hidden layers and number of neurons in each hidden layer is very
important in order to achieve a good accuracy, while keeping the
Power-Performance-Area (PPA) overhead low.

3.1.4 When to Switch from Device to Edge. as mentioned be-
fore, the output of the ANN as our on-chip ECG classifier is con-
nected to a softmax function. The probability vector obtained at
the end of the ANN network can be interpreted as the model con-
fidence scores. If P(ci ) estimates the certainty of the ANN model
for class ci , we can decide to accept the predicted result or reject
the machine learning on-chip opinion and ask the Edge node to
provide its opinion as follow:

Accept on-chip opinion i f maxi ∈n(P(ci |h,θ) ≥ τ

Reject and ask Edge i f maxi ∈n(P(ci |h,θ) < τ
(3)

Notice that the decision threshold τ is sensitive to Covariate
Shift. As dataset change, the distribution of ECG features used as
predictors (covariates) shifts from the training phase to the produc-
tion phase. This implies that when the mean of the data is largely
differ from the training set, ANN cannot provides high confidence
scores. To tackle this critical issues, it is very important to accu-
rately perform the pre-processing phase to calibrate the input fea-
tures.

3.2 Edge Intelligence
Leveraging Edge devices enables delay-sensitive mission-critical
applications to make online real-time decisions. Patient anomaly

227x227x3
55x55x96 27x27x256 13x13x384

13x13x384 13x13x256

4096 4096

Class number

Conv2
Conv1

Input

Conv3

Conv4 Conv5

FC1 FC2

FC3

Figure 4: CNN layers for intelligence at the Edge.

recognition and heath monitoring applications can be placed in a
category in which transferring a huge volume of streaming health
data (such as ECG signals) on wireless networks. Development of
more powerful and energy efficient System-on-a-Chip (SoC), in
particular for mobile devices, allows more computing tasks and
more complex machine learning algorithms to take place on the
Edge nodes. Convolutional Neural Networks (CNN) are a class of
deep neural networks that have been proven to be very effective in
several areas such as image classification. Inspiring by this obser-
vation, we extending ECG signal processing to the Edge in addition
to shallow footprint machine learning on-chip. To do so, we exploit
a CNN to be able to improve the performance of the arrhythmia
detection.

3.2.1 Pre-processing. both 2D CNNs and 1D CNNs can be used
for the classification of ECG signals. In this study, we rely on 2D
CNNs to be able to identify arrhythmia. Since the input to a CNN
is an image, we transform each beat of the ECG signals to an im-
age of size 227-by-227-by-3. Deep learning and in particular im-
age processing based on CNN is typically relevant when there is a
huge amount of data available. As will be discussed later, the ECG
benchmark database is imbalanced, meaning that classes are not
represented equally. To overcome these issues, we use resampling
and data augmentation techniques. We will ”augment” our ECG
classes via a number of random transformation of images such as
rotation, zooming and cropping. This helps to tackle overfitting is-
sues and leads to better generalization.
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3.2.2 CNN Architecture. CNNs are inspired by the biological
process of visual cortex inwhich each neuron is sensitive to stimuli
of just a confined area of an image. Note that an individual area can
partially overlapwith the area of near neurons to cover and process
the whole image. One of the key advantages of CNN is that they do
not rely on traditional hand-engineered features. This eliminates
the need of having any prior knowledge in feature engineering to
be able to design an efficient image processing system.
• CNN layers: in this study, to identify arrhythmia, we use
a CNN consisting of five 2D convolution layers, three max
pooling layers, and three fully connected layers. Fig. 4 illus-
trates our CNN architecture including the filter size, stride,
and padding. Note that our CNN model is based on Alexnet
[6].
• Activation function: the most common activation functions
are Sigmoid, Tanh, and the Rectified Linear Unit (ReLU). In
general, Sigmoid has two shortcomings. First, Sigmoid po-
tentially can saturate and thus kill gradients. Second, the
output of Sigmoid is not zero-centered. Unlike Sigmoid, Tanh
is zero-centered, however it tends to vanish gradients. To
tackle the aforementioned issues, in this study, we use ReLU
activation in neurons.
• Regulization: there are several standard ways to improve
generalization and prevent overfitting in neural networks.
In this study, we leverage the Dropout mechanism i.e., ig-
noring some random neurons in a particular forward and
backward pass during the training phase.
• Covariate shift: to handle internal covariate shift in the CNN,
we apply batch normalization by normalizing the output of
the previous activation layer. This approach enables each
CNN layer to learn more independently of other layers.

3.3 Big Data Analytics in the Cloud
Although we outsourced the decision-making task from the Cloud
nodes to endpoint IoT devices and Fog nodes, it has been proved
that still training a deep machine learning is a huge computational
burden for such devices. Considering this fact, training the ma-
chine learning on-chip model as well as CNN-basedmachine learn-
ing model at the Edge are fully positioned in the eHealth Cloud
nodes. The Cloud also empower us to build progressive machine
learning algorithms over time customized for each patient. Ma-
chine learning models are periodically trained and updated over
time with the new collected data and feedback. Next, the extracted
model weights for each and every layer are sent back to the cor-
responding endpoint and Edge devices to provide online real-time
decisionmaking. Such periodical monitoring and re-training of the
machine learning models enable personalization in the decision
making tailored for each individual patient. In addition, Cloud im-
proves the understanding of health providers of the evolutionary
changes of diseases in each patient.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
In this study, the well-known MIT-BIH database is used to train
an ML model to predict the abnormal situations in heart electrical
activities [9]. This database contains 48 ECG records of about 30

minutes, sampled at 360 Hz with 11-bit resolution from 47 differ-
ent patients, and as a result, the database contains 110,000 beats
approximately. Unfortunately, the database is highly imbalanced,
and this fact is one of the important challenges in training an ML
model with a good level of precision and recall using this data-
base. An approximation of 90% of the beats belongs to the normal
class, and only 3%, 6%, and 1% of the beats are available in the
supraventricular ectopic beat (S), ventricular ectopic beat (V), fu-
sion (F) classes, respectively. As recommended by the AAMI, the
records with paced beats (102, 104, 107, and 217) should not be con-
sidered. The remaining records were divided into two sets using
the inter-patient scheme [3], for the purpose of training and vali-
dation. Each dataset contained 22 patient with similar proportions
of beat types.

To evaluate the combination of features and choosing the proper
classificationmethod, we trained various classifiers using the train-
ing feature set and tested them using the evaluation set.The best re-
sults in the previousML studies ofMIT-BIH databasewere achieved
using SVM models [10], so to compare our results, we trained an
SVM model similar to the work of Mondéjar-Guerra et al. [15].

4.2 Evaluation Metrics
In machine learning algorithms, precision or positive predictive
value is the ratio of correctly predicted classes (here normal or
abnormal classes) to the total predicted positive observations of
that class. In other words, precision says howmany of the selected
objects were correct. Recall (Sensitivity) is the ratio of correctly pre-
dicted positive observations to all the observations in that actual
class, which means howmany of the objects that should have been
selected were actually selected. F1 score is the weighted average of
precision and recall. Accuracy is a ratio of correctly predicted ob-
servations to the total observations.

There are well known categories for the output of a classifica-
tion algorithm: True Positives (TP), True Negatives (TN), False Pos-
itives (FP), and False Negatives (FN). With these in mind, the defi-
nition of the above metrics would be as follow:

Accuracy =
TP +TN

TP + FP + FN +TN
,

Precision =
T

TP + FP
,

Recall =
TP

TP + FN
,

F1 Score =
2 × (Recall × Precision)

Recall + Precision
. (4)

4.3 Evaluation
Due to the final goal of the current project to port the code to an IoT
wearable device in order to detect dangerous heart performance,
we combined the 3 classes of abnormal beat types into one class, so
we had two groups of beats to label the data (instead of 4): normal
and abnormal beats, in which the abnormal beat class comprises
the S, V, and F beats. Figure 5 represents the waveform of these 2
classes. This also helped us to overcome the problem of the imbal-
ance of the studied database. This 2-class dataset was the input of
the ANN model.
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Figure 5: 2 classes of ECG signals: normal and abnormal.

Table 2: Confusion Matrix of the 4-class ANN model no. 1.

Predicted N Predicted S Predicted V Predicted F
Actual N 44019 0 14 0
Actual S 1817 0 233 0
Actual V 529 0 2691 0
Actual F 314 0 74 0

Table 3: Precision of the 2-class models.

Model no. 1 Model no. 2 Model no. 3
Normal 0.95 0.95 0.95

Abnormal 0.92 0.86 0.98

Table 4: Sensitivity of the 2-class models.

Model no. 1 Model no. 2 Model no. 3
Normal 0.99 0.99 1.00

Abnormal 0.60 0.56 0.61

To obtain the ANN model configuration, an iterative approach
was employed to test various configurations and measure the out-
put error. The optimum configuration (both in error and computa-
tional resource requirement) contained three layers with 100 neu-
rons in the hidden layer, Rectifier Linear Unit (reLU) activation
function, a constant learning rate of 0.001, and α = 0.0001. The
trained models were used to detect the type of beats in the 4-class
evaluation dataset. We used the ANN model to train the state-of-
the-art 2-class models. The trained models were used to detect the
type of beats in the 4-class evaluation dataset.

The precision of the 2-class ANN models is listed in Table 3 for
each of the 2 classes of beats. Similarly, the sensitivity of the trained
models is represented in Table 4.

The model trained with 8 features (model no. 3) showed a high
level of accuracy, precision, and sensitivity in comparison to the
other models, and it has a fewer number of features, which results
in a less computational intensive code to be ported to the low-end
IoT device.The correlation of these 8 features is presented in Figure

Figure 6: Correlation matrix of 8 selected features to be de-
ployed to the IoT device.

Table 5: Confusion Matrix of the 2-class model no. 3.

Predicted normal Predicted abnormal
Actual normal 43947 86
Actual abnormal 2216 3442

Table 6: Performance of the 2-class ANN model no. 3.

Precision Sensitivity F1-score
Normal 0.95 1.00 0.97

Abnormal 0.98 0.61 0.75
Avg / Total 0.95 0.95 0.95

6. Table 5 shows the confusion matrix of the output of the evalu-
ation of this model, and the precision, sensitivity, and F1 score of
each of the two classes are represented in Table 6. The achieved ac-
curacy of the trained model evaluated on the test dataset is 95%,
which is higher than the similar studies performed using tradi-
tional SVM models [10, 15]. In comparison to those studies, we
combined the beats categories regarding the final application of
the code, instead of using an ensemble of trained models, which
is not suitable for low-end IoT devices due to their computational
power. The overall accuracy of similar models is 94% (ensemble of
SVMs to overcome the problem of the imbalance of database) with
the precision of 66% and sensitivity of 70% in thework ofMondéjar-
Guerra et al. [15], or the accuracy of 88% with the precision of 60%
and sensitivity of 86% in the work of Zhang et al. [10]. We also clas-
sified the ECG signals using the introduced CNN in an edge node
to be able to evaluate its performance. The results show that accu-
racy and sensitivity of the CNNmodel is 98% and 96%, respectively
which are very promising.

5 CONCLUSIONS
The massive wave of Intelligent IoT-based innovation can extend
the boundaries of healthcare outside of hospital settings by trans-
forming the hospital-centric to patient-centric ecosystem. In this



Towards Collaborative Machine Learning Driven Healthcare Internet of Things COINS, May 5–7, 2019, Crete, Greece

paper, we proposed a holistic hierarchical eHealth architecture in-
cluding wearable Device layer, Edge/Fog layer, and Cloud layer to
continuously monitor health related information of subjects and
provide real-time insights to health providers anywhere at any
time. The key advantage of such a collaborative solution and in-
telligence is to compromise between Accuracy, Communication la-
tency (transmition time), Processing time, and Energy consumption.
We also presented a case study to provide an illustrative example
on how to deploy advanced machine learning techniques such as
Convolutional Neural Network to this novel architecture.
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