
Object to NoSQL Database Mappers (ONDM):
A systematic survey and comparison of frameworks

Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, Wouter Joosen

imec-DistriNet, KU Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract

Context: Software applications frequently interact with database systems to persist and retrieve objects. Object-
mapping frameworks address (i) the bi-directional conversion of data between object and target database and (ii)
provide a programmatic interface for querying and storing data. The rise of NoSQL databases poses challenges
beyond object-relational mapping (ORM) frameworks to abstract from various data models and non-standardized
API’s, but also take into account the different database capabilities (e.g. unsupported query operators, data ordering).
Objective: A systematic survey study of existing Object-NoSQL data mapping (ONDM) frameworks. Specific focus
is given to the level of abstraction of data and operations to multiple database technologies, as a means to limit
vendor and technology lock-in and an enabler for multi-store and polyglot architectures. Additional attention is paid
to mapping strategies that are specific to NoSQL databases (e.g. object embedding, schema flexibility).
Method: A systematic search methodology identifies all relevant mapping frameworks (in total 342 frameworks).
Subsequently, a subset of ONDM frameworks is selected and systematically compared in terms of criteria of: database
support, interface and query functionality, architecture and software coupling. Secondly, we provide an in-depth
comparison of object-oriented mapping strategies for classes, inheritance, relationships, and attribute types to NoSQL
data models.
Results: ONDM frameworks are most prevalent in Java, Ruby, Python, and overall 54 frameworks support multiple
NoSQL databases. Interfaces are frequently standardized and commonly feature a uniform query language and even
native DB query mapping. However, database portability may be hindered due to non-uniform abstractions. As for
mapping strategies, current frameworks do not fully exploit NoSQL modeling potential, such as (i) the embedding
of relationship data within referring objects’ records, (ii) mapping at the individual object-level vs. class-level, and
lacking (iii) collection normalization despite being supported for associations or when using relational databases.
Conclusion: The study consolidates knowledge on available ONDM frameworks, and applied object-document,
object-graph, and object-column mapping patterns. The study can guide practitioners in framework selection, and
pinpoints areas of future development and research in this domain, most notably towards improved support for flexi-
ble, NoSQL-aware mapping strategies.

Keywords: Object-NoSQL mapping, Object database mappers, NoSQL mapping patterns, NoSQL abstraction

1. Introduction

Many contemporary software applications involve
object-oriented programming languages and a relational
database. The object-oriented paradigm features con-
cepts such as objects, classes, attributes, specializa-
tion or inheritance, and associations, whereas the rela-
tional database paradigm involves tables consisting of
records, columns with data, primary keys and foreign
keys. When objects are stored in a relational database,
these object-oriented concepts have to be translated into

the database paradigm [1, 2, 3, 4], and vice versa when
they are retrieved again from the database.

This undertaking is not straightforward due to the
so-called object-relational impedance mismatch prob-
lem [5] which is an umbrella term for a number of tech-
nical and conceptual issues of bridging both paradigms.
For example, many alternative strategies exist to map
associations and inheritance to database tables [3, 4],
each with their own benefits and drawbacks. The sim-
ple act of querying also presents the possibility of in-

Preprint submitted to Journal of Information Systems February 21, 2019

termixing database query languages within the appli-
cation language, which leads to database vendor or
technology lock-in, and development maintainability is-
sues when the database schema evolves [6]. To ad-
dress these issues, object-relational mapping (ORM)
frameworks have been created and are used extensively
in practice [4]. These frameworks (i) handle the bi-
directional conversion between objects and the rela-
tional data model, (ii) manage persistence to the target
database, and (iii) provide software developers with a
uniform data access interface to store and query objects
programmatically. As such, these frameworks aid in
decoupling applications from database-specifics which
benefits maintainability, and allows developers to port
applications to different databases more easily.

Although it has been dominated for many years by the
relational paradigm, the landscape of database systems
today has evolved drastically with the rise of NoSQL
databases [7]. NoSQL databases provide dedicated sup-
port for a wide range of fundamentally different data
models, many of them focusing on attaining levels of
horizontal and elastic scalability, and schema flexibil-
ity that can not easily be accomplished in relational
databases [8, 7, 9]. NoSQL databases can be catego-
rized according to their supported data model, and are
typically categorized in document stores, graph stores,
column stores and key-value stores [8]. The database
functionality provided is closely tied to the data model
used and ranges from simple insert and read operations
on key-value pairs, to graph traversal, or even analytical
queries on large data sets (e.g. MapReduce) [9]. As dif-
ferent databases commonly address specific use cases,
there are currently over 225 NoSQL databases in exis-
tence [10].

In analogy to ORMs, Object-NoSQL database map-
ping (ONDM) frameworks provide a uniform inter-
face and uniform data model for various NoSQL
databases [11]. Again, software becomes more main-
tainable as database specifics and the risk of technol-
ogy or vendor lock-in are avoided. However, given
the larger discrepancy between source and destination
data models, the issues of impedance mismatch in gen-
eral become more stringent as it is in many cases un-
clear which data mapping strategies are most efficient
at bridging the gap between source and destination data
models [12]. The emergence of ONDM platforms fur-
thermore is fairly recent and different platforms are at
varying levels of maturity which makes the adoption of
an ONDM platform for practitioners a non-trivial en-
deavor.

This study presents the results of an in-depth technol-
ogy survey involving 342 currently-existing and emerg-

ing object-mapping frameworks (ORM, ONDM), and
systematically compares the identified object-NoSQL
mapping frameworks on broad aspects of: database sup-
port, programming interface (including query support),
and their architectural model. Secondly, specific atten-
tion is paid to how these frameworks implement object
mapping to the destination NoSQL data models by per-
forming an in-depth analysis of the implemented object-
NoSQL mapping strategies.

This study gathers and consolidates the knowledge
on object-NoSQL mapping frameworks and as such its
direct contributions are to (i) aid practitioners in their
choice and use of a framework, (ii) further the develop-
ment of these frameworks, and (iii) steer model-driven
research in the domain of NoSQL mapping patterns.

In addition, recent evolutions have seen the emer-
gence of ONDM platforms that support multi-storage,
hybrid or federated storage architectures, i.e. storage
configurations in which different database technologies
and providers are combined [13, 14, 15, 16, 17, 18, 19,
20]. The success of such systems depends on the quality
of the algorithms to map objects to and from different
database target models efficiently, and as such the re-
sults of this survey aid in highlighting the research gaps
towards this vision of integrated and adaptive multi-
cloud data management.

The remainder of this paper is structured as fol-
lows. Section 2 provides the necessary background
on NoSQL databases, the object-relational impedance
problem, and object-NoSQL mapping patterns. Sub-
sequently, Section 3 discusses the survey study de-
sign and applied research methodology. Sections 4 de-
tails the search results and framework selection. Next,
Section 5 provides a systematic feature comparison of
the frameworks, whereas Section 6 compares applied
object-NoSQL mapping strategies.

Section 7 discusses the findings and provides guide-
lines for framework and mapping pattern selection, and
also describes future research challenges. Section 8 dis-
cusses related work , whereas Section 9 concludes.

2. Background

Section 2.1 first provides the necessary background
on object-relational mapper (ORM) frameworks and
the object-relational impedance mismatch problem.
Then, Section 2.2 shortly outlines the different NoSQL
database technologies and data models. Next, Sec-
tion 2.3 explains the NoSQL commonalities at the basis
of novel object-mapping strategies and the challenges.
Section 2.4 discusses the emergence of Object-NoSQL
mapper platforms (ONDMs) and motivates this survey.

2

Legend

Framework

Person

+ String: name
+ Set<Animal>: pets

Animal

+ String: name
+ Person: owner

1
0..*

Repository

+ DataStore database
+ Set<Objects> managedObjects

«class»
Object
Mapper

«interface»
Query API

«class»
Query

Translator

«interface»
Mapping

Strategies

Framework Application DB Adapter

Tables/Rows

Documents

Graphs

Database Support

uses

Application Logic MySQL Adapter

+ MySQLClient driver

Adapters

MongoDB Adapter

+ MongoClient driver

Neo4j Adapter

+ Neo4jClient driver

MySQL Adapter

+ MySQLClient driver

uses extends

Figure 1: Object-database mapper architecture based on the repository pattern.

2.1. Object to database mapping

The object-oriented paradigm features concepts such
as objects, classes, attributes, specialization or inheri-
tance, and associations, whereas the relational database
paradigm involves tables consisting of records, columns
with data, primary keys and foreign keys. When ob-
jects are stored in a relational database, these object-
oriented concepts have to be translated into the database
paradigm [1, 2, 3, 4], and vice versa, when they are re-
trieved again from the database.

The discrepancy between source model (objects) and
target model (e.g. tables) gives rise to the so-called
object-database impedance mismatch problem [5]. Spe-
cific to relational databases, four major problems cate-
gories have been pinpointed in terms of the mapping
strategy: these mappers have to deal with paradigmatic
differences in terms of (i) inheritance (or specialization),
(ii) relationships (or associations), (iii) complex data
types, and (iv) embedded classes [1, 5].

Due to the complexity involved in this, dedicated
mapper frameworks are commonly used in contem-
porary software systems to decouple application logic
from database specifics. To this end, object-relational
mapping (ORM) frameworks provide a uniform data
model and interface, which shield developers from the
complexity involved in persisting and retrieving objects
to and from the database.

Object mapping frameworks are commonly struc-
tured according to one of two alternative architectural
patterns: (i) the active record pattern and (ii) the reposi-
tory pattern [21]. The active record pattern involves ex-
tending domain objects with mapping and query logic
by specializing from an ORM class. As a consequence,

individual objects more closely represent the database
record(s). In contrast, the repository pattern separates
domain classes from access logic by using a repository
to persist and query objects, and thus, objects are de-
coupled more strongly from their representation in the
database. A prevalent example of the repository pattern
is the standardized Java Persistence API (JPA) [22] for
data persistence and retrieval in Java that relies on an
EntityManager.

Figure 1 depicts a generic model of a object mapping
framework based on the well-known repository pattern.
It depicts a client application that defines a number of
domain classes. Upon persistence, domain objects are
forwarded to the framework’s Repository and then
to database-specific DB Adapters that implement an
Object Mapper. Similarly, query operations are ex-
posed by the Repository’s uniform interface which is
implemented by each supported database via an adapter.
The database adapter implements a QueryTranslator
that handles translation from the uniform query lan-
guage to the native database query language.

The architecture and applied object to database map-
ping patterns, which are well-studied for relational
databases, are challenging in the emerging and diverse
context of NoSQL databases.

2.2. NoSQL databases

Relational databases are highly focused on struc-
tured data adhering to a strict schema, and preserv-
ing data consistency through transactional properties
(ACID) [8]. In practice, application data is often
too heterogeneous to model for in advance, or does
not remain compliant with strict schema(s) over time.

3

The lack of flexibility in relational databases leads to
complex issues of schema evolution and data migra-
tion. In addition, scalability is hindered by transactions
and properties of Atomicity, Consistency, Isolation and
Durability (ACID) [8, 7, 9].

NoSQL databases represent an alternative to rela-
tional databases and generally aim to tackle the draw-
backs of relational databases in terms of schema rigid-
ity, but also the limitations to horizontal and elastic scal-
ability [23, 24, 25] and support specific data models
(e.g. JSON documents). In practice, these database sys-
tems have non-standardized interfaces, in part due to the
heterogeneity in data models.

Today, we observe over 225 distinct NoSQL database
technologies, which are broadly categorized in terms
of the supported data model: (i) document stores,
(ii) graph stores, (iii) key-value stores and (iv) wide-
column stores [10, 9]. Wide-column stores such as
Apache Cassandra [26], Apache HBase [27] and Google
Bigtable [28] resemble relational databases due to their
table structure. Key-value and document stores al-
low a flexible data format such as JSON. However,
key-value stores typically abstract from the type of
value stored, therefore featuring simple query function-
ality [9]. Graph stores focus on graph data and specific
query operations of traversal and clustering.

Next to the data model, the API and query language
are generally non-standardized and these provisions are
typically more limited than traditional query languages
such as the SQL. In practice, we now have dedicated
storage systems tailored to specific use cases. Time
series data is for example stored into database sys-
tems which can order the data, such as the column
stores Apache Cassandra [26] and HBase [27]. Mon-
goDB [29] on the other hand is a document store that
does not impose an ordering of the records and is thus
unsuited for such a use case.

2.3. Object-oriented mapping to NoSQL databases

In NoSQL databases, especially aggregate-oriented
databases such as document stores, the mapping of
object-oriented concepts is broadened by two common
aspects [9]:

• Aggregate data model: The object can be mapped
entirely to, for example, a single record formatted
in JSON [30, 31, 32].

• Flexible schema: Individual records do not neces-
sarily have to comply with a rigid table structure
and its schema [9]. Objects can be mapped indi-
vidually at the object-level instead of solely at the

class-level. Additionally, object records from dif-
ferent classes can be grouped in the same table.

In each next section, we explain how these concepts
go beyond traditional object-relational mapping strate-
gies, which nonetheless remain applicable.

2.3.1. Mapping object attributes and collections
Attributes have to be mapped, together with their data

type. Data types such as a String, TimeStamp and
Integer have counterparts in database systems. How-
ever, attribute types such as Set, List, and Array do
not have database counterparts in relational databases.
As such, an array has to be either (i) embedded by: se-
rialization within a single column (MField), into multi-
ple fields (MFields+), or (ii) normalized and referenced
into additional rows (MRows+), or in a new join table
(MTable) [33]. We will later refer to these tactics gener-
ally as embedding or referencing. Tactics vary accord-
ing to the selected target database technology.

Graph nodes and edges. In the case of graph stores,
there is no concept of tables, instead there are nodes and
edges (i.e. relations). An object’s key for example can
be modeled as a node, whereas its attributes are typi-
cally node properties or alternatively modeled as edges.
Typically, only relationships are modeled as edges fea-
turing labels with additional information on the relation.
Furthermore, when mapping ordered data the order can
be preserved at the edge with a property or within the
embedded property.

:hasPet :hasPet

:husband

:wife
Name: John Name: Maria

:owner
Name: Bella
Age: 7

Person Person

Animal

Figure 2: Graph vertices and edges, both containing properties.

Figure 2 depicts a data model in Neo4j [34] com-
prised of nodes and directional edges between nodes
that represent relationships. The nodes, or vertices, and
edges can store properties as key-value pairs.

Document stores and embedding. In aggregate-
oriented databases such as document stores, the record
is a flexible JSON structure. Complex data types such
as a List can be mapped as an array and embedded

4

Addr

Manager

+ String: name
+ Int: salary

Employee

+ String: name
+ Set<Address>: loc

Address

+ String: GPS
+ Int: zipCode

Developer

+ String: name
+ Int: salary

Employees

Addresses

EmpAddr

Addr.

Employees
Managers Developers

Addr

Employees

Managers

Addr. Data

Address
References 1..*

1..*

Legend

Mapping Embed Relation

Domain class DB Data Document (a) Join table (b) Rows

(c) Embed in field

(d) Embed Ref.

Addresses

(i2) Concrete-table

Managers

(e) Embed, Ref.

Class Field
Discriminator

(i1) Single-table

Addr. Data +
References

(i3) Joined-table

Employees Managers Developers

11

11

(s)

Employees

Relationship mapping Inheritance mapping

1..*

1..*

1..*

1..*

Figure 3: Object-NoSQL mapping patterns for relationships and inheritance.

within the record (MEmbed). The strategy is comparable
to storing the array into multiple columns (MFields+), and
naively comparable to serialization (MField). In contrast
to relational databases, the schema does not need to
be modeled in advance and can grow dynamically as
an array or map of fields and values, without affecting
other record structures already present in the same
table.

Referencing and normalizing collections. However,
embedding is undesirable when the array in a docu-
ment grows too large or when it a subset of data is
updated frequently independent of the parent. In cer-
tain database technologies, an update to a subset of
record data may overwrite the entire, potentially large,
record [35]. In such cases, collections are best mapped
using relational tactics into additional rows (MRows+) in
the same table or a join table (MTable).

2.3.2. Mapping object relationships
Attribute types can also be of a (user-defined) class

type, in which case there are two scenarios for the at-
tribute object: either (i) the object is owned and used
solely by the parent object, or (ii) the object exists inde-
pendently and represents a relationship.

References and join tables. Relationships have no
counterpart in relational databases and records are typi-
cally associated with references on foreign keys [33]. In
the case of one-to-one relationships, either record can
store a reference. Similarly for one-to-many relation-
ships, the many-side can store the reference in a single
field or otherwise a join table is created.

Embed references. In NoSQL databases featuring a
flexible data model and schema, records can store a

nested array of references at either side of the relation-
ship. Such tactics may be beneficial for performance by
avoiding a potential row scan on the one-side table for
foreign keys matching its primary key.

Embed relationship data. Since references can be em-
bedded at either entity, theoretically so can parts of the
relationship data. Moreover, the referred data can still
exist independently of the referring object, albeit with
parts of its data copied and embedded within records
that refer to it. Such tactics benefit read performance,
however negatively affect consistency and update oper-
ations.

Polymorphic associations. Additionally, objects of var-
ious class types, typically similar or connected in some
manner, can be mapped to the same table (i.e. record
collection). On record retrieval, the framework has to
determine which object type it belongs to using discrim-
inator fields.

2.3.3. Mapping classes and inheritance
In object-oriented programming languages, classes

are structured hierarchically, each class having a par-
ent class and various child classes. Three common
relational strategies exist for persisting inheritance re-
lationships: single-table (an entire inheritance tree is
encoded in one table), class-table (a table for each
class), or concrete-table (one inheritance path is one ta-
ble) [4, 22]. Figure 3 depicts these strategies applied
to an object model. In case of the single-table strat-
egy, various class records exist in the same table and are
differentiated by a discriminator column. JDO [36] fea-
tures four inheritance mapping strategies; two similar
to class-table and concrete-table; and two novel strate-
gies superclass-table and subclass-table. The latter ei-

5

ther maps the class information to fields in the parent’s
table, or the child’s table.

Trade-offs exist between each tactic. For example,
joined-table leads to costly join queries between tables.
In case of the single-table strategy, a search query that
involves a specific child type leads to a scan of the entire
table. Among the inherited fields are also associations
or collections, which the child class in turn can map dif-
ferently than the parent.

2.3.4. Novel object mapping strategies
In case of object mapping to databases featuring a

flexible data model and schema, we summarize the
novel object mapping strategies as:

S1: Referencing or embedding. Relationship and col-
lections can be aggregated and embedded within
the parent document as (i) references, or (ii) em-
bedded copies of the referred data, or (iii) sub-
sets through partial embedding of the referred data,
and this either in a uni- or bi-directional fash-
ion [25, 31, 37, 32]. Independently, relationships
can be stored in additional records and tables, and
referred to using foreign keys or join tables. Em-
bedding relationship data or either storing it inde-
pendently and referencing to it are complementary
tactics.

S2: Class-level or object-level mapping. Object
mapping strategies can be devised on a per-object
level basis versus traditionally at the class-level.
For example, an object can initially embed a
nested array, but when the array grows too large,
that record can be refactored so that the array
is stored in separate records. As a consequence
of schema flexibility, a single object record can
change independently of existing record structures.

2.4. Motivation: Object-NoSQL database mappers
(ONDM)

Similarly to ORMs, ONDM frameworks provide a
uniform interface to persist and retrieve objects from
at least one or more NoSQL databases, and these plat-
forms have been emerging to address the mapping com-
plexities discussed in the previous section.

There is however large heterogeneity among ONDM
frameworks. Some ONDMs frameworks such as
EclipseLink [38] and Hibernate ORM [39] are histor-
ically ORMs that have been extended with support for
some NoSQL databases, and in general, such ONDM
frameworks are aligned strongly to existing reference
architectures and best practices for ORMs. Other

ONDMs such as Docb [40] and KEV [41] in turn fo-
cus on specific types of NoSQL databases.

From a practitioner’s point of view, the selection of
a suitable ONDM framework (in accordance to appli-
cation requirements) is crucial. Yet to our knowledge,
an extensive comparative survey of existing and emerg-
ing ONDM platforms is currently lacking and this hin-
ders their adoption in practice. Furthermore, it as-
of-yet unclear how well existing mapping frameworks
have adapted to make use of the potential presented by
NoSQL technologies in terms of the data model and
schema flexibility (e.g. strategies S1, S2). Addition-
ally, database functionality in NoSQL is often simplistic
and features such as record ordering (e.g. MongoDB) or
query operators can be missing, and this then needs to
be addressed by the framework.

Secondly, a more thorough and in-depth understand-
ing of the current state of these systems allows defining
a research and development roadmap for the improve-
ment of ONDMs and their underlying mechanisms.

3. Research methodology

This survey study is designed in function of two re-
search objectives that are defined in Section 3.1. The
study design, shown in Figure 4, is structured accord-
ing to the guidelines for systematic literature review
in Software Engineering by Kitchenham et al. [42, 43]
and features a search activity to identify relevant frame-
works, explicit inclusion and exclusion criteria to scope
the study, and involves systematic, in-depth compar-
ison. The search methodology is described in Sec-
tion 3.2, whereas Section 3.3 discusses and motivates
the adopted inclusion and exclusion criteria. The iden-
tified and selected ONDM frameworks are discussed in
Section 4.

The in-depth comparison with respect to both re-
search goals is presented in Sections 5 and 6 respec-
tively.

3.1. Research objectives

The objectives of this study are twofold, as described
below:

RO1 Gather and consolidate knowledge on existing
Object-NoSQL database mapping (ONDM) frame-
works, and compare them in terms of: database
support, programming interface and query lan-
guages, architecture, and coupling between appli-
cation and both framework and database.

6

Data Extraction

Search
Methodology

Documentation

Source Code

Systematic
Comparison

RO2: Mapping

Database
support RO1: Features

Architecture

Database
Coupling

Query
functionality

Schema
Options

OO Concepts Mapping
Strategies

Interface(s)
Keywords Repositories

Framework
Selection Framework

Coupling

Figure 4: Graphical overview of the design of this study.

RO2 In-depth comparison of ONDM frameworks in
terms of the implemented mapping strategies for
object-oriented concepts of attributes and data
types, relationships, classes and inheritance, with
specific attention to NoSQL-specific mappings.

3.2. Search methodology
We adopt a search strategy in a similar trend to a

systematic literature review [43]. In accordance with
the guidelines set forward by Kitchenham et al. [42],
the search methodology consists of (i) determining ap-
propriate search keywords, (ii) the identification of re-
sources and repositories to be searched, and (iii) estab-
lishment of framework inclusion and exclusion criteria.

3.2.1. Search keywords
In order to identify the state-of-the-art of object-

mapping frameworks, we first establish a broad search
query defined in Table 1 consisting of (i) common
synonyms for object-mapping frameworks and (ii) a
set of relevant object-oriented programming languages
(OOPLs). The initial search also includes object-
relational mappers (ORMs) as they may have developed
support for non-relational databases over time.

In terms of synonyms, object mappers are also re-
ferred to as ‘POJO mappers’ (plain old Java object map-
pers) in the context of Java. Similarly, for the C++

program language, the term ‘POCO mapper’ is used.
Another synonym for object-data mapper is a data ac-
cess object (DAO); this is a reference to the data map-
per design pattern [44]. Other variations exist such
as a database abstraction layer (DAL), and persistence
framework.

The search scope is limited to the twelve most pop-
ular object-oriented programming languages (OOPLs)
listed in Table 21. The OOPLs are ranked by an average

1This is similar to the approach taken in the ORM framework sur-
vey by Torres et al. [4].

index ranking from multiple sources such as GitHut [45]
and the IEEE Spectrum Programming Language Rank-
ing [46].

3.2.2. Resources and repositories searched
The search query of Table 1 is executed in a number

of search engines and software repositories. Addition-
ally, we manually extract the list of data access frame-
works discussed in related academic literature2.

The search also covers documentation of the most
popular NoSQL vendors for mentioned object mappers
and this is driven by the DB Engines ranking [50].

In terms of software repositories, each programming
language typically has a number of community soft-
ware repositories for package management, such as npm
which is a packet manager for NodeJS [51]. Perl frame-
works are listed in the “Comprehensive Perl Archive
Network” [52], and Java frameworks in Maven reposi-
tories. Community members also provide their own col-
lection of software packages, such as the Ruby Toolbox
website for Ruby [53].

3.3. Framework selection criteria
To refine the scope of our study, we explicitly define

a set of inclusion (I) and exclusion (E) criteria:

I1 The framework has object-mapping capabilities to
relational or non-relational (NoSQL) databases
and is publicly available.

E1 The framework has object-mapping functionality to
only a single DB technology (i.e. a DB wrapper).

E2 The mapping framework support less than 3
NoSQL databases.

2Since the academic research on ONDM frameworks is relatively
scarce, the search strategy primarily focuses on identifying existing
software libraries. However, academic ONDMs are discussed later in
Section 7.1.1.

7

A
N

D

OR NoSQL, Non-relational, Relational database, RDBMS, SQL, database, NULL

OR object-relational mapping, object-data mapper, object-data mapping object-relational mapper, object map-
per, data mapper, POJO mapper, POCO mapper, data access platform, data access middleware platforms,
data access object, DAO, data access layer, database abstraction layer, persistence framework, ORM,
ONDM, ONM

OR Java, Python, JavaScript, PHP, C#, C++, Ruby, Swift, Scala, Go, Objective-C, Perl, NULL

Table 1: Search query for object database mappers.

Programming Language TIOBE [47] PYPL [48] IEEE [46] GitHut [45] RedMonk [49] Rank

Java 1 1 3 3 2 1
Python 4 2 1 2 3 2
JavaScript (Node.JS) 6 4 7 1 1 3
PHP 9 3 8 6 4 4
C# 5 5 5 10 5 4
C++ 3 6 4 7 6 5
C 2 7 2 8 8 6
Ruby 11 12 11 4 7 7
Swift 12 10 10 13 12 8
Shell - - 13 11 11 9
Scala - 15 12 12 10 10
R 8 8 6 30 13 11
TypeScript - 14 - 9 16 11
Go 19 19 9 5 14 12
Objective-C 16 9 21 16 9 13
Perl 10 18 14 23 15 14

Table 2: Programming languages and ranking and popularity per index from 2018. Languages printed in bold are included.

E3 Databases are only supported from a single NoSQL
domain (e.g. only document stores).

E4 The framework ceased development in the last 2
years or shows insufficient functional features or
minimal mapping strategies (e.g. no support for as-
sociations).

3.4. RO1 Comparison criteria
The first research objective (RO1) aims to consol-

idate knowledge on existing ONDM frameworks by
a systematic comparison in terms of criteria of inter-
est: C1: database support, C2: interface and query func-
tionality, C3: ONDM architecture and C4: the degree of
coupling to the framework or database.

The following comparison criteria are interesting but
considered out-of-scope: interface and database func-
tionality mismatches, support for specific functional as-
pects (e.g. transactions, caching), performance and scal-
ability aspects, and multi-store and polyglot support.
Analyzing the interface its operations versus each sup-
ported database technology’s API would lead to too

many dimensions for comparison. In addition, object-
mapping performance is already evaluated in our previ-
ous study [11].

In the following subsections, we further define each
criterion, motivate its importance, and establish a basis
for comparison.

3.4.1. C1. Database support
Database support is arguably the main criterion of

relevance for software developers and practitioners.
Database technologies have to meet with application
requirements, which are identified during the require-
ments elicitation and architectural design phases. Such
design choices can be postponed to a later stage with
the use of ONDM frameworks. However, in order to do
so, one must be confident that the desired database tech-
nologies and features are fully supported by the frame-
work. Database support in ONDMs can vary from a sin-
gle category of NoSQL databases (documents) to mul-
tiple classes, to even relational databases.

Support for relational databases is a selling point

8

in a migration context, or for applications that require
the transactional properties of proven existing relational
database technologies. When a relational database is
supported, often an entire set of different vendors are
supported due to the standardization of SQL.

In certain frameworks it is possible to use relational
and NoSQL database technologies interchangeably with
a single interface. Such an application scenario is
referred to as a multi-store architecture or polyglot
persistence [54]. Generally speaking, ONDM frame-
works that support many heterogeneous databases are
either (a) highly extensible and mature frameworks, or
(b) simply implement a very narrow abstraction.

Specifically for C1, we compare frameworks in terms
of the number of relational and NoSQL databases sup-
ported, and we distinguish between different classes of
NoSQL databases.

3.4.2. C2. Interface support and query functionality
Object-mapping frameworks provide a single or mul-

tiple programming interface(s) to store and query ob-
jects in the supported database systems. These inter-
faces provide access to the database and/or offer a query
language for searching objects.

The abstraction should feature at minimum create,
read, update and delete (CRUD) operations. In a best
case scenario, the framework interface provides access
to all native database operations, preferably through ab-
stractions supported by the framework.

Standardized interfaces. Support for a standardized in-
terface implies a large set of features according to its
specification (e.g. the Java Persistence API (JPA) [22]).
Standardized interfaces such as JPA reduce the learning-
curve for developers and allow application migration
between existing frameworks abiding by the same stan-
dards. JPA features a uniform domain model to describe
classes with annotations on attributes, relationships and
inheritance. These annotations describe the desired ob-
ject to database mapping strategy.

Secondly, JPA provides a programmatic interface to
store and search objects, for example the findById

method. In addition, JPA features a Java Persistence
Query Language (JPQL) which provides a uniform
query language similar to SQL and can be implemented
on top of heterogeneous database query languages. Al-
ternatively, Java also provides the standardized persis-
tence interface Java Data Objects (JDO) [36]. In .NET
there are standardized API’s such as LINQ and the Mi-
crosoft Entity Framework.

Query functionality. The query functionality in the in-
terface is typically provided through one of the fol-
lowing approaches: (i) programmatic operations on
object identifier (id), (ii) query object builders us-
ing selection criteria, (iii) dynamic query operations
(e.g. findByName), (iv) abstracted query languages
such as JPQL, and (v) support for native database query
languages.

Specifically for C2, we compare the frameworks in
terms of their interface support (standardized, or non-
standardized), and the extent to which the aforemen-
tioned query approaches are supported.

3.4.3. C3. Architectural patterns
The architecture of the mapper framework has a sub-

stantial impact on a number of attributes, such as the
mapping flexibility of the framework or its extensibil-
ity. In addition, the architectural pattern dictates to a
degree the manner in which domain classes are mod-
eled. As discussed in Section 2.1, the architecture of
an object-mapping framework commonly follows either
the active record or the repository pattern. Frameworks
that implement the active record pattern place data ac-
cess and query logic within the domain classes. In con-
trast, the repository pattern introduces a mediator be-
tween domain objects and DB adapters.

3.4.4. C4. Framework and database coupling
Figure 5 illustrates the implications on domain

classes of different ONDM architectures. The architec-
tural pattern is not just a stylistic choice but impacts the
portability of the application code to another framework
or database. This is illustrated in Figure 5b with the use
of database-specific annotations.

The framework architecture further impacts the de-
gree of coupling between domain classes in application
code and the framework. For example, the active record
pattern ties data access operations to the domain objects,
while a repository can separate domain objects and data
access logic.

We investigate the degree of coupling introduced by
the ONDM framework, between (i) the application and
the ONDM framework, and (ii) the application and the
database. This distinction is illustrated in Table 3. As
shown in the final column of Table 3, we apply a score-
based ranking (ranging from −− to ++) of the frame-
works to express the introduced degree of coupling to
the framework and database.

Framework coupling. Framework coupling ties do-
main classes to the framework class through inheri-
tance, proprietary annotations, or custom interfaces.

9

Person

+ @Id String: name
+ @Collection Set<Animal>

Animal

+ @Id String: name
+ @Embedded Person: own

1
0..*

«interface»
Mapping

Annotations

«interface»
DB-Specific Annotations

Uses
Person

+ String: name
+ Set<Animal>: pets

Animal

+ String: name
+ Person: owner

1
0..*

«class»
Domain Class

Extends

(a) Active Record

Person

+ String: name
+ Set<Animal>: pets

Animal

+ String: name
+ Person: owner

1
0..*

«XML File»
Person Map.

«XML File»
Animal Mapping

Person

+ String: name
+ Set<Animal>: pets

1
0..*

Animal

+ String: name
+ Person: owner

(b) Annotations (c) External descriptors (d) Plain object

Optional FrameworkDomain ClassLegend:

«interface»
XML Definitions

Figure 5: Mapping descriptions for domain classes, ordered by framework coupling (high→ low).

Domain Operations

ONDM Plain objects Query language −−

Annotations Standardized ↓

Inheritance ONDM Custom interf. ++

DB Uniform spec. Uniform interface −−

Annotations per DB Operations per DB ↓

Map. format per DB Interface per DB ++

Table 3: Low to high coupling between the application domain or
operations, and respectively the framework or database.

Coupling between application and framework exists be-
tween domain classes and framework, and between ap-
plication and the framework interface. Framework li-
braries have specific domain class annotations, mapping
specifications (e.g. in XML), or interfaces.

Domain classes can be tied to classes from the frame-
work, for example by inheriting functionality to deal
with storing and querying data. Inheritance from frame-
work classes introduces tight coupling with the frame-
work. Reflection-based approaches in which specific
annotations are introduced that describe how class el-
ements should be mapped introduce a lesser degree of
coupling. Frameworks that introduce the least degree of
coupling are typical plain old Java object (POJO) map-
pers which require no annotations.

At the interface level, coupling is induced due to the
framework’s interface or query language which can ei-
ther be custom or rely on standardization. In the best
case, query languages are standardized (e.g. SQL or JP-
QL). Functionality can also be provided through repos-
itory classes such as a CRUDRepository which extends

the domain class and inherits framework functionality
to manipulate the object.

This type of coupling ties application code to a spe-
cific framework (lock-in) and hinders the adoption of a
different ONDM later on.

Database coupling. In terms of database coupling,
ONDM frameworks can offer different interfaces de-
pending on the selected DB or even specific domain
model annotations. In the best case, each framework
provides the same interfaces and descriptors regardless
of the selected database.

Figure 6 illustrates database coupling within a frame-
work when subsets of the interface are provided per
database technology. In the illustrated example, the
Neo4j Adapter does not implement the Document

Query interface. Such scenarios are typically caused
by the heterogeneity between NoSQL database APIs
and data models, in which case the available interface
functionality may depend on the configured back-end.
Therefore, when working with multiple database tech-
nologies one should be aware of the employed query
operators since they might not be (natively) supported
by the database and consequentially the framework.

Next to interface operations, the mapping behavior or
employed annotations can differ per database technol-
ogy. As such, the interface and domain coupling can
introduce limitations on database interoperability and
portability. When porting the application to a different
database, this can lead to having to rewrite application
logic pertaining to data access operations, object anno-
tations and mapping strategies.

10

Uniform Interface

Extends <<Interface>>
CRUD Interface

Interfaces per DB Interfaces per framework

Repository

+ DataStore database
+ Set<Objects> managedObj

«interface»
Persistency API Extends

«interface»
Query API

Client
App. Uses Uses

MySQL Adapter

+ MySQLClient driver

MongoDB Adapter

+ MongoClient driver

Neo4j Adapter

+ Neo4jClient driver

Implements

<<Interface>>
SQL

<<Interface>>
Document Query

<<Interface>>
GraphQuery

StandardizedCustomInterfaces:

Impl. subset

Figure 6: DB and framework coupling by respectively non-uniform and non-standardized interfaces.

3.5. RO2 Object mapping comparison criteria
We establish a comparison basis for RO2 regarding

the supported and implemented object-mapping strate-
gies. These mapping strategies can include typical re-
lational strategies but also NoSQL-specific mappings,
and these may vary drastically per NoSQL technology
class. Based on this reasoning, we conduct our compar-
ison of mapping strategies on a per-data model basis,
starting with aggregate-oriented databases, such as doc-
ument and key-value stores, followed by object-graph
mapping. Column-store mapping strategies are only
briefly discussed, as the data model is highly similar to
the relational database model.

For each object-oriented concept, we scan available
mapping strategies from documentation and the source
code of the ONDM frameworks.

Our comparison for RO2 is mainly driven by two cri-
teria: C5. mapping support for attributes, associations
and inheritance relationships, and C6. awareness of the
NoSQL data model. In the following subsections, we
further define each criterion, motivate its importance,
and establish a basis for comparison.

3.5.1. C5. Mapping attributes, associations and inheri-
tance relations

We systematically compare object-mapping strate-
gies starting with (i) attribute mapping, which can be
complex data types, even user-defined classes or collec-
tions thereof, followed by (ii) relationship mapping, and
(iii) inheritance mapping.

In terms of attribute and relationship mapping, we
evaluate whether NoSQL-specific tactics are available
such as embedding, or relational tactics such as ref-
erencing and normalizing relationship data (S1). We

specifically investigate whether the framework offers
the possibility to conceptually differentiate between re-
lationships and embeddables (attributes uniquely owned
by the object) in the domain model, and whether it can
still embed relationships or reference ”embeddables”.

In terms of inheritance mapping, we compare sup-
port for common patterns (previously discussed in Sec-
tion 2.3.3).

3.5.2. C6. Specialized mapping strategies.
This criterion assesses the degree to which the en-

countered mapping strategies are specific to the target
database model.

We expect object-mapping strategies to be diverse for
aggregate-oriented data stores, such as document and
key-value stores, due to schema and data model flexi-
bility over ORM (cfr. S1 and S2).

Additionally, we expect object-mapping strategies to-
wards graph and column stores to be similar to relational
database mapping strategies due to respectively the re-
lational nature of the data, and the tabular structure. For
example, column stores such as Apache Cassandra [26]
also enforce a strict schema.

In certain NoSQL databases the framework can hope-
fully decide between these tactics on a per-object level
basis (S2), rather than typical at the class-level in ORM
frameworks.

4. Framework search results and selection

This section discusses the results of the initial search
and the selection process.

11

4.1. ONDM framework selection

The search strategy (Figure 7) has lead to the identifi-
cation of a total 342 frameworks satisfying the inclusion
criteria I1 of supporting object-mapping functionality to
a database.

The initial search set also includes frameworks orig-
inally classified as object-relational mappers (ORMs),
since they may have developed NoSQL database sup-
port over time. The entire overview of all the 342 iden-
tified frameworks cataloged per programming language
is available via [55, 56].

4.2. Exclusion of frameworks

We gradually apply the exclusion criteria defined in
Section 3.3 to establish the main set of ONDMs for our
survey.

As per E1, we exclude 35 frameworks that are wrap-
pers to a single relational database (RDB mappers).
Similarly, 112 frameworks that are wrappers for a single
NoSQL database (NoSQL mappers) are excluded due to
the E2 exclusion criterion.

141 of the identified frameworks exclusively sup-
port object-relational mappings. These object-relational
mappers (ORMs) are as such excluded from the survey
study because of E2.

This first reduction phase yields a total of 54 frame-
works. These are considered Object-NoSQL data map-
pers (ONDMs) since they offer support for more than
one NoSQL database. We list these ONDMs per pro-
gramming language in Table 4.

The second reduction phase involves assessing the
extent to which the remaining 54 frameworks support
at least three NoSQL databases (E2), and the develop-
ment maturity (E4). As shown in Table 4, the E2 crite-
rion removes 18 additional frameworks, whereas E4 re-
moves 17 frameworks for which the main development
activity has ceased since 2015. These are considered
insufficiently mature or lacking of interesting function-
ality (e.g. no relationships). This phase yields 19 frame-
works.

In the third and final reduction phase, we assess the
extent to which the frameworks support databases from
different database classes (E3). These ONDMs are con-
sidered particularly interesting as they support map-
pings towards fundamentally different data models.

Table 5 compares the set of 19 frameworks by sup-
ported databases to exclude those which do not support
multiple NoSQL categories as per exclusion criterion
E3. Although the framework Bass [57] supports two
document databases and a single key-value database, it

is still excluded per E3 as these NoSQL categories are
highly similar.

The resulting set of 11 frameworks is listed in the left-
hand side of Table 5.

4.3. Selected ONDM frameworks

These 11 frameworks are heterogeneous in terms
of the programming language and technology context.
They either have origins in object-oriented languages
such as Java, or scripting languages such as JavaScript
and PHP, of which JavaScript supports objects but is
considered classless, and the latter PHP which over time
developed support for classes.

In terms of programming languages, Java frame-
works are well-represented due to the wide-spread
adoption of the Java Persistence API (JPA) [22]. JPA is
implemented in for example Apache Gora [58], Impetus
Kundera [59], DataNucleus [73], Hibernate OGM [60]
and Spring Data [67].

In addition, frameworks exist for PHP, Node.JS,
JavaScript and Ruby. However in the case of PHP, most
web frameworks only have ad-hoc support for a few
NoSQL databases. Many PHP frameworks rely on the
well-known Doctrine ORM library [66]. For JavaScript,
a single Javascript ORM named JS Data [62] was iden-
tified for front-end applications. This ORM framework
supports a wide range of NoSQL databases. Back-end
applications written in Node.JS can make use of frame-
works such as Waterline [65]. Lastly, Ruby is repre-
sented by the Ruby Object Mapper (ROM) [64].

Although many languages such as C#, C++, Swift,
and Go do not have any mature ONDM frameworks, in-
dividual NoSQL database drivers or wrappers are avail-
able. As discussed above, these are however considered
out of scope of this survey study.

5. Feature comparison (RO1)

As discussed in Section 3.4, we attain the RO1 re-
search objective by comparing the ONDMs in terms
of the following comparison criteria: database support
(C1), interface and query functionality (C2), architec-
ture (C3), and framework and database coupling (C4).

5.1. Database support (C1)

Table 5 compares the frameworks in terms of
database support for relational and NoSQL databases.
Individual database support is listed for document,
graph, key-value and column stores. Not included are
NoSQL databases such as full-text search databases
(e.g. ElasticSearch [74], Apache Solr [75]). Table 5

12

Keyword
search

Search Engines

DB Vendors

Software
Repositories

Frameworks

342

112 NoSQL
Mappers

35 RDB
Mappers

54 ONDM
Frameworks

141 ORM
Frameworks

E1

E2

E2

19 ONDM
Frameworks

11 ONDM
Frameworks

E2 E318 ONDM
Insufficient DBs

8 ONDM
Few DB Types

E4 17 ONDM
Inactive Dev.

(a) inclusion (b) exclusion (c) research objectives

RO1 RO2

Figure 7: Framework selection process.

OOPL ONDM Frameworks (n = 19) Excluded E2 (n = 18) Inactive E4 (n = 17)

Java Apache Gora, Kundera, DataNucleus,
EclipseLink, Eclipse JNoSQL, Spring
Data, Hibernate OGM, GORM

Play Framework1, Ebean2 Carbonado, Cumulus4j, Da-
sein, PlayORM, River frame-
work

Python KEV, pyDAL Django1, Docb2

JavaScript JS Data Resourceful

Node.JS Thinodium, Bass, Waterline, JS Data Node ORM2, TypeORM2 JugglingDB, Cleverstack,
Node Document, Node
NoSQL ODM, Osmos

PHP Lithium, Yii framework, Doctrine Phalcon, Zend framework1,
Symfony1, CakePHP1,
Drupal1, Kohana1, Fat-Free
Framework2, Laravel2

KO3-NoSQL, Vork

C#.NET Slazure, Charisma

Ruby ROM Rails1, Hanami1 Ruby ORM Adapter

Swift Fluent ORM2

Scala Lift Play Framework1 Activate Framework

Go upper2

1 ONDM has no official NoSQL database support, however third-party plugins are available.
2 ONDM only has official support for one NoSQL database.

Table 4: ONDM frameworks per object-oriented programming language.

13

A
pa

ch
e G

or
a [

58
]

K
un

de
ra

[5
9]

D
at

aN
uc

le
us

H
ib

er
na

te
O

G
M

[6
0]

G
O

RM
[6

1]
JS

D
at

a [
62

]
Ec

lip
se

JN
oS

Q
L

[6
3]

RO
M

[6
4]

W
at

er
lin

e [
65

]
D

oc
tri

ne
[6

6]
Sp

rin
g

D
at

a [
67

]
Ec

lip
se

Li
nk

[3
8]

Ba
ss

[5
7]

Yi
i F

ra
m

ew
or

k
[6

8]

py
DA

L
[6

9]
Li

ft
[7

0]
Li

th
iu

m
[7

1]
Th

in
od

iu
m

[7
2]

K
EV

[4
1]

Databases Included (n = 11) Excluded E2 (n = 6), E3 (n = 2)

NoSQL 10 9 4 7 3 7 12 9 5 3 14 2 3 2 3 2 2 2 2
Document 3 3 1 2 1 5 5 4 2 3 5 1 2 1 3 2 2 2 2
Key-value 2 2 0 3 0 2 4 2 2 0 7 1 1 1 0 0 0 0 0
Graph 0 1 1 1 1 0 2 1 1 1 4 0 0 0 0 0 0 0 0
Columnar 3 3 2 0 1 0 2 1 1 0 2 0 0 0 0 0 0 0 0

RDBMS 5 3 3 5 3 3 5 3 3 3 3 3 3 3 3 3 3 5 5

Table 5: Overview of database support for the compared ONDMs.

shows that document and key-value stores support is of-
ten simultaneously available due their inherent similar-
ities. Furthermore, column stores such as Apache Cas-
sandra [26] and Apache HBase [27] are less frequently
supported than document stores.

Graph stores are supported by several mappers. How-
ever, in the case of Eclipse JNoSQL [63] and Doctrine
ODM [66] this is because of support for a multi-model
NoSQL database such as OrientDB [76]. OrientDB lets
the application developer choose between a graph, doc-
ument or key-value data model. Consequentially, the
ONDM can uniquely implement either data model. In
contrast, object-graph mapping is specifically available
where a dedicated graph store like Neo4j is supported,
which is the case for Kundera [59] and GORM [61].

Finally, some ONDMs also feature persistence to on-
disk storage, or an in-memory store for caching, or even
to file formats such as Microsoft Word or Excel in the
case of DataNucleus [73]. More recently, Impetus Kun-
dera [59] has even implemented read support for the
Ethereum blockchain.

5.2. Interface support and functionality (C2)

The supported database are accessed via non- or stan-
dardized interface(s). Standardized interfaces imply
support for features compliant with its respective speci-
fication, such as JPA-compliant frameworks [22], which
typically implies support for JPQL.

Standardized interfaces. Rows 3–5 in Table 6 compare
the supported interfaces by each ONDM. Java frame-
works typically adopt either the JPA or JDO interface.
DataNucleus [73] has an implementation for both JPA

and JDO, however the developers argue that JDO is de-
signed as a more database-agnostic variant over JPA.
Apache Gora [58] is a Java framework with a custom
interface. In addition, Hibernate OGM [60] provides
full-text search via its Hibernate API. In certain cases
a REST interface is also provided which ultimately
communicates with the framework’s interface. Eclipse
JNoSQL [63] provides four custom interfaces: one for
each type of NoSQL database.

Query functionality. All of the studied ONDMs feature
at minimum programmatic query operations for Create,
Read, Update and Delete (CRUD). Rows 6–9 of Ta-
ble 6 provide an overview of which frameworks allow
constructing queries using criteria objects, and which
frameworks support query languages, or provide the use
of (native) query languages.

As shown in rows 7 and 8, Several ONDMs provide
a programmatic abstraction to construct queries with
criteria objects or a dedicated query language such as
JPQL. In addition, dynamic query operations such as
findByName or findWhereAgeGreaterThan can be
added dynamically by the framework through inheri-
tance or reflection.

Dedicated query languages such as JPQL [22] and
JDOQL [36] have the advantage of offering more flex-
ibility and result in less ad-hoc queries over query ob-
jects. The downside of dedicated query languages is that
it requires syntax verification and the results have to be
identified and matched with classes. Type-safety is of-
ten facilitated through the use of query builders with cri-
teria objects. Such query objects have the advantage that
they can be constructed against classes instead of table

14

A
pa

ch
e G

or
a [

58
]

K
un

de
ra

[5
9]

D
at

aN
uc

le
us

[7
3]

H
ib

er
na

te
O

G
M

[6
0]

G
O

RM
[6

1]

JS
D

at
a [

62
]

Ec
lip

se
JN

oS
Q

L
[6

3]
W

at
er

lin
e [

65
]

Sp
rin

g
M

on
go

[6
7]

D
oc

tri
ne

O
D

M
[6

6]
RO

M
[6

4]

Version 0.8 3.12 5.1 5.3 6 3 0.0.5 0.13.5 2.1 1.2 4

Interfaces I1 I1,I2 I1 I1

Custom 3 5 5 3 3 3 3 3 3 3 3

REST 5 3 3 5 3 3 5 5 3 3 5

Query functionality

Query object 3 5 3 5 3 3* 3 3* 3 3* 3*
Query lang. 5 3 3 3 3 5 3 5 5 5 5

Native query 5 3 3 3 3 5 5 5 5 5 5

Architecture

Repository 3 3 3 3 3 3 3 3

Active record 3 3 3

Portability and coupling

Framework + + - - - - + + + + 0. + + 0.
Database + + - - - 0. + - + - + + 0.

I1 = JPA, I2 = JDO, ∗ = Non-type safe query

Table 6: Interfaces and functionality, architectural design and coupling of compared ONDMs.

names, which are then parameterized and executed with
type-safety. The frameworks that feature query builders
which are not type safe are marked with an asterisk in
Table 6.

Native database query languages are more efficient
and functional than abstracted operations. Hibernate
OGM [60] and GORM [61] both support MongoDB’s
and Neo4j’s query languages. Kundera [59] in turn has
support for Apache Cassandra’s CQL [26], but lacks
support for other native query languages despite sup-
porting multiple database technologies.

In summary, there is large diversity in the ways data
can be queried or stored with all of them supporting
CRUD operations, and the non-Java frameworks feature
solely additional query object support.

5.3. Architectural patterns (C3)

Rows 10–12 of Table 6 present the result of dis-
tinguishing between the active record pattern and the
repository pattern as the dominant design paradigm of
the ONDM.

Within the class of ONDMs that implement the active
record pattern, we can distinguish between (i) ONDMs
such as Waterline [65], GORM [61] and ROM [64] that

add data access and query logic statically to the do-
main objects and (ii) ONDMs that introduce data access
logic dynamically through reflection as is the case for
GORM [61].

In the former case, these data access operations are
inherited from a parent class in the ONDM framework
(e.g. ROM [64]).

In ONDMs that implement the repository pattern, the
mapping framework identifies persistable classes with
the use of annotations or by loading XML descriptions.
In JS Data [62] domain objects are instantiated by pro-
viding a schema specification as input to a mapper class.
As for repository-oriented standards such as JPA and
JDO, the domain access logic is largely available at
for example an EntityManager. Eclipse JNoSQL [63]
shares the notion of an EntityManager despite being
non-JPA and non-JDO compliant.

Next to modeling descriptors for domain objects
there are also plain object mappers, which do not nec-
essarily have to follow any conventions or modeling
guidelines. In such a case, the mapping behavior is de-
faulted. Spring Data [67] and GORM [61] can both han-
dle plain objects.

The architectural style impacts data access logic op-

15

erations and domain class modeling, however, also in-
fluences the level of software coupling.

5.4. Framework and database coupling (C4)

We compare ONDMs in terms of: (i) framework cou-
pling, and (ii) database coupling.

Framework coupling. Row 14 of Table 6 presents a
qualitative ranking of the ONDM frameworks based on
the degree of framework coupling.

Spring Data [67] and GORM [61] can both handle
simple objects, however annotations can be added to
specify behavior. However Spring Data’s [67] func-
tionality is provided for e.g. a User class through a
UserRepository, while in GORM [61] the functional-
ity is dynamically added to the domain class. The sub-
sequent operations are then tied to these domain classes
or repositories, which are however non-standardized.

JPA frameworks such as Kundera [59], DataNu-
cleus [73], Hibernate OGM [60] use standardized map-
ping annotations in the domain classes. For example,
Hibernate OGM has a specific Hibernate API for full-
text search. In terms of mapping, DataNucleus allows
the specification of mapping metadata in an external
XML format.

The scripting language frameworks JS Data [62] and
Waterline [65] are highly similar to each other and cre-
ate the domain class through a model or schema con-
structor with type and property descriptors. The data
access logic is created upon model instantiation for Wa-
terline, however JS Data uses a repository (mediator) to
store or query objects. Apache Gora [58] induces high
database coupling as it requires the user to specify data
classes in a JSON-format (Avro) that is specific to each
DB technology. These class descriptions are then com-
piled into domain classes that extend functionality from
the core framework. In addition, Apache Gora’s inter-
face is non-standardized.

Database coupling and interoperability. Row 15 of
Table 6 presents a qualitative ranking of the ONDM
frameworks based on the degree of database coupling.
GORM Grails [61], Doctrine [66] and Spring Data [67]
provide multiple framework versions or subprojects for
specific database technologies, and thus deviate from
the principle of a single standard interface. JS Data [62],
Waterline [65], and ROM [64] feature a single interface
for each supported database. This is mainly a result of
the simplicity of the provided functionality (i.e. minimal
abstraction).

In terms of search functionality, specific query opera-
tors can be unsupported depending on the capabilities of

the configured database, which in turn may break the ab-
straction of the single uniform API. For example, Impe-
tus Kundera [59] only supports the OrderBy query op-
erator for MongoDB and RDBMS. In dealing with such
scenarios, DataNucleus [73] provides uniform abstrac-
tion by implementing non-native database functionality
in the framework itself. For example, its OrderBy query
operator is implemented by retrieving all necessary data
and then sorting within the framework. In a similar fash-
ion, filter or conditional operations can be applied in-
memory after client-side filtering. However, the use of
such non-native functionality can come at a significant
performance cost.

Along with database coupling at the interface level,
such coupling also exists at the domain or mapping
level. Apache Gora [58] requires for example specify-
ing the mapping from object to the database structure
in XML and these specifications are highly dependent
on the selected database technology. Such an approach
introduces a tight coupling between the application do-
main and the database itself.

6. Domain object mapping strategies (RO2)

In this section, we systematically compare the
ONDMs in terms of the supported object mapping
strategies. First, we discuss object-document mapping
in Section 6.1, followed by object-graph mapping in
Section 6.2, and finally, object-column mapping in Sec-
tion 6.3.

6.1. Object-document mapping strategies

We start by comparing the mapping strategies for col-
lections (e.g. List, Map) of values. Then, we com-
pare relationship mapping strategies, and finally map-
ping strategies for inheritance relationships.

The frameworks can either implement a default trans-
lation for mapping object-oriented elements or the de-
veloper can specify the behavior. We survey the frame-
works on default mapping behavior and the availability
of other strategies.

6.1.1. Mapping object embeddables and collections
Table 7 compares the ONDMs in terms of their sup-

port for mapping of collections and arrays, specifi-
cally for document stores. In general for the frame-
works, when using for example similar JPA annotations
@Embedded or @ElementCollection annotations, the
entire data structure will be nested for document stores
as an array, or as multiple columns. However, the col-
lection may grow rather large and consequentially it is

16

A
pa

ch
e G

or
a [

58
]

Im
pe

tu
s K

un
de

ra
[5

9]
D

at
aN

uc
le

us
[7

3]
H

ib
er

na
te

O
G

M
[6

0]
G

O
RM

[6
1]

JS
D

at
a [

62
]

Ec
lip

se
JN

oS
Q

L
[6

3]
W

at
er

lin
e [

65
]

Sp
rin

g
M

on
go

[6
7]

D
oc

tri
ne

O
D

M
[6

6]
RO

M
[6

4]

Collections

Embedding A 3 3 3 3 A 3 5 3 3 5

- Ordering 5 I 5 I,O,G I,O 5 5 - I I,G -
References 5 5 3 5 3 5 5 3 5 5 3

- Embedding ref - - 5 - 3 - - 5 - - 5

- Embed data - - 5 - 3 - - 5 - - 5

- Join table - - 3 - 5 - - 3 - - 3

- Join table + embed - - 3 - 5 - - 5 - - 5

Relationships

References - 3 3 3 3* 3* - 3 3 3 3

- Join table - 3 5 3 5 5 - 3 5 5 3

- Join table + embed - 5 5 3 5 5 - 5 5 5 5

Embedding - 5 3 3 3 5 3 5 3 3 5

- Embed references - - 3 3 3 - - - 3 3 -
- Embed data - - 5 5 3 - 3 - 5 5 -
- Ordering (def) - - 5 I,O,G I,O - - - I I,G -

A = Array, I = Sorted index, G = Grouping, O = Ordering embedded data, * = No many-to-many relations

Table 7: Mapping collections and relationships for MongoDB: Embedding and referencing strategies (S1)

not always ideal to embed such a large array within the
parent record. Ideally in such cases, the collection can
then be normalized and referred to within the parent
record (S1). However, none of the frameworks in Ta-
ble 7 provide such functionality, nor mapping solutions
on a per object basis (S2).

However, as shown in Table 7, creating references
for collections is only officially supported by DataNu-
cleus [73]. None of the frameworks support normal-
izing collections and embedding references within the
owning entity. Consequentially, a query will have to be
executed on the referred table’s foreign key. The lack
of support for embedding references impacts read per-
formance. Interestingly enough, while typically join ta-
bles only store the foreign keys, in the case of DataNu-
cleus [73], a collection’s element can be stored within
the row. Certain frameworks such as Waterline [65]
also allow custom mappings to be defined on e.g. read
or write. However, defining custom mappings will
mostly break certain query functionality, since the for-
mat queried is unconventional to the framework.

Not listed in Table 7 are the relational database col-
lection mapping strategies, which can create references
for collections. Despite the availability of collection

mapping strategies with normalization they are only
supported when a relational database is selected.

Ordering and grouping collections. A potentially over-
looked feature of importance is the support for ordering
of collections and references stored. NoSQL databases
do not always provide the full set of features common
in relational databases. For example, ordered write of
records are not supported in MongoDB [29]. Although
data can be ordered with the use of a sorted index in sev-
eral frameworks, this in turn requires additional mem-
ory and storage resources.

In addition to record ordering, the embedded data
within the parent can also be ordered. Hibernate
OGM [60] can order a collection as an embedded map
and store these elements ordered on a specified key us-
ing @OrderColumn. GORM [61] simply preserves the
order of collections such as lists. Kundera [59] and
Apache Gora [58] can order the records stored on a clus-
tering key in Apache Cassandra [26].

Ideally, we would also be able to partition and
group certain attributes on values (e.g. boolean prop-
erties) in anticipation of group queries. This function-
ality is present in Doctrine ODM [66] and Hibernate

17

OGM [60], which can group embedded data on field
values.

While it is typical to embed these owned structures
in the record, strategies for embedding and referencing
can also be applied to relationships.

6.1.2. Relationship mapping
Table 7 also compares the ONDMs in terms of their

relationship mapping strategies for embedding (part)
of the referred data, through references, and poten-
tially embedding these references. Notably, Apache
Gora [58] and Eclipse JNoSQL [63] do not provide any
support for relationship mapping. Eclipse JNoSQL is
however still a rather young project and under heavy de-
velopment. Furthermore, GORM [61] also does not fea-
ture relationships when using Apache Cassandra [26].
JS Data [62] does not support many-to-many relation-
ships, whereas GORM [61] allows modeling a many-
to-many relationship as bi-directional one-to-many re-
lationships.

References and join tables. As shown in Table 7, when
relationships are supported, the tactic of referencing
is omnipresent. This contrasts to collection mapping,
which lacks strategies for referencing or join tables. Ad-
ditionally, while many of the ONDMs provide relation-
ship mappings to join tables using relational databases,
this is not the case for NoSQL databases. Waterline [65]
and ROM [64] do feature join tables for associations,
and can embed additional data within the join table.
However, when retrieving an entity, this data is not au-
tomatically retrieved in Waterline.

Embedding references. Alternatively to join tables, ref-
erences can also be embedded. For example, in Hi-
bernate OGM [60] which can store references within
a document. Table 7 shows that for the embedding of
relationships as references is supported more frequently
than join tables. For example, Hibernate OGM embeds
only the references to foreign keys.

In case of a record with many associations (e.g. sev-
eral thousands of object references), it can still be ben-
eficial to use an join table. However, the investigated
mapping strategies either exclusively use join tables or
embedding, despite benefits and drawbacks for both ap-
proaches.

Embedding relationship data. A different strategy in-
volves copying relationship data and embedding it in
the object, while existing independently of the referring
record. As shown in Table 7, this is supported only in

GORM [61] and Eclipse JNoSQL [63]. In most frame-
works, if relationship data is to be embedded, it must be
modeled as owned and used uniquely by a single object
(i.e. embeddable), despite there being a large conceptual
discrepancy between relationships and embeddables.

This is rather surprising as the feature to embed
or nest relational data is a highly requested and ma-
jor feature to fully use NoSQL databases. For ex-
ample, Waterline [65] users have already requested
this feature in 2014, and as of yet it remains unim-
plemented [77]. Often a workaround is suggested
e (e.g. JugglingDB [78]) involving user-implemented
mapping functions that override the default read and
save methods. Doctrine ODM [66] applies this tactic to
achieve relationship nesting, however functionality of-
ten breaks at certain points with such user-implemented
mapping strategies.

Embedding relationship data partially is a more ad-
vanced mapping strategy and it is not supported by any
of the frameworks from Table 7.

Ordering relationship data. Similarly to collection or-
dering, certain NoSQL databases lack functionality for
ordering of relationships, and thus support for ordering
can be implemented in the ONDM. The final row of Ta-
ble 7 shows the extent to which this is supported by the
investigated ONDMs.

Hibernate OGM [60] allows ordering by property on
the relationship. Alternatively, an ordered index can
be specified if available by the database in for exam-
ple Doctrine ODM [66]. The GORM [61] framework
preserves the order of object data in lists, arrays and col-
lections except for Bag. Hibernate OGM and Doctrine
ODM further allow to discriminate between embedded
relational data on for example field type. This is poten-
tially beneficial to “group by” query performance. Ad-
ditionally, Hibernate OGM can group certain embedded
relational data in separate association documents, or in
a single association document.

Mapping transparency. While relational data may not
be stored as embedded, some mappers automatically
query all relevant data and present it as embedded to
the user (e.g. ROM [64] and JS Data [62]). The draw-
back is that it is not always clear whether the embed-
ded structures are composed by the framework, or if
they are actually stored this way. The ROM [64] and
JS Data [62] frameworks compose embedded structures
in-memory while in the physical database, all data is ac-
tually stored in normalized tables. In these frameworks,
embedding or nested data is merely a conceptual rep-
resentation resolved by the framework as everything is

18

A
pa

ch
e G

or
a [

58
]

Im
pe

tu
s K

un
de

ra
[5

9]
D

at
aN

uc
le

us
[7

3]
H

ib
er

na
te

[6
0]

G
O

RM
[6

1]

JS
D

at
a [

62
]

Ec
lip

se
JN

oS
Q

L
[6

3]
W

at
er

lin
e [

65
]

Sp
rin

g
M

on
go

[6
7]

D
oc

tri
ne

O
D

M
[6

6]
RO

M
[6

4]

Inheritance 5 3 3 3 3 5 3 5 5 3 5

- Single table - 3 R 3 3 - 5 - - 3 -
- Joined table - 5 R 5 3 - 5 - - 5 -
- Concrete table - 5 3 3 5 - 3 - - 3 -
- Superclass-table - 5 R 5 5 - 5 - - 5 -
- Subclass-table - 5 R 5 5 - 5 - - 5 -

R = Supported only for relational databases.

Table 8: Inheritance mapping strategies for document stores.

stored in a normalized fashion.

6.1.3. Class and inheritance mapping
Class objects conceptually do not have a database

counterpart. Therefore, class elements have to be trans-
lated such as attributes and associations. which are po-
tentially inherited.

Inheritance mapping. Table 8 compares the ONDM
frameworks in terms of the inheritance mapping
strategies discussed in Section 2.3.3, namely: single-
table, joined-table, concrete-table, superclass-table
and subclass-table.

A number of frameworks lack support for inheritance
mapping altogether. Specifically, inheritance is not sup-
ported for the JavaScript framework JSData [62]3 and
Waterline [65] as the inheritance concept does not exist
in these languages.

As shown in the final two rows of Table 8, none of
the investigated frameworks supports the novel tactics
superclass-table and subclass-table that were discussed
in Section 2.3.3.

As it is primarily designed to access basic function-
ality in the database systems, and/or apply analytics on
a simple data elements, Apache Gora [58] has no map-
ping support for inheritance, nor relationships for that
matter.

DataNucleus [73] supports all five inheritance strate-
gies, however when using NoSQL databases, only the
concrete-table mapping strategy is supported.

3Contemporary JavaScript tools make use of prototyping to model
inheritance.

Additionally, although Impetus Kundera [59] claims
to be JPA-compliant –which implies support for single-
table and joined-table, it only supports the single-table
strategy.

6.2. Comparison of object-graph mapping strategies

While we have primarily focused on document-
oriented databases, we also evaluate the 11 ODNM
frameworks in terms of their object-graph mapping.

Table 9 compares the ONDM frameworks in terms
of their object-graph mapping strategies. Apache
Gora [58] and JS Data [62] do not support graph
databases. In addition, ROM’s Neo4j adapter and Doc-
trine ODM’s adapter for OrientDB are discontinued and
lack certain mapping and query functionality. From Ta-
ble 9 we can tell that attribute fields with supported data
types (e.g. String) are persisted as properties. Domain
classes are typically always mapped to nodes, except
for Waterline [65] which can store an entity class as an
edge, although the graph DB may require endpoints.

Embeddables. In almost all ONDM frameworks, em-
beddables are represented by nodes (vertices) and
edges. Eclipse JNoSQL [63] has default functionality
for embedding the object data as properties within the
parent node, however without a readily-available DB
adapter implementation. DataNucleus [73] can embed
entities as properties within the parent node, although
collections have to be linked.

Relationship mapping. The ONDM frameworks only
map relationships using edges. Many-to-many relation-
ships are implemented with multiple edges between the

19

A
pa

ch
e G

or
a [

58
]

Im
pe

tu
s K

un
de

ra
[5

9]
D

at
aN

uc
le

us
[7

3]
H

ib
er

na
te

[6
0]

G
O

RM
[6

1]

JS
D

at
a [

62
]

Ec
lip

se
JN

oS
Q

L
[6

3]
W

at
er

lin
e [

65
]

Sp
rin

g
N

eo
4j

[6
7]

D
oc

tri
ne

O
D

M
[6

6]
RO

M
[6

4]

Version 0.8 3.12 5.1 5.3 6 3 0.0.5 0.13.5 4.2 1.0 4

Graph DB 5 3 3 3 3 5 5 3 3 3 5∼

Attribute

- Edge(s) - 5 5 5 5 - 5 5 5 5 5

- Property - 3 3 3 3 - 3 3 3 3 3

Embeddables

- Edge(s) +Node(s) - 3 3 3 3 - 5 3 3 5 3

- Embed - 5 3,5c 5 5 - 3 5 5 3 5

Relationships

- Edge(s) - 3 3 3 3 - 3 3 3 3 3

- Embed - 5 5 5 5 - 5 5 5 5 5

- Ordering - I 3 3 3 - 5 5 3 5 5

I = Index. 5c = No collection mapping. L = Link edges to nodes.

Table 9: Supported object-graph mapping strategies.

vertex types, thus not requiring a join table. In Water-
line [65] many-to-many relationships used to be mod-
eled using proxy nodes, which are similar to junction
tables. However, this proxy strategy was removed in fa-
vor of direct edges between the nodes.

Ordering relationship data. In certain cases, the order-
ing of the relationship can be preserved. This is typ-
ically implemented by adding a order property on the
edge.

Inheritance mapping. Inheritance mapping support to-
wards graph databases is generally lacking and docu-
mentation is scarce. Impetus Kundera [59] does not
provide any inheritance test cases for Neo4j. GORM
with Neo4j and DataNucleus [73] map inheritance using
a concrete-table strategy. Hibernate OGM [60] features
test cases for single-table and concrete-table inheritance
in Neo4j, which simply changes a node class property
(e.g. class=User:Person). The default object-graph
converter of Eclipse JNoSQL [63] indicates that inher-
itance simply changes a class label value at the node
and fields are most likely inherited. Spring Data for
Neo4j’s inheritance handling is also unclear, and pre-
sumably also adopts the concrete-table strategy.

6.3. Comparison of object-column mapping strategies

As a consequence of the similarity in the supported
data models, object-column mappings strategies are
highly reminiscent of traditional object-relational map-
ping strategies. The investigated object-column map-
pings are generally more limited when compared to the
object-document mappings discussed above.

Hibernate OGM [60], JSData [62], and Doctrine [66]
do not provide column store support.

GORM [61] supports simple entity with inheritance
mapping without associations or collections. Impetus
Kundera [59] stores relationships as tables, but also al-
lows embedding of collections. DataNucleus [73] sup-
ports embedding of single objects, and always embeds
foreign key references. For a complete reference of
the object-column store mapping functionality the doc-
umentation of the ONDM frameworks can be consulted.

ROM [64] stores all data into normalized tables, but
also supports conceptual transformation strategies to for
example nested structures.

7. Discussion

This section discusses the main results of the survey
and explores a number of interesting avenues of future

20

research. Section 7.1 first explores a number of frame-
works and libraries that were formally excluded from
this survey study, but do have some noteworthy proper-
ties. Section 7.2 then discusses the identified challenges
of implementing NoSQL-specific mapping strategies in
the context of ONDM frameworks, and as such provides
some explanations for the current state of these systems.
Finally, Section 7.3 discusses the challenges and areas
of future research and development of ONDM frame-
works that were identified during this survey study.

7.1. Exploration of excluded frameworks
As discussed in Section 4, we have deliberately

scoped the study to allow for a focused and in-depth
comparison of the ONDM platforms of interest. How-
ever, we have also explored a number of the excluded
frameworks for which we present our main findings.
This is an exploratory effort, and we consider a more
in-depth and systematic survey of some of these classes
of frameworks to be part of our future work.

7.1.1. Academic ONDM frameworks
Renesca [79] is an object-graph mapper (OGM)

for Neo4j and Scala. The Renesca platform distin-
guishes itself from Hibernate OGM [60] and Spring
Data Neo4j [67] by supporting graph-query results, hy-
per graphs, and multiple-inheritance.

Wolf et al. [32] implement Hibernate ORM on top of
a the RIAK key-value store. This implementation was
made before the initial release of Hibernate OGM [60]
as an implementation and evaluation of Object-NoSQL
mapping. The study primarily evaluates the perfor-
mance of mapped objects in the NoSQL database RIAK
versus MySQL, for example on object write and re-
trieval.

Atzeni et al. [80] implement a framework for uni-
form access to NoSQL systems, and this implementa-
tion highlights the challenges of providing a uniform
interface and data model. In this framework, objects
with associations are always embedded by either two
patterns: multiple column(s) or field(s) creation, or map
to a single column or field.

CDPort [81] is a framework for portability between
NoSQL stores. It however does not specifically target
object mapping. Similarly, ODBAPI [82] provides a
unified REST API for relational and NoSQL data stores,
but it does not handle the mapping of objects with asso-
ciations transparently.

7.1.2. Excluded NoSQL Wrapper frameworks
The framework search methodology initially revealed

112 object-mappers targeted at single NoSQL tech-

39 NoSQL
Wrappers Analysis

E4

73 Wrappers
Inactive Dev.

Search
Methodology

112 NoSQL
Wrappers

Figure 8: Further selection of excluded NoSQL wrapper frameworks.

nologies, which were discarded due to exclusion cri-
terion E1. Yet, these mappers may still feature inter-
esting object-NoSQL mapping strategies. To explore
these frameworks further, we have sorted them in terms
of their language support, additionally excluding those
libraries with inactive or ceased development accord-
ing to E4 as shown in Figure 8. The remaining 39
NoSQL wrappers are analyzed in an exploratory fash-
ion for interesting or noteworthy object-mapping fea-
tures (specifically for S1 and S2). We more specifically
scoured the documentation and source code of the se-
lected wrappers for object-mapping functionality. The
main findings of this exercise are summarized below.

In general, we found no use of any strategies related
to mapping on a per-object basis (cfr. S2), for exam-
ple changing the strategy based on the values of certain
object attributes. Although tools exist that provide such
functionality (e.g. ModelMapper [83]), to our knowl-
edge this has not yet been used for NoSQL databases.
Additionally, none of the investigated NoSQL wrappers
supported partial embedding of relationship data. In the
studied wrapper frameworks, relationships were either
embedded as a list of references or the complete referred
data structure. These findings are highly similar to the
analyzed ONDM frameworks.

Apart from these broadly-applicable observations, we
have identified a number of interesting mapper features.
Neo4j-ogm [84] supports a @JsonIgnore annotation
to prevent loops in graph traversal. Mongoid [85] for
MongoDB has support for recursive embedding, in ad-
dition a child embedded document can be used in mul-
tiple types of parent documents. MongoKit [86] also al-
lows class attributes to be of multiple types, such poly-
morphism fits well with the flexible schema nature of
NoSQL document databases.

7.1.3. Excluded ONDM frameworks
Although certain ONDM frameworks were excluded

due to E3 and E4, some frameworks did show notewor-
thy features. We discuss these below.

Resourceful [87] is a JavaScript front-end ORM layer
with an isomorphic resource engine, the object’s at-

21

tributes are modeled using methods which is a dis-
tinctively different approach to common object domain
modeling.

While Cumulus4j [88] is not a full-fledged ONDM
framework, it serves as an encryption layer on top of
DataNucleus [73] to protect application data in out-
sourced environments.

The Ruby ORM adapter [89] provides abstraction
support for multiple ORM frameworks.

Finally, the Activate Framework [90] describes an in-
teresting transactional architecture and polyglot persis-
tence case.

7.2. Challenges in NoSQL mapping strategies

The specialized nature and data models inherent to
NoSQL lead to best practices on how to structure and
persist data that go beyond those applied in a relational
database context. As discussed in Section 2.3.4, exam-
ples of NoSQL mapping strategies are embedding (S1)
and support for per-object mappings (S2).

For example, data duplication (e.g. embedding data
within a parent record in addition to persisting the em-
bedded data in a separate record to optimize query per-
formance) are not implemented in the studied frame-
works. More specifically, of the studied ONDMs, data
duplication is only minimally supported, e.g. at the
level of embedding reference keys such as in Hibernate
OGM [60], or by embedding partial data in a join table.
In fact, ROM [64] even supports embedding part of the
data in the join table, but this data is not automatically
loaded by the framework (i.e. hydrated). JS Data [62]
allows nested representations of relationships, although
the data is stored in normalized tables at the database
end.

In practice, when a developer requires relationship
nesting or embedding they have to implement custom
functions, which in turn requires specific NoSQL ex-
pertise and leads to complex, application-specific code
that can not be ported easily. ONMDs that support this
are Doctrine ODM [66], GORM [61], and ROM [64].

Reusable, built-in support for these NoSQL data
mapping strategies are desirable at the level of ONDM
platforms. However, implementing these strategies
is not straightforward due to several factors, such as
schema complexity and schema bookkeeping, query
pathing, data duplication and consistency. We discuss
each of these in the subsequent sections.

7.2.1. Schema complexity and bookkeeping
A database schema encoded in 3NF has advantages in

presenting a clear and concise relational model without

data redundancy, and optimized for analytical queries
due its column structure. Suppose a developer wishes
to optimize certain read queries, he can then create de-
normalized structures and embed part of the join query
within the original record. In a later development stage,
duplicate data structures will result in a DB schema that
is difficult to maintain by the application, or its develop-
ers.

7.2.2. Data duplication, consistency and query pathing
A framework can however deal with managing data

consistency automatically, and work as intended by pro-
viding abstraction from the database complexity. How-
ever, update and write operations can individually come
at high latency due to unexpected consequences of the
schema when badly modeled. In addition, deciding
upon a query route is no easy feat since there are several
options to answer a given query.

The framework therefore needs to make object map-
ping decisions based on properties such as: object and
relationship size, query frequency, the existing data
structures, and current performance. Ideally, such in-
formation is collected by monitoring and benchmarking
within the framework.

7.3. Research challenges in ONDMs
Based on this survey study, we have identified several

areas of further research and development of ONDM
frameworks. We outlines these below.

7.3.1. Object-level mapping
In practice, the denormalized model is adopted be-

cause of its advantages in terms of quick read perfor-
mance, over write and update complexity due to main-
taining consistency. However, as discussed, a denormal-
ized schema is not transparent or maintainable to devel-
opers as it leads to increased complexity at the level of
write and update operations. As such, it is highly desir-
able to address such concerns independently from ap-
plication code, and thus ideally within Object-NoSQL
database mappers.

In the current state of ONDMs, the decision to persist
a data element as either denormalized or normalized is
decided (i) at development time, and (ii) at the level of
data types (class level).

However, thanks to characteristics such as schema
flexibility of NoSQL databases, individual objects of
the same type can be mapped to the database differ-
ently. For example, many applications encounter so-
called hotspot objects, or records which are highly clus-
tered. For example, a small subset of Users on a Re-
view website is typically responsible for the majority of

22

the content written. Suppose the reviews written by the
users are embedded within the User document, a large
portion of read and update requests will be targeted at
a single record. Therefore, applying a normalization
on this subset of the frequently-read records is highly
desirable. Furthermore, the most suitable per-object
mapping strategy is commonly determined on dynamic
properties: what is a viral news item today, will perhaps
not be as frequently read tomorrow. These properties
can vary, such as the size of certain arrays, storage re-
sources, and query activity.

As shown in this survey study, support for providing
(i) fine-grained, per object mappings that also (ii) can
be based on dynamic properties is entirely lacking in
current ONDMs (S2). Supporting these levels of cus-
tomization will have profound impact on (i) common
ONDM architectures, (ii) development APIs and inter-
faces, and (iii) data management aspects.

7.3.2. Support for schema design
The problem of identifying a good mapping and data

placement strategy, given a fixed set of requirements
(performance, availability, consistency, security) is a
complex search problem, which is exacerbated by the
level of technical NoSQL expertise required to iden-
tify the best data models, and database technologies and
configuration parameters.

Existing work on schema recommendation and
schema design support [91, 92, 93] is promising but
does not take all relevant properties and parameters into
account. The optimization of mapping strategies deci-
sions are influenced by various dimensions, for exam-
ple the embedded relationship depth, attribute selection
and grouping. In previous work [12], we have discussed
these object NoSQL modeling dimensions and algo-
rithms and outlined a research roadmap for schema gen-
eration and recommendation systems. These schema
recommender systems are typically generative in na-
ture: candidate schemas are generated and then evalu-
ated in terms of projected cost or suitability criteria.

ONDM frameworks are by definition developer-
centric. They decouple the application from database-
specifics and allow the developer to express application
abstractions without having to be aware of the database
or encoding in which the data ends up. Ideally, ONDMs
allow developers to use these databases without re-
quiring a level of expertise in NoSQL database. For
these reasons, integration of and extension with such
development support tools is thus desirable. Hibernate
OGM [60] is to our knowledge the only ONDM frame-
work with a denormalization engine on its roadmap.

7.3.3. First-class support of mapping strategies
We have shown that some of the current ONDMs of-

fer different mapping strategies and this level of vari-
ability is supported most visibly in the context of docu-
ment databases. In these studied ONDM architectures
however, these mapping strategies are typically hard-
coded, and it is very difficult, even undesired to manip-
ulate these.

However, and much in line with what is discussed
above in Section 7.3.1 and throughout, allowing vari-
ations in mapping strategies is often desirable, to fine-
tune aspects of performance, security, but also to allow
experimenting with different encodings, etc.

Redesigning ONDM frameworks so that imple-
mentations of different mapping strategies are well-
modularized, pluggable, configurable and portable
across different frameworks is thus one interesting
venue for further exploration, and in fact, a key en-
abler for researching improved mapping strategies that
are tailored to specific databases or data models.

An interesting extension of this idea is the idea in
which application-specific data mapping strategies can
be provided by the application developer itself. This
would provide a level of customization that goes beyond
the instructions currently often supported in the form of
code annotations.

7.3.4. Multi-store, multi-model, multi-node and multi-
cloud storage architectures

Most of frameworks studied in this survey can be con-
figured to persist data in one database at once. How-
ever, an increasingly common setup involves combining
multiple database technologies (multi-store), encoded
in different data models (multi-model), persisted in a
complex distributed system (multi-node) and perhaps
even across different providers (multi-cloud).

Of the investigated ONMDs, Impetus Kundera [59] is
only with initial support for such scenarios, enabling the
developer to execute a single query traversing multiple
DB technologies transparently (polyglot persistence).

Many platforms exist for the management of
multi-cloud storage. Examples are PERSIST [94],
SCOPE [95], Hybris [19], MetaStorage [96],
MCDB [97], DepSky [20], HAIL [17], IC-
Store [98], SPANStore [99], RACS [16], CDPort [100],
CSAL [101], and CHARM [102]. These platforms
provide complex data management middleware facili-
ties that in many cases rely extensively upon database
abstraction facilities.

This however raises the key question to what ex-
tent ONDMs should provide explicit support for dealing
with heterogeneity in terms of multiple data stores, data

23

models, and different deployment modes of the back-
end storage systems. Many envisioned scenarios can
benefit from tighter integration of ONDM functionality
with such facilities. For example, data mapping strate-
gies can be aware that data is to be persisted in a pub-
lic cloud context and may thus decide upon data pro-
tection measures (encryption). Ideally, such complexity
is again dealt with outside of the application scope and
transparently to the developer.

8. Related work

The survey study presented in this paper is based
upon similar studies conducted in the context of Object-
Relational Mappers (ORMs). We discuss this area of re-
lated work in Section 8.1. Section 8.2 discusses related
studies that focus on comparing and qualifying the state
of the art in Object-NoSQL data mappers (ONDMs).
Other types of related work such as academic ONDM
frameworks are discussed throughout the previous Sec-
tion 7.

8.1. ORM survey studies

The study presented is highly similar in some regards
to the survey by Torres et al. [4] on object-relational
mapping patterns. In the study, a framework is cho-
sen for each popular object-oriented programming lan-
guage and compared on mapping strategies available for
concepts such as attributes, classes, associations and in-
heritance. Similarly, our survey analyzes the ONDM
frameworks on object-relational patterns mentioned in
this survey, however extended with aspects specific per
NoSQL database category. We have also included addi-
tional ORM patterns such as JDO’s strategies for inher-
itance mapping, namely the strategies: subclass-table
and superclass-table. Torres et al. [4] provide a com-
parison of frameworks, of which only one is chosen per
language on the basis of popularity. In contrast, our
search methodology collects and starts from a data set of
342 frameworks, which is ultimately refined to a similar
subset of frameworks. Torres et al. [4] further analyzes
and discusses the framework’s architectural, structural
patterns, and the associated impact on coupling to which
we follow a similar approach and reasoning. Coupling
for ONDM frameworks is however further impacted due
to the heterogeneity present in NoSQL database API’s
and data models.

8.2. ONDM framework comparison studies

Although the existence of a systematic ORM sur-
vey, few studies have compared object-NoSQL mapping

frameworks on a systematic basis and as in-depth. Störl
et al. [103] compares a set of Object-NoSQL mappers,
namely Hibernate OGM [60], Impetus Kundera [59],
EclipseLink [38], and a MongoDB wrapper Morphia.
The study compares features of database support, in-
terface functionality, schema management, and evalu-
ates the performance overhead. In general, the study
provides a good initial overview of the basic, and im-
portant, aspects of these frameworks. Modeling anno-
tations or strategies and particularities are only briefly
mentioned.

In previous work [11] we have conducted a compar-
ison of ONDM frameworks on high-level features with
a specific focus on the performance overhead of these
frameworks. The benchmark study involves the follow-
ing set of frameworks: Hibernate OGM [60], Impetus
Kundera [59], Apache Gora [58], EclipseLink [38] and
DataNucleus [73]. The frameworks are compared on
database support and high-level features such as sup-
ported interfaces and query language. The study does
not compare available object-oriented mapping strate-
gies or for example the level of coupling with regards to
application and database portability.

Similarly, the study by Rafique et al. [104] compares
a slightly alternate set of ONDM frameworks on per-
formance, and secondly focuses on portability in terms
of the development effort required to migrate between
databases with, or without, the use of an ONDM frame-
work.

In contrast to these previous studies, this is to our
knowledge the first study which provides an in-depth
summary of object-NoSQL database mapping patterns,
and furthermore provides a systematic comparison of
strategies applied in practice, ranging from object-
document, -column, to -graph mapping patterns.

9. Conclusion

In recent years, storage systems have evolved from
relational tables to graphs, documents, key-value and
wide-column stores and this causes heterogeneity in
terms of database interfaces, data models and database
features. As a consequence, the traditional mismatch
between application domain objects and the target data
model, a problem referred to as the object-relational
impedance mismatch, has become convoluted with new
dimensions in data mapping and interface translation.

This survey identifies a total of 342 frameworks rel-
evant in this context, and evaluates in detail 11 Object-
NoSQL data mappers (ONDMs). A selective and in-
depth comparison (RO1) is conducted in terms of crite-
ria of database support, query and interface function-

24

ality, framework and DB coupling, and in a second
part on available object-mapping strategies. The sys-
tematic comparison can aid practitioners to select an
ONDM framework that meet application requirements,
and as steer the further advancement and development
of ONDMs.

Secondly, we have investigated the ONDMs in terms
of their mapping strategies for collections, relationships
and inheritance (RO2). We have specifically focused
on support for mapping strategies for (i) aggregate data
models: embedding vs. referencing (S1) and (ii) ex-
ploiting schema flexibility and mapping strategies that
act at the level of individual objects (S2). Based on
this systematic comparison of available mapping strate-
gies, we conclude that, firstly, for S1, collections and
object owned data are typically embedded by default
and support for alternate strategies is lacking. Re-
lationships can be embedded within the referring ob-
ject as a set of referred keys or identifiers. Embed-
ding of relationship data is scarcely supported. Sec-
ondly, none of the mapping strategies are applied at
the individual object-level and always at a global class-
level (S2). While evaluating the current state of object
mappings in these ONDMs, it becomes apparent that
object-document mapping strategies are more sophisti-
cated and advanced than those for column stores and
graph stores.

The presented survey is an important stepping stone
in our ongoing research on NoSQL abstractions, ap-
propriate mapping strategies and schema design, and
optimized configuration and deployment of highly-
distributed databases. Although many of these frame-
works are still under development, the results of this
study should remain relevant as it examines funda-
mental mapping issues between objects and NoSQL
databases. In addition, future studies can reuse our sys-
tematic comparison methodology.

Data and materials

The full list of identified frameworks from our sur-
vey can be found at [56], which provides an overview
of ORM and ONDM frameworks cataloged per object-
oriented programming language.

Acknowledgments

This research is partially funded by the Research
Fund KU Leuven.

Competing interests

The authors declare that they have no competing in-
terests.

References

[1] W. Keller, Mapping objects to tables, in: Proc. of European
Conference on Pattern Languages of Programming and Com-
puting, Kloster Irsee, Germany, Vol. 206, Citeseer, 1997, p.
207.

[2] W. R. Cook, A. H. Ibrahim, Integrating Programming Lan-
guages & Databases: Whats the Problem? DRAFT Comments
welcome!

[3] L. Cabibbo, A. Carosi, Managing inheritance hierarchies in ob-
ject/relational mapping tools, in: International Conference on
Advanced Information Systems Engineering, Springer, 2005,
pp. 135–150.

[4] A. Torres, R. Galante, M. S. Pimenta, A. J. B. Martins, Twenty
years of object-relational mapping: A survey on patterns, solu-
tions, and their implications on application design, Information
and Software Technology 82 (2017) 1–18.

[5] C. Ireland, D. Bowers, M. Newton, K. Waugh, A classi-
fication of object-relational impedance mismatch, in: Ad-
vances in Databases, Knowledge, and Data Applications, 2009.
DBKDA’09. First International Conference on, IEEE, 2009,
pp. 36–43.

[6] L. Caruccio, G. Polese, G. Tortora, Synchronization of queries
and views upon schema evolutions: A survey, ACM Transac-
tions on Database Systems (TODS) 41 (2) (2016) 9.

[7] M. Stonebraker, SQL databases v. NoSQL databases, Commu-
nications of the ACM 53 (4) (2010) 10–11.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
R. Sears, Benchmarking cloud serving systems with YCSB, in:
Proceedings of the 1st ACM symposium on Cloud computing,
ACM, 2010, pp. 143–154.

[9] K. Grolinger, W. A. Higashino, A. Tiwari, M. A. Capretz, Data
management in cloud environments: NoSQL and NewSQL
data stores, Journal of Cloud Computing: advances, systems
and applications 2 (1) (2013) 22.

[10] NoSQL-Databases, http://nosql-databases.org/.
[11] V. Reniers, A. Rafique, D. Van Landuyt, W. Joosen, Object-

NoSQL Database Mappers: a benchmark study on the perfor-
mance overhead, Journal of Internet Services and Applications
8 (1) (2017) 1.

[12] V. Reniers, D. Van Landuyt, A. Rafique, W. Joosen, Schema
design support for semi-structured data: Finding the sweet spot
between NF and De-NF.

[13] A. Rafique, D. Van Landuyt, B. Lagaisse, W. Joosen, Policy-
driven data management middleware for multi-cloud storage
in multi-tenant SaaS, in: 2nd IEEE/ACM International
Symposium on Big Data Computing, IEEE, 2015, pp. 78–84.
doi:10.1109/BDC.2015.39.
URL https://lirias.kuleuven.be/handle/

123456789/509105

[14] M. Venkat, Enterprise cloud strategy: Applications
and data in a multi-cloud environment, https:

//www.ibm.com/blogs/cloud-computing/2016/12/

applications-data-multi-cloud/ (December 2016).
[15] A. Raghavan, A. Chandra, J. Weissman, Tiera: towards flexible

multi-tiered cloud storage instances, in: Middleware ’14 15th
International Middleware Conference, ACM, 2014, pp. 1–12.
doi:{10.1145/2663165.2663333}.

25

http://nosql-databases.org/
https://lirias.kuleuven.be/handle/123456789/509105
https://lirias.kuleuven.be/handle/123456789/509105
https://lirias.kuleuven.be/handle/123456789/509105
http://dx.doi.org/10.1109/BDC.2015.39
https://lirias.kuleuven.be/handle/123456789/509105
https://lirias.kuleuven.be/handle/123456789/509105
https://www.ibm.com/blogs/cloud-computing/2016/12/applications-data-multi-cloud/
https://www.ibm.com/blogs/cloud-computing/2016/12/applications-data-multi-cloud/
https://www.ibm.com/blogs/cloud-computing/2016/12/applications-data-multi-cloud/
http://dx.doi.org/{10.1145/2663165.2663333}

[16] H. Abu-Libdeh, L. Princehouse, H. Weatherspoon, Racs: A
case for cloud storage diversity, in: Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, ACM,
New York, NY, USA, 2010, pp. 229–240. doi:10.1145/

1807128.1807165.
URL http://doi.acm.org/10.1145/1807128.1807165

[17] K. D. Bowers, A. Juels, A. Oprea, PHAIL: a high-availability
and integrity layer for cloud storage, in: Proceedings of the
16th ACM conference on Computer and communications se-
curity, ACM, 2009. doi:10.1145/1653662.16536865.

[18] T. G. Papaioannou, N. Bonvin, K. Aberer, Scalia: an adap-
tive scheme for efficient multi-cloud storage, in: SC ’12 Pro-
ceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ACM, 2012.

[19] D. Dobre, P. Viotti, M. Vukolić, Hybris: Robust hybrid cloud
storage, in: Proceedings of the ACM Symposium on Cloud
Computing, SOCC ’14, ACM, New York, NY, USA, 2014, pp.
12:1–12:14. doi:10.1145/2670979.2670991.
URL http://doi.acm.org/10.1145/2670979.2670991

[20] A. Bessani, M. Correia, B. Quaresma, F. André, P. Sousa, Dep-
Sky: Dependable and Secure Storage in a Cloud-of-Clouds,
Trans. Storage 9 (4) (2013) 12:1–12:33. doi:10.1145/

2535929.
URL http://doi.acm.org/10.1145/2535929

[21] M. Fowler, Patterns of enterprise application architecture,
Addison-Wesley Longman Publishing Co., Inc., 2002.

[22] Oracle, Java Persistence 2.2, Maintenance Release (2018).
[23] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,

N. Hachem, P. Helland, The end of an architectural era (it’s
time for a complete rewrite), in: Proceedings of the 33rd inter-
national conference on Very large data bases, VLDB Endow-
ment, 2007, pp. 1150–1160.

[24] M. Stonebraker, Stonebraker on NoSQL and enterprises.,
Commun. ACM 54 (8) (2011) 10–11.

[25] H. Vera, M. H. Wagner Boaventura, V. Guimaraes, F. Hondo,
Data modeling for NoSQL document-oriented databases, in:
CEUR Workshop Proceedings, Vol. 1478, 2015, pp. 129–135.

[26] The Apache Software Foundation, Apache Cassandra.
URL http://cassandra.apache.org/

[27] The Apache Software Foundation, Apache HBase.
URL https://hbase.apache.org/

[28] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, R. E. Gruber, Bigtable: A
distributed storage system for structured data, ACM Transac-
tions on Computer Systems (TOCS) 26 (2) (2008) 4.

[29] MongoDB, MongoDB.
URL https://www.mongodb.com/

[30] V. Jovanovic, S. Benson, Aggregate data modeling style, in:
Proceedings of the Southern Association for Information Sys-
tems Conference, 2013, pp. 70–75.

[31] P. Atzeni, F. Bugiotti, L. Cabibbo, R. Torlone, Data modeling
in the NoSQL world, Computer Standards & Interfaces.

[32] F. Wolf, H. Betz, F. Gropengießer, K.-U. Sattler, Hibernating in
the Cloud-Implementation and Evaluation of Object-NoSQL-
Mapping., in: BTW, Citeseer, 2013, pp. 327–341.

[33] S. W. Ambler, Mapping objects to relational databases: What
you need to know and why, Ronin International.

[34] Neo4j Data Modeling, Neo4j Data Modeling.
URL https://neo4j.com/developer/data-modeling/

[35] Data modeling in RethinkDB, https://www.rethinkdb.

com/docs/data-modeling/.
[36] Java Data Objects Expert Group, Java Data Objects 3.1 (2015).
[37] A. Kanade, A. Gopal, S. Kanade, A study of normalization and

embedding in MongoDB, in: Advance Computing Conference
(IACC), 2014 IEEE International, IEEE, 2014, pp. 416–421.

[38] The Eclipse Foundation, EclipseLink, http://www.

eclipse.org/eclipselink/.
[39] Hibernate, Hibernate ORM, http://hibernate.org/orm/.
[40] Docb), https://github.com/capless/docb/.
[41] K.E.V. framework (Keys, Extra Stuff, and Values), https://

github.com/capless/kev.
[42] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bai-

ley, S. Linkman, Systematic literature reviews in software
engineering–a systematic literature review, Information and
software technology 51 (1) (2009) 7–15.

[43] S. Keele, et al., Guidelines for performing systematic literature
reviews in software engineering, in: Technical report, Ver. 2.3
EBSE Technical Report. EBSE, sn, 2007.

[44] D. Alur, D. Malks, J. Crupi, G. Booch, M. Fowler, Core
J2EE Patterns (Core Design Series): Best Practices and Design
Strategies, Sun Microsystems, Inc., 2003.

[45] GitHut, GitHut 2.0.
URL https://madnight.github.io/githut/

[46] IEEE Spectrum, Interactive: The Top Programming Lan-
guages 2017.
URL https://spectrum.ieee.org/static/

interactive-the-top-programming-languages-2017

[47] TIOBE, TIOBE Index.
URL https://www.tiobe.com/tiobe-index/

[48] Pierre Carbonnelle, PYPL PopularitY of Programming Lan-
guage.
URL http://pypl.github.io/PYPL.html

[49] RedMonk, The RedMonk Programming Language Rankings:
January 2017.
URL https://redmonk.com/sogrady/2017/03/17/

language-rankings-1-17/

[50] DB-Engines, DB-Engines Ranking.
URL https://db-engines.com/en/ranking

[51] npm, The npm registry.
URL https://www.npmjs.com/

[52] CPAN, The Comprehensive Perl Archive Network.
URL https://www.cpan.org/

[53] The Ruby Toolbox, The Ruby Toolbox.
URL https://www.ruby-toolbox.com/

[54] P. J. Sadalage, M. Fowler, NoSQL distilled: a brief guide to
the emerging world of polyglot persistence, Pearson Educa-
tion, 2013.

[55] V. Reniers, Object-database mappers: Survey results (2018).
URL https://people.cs.kuleuven.be/~vincent.

reniers/mappers/

[56] Object-relational and object-NoSQL database mapping frame-
works. 1. doi:10.17632/TJ55YM9TB2.1.
URL https://data.mendeley.com/datasets/

tj55ym9tb2/1

[57] Bass), https://github.com/congajs/bass.
[58] Apache, Apache Gora, http://gora.apache.org/.
[59] Impetus, Kundera: Object-datastore Mapping Library, https:

//github.com/impetus-opensource/Kundera/wiki.
[60] Hibernate, Hibernate OGM, http://hibernate.org/ogm/.
[61] Grails, GORM, http://gorm.grails.org/.
[62] JSData, JSData, http://www.js-data.io/.
[63] The Eclipse Foundation, Eclipse JNoSQL, http://www.

jnosql.org/.
[64] ROM, Ruby Object Mapper, http://rom-rb.org/.
[65] Sails, Waterline ORM, http://waterlinejs.org/.
[66] Doctrine Project, Doctrine, http://www.

doctrine-project.org/projects.html.
[67] Spring, Spring Data, http://projects.spring.io/

spring-data/.
[68] Yii PHP Framework, https://www.yiiframework.com/.

26

http://doi.acm.org/10.1145/1807128.1807165
http://doi.acm.org/10.1145/1807128.1807165
http://dx.doi.org/10.1145/1807128.1807165
http://dx.doi.org/10.1145/1807128.1807165
http://doi.acm.org/10.1145/1807128.1807165
http://dx.doi.org/10.1145/1653662.16536865
http://doi.acm.org/10.1145/2670979.2670991
http://doi.acm.org/10.1145/2670979.2670991
http://dx.doi.org/10.1145/2670979.2670991
http://doi.acm.org/10.1145/2670979.2670991
http://doi.acm.org/10.1145/2535929
http://doi.acm.org/10.1145/2535929
http://dx.doi.org/10.1145/2535929
http://dx.doi.org/10.1145/2535929
http://doi.acm.org/10.1145/2535929
http://cassandra.apache.org/
http://cassandra.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/
https://www.mongodb.com/
https://www.mongodb.com/
https://neo4j.com/developer/data-modeling/
https://neo4j.com/developer/data-modeling/
https://www.rethinkdb.com/docs/data-modeling/
https://www.rethinkdb.com/docs/data-modeling/
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/
http://hibernate.org/orm/
https://github.com/capless/docb/
https://github.com/capless/kev
https://github.com/capless/kev
https://madnight.github.io/githut/
https://madnight.github.io/githut/
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2017
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://redmonk.com/sogrady/2017/03/17/language-rankings-1-17/
https://redmonk.com/sogrady/2017/03/17/language-rankings-1-17/
https://redmonk.com/sogrady/2017/03/17/language-rankings-1-17/
https://redmonk.com/sogrady/2017/03/17/language-rankings-1-17/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://www.npmjs.com/
https://www.npmjs.com/
https://www.cpan.org/
https://www.cpan.org/
https://www.ruby-toolbox.com/
https://www.ruby-toolbox.com/
https://people.cs.kuleuven.be/~vincent.reniers/mappers/
https://people.cs.kuleuven.be/~vincent.reniers/mappers/
https://people.cs.kuleuven.be/~vincent.reniers/mappers/
https://data.mendeley.com/datasets/tj55ym9tb2/1
https://data.mendeley.com/datasets/tj55ym9tb2/1
http://dx.doi.org/10.17632/TJ55YM9TB2.1
https://data.mendeley.com/datasets/tj55ym9tb2/1
https://data.mendeley.com/datasets/tj55ym9tb2/1
https://github.com/congajs/bass
http://gora.apache.org/
https://github.com/impetus-opensource/Kundera/wiki
https://github.com/impetus-opensource/Kundera/wiki
http://hibernate.org/ogm/
http://gorm.grails.org/
http://www.js-data.io/
http://www.jnosql.org/
http://www.jnosql.org/
http://rom-rb.org/
http://waterlinejs.org/
http://www.doctrine-project.org/projects.html
http://www.doctrine-project.org/projects.html
http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data/
https://www.yiiframework.com/

[69] pyDAL framework), https://github.com/web2py/

pydal/.
[70] Lift framework), https://liftweb.net/.
[71] Lithium (li3) framework), https://github.com/

unionofrad/lithium.
[72] Thinodium ODM), https://thinodium.github.io.
[73] DataNucleus, DataNucleus, http://www.datanucleus.

org.
[74] ElasticSearch, ElasticSearch.

URL https://www.elastic.co/

[75] The Apache Software Foundation, Apache Solr.
URL http://lucene.apache.org/solr/

[76] OrientDB, OrientDB.
URL https://orientdb.com/

[77] Waterline, Embedded documents issue, https://github.

com/balderdashy/waterline/issues/658.
[78] JugglingDB, Can I nest objects?, https://github.com/

1602/jugglingdb/issues/251.
[79] F. Dietze, J. Karoff, A. C. Valdez, M. Ziefle, C. Greven,

U. Schroeder, An open-source object-graph-mapping frame-
work for Neo4j and Scala: Renesca, in: International Confer-
ence on Availability, Reliability, and Security, Springer, 2016,
pp. 204–218.

[80] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to NoSQL sys-
tems, Information Systems 43 (2014) 117–133.

[81] E. Alomari, A. Barnawi, S. Sakr, Cdport: A portability frame-
work for nosql datastores, Arabian Journal for Science and En-
gineering 40 (9) (2015) 2531–2553.

[82] R. Sellami, S. Bhiri, B. Defude, Odbapi: a unified rest api
for relational and nosql data stores, in: Big Data (BigData
Congress), 2014 IEEE International Congress on, IEEE, 2014,
pp. 653–660.

[83] ModelMapper, http://modelmapper.org/user-manual/
property-mapping/.

[84] Neo4j-OGM), https://neo4j.com/docs/ogm-manual/

current/reference/.
[85] Mongoid, https://docs.mongodb.com/mongoid/

master/.
[86] Mongokit), https://github.com/namlook/mongokit/

wiki/Structure.
[87] Resourceful: an isomorphic Resource engine for JavaScript,

https://github.com/flatiron/resourceful.
[88] M. Huber, M. Gabel, M. Schulze, A. Bieber, Cumulus4j: A

provably secure database abstraction layer, in: International
Conference on Availability, Reliability, and Security, Springer,
2013, pp. 180–193.

[89] Ruby ORM Adapter, https://github.com/ianwhite/

orm_adapter.
[90] Activate Framework: Architecture documentation,

https://github.com/fwbrasil/activate/blob/

master/activate-docs/architecture.md.
[91] M. J. Mior, K. Salem, A. Aboulnaga, R. Liu, Nose: Schema de-

sign for nosql applications, IEEE Transactions on Knowledge
and Data Engineering 29 (10) (2017) 2275–2289.

[92] S. Scherzinger, M. Klettke, U. Störl, Managing schema evolu-
tion in nosql data stores, arXiv preprint arXiv:1308.0514.

[93] D. S. Ruiz, S. F. Morales, J. G. Molina, Inferring versioned
schemas from nosql databases and its applications, in: Inter-
national Conference on Conceptual Modeling, Springer, 2015,
pp. 467–480.

[94] A. Rafique, D. Van Landuyt, E. Truyen, V. Reniers, W. Joosen,
Scope: self-adaptive and policy-based data management mid-
dleware for federated clouds, Journal of Internet Services and
Applications 10 (1).

[95] A. Rafique, D. Van Landuyt, W. Joosen, Persist: Policy-based

data management middleware for multi-tenant saas lever-
aging federated cloud storage, Journal of Grid Computing
16 (2) (2018) 165–194. doi:https://doi.org/10.1007/

s10723-018-9434-6.
URL https://lirias.kuleuven.be/1643052

[96] D. Bermbach, M. Klems, S. Tai, M. Menzel, Metastorage:
A federated cloud storage system to manage consistency-
latency tradeoffs, in: 2011 IEEE 4th International Conference
on Cloud Computing, 2011, pp. 452–459. doi:10.1109/

CLOUD.2011.62.
[97] M. A. Alzain, B. Soh, E. Pardede, Mcdb: Using multi-clouds

to ensure security in cloud computing, in: 2011 IEEE Ninth In-
ternational Conference on Dependable, Autonomic and Secure
Computing, 2011, pp. 784–791. doi:10.1109/DASC.2011.
133.

[98] C. Cachin, R. Haas, M. Vukolic, Dependable storage in the
intercloud, Tech. rep., Research Report RZ, 3783 (2010).

[99] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, H. V. Mad-
hyastha, Spanstore: Cost-effective geo-replicated storage span-
ning multiple cloud services, in: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, ACM, New York, NY, USA, 2013, pp. 292–308.
doi:10.1145/2517349.2522730.
URL http://doi.acm.org/10.1145/2517349.2522730

[100] E. Alomari, A. Barnawi, S. Sakr, Cdport: A portability
framework for nosql datastores, Arabian Journal for Science
and Engineering 40 (9) (2015) 2531–2553. doi:10.1007/

s13369-015-1703-0.
URL https://doi.org/10.1007/s13369-015-1703-0

[101] Z. Hill, M. Humphrey, Csal: A cloud storage abstraction layer
to enable portable cloud applications, in: 2010 IEEE Second
International Conference on Cloud Computing Technology
and Science, 2010, pp. 504–511. doi:10.1109/CloudCom.

2010.88.
[102] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, Y. Dai, Charm: A

cost-efficient multi-cloud data hosting scheme with high avail-
ability, IEEE Transactions on Cloud computing 3 (3) (2015)
372–386.

[103] U. Störl, T. Hauf, M. Klettke, S. Scherzinger, Schemaless
NoSQL data stores-Object-NoSQL Mappers to the rescue?,
Datenbanksysteme für Business, Technologie und Web (BTW
2015).

[104] A. Rafique, D. V. Landuyt, B. Lagaisse, W. Joosen, On the
Performance Impact of Data Access Middleware for NoSQL
Data Stores: A Study of the Trade-off between Performance
and Migration Cost, IEEE Transactions on Cloud Computing
(2015) 1–14.

27

https://github.com/web2py/pydal/
https://github.com/web2py/pydal/
https://liftweb.net/
https://github.com/unionofrad/lithium
https://github.com/unionofrad/lithium
https://thinodium.github.io
http://www.datanucleus.org
http://www.datanucleus.org
https://www.elastic.co/
https://www.elastic.co/
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
https://orientdb.com/
https://orientdb.com/
https://github.com/balderdashy/waterline/issues/658
https://github.com/balderdashy/waterline/issues/658
https://github.com/1602/jugglingdb/issues/251
https://github.com/1602/jugglingdb/issues/251
http://modelmapper.org/user-manual/property-mapping/
http://modelmapper.org/user-manual/property-mapping/
https://neo4j.com/docs/ogm-manual/current/reference/
https://neo4j.com/docs/ogm-manual/current/reference/
https://docs.mongodb.com/mongoid/master/
https://docs.mongodb.com/mongoid/master/
https://github.com/namlook/mongokit/wiki/Structure
https://github.com/namlook/mongokit/wiki/Structure
https://github.com/flatiron/resourceful
https://github.com/ianwhite/orm_adapter
https://github.com/ianwhite/orm_adapter
https://github.com/fwbrasil/activate/blob/master/activate-docs/architecture.md
https://github.com/fwbrasil/activate/blob/master/activate-docs/architecture.md
https://lirias.kuleuven.be/1643052
https://lirias.kuleuven.be/1643052
https://lirias.kuleuven.be/1643052
http://dx.doi.org/https://doi.org/10.1007/s10723-018-9434-6
http://dx.doi.org/https://doi.org/10.1007/s10723-018-9434-6
https://lirias.kuleuven.be/1643052
http://dx.doi.org/10.1109/CLOUD.2011.62
http://dx.doi.org/10.1109/CLOUD.2011.62
http://dx.doi.org/10.1109/DASC.2011.133
http://dx.doi.org/10.1109/DASC.2011.133
http://doi.acm.org/10.1145/2517349.2522730
http://doi.acm.org/10.1145/2517349.2522730
http://dx.doi.org/10.1145/2517349.2522730
http://doi.acm.org/10.1145/2517349.2522730
https://doi.org/10.1007/s13369-015-1703-0
https://doi.org/10.1007/s13369-015-1703-0
http://dx.doi.org/10.1007/s13369-015-1703-0
http://dx.doi.org/10.1007/s13369-015-1703-0
https://doi.org/10.1007/s13369-015-1703-0
http://dx.doi.org/10.1109/CloudCom.2010.88
http://dx.doi.org/10.1109/CloudCom.2010.88

	Introduction
	Background
	Object to database mapping
	NoSQL databases
	Object-oriented mapping to NoSQL databases
	Mapping object attributes and collections
	Mapping object relationships
	Mapping classes and inheritance
	Novel object mapping strategies

	Motivation: Object-NoSQL database mappers (ONDM)

	Research methodology
	Research objectives
	Search methodology
	Search keywords
	Resources and repositories searched

	Framework selection criteria
	RO1 Comparison criteria
	C1. Database support
	C2. Interface support and query functionality
	C3. Architectural patterns
	C4. Framework and database coupling

	RO2 Object mapping comparison criteria
	C5. Mapping attributes, associations and inheritance relations
	C6. Specialized mapping strategies.

	Framework search results and selection
	ONDM framework selection
	Exclusion of frameworks
	Selected ONDM frameworks

	Feature comparison (RO1)
	Database support (C1)
	Interface support and functionality (C2)
	Architectural patterns (C3)
	Framework and database coupling (C4)

	Domain object mapping strategies (RO2)
	Object-document mapping strategies
	Mapping object embeddables and collections
	Relationship mapping
	Class and inheritance mapping

	Comparison of object-graph mapping strategies
	Comparison of object-column mapping strategies

	Discussion
	Exploration of excluded frameworks
	Academic ONDM frameworks
	Excluded NoSQL Wrapper frameworks
	Excluded ONDM frameworks

	Challenges in NoSQL mapping strategies
	Schema complexity and bookkeeping
	Data duplication, consistency and query pathing

	Research challenges in ONDMs
	Object-level mapping
	Support for schema design
	First-class support of mapping strategies
	Multi-store, multi-model, multi-node and multi-cloud storage architectures

	Related work
	ORM survey studies
	ONDM framework comparison studies

	Conclusion

