
Deep Reinforcement Learning for Dynamic
Network Slicing in IEEE 802.11 Networks

Sibren De Bast∗, Rodolfo Torrea-Duran∗, Alessandro Chiumento†, Sofie Pollin∗, and Haris Gacanin‡
∗ESAT - TELEMIC, KU Leuven, Leuven, Belgium
†CONNECT, Trinity College, Dublin, Ireland
‡Nokia Bell Labs, Antwerp, Belgium

Abstract—Network slicing, a key enabler for future wire-
less networks, divides a physical network into multiple logical
networks that can be dynamically created and configured. In
current IEEE 802.11 (Wi-Fi) networks, the only form of network
configuration is a rule-based optimization of few parameters. Fu-
ture access points (APs) are expected to have self-organizational
capabilities, able to deal with large configuration spaces in
order to dynamically configure each slice. Deep Reinforcement
Learning (DRL) can achieve promising results in highly dynamic
and complex environments without the need for an operating
model, by learning the optimal strategy after interacting with
the environment. However, since the number of possible slice
configurations is huge, achieving the optimal strategy requires
an exhaustive learning period that might yield an outdated slice
configuration. In this paper, we propose a fast-learning DRL
model that can dynamically optimize the slice configuration of
unplanned Wi-Fi networks without expert knowledge. Enhanced
with an off-line learning step, the proposed approach is able to
achieve the optimal slice configuration with a fast convergence,
which is attractive for dynamic scenarios.

Index Terms—network slicing, deep reinforcement learning,
Wi-Fi networks

I. INTRODUCTION

Due to the tremendous growth of indoor data traffic [1],
IEEE 802.11 (i.e., Wi-Fi) constitutes a crucial technology for
providing next-generation indoor services, such as massive
Internet-of-Things, broadband wireless, and ultra-reliable com-
munications, each of which has a diverse set of performance
requirements [2]. Currently, multiple Wi-Fi access points
(APs) are deployed without planning, with a large set of (often
inter-dependent) parameters that can be tuned to optimize the
network for different services. These parameters affect the
network’s spectral efficiency, and time, space, and frequency
footprint by selecting the channel, bandwidth, modulation and
coding scheme, or spatial multiplexing scheme. One promising
solution to support the diverse set of requirements for multiple
applications under a flexible infrastructure is network slicing.
Unlike traditional network service delivery, network slicing
divides physical network into multiple isolated end-to-end log-
ical networks, each of which contains the necessary physical
resources and configuration for network service delivery [3]–
[5]. The creation, configuration, and management of the slices
is done dynamically and on-the-fly. Traditional approaches
for slice configuration in wireless networks use rule-based
optimization techniques, which typically tackle only a single

configuration parameter at a time and require static operating
models that need to be updated constantly [6]. These models
do not scale to networks with numerous diverse slices, a
large number of configuration parameters, or very dynamic de-
ployment scenarios. Furthermore, configuring the many inter-
dependent parameters of APs at run-time cannot be done with
traditional model-free approaches. For this purpose, future
APs are foreseen to have self-organizational capabilities aided
by machine learning (ML) that will observe the environment
and act upon this by selecting the best configuration for all
parameters dynamically. Reinforcement learning (RL) with
Q-learning has been successfully used in wireless networks
where a complete knowledge or model of the network envi-
ronment is not available or it is extremely time-consuming
to obtain [7]. For instance, due to the unplanned deployment
of Wi-Fi APs and the increasing interference in ISM bands,
obtaining a model of the network environment is not feasi-
ble in practice. However, the prohibitively high number of
configurable parameters for network slicing and its dynamic
behaviour results in a gigantic state-action space that cannot be
learned completely within a steady period of the network. One
way to deal with the gigantic state-action space is with a deep
Neural Network (NN). The NN can be used to learn complex
interactions in the environment and can predict the reward
obtained by taking a certain action, hence avoiding the need
to explore the whole state-action space. This is called deep
reinforcement learning (DRL) [8] and it is shown to speed up
convergence and increase robustness in wireless networks [9]–
[11].

To this end, we present a fast-learning DRL model to
dynamically optimize the network slice configuration without
the need for network planning, even in scenarios with several
network parameters to be configured and multiple users with
varying requirements. We consider a scenario where multiple
flows or slices need to be served over a single network, subject
to unknown and dynamic interference. In order to speed up
convergence, our approach includes an off-line training step
that can even eliminate the on-line learning time, crucial for
fast quality of service optimization in dynamic networks. To
the best of our knowledge, this is the first time DRL is used to
tackle dynamic network optimization for multiple applications,
i.e. network slicing, in Wi-Fi networks. To summarize, the
contributions of this work are:



• We propose a DRL model for fast optimization of Wi-Fi
networks, without a-priori network information about the
specific deployment scenario;

• We enhance the proposed DRL model with Double
DQN [12] and fitted Q-iteration. While the first one
reduces overestimations and improves performance, the
second one reduces the on-line learning time;

• We show that our approach is able to find the optimal
slice configuration at run-time, even in scenarios with
multiple slices that have different throughput require-
ments.

II. RELATED WORK

The application of DRL to wireless multichannel access
networks in general has been prolific in the past. This is of
importance as these networks share the basic medium access
control mechanism with Wi-Fi networks. For instance, in [10],
from selecting one (good/bad) channel at a time and learning
from this experience, a user tries to obtain as much successful
transmissions using a deep Q-network. In [11] users also
follow a binary strategy (ACK/NACK) to update a deep Q-
network in a central unit. This allows each user to adjust
its transmission parameters while considering the multi-user
learning in a fully distributed manner. In [9], DRL is used to
solve the problem of time-sharing among multiple networks
(including Wi-Fi) using different MAC protocols. By a series
of observations (success/collision), actions (transmit/idle), and
rewards, the proposed algorithm is able to learn the optimal
MAC strategy even without knowledge of the MAC strategies
of the other networks. In network slicing however, a sim-
ple binary model (good/bad, ACK/NACK, success/collision,
transmit/idle) cannot capture all the variety of possibilities
when dealing with such heterogeneous slices, that depend on
different parameters or may require a more granular control
of the user’s quality of service.

In other papers, the application of DRL to Wi-Fi networks
remains focused on the problem of the LTE and Wi-Fi coex-
istence. For instance, RL is used in [13] and [14] and DRL
in [16] to learn the best allocation of resources between LTE
and Wi-Fi networks. However, both the APs and base stations
know the protocol used by the other network. Alternatively,
our problem is not model-aware in the sense that the APs
have no a-priori knowledge of the specific scenario nor of the
networks that might be causing interference.

Other papers tackle specific releases of the 802.11 standard.
For instance [15] enhances channel assessment capabilities
in 802.11ac networks by altering the bandwidth and channel
configuration using RL; while in [17], the MCS and frame
size in a 802.11n network are jointly optimized with RL. Both
papers rely on a period of interaction with the environment that
is stable and sufficiently long to provide the optimal solution.
Relying on such a long learning period will render in our case
an outdated slice configuration.

In general, most papers that use RL or DRL for network
optimization have a unidimensional view, which is not our
case since our problem requires the optimization of different

Environment 

Q-model

Policy

State-Action

Action

Reward Q-model

Fig. 1. An overview of the Q-learning algorithm. The environment reports
the state-action and reward to the Q-model. Afterwards, this model is updated
with the new information and passed on to the policy. Finally the policy uses
this model to decide which action has to be taken. One full loop is one step
for the system.

inter-dependent parameters subject to unpredictable sources of
interference. More importantly, the problem of network slicing
requires a high convergence speed due to the dynamic nature
of the slices. This will require an off-line learning step to
improve the on-line convergence speed.

III. DEEP REINFORCEMENT LEARNING FOR WI-FI
NETWORK SLICING

A. Q-Learning

Q-Learning is a well-known unsupervised learning tech-
nique which aims to find the optimal strategy through in-
teractions with the environment that results in the highest
accumulated reward. Fig. 1 gives an overview of the Q-
learning approach.

The strategy is learned through a state-action value function
Q that represents the expected reward of taking an action a
while being in state s. The action to take is chosen by the
policy π.

Qπ(s, a) = E{Rt|st = s, at = a}. (1)

The optimal state-action value Q∗(s, a) = maxπ Q
π(s, a)

follows the Bellman equation

Q∗(s, a) = Es′{rt+1+γmax
a′

Q∗(s′, a′)|st = s, at = a}, (2)

where s′ is the new state after taking action a, and rt+1 is
the reward that the system receives for going from state s to
s′. In Wi-Fi networks, the state of the environment contains
all valuable parameters that can be logged by the APs (e.g.:
MCS, channel selection).

For the environment to be able to allocate a reward to a
certain state-action pair, a reward function has to be defined.
The reward function defines the optimization objective of
Q-learning. Therefore it will depend on parameters that are
desirable to be optimized, e.g. throughput and latency are pa-
rameters that can used for defining a reward function in Wi-Fi
networks. Note that without defining a proper reward function,
Q-learning will not be able to optimize the environment.



In order to build the Q-function, we estimate each of the
elements q(s, a) by iteratively taking action at from state st
at time t such that

q(st, at) = q(st, at)+α(rt+1+γmax
a′

q(st+1, a
′)−q(st, at)),

(3)
where α ∈ (0, 1) is the learning rate and γ ∈ [0, 1) is the
discount factor. An ε-greedy policy can be adopted in which
an action at = argmaxa q(st, a) with probability 1 − ε and
a random action with probability ε, is taken. This is done to
avoid that the system is stuck in a local optimum. Typically,
when the system is starting to learn, a large value of ε is
adopted to allow for more exploration. After some time, the
value of ε is reduced in order to allow for more exploitation.

B. Deep Reinforcement Learning (DRL)

The main drawback of Q-learning is the slow convergence
rate due to its iterative nature and the fact that it does not
rely on any prior information when it encounters a new state.
For network slicing, the number of possible states and actions
renders a simple Q-learning approach infeasible. With DRL, a
deep neural network (NN) approximates the state-action value
function q(s, a, θ) ≈ Q∗(s, a) where the vector θ contains
the weights of the NN. This NN is trained to minimize the
prediction error given by its loss function, where the target
output of the NN is defined by

yt = rt+1 + γmax
a′

q(st+1, a
′; θ′). (4)

This method, where the Q-function is modelled with the help
of NNs, is called Deep Q-Networks (DQN) [8]. To further
improve DQN for the specific context of Wi-Fi networks with
diverse slices, we detail some techniques we have chosen to
use in our approach below. These additional techniques are
crucial to use DQN for Wi-Fi network slicing.

1) Experience Replay: A Wi-Fi network environment could
operate in a stable context for a long time. If the Q-model
would be trained on the data of this static environment for
a long time, the NN weights would over-fit and the model
would lose its effectiveness when the scenario changes. To
combat this, Experience Replay is used. The main idea of
experience replay is to train the DRL agent with knowledge
acquired on-the-fly and stored in a buffer. The buffer is filled
with previous experiences, which are composed of an action, a
state, a reward and a new state that the agent has encountered.
At every step the agent takes, a new entry is added to the
buffer. Typically, a batch of randomly selected experiences is
used at each step to train the agent. Experience replay is used
during on-line learning for several reasons, among them to
speed up the learning, break undesirable temporal correlations,
and increase data usage and computation efficiency [18].

2) Double DQN: Wi-Fi users expect a certain Quality-of-
service (QoS) in the network. Therefore the convergence speed
and stability of the system are from utmost importance to
measure the performance of the DRL agent. To improve the
performance of DQN, Double DQN (DDQN) was introduced
in [12]. In standard DQN, the same NN is used to select

and to evaluate an action, resulting in overoptimistic reward
estimations. To prevent this, DDQN proposes the use of two
value functions resulting in two sets of weights, θ and θ′ [12].
One is used to determine the action, while the other is used
to evaluate its reward. This results in

yt = rt+1 + γq(st+1, argmax
a

q(st+1, a; θt); θ
′
t) (5)

DDQN improves the stability and overall performance of the
learned model. This will improve the QoS for Wi-Fi users in
comparison to a model that uses DQN.

3) Fitted Q-iteration: Building reliable knowledge using
on-line learning might require numerous iterations before
achieving a stable point, or even a point with reasonable
performance. In our highly dynamic scenario, this will result
in a slice configuration that is not up to date. Therefore instead
of updating the Q-values on-line, Fitted Q-iteration [19], also
called Fitted Q-learning, performs an off-line training step. It
does this by taking a big number of learning samples that
are generated in an off-line way, and trains the NN with this
data. While generating the data for the Fitted Q-iteration, the
actions can be chosen randomly. It has been shown that Fitted
Q-iteration allows for a faster and more reliable convergence,
which is key for network slicing.

IV. SYSTEM MODEL

This section describes the implemented Wi-Fi scenario, the
optimization parameters, and the details of the DDQN method.

A. Simulated Network Environment

We develop a simulation scenario with a Wi-Fi network
having N ∈ [2, 5] users. We define for each user its own
application requirements in a dynamic fashion. Thus, each user
represents a slice with a specific performance requirement– in
our scenario, throughput.

The users are located in a building with two floors, each
floor consisting of a 3-by-3 grid of square rooms and each be-
ing 10-by-10 meters. The users and APs are randomly placed
on the ground floor. On the first floor an interfering network is
randomly placed, which uses the same frequency channel. Fig-
ure 2 shows one of the possible random scenarios. The network
environment was implemented in the network simulator ns-
3. Each simulation instance initialization generates a random
slice configuration for a given environment (users location,
channel conditions, interference power, required throughput,
and number of users).

B. Parameter Selection

Each user is assigned a network slice and each slice requires
a certain, randomly chosen throughput, which ranges from 1
to 30 Mbps. Note that a slice can never achieve a throughput
higher than its required throughput, since this determines how
many packets are offered at the AP for this slice. A slice can
however achieve a lower throughput due to bad link quality
or interference.

To decide upon the right action, the DDQN agent will need
to know the state of the Wi-Fi network. The parameters and



our
network

interfering
network

AP

User

Fig. 2. One of the possible scenario configurations. The N users and AP are
placed at a random position on the ground floor. The interfering AP and user
are placed at a random location on the first floor. Each user is treated as a
slice with throughput requirement TR

s .

their ranges used as the environment state can be found in
Table I. The range of parameters is used to normalize the data
before we use it to train the NN, this improves the numerical
stability and training speed of the NN. To acquire the complete
state of the network, these eight parameters are logged for
each slice. The total number of parameters used by the DDQN
algorithm is 40, since our model supports up to five slices.
When the Wi-Fi network contains less than five slices, zeros
are added instead to the data. Adding support for more slices
can easily be done by enlarging the NN to support more slices
as input. Note that for each extra user the model has to be
trained with data for these amount of slices.

TABLE I
THE PARAMETERS OF THE WIRELESS NETWORK USED AS THE STATE OF

THE ENVIRONMENT.

State-Parameter Range unit
MCS index [0, 7] -
CCA threshold [−90,−70] dBm
TX Power [11, 20] dBm
Required Throughput [1, 30] Mbps
Achieved Throughput [1, 30] Mbps
RTT [0, 1000] ms
Frequency channel {36, 38, 40} -
RSSI [−100, 0] dBm

Wi-Fi networks have a lot of tunable parameters for each
slice. Choosing which parameters to optimize for is an im-
portant task [20]. In the dense deployment of Wi-Fi systems,
there are various inter-dependent parameters that are all af-
fected by interference. For instance, interference can partly
be alleviated by choosing the right channel and bandwidth.
In 802.11n/ac/ax, this can be done dynamically while using
bandwidths ranging from 20 MHz to 160 MHz. However
changing the bandwidth in a dynamic way creates a trade-
off in transmission range and probability of interference. [15]
proposes as a potential solution a careful balance between
the clear channel assessment (CCA) sensitivity level, the
modulation and coding scheme (MCS) and the transmit power
(TxP). Therefore our DDQN agent tries to achieve the required
rate by configuring these parameters for each network slice

together. The possible values for each parameter are: MCS
∈ {0, 1, 2, ..., 7}, CCA ∈ {−90,−85,−80,−75,−70} dBm,
TxP ∈ {11, 12, 13, ..., 20} dBm.

C. Slice Optimization: Action and Reward

The goal of the system is to match the actual throughput
with the required throughput by selecting the best slice con-
figuration. This can be done by taking an action at each step.
The possible actions that can be taken are:
• MCSdown ,MCSequal ,MCSup for MCS selection;
• CCAdown ,CCAequal ,CCAup for CCA selection; and
• TxPdown ,TxPequal ,TxPup for selecting the transmit

power.
If a down action is chosen, the chosen value moves one down
in the list of possible values, it moves one up for an up
action and stays the same for an equal action. In the case
that an action would cause a parameter to move outside the
predefined intervals, the action is disregarded. If there is a
change in the environment, the system optimises the slice
configuration towards that new context. Note that new slices
can be created or deleted at run-time. In our scenario, this
corresponds to adding or changing a user with a specific
throughput requirement. This change in environment is shown
in the state of the system. We note here that the agent sees a
context change by perceiving a change in the network state.

In the slice optimization problem, the reward should account
for the achieved throughput. Therefore, we define the reward
function as

rt =

n∑
i=1

TAt,i − TAt−1,i
TRt,i

, (6)

where TAt,i is the achieved throughput at time step t for slice
i and TRt,i is the required throughput at time step t for the
same slice, where a time step equals 100 ms. The achieved
throughput in t−1 is subtracted from the achieved throughput
in time instant t, that way the reward function will only be
positive for actions that improve the throughput of the network,
which is only possible as long as the target throughput is
not achieved. The reward is normalised by dividing by the
required throughput. This is done for numerical stability and
better performance of the NN.

D. Q-model: Neural Network architecture

To model the Q-function, a Neural Network is used. This
Q-model estimates the rewards for all possible actions in a
certain state. Therefore, the input size of the NN is equal to
number of logged parameters in the state of the network. In
this case there are five slices with eight logged parameters,
so the input size of the NN is 40. The output of the network
estimates the reward for each action. There are nine different
action for each of the five slices, therefore, the output size is
45. To Model the Q-function, a simple Feed-Forward network
was selected with 5 hidden layers. The number of neurons
in these layers are 512, 256, 196, 128, and 96 respectively.
As optimiser of the NN ”Adam” was selected, with an initial
learning rate of 0.001. DDQN need a well-chosen discount



factor in order to operate, for this application γ = 0.5 showed
to be the most effective.

V. PERFORMANCE EVALUATION

In the following sections we explore different cases, and the
learning behaviour of the proposed system. In Section V-A the
effect of increasing the number of training samples for off-line
training is explored. Section V-B evaluates the performance
of the proposed approach when taking more than one action
simultaneously. In these two sections, the results are averaged
over 40 random instances of the scenario described in Sec-
tion IV. We also searched the optimal solution for these 40
scenarios with an exhaustive search, since there are scenarios
where no solution can meet the required throughput. Finally, in
Section V-C we analyse the performance of a dynamic scenario
where the environment changes constantly.

A. Off-line training (Fitted Q-iteration)

In this section, we analyse the effect of performing off-
line training. We evaluate the performance of the proposed
approach trained with a dataset of a specified size. A training
sample consists of one step in one specific scenario, giving the
state parameters from Table I, for an initial state s and the next
state s′, following action a. The results of this experiment can
be seen in Fig. 3. The case of Sizetraining = 0 does not use
Fitted Q-learning. As expected, a larger training set leads to a
better performance. This shows that knowledge, characterizing
the typical behaviour of Wi-Fi networks, is useful to speed up
the learning and can be learned off-line.

0 20 40 60 80 100
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea
n 
No

rm
al
ise

d 
Th
ro
ug

hp
ut

Optimal solution
Sizetraining=0
Sizetraining=5000

Sizetraining=50000
Sizetraining=200000
Sizetraining=400000

Fig. 3. The effect of the number of samples used during Fitted Q-learning,
on the convergence speed. A bigger training size leads to better performance
of the system.

B. Multiple simultaneous actions

This section evaluates the performance of three possible
strategies for taking actions. In the first strategy, one action
is taken for the whole network, this changes one parameter
for the whole network at each step. In the second one, an

action is taken for each slice at each step. And in the last
strategy one action is taken per parameter per slice, possibly
changing all parameters for each slice at each step.

0 10 20 30 40 50
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
No

rm
al
ise

d 
Th

ro
ug

hp
ut

Optimal solution
One parameter change per network
One parameter change per network slice
One parameter change per parameter for each network slice

Fig. 4. Mean normalized throughput for taking a single action, taking one
action per slice and taking an action for each tunable parameter per slice.
Taking multiple actions at the same time makes for a higher convergence
speed, provides a higher throughput and reduces the fluctuations in the system.

As can be seen in Fig. 4, taking one action per parameter for
each slice increases the speed of convergence and the stability
of the system. It also shows that this method is able to reach
the optimal solution. However, the system cannot distinguish
the contribution to the reward from multiple individual actions,
therefore in this case the proposed approach is not able to learn
from this experience. Due to this fact, taking multiple actions
is only advised once the system is already trained sufficiently
and the need to explore the state-space is small enough.

C. Dynamic environments

In this section we analyse the performance of the system in
a dynamic environment. This means that we randomly change
the environment every 20 steps, changing both the interference
context, throughput requirements and location per user, and
measure the actual throughput and required throughput in Fig.
5. The network is: a) pre-trained, using Fitted Q-iteration,
with 2×105 samples and changes multiple parameters at each
step, b) pre-trained with 2 × 105 samples and changing one
parameter at each step for the whole network, and c) untrained
and changing a single parameter in each step.

We can observe that the pre-trained system that takes
multiple actions is able to achieve a throughput equal or close
to the required throughput in just a few steps and it remains
stable until a new environment is detected. However in other
cases the pre-trained system taking only one action has less
consistent results and a chance of oscillation as can be seen
between step 40 and 60. The untrained agent is only able
to optimize after encountering a couple of different scenarios.
This clearly shows the benefits of pre-training the model using



fitted Q-iteration, as well as taking multiple actions instead of
a single one.

0 20 40 60 80 100
Steps

0

10

20

30

40

Th
ro

ug
hp

ut
 [M

bp
s]

aRequired Throughput Pre-trained, multiple actions

0 20 40 60 80 100
Steps

0

10

20

30

40

Th
ro

ug
hp

ut
 [M

bp
s]

bRequired Throughput Pre-trained, single action

0 20 40 60 80 100
Steps

0

10

20

30

40

Th
ro

ug
hp

ut
 [M

bp
s]

cRequired Throughput Untrained, single action

Fig. 5. Every 20 steps the environment changes to create a dynamic
environment. The figure shows how the proposed approach can deal with
this dynamism and tries to meet the new set of requirements.

VI. CONCLUSIONS

We present a fast-learning DRL model that can dynamically
optimize the network slice configuration in Wi-Fi networks.
Our network slices require each a different network config-
uration. Therefore the search space consists of all possible
Wi-Fi parameter configurations multiplied by the number of
slices in the network, giving a large state-action space.

Our approach starts from a DQN agent. We further enhance
it with Double Deep Q-Networks [12] and experience replay,
which improves convergence speed and stability. Moreover, by
applying Fitted Q-iteration, the system learns a generic model
that has been learned from other Wi-Fi scenarios, and covers
the typical performance model of a randomly deployed Wi-Fi
network subject to interference in the ISM band. Using this
model, DDQN can optimize fast at run-time, without the need
of specific AP deployment information or knowledge about
the neighbouring interfering networks.

The proposed model-free approach is able to dynamically
optimize various Wi-Fi parameters per slice. Our ns-3 based

simulation results show that the proposed DDQN approach
results in a high performance, even in scenarios in which there
are many network parameters to be configured from multiple
users with varying requirements.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology,
20162021”, Cisco white paper, Sep. 2017.

[2] H. Gacanin and M. Wagner, Artificial Intelligence Paradigm for Cus-
tomer Experience Management in Next-Generation Networks: Chal-
lenges and Perspectives, IEEE Network Magazine

[3] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
Slicing in 5G: Survey and Challenges”, IEEE Communications Maga-
zine, vol. , no. , May 2017.

[4] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J.
Lorca, and J. Folgueira, “Network Slicing for 5G with SDN/NFV: Con-
cepts, Architectures, and Challenges”, IEEE Communications Magazine,
vol. , no. , May 2017.

[5] X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, R. Jain,
“Network Slicing for 5G: Challenges and Opportunities”, IEEE Internet
Computing, vol. 21, no. 5, 2017.

[6] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M.
Qi, L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The Algorithmic
Aspects of Network Slicing”, IEEE Communications Magazine, vol. ,
no. , Aug. 2017.

[7] A. Chiumento, C. Desset, S. Pollin, L. Van der Perre and R. Lauwereins,
“Impact of CSI Feedback Strategies on LTE Downlink and Reinforce-
ment Learning Solutions for Optimal Allocation,” IEEE Transactions on
Vehicular Technology, 2017, volume 66, pages 550-562.

[8] V. Mnih et al, “Human-level control through deep reinforcement learn-
ing”, Nature, no. 518, Feb. 2015, pp. 529 – 533

[9] Y. Yu, T. Wang, S. C. Liew, “Deep-Reinforcement Learning Multiple
Access for Heterogeneous Wireless Networks”, Dec. 2017.

[10] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep Re-
inforcement Learning for Dynamic Multichannel Access in Wireless
Networks”, IEEE Transactions on Cognitive Communications and Net-
working, Feb. 2018.

[11] O. Naparstek and K. Cohen, “Deep Multi-User Reinforcement Learning
for Distributed Dynamic Spectrum Access”, Nov. 2017.

[12] H. van Hasselt , A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning”, Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI-16), 2016.

[13] Y.-Y. Liu and S.-J. Yoo, “Dynamic Resource Allocation Using Rein-
forcement Learning for LTE-U and WiFi in the Unlicensed Spectrum”,
Ninth International Conference on Ubiquitous and Future Networks
(ICUFN), Jul. 2017.

[14] N. Rupasinghe and I. Guvenc, “Reinforcement Learning for Licensed-
Assisted Access of LTE in the Unlicensed Spectrum”, IEEE Wireless
Communications and Networking Conference (WCNC), 2015.

[15] S. Jang, K. G. Shin, and S. Bahk, “Post-CCA and Reinforcement
Learning Based Bandwidth Adaptation in 802.11ac Networks”, IEEE
Transactions on Mobile Computing, vol. 17, no. 2, Feb. 2018.

[16] U. Challita, L. Dong, and W. Saad, “Proactive Resource Management
in LTE-U Systems: A Deep Learning Perspective”, Feb. 2017.

[17] K. Zhou, “Robust Cross-layer Design with Reinforcement Learning for
IEEE 802.11n Link Adaptation”, IEEE International Conference on
Communications (ICC), Jul. 2011.

[18] R. Liu and J. Zou, “The Effects of Memory Replay in Reinforcement
Learning”, ICML 2017 Workshop on Principled Approaches to Deep
Learning, 2017.

[19] M. Riedmiller, “Neural Fitted Q Iteration First Experiences with
a Data Efficient Neural Reinforcement Learning Method”, European
Conference on Machine Learning, pp. 317–328 2005.

[20] A. Ligata, E. Perenda and H. Gacanin, “Quality-of-Experience Inference
for Video Services In Home Wi-Fi Networks,” IEEE Communication
Magazine, March 2018.


