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Abstract—In this paper, chaotic behavior of the Colpitts
oscillator is studied and analyzed. The analyses consider the
locally unstable behavior based on the linearization around the
equilibrium and the globally bounded stability, which guarantees
that the trajectories converge to an attractive and bounded
set. The attractive set for the Colpitts oscillator is determined
and characterized using Lyapunov analyses and an appropriate
quadratic Lyapunov function. The theoretical results are accom-
panied by a representative simulation.
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I. INTRODUCTION

It is well known that chaos is a common behavior for the
ocillators realized in the microstrip technology as documented
in [1]. What is missing is more theoretical analysis type of
results that would provide a characterization of this complex
and still largely unknown behavior. Certainly some earlier
worthy works to mention are related to chaos in circuits [2], [3]
as well as related to bifurcations in [4]–[6]. This observation is
a motivation for the work presented in this paper. In particular,
in this paper we consider the standard Colpitts oscillator [4]–
[10] and analyze its chaotic behavior. Colpitts oscillator is well
known for producing chaotic behaviors and thus it can be used
for building chaotic radars and chaotic synchronized systems
[9]–[11]. There has also been work that investigated chaotic
behavior of these oscillators using Lyapunov analysis [12]. In
this paper, we also use Lyapunov analysis to characterize a
bounded set in which the oscillator has chaotic behavior. This
is done by constructing a quadratic Lyapunov function and
showing that the oscillator is globally stable with respect to a
bounded set. The bounded set is attractive and characterized
as a level set of the corresponding Lyapunov function. On
the other hand we show that the equilibrium of the system
is unstable and being inside the attractive set it is well
aligned with the chaotic behavior. We also provide a way to
bound the set away from the equilibrium using the Lyapunov
analysis for instability. Despite the fact that outer and inner
bounds are constructed using appropriate quadratic Lyapunov
functions that are known for not providing tight bounds, in
general, we believe that the approach is novel in providing
a technically sound characterization of the chaotic behavior
in terms of Lyapunov functions rather than exponents that are
much more difficult to compute [13]. The next step to be taken
is to provide characterization using piecewise linear Lyapunov
functions that are known for providing tighter approximations.

This paper is organized as follows. Section II contains
model of the Colpitts oscillator used in the paper. In section
III, we provide an analysis of the instability of the linearized
oscillator equations. Section IV contains a derivation and
computation of the Lyapunov function and the related set of
attraction characterized in terms of a value set of this Lyapunov
function. This section also contains a Lyapunov analysis of
instability around the equilibrium, thus, providing another
bound for the set where the chaotic behavior is contained.
Furthermore, a simulation illustrating the analyses and the
chaotic behavior of the oscillator is provided. Finally, some
concluding remarks are formulated in section V.

II. MODEL DERIVATION

Colpitts oscillator, as depicted in Fig. 1, is analyzed as a
nonlinear circuit with the bipolar junction transistor (BJT)
modelled using the standard large signal model. This, as a
dynamical system, can be described using three differential
and one nonlinear algebraic equation, as follows:
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In equation (1), capacitors’ voltages and the inductor current
represent state variables of the system. Vector of the state
variables is then given as x = [vC1 vC2 iL]ᵀ.

Dynamical system (1) can be rewritten in compact matrix
form:

ẋ = A x + B + C e
−η x2

VT , (2)

where A, B and C are given as
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Fig. 1: Colpitts oscillator.

In this paper, the analysis and the simulations are done for
the Colpitts oscillator realized using transistor BFU730F with
the transistor and circuit parameter given in appendix.

Matrix A (from equation (3)) is computed as stable for
the given circuit parameters, which means that it has all
eigenvalues with negative real parts. In particular, there is
one real eigenvalue λ1 = −0.09701 · 109 and two complex
conjugate ones λ2,3 = (−1.0495 ± 4.3689 i) · 109.

III. LINEARIZATION WITH JACOBIAN MATRIX

A common and useful way to analyze any systems yet in
particular chaotic and unstable systems is to represent them
as a sum of linear and nonlinear parts [13]. Along these lines,
the system (1) can be described by the following equation:

ẋ = f(x), (4)

where function f(x) can be decomposed as

f(x) = J · x + h(x2), (5)

where J is the Jacobian matrix of the system (1) computed
using its equilibrium x = [vC1 vC2 iL]ᵀ = [x1 x2 x3]ᵀ and
h(x2) is the nonlinear part of the system (1). The equilibrium
is obtained by solving the following system of equations:

x1 = V1 + V2 −
x3
β

((1 + β)RE + β R),

x2 =
x3
β
RE (1 + β)− V2,

x3 = IS (e
−η x2

VT − 1). (6)

We have to note here that the equilibrium set of equations (6)
has to be solved numerically.

Fig. 2: Dependence of the maximum eigenvalue with respect
to the voltage V2.

Using system of equations (1) and equilibrium (6), the
Jacobian and the nonlinearity are given as
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Now, the local stability of the linearized system can be
determined by the location of the eigenvalues that satisfy the
standard characteristic equation given by det(J − λI) = 0,
where J is the Jacobian matrix and I denotes the identity
matrix of the same dimension as the Jacobian. If there is at
least one eigenvalue with a positive real part, the system is
unstable. From the diagram depicted in Fig. 2, which shows
dependence of the maximum eigenvalue or eigenvalues (if not
unique) of the linearized system with respect to the voltage
V2, it is shown that for the voltage V2 > 1.309 V the behavior
of the system is clearly unstable, because its largest eigenvalue
has a positive real part.

IV. ANALYSIS OF THE BOUNDEDNESS OF THE SYSTEM
TRAJECTORIES USING LYAPUNOV APPROACH

Contrary to the system linearization showing unstable local
behavior for the big range of voltage V2’s values, we will show
that the system is globally bounded (or stable) for sufficiently
large values of the state variables (in terms of their norm
values). This will be done by showing that the derivative of a
quadratic Lyapunov function is negative when ||x|| ≥ K.



Now, let us choose a commonly used quadratic Lyapunov
function as a candidate in the following form:

V (x) = xT P x, (7)

where matrix P � 0 is a positive definite matrix and the time
derivative of Lyapunov function is computed as

V̇ (x) = ẋᵀ P x + xᵀ P ẋ

= xᵀ (Aᵀ P + P A)︸ ︷︷ ︸
−Q

x + 2 Bᵀ P︸ ︷︷ ︸
b

x + 2 cᵀ P︸ ︷︷ ︸
c

x e−η
x2
VT

= −xᵀQx + bx + cx e−η
x2
VT . (8)

In assessing the sign of V̇ (x), the following inequalities
have been used:

−xᵀ Q x ≤ −λmin(Q) ‖x‖2 ,
b x ≤‖b‖ ‖x‖ . (9)

where λmax(·) and λmin(·) present maximum and minimum
eigenvalue of the positive definite matrix, respectively. The
standard Eucledian norm is denoted as || · ||. Using inequalities
(9), an estimate of the time derivative of the Lyapunov function
(8) is given by a simplified expression as

V̇ (x) ≤ −λmin(Q) ‖x‖2 +‖b‖ ‖x‖+ c x e−η
x2
VT . (10)

Then, the system is bounded and the trajectories minimies
the Lyapunov functions values when the expression for the
Lyapunov function time derivative is negative. In order to show
this, two cases can be considered depending on the value of
variable x2.

In the case when x2 > 0, the inequality is satisfied since
e
−η x2

VT < 1 and

c x e−η
x2
VT < c · x · 1 ≤‖c‖ ‖x‖ .

Then the Lyapunov function time derivative from equation (10)
becomes

V̇ (x) ≤‖x‖ · (−λmin(Q) ‖x‖+‖b‖+‖c‖),

and it is negative when

‖x‖ > K1 =
‖b‖+‖c‖
λmin(Q)

(11)

The other case is when x2 < 0 implying c x < 0. Then, it
stems that c x e−η

x2
VT < 0 and from equation (10) it follows

that a sufficient condition is given by

‖x‖ (−λmin(Q) +‖b‖) ≤ 0,

which provides the following bound:

‖x‖ > K2 =
‖b‖

λmin(Q)
(12)

From equations (11) and (12) it follows that the Lya-
punov function time derivative is definitely negative if
‖x‖ ≥ K = max(K1,K2).

A. Local instability around the equilibrium analysis

Since the original system is locally unstable around the
equilibrium, we would also like to characterize its instability.
In order to do so we can also use Lyapunov analysis for
instability [14]. In order to do so we do a standard decompo-
sition of the original system (5) into stable and unstable parts.
Therefore, we introduce a change of variables y = x−x, where
equilibrium x is obtained through the equation (6). The new
system is

ẏ = Jy + hy(y2), (13)

for hy(y2) = J x + h(x2).
Now, our goal is decompose the system matrix J into the

stable and unstable parts so that J = T JD T−1, where JD
corresponds to the Jordan form of the matrix J and nonsingular
matrix T with its columns being eigenvectors. In section III
it is shown that matrix J has two unstable conjugate-complex
and one stable eigenvalue, so the matrix JD has block diagonal
form with two unstable and one stable eigenvalues.

If we multiply equation (13) from the left by matrix T−1 and
denote z = T−1 y, the new differential equation is obtained
as

ż = JDz + hz(z2). (14)

Then, the unstable matrix JD with only strictly stable and
unstable eigenvalues implies the corresponding partition of the
overall state vector into sub-vectors denoted as z being z =
[zᵀ1 , z

ᵀ
2 ]ᵀ. Now, we know that the Lyapunov matrix equation:

JᵀDPD + PDJD =

[
−Q1 0

0 −Q2

]
= −QD (15)

has a solution in the form of PD =

[
P1 0
0 −P2

]
for positive

definite Pi, Qi, for i = 1, 2. If we partition matrix JD
accordingly, that is, JD =

[
J11 0
0 J22

]
, which implies Jᵀ

D =[
Jᵀ11 0
0 Jᵀ22

]
. Then, the Lyapunov matrix equation becomes

[
Jᵀ11 0
0 Jᵀ22

] [
P1 0
0 −P2

]
+

[
P1 0
0 −P2

] [
J11 0
0 J22

]
=[

Jᵀ11P1 + P1J11 0
0 Jᵀ22P2 + P2J22

]
=

[
−Q1 0

0 −Q2

]

Now, we know that the nonlinearity in system (14) can
be bounded as

∥∥hz(z)
∥∥ < c ‖z‖, when ‖z‖ ≤ r, for some

r and c. This is because c always exists for some small
enough r due to the linearization of a system with continuously
differentiable righthand side. Then, we choose a Lyapunov
function candidate V (z) = zᵀ2P2z2 − zᵀ1P1z1 = −zᵀPz and
compute



V̇ (z) = − d

dt
(zᵀPz) = −zᵀ(JᵀDPD + PDJD) z− 2zᵀPDhz

= zᵀQDz− 2zᵀ
[

P1 0
0 −P2

] [
h1(z)
−h2(z)

]
= zᵀQDz− 2zᵀPDhz
≥ λmin(QD)‖z‖2 − 2λmax(PD)‖z‖‖hz‖
≥ (λmin(QD)− 2cλmax(PD))‖z‖2 > 0. (16)

Thus, choosing r small enough so that

c < 0.5λmin(QD)/λmax(PD) for PD =

[
P1 0
0 P2

]
, we

get that the systems is unstable.
After applying the inverse transformation, a bound on ‖x‖

can be determined as rx = r ‖T‖.

B. Simulation results

In order to demonstrate the accuracy of the determined
region of attraction of the Colpitts oscillator with already
provided circuit parameters in the appendix and with the
voltage V2 = 14.8 V, the quadratic Lyapunov function is con-
structed using linear matrix inequalities (LMIs) that resulted
in matrices P and Q as follows:

Q = I3×3,

P = 10−6

 0.0028 −0.0024 0.0050
−0.0024 0.0027 −0.0002
0.0050 −0.0002 0.2388

 .
In the case of a stable system, the problem of maximizing
λmin(Q)/λmax(P) is known to be solved for any diagonal
matrix Q = a I, where a > 0 (see, for example [15]). In
our problem matrix A is stable (see equation (3)) and thus the
choice for the matrix Q is obvious. For the oscillator’s globally
attractive set, the obtained boundary value is K = 53.6594.
For the simulated case the maximum obtained norm of the
state variables is‖x‖max = 11.6281. Thus, the obtained bound
is obviously conservative, which is not surprising since the
use of a quadratic Lyapunov function does not provide tight
bounds, in general. In order to obtain less conservative bound,
in future, polytopic or piecewise linear Lyapunov functions
will be considered.

For the same Colpitts oscillator, matrices PD and QD are
obtained using LMIs in cvx toolbox (integrated in MATLAB)
as

PD = 10−7 ·

−0.0052 −0.0000 0
−0.0000 −0.0052 0

0 0 0.1839

 =

[
−P2 0

0 P1

]
and

QD =

3.4772 0.0000 0
0.0000 3.4772 0

0 0 357.0714

 . (17)

The value for constant c is computed as c = 0.95 ×
0.5λmin(QD)/λmax(PD) = 8.9807 · 107 when r = 1.7404 ·
10−5 in the transformed space and thus rx = 2.4462 · 10−5

Fig. 3: Phase portrait of the Colpitts oscillator in which is
V2 = 14.8 V and the state variables initial values are x0 =
[1.116 V − 0.665 V 27.442 mA]ᵀ.

in the original space. The minimum obtained norm of the
state variables around equilibrium that, importantly to men-
tion, does render Lyapunov function (7) to be positive, is
‖x− x‖min = 0.0334. This is another conservative result yet
since it is sufficient, it is greater than the instability bound rx,
as expected.

In Fig. 3, phase diagrams for the case when V2 = 14.8 V
and when the initial system values are chosen to be x0 =
[1.116 V − 0.665 V 27.442 mA]ᵀ, are depicted. From Fig. 3,
it can be easily envisioned that the phase portrait lies inside
the sphere with radius K = 53.6594, which bounds system
trajectories. It is less easy to envision, yet it has been checked,
that the chaotic trajectory for the smaller values of the state
variables lies in the region where the instability Lyapunov
function is positive yet greater than the instability bound rx.

V. CONCLUSION

In this paper, Lyapunov analyses are provided that characterize
a bounded set in which the chaotic behavior of the Colpitts
oscillator is contained. The analysis is validated by an illus-
trative simulations. The future research will include polytopic
Lyapunov functions in order to obtain tighter bounds on the
chaotic motion of the oscillator.

APPENDIX

The obtained parameters for the transistor’s large signal
model are IS = 47.1pA and η = 0.7894. Other circuit
parameters are: R = 20 Ω, RE = 510 Ω, C1 = 10 pF,
C2 = 10 pF, L = 10 nH, β = 100, VT = 0.026 V, and
V1 = 1 V. Voltage of the voltage generator V2 is varied in the
range from 1 V to 15 V.
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