Automatically Wrangling Spreadsheets into
Machine Learning Data Formats

Gust Verbruggen' and Luc De Raedt!

KU Leuven, Belgium
{gust.verbruggen, luc.deraedt}@cs.kuleuven.be

Abstract. To help automate the important pre-processing step in ma-
chine learning and data mining, we introduce SYNTH-A-SIZER, a tool
for semi-automatically wrangling spreadsheets into attribute-value for-
mat, so that they can be used by popular machine learning tools, only
requiring the user to mark cells belonging to one single example. SYNTH-
A-SIZER is based on inductive programming principles. We introduce
SYNTH-A-SIZER’s transformations, search algorithm as well as a heuristic
and distance measure for identifying types. We also report on a first
experimental evaluation.

Keywords: data wrangling, program synthesis, spreadsheets, prepro-
cessing, inductive programming

1 Introduction

One long term goal of automatic machine learning and data science is to enable
naive end-users to automatically analyse their data. Today we are far away from
reaching that goal for two reasons. First, it is often hard to select the right learning
setting, algorithm and parameters for the learning task. Second, it is well-known
amongst data scientists that 80% of the time is spent on pre-processing and only
20% on the actual machine learning or data mining [5].

Looking at the state of the art in machine learning and data mining reveals
that the first problem is receiving a lot of attention in the emerging area of
automated machine learning [9]. Many impressive results have already been
obtained and powerful tools have already been developed |7} |14]. Although there
exist some tools that aid in the automatic preprocessing of data, especially
with respect to feature construction [4], other preprocessing steps remain very
challenging. Data wrangling is one of the most important ones.

This paper addresses exactly this issue and studies how to help end-users
with data wrangling, that is, the process of transforming their data in the right
format for data analysis. As non-experts often gather their data in spreadsheets,
we focus on the question as to whether it is possible to take such a spreadsheet
and to automatically transform it into a format that can be used by standard
machine learning software such as WEKA [10] and KNIME [3]. Thus, we want to
help fully automate the data wrangling process [1].

Several approaches for data wrangling with minimal user effort already exist.
For example, the WRANGLER [12] system provides an interactive interface for cre-
ating transformation programs without needing to write code. Instantiations of the
FLASHMETA [13] framework allow for synthesising data transformation programs
by providing input-output examples. A notable instantiation is FLASHRELATE, [2]
which extracts relational data from spreadsheets. More recently, FOOFAH [11]
combine these two: transforming a spreadsheet based on examples.

In this paper, we take a next step in these developments and explore whether
these processes can be automated while focussing on data in tabular form. A
key difference with other approaches is that we focus on wrangling of machine
learning data sets. While the above mentioned approaches use examples of the
desired input-output behaviour to guide the program synthesis, we focus on
the desired target format of the output. In this paper, the desired output is
is in attribute-value format, which is used when working with tools such as
WEKA. This format has distinct properties that we exploit in order to mediate
the need for examples describing the desired output. Although we focus on the
attribute-value format here, we believe that the principles and techniques we
introduce could also be useful for relational learning.

This paper contributes a tool, SYNTH-A-SIZER, for semi-automatic data wran-
gling of machine learning datasets from minimal user input. SYNTH-A-SIZER uses
a predictive program synthesis approach that transforms semi-structured data
into a propositional format, for use in data analysis systems, from one positive
example. The technical innovations of SYNTH-A-SIZER are that (1) we focus on
the desired target format of the output and allow the user to provide hints about
the target format using a new notion of coloring; (2) we introduce a domain
specific language with an accompanying syntactic bias which allows to restrict
the search space; and (3) we employ a novel type-based heuristic to assess and
evaluate the transformations.

2 DMotivating Example

Suppose a clothing store owner keeps two spreadsheets, containing sales and
properties of clothing, respectively, an excerpt of which is shown in Table |1} The
rightmost column in Table [Lbis to be predicted. Given data in the correct format,
plenty of tools are available to perform this task.

First, however, a user would need to know about transformations to unpivot
and join tables together. In OpenReﬁneH an additional forward filling operation
is required and Wrangler |12] make no assumptions about the output format,
giving unpivot as the last suggestion. This motivates our belief that existing data
wrangling tools are aimed at data scientists and other people who know their
way around transforming data.

Our approach, on the other hand, is aimed at users who have no knowledge
about transforming data at all. Currently, the only required interaction is selecting

1 .
www.openrefine.org

www.openrefine.org

Table 1: Spreadsheet data about clothing sales. Some cells are colored as they
have been selected by the user.

(b) Clothes’ properties. On the right is the

(a) Sales data. target, with one missing value.

29/08/2013/31/08/2013]09/02/2013 1006032852 | Low 4.6|Summer|o-neck|sleevless |1
1006032852 2114 2274 2491 1212192089|Low 0|Summer |o-neck | Petal 0
1212192089 151 275 5701 1190380701 | High 0| Automn|o-neck |full 0
1190380701 6 ! T 7966005983 Average|4.6|Spri e[l 1
966005983 1005 1128 1326 verage|.b|>pring |o-necx
376339541 996 1175 1304 876339541 |Low 4.5|Summer |o-neck | butterfly |0
1068332458 4 5 11 1068332458 | Low 0|Summer |v-neck|sleevless

(c) Tables and wrangled into attribute-value format. This is what the user doesn’t
see, but what is generated by SYNTH-A-SIZER and used by data mining tools in the
background in order to predict the last column.

1006032852(29/8/2013 |2114|Low |4.6|Summer [o-neck|sleevless
1006032852(31/8/2013 |2274|Low |4.6|Summer [o-neck|sleevless
1006032852(09/02/2013(2491|Low |4.6|Summer |o-neck|sleevless
1212192089(29/08/2013|151 |Low|0 |Summer|o-neck|Petal

O = ==

Low|0 [Summer|v-neck|sleevless
Low|0 [Summer|v-neck|sleevless

1068332458|31,/08/2013
1068332458|09/02/2013

ot

—
—

values in the spreadsheet, as shown in Table [I] Wrangling is then performed in
the background.

3 Problem Statement

The problem this paper wants to solve is best described on two levels. On a
higher level, we aim to enable users without experience in programming or data
wrangling to apply machine learning techniques to their data. As data gathered
by such users is typically stored in a spreadsheet, we focus on the problem
of mapping a spreadsheet S into a dataset D that can serve as the input to a
machine learning algorithm. The machine learning algorithm should then generate
a hypothesis h that can be applied to the dataset D to yield k(D). Ideally, this
approach allows for mapping h(D) back into the spreadsheet S so that it can be
shown to the user. The ultimate goal is that the transformations, the resulting
dataset and the hypothesis are all constructed behind the scenes. Everything the
user would see is the original spreadsheet S that has now been extended with
the results of h(D). A necessary condition for this to work is that the original
spreadsheet S has been formatted in a systematic manner.

On a lower level, the problem we tackle in the present paper is to find the
program f that maps f(S) = D, which is a program synthesis problem where a
data wrangling program is learned.

3.1 Notation

As common in spreadsheets, the basic structure our programs transform are
tables. A table is represented by an m X n matrix 7. The element on column
¢ and row j is referred to as t; ;. We adopt a slicing notation a : b to denote a
range (a,a+ 1,...,b) of cells, represented as a list of values. When a and/or b
are omitted, the range extends to the size of the table, such that for example the
values in row j are retrieved as Tt ;.

An m-ary relation R C (Ay,...,A,,) of n tuples can be easily represented
by a set of such tables. In the trivial case, every tuple becomes a row and each
attribute is contained in a column of a single m x n table. This is the desired
target data format for attribute-value learners such as those available in WEKA
and KNIME. In the real world, however, the data can be spread out over multiple
tables. Furthermore, values can be repositioned, empty cells and spurious cells
can be added to the tables. The goal will then be to extract an equivalent table
in the target format.

Ezample 1. Suppose we have a relation of car sales indicating whether a sales-
person of a certain level gave a reduction or not:

(Tim, junior, Audi, Al, no), (Tim, junior, BMW], 1, yes),
(Megan, senior, Audi, Al, no), (Megan, senior, Audi, A4, yes)

There are various ways of representing this relation in a set of tables, two examples
of which are given in Figure [I] In the Sales table in Figure [T} some spurious
values were added to denote the proportion of reductions given.

Tables can be transformed by transformations, which take as input one or
more tables, optionally some arguments, and return a single table. The result of
applying a transformation on some table(s) is then a new table with the elements
from the original table(s) combined, repositioned, replicated or removed. We write
p=(¢,a): T — T’ for a table transformation p consisting of a transformation
¢ and a tuple of arguments a, taking a set of tables T' and returning a new
table 7" = ¢(T, a). We restrict ourselves to transformations that only change
the layout of the spreadsheet, leaving cell values untouched. Each transformation
¢ has a set of valid arguments given a set of tables, denoted as A4(T).

Applying a transformation results in a reconstruction error, a measure of
how much information is lost when it is applied to T', written as error(p,T). A
transformation can be inverted if there exists a transformation p~ = (¢!, a)
such that p~1(p(T)) = T.

Ezample 2. Given a simple table

Audi Al
T = A3
A4

and the Fill(direction,i) transformation (see also Table [2]), which fills empty
values in column ¢ with the value above (forward) or below (backward) it, we
get Ar(T) = {(forward, 1); (forward,2); (backward,1); (backward,?2)}.

A set of transformations £ then serves as a simple domain-specific language
(DSL) for wrangling tabular data. A table transformation program P is a se-
quence of transformations (p1,pa,...,px) with p; = (¢;,a;). Applying it to a
table T' is computed as P(T') = ¢p (... p2(01(T,a1),a2) ..., ap). The definitions
of reconstruction error and invertibility naturally extend from one transformation
of a sequence of transformations.

3.2 Problem statement

We can now specify the program synthesis problem as follows.

GIVEN a set of tables T = (T1,...,Tk), a set of colorings C (cf. below), a scor-
ing function score(T,C), and a set of transformations L, FIND a transformation
program P* over L such that P* = arg maxp score(P(T),C).

The assumption is that there is an unknown target relation R and a program
P! such that P'(T) and R are equivalent (notation P*(T") = R. The equivalence
would account for row and column permutations. But the relation R is unknown
and therefore we can only estimate how good any P(T') is through a scoring
function. This scoring function should recognise tables that are in attribute-value
form. Such tables have rows that correspond to examples and columns that
correspond to attributes. As a simple aid for recognising this, our scoring function
can currently make use of one additional, user-provided input.

Essentially, the user is requested to color a set of cells that describe one
example, possibly using different colors. The idea behind the coloring is twofold.
First, cells belonging to one coloring should be mapped onto a single row. Cells
in different tables with the same color, should be mapped onto the same cell
in the target table. Second, all values in a single column should belong to the
same attribute and should therefore be of the same type. If a colored cell occurs
in a column, all other values in that column should be of the same type as the
colored cell. Formally, a coloring C' is a mapping from a set of cells ¢; ; to a set
of colors. An example is given in Example

While earlier work [15] assumed that the types were given, with each attribute
having a different type, the present approach uses an edit-distance measure to
determine how similar the type of two cells is. More specifically, it is assumed
that the distance between different elements belonging to the same type is small—
smaller than the distances between values of different types. The scoring function
should then take into account (1) the quality of the rows and columns with
respect to a coloring and (2) the reconstruction error.

Ezxample 3. A cell coloring
C1 = {People1 1 — , Peoplea 1 — ,Salesi 1 — ,
Salesy o — ,Salesy o — ,Saless » — M}
is shown on the left in Figure [I] After successfully wrangling it, these tables are
transformed into the table on the right. Cells in each column are syntactically
similar to a colored cell, no more empty values are present and the coloring

contains an assignment that spans exactly one row. The transformed table should
then get a much better score than the original ones.

Audi
Al Wl Tim |Junior|Audi Alq

. People . Al Megan no Tim |Junior|Audi |A4|yes
Ll Jun.10r Ad Tim _|yes Megan|Senior [Audi |Al|no
Megan|Senior 2/3 Megan|Senior BMW| 1 |yes

BMW
1 Megan|yes
1/1

Fig. 1: Two tabular representations of the relation in Example (1} (left) Spread
out over two tables. The Sales table additionally contains empty cells
and values not in the original relation. An example coloring is also shown.
(right) Trivial representation as a single table.

4 Program Synthesis

We now introduce a predictive synthesis approach to synthesise the table trans-
formation programs from just one example—a single tuple in the output relation
that is colored by a user. Rather than assigning a score to the program itself, as
in regular optimisation-based program synthesis [8], the output of the program
is scored. A search over the space of transformation programs, optimising this
score, is then used to find the program that correctly wrangles the input. In order
to guide this search, we put a syntactic bias on the arguments of each transfor-
mation, which actually encodes a set of constraints on the possible arguments a
transformation can take.

In the remainder of the section, we first introduce the supported transforma-
tions and their syntactic bias. Afterwards, we show how they are used to guide
two search algorithms towards a solution optimising our scoring function. Finally,
we provide the details of our scoring function.

4.1 Transformations and Syntactic Bias

The supported transformations is inspired on existing approaches |11} |12]. They
have been chosen such that a wide variety of real world wrangling scenarios can
be solved. In order to support multiple tables, a Join transformation is added.
The full list is presented in Table [2|

Given a set of input tables T and a list of transformations, we can easily
start recursively enumerating all transformation programs in search of one that
optimises the heuristic. This is very unlikely to find a correct transformation
program as the search space grows exponentially. To make the search over
transformations tractable, a syntactic bias is placed on their arguments.

The intuition behind our syntactic bias is very similar to witness functions in
FLASHMETA [13], where they restrict the arguments of a function given the input—
output examples. We reduce A4(T") based on the coloring and our knowledge of
the heuristic. For example, the Fill transformation may only consider columns
that have exactly one colored cell. A Delete is not allowed to remove colored

Table 2: Transformations supported by SYNTH-A-SIZER, their effect on an m x n
table T" and how the set of valid arguments is reduced given a coloring
C. In the column on the right, ¢ and j range over the columns of the
tables they correspond to, d and fwd range over the boolean values.

Transformation

Effect

Ay(T,C)

Fill(T, i, fwd)

Fill each empty cell in T; . with
the first non-empty value above
(fwd = 1) or below (fwd = 0)
it.

All (i, fwd) such that T;. con-
tains empty values and exactly
one colored cell from C'is in 7T; ..

Delete(T, 7)

Delete all rows j where ¢;; is
empty.

All (i) such that T;. contains
empty values and no cells € C
are deleted.

Fold(T, 1, j, h, d)

Fold Tj.;,: into one (h = 0) or
two (h = 1) new columns. If
h = 1, elements from the first
row are used as a description for

All (4, 4, h, d) such that T;.;,. con-
tains exactly column y with n
colored cells and h = (n > 1 and
Tyo€C).

values Tj.jy20. If d = 1, rows
with empty values in the folded
column are deleted.

(outer) Join tables T" and T2
on columns ¢ and j respectively.

Join(T*, T2,4, §) All (4,) such that T}, C T7. or

vice versa.

cells. We write the reduced arguments of ¢ on T given C as Ay(T, C). The full
syntactic bias for each transformation is given in Table 2]

4.2 Synthesis Algorithm

Our synthesis algorithm then performs a beam search over the space of transfor-
mation programs. The beam is defined using the scoring function detailed in the
next section. Two variations are implemented: depth-first (DFS) and breadth-first
(BFS), consecutively aimed at being faster versus more robust.

A priority queue is used to implement the search. Let b be the beam width.
In DFS, at every iteration of the synthesis loop: the best table so far is fetched,
its reduced set of possible transformations is computed, the results are scored
and the b best extended programs are added back to the queue. In BFS, every
element is replaced by its top-b transformed tables from different transformations
as long as at least one of those b tables is better than the current one.

4.3 Scoring Tables

Given a set of tables and a coloring, we want to estimate how close the set of
tables is to being the unknown target relation. In an attribute-value formatted
table, all columns describe one attribute and should thus contain values of the
same data type. Every cell in the coloring should then belong to one of these

column types. The actual types are unknown, however. We therefore estimate
how similar the type of two values is using a syntactic distance function, which
is detailed in the next section. It is used to define the scoring function.

Let there be c different colors. Some transformations, such as Fill, may
propagate colors to other cells in the table. We then first select an assignment
a = {ti, j,,.-.,ti. .} such that as many different columns as possible have a
colored value. Next, for each cell ¢; ; in the assignment, the average distance
between the cell and all other cells in its column

1 m
avg_color(t; ;) = - Z d(ti j, tiy) (1)
y=1
is computed, as well as the proportion of empty values in this column.
1 m
empty(ti;) = — > (tiy = 2) 2)
y=1

These two values are added for each colored cell and then averaged over all
colored cells in the selection to compute the final score.
1 (&
score_color(a) = - Z (avg_color(t;, ;.) + empty(ti, j.)) (3)
r=1

Finally, the same procedure is repeated for columns without colored cells, the
difference being that the average similarity between any pair of values is computed
such that becomes

avg(iy) = Y SN dlti, gty z)- (4)

y=1z=y
for some column i,. This allows for wrangling with partial colorings and also
provides some robustness. Scores for both types of columns are added to compute
the final score. When scoring multiple tables, their individual scores are summed.

LS (avgli) + empty(ti) (5)

m-—-c . .
11,0

score(T) = score_color(a) +

4.4 Cell distance

At the heart of this method is the function that computes the similarity in type
of cells. We propose a syntactic similarity function between cell values, treating
them as a sequence of character classes.

This method is heavily inspired by the string edit distance between two cell
values, with two differences: every character is represented by its character class
and addition and deletion of elements between specific character classes can be
made cheaper, or example, between lower- and uppercase letters

First, both strings are tokenised according to a set of disjoint character classes,
such as digits, lower- and uppercase letters, delimiters (-, /,...) and currency
symbols. Every token is weighted with the number of characters it consumed.

Next, the token sequences are globally aligned using a custom substitution
matrix. The final distance is then computed as the distance between aligned
tokens, weighted both by their weight and a distance matrix.

Let (a1,aq,...,a,) and (by,bq,...,b,) be the aligned tokenisations of two
strings a and b, w(a;) the weight of token a; and cost(t1,t2) the cost of a
substitution between tokens t; and ¢5. The distance between a and b is then

computed as
[w(ai) —w(bi)|

w(a;) +w(b;) +1°

d(a,b) = Zcost(ai, b;) (6)

5 Evaluation

We propose a method for generating sythetic data that can be used for evaluating
SYNTH-A-SIZER. The core idea is to generate messy data from a clean dataset. We
start from a table and apply a number of subsequent random inverse transforma-
tions, creating a synthetic input dataset. The number of inverse transformations
applied is called the depth of the synthetic dataset.

More specifically, we generate inverse programs P; and associated messy
tables D’ = P, *(D) and then attempt to synthesize programs P that restore
the original dataset as P(D’). The results are evaluated in terms of recall and
precision, respectively the proportion of rows in D that is also in P(D’) and
proportion of rows in P(D’) that is in D. The supported inverse transformations
are explained in Table [3| Because some of the inverse transformations have side
effects, i.e., a Fill reorders the rows, a few constraints need to be placed on the
generated inverse programs in order to prevent total destruction of the data. Most
notably, a table can only be reordered once. Further details of the generation
process will be made available in a longer version of the paper.

Three datasets from the UCI repository [6] were selected, based on some
simple requirements: not being too large, our implementation is not yet opti-
mised to scale, and containing at least some categorical attributes in order to
generate interesting inverse programs. They are the Breast Cancer, Auto MPG
and Computer Hardware datasetaﬂ

5.1 Increasing depth

We start by assessing the basic wrangling capability of SYNTH-A-SIZER. The first
row of each dataset is colored and sets of 100 programs of increasing depths are
generated. For both algorithms, the average recall and precision are plotted in
terms of the depth in Figure [2| Both mixed BF'S and DFS achieve almost perfect
reconstruction for lower depths in most cases. As depth increases, performance
drops. We can take a closer look at the performance by plotting the distribution
of the precisions, as done in Figure

In our experiments, there are two main reasons why tables are not perfectly
wrangled. First, complex Fold operations are not always correctly detected,

2 https://archive.ics.uci.edu/ml/datasets/

https://archive.ics.uci.edu/ml/datasets/

Table 3: Inverse transformations supported by the data generator.

Transformation Inverse Inverse arguments
Fill(T, ¢, fwd) If it was not sorted before: sort All (4, fwd) such that T;,.
T on column 4. For every pair doesn’t contain empty values.
of consecutive equal values, set
the top (fwd = 0) or bottom
(fwd =1) one to @.
Delete(T, 1) Repeat ~ U(0,n — 1) times: All (i) such that T;. does not

— Generate ~ U(1,m/2) ran-
dom strings

— Add a row to T with the
strings in random locations
that are not %

contain an empty value.

Fold(T, i, j, h, d)

Duplicate rows such that the ele-
ments outside of columns ¢ : i+h
are repeated j — ¢ times. Ex-
pand values in folded column(s)
in groups of j —i+ 1 consecutive
rows into new columns.

All (¢, 4, h,d) such that (1) if h =
0: values outside of column ¢ are
replicated between at least n/2
rows or (2) if h = 1: values in
column ¢ are replicated at least
n/2 times.

Join(T*, T2, 4, 5)

Look for functional dependency
i — Y between column i and
columns Y such that Y] = j.
Split table by removing columns
Y and building new table from
columns (¢,Y).

All (¢,7) such that there exists
a functional dependency ¢ — Y
and Y] = j.

resulting in zero precision. This happens more often in datasets which have
more similar attributes, such as Breast Cancer and Hardware. Second, Fill is
sometimes applied in the wrong direction, resulting in precisions depending on
the number of unique elements in the filled column.

As SYNTH-A-SIZER relies on a distance measure between types, it is sensitive
to how syntactically similar different types are. An interesting question for further
research is how to combine the similarity with background information about
the underlying types, as well as alternative approaches for type detection.

5.2 Resilience to Coloring

We then ask the question how sensitive SYNTH-A-SIZER is to which cells are
colored. All inverse programs of depths 3-5 from the previous experiments for
which DFS achieved perfect results are computed 10 times with different rows
colored. The precision distributions of wrangling those tables using DFS are shown
Figure[d] Only for the Breast Cancer data are the obtained results considerably
worse, probably due to similar features across columns. For both other datasets,
SYNTH-A-SIZER seems robust enough to work for arbitrary colorings.

-—\ Breast Cancer \iﬁi G o Hardware

recision
e 2 2 =
N e =

Recall

1
[

o
o

Fig. 2: Precision (black) and recall (gray) on three datasets for inverse programs
of increasing depths (z-axis) using two synthesis algorithms. Due to good
performance on the Auto MPG data, precision and recall are very similar.

Breast Cancer

o
—_
o
[
o
—_
o
—_

Auto MPG

0

[
[en)
—_
o
[

Fig. 3: Distribution of precision (black) and recall (gray) for increasing depths
on the cancer (top) and auto (bottom) datasets.

6 Conclusion

We presented SYNTH-A-SIZER, a tool that semi-automatically wrangles attribute-
value data from spreadsheets given only a coloring of one positive output example.
Even though it uses a very simple heuristic and synthesis algorithm, it already
achieves respectable performance on synthetically generated messy spreadsheets.

While more effort is required to improve the heuristic and distance function,
these results provide a next step in the direction of fully automated wrangling of
data from spreadsheets.

Acknowledgement This work has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No [694980] SYNTH: Synthesising Inductive Data Models).

References

1. Data Wrangling Automation, IEEE International Conference on Data Mining
(2016), http://users.dsic.upv.es/~f1ip/DWA2016/

http://users.dsic.upv.es/~flip/DWA2016/

0.0

T T T

0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Fig. 4: Precision distributions of repeating previously successful runs with differ-

10.

11.

12.

13.

14.

15.

ent colorings for all datasets.

. Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: Flashrelate: extracting relational

data from semi-structured spreadsheets using examples. In: ACM SIGPLAN Notices.
vol. 50, pp. 218-228. ACM (2015)

. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kétter, T., Meinl, T., Ohl, P.,

Thiel, K., Wiswedel, B.: Knime-the konstanz information miner: version 2.0 and
beyond. AcM SIGKDD explorations Newsletter 11(1), 26-31 (2009)

. Boullé, M.: Towards automatic feature construction for supervised classification.

In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. pp. 181-196. Springer (2014)

. Dasu, T., Johnson, T.: Exploratory data mining and data cleaning, vol. 479. John

Wiley & Sons (2003)

. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017)
. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter,

F.: Efficient and robust automated machine learning. In: Advances in Neural
Information Processing Systems. pp. 2962-2970 (2015)

. Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Foundations and

Trends® in Programming Languages 4(1-2), 1-119 (2017)

. Guyon, I., Chaabane, 1., Escalante, H.J., Escalera, S., Jajetic, D., Lloyd, J.R.,

Macia, N., Ray, B., Romaszko, L., Sebag, M., et al.: A brief review of the chalearn
automl challenge: any-time any-dataset learning without human intervention. In:
Workshop on Automatic Machine Learning. pp. 21-30 (2016)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10-18 (2009)

Jin, Z., Anderson, M.R., Cafarella, M., Jagadish, H.: Foofah: Transforming data by
example. In: Proceedings of the 2017 ACM International Conference on Management
of Data. pp. 683-698. ACM (2017)

Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: Interactive visual speci-
fication of data transformation scripts. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. pp. 3363-3372. ACM (2011)

Polozov, O., Gulwani, S.: Flashmeta: A framework for inductive program synthesis.
In: ACM SIGPLAN Notices. vol. 50, pp. 107-126. ACM (2015)

Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In: Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining. pp. 847-855. ACM (2013)

Verbruggen, G., De Raedt, L.: Towards automated relational data wrangling. In:
Proceedings of AutoML 2017@ ECML-PKDD: Automatic selection, configuration
and composition of machine learning algorithms. pp. 18-26 (2017)

	Automatically Wrangling Spreadsheets into Machine Learning Data Formats

