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Hardware-Based Trusted Computing
Architectures for Isolation and Attestation
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Abstract—Attackers target many different types of computer systems in use today, exploiting software vulnerabilities to take over the
device and make it act maliciously. Reports of numerous attacks have been published, against the constrained embedded devices of the
Internet of Things, mobile devices like smartphones and tablets, high-performance desktop and server environments, as well as complex
industrial control systems. Trusted computing architectures give users and remote parties like software vendors guarantees about the
behaviour of the software they run, protecting them against software-level attackers. This paper defines the security properties offered by
them, and presents detailed descriptions of twelve hardware-based attestation and isolation architectures from academia and industry.
We compare all twelve designs with respect to the security properties and architectural features they offer. The presented architectures
have been designed for a wide range of devices, supporting different security properties.
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1 INTRODUCTION

Computers play an important role in today’s society and
will become an even greater part of our daily lives in the
future. However, any computing system can be breached by
attackers, from complex cloud hosting infrastructures with
thousands of servers to the tiny microcontrollers used in
the Internet of Things (IoT). Critical software vulnerabilities
have been discovered in home appliances [40], cars [37],
and even industrial control systems [16]. These attacks all
lead to systems that no longer behave as intended by their
designers. For the exploited television sets and fridges, the
consequences were rather small, as the attackers only sent
out spam. However, the researchers who discovered the car
vulnerability had full control over the vehicle, and Stuxnet
set Iran’s nuclear program back years.

The goal of trusted computing is to develop technologies
which give users guarantees about the behaviour of the
software running on their devices. More specifically, a device
can be trusted if it always behaves in the expected manner for the
intended purpose [32]. This means that even when an attacker
gains control of the system, he cannot make it misbehave.
This is a complex goal, covering many aspects, resulting
in a wide range of solutions based on software, hardware,
or co-design of both. Industry has also been active in this
field, adding security mechanisms to their products, some of
which can be found in millions of devices.

After defining trusted computing, the difference between
it and trustworthy computing [20] should be pointed out. In
trusted computing, users are asked to trust a set of compo-
nents, and the security of the system is no longer guaranteed
if any of its components are breached. Users are given no
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guarantees that the trusted components will not breach their
security policies. On the other hand, trustworthy computing
provides users with proof that its trusted components will
not violate security [38]. Its focus is more on improving
software engineering processes [30], rather than modifying
the hardware architecture.

Although software-based trusted computing architectures
with interesting results have been proposed [4], [25], [31],
[42], [45], they can typically only be used in limited settings,
nor are they able to give the same security guarantees as
hardware-based architectures. An important part of trusted
computing is to protect against attackers who have full
control over the system, i.e., any application could have
been exploited, as well as the Operating System (OS). Many
hardware-based architectures protect applications from a
malicious OS. No software-only solution can provide these
guarantees, as an attacker can always manipulate software
if the OS is not trusted. It is much harder for an attacker to
modify hardware functionality, to the extent that hardware is
considered to be immutable. Therefore, a user’s trust is said
to be rooted in the hardware, which is also why this paper
only considers hardware-based architectures.

Trusted computing has been an active field of research
over the past ten years, and several architectures have been
proposed for devices ranging from lightweight embedded
systems to high-performance desktop and server processors.
This large number of designs makes it difficult to determine
which problems have been solved already, and how this
was done within the constraints of the target platform. To
the best of our knowledge, this paper gives an overview
of all major trusted computing designs making hardware
changes to the underlying architecture from the academic
community as well as industry, and offering either isolation
or attestation. The former protects applications from other
software, while the latter allows a third party to get proof that
the software was not tampered with. Architectures which do
not meet these requirements, being software-based designs
or providing different functionality, are not included.
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2 BACKGROUND

This section introduces basic trusted computing terms which
are most widely used by the different architectures. We
assume that the reader is familiar with symmetric and asym-
metric encryption algorithms, hash functions, and Message
Authentication Codes (MACs). Otherwise, an introduction
can be found in the Handbook of Applied Cryptography [36].

Protected Module Architectures (PMAs) Software has
become incredibly complex, making it almost impossible to
prove that an application does not contain bugs. Furthermore,
attackers are always looking for vulnerabilities they can
exploit to gain access to a system. Therefore, McCune et al.
introduced the concept of Protected Module Architectures
(PMAs) [34], where security-critical components are sepa-
rated into smaller protected modules. Since they are much
smaller, it is easier to verify their correctness. These modules
are then isolated (Section 4.1) from any other software on the
system, so that they cannot be tampered with. It has been
shown that PMAs can be implemented at any level of the
architecture, from the hardware to the OS kernel [44].

Throughout this paper, we will adopt the terminology
used by the original authors. Consequently, protected mod-
ules will also be referred to as Software Modules (SMs), Secure
Executables (SEs), enclaves, secure tasks, or trustlets.

Trusted Computing Bases (TCBs) are the sets of hard-
ware and software components which are critical to their
architecture’s security. The careful design and implemen-
tation of these components are paramount to the overall
security. The components of the TCB are designed so that,
when other parts of the system are exploited, they cannot
make the device misbehave. Ideally, a TCB should be as
small as possible in order to guarantee its correctness.

Measuring is used to verify the authenticity of software
components. This is done by calculating a hash or MAC of its
code and data. Some designs also include other identifying
information, like the memory layout. The measurement result
can then be used to attest (Section 4.1) the component’s
state. Since a hash or MAC value for a given input is
probabilistically unique, it also identifies the state of the
software component at that time.

Trust Chains are formed by verifying each component’s
validity from the bottom up. For software, this can be done by
measuring each component in the chain before its execution.

3 ATTACKER MODEL

In general, any trusted computing architecture only protects
against attackers with a specific set of capabilities. First, the
attacker is assumed to be in complete control of all software
on all the devices in the system, except for the software that
is part of the TCB. This means that he can tamper with the
OS, or even deploy malicious software components. Some
architectures use software modules that are part of the TCB,
and it is assumed that the attacker cannot change these.

Second, the attacker is assumed to be in control of the
communication channel to the device. He is therefore capable
of sniffing the network, modifying traffic, and mounting Man-
in-the-Middle (MitM) attacks. These abilities are important
when considering attestation.
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Fig. 1. In general, a Protected Module Architecture (PMA) runs multiple
Software Modules (SMs) side by side, along with one or more unprotected
applications. The TCB ensures that the state of the SMs is protected
from any other software running on the system. The measurement of the
SM establishes a Dynamic Root of Trust (DRoT). The result can be used
to attest the state of the module to a remote verifier. By sealing data, the
SM can send it securely to untrusted storage.

Third, the Dolev-Yao attacker model [13] is used, where
the attacker is assumed to be unable to break cryptographic
primitives, but can perform protocol-level attacks.

Fourth, none of the architectures are capable of providing
availability guarantees, and therefore cannot protect against
Denial-of-Service (DoS) attacks.

Fifth, architectures without memory protection consider
physical attacks on the hardware out of scope. This means
that the attacker does not have physical access to the
hardware, cannot probe the memory, and cannot disconnect
components. However, architectures which include memory
protection consider the attacker capable of performing phys-
ical attacks on off-chip memory, but not on any hardware
components which are part of the TCB, such as the Central
Processing Unit (CPU). In addition, none of the architectures
include protection against hardware side-channel attacks,
which are therefore not considered in this paper.

Finally, software side-channel attacks exist where un-
trusted software or malicious modules target memory access
patterns. Architectures which do not protect against this,
therefore do not give attackers the capability to monitor
cache accesses or to observe the addresses of page faults.

4 PROPERTIES

Our work discusses and compares the different architectures
with respect to a set of security properties (Section 4.1) and
architectural features (Section 4.2). The former are the result
of security mechanisms which were added specifically to
provide users with strong guarantees about the software exe-
cuting on their system (Section 1). Figure 1 gives a schematic
overview of a PMA, also illustrating some of these security
properties. The latter are features commonly found in current
microcontroller and general-purpose architectures, but which
require special attention in the context of trusted computing.

4.1 Security Properties

The following seven security properties were selected to
facilitate this paper’s discussion, each of which is offered
by at least one architecture described in Section 5. Since this
paper focuses on architectures which provide isolation and
attestation, these were included first. All other properties are
the result of new functionality introduced by the discussed
architectures, and were added to enable a comparison
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between all designs. The first five are fundamental features
provided by the trusted computing architectures discussed
in this paper, while the last two are also more widely used
in security research.

Isolation denotes a hardware-based architectural mech-
anism that provides access control for software and its
associated data. By placing code and data inside a protected
module, no software outside it can read or write its runtime
state or modify its code. Execution of code inside such a
module can only be started from a single predefined location.
Such an entry point ensures that attackers cannot reuse the
module’s own code to extract secrets or implement malicious
behaviour, as is done in Return-Oriented Programming
(ROP) [43]. Current architectures allow for one or more
modules, and some even support running them concurrently.
Protected modules are used to store confidential information
like secret keys, as other software cannot access its state.
Writes into them are also prevented, protecting the integrity
of the module’s code and data.

Attestation is the process of proving to an authorized
party that a specific entity is in a certain state. In order to give
strong security guarantees, an architecture which supports
attestation should guarantee integrity of the attested state as
well. Trusted computing architectures may provide local and
remote attestation. The former refers to one software module
attesting its state to another running on the same platform,
while the latter attests to a remote party residing outside the
trusted system.

A common way to implement attestation is to measure
(Section 2) software modules during their initialization,
while preventing later modifications by means of isolation.
It can then be used to authenticate a challenge sent by the
authorized party, as the measurement uniquely identifies
the state of the module. Since it could only have resulted
from measuring a specific software module in a certain
configuration, the authorized party knows it communicates
with this module.

Sealing wraps confidential code or data in such a way
that it can only be unwrapped under certain circumstances.
Code or data are wrapped by binding it either to a specific
device, a certain configuration of the device, the state of a
software module, or a combination of these. It can then only
be unwrapped when the binding conditions are met, e.g., on
the same device or one which runs the same configuration.
Sealing is usually based on encryption, and relies on similar
mechanisms as software attestation, i.e., the key for encrypt-
ing confidential code or data is typically derived from the
software module measurement taken during initialization.

Dynamic Roots of Trust (DRoTs) In order to keep the
TCB (Section 2) as small as possible, most trusted computing
technologies build trust chains. However, these chains always
need to be anchored in a component that is inherently trusted,
which are referred to as Roots of Trust (RoTs). A Dynamic
RoT (DRoT) is established for a software module at runtime,
measuring (Section 2) the application’s state right before
execution starts. It is typically combined with isolation to
protect against Time-of-Check Time-of-Use (TOCTOU) vul-
nerabilities as well, where an attacker changes the module’s
code after it has been measured.

Code Confidentiality A trusted computing architecture
which guarantees code confidentiality ensures that sensitive

code or static data cannot be obtained by untrusted hardware,
software, or any other unauthorized entity covered by the
attacker model. This property usually requires both isolation
and encryption. Isolation is used to protect against software
attackers after modules have been loaded. Encryption is
needed to protect against attacks targeting confidential
information before loading, and to prevent physical attacks.
Sealing can be used to ensure that only a certain software
component can obtain some Intellectual Property (IP).

Side-Channel Resistance A trusted computing architec-
ture is called side-channel resistant with respect to software
attackers if no software module, including privileged soft-
ware like an OS, is able to deduce information about the
behaviour of other modules apart from their Input/Output
(I/O). Specifically, information flow through untrusted chan-
nels, such as caches, or information revealed by page faults
cannot leak to untrusted software. An architecture with side-
channel resistance should take care to flush caches during
context switches. Information leakage due to page faults, for
example, can be prevented by giving each software module
the ability to handle its own page faults.

Memory Protection specifically refers to protecting the
integrity and authenticity of data sent over system buses
or stored in external memory from physical attacks. We
consider both passive (e.g., bus snooping) and active (e.g.,
fault injection) attacks. First, this means that data has to be
encrypted, to prevent sensitive data from leaking. Second,
it also has to be integrity-protected, for example, using a
MAC. Third, replay attacks, where previously valid memory
contents are restored, have to be prevented as well. These
operations have to be performed when data is sent to or
fetched from external memory.

4.2 Architectural Features

Designers have to make numerous decisions when integrat-
ing the security mechanisms needed for trusted computing in
complex modern processor architectures. We selected seven
basic features they typically take into account. The first,
targeting a lightweight architecture or not, is special as it will
also influence the design of the other features.

Lightweight We define an architecture to be lightweight
when it does not use a Memory Management Unit (MMU).
Lightweight embedded systems have very simple memory
hierarchies, and therefore do not need complex memory
management. Furthermore, they only run a limited number
of applications, which share the memory space cooperatively,
not requiring virtual addressing to map the memory.

Coprocessor Many trusted computing architectures re-
quire security mechanisms to be implemented in hardware.
In case of a coprocessor, this functionality is added as a
separate chip or module which interfaces with the main
processor. Alternatively, the functionality can be integrated
inside the processor. Trusted computing architectures that
are integrated in a processor can typically provide stronger
security guarantees than coprocessor-based designs, because
data does not have to leave the CPU. Some functionality also
cannot be implemented in a coprocessor, e.g., isolation.

Hardware-Only TCB It is typically better for the TCB
(Section 2) to rely on hardware, as this provides stronger
security guarantees, such as protection from an untrusted
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OS. In this work, we only discuss architectures that have
a hardware-only TCB or architectures that have a TCB
consisting of hardware and software components.

Preemption When preemption is supported, the system
can suspend running tasks at any time, without first obtain-
ing permission from the task. This makes it possible to handle
interrupts, but also allows preemptive scheduling of multiple
protected modules. Preemption mainly impacts the context
switching logic, since the architecture now has to ensure that
no sensitive information can leak between modules, as this
would violate the isolation primitive. Without support for
preemption, applications have to run cooperatively, i.e., they
need to call each other after finishing a task.

Dynamic Layout A static layout is often used when all
software shares the same address space, and no MMU is
present to provide virtual memory for different applications.
It has the disadvantage that one trusted entity, e.g., the
hardware or software manufacturer or a system integrator,
needs to compile all software and fix the layout before
deployment to the target device. With a dynamic layout,
however, applications can be loaded to locations that do not
need to be known at compile time.

Upgradeable TCB Architectures which have a HW-only
TCB are not upgradeable, because its components can no
longer be changed after being manufactured. However, some
designs include trusted software components, typically to
implement functionality which would be too expensive
in hardware. These components are then protected by a
hardware mechanism, such as Programmable ROM (PROM).
This not only results in more design flexibility, but also
enables upgrading the TCB at a later time, e.g., when a bug
has been discovered or to add new functionality.

Backwards Compatibility When adding features, an
important consideration for industry is whether legacy code
runs on the modified architecture without any changes,
possibly after recompilation. Since these applications do not
use the introduced security mechanisms, they typically do
not receive any of the associated security guarantees.

5 ARCHITECTURES

This section gives detailed descriptions of twelve isolation
and attestation designs, which make hardware modifications
to their target platform. Architectures which are implemented
entirely in software or provide other functionality were there-
fore not included. A wide range is covered, from lightweight
designs for the IoT to desktop and server architectures. The
selection was not limited to academic research, but also
includes industry efforts. All architectures were ordered
chronologically by year, and then alphabetically.

5.1 AEGIS

Suh et al. designed AEGIS [46] in 2003 already, making it
one of the oldest trusted computing architectures. It provides
programs with a Tamper-Evident Environment (TE), where
any memory tampering, either from software or physical, is
detected. Even stronger guarantees are provided by Private
and Authenticated Tamper-Resistant Environments (PTRs),
which also protect the confidentiality of code and data.
The CPU itself is considered to be trusted, placing external

memory and peripherals outside of the TCB, where they are
vulnerable to software and hardware attacks. In a hardware-
supported implementation, the OS can be malicious, but
when a Security Kernel (SK) is used to implement AEGIS’
functionality, parts of the OS need to be trusted.

Since the system can also run legacy code, the protection
mechanisms have to be enabled by calling the enter_aegis
instruction. This will calculate a hash of the program and
store it in a protected area. The program hash will also be
used later as an identifier. Each program also includes some
code which will measure any other data or code it depends
on. Finally, it should also ensure that it is running in the
expected environment (e.g., the current CPU mode). After
enter_aegis has been called, the program is isolated, and
any memory tampering will be detected. Since the on-chip
caches are considered trusted, the hardware only needs to
prevent applications from writing to locations they do not
have access to. This is done by tagging the cache entries
with a Secure Process ID (SPID), which is assigned when the
program is started.

However, a more complex mechanism is needed to
protect off-chip memory. Whenever data is read into the
cache, its integrity needs to be verified. When a cache block
is evicted, the corresponding leaf node of a hash tree is
updated with the new contents. Of course, this means that
all internal nodes also have to be updated. Depending on the
memory size, this could result in a large number of additional
transfers, and the internal nodes are therefore also cached
in the L2 cache, performing updates first in the cache, and
not directly in memory. The authors distinguish between
non-blocking and blocking instructions. For the former, the
integrity verification can be delayed, as long as the CPU
is eventually notified it was working with tampered data.
When the AEGIS mode is set to PTR, the CPU also needs
to guarantee confidentiality. This is done by encrypting the
blocks with AES in the CBC mode of operation, using 32-bit
random Initialization Vectors (IVs) to guarantee uniqueness
of the ciphertexts. The architecture uses separate keys for
static and dynamic data. The former is used to decrypt the
binary’s data and code, while the latter protects any data
generated at runtime.

The remote attestation mechanism hashes the provided
data together with the program hash, and asymmetrically
signs the result with a private key specific to the CPU. This
binds the data to the code of the program, as well as the
specific processor it is executing on. In case AEGIS’ features
were implemented in a software SK, the hash of the kernel is
also included in the attestation result. This functionality is
provided through the sign_msg instruction.

5.2 Trusted Platform Module (TPM)

The Trusted Platform Module (TPM) version 1.2 [47] was
specified by the Trusted Computing Group (TCG) in 2011.
It is a coprocessor on the motherboard, which is capable
of storing keys and performing attestation. It is a passive
piece of hardware, meaning that software can interact with
the TPM, but needs to do so explicitly. To give a local or
remote party guarantees, any software that runs on the
target device, i.e., the boot loader, OS, and applications,
needs to be measured successively by the TPM, and is
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consequently part of the TCB. Code manipulation is only
detected during measurement, and all parts of the software
are considered trusted after loading. The TPM only provides
limited protection against physical attacks, because not only
the CPU package, but the TPM chip and all connecting buses
are part of the TCB as well. For instance, a physical attacker
can compromise software integrity by tapping the Low Pin
Count (LPC) bus between the TPM and CPU [29].

The design principles published by the TCG in version
1.2 specify the minimum functionality and cryptographic
primitives that are required for TPMs, but a TPM manu-
facturer is allowed to extend the hardware module with
additional functionality. Each TPM has to be equipped with
a Random Number Generator (RNG) as a randomness source
and an RSA implementation with at least 2048-bit keys. The
minimum requirement for software measurement is the SHA-
1 hash algorithm. At manufacturing time, the Endorsement
Key (EK) is generated and written to persistent memory
within the TPM. The EK is unique to every TPM chip, not
known to the user, and serves as master key for all operations
provided by the TPM. In addition to the EK, Attestation
Identity Keys (AIKs) and storage keys can be generated
on the fly and stored in volatile memory within the TPM.
AIKs are used for all operations directly involving digital
signatures, whereas the storage keys are used for encryption
and decryption of data. Finally, a TPM contains a certain
number of Platform Configuration Registers (PCRs), which
are capable of storing successive hash values for code or
data that is sent to the TPM and are important for remote
attestation. The TCG also specified TPM version 2.0 [48] in
2014, supporting a larger variety of cryptographic algorithms,
multiple banks of PCRs, and three hierarchies instead of only
one. For simplicity, we focus on version 1.2 in this paper.

With the minimum functionality required by the TCG,
each TPM is able to perform at least three different operations.
First, it is able to bind code or data to a given device by
encrypting it with one of the storage keys. The encrypted
code or data can then only be decrypted on the same
platform, because the particular storage key cannot be
extracted from volatile memory within the TPM.

Second, a TPM is able to attest to another party that
the given device is currently running a certain software
configuration (Section 4.1). To this end, code or data sent to
the TPM is hashed together with values of specific PCRs,
and the result is again stored in the same PCRs. This way,
each software component running on the device is able to
successively extend a measurement over all components
running on the device. The PCRs are initially set to a fixed
value before starting the system, and because the hash
function is irreversible, it is not possible to set the PCRs
to a user-defined value. The resulting hash values from the
PCRs can then be cryptographically signed by an AIK, and
this signature can later be verified by a second party. When
this party receives a correctly signed value, it can be sure that
the system runs a certain software configuration, because
this signed message could not have been created without
going through the software measuring process.

Third, code or data can be sealed to a given device in a
certain software configuration (Section 4.1). In general, seal-
ing works similar to binding, i.e., code or data is encrypted
and decrypted, but it is additionally ensured that sealed code

or data is only decrypted if the platform configuration has
not changed in between. To check against changes of the
platform configuration, the PCR values are saved together
with the sealed code or data and checked against the current
PCR values during unsealing.

Attestation and sealing only behave as intended if the
platform configuration is measured from the earliest boot
step, up to the currently running software component, be-
cause otherwise malicious software could potentially exclude
itself from the measurement. This restriction is the biggest
disadvantage of the standalone TPM over other solutions
that support DRoTs (Section 4.1).

To overcome the restriction of all software having to
be part of the TCB, Intel introduced its Trusted Execution
Technology (TXT) [22], which also uses the TPM chip, but
allows dynamically establishing a new Root of Trust (RoT)
for software running in a virtualized environment besides
the usual software stack. TXT ensures that the virtualized
software has exclusive control over the device by suspending
all other running software, i.e., the OS and all applications.
When switching to trusted TXT software, the CPU essentially
performs a warm reset and initializes a certain subset of PCRs
with a new value. The TXT software can then extend this
measurement and attest to a second party that it has not
been modified before being loaded. Since it monopolizes all
resources once it has been loaded, the integrity of the TXT
software is guaranteed over its entire runtime.

Although TXT can be used to overcome the restriction of
all software having to be part of the TCB, it still has some
issues. Suspending all other applications on the device for
the TXT software to run negatively impacts performance,
or might even lead to losing interrupts depending on its
size. Since the TXT software has to run exclusively, it cannot
easily use functionality of untrusted software and needs
to perform expensive context switches. Finally, all physical
attacks that succeed for a standalone TPM, e.g., LPC bus
tapping, also succeed for TXT. Fides [45], Flicker [34], and
TrustVisor [33] are examples of architectures which build on
the functionality offered by TXT.

5.3 TrustZone

GlobalPlatform wrote an industry standard for security
architectures called the Trusted Execution Environment (TEE)
[18], [19]. The TEE is a secure area of the main processor, and
provides isolated execution, integrity of trusted applications,
as well as confidentiality of trusted application resources.
The TEE is isolated from the Rich Execution Environment
(REE) where the untrusted OS runs. The REE resources are
accessible from the TEE, while the TEE resources are not from
the REE, unless explicitly allowed. Therefore, only trusted
resources can access other trusted resources. The standard
does not specify how manufacturers should implement it.
TrustZone is an implementation of this standard by ARM.

TrustZone [1] is a hardware-based security architecture
for a System-on-Chip (SoC) that is currently used in a
large number of smartphones. The TEE, also called the
secure world, provides protection for trusted hardware and
software resources. Hardware-based mechanisms ensure that
resources in the REE’s untrusted OS, or normal world, cannot
access secure world resources. This is done by two main
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hardware features. First, the SoC’s AXI bus ensures that
secure world resources cannot be accessed from normal
world resources. Second, a TrustZone-enabled processor core
uses time-slicing to execute code in either the secure or
normal world.

To enforce isolation between trusted hardware resources
on the bus, a control signal known as the Non-Secure (NS)
bit was added to the AXI specification. This bit is used to
communicate the security state of a master component to
a slave component. The bus or slave logic uses this bit to
ensure that the security separation is not violated. When
an untrusted master attempts to access a secure slave, the
transaction should fail and an error may be raised.

A TrustZone core can switch between security states at
runtime. When the processor core is in the secure state,
it generates AXI transactions with the NS bit set to zero,
allowing it to access resources in both security domains.
However, a processor core in the normal world can only
access normal world resources. The processor’s L1 and L2
caches use a bit to store the security state of the transaction
that accessed the memory. The cache controllers are then
assumed to be responsible for ensuring that only secure
masters can access memory that was fetched from a secure
slave. Extending the cache removes the need for a flush when
performing a context switch between security domains, and
further allows software to efficiently communicate from the
non-secure to the secure world.

To perform a context switch to the other world, the
processor first has to pass through a new mode called monitor
mode, which serves as a gatekeeper that manages context
switches between the two worlds. This is done by saving the
state of the current world and restoring the state of the world
being switched to. Monitor mode exists in the secure world,
and both privileged and user mode exist in each world.
Normal world entry to monitor mode is only possible via an
interrupt, external abort, or explicit call of the smc instruction.
Secure world entry to monitor mode can additionally be
invoked by writing into the Current Program Status Register
(CPSR). ARM recommends to execute monitor code with
interrupts disabled. The address mappings in the MMU can
be configured independently for each world. This allows
the OS in each security domain to enforce its own memory
management. Inter-Process Communication (IPC) with small
messages can be done by placing the message inside registers
and then invoking smc. For larger messages, it is possible to
use shared memory.

Interrupts can be serviced in either security domain.
When a context switch is required to handle an interrupt,
the processor traps directly into monitor mode. A different
exception vector table is used to specify the interrupt service
routine addresses for normal world, secure world, and
monitor mode respectively. Each of the vector table base
addresses can only be updated from its respective mode. This
enables secure interrupt sources that cannot be manipulated
by normal world software.

During the boot process, a chain of trust is formed by
verifying the integrity of the trusted second stage boot loader
and trusted OS before execution. The TrustZone processor
starts in secure world when it is powered on. The firmware of
the first stage boot loader is implicitly trusted, and is typically
located in ROM. It initializes critical peripherals, such as

memory controllers, and further performs an integrity check
of the second stage boot loader, which is stored in flash. If
this check passes, the second stage boot loader is executed.
It in turn verifies the integrity of the secure world OS and
boots it, after which the normal world OS is started without
performing an integrity check. Some implementations of the
secure OS also verify the integrity of trusted applications
before loading them. TrustZone uses a signature scheme
based on RSA. A vendor uses its private key to sign the code.
The firmware then uses the public key to verify the signature
at runtime. In order to support multiple different vendors,
the architecture supports the use of several public keys.

Since any trusted component can violate the system’s
security, it is important to respect the principle of least priv-
ilege and restrict the access of each component in the TCB.
TrustZone violates this design principle, as applications from
different vendors run in the same secure world. Furthermore,
when multiple secure master devices from different vendors
are placed on a TrustZone SoC, least privilege is violated as
all the secure masters have access to all memory.

5.4 Bastion

Bastion [9] is a combined hardware-software architecture,
which relies on a trusted hypervisor together with a modified
processor to ensure confidentiality and integrity for security-
critical software modules. Physical attacks on all hardware
components apart from the CPU package are allowed,
i.e., Bastion provides memory protection. Only single-core
processors are currently supported.

Since everything apart from the microprocessor and the
hypervisor is considered untrusted, including firmware and
code needed during booting, Bastion first protects the state of
the hypervisor. Afterwards, the hypervisor is able to protect
any number of software modules. To this end, the Bastion
hypervisor calls secure_launch from its initialization
routines, which computes a cryptographic hash over the
state, i.e., code and data, of the hypervisor and stores the
result in a CPU register. The secure_launch routine also
generates a new key which is used to encrypt and integrity-
protect all data belonging to the hypervisor with the help
of an on-chip crypto engine. The hash value later serves as
the identity of the hypervisor and is, for example, needed
to unseal permanently stored data. The implementation of
secure_launch, as well as the register contents, cannot be
modified from software.

After the hypervisor has been loaded, software modules
can invoke a new secure_launch hypercall for initializa-
tion, which activates runtime memory protection for all
module pages and computes a hash of the module’s initial
state, including the virtual memory layout, that serves as the
module’s identity. For instance, this identity is used to seal
data that needs to be permanently stored on disk.

A modified CPU ensures that the hypervisor is invoked
for each Translation Lookaside Buffer (TLB) miss. The
hypervisor checks whether the virtual address responsible for
the access corresponds to the one associated with the physical
page and a specific software module. For these checks,
modules are identified by a unique identifier (usually eight to
20 bits), which is assigned during the secure_launch call.
All untrusted software not belonging to a specific module
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is treated as a module with identifier zero, ensuring that
untrusted software cannot access code or data from security-
critical modules.

To invoke a function of a secure module, a special
call_module hypercall is added, which takes the hash
of the destination module and the entry point as parameters,
because direct transitions would trigger a memory violation.
Similarly, on returning, the return_module hypercall is
needed. When a module needs to be preempted, for example,
due to a timer interrupt, the hypervisor takes care of saving
all state information, such as register contents, and wiping
sensitive data before calling the interrupt handler. When
returning from the interrupt handler, the hypervisor also
takes care of restoring all state information and handing back
control to the secure module.

5.5 SMART
El Defrawy et al. designed SMART [14] to establish a DRoT
in remote embedded devices (Section 4.1). The architecture
is also minimal, requiring only the smallest possible set of
hardware changes in order to implement remote attestation,
which was later formalised by Francillon et al. [17]. It
was one of the first designs using hardware-software co-
design to build a lightweight trust architecture. Prototypes to
demonstrate the feasibility were built on open-source clones
of the ATmega103 and openMSP430. The attacker model
specifically assumes that adversaries do not tamper with
ROM. Any peripherals which can directly access memory
should also be disabled while SMART is executing.

In general, SMART provides remote attestation of a mem-
ory range [a, b] specified by the verifier. It then calculates a
MAC over this memory region and sends the result back. The
verifier calculates the same MAC over the expected contents
and compares both. This process dynamically established a
RoT. In addition, an address x can be given, where execution
will continue atomically after SMART has completed. By
choosing x = a, the verified code is started.

Support for SMART requires four features: attestation
Read-Only Memory (ROM), secure key storage, MCU access
controls, and reset and memory erasure. The ROM stores
the attestation code which is invoked when a verification is
requested. This program disables interrupts, measures the
specified memory region by calculating a SHA-256 HMAC,
and reports the result. When x is set, interrupts remain
disabled and control jumps to that address, but otherwise
they are re-enabled and execution continues.

Secure key storage is added to the microcontroller for
the symmetric key used to calculate the HMAC, and the
MCU access controls ensure that it is only accessible when
the CPU’s Program Counter (PC) is in the ROM region
containing the attestation code. In order to prevent code
reuse attacks, the MCU also enforces a single entry point
into the ROM code, only allowing access from the initial
instruction, and disabling exits from any instruction other
than the last. When an invalid memory access is detected by
either mechanism, the processor is reset immediately.

The attestation code is carefully written to ensure it cleans
up any sensitive data after it has finished. However, when
the processor is reset during its execution, this cleanup might
be skipped. Therefore, all memory is erased by the hardware
when the processor boots or after a reset.

SMART and TrustLite (Section 5.10) were later used to
prototype a scalable attestation mechanism for large swarms
of small embedded devices [3].

5.6 Sancus
Sancus [39] is a hardware-only PMA designed by Noorman
et al. for lightweight embedded devices, like wireless sensor
nodes. In addition to isolating an application’s code and sen-
sitive data, it also has support for remote attestation. It adds
secure linking functionality as well, enabling applications to
verify modules they depend on.

The architecture was designed for small embedded
devices, which are typically deployed in large swarms. These
nodes are managed by an Infrastructure Provider (IP), and
they share a fixed key KN with it, which is etched into
the silicon. When Software Providers (SPs) want to load a
protected application onto a node, they have to go through
the IP. Each SP is assigned a unique public identifier, which
is used to derive a key KN,SP = kdf(KN , SP) for the SP. The
kdf is implemented in hardware to realize a zero-software
TCB. Since the IP manages the node key KN , it knows all
other keys used in the system, and SPs therefore have to
trust it to behave as intended.

In Sancus’ system model, protected applications are called
Software Modules (SMs). Each SM consists of a text section,
which contains code and constants, and a protected data section
where sensitive dynamic data can be stored. Additionally, an
SM can include unprotected sections, which makes it possible
for developers to keep the size of the sensitive code as small
as possible. Each SM is also assigned an identity, consisting
of the contents of its code section, and its layout. The latter
are the start and end addresses of its protected code and
data sections, making it possible for two modules where
these sections are identical to exist on the system at the same
time. Similar to KN,SP, the SM’s identity is used to derive a
third-level key KN,SP,SM = kdf(KN,SP, SM).

When an SM uses functionality from another protected
module, it can use caller authentication to ensure that the
other module was not tampered with. To this end, SM1

stores a MAC with its own key KN,SP,SM1
of SM2’s identity

in an unprotected section. It can issue a special instruction
at runtime to verify the MAC. The hardware also enforces a
single entry point. This single physical entry point is not a
limitation, as it can be multiplexed to multiple logical ones.

The memory access control mechanism is program
counter-based, i.e., the access rights depend on the current
value of the processor’s program counter. The protected
text section is always readable, but only executable when
the module is executing. The only exception is the entry
point, which is always executable. The text section has to
be readable for the caller authentication to work, as it is
included in the MAC. Similarly, the protected data section is
only read- and writeable when the program counter is in the
module’s text section.

These protection mechanisms are enabled by calling
the special protect instruction, which has the layout
information and SP identity as parameters. This instruction
also derives the node key KN,SP,SM and stores it together
with the layout in a protected storage area, inaccessible from
software. Invoking unprotect disables the memory pro-
tection. Memory violations are handled by resetting the
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CPU, at the cost of availability, which is excluded from the
attacker model (Section 3). Three additional new instructions
are introduced for the remote attestation and secure linking
functionality respectively. First, MAC-seal can be used to
calculate a MAC with KN,SP,SM over a given memory range.
Second, calling MAC-verify will calculate the MAC of the
specified module, with the current module’s key, and verify
that it matches the MAC stored in memory. Third, since
the MAC calculation is expensive, a module is assigned a
monotonically increasing ID by the CPU at load-time, which
can be queried with get-id. This ID is used to securely link
to the same module at a later time, by storing it and checking
that it still matches the one returned by get-id.

A prototype was developed based on the OpenMSP430,
an open-source implementation of Texas Instruments’
MSP430 processor. The most important changes are the addi-
tion of the on-chip protected storage area, the Memory Access
Logic (MAL) circuitry, and a hardware implementation of
HMAC based on SPONGENT [6], a lightweight hash function.
The number of SMs which can be loaded concurrently is
chosen at synthesis time, and determines the size of the
on-chip memory. The MAL circuit is fully combinational,
so it does not need additional cycles to perform its checks.
Furthermore, it is shown not to be on the processor’s critical
path, meaning that it doesn’t impact the clock frequency. In
addition to the hardware changes, an LLVM-based toolchain
to compile SMs was also built. This allows developers to
easily use the new functionality by annotating their code,
and inserts stubs which handle stack switching, secure
linking, and entry point multiplexing. Evaluation of the
prototype showed that the main performance overhead is
found in instructions which use the hashing functionality,
i.e., protect, MAC-seal, and MAC-verify. The duration
of the hash calculation depends on the size of the input data.

Soteria [21] is an extension of Sancus which takes
advantage of the architecture’s functionality to add code
confidentiality. This is done by creating a loader module SML,
which has the module key KN,SPL,SML

. This loader module
atomically reads the encrypted binary from the node’s
memory, and writes the decrypted code back to memory, after
which it calls protect on the decrypted SM. Each module
is assigned an identity S̃ME , which is used to derive the
encryption key ESME

= kdf(KN,SPL,SML
, S̃ME). Although

the encryption algorithm is implemented in software, it is
not part of the TCB, because the key derivation includes the
module’s text section. Therefore, any changes to SML would
result in a different ESME

, which would be detected during
authenticated decryption. Due to the way the derivation of
ESME

is implemented, SML and SME mutually authenticate
each other. Additionally, Sancus’ hardware is modified to
deny other SMs access to the text section of SME .

5.7 SecureBlue++

SecureBlue++ [7], [49] is an early PMA from IBM, which
isolates Secure Executables (SEs) from each other, and pro-
tects the confidentiality and integrity of their data and code.
The main architectural changes involve a Memory Protection
Unit (MPU), using different mechanisms at each level of the
memory hierarchy. It also protects against physical memory
attacks, as well as the introduction of new instructions.

An SE binary consists of a cleartext section containing
a loader, which copies the cleartext integrity tags of the
compiled binary into memory, and then calls the new esm
instruction to start decryption of the encrypted sections and
jump to the SE’s entry point. The loader is followed by
system call pass-through buffers and the Executable Key,
which was used to encrypt the sections that are stored
after it, namely the metadata for the call to esm, and the
application’s data and code. The Executable Key itself is
encrypted asymmetrically under a public key bound to the
CPU that the application will run on. The private key is
installed in the factory, and the manufacturer signs the public
part to generate a certificate asserting its validity.

The MPU protects an application’s data and code at all
levels of the memory hierarchy. Encryption is used to protect
data in external memory, automatically decrypting cache
lines and verifying their integrity when they are read from
memory. Similarly, evicted lines are encrypted on the fly, also
updating the integrity protection tree. A tree is used because
replay protection requires a nonce, which in turn needs to be
stored and MACed. All integrity information is stored in a
dedicated memory region, with only the root node and its
metadata requiring expensive on-chip storage.

The caches store everything in plaintext, and therefore
also need to enforce access control. This is done by adding
a label to each cache line with the ID of the SE it belongs to.
The CPU stores the current Secure Executable ID (SEID) in
a special register and compares it to the line’s label. Instead
of storing the SEID directly, a Memory Region ID (MRID)
is used. This is an index into the Protected Memory Region
(PMR) table, which holds the metadata of a specific page, like
the owner’s SEID. This table also manages shared memory
regions, adding a second SEID for the first sharer. Any
additional SEs requiring access are given the same secret,
which needs to be present at a specific memory location.

To avoid leaking the values stored in registers after a
context switch, SecureBlue++ stores the registers protected
in the cache, which means they would also be encrypted
automatically when evicted to memory. A new privileged
instruction, RestoreContext can be used by the OS to
restore the registers and wake the previously active SE, which
is indicated in a special register.

Since the isolation mechanism prevents even the OS
from accessing an SE’s data, two approaches for handling
syscalls are presented. The first is modifying libc to wrap
the system calls, not requiring any hardware support. The
second is to change the behaviour of the syscall instruction
sc. Before transferring control to the OS, the CPU checks
whether it is in SE mode. If so, the call is redirected to a small
wrapper inside the Secure Executable (SE) before invoking
the sesc instruction, which bypasses the security check and
immediately calls the OS’s syscall handler.

5.8 Software Guard Extensions (SGX)
In 2013, Intel announced SGX [35], which enables establish-
ing dynamic RoTs inside regular applications, without mo-
nopolizing the system (Section 5.2). SGX supports protecting
an application’s code as well as data [23], is able to guarantee
integrity, and provides local and remote attestation [2]. In
addition, SGX includes physical attacks on communication
channels and main memory in the attacker model.
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In SGX, the protected parts of an application are placed
within so-called enclaves. An enclave can be seen as a
protected module within the address space of a given process,
and enclave accesses obey the same address translation rules
as those to usual process memory, i.e., the OS and the hy-
pervisor are still in charge of managing the page tables. This
has the advantage that SGX is fully compatible with existing
memory layouts, usually configured and managed by an
MMU, and also works well in a multi-core environment.
Although an enclave resides in the usual process address
space, there are certain restrictions in enclave mode. For
example, system calls and instructions that would cause
a trap into the OS or hypervisor, such as cpuid, are not
allowed and it is necessary to leave enclave mode before
dispatching them. Furthermore, this mode can only be
entered from user mode, which essentially means enclaves
can only be used within applications, but not the OS [24].

An SGX-enabled CPU ensures in hardware that non-
enclave code, including the OS and potentially the hypervi-
sor, cannot access enclave pages. Specifically, a region called
the Processor Reserved Memory (PRM), which contains the
Enclave Page Cache (EPC) and the Enclave Page Cache Map
(EPCM), is protected by the CPU against all non-enclave
accesses. The EPC stores enclave pages, i.e., enclave code
and data, while the EPCM stores state information about the
pages currently held within the EPC. The state information
consists of the enclave page access rights and the page’s
virtual address when the enclave was created, amongst
others. For each (non-cached) access of an EPC page, the
current access rights and virtual address are checked against
the state stored within the EPCM, and if a mismatch is
detected, access is denied. The caching of state information is
necessary, because all software, including at system level, is
considered untrusted, and therefore attacks such as enclave
layout changes through remapping have to be prevented
directly in hardware. If the capacity of the EPC is exceeded,
enclave pages might be written out to a memory region
outside the PRM by the OS, but are then transparently
encrypted with the help of a hardware Memory Encryption
Engine (MEE), which is inside the CPU package.

Before an enclave can be used, it has to be created and
initialized by untrusted software. The hardware ensures that
an enclave’s pages can only be modified before initialization
is finished. All page contents, including code and static data,
are measured during initialization. As this measurement de-
pends on all contents of the enclave, and later modifications
are prevented, it can be used as a basis for local or remote
attestation. All operations involved in the management of an
enclave, e.g., enclave creation, initialization, and destruction,
are performed by system software (ring zero), while entering
and leaving the enclave is done by the application software
(ring three). The latter is implemented similarly to system
calls, i.e., an enclave has its own execution context, there is a
single entry point into the enclave, and dedicated instructions
need to be called. Upon leaving the enclave, the context of the
current thread is saved within an EPC page and all registers
are cleared. The appropriate context is loaded again when
the enclave is entered. If an interrupt occurs during enclave
execution, an Asynchronous Enclave Exit (AEX) is performed
by the CPU, which also saves the current enclave execution
context and ensures that no data leaks to the untrusted

system software handling the interrupt.
Within an enclave, other features are provided in addition

to confidentiality and integrity of code and data. One enclave
can attest to another that it has been loaded as intended by
sending a report. The report includes information about the
enclave (the measurement) or enclave author. This process
is called local attestation. With the help of a trusted quoting
enclave provided by Intel, the report can be wrapped into a
quote, converting the local attestation to a remote attestation
by signing the quote with an asymmetric attestation key,
which is part of Intel’s Enhanced Privacy Identifier (EPID)
group signature scheme [26]. The quote can be verified
by a remote party with the corresponding verification key
provided by Intel. Besides local and remote attestation, data
produced within an enclave can also be sealed to the enclave
and, for example, written to memory outside the PRM. Sealed
data can serve as permanent storage and retains information
during different runs of an enclave. Local attestation, remote
attestation, and sealing all rely on the non-forgeability of the
initial enclave measurement.

Intel uses dedicated enclaves for complex functionality
which would be expensive to implement in hardware, like
the asymmetric cryptography needed for remote attestation.
It also provides a launch enclave required to launch any
other enclave, a provisioning enclave to initially provision
asymmetric keys for attestation to end-user devices, and the
previously mentioned quoting enclave to cryptographically
sign the attestation quotes. The downside of this approach is
that Intel has a de facto monopoly regarding enclave signing
and remote attestation, as Intel decides which enclaves are
allowed to run and everybody who wants to verify quotes
needs to have an agreement with Intel.

More details about SGX in general can be found in a
recently published exhaustive summary [11]. So far, we know
of two academic solutions which use SGX in an untrusted
cloud context, namely Haven [5] and VC3 [41]. However, nei-
ther solution used real hardware, but relied on an emulator
instead. Finally, AMD recently presented security extensions
for their processors called Secure Memory Encryption (SME)
and Secure Encrypted Virtualization (SEV) [27]. The former
adds memory encryption at page granularity to protect data
in memory. The latter relies on this unit to isolate virtual
machines from each other as well as the hypervisor.

5.9 Iso-X

Iso-X [15] is an isolated execution architecture where memory
can be assigned dynamically to Untrusted and Trusted Parti-
tions, which contain compartments. These compartments are
essentially protected modules, and a developer can indicate
which parts of his code should be compartmentalized. The
architecture also includes a remote attestation mechanism in
hardware, which is based on asymmetric signatures.

A static memory region is allocated and protected during
boot to store hardware-maintained management information.
The Physical Page Compartment Membership Vector (CMV)
is a bit vector tracking whether a memory page was already
assigned to a compartment or not, while the Compartment
Table (CT) records the compartment’s characteristics, like its
base address and size. In addition to these static structures,
each compartment is also assigned a Compartment Page
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Table (CPT), which maps virtual to physical addresses,
since the OS’s page tables cannot be trusted. Finally, each
compartment is also assigned a Compartment Metadata
Page (CMP), which keeps track of any other data, like the
compartment’s public key.

Six new instructions are added to the processor, which
are called either by the OS or applications to manage and use
compartments. First, a new system call can be invoked by an
application when it wants to start a compartment. It looks
for an unused compartment identifier, and then executes the
COMP_INIT instruction to signal the hardware to prepare its
internal data structures. Similar to SGX (Section 5.8), memory
pages are only added to the compartment after its initializa-
tion. This is done through the CPAGE_MAP instruction, which
also adds the page’s hash to the compartment’s measurement.
Note that this also includes the virtual page number and
permission bits. Analogously, CPAGE_REVOKE removes a
page from the compartment, which is considered destroyed
once no more pages belong to it. Finally, a compartment can
be entered at its entry point through COMP_ENTER.

COMP_ATTEST generates a certificate that can be used
to prove the compartment’s integrity to an external verifier.
This certificate is signed with the CPU’s private key, which
is generated in the factory. Finally, COMP_RESUME restores
the compartment’s state after a context switch, copying CPU
registers back and returning to compartment mode.

The authors also present a secure swapping mechanism
to support memory management. Before giving the OS’s
swapping mechanism access to a page, COMP_SWAP_PREP
hashes it and overwrites the corresponding CPT entry with
the result, also resetting the valid bit. The page is then
encrypted symmetrically, and the corresponding CMV bit is
cleared. Afterwards, the OS uses COMP_SWAP_RET to copy
the page back to memory, decrypting it and verifying the
hash. This instruction also re-enables memory protection.

5.10 TrustLite

TrustLite [28] is a generic PMA for low-cost embedded
systems which was developed by the Intel Collaborative
Research Institute for Secure Computing. A trustlet isolates
software components, providing confidentiality and integrity
guarantees for both its code and data. The architecture
provides OS-independent isolation of trustlets, attestation
of trustlets, trusted inter-process communication, secure
peripherals, and supports interrupts. It was implemented
as an extension to the Intel Siskiyou Peak research platform.
The standard attacker model is used, with the assumption
that the trustlets and bootstrapping routine behave correctly.

When the TrustLite device is booted, the first software
to execute is the Secure Loader. It is stored in PROM, which
is part of the SoC. The Secure Loader is responsible for
loading all desired trustlets and their data regions into on-
chip memory. In addition, it configures an MPU to enforce
isolation of each trustlet’s memory regions, which can include
Memory-Mapped IO (MMIO) peripherals. The configured
regions are also recorded in a Trustlet Table for use by
individual trustlets or attestation routines. After the Secure
Loader has configured all trustlets, the untrusted software,
such as the OS, is allowed to execute. The Secure Loader is
only active during initialization, and the MPU is also used

to protect it at that time. As the initialization code configures
the memory protection regions on platform reset, there is no
need to clear the main memory as in SMART (Section 5.5).

The MPU uses registers to store multiple different protec-
tion regions for each trustlet. The architecture uses program
counter-based isolation. The memory regions of a trustlet
are only accessible by a specific trustlet when the PC is in
its code region. When the PC is outside this region, the
memory regions specified in the MPU are not accessible.
The processor raises an exception on an access violation. In
addition, it invalidates currently executing instructions, and
flushes the processor’s pipeline stages.

To support interrupting an executing trustlet, the architec-
ture needs to ensure that no information leaks. It does this by
storing the current state of the processor on the stack of the
interrupted trustlet, saving the stack pointer in the trustlet
table and clearing the general purpose registers, after which
the OS stack pointer is restored, followed by execution of the
Interrupt Service Routine (ISR). A return from an interrupt is
performed by jumping to the entry point, and restoring the
trustlet’s stack pointer in software.

Each trustlet uses an entry vector to specify the addresses
which can be called by other tasks or trustlets. The trustlet
itself can execute its entire code section, but other tasks or
trustlets can only execute the addresses listed in the entry
vector. The entry vector should be carefully programmed to
avoid information leakage or other exploits.

Signalling and sending short messages are done by calling
the entry of a trustlet and passing the arguments in CPU
registers. Large messages can be communicated by signalling
with a pointer to a shared memory region, which needs to
be inside an MPU region. Trusted communication between
trustlets is performed by means of a simple handshake
protocol. The handshake requires that the initiator verifies the
platform state, and that each party attests the other trustlet’s
state by checking the correctness of the relevant entries
in the trustlet table and MPU registers. The initiator may
additionally perform an integrity check of the responder’s
program code to ensure that it was not maliciously modified.
After attesting each other, subsequent messages can be
authenticated by means of a cryptographic session token.

5.11 TyTAN

TyTan [8] is an architecture for lightweight devices which
provides isolation between tasks, secure IPC with sender
and receiver authentication, and has real-time guarantees. Its
TCB consists of both hardware and software components.

A core trusted hardware component of TyTAN is its
Execution-Aware MPU (EA-MPU), which enforces program
counter-based isolation. The EA-MPU ensures that each
isolated task can only access its assigned memory regions.
In addition, these tasks can only be invoked at a dedicated
entry point.

Several static secure software components are part of
the TCB. The Secure Boot task is invoked at boot, and is
responsible for loading all other trusted software components.
Each of these components is isolated from the rest of the
system by the EA-MPU. The EA-MPU supports loading and
unloading of secure tasks at runtime by means of a driver.
The RoT for Measurement (RTM) task is used to attest other
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tasks. This task calculates a cryptographic hash of the binary
code of each created task, which serves as its identity idt.
The Remote Attest task uses a MAC to prove the authenticity
of idt to a remote verifier.

Secure IPC is done by means of the IPC Proxy task.
This task is responsible for forwarding a message m from
the sender S to the receiver R. For short messages, the
sender invokes the proxy with the receiver’s identity idR
and message m as parameters, which then copies m into R’s
memory. Since the EA-MPU ensures that only the proxy can
write to R’s memory, this implicitly authenticates m and idS .
For large messages, the proxy sets up a shared memory that
is accessible only by the communicating tasks.

The Secure Storage task seals data by storing it encrypted
in non-secure memory. It is encrypted with a task key that
is derived from idt. Tasks communicate with the secure
storage via secure IPC. Finally, a trusted Interrupt Multiplexor
(Int Mux) task is used to securely save the context of an
interrupted task to its stack and clear the CPU registers
before control is passed to the interrupt handler. Different
interrupt handlers can be specified in the Interrupt Descriptor
Table (IDT), which is protected by the EA-MPU.

TyTAN was implemented as an extension to Intel’s
Siskiyou Peak architecture, and uses the FreeRTOS real-time
OS. The FreeRTOS preemptive scheduler was modified to
support secure tasks. All secure software tasks were designed
to be interruptible, or to have an upper bound on execution
time. To support dynamic loading of tasks, FreeRTOS was
extended with an ELF loader.

5.12 Sanctum

Sanctum [12] combines minimal hardware modifications
with a trusted software component to offer an isolation
scheme which is in many ways similar to SGX (Section 5.8).
Like SGX, Sanctum only allows enclaves to run at user level.
Unlike it, physical attacks are not addressed by Sanctum, e.g.,
attacks on DRAM cannot be prevented because there is no
Memory Encryption Engine (MEE) to encrypt code or data
before being written out to memory.

In Sanctum, each enclave controls and manages its own
page tables and handles its own page faults, whereas the
former are managed by the OS or hypervisor in SGX.
Furthermore, Sanctum ensures that each enclave is assigned
a separate DRAM region corresponding to distinct sets in the
shared Last-Level Cache (LLC). These two measures allow
Sanctum to protect enclaves against software side-channel
attacks where a malicious application or OS tries to learn
information from an enclave’s memory access pattern. In
SGX, a potentially malicious OS can observe the accesses of
any enclave at page granularity by reading the page table’s
dirty and accessed bits. Additionally, enforcing distinct cache
sets per enclave protects against cache timing attacks.

Instead of implementing trusted functionality in mi-
crocode like SGX does, Sanctum uses a trusted software
component called the security monitor. When booting a
Sanctum system, measurement code within ROM is executed
and calculates a hash of the security monitor, which is
included in all further measurements, before giving control
to the monitor. The security monitor then provides an API
for enclave management, e.g., for creating and destroying

enclaves. It also manages transitions into and out of enclaves,
i.e., special monitor calls need to be used to enter and exit an
enclave. In case of an interrupt, the security monitor takes
care of saving the enclave’s current state. After handling the
interrupt, however, the enclave is entered at its entry point,
and has to restore its state on its own. The environment
within an enclave is also restricted, so that enclaves need to
be exited for system calls and I/O.

Sanctum modifies the MMU in such a way that there are
two Page Table Base Registers (PTBRs), one for untrusted
code and one for the currently running enclave. Only the
security monitor is able to change the contents of these
registers. Furthermore, the modified MMU ensures that only
certain pages can be referenced by enclave page tables. In
more detail, metadata indicating valid pages is saved during
enclave creation, and checked against after each page table
walk. The metadata cannot be changed from software after
enclave creation, during which the security monitor checks
for overlapping pages or other invalid mappings, and writes
it accordingly. Although the initial mappings are created by
the OS, and copied to the enclave’s page tables, the enclave
is able to verify them by inspecting its own page tables and
aborting if necessary.

6 COMPARISON

This section provides a detailed comparison of all architec-
tures discussed in this paper. Table 1 compares all of them
with respect to the security properties and architectural
features given in Section 4. In addition, it is indicated for
each architecture whether it was published by academic
researchers, if its source code is public, and what Instruction
Set Architecture (ISA) it was based on.

Except for the TPM and SMART, which were specifically
designed for attestation, all architectures provide some
isolation mechanism, which protects applications from each
other and even the OS. In general, lightweight architectures
include program counter-based access control in the memory
controller, verifying each access. A common approach is to
use a set of boundary registers which indicate the memory
regions for a pre-defined number of protected modules. Since
they already include an MMU, complex architectures extend
it to include access control. At cache line or page granularity,
the isolation is much coarser here than it is for lightweight
architectures, where each memory access is checked.

It is interesting to see how different architectures imple-
ment remote attestation. Some architectures add a simple
attestation protocol in hardware, based on symmetric primi-
tives. These are cheaper than asymmetric algorithms in terms
of computation and resource requirements. For example,
Sancus (Section 5.6) uses an HMAC based on SPONGENT.
However, other designs instead opt to move their attestation
functionality to software, relying on hardware functionality
to protect it from the rest of the system. In this case, local
attestation is used to protect the on-chip communication with
the application being attested. This approach is especially
attractive for complex protocols, like the one from SGX
(Section 5.8), which is based on a group signature scheme.

The same approach can be followed for other components
of the TCB, especially for features which are expensive to
implement in hardware. It has the additional advantage that



12

TABLE 1
Overview of all hardware-based trusted computing architectures detailed in Section 5. They are compared with respect to the security properties and
architectural features they support. We also list whether they are open-source, were developed by academia or industry, and which ISA was targeted.

Architecture Security Properties Architectural Features Other

Iso
latio

n

Atte
sta

tio
n

Sealin
g

Dynamic RoT

Code Confidentia
lity

Side-Channel Resis
tance

1

Memory
Protectio

n
2

Lightw
eight

Coprocesso
r

HW-O
nly

TCB

Preemptio
n

Dynamic Layout

Upgradeable
TCB

Backwards Compatib
ilit

y

Open-Source

Academic

Target ISA

AEGIS [46]      #  # #    #  #  –

TPM [47] #   #  – G# #   – – #  # # –
TXT [22]       G# #   #  #  # # x86 64

TrustZone [1]  # #  # # # # # #   #  # # ARM

Bastion [9]  #    #  # # #     #  UltraSPARC

SMART [14] #  #  # – #  # # – – #  #  AVR/MSP430

Sancus [39]   #  #  #  #  # # #    MSP430
Soteria [21]   #    #  #  # # #    MSP430

SecureBlue++ [49]  #    #  # #    #  # # POWER

SGX [35]      #  # # #     # # x86 64

Iso-X [15]   #  # #  # # #     #  OpenRISC

TrustLite [28]   # # #  #  # #     #  Siskiyou Peak

TyTAN [8]     #  #  # #     #  Siskiyou Peak

Sanctum [12]       # # # #       RISC-V

 = Yes; G# = Partial; # = No; – = Not Applicable
1Resistance against software side-channel attacks targeting memory access patterns only.

2Protection from physical attacks, both passive (e.g., probing) and active (e.g., fault injection).

the TCB can be upgraded, since it is partially implemented
in software. The only exception is SMART, where the SW is
stored in non-programmable ROM. In contrast, having a HW-
only TCB implies that it cannot be upgradeable. This software
will be part of the design’s TCB, though, requiring users
to trust that a potential attacker has no way of modifying
its operation. All architectures have at least part of their
TCB implemented in hardware, which is assumed to be
immutable by attackers. Any software component which is
part of the TCB relies on these features. HW-only TCBs can
generally give much stronger guarantees, because no part
of the architecture is vulnerable to software-level attackers.
However, if carefully designed and implemented, some of its
components can be moved to software, speeding up develop-
ment and increasing flexibility. TrustZone (Section 5.3) is the
only architecture where a large amount of software is part of
the TCB, because its isolation mechanism only supports two
domains, and therefore includes the secure world OS.

All isolation architectures have similar attacker models,
and consequently protect against the same types of vulner-
abilities. There are two high-level categories of software
attacks: code injection and code reuse attacks. The isolation
mechanism protects against the former, since an attacker
outside the module can no longer modify its code. Further-
more, attestation enables detection of any changes to the
module at the time the measurement is taken. An entry point
prevents external adversaries from performing the latter
(Section 4.1). However, neither mechanism can secure against
vulnerabilities found inside the module itself. Software side-

channels are a third category, but only Sanctum (Section 5.12)
addresses a specific instance of this attack type.

The trust boundaries typically extend to the CPU package,
but in some cases external memories and peripherals are
also included. This is the case for the TPM, which is a
coprocessor connected to a shared system bus. Any other
components on the same bus are therefore part of the TCB.
However, when external memories and peripherals are not
included in the TCB, there is also protection against physical
memory attacks. For example, SecureBlue++ (Section 5.7)
transparently encrypts and decrypts cache lines when they
are evicted or fetched from memory. Therefore, attackers who
probe the memory or snoop the bus cannot obtain sensitive
information. The hardware also maintains an integrity tree
of all entries, defending against active memory attacks.

All discussed architectures modify the processor archi-
tecture itself, except for the TPM (Section 5.2). SECA [10]
is another instance where the security mechanisms are
integrated outside of the CPU package. Instead, this ar-
chitecture enforces configured security contexts at the bus
level through a Security Enforcement Module (SEM). This
hardware component monitors the bus traffic and interrupts
the CPU when violations are detected. Different contexts can
be configured by a secure kernel running on the processor,
and it can update the currently active context at any time.
For example, a security context can specify access rights to a
specific memory range, isolating that region.

Sancus (Section 5.6) is an example of a cooperative
architecture without preemption (Section 4.2). Such designs
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often rely on static memory layouts where all applications are
stored in pre-defined memory locations, so that they know
where to call each other. Since only one application is running
at the same time, monopolizing all resources, no software
side-channels exist in these architectures (Section 4.1).

All included designs either give programmers the choice
to integrate their security mechanisms, or enable them
transparently. Both approaches result in fully backwards
compatible architectures, and with dynamic loading, the
original binaries can even be used. However, legacy appli-
cations remain just as vulnerable as before in most designs.
TrustLite (Section 5.10) is one exception, as its MPU always
provides isolation transparently once it has been configured
by the Secure Loader, even for untrusted code.

The goal of isolation is to protect modules from any other
software running on the system. However, these components
sometimes need to be able to communicate with each other,
or even with untrusted applications, like the OS. This IPC is
typically implemented in two ways. The fastest is to use
processor registers for passing smaller messages. Larger
messages are sent through shared memory regions. Some
architectures even support secure shared memory, where
modules can selectively allow others to access a memory
region (e.g., SecureBlue++).

7 CONCLUSION

The goal of trusted computing is to protect applications and
users from malicious software. It has increasingly gained
interest in recent years, both from academia and industry,
resulting in a variety of new mechanisms. We presented
detailed descriptions of twelve hardware-based architectures,
focusing on attestation and isolation designs, and compared
them with respect to their security properties and architec-
tural features. Our comparison shows that all architectures
offer strong guarantees, but very few support all possible
trusted computing mechanisms. The main differences are
the size of the TCB, which sometimes contains software, and
where the trust boundaries extend to. Furthermore, not all
architectures support certain architectural features.

This paper shows there has been a lot of work in this
area, but researchers and application developers still do not
have widespread access to these technologies. Industry has
only recently started building products which include them,
and academic researchers rarely open-source their results,
making it harder to extend their work. Therefore, there is still
room for improvement, not only for attestation and isolation,
but also for other trusted computing technologies.
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