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A Bayesian approach to set the tolerance limits for a statistical 

project control method 

Abstract：In this paper we address the project schedule control problem under an uncertain 

environment. We propose a new method to set the tolerance limits based on the Earned Value 

Management/Earned Schedule (EVM/ES) schedule performance metrics. These tolerance 

limits can help a project manager to identify whether the schedule deviations from the baseline 

schedule are within the possible deviations derived from the expected variability of the project 

or if corrective actions must be taken to get the project back on track. We view the project 

control problem as a statistical hypothesis test with the null hypothesis being that the project 

progress is out of control. First, a simulation is performed to generate two types of empirical 

conditional distributions of the monitored schedule indicator. Afterwards, an algorithm that uses 

the derived conditional distributions as inputs is proposed to optimize the tolerance limits. An 

extensive computational experiment is carried out to assess the performance of the proposed 

approach. Additionally, sensitivity experiments are conducted to analyze four underlying 

factors that may influence the power of the proposed method. Experimental results show that 

our approach can keep the first type error under the required level ( ) in any situation, 

meanwhile reducing the second type error significantly compared with three other methods in 

the literature. 

Keywords: Project management; Schedule control; Bayesian approach; Earned value 

management; Earned schedule 

1. Introduction 

Project control lies at the core of project management, it involves comparing the 

actual performance of the project with a baseline schedule and analyzing the deviations. 

When the differences indicate that the project is behind schedule or exceeding the 

planned budget, the project manager may take early corrective actions to get the project 

back on track.  

The classical and most popular way for project control is Earned Value 
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Management (EVM). EVM is based on the project Work Breakdown Structure (WBS), 

and incorporates the time and cost control in a unified framework. To be specific, EVM 

uses three measures: the planned value (PV) or budgeted cost of work scheduled 

(BCWS), the actual cost (AC) or actual cost of work performed (ACWP), and the 

earned value (EV) or budgeted cost of work performed (BCWP). The use of these three 

metrics can yield four indicators: 

 Cost variance (CV=EV-AC) 

 Cost performance index (CPI=EV/AC) 

 Schedule variance (SV=EV-PV) 

 Schedule performance index (SPI=EV/PV). 

Whenever CV<0 and CPI<1, the project demonstrates a budget overrun. At the same 

time, if SV<0 and SPI<1, the project is delayed. Figure 1 illustrates how EVM works. 

As shown by Figure 1, EVM is a high level management method: both EV and AC are 

aggregate metrics. If warning signals from EVM occur, the project manager needs to 

drill down to a low level WBS in order to find the problematic activities.  

The traditional EVM has been criticized by many researchers (Lipke 2003; 

Vanhoucke and Vandevoorde 2007; Khamooshi and Golafshani 2014) that it uses the 

cost-based data to assess the cost performance as well as the schedule performance of 

projects. For example, a negative SV in money units cannot give managers the 

information how long the project is behind the schedule. Another shortcoming of EVM 

is the loss of controllability when the project is close to its end. As all the planned 

activities will be nearly finished, the EV will tend to the PV, and, as a consequence, the 

SV will converge to zero and the SPI will conclude at one. This gives project managers 

the illusive impression that the project is a little bit late even if the project actually 

suffers a serious delay. To overcome this limitation, Lipke (2003) proposed the use of 

the Earned Schedule (ES) instead of EV for schedule control. Figure 1 clearly 

demonstrates this concept: ES is the time when the current earned value should have 

been achieved. Based on the ES, we have two additional performance indicators, 

SV(t)=ES-AT, and SPI(t)=ES/AT, where AT is the actual time. Whenever SV(t)<0 and 

SPI(t)<1, the project is behind schedule. Otherwise, the project is in good condition. 
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Figure 1: Earned value and earned schedule 

Although EVM/ES is a powerful technique that can timely detect deviations from 

the plan, it does not take the stochastic nature of a project into account. In practice, 

projects are subject to considerable uncertainties: even if the project goes smoothly, the 

actual cost and progress do not always happen according to plan. In other words, the 

indicators in EVM/ES will distribute around their expected value (0 for CV, SV and 

SV(t), 1 for CPI, SPI and SPI(t)). At some review time, the schedule performance 

indicators may report that the project is delayed from the baseline. However, this does 

not automatically mean that corrective actions should be taken right now. The project 

manager needs to evaluate whether this delay is within the possible range of variability 

or if it is caused by some structural problems. In order to make such decisions, the 

project manager needs the tolerance limits for taking corrective actions. Whenever the 

indicators exceed the tolerance limits, the project manager has enough confidence to 

believe that some actions must be taken now to get the project back on track, otherwise 

the project will not finish on time and within budget. 

In this paper, we focus our attention on the project schedule control and address 

the setting of the tolerance limits from the perspective of statistical control methods. 

We view the project control problem as a statistical hypothesis test: the null hypothesis 

is that the project is late. If no signal of breaking the tolerance limits occurs, we reject 

the null hypothesis and believe the project will be finished on time. It is possible that 

such judgement may be false, but the probability will be kept as small as possible 

(  ) for the whole schedule control process in our method. First, we use 
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simulation to get four conditional probability distributions of the schedule performance 

indicators. Based on these distributions we develop an algorithm to optimize the 

tolerance limits. We test our approach on a large set of project instances and compare 

our results with three other methods that appeared in the literature. Experimental results 

show that our method has more discriminative power than the other approaches.  

The remainder of the paper is organized as follows. In Section 2, we present a 

literature review on the project schedule control methodologies under an uncertain 

environment. Subsequently, Section 3 gives our new methodology for constructing the 

tolerance limits. In Section 4, the design of computational test experiments and the 

performance evaluation metrics are discussed. Section 5 presents our computational 

results and a comparison with other approaches from the literature. Finally, some 

conclusions are drawn to highlight the contributions given by the paper to the project 

control problem in Section 6. 

2. Literature review 

In this section, a literature review on the project schedule control methodologies 

under an uncertain environment is given. Generally speaking, these methods can be 

divided into two categories: analytical methods and statistical methods. The analytical 

methods are usually based on the concept of buffers in the project, and use some simple 

rules as the tolerance limits. On the other hand, the statistical methods often employ 

some statistical tools to aid the project schedule control, such as statistical process 

control, statistical machine learning techniques, etc.  

Green Yellow Red 

Tolerance 
Limit2

Tolerance 
Limit1

Project Planed Duration Project Buffer

Deadline

 

Figure 2: Project schedule control in the critical chain method 

Perhaps the easiest and most intuitive way for schedule control under uncertainties 

is the buffer consumption monitoring proposed by Goldratt (1997). In this control 

system, a project buffer is divided into three zones as shown by Figure 2. The zones are 

often represented in green, yellow and red, representing the expected variation zone, 
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the normal variation zone and the abnormal variation zone respectively. Typically, these 

zones are each sized to one third of the buffer. When the observed buffer consumption 

is in the green zone, no special action is required. When the buffer consumption enters 

the yellow zone, the project manager should keep an eye on the progress: the project is 

still under control, but the manager should prepare for action. Moreover, when the red 

zone is reached, the project manager must take actions immediately, otherwise the 

problems will possibly jeopardize the project due date. In Goldratt’s buffer 

consumption management, the project buffer is usually divided into three equal parts 

and does not change during the whole project lifecycle. This simple way is often 

questioned for its efficiency. Hu, Cui and Demeulemeester (2015) proposed an 

alternative method, called Relative Buffer Management Approach (RBMA). In their 

method, the two tolerance limits vary linearly over the proportion of the critical chain 

completed (PCC). As shown in Figure 3, at any time point , the proportion of the 

buffer consumed (PBC) for green, yellow and red zone can be calculated according to 

two linear functions. The basic idea of RBMA is that at the beginning of the project 

more project buffer should be given to the red zone, while at the end of the project more 

project buffer should be given to the green zone. 
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Figure 3: Tolerance limits in the relative buffer management approach 

Integrating the project buffer into EVM/ES is another common way in the 

literature. Different from buffer consumption monitoring, the process of schedule 

control in this method is to monitor the EVM/ES metrics, and there is only one tolerance 
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limit at any review point. If the EVM/ES metrics value at time   are less than the 

tolerance limit, then the project manager should take corrective actions. Usually the 

tolerance limit is calculated based on the project buffer. There are three common 

methods to set the tolerance limits in the literature. The first method is the planned 

duration based buffer consumption (PD-BC) way (Colin and Vanhoucke 2015a). Taking 

the SPI(t) and SV(t) as an example, the tolerance limits for the SV(t) and SPI(t) at any 

review time instant  are defined as 

                       (1) 

.                 (2) 

where  is the project buffer. The method shares the same idea as Hu et al. (2015) 

that the project buffer should be linearly distributed during the whole project lifecycle. 

The second way is the planned value based buffer consumption (PV-BC) way. In the 

work of Martens and Vanhoucke (2017) they claimed that setting the allowable buffer 

consumption linearly with the project duration omits the fact that normally the PV does 

not increase linearly with the project duration. For most projects, the curve of the 

cumulative PV is S-shaped, which means that most of the project effort is usually 

performed in the middle of its life cycle. Based on this fact, they suggested that the 

allowable buffer consumption should be assigned linearly with the EV, not the project 

duration. In PV-BC, the tolerance limits for the SV(t) and SPI(t) at any review time 

instant  are calculated as 

                     (3) 

,                   (4) 

where   is the earned value at time  . The last way is the risk based buffer 

consumption (RI-BC) way proposed by Pajares and Lopez-Paredes (2011). At time , 

the schedule risk baseline ( ) is the schedule variance of the activities that are 

completed before   in the baseline schedule. Thus, the total project schedule 

variance is . Both of these values are derived from simulation. Based on the 

 the tolerance limits for the SV(t) and SPI(t) can be defined as: 
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                      (5) 

.                      (6) 

The main difference among the PD-BC, PV-BC and RI-BC lies in the project buffer 

allocation approaches during the project lifespan. Figure 4 demonstrates the three 

different buffer allocation approaches at the different stages of the project. 
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Figure 4: Three different buffer allocation approaches 

The first endeavor to apply the statistical method to project control is the use of 

statistical process control (SPC) charts. These control charts are usually used to 

routinely monitor and control processes in manufacturing. As shown in Figure 5, the 

chart contains a center line that represents the mean value for the in-control process. 

Two other horizontal lines, called the upper control limit (UCL) and the lower control 

limit (LCL), are also shown on the chart. This typical SPC chart combined with other 

rules or patterns is used to detect some assignable causes of variation. In the literature, 

most of the related research (Bauch and Chung 2001; Wang et al. 2006; Leu and Lin 

2008; Aliverdi, Naeni, and Salehipour 2013; Colin and Vanhoucke 2015b) applies the 

Shewhart SPC charts or individual control charts to monitor the EVM/ES based 

indicators (CV, CPI, SV, SPI, SV(t), SPI(t)) or any transformation of them. The SPC 

charts may be an intuitive tool to control the project schedule and cost. However, there 

are three shortcomings when applying this method in reality. The first problem is the 

normality of the metrics. One requirement for the SPC charts is that the values of the 

monitored quality characteristic must be normally distributed. However, there is no 

clear evidence that EVM/ES based indicators fit such distribution (Wang et al. 2006; 
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Lipke 2002). Another assumption of SPC charts is the independence of the observations, 

but the EVM/ES based indicators usually are considered to be dependent (Martens and 

Vanhoucke 2017). The second disadvantage of SPC charts for project control is the 

availability of the input data to construct the central line as well as the upper and lower 

control limits. Usually, the source of such data comes from records of similar projects 

or the early stage of the project. However, the quality of such data is questioned, 

because in most cases every project is a unique temporary endeavor, and the early stage 

of a project is generally the most unstable phase during the life cycle. The last grave 

flaw of SPC charts is the static control limits. The SPC charts are originally designed 

to monitor the quality of an on-going process, such a process renders the UCL and LCL 

to be symmetric and static over time. However, the process of completing a project is 

different from that of producing products in manufacturing lines. The control limits of 

a project usually fluctuate during the whole life cycle. In order to overcome the 

drawbacks of SPC charts, many simulation-based control methods are proposed in the 

literature. These approaches usually assume that the activity duration fits some kind of 

distribution (beta distribution, uniform distribution or exponential distribution), and 

then use simulation combined with some risk analysis techniques to set the tolerance 

limits for projects. For example, in the works of Colin and Vanhoucke (2014) and 

Acebes et al. (2014), the lower and upper control limits are constructed using the 

 and  quantile of the derived metric’s empirical cumulative 

distribution function, where  is the level of confidence set by the project manager. 

Acebes et al. (2015) view the project control process as an anomaly detection, 

classification and regression problem. In their work, several different statistical learning 

methodologies are combined with simulation to predict the probabilities of success in 

time and the expected total duration of the project, when such probabilities are less than 

a predefined threshold (tolerance limit), the project is thought to be abnormal. 
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Figure 5: Illustrative control chart with static and dynamic tolerance limits 

In Section 3, we propose a new way to set the tolerance limits for an EVM/ES 

system. Although our approach is also based on the simulation method, we designed an 

algorithm to optimize the tolerance limits instead of simply setting them as the  or 

  quantile of the empirical cumulative distribution function. We test our 

approach on the standard problem instances, and compare the results with the methods 

in Martens and Vanhoucke (2017), Colin and Vanhoucke (2014) and Pajares and Lopez-

Paredes (2011) using several kinds of performance measurements. The evaluation 

results show that our tolerance limits are more discriminative. At the same time our 

approach is much more flexible which can allow users to set any control level based on 

different performance measurements. 

3. A Bayesian approach for constructing the tolerance limits 

In this section, we will first introduce two types of conditional probabilities, which 

will be used as the inputs of the algorithm. Subsequently, the detailed procedures of the 

algorithm will be presented. Due to the advantages of ES-based metrics in project 

schedule control, we only use the indicator SV(t) as the control metric in our approach.  

3.1. Two types of conditional probabilities 

During the project execution, the schedule control is not a real-time process. A 

project manager usually reviews the project progress at some discrete times. Assuming 

that there are in total  review points, so the tolerance limits in fact are a vector with 

 values, denoted by . In order to compare 
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the performance of our method with some project buffer based control approaches, we 

add a project buffer at the end of the planned duration, so the deadline of the project, 

denoted by , is the sum of the planned duration and the project buffer.  

Given a tolerance limit  at review point , two 

possibilities may occur:   or  . If 

, then the control system will give a warning signal to the project 

manager that the project probably will exceed the deadline. Otherwise 

, which means the project is still in control. As a project manager, we 

want to set tolerance limits that make the probabilities  

and   both as large as possible. The first conditional 

probability can be used to measure the efficiency of the tolerance limit , while 

the second conditional probability can be used to scale the reliability of the tolerance 

limit  . In most cases, if we increase the first probability, then the second 

probability will decrease, this means that a high efficiency usually will result in a low 

reliability. Using Bayes’ theorem, we can easily get another two conditional 

probabilities:   and  . 

The first probability can be used to measure the performance of the tolerance limit 

, and the second one can be viewed as a measurement of overreaction. Now the 

best tolerance limit should make the first probability as large as possible and the second 

one as small as possible. Given the tolerance limit  for any , the four 

conditional distributions can be easily obtained from simulation. In our optimization 

algorithm, which will be elaborated in Section 3.2, either the distributions 

  and   or 

  and   can be used to 

optimize the tolerance limit . In order to distinguish them, we call the first two 

distributions the first type distributions and the last two distributions the second type 

distributions. 

Similarly to the conditional probabilities at some tracking point, we can also get 

the conditional probabilities at the project level. However, at the project level, we only 

care about whether or not the warning signals are generated, without considering the 
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precise number of generated signals. If we denote the event   and 

  as   and  , respectively, then the event of giving a warning 

signal at the project level is , where the operator  is the 

logical disjunction, and the reverse occasion of not giving a warning signal at the project 

level is , where the operator  is the logical conjunction . 

Using   and   to replace   and   respectively, we can get the four 

conditional probabilities at the project level. These conditional probabilities have the 

same meaning as in the tracking point level, so they can be employed to assess the 

performance of all tolerance limits (Colin and Vanhoucke 2014, 2015a; Martens and 

Vanhoucke 2017).  

3.2. The algorithm to set the tolerance limits 

In our approach, we view the project control problem as a statistical hypothesis 

test. The null and alternative hypotheses are: 

H0: The project is out of control. 

H1: The project is in control. 

Given a set of tolerance limits, if during the project control process the system gives a 

warning signal, we should accept the null hypothesis and take corrective actions. 

Otherwise, we should accept the alternative hypothesis. However, like for any 

hypothesis test, such decisions may make two types of mistakes as shown in Table 1. 

Usually, these two error rates are traded off against each other: the effort to reduce one 

type of error generally results in increasing the other type of error. In this problem, if 

the control system does not report any warning signal, we must have enough confidence 

 to ensure that the project will meet the deadline. Otherwise, the control process 

is meaningless. At the same time, we want our tolerance limits to have a high efficiency, 

because unnecessary corrective actions will increase the cost of the project. In order to 

find such tolerance limits, an optimization procedure is designed as outlined in 

Algorithm 1. 

 



13 

 

Table 1: The first and the second type errors in the project schedule control 

 H0 is true 

The project is out of control 

H1 is true 

The project is in control 

Signal 

Accept null hypothesis 
Right decision 

Wrong decision 

Type II error 

No signal 

Reject null hypothesis 

Wrong decision 

Type I error 
Right decision 

For the two types of conditional distributions of the review points, either the first 

type or the second type can be used to optimize the tolerance limits. In Algorithm 1, we 

present our procedures using the second type distributions, but it can be easily adapted 

to be used with the first type distributions. In Section 5, we will compare the results of 

the two versions of the algorithm. Before optimizing the tolerance limits, a simulation 

with  runs will be performed to get the empirical cumulative distribution function 

of  and the  of every replication . Our algorithm starts by setting all the 

tolerance limits to 0. As one can imagine, such tolerance limits will result in a high 

performance, but also a high overreaction. So the aim of the algorithm is to reduce the 

overreaction under the condition of meeting the required significance level. The basic 

idea of the algorithm is that we choose the review point that reduces the maximum 

overreaction at the expense of one unit of performance decrease (steps 5-9), and then 

decrease this tolerance limit by one step (step 11). For every review point , we first 

calculate the   and  , then we calculate the 

  and   presuming that the tolerance limit   is 

decreased by one step (step 3). In order to find the review point whose tolerance limit 

should be reduced in every loop, we first divide all the  review points into two sets: 

the first set  contains all the review points for which reducing the tolerance limit by 

one step does not change their performance value; the second set  includes the other 

review points for which reducing their tolerance limits will result in a performance 

decrease. Apparently, we should give priority to the review point that has a maximum 

overreaction decrease from the set . If this set is empty then we choose the review 

point that has a maximum overreaction decrease at the expense of one unit of 

performance decrease from set  . During the while-loop, it may be the case that 
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reducing the tolerance limit by one step cannot decrease the overreaction value for all 

the review points. However, the probability  is still larger than 0, and 

 is smaller than the significance level. This is because the variable  

is too small, reducing the tolerance limit by one step makes no differences on the 

overreaction rate. In this case we only need to increase the value of   and 

recalculate  and  for all the review points (step 

10). Although our algorithm can adjust the  automatically, the initial  value 

should be set at a suitable level: if   is too small, it may be the case that the 

algorithm needs too much computation time. On the contrary, if  is too large, the 

algorithm cannot find the best tolerance limits and the confidence level may be 

surpassed.
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Algorithm 1: Optimizing the tolerance limits 

Input: The distribution of the ; ; ; ;  

Output: tolerance limits  

1. set  

2. calculate the probability  and  

3. calculate , 

,  

, 

 for all 

 

4. while  and  

5.       

6.      if    , 

 

7.      if   , 

                   

8.      if     

9.      else if     

10.     else    , calculate  and 

 for all , continue next loop 

11.     ,  

, 

,

, 

 

12.     calculate the probability  and  
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4. Design of experiments 

4.1. Project instances and data generation 

In order to assess the performance of the proposed method, we test our approach 

on a fictitious project data set and on a real-life project data set. 

The artificial project data set is generated by RanGen (Demeulemeester, 

Vanhoucke, and Herroelen 2003; Vanhoucke et al. 2008), and this data set has been 

widely used in the literature (Colin and Vanhoucke 2014, 2015a; Colin et al. 2015; 

Martens and Vanhoucke 2017) to evaluate the performance of miscellaneous schedule 

control methods. The project networks in this data set are generated according to a 

serial/parallel (SP) topological indicator SP with 9 values between 0 and 1 (SP = {0.1, 

0.2, … ,0.9}). For each level, 100 different project networks are generated with 30 non-

dummy activities, so there are in total 900 instances in this data set. The indicator SP 

was first introduced by Vanhoucke et al. (2008), and is used to measure the closeness 

of a project to a completely serial or parallel project. If  is the maximal progressive 

level, which is defined as the maximum number of activities lying on a single path, and 

  is the number of total activities of the project, then  . If the project is 

completely serial, then  equals 1. On the contrary, for a completely parallel project, 

  equals 0. In Section 5, we will analyze the influence of this indicator on the 

performance of our schedule control method. For every project network in this data set 

we randomly generate the expected duration and cost of every activity using integral 

numbers with a uniform distribution as in the works of Martens and Vanhoucke (2017) 

and Colin and Vanhoucke (2014). For every non-dummy activity, the planned duration 

id    is sampled from  U 8,56  , the fixed cost is sampled from  U 10,90  , and the 

variable cost is sampled from  U 100,900 . The planned value of every activity equals 

the fixed cost plus the variable cost multiplied by its planned duration.  

The real-life project data set is constructed by Batselier and Vanhoucke (Batselier 

and Vanhoucke 2015), which currently contains 125 projects collected from various 

sectors. Each project has a project card, which gives an overview of the project and 
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indicates the authenticity and completeness of the project data. The authenticity of the 

project data is assessed by project authenticity and tracking authenticity. Full project 

authenticity means that the baseline activity duration, resource usage and activity cost 

data are all obtained directly from the project owner, and that the data collector does 

not make any personal assumptions. Similarly, full tracking authenticity implies that 

the actual activity durations, actual costs and real project makespans are all obtained 

from the project owner. In order to guarantee the validity of the real case study, we only 

choose the projects with full project and tracking authenticity. Finally, 93 out of the 125 

projects meet our requirement, and are selected in the experiment. 

4.2. Project progress simulation and tracking 

In our experiments, a two-phase Monte Carlo simulation is performed to generate 

the fictitious activity durations. The sample size is 10,000 in each simulation, as this 

number can ensure that the ratio of the average standard deviation of the tolerance limits 

to the critical path length of the project is less than 1%. The first-phase simulation is 

used to construct the tolerance limits using the method in Section 3, while the second-

phase simulation is meant to emulate real project executions, which will be used to 

assess the performance of the tolerance limits obtained from the first-phase. Both in the 

first and in the second-phase simulations, the activity durations are modeled using a 

beta distribution  with a standard deviation of , where  is 

the expected duration of activity  . In the work of Colin and Vanhoucke (2014), a 

similar two-phase simulation is also used. In the first-phase, a controlled uniform 

distribution simulation which allows only a limited maximum variation is performed to 

construct the tolerance limits. In the second-phase another uniform distribution 

simulation with a larger variance is performed to simulate the real progress of the 

project. We do not adopt their way: on the contrary, we fix the variance of the second-

phase simulation, and change the variance of the first-phase simulation from small to 

large. To be specific, we choose another two beta distributions  and 

  with standard deviations   and   respectively to 
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construct the tolerance limits, and then use the same distribution  to emulate real 

project executions and assess the three different tolerance limits. In Section 5, a 

sensitivity analysis will be undertaken to analyze the impact of the first-phase variation 

on the performance of the tolerance limits. 

In most project simulation methods, one assumption is that the duration of the 

activities is independent. However, in reality, activities in a project often share some 

common factors that will influence their duration, such as the common use of resources. 

So usually the activity durations are dependent. In the literature, these common factors 

are classified as project level risks by Colin and Vanhoucke (2015a), which means they 

have a potentially disastrous impact on multiple activities in a project and on the overall 

project objectives. Thus the uncertainties of an activity come from two different sources: 

the variation of the activity itself and the project risk. In order to consider the project 

risks in the simulation, Trietsch et al. (2012) proposed a linear association approach to 

model the activity times. A set of   positive random variables   are linearly 

associated if  , where   is another set of   independent positive 

random variables and  is also a positive random variable, independent from . 

If the mean value of  and  are  and  respectively, and if the variance of  

and  are  and  respectively, then the covariance of  and  is  

(7) 

In our two-phase simulation, we also use this linearly associated approach to model the 

activity durations. For every simulation of the project, a random risk factor   is 

sampled from a beta distribution, then all the sampled activity durations that only 

consider variation at the activity level are multiplied by the sampled risk factor. 

Although Trietsch et al. (2012) claimed that the risk factor is influenced by both additive 

and multiplicative causes and follows a lognormal distribution, we still use the beta 

distribution instead of a lognormal distribution, because in the lognormal distribution 

there may be the probability that a very small (close to 0) or a very large number is 

sampled: such extreme values result in a project duration that is impossible in reality. 
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Compared with the lognormal distribution, the beta distribution allows project 

managers to set a minimum and a maximum value, and determine the shape of the 

probability density function. In reality, the extreme bad risk factors are usually small 

probability events, so the right skewed distribution is more intuitive and practical. Table 

2 lists three beta distributions that represent three linearly dependent levels. The 

parameters   are the minimum, maximum, mode and mean values of the 

distribution. The three beta distributions are all right-skewed, and have a mean value 

that equals 1, which means they all generate a neutral risk on average. In order to get 

the distributions in Table 2, one only needs to calculate the shape parameters of the beta 

distribution function by solving the set of Eq. (8) as follows: 

                      (8) 

Table 2: Parameters of the risk beta distributions 

Linearly 

dependent level 

Parameters

 

Standard 

deviation  

Low  (0.7, 3, 0.93, 1) 0.15 

Medium  (0.6, 4, 0.88, 1) 0.22 

High  (0.5, 5, 0.83, 1) 0.29 

Both in the first and the second-phase simulation, the project progress is measured 

at its 5%, 10%, …, 95% total duration, i.e. the review time  and 

. In Colin and Vanhoucke (2014, 2015a) and Martens and Vanhoucke (2017), 

the project progress is reviewed when the project is 5%, 10%, …, 95% completed. For 

this review method, it may be the case that the time of the last review points already 

exceeds the deadline of the project, when the project suffers a serious delay. As the aim 

of the progress control is to make sure that the project can be finished before the 

deadline, there is no sense to review the progress when the project is already overdue. 

During the review process, it is assumed that the earned value of all activities accrues 

linearly over time.  
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4.3. Project control performance measurements 

In Section 3.1 we have already proposed four project level performance metrics, 

which are efficiency, reliability, performance and overreaction. In order to have a 

comprehensive evaluation of the tolerance limits, we additionally introduce two 

performance metrics: they are the signal density (Martens and Vanhoucke 2017) and 

the average first time occurrence of a warning signal. For a project, if its progress is out 

of control, the tolerance limits should generate as many warning signals as possible, 

since every signal corresponds with an opportunity to take corrective actions. The signal 

density measures the average amount of warning signals the tolerance limits generate 

when a project is late. It is defined as follows: 

,       (9) 

where  is an indicator function, defined as 

.                       (10) 

Again, during the schedule control process, the project manager wants the tolerance 

limits to generate a warning signal as soon as the project is out of control. The earlier 

the tolerance limits generate a signal, the more time the project manager has to take 

corrective actions. The average first time occurrence of a warning signal is calculated 

as follows: 

  (11) 

5. Results 

5.1 General results 

Table 3 summarizes the general performance results of our approach and three 

other methods from literature for the fictitious project data set. In this experiment, the 
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project buffer size is set at 10% of the planned duration, and activity dependence is set 

at the medium level. The significance level , which equals , is set at 

5%. Note that Algorithm 1 cannot produce tolerance limits that yield an exact reliability 

of . Normally, it will be smaller than , but the difference is less than 1%, 

and can be neglected in practice. The average first time occurrence in Table 3 is the 

percentage value of the first time reporting a warning signal over the total project 

duration. From Table 3 we can see that there is no big difference between the evaluation 

results of type 1 and type 2 distributions: type 1 distributions yield a lower overreaction, 

while type 2 distributions produce a larger signal density and an earlier first time 

occurrence than the type 1 distributions. We compare the performance of our approach 

with three other methods in the literature, namely the  th quantile of the empirical 

cumulative distribution function (  th-ECDF) employed by Colin and Vanhoucke 

(2014), a PV-based buffer consumption (PV-BC) way introduced by Martens and 

Vanhoucke (2017), and a risk-based buffer consumption (RI-BC) way proposed by 

Pajares and Lopez-Paredes (2011). For the th-ECDF method, we choose the  value 

that can produce a 95% reliability. The other two methods are analytical approaches 

and do not have the freedom to set the reliability. As displayed in Table 3, the methods 

th-ECDF, PV-BC and RI-BC all have a comparatively higher performance and signal 

density and can report a warning signal earlier than our method. However, they also 

yield a very high overreaction and a low efficiency, which means they falsely give too 

many warning signals for a project that can be completed before the deadline. We 

further adapt step 4 of Algorithm 1 and let it yield a tolerance limit that can produce a 

similar performance value with that of th-ECDF, PV-BC and RI-BC methods. The 

comparison results are in Table 4. As presented in Table 4, with the same performance 

value, our method can greatly reduce the overreaction and increase the efficiency of the 

tolerance limits. This is especially remarkable when compared with the commonly used 

 th-ECDF method: our approach can improve the efficiency with 22.7 percentage 

points, and the overreaction rate is only about a quarter of th-ECDF’s value. 
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Table 3: Performances of different tolerance limits for the fictitious project data set 

 
Efficiency 

(%) 

Reliability 

(%) 

Performance 

(%) 

Overreaction 

(%) 

Signal 

density 

Average first time 

occurrence(%) 

Type 1 93.35 94.77 89.49 3.99 7.5 46 

Type 2 93.82 94.75 89.43 4.25 8.0 44 

th-ECDF 69.17 94.60 91.40 22.31 12.0 16 

PV-BC 63.89 98.51 98.44 29.04 14.1 21 

RI-BC 54.64 99.13 99.31 43.16 15.9 14 

 

Table 4: Comparison with three other methods for Type 2 distributions 

 Efficiency 

(%) 

Reliability 

(%) 

Performance 

(%) 

Overreaction 

(%) 

Signal 

density 

Average first time 

occurrence(%) 

th-ECDF 91.89 95.71 91.90 5.19 8.7 43 

PV-BC 74.26 98.87 98.45 18.49 13.0 26 

RI-BC 66.37 99.42 99.32 27.03 14.4 21 

 

Table 5 and Table 6 give the results of the empirical experiment. As the type 1 and 

type 2 distributions yield similar results, we only report the results based on the type 2 

distribution. In the first phase simulation of our method, the activity duration is sampled 

from distribution B1, and the activity dependence is set at the medium level. At the same 

time, we also set the value of  in th-ECDF to let it produce a 95% reliability. From 

Table 5 we can observe that 28 projects do not meet the deadline, which accounts for 

30% of the total instances in the experiment, while the other 70% projects finished on 

time. Results in Table 6 further support the conclusions that were obtained from the 

fictitious project experiment: although the th-ECDF, PV-BC and RI-BC methods can 

produce a higher performance and signal density and can report a warning signal earlier 

than our method, they give too many false warning signals, thus rendering a very low 

efficiency. 

Table 5: Statistics of the expermental results for different tolerance limits 

 Late projects Early projects 

 Signal No signal Signal No signal 

Type 2 24 4 5 60 

th-ECDF 25 3 18 47 

PV-BC 28 0 20 45 

RI-BC 28 0 26 39 

Table 6: Performances of different tolerance limits for the real-life project data set 

 
Efficiency 

(%) 

Reliability 

(%) 

Performance 

(%) 

Overreaction 

(%) 

Signal 

density 

Average first time 

occurrence(%) 

Type 2 82.76 93.75 85.71 7.69 9.7 48 

th-ECDF 58.14 94.00 89.29 27.69 10.6 18.5 

PV-BC 58.33 100.00 100.00 30.77 11.8 16.0 

RI-BC 51.85 100.00 100.00 40.00 11.9 13.1 
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5.2 Sensitivity analysis 

In this section, we conduct four sensitivity experiments to analyze the impacts of 

four factors on the performance of our schedule control method. The four influencing 

factors are: the standard deviation of the first-phase simulation, the level of activity 

dependence, the size of the project buffer, and the project network serial/parallel 

indicator SP values. As the projects in the real-life project data set show a very limited 

SP range, we only use fictitious projects in the sensitivity analysis. In the sensitivity 

experiment of project buffer, four different sizes of the project buffer (10%, 20%, 30% 

and 40% of the planned duration) are added after the planned duration of the project. In 

the critical chain project management (Goldratt, 1997) the project buffer size is set at 

50% of the planned duration. However, in our experiment we cannot go that far, because 

for some project instances the percentage of having a longer project duration than the 

deadline is then less than 5% in the simulation, which is the significance level in our 

experiment, when the project buffer size is set at 50% of the planned duration. This 

means that we do not need to control the project schedule, because the significance 

level will never be exceeded. As the four factors have the same influence patterns on 

type 1 and type 2 distributions, we only report the results on the type 2 distributions. 

Figure 6 displays the sensitivity results when considering the change of one factor 

in each subgraph. From Figure 6a, we can see that a small standard deviation of the 

first-phase simulation will cause a high performance and signal density but also a low 

efficiency. However, a higher standard deviation of the first-phase simulation has little 

impact on all metrics. The results from Figure 6b show that the tolerance limits become 

more discriminative when the activity dependence increases. This phenomenon can be 

easily interpreted: as the activity dependence rises, longer activity durations tend to 

cluster together, resulting in long project durations, while shorter activity durations 

combine with other shorter activity durations, resulting in short project durations. Thus 

it is easier for the tolerance limits to tell when the project is out of control. The project 

buffer size has a remarkable effect on performance and signal density as illustrated in 

Figure 6c. With an increase of the project buffer size, which causes the percentage of 
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late projects to decrease in the simulation, it is less capable of detecting late projects 

using the tolerance limits. The influence pattern of SP values on the performance 

metrics is much like that of the project buffer size as shown in Figure 6d. When the 

project contains more parallel activities (SP is small), it is much easier to give a false 

warning signal, thus causing a low efficiency, while when the project contains more 

serial activities, the performance and signal density will decline. However, both of these 

impacts are only obvious when the SP values are less than 0.4. One common feature 

among all the subgraphs of Figure 6 is that the change of any influence factor has little 

impact on the reliability. Although our algorithm can only ensure the reliability of the 

tolerance limits to be  for the first-phase simulation, experimental results show 

that this reliability can also be ensured for the second-phase simulation under all 

conditions. 

 

Figure 6 The impact of four influencing factors on the schedule control performance 

In order to quantify individual and joint effects of the four influencing factors on 

the performance metrics, we use the variance-based global sensitivity analysis method 

extended fourier amplitude sensitivity testing (eFAST) (Saltelli, Tarantola, and Chan  
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1999) to calculate the sensitivities. Table 7 gives the first order sensitivity indices, 

which measure the contribution of the influencing factors to the output variance 

individually. Data in Table 7 suggest that the standard deviation of the first-phase 

simulation contributes most to the variance of the efficiency and the average first time 

occurrence, while the project buffer contributes most to the variance of the performance 

and the signal density. The SP value is the most important input for the variance of the 

reliability and the overreaction. For some performance metrics, the main variance 

comes from interactions among input variables. For example, the sums of the first order 

index for efficiency, reliability and overreaction are less than 50%, and for the average 

first time occurrence, the sum of the first order index is only 19.17%. Table 8 shows the 

total order sensitivity indices, which measure the contribution to the output variance of 

each influencing factor, including all variance caused by its interactions with any other 

input factors. Comparing Table 8 with Table 7, we find that when considering the total 

effect, the most important factor for each output remains the same as for the main effect 

except for signal density. For the signal density, the standard deviation of the first-phase 

simulation becomes the most influential parameter when considering the interactions 

with other variables. Besides, this parameter also comprises large sources of variance 

for reliability, performance and overreaction. In addition, the interaction effect of the 

SP value on the average first time occurrence is also considerable. The dependence level 

can be considered as non-influential parameters for all the outputs both for the first 

order and the total order sensitivity indexes. 

Table 7: First order sensitivity indices 

 Efficiency Reliability Performance Overreaction Signal 

density 

Average first 

time occurrence 

Standard deviation 0.3233 0.0533 0.1391 0.0289 0.1866 0.1483 

Dependence level 0.0738 0.0037 0.0957 0.0308 0.1048 0.0053 

Project buffer 0.0028 0.1521 0.3203 0.1246 0.3170 0.0285 

SP value 0.0354 0.1943 0.0512 0.2460 0.0333 0.0096 
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Table 8: Total order sensitivity indices 

 Efficiency Reliability Performance Overreaction Signal 

density 

Average first 

time occurrence 

Standard deviation 0.8578 0.6359 0.4616 0.4195 0.5056 0.6487 

Dependence level 0.1600 0.1044 0.2061 0.2107 0.1515 0.3658 

Project buffer 0.1326 0.2740 0.5274 0.4034 0.4168 0.4958 

SP value 0.4493 0.7759 0.3196 0.7525 0.3147 0.6161 

6. Discussion and conclusions 

In this paper, we propose a new project schedule control method that considers the 

stochastic nature of a project in reality. We combine the advantages of the well-known 

statistical process control charts with the traditional earned value management/earned 

schedule approach in our method. Comparing with the classical SPC method, this 

approach is more flexible, and allows to monitor dependent and not normally 

distributed data. Thus it is more suitable for project schedule control. We view the 

project schedule control process as a statistical hypothesis test. Based on the simulation 

results, an algorithm is designed to optimize the tolerance limits. These refined 

tolerance limits can meet the significance level and meanwhile reduce the probability 

of the type Ⅱ error significantly. We apply our tolerance limits on a wide range of 

different project networks in a large computational experiment, and compare our 

approach with three other schedule control methods from the literature. Results show 

that our approach is more discriminative than others. 

We have conducted sensitivity experiment to analyze the impact of the first-phase 

simulation standard deviation, the activity dependence, the project buffer size and the 

network SP values on the performance of the proposed method. Experimental results 

show that any change in one of the considered factors allows our tolerance limits to 

always meet the required significance level, i.e. the reliability keeps very stable at 

. An increase in the project buffer size will impair the performance of the tolerance 

limits. If the project manager sets a large project buffer size, which causes the 

probability of not finishing the project before the deadline to be very small, setting the 

significance level at 0.05 may cause a low performance and signal density when using 

our method. But this disadvantage can be avoided by setting a smaller significance level, 
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for example 2%. Meanwhile, the serial/parallel topological indicator SP of the project 

network has a great influence on performance, signal density and overreaction, but this 

impact is only obvious when the SP value is less than 0.4. The more parallel the project 

network is, the more unnecessary warning signals the tolerance limits send. This trend 

is different from the results of the PV-BC analytical method in Martens and Vanhoucke 

(2017), where the increase of the SP values leads to an increase of the overreaction and 

a decrease of the efficiency. However, compared with our stabilized reliability, theirs 

changes from 93.91% to 99.69%, which means that the PV-BC method cannot meet the 

required significance level when applied on a parallel project network. 

Future research could combine the earned value management/earned schedule 

with some other statistical process control charts, such as the cumulative sum (CUSUM) 

control charts and the exponentially weighted moving average (EWMA) control charts. 

As these control charts are more sensitive to a small and gradual drift in the process, 

they may give an earlier warning signal when the project has some structural and 

systemic changes over the life cycle. Another improvement could be the expansion of 

the rules for signaling the out of control state. Experimental results show that when the 

project network is close to being completely parallel, the overreaction will increase 

dramatically if one solely relies on the tolerance limits. So the development of some 

specific detection rules will reduce the overreaction and improve the efficiency for this 

occasion. 
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