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In the recent decades, the recognition that uncertainty lies at the heart of modern project management
has induced considerable research efforts on robust project scheduling for dealing with uncertainty in
a scheduling environment. The literature generally provides two main strategies for the development
of a robust predictive project schedule, namely robust resource allocation and time buffering. Yet, the
previous studies seem to have neglected the potential benefits of an integration between the two. Besides,
few efforts have been made to protect simultaneously the project due date and the activity start times
against disruptions during execution, which is desperately demanded in practice. In this paper, we aim
at constructing a proactive schedule that is not only short in time but also less vulnerable to disruptions.
Firstly, a bi-objective optimization model with a proper normalization of the two components is proposed
in the presence of activity duration variability. Then a two-stage heuristic algorithm is developed which
deals with a robust resource allocation problem in the first stage and optimally determines the position
and the size of time buffers using a simulated annealing algorithm in the second stage. Finally, an
extensive computational experiment on the PSPLIB network instances demonstrates the superiority of
the combination between resource allocation and time buffering as well as the effectiveness of the proposed
two-stage algorithm for generating proactive project schedules with composite robustness.

Keywords: Robust project scheduling; Bi-objective optimization; Robust resource allocation; Time
buffering; Two-stage algorithm

1. Introduction

The well-known resource-constrained project scheduling problem (RCPSP) involves the development
of a precedence and resource feasible project schedule (i.e. the so-called baseline schedule, BS) under
the objective of minimizing the project makespan, assuming a static and deterministic environment
(for an extensive discussion we refer to Demeulemeester and Herroelen (2002)). During execution,
however, a practical project is subject to high levels of uncertainty related to such factors as
activity duration variability, machine breakdowns, resources that arrive behind schedule (Artigues
et al., 2013; Hall et al., 2015). These changes can be translated into an increase or decrease of the
activity duration, and hence perturb the as-planned execution of the baseline schedule. Moreover,
the activity disruptions can propagate throughout the network due to the constraints of both
strictly technological precedence relations and resource-driven precedence relations, resulting in a
kind of snowball effect and incurring a generally low probability of on-time delivery.

Among the many project scheduling problems dealing with uncertainty, the research on robust
project scheduling has received an ever-growing attention (Demeulemeester and Herroelen, 2011;
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Bruni et al., 2017; Lamas and Demeulemeester, 2017; Ma et al., 2018). A robust project scheduling
approach enables the generation of a proactive BS that is protected as much as possible against
disruptions and deploys a reactive policy reasonably whenever a conflict in the ongoing schedule
occurs (Artigues et al., 2015; Davari and Demeulemeester, 2017). The literature has distinguished
between two types of robustness measures: quality robustness and solution robustness. The former
refers to the insensitivity of the objective value (be it the project makespan, the net present value
or the project cost) to disruptions, and the latter refers to the difference between the BS and the
realized schedule. When it comes to proactive scheduling for optimizing solution robustness, two
main strands of research have been extensively explored in the literature: the research on robust
resource allocation (Artigues et al., 2003) and the research on time buffering (Leus, 2003). In the
following paragraphs, we briefly discuss the state of the art in these two main strands.

The first body of research aims to generate stable resource flow networks in which the renewable
resources are transferred between the activities in an efficient way so that the schedule stability
could be maintained. Artigues et al. (2003) introduced a simple method for determining a feasible
resource flow on the basis of a parallel schedule generation scheme. Leus and Herroelen (2004)
presented a branch-and-bound procedure for allocating a single resource type with the objective
of minimizing the expected weighted deviation cost between the planned and realized start times
of the projected schedule (i.e. stability cost, SC), under the assumption of exponential activity
disruption lengths. Policella (2005) proposed to construct a chained Partial Order Schedule (POS)
through chaining procedures to include a set of additional arcs representing resource flows. Three
heuristic solution algorithms based on mixed integer programming (MIP) formulations together
with one constructive procedure named MABO (myopic activity-based optimization) were devel-
oped by Deblaere et al. (2007) for solving the robust resource allocation problem.

The second body of research advocates to insert scattered time buffers in front of the project
activities in order to absorb potential disruptions caused by earlier activity delays and to protect
the activity start times as well as possible (Herroelen and Leus, 2004; Zheng et al., 2018). Leus
(2003) presented an adapted float factor (ADFF) heuristic, which inserts longer time buffers in
front of activities that would incur a high deviation cost in the starting times. To make sure
that the buffered BS using the ADFF procedure is resource feasible, Van de Vonder et al. (2006)
developed a resource flow-dependent float factor (RFDFF) heuristic to construct solution robust
schedules by exploiting a feasible resource flow network generated using the procedure of Artigues
et al. (2003). Van de Vonder et al. (2008) further proposed the virtual activity duration extension
(VADE) heuristic and the starting time criticality (STC) heuristic to solve the proactive RCPSP
in the presence of activity duration variability. The above procedures have been developed under
the objective of minimizing the stability cost function.

Despite the popularity of robust resource allocation and time buffering for solving the proactive
scheduling problem, it is observed that these two research streams were investigated separately.
As a matter of fact, Van de Vonder et al. (2008) have long ago addressed that the robustness of a
project schedule generated through time buffering largely depends on the corresponding resource
flow network that is used, but they had not looked further into this important issue. The very few
works that consider resource allocations when buffering an initial schedule merely rely on a feasible
resource flow network that is randomly derived regardless of any robustness measures.

In addition, the two aforementioned strands of research mainly focus on generating a solution
robust project schedule with minimum stability cost. The significance of quality robustness has
been pointed out by many studies (Goldratt, 1997; Hu et al., 2016) and has received high attention
of project practitioners. Therefore, it is crucial and practical to set up a bi-objective optimization
model that minimizes both quality robustness and solution robustness. Yet, the study on the bi-
criterion scheduling problem is comparatively sparse. Al-Fawzan and Haouari (2005) developed a
tabu search algorithm for solving a bi-objective model where the total free slack and the project
makespan are used as the solution robustness and quality robustness measures, respectively. Abbasi
et al. (2006) presented a similar bi-objective model that minimizes a linear function of the makespan
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and the weighted sum of the float times. Van de Vonder et al. (2005) were among the first to probe
into the trade-off between the SC and the makespan. The objective of their work is to address
the issue whether to concentrate safety time in project and feeding buffers (Goldratt, 1997) or to
insert time buffers that are scattered throughout the BS in order to enhance schedule stability. Van
de Vonder et al. (2008) opted for a bi-objective optimization function that maximizes the timely
project completion probability (quality robustness) and minimizes the SC simultaneously. Most
recently, Ghoddousi et al. (2016) developed a two-stage multi-objective buffer allocation approach
for robust project scheduling, in which the Pareto solutions are evaluated in terms of the deviation
from the initial start times and due dates.

Different to all these studies, our work adopts the starting time criticality as a surrogate measure
of solution robustness and therefore proposes an integrated bi-objective optimization approach for
scheduling, robust resource allocation and time buffering. The contributions lie in the novelty of the
bi-objective model with a proper normalization of the two components of the objective function,
and a two-stage solving algorithm that contains an improved resource allocation procedure as well
as a customized simulated annealing (SA) heuristic.

The remainder of this article is organized as follows. The next section provides some basic
notations and a statement of the research problem using an illustrative example. In Section 3, the
bi-objective model for generating a robust project schedule is established. Section 4 presents the
two-stage algorithm for solving the model. Section 5 contains the experimental outcomes of this
research and the necessary analysis to justify the effectiveness of the proposed methods. The last
section concludes the paper and discusses some future research directions.

2. Definition and problem statement

Consider a project that is represented as an activity-on-the-node network G = (N,A), where a set
of nodes N={0, 1, 2...n} denotes the project activities and a set of arcs A ⊆ N × N the zero-lag
finish-start precedence relations between the activities. Activities 0 and n indicate the dummy
start and dummy end activities, respectively, both of which have zero durations and zero resource
usages.It is assumed that each activity is not allowed to start earlier than its planned starting time
in the BS during project execution (i.e. the railway scheduling constraint) (Van de Vonder et al.,
2006, 2008; Zheng et al., 2018). Further notations are summarized in Table 1.

“Insert here Table 1”
Figure 1(a) shows a simple project network that will be used as an illustrative example through-

out the paper. This project consists of 11 activities, and only one kind of resource is needed with a
constant availability of 10 units.The three numbers in the bottom line of each rectangle represents
the deterministic (baseline) duration, the per-period resource requirement, and the marginal penal-
ty cost of each activity, respectively. To model the random activity durations we use a right-skewed
lognormal distribution with mean equal to the baseline duration.

“Insert here Figure 1”
Figure 1(b) shows a baseline schedule with minimum makespan for the example project by

applying a branch-and-bound algorithm for the RCPSP (Demeulemeester and Herroelen, 1992).
The starting times of activities are represented by a list SB0 = {0, 0, 0, 0, 6, 4, 5, 2, 8, 9, 13}. It is
known that the BS determines the starting time of each activity, as well as sequences the activities
that use the same resource unit(s) through certain resource-driven precedence relations. An elegant
way to represent those resource-driven relations is a resource flow network, G′ = (N,AR), with N
the same set of nodes as in the original project network G = (N,A) and AR the set of resource
flow arcs (Artigues et al., 2003; Herroelen and Leus, 2004). Figure 2(a) shows a feasible resource
flow network that is expressed by the resource profile representation. Note that AR are connecting
two nodes i and j if there exists a resource flow f(i, j, k) > 0 of any resource type k from activity i
(when it finishes) to activity j (when it starts). It should be noted that it is often possible to have
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different schemes of resource allocations for a given BS. For instance, Figure 2(b) depicts another
feasible resource flow network for the example schedule in Figure 1(b). In the context of this paper,
the full arcs denote the direct precedence relationships in the original project network G, while
the dashed arcs indicate additional precedence constraints imposed by the resource flows in the
network G′.

“Insert here Figure 2”
Until now, the BS together with the resource flow networks is constructed in a deterministic

environment. In order to protect against anticipated disruptions, researchers have advocated the
use of time buffers in front of project activities. The scattered insertion of time buffers can reserve
space for the time uncertainty of the activity that is caused by the disruption factors, and can
prohibit the propagation of the disruption through the schedule, enhancing the solution robustness
of the schedule (Herroelen and Leus, 2004; Pang et al., 2018). Extensive simulation experiments
in previous studies have revealed that among the various time buffering approaches, the starting
time criticality (STC) heuristic of Van de Vonder et al. (2008) ranks best in providing a solution
robust project schedule. As mentioned in the introduction section, the stability cost is generally
used as a solution robustness measure, i.e. SC =

∑
j∈N

wj × E|sRj − sBj |. And a fairly reliable

approach for estimating this objective value is by using simulation. However, simulation can be
very computationally demanding especially for very large projects. Besides, simulation does not
deliver the information of resource transfers into our problem structure (Lambrechts, et al., 2011).

In order to measure solution robustness in a more efficient and effective manner, a surrogate
measurement, which is inspired by the STC heuristic, is introduced as follows:

stcj = wj × Pr
(
sRj > sBj

)
= wj ×

∑
∀i:(i,j)∈T (A∪AR)

Pr
(
dRi > sBj − sBi − LPL (i, j)

)
(1)

where Pr
(
sRj > sBj

)
denotes the probability that the actual starting time of activity j has to be

postponed due to the disruptions of its technologically constrained predecessors as well as extra
resource-driven predecessors. T (A ∪AR) is defined as the set of all direct and transitive precedence
relations in the extended network G ∪ G′ = (N,A ∪ AR). LPL(i, j) is the sum of the durations
of all activities on the longest path between activity i and activity j in the extended network.
The activity weight wj remains the same with the marginal penalty cost wj in SC. Note that a
multiplication of the penalty cost and the probability of delay in Eq. (1) well measures the risk of
activity delay and hence reflects the magnitude of the schedule stability or solution robustness.

Based on the two feasible resource flow networks represented in Figure 2(a) and Figure 2(b),
the STC heuristic of Van de Vonder et al. (2008) is utilized to generate the corresponding buffered
schedules as shown in Figure 3(a) and Figure 3(b). Note that a same project makespan of 16 is
maintained in both cases. It is observed in Figure 3 that there is a one-unit buffer (marked by
black squares) in front of activity 7 in the schedule IB, whereas the buffer size in front of activity
7 is twelve units in the schedule IIB. The values of the total starting time criticality,

∑
j∈N

stcj ,

for these two buffered schedules are 4.431 and 3.932, respectively. These results indicate that the
resource allocation decision directly affects the time buffering process and hence the robustness of
the resulted buffered predictive schedule.

“Insert here Figure 3”
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3. A bi-objective model with composite robustness

The above-mentioned STC heuristic well protects an activity from disruptions that are propagated
throughout the extended project network G∪G′ by inserting time buffers between this activity and
its predecessors, thus generating a predictive schedule with high solution robustness. This practice,
however, can have a negative impact on the makespan performance. The project makespan, denoted
as Cmax (Stork, 2001), is a commonly-used objective function to measure quality robustness. In
this section, the possible trade-off between the two types of robustness will be analyzed when an
identical resource allocation shown in Figure 2(a) is maintained throughout the discussion.

Figure 4(a) and Figure 4(b) show two different buffered schedules generated using the STC
heuristic when the project due dates are set to 18 and 20, respectively. The corresponding values
of

∑
j∈N

stcj for measuring the schedule stability are 1.473 and 0.629, respectively. Apparently, the

project schedule becomes more solution robust when there are sufficient time buffers to cushion
uncertainties, at the expense of a longer project makespan. In other words, the two types of
robustness measures are somewhat conflicting.

“Insert here Figure 4”
Therefore, the fundamental research issue in this paper is to construct a bi-objective scheduling

model that strikes a balance between quality robustness and solution robustness by the integration
of robust resource allocation and time buffering. The first objective function is denoted as Zqual =
Cmax, and the second objective function is Zstab =

∑
j∈N

stcj . The two components of the objective

function are of different magnitude and hence have to be normalized. In this paper, the commonly
used min-max normalization method is employed (Han, 2005; Gajera et al., 2017). Specifically, the
normalization of the makespan objective is computed by the following formula:

Z̃qual = (Zqual − Zmin
qual)/(Z

max
qual − Zmin

qual) (2)

where Zmax
qual is the maximum project makespan, which equals the predefined project due date

(denoted as δn). And Zmin
qual is the minimummakespan generated by the branch-and-bound algorithm

of Demeulemeester and Herroelen (1992).
Similarly, the normalization of the stability objective is calculated by the following equation:

Z̃stab = (Zstab − Zmin
stab )/(Z

max
stab − Zmin

stab ) (3)

in which Zmax
stab and Zmin

stab are the maximum and minimum of the total starting time criticality
obtained by the STC heuristic, respectively, when the project makespans are set to Zmax

qual and

Zmin
qual, respectively.

In this way, both the makespan and stability values can be mapped to the range of [0, 1]. Next,
a weighted sum of the two normalized components is defined as the optimization objective of our
model, where a weighting parameter λ (0 ≤ λ ≤ 1) maps the relative importance of the makespan
performance versus the schedule stability in a specific project. Using the weighted sum of multiple
objectives as the optimization goal can also be found in some other works, see, e.g. Ulusoy and
Özdamar, 1995, Nudtasomboon and Randhawa, 1997, Al-Fawzan and Haouari, 2005, Abbasi et al.,
2006, Voß and Witt, 2007, and Bomsdorf and Derigs, 2008.

The bi-objective optimization model can now be formulated in the following.

min Z̃comp(λ) = λZ̃qual + (1− λ)Z̃stab (4)
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s.t. sBj = △j +maxi∈RpreTj

(
sBi + dBi

)
, ∀j ∈ N (5)

sRj = max
(
sBj ,maxi∈RpreTj

(
sRi + dRi

))
, ∀j ∈ N (6)∑

j∈N
f(i, j, k) =

∑
j∈N

f(j, i, k) = rik, ∀i ∈ N\{0, n}, ∀k ∈ K (7)

∑
j∈N

f(0, j, k) =
∑
j∈N

f(j, n, k) = Rk, ∀k ∈ K (8)

∑
j∈s(t)

rjk ≤ Rk, ∀k ∈ K (9)

△j ≥ 0, ∀j ∈ N (10)

sR0 = sB0 = 0 (11)

Cmax = sBn (12)

sRj ∈ N, sBj ∈ N, ∀j ∈ N (13)

f(i, j, k) ∈ N, ∀i, j ∈ N, ∀k ∈ K (14)

Eq. (4) aggregates the two normalized components in a linear bi-objective function. Note that
λ = 1 or λ = 0 makes the problem a single-objective optimization problem with minimummakespan
or minimum schedule instability, respectively.

Eq. (5) imposes the precedence constraint, in which RpreTj is the set of all the direct and

transitive predecessors of activity j in the extended network G ∪G′ = (N,A ∪ AR) and ∆j is the
size of time buffers inserted before activity j.

Eq. (6) specifies the railway scheduling constraint, in which activity j is not allowed to start
earlier than its planned starting time in the BS nor before any of its predecessors.

Eq. (7) ensures that for each non-dummy activity j, the sum of the input and output resource
flows of this activity must be equal to the resource requirement rjk.

Eq. (8) denotes that for each resource type k, the sum of the output resource flows from the
dummy start activity must equal the sum of the resource flows into the dummy end activity, both
being equal to the resource availability Rk.

Eq. (9) enforces the renewable resource constraint, in which s(t) is the set of activities in progress
during time period t.

Eq. (10) ensures that the size of time buffers assigned for each activity is non-negative.
Eq. (11) specifies that there is no delay in the starting time of the dummy start activity 0.
Eq. (12) calculates the project makespan of the proactive schedule, which equals the start time

of the dummy end activity.
Eq. (13) and Eq. (14) impose integrality on the activity start times and the resource flow vari-

ables.
The time buffering problem with single-objective has shown to be NP-hard. The problem studied

in this paper deals with the two objectives by a weighted sum approach, which is also NP-hard.
Therefore, a two-stage heuristic algorithm is designed in the next section for solving the proposed
bi-objective model efficiently.

4. A two-stage algorithm

The two-stage algorithm deals with a robust resource allocation problem in the first stage and
buffers the extended network with resource flows using a simulated annealing algorithm in the
second stage. Note that the resource flows that solve the resource allocation problem for the initial
schedule are preserved in the buffered schedule. The working principles of each heuristic approach
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are illustrated in detail as follows.

4.1 Robust resource allocation

According to the literature, the MABO heuristic proposed by Deblaere et al. (2007) has proven to
be superior to any existing resource allocation algorithms that attempt to minimize the stability
cost, i.e. SC =

∑
j∈N

wj |sRj − sBj |. The MABO procedure decides its best possible resource allocation

at a minimum SC, computed through simulation of a number of executions of the partial schedule,
assuming a fixed (incomplete) resource flow network. As pointed out by Zhang et al. (2011), a
simulation-based method generally causes two problems. First, it consumes substantial computation
times. Second, chances are that non-unique resource flow arcs will be generated for a certain project
schedule due to the uncertain and random nature of simulation itself. In order to avoid these
drawbacks, a surrogate evaluation index, stcj(A ∪ AR ∪ Hq

j ), is used in replacement of the SC

criterion (see below). Besides, several new tie-break rules are proposed that are reasonable and
effective as will be demonstrated in our simulation experiment. In view of the improvements based
on the original MABO, our resource allocation method is named as the developed MABO, short
for D-MABO. The detailed steps of D-MABO are presented in Algorithm 1, which consists of three
steps that have to be executed for each activity j (j ∈ N).

In the initialization step, the set of resource flow arcs AR is initialized to the set of unavoidable
resource arcs AU , which is originally proposed by Deblaere et al. (2007) to reduce the solving
difficulty of the resource allocation problem.

The aim of Step 1 is to calculate the resource units available for activity j, Availjk(A ∪ AR),
which equals the sum of resource units that the current predecessors i can allocate to activity j,
i.e., Availjk(A ∪ AR) =

∑
∀i:(i,j)∈T (A∪AR)

allocik. If the current predecessors of activity j have no

sufficient resource units available for any resource type k, extra predecessors have to be added in
Step 2.

In Step 2, the set Hj is defined as the set of all possible arcs between a potential resource
source h of the current activity j and j itself. The set H i

j(i = 1, 2, ..., q) is a subset of Hj (i.e.

H1
j ,H

2
j , ...,H

q
j ⊆ Hj), terms as the minimal subset (with q being the total number of minimal

subsets), which not only accounts for the missing resource requirements of j for any resource type
k, but also has a minimum number of activities. All the minimal subsets are evaluated. The one
with the lowest stcj(A ∪ AR ∪Hq

j ) will be selected and added to AR. This index is calculated as
follows:

stcj(A ∪AR ∪Hq
j ) = wj ×

∑
∀i:(i,j)∈T(A∪AR∪Hq

j )

Pr
(
dRi > sBj − sBi − LPL (i, j)

)
(15)

with (A ∪ AR ∪Hq
j ) the set of all direct and additional precedence arcs in the extended network

G ∪G′ = (N,A ∪AR).
The aim of step 3 is to allocate the actual resource flows f(i, j, k) to the predecessors of activity

j in (A ∪ AR) and to update the number of units of resource type k allocated to each activity,
allocik.

Algorithm 1: Steps of the D-MABO method

Initialize: generate an initial schedule SB0 , set AR = AU , and ∀k ∈ K, alloc0k = Rk;
Sort all the activities by increasing sBj (tie-break: decreasing activity weight wj) to get a sorted

list LIST1;
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For every activity j in LIST1:
1. ∀k: calculate Availjk(A ∪AR) =

∑
∀i:(i,j)∈T (A∪AR)

allocik

2. If ∃k: Availjk(A ∪AR) < rjk
2.1 Define the set of arcs Hj :

(h, j) ∈ Hj ⇔ (h, j) /∈ A∪AR, sh+dh ≤ sBj , ∃k : allochk > 0 and Availjk(A∪AR) < rjk
2.2 Determine all the minimal subsets H1

j ,H
2
j , ...,H

q
j ⊆ Hj such that

∀k ∈ K: Availjk(A ∪AR ∪H i
j) ≥ rjk, i = 1, ..., q

2.3 Identify the subset H∗
j ∈ {H1

j ,H
1
j , ...,H

q
j } such that

stcj(A ∪AR ∪H∗
j ) is minimized

2.4 Add H∗
j to AR

3. For each resource type k, allocate resource flows f(i, j, k) to the arcs (i, j) as follows:
3.1 Sort the predecessors i of activity j by increasing number of the successors l of activity

i with sBl > sBj and rlk > 0 to get a list LIST2:
Tie-break 1: Decreasing activity weights wi

Tie-break 2: Decreasing finish times sBi + di
Tie-break 3: Decreasing available resources allocik
Tie-break 4: If i ∈ predj , activity i has the priority to allocate resource for activity j
Tie-break 5: Sort activity i randomly

3.2 While allocjk < rjk, take the next activity i from LIST2
f(i, j, k) = min(allocik, rjk − allocjk)
allocjk = allocjk + f(i, j, k)
allocik = allocik − f(i, j, k)

After all this, the three-step procedure will be ultilized for the next activity in LIST1 until a
complete feasible resource allocation is obtained at the end of LIST1.

4.2 Time buffering

While the D-MABO procedure in Section 4.1 enables the generation of a robust resource flow
network, it also represents an un-buffered schedule with the shortest project makespan as well as
the approximately lowest

∑
stcj value, which will be adopted as an initial solution of the next

phase. More specifically, a simulated annealing (SA) algorithm is designed in the second stage to
optimally buffer the initial precedence, resource and deadline feasible schedule generated in the
first stage. The neighborhood solutions are generated by changing the size of time buffers in front
of an activity or a set of activities in an effort to make a trade-off between quality robustness
and solution robustness. The essence of the proposed SA is illustrated below from three aspects:
solution representation, neighborhood operators, and control parameters.
Solution representation

A feasible solution can be represented by the following two n-element lists:

• Activity position list, Lposi: This list defines the order that activities are started. It is
a precedence-feasible permutation of activities, in which each activity has to be scheduled
after all its predecessors and before all its successors so that no precedence constraints are
violated.

• Time buffer list, Bposi: This list indicates the size of time buffers in front of each activity.
A value of 0 means that no time buffer is inserted before the corresponding activity.

Then, a combination of the activity position list and the time buffer list, denoted by a pair of lists
(Lposi, Bposi), can be decoded into a precedence and resource feasible schedule SB = {sB1 , sB2 ...sBn }
by exploiting an extended serial schedule generation scheme (Kolisch, 1996). Note that this solution
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representation does not need to consider the resource feasibility, since the resource flow network
generated previously has already resolved the resource conflicts. Obviously, the inclusion of robust
resource allocations in the first stage speeds up the time buffering process.
Neighborhood operators

The neighborhoods of the current solution are generated by changing the size of time buffers at
each iteration step without violating the precedence relations or resource constraints, as illustrated
in the following steps.

Step 1: Randomly choose one activity X from the pair of lists (Lcurr
posi , B

curr
posi );

Step 2: Increase or decrease the buffer size of activityX by a discrete value between [−∆,+∆]. At
each iteration step, the neighborhood space of the current solution contains at most (2∆) solutions.
In our implementation ∆ is experimentally set to 3.

Step 3: Move forwards or backwards activity X itself and all its direct and transitive successors
upon the insertion of time buffers, leading to the corresponding neighbor solutions;

Step 4: If the project completion time is within the deadline, this neighbor solution is regarded
as a candidate; otherwise it is deemed to be infeasible. A set N(Lneig

posi , B
neig
posi ) is defined to denote

the set of all the immediate feasible neighbor solutions of (Lcurr
posi , B

curr
posi ) in this iteration.

In each iteration, the improvement of the composite objective function, ∆Z̃curr
comp(λ) = Z̃neig

comp(λ)−
Z̃curr
comp(λ), is evaluated for each candidate in the set N(Lneig

posi , B
neig
posi ). If Z̃

neig∗

comp (λ) = min Z̃neig
comp(λ)

is less than the current objective function value Z̃curr
comp(λ), the current solution (Lcurr

posi , B
curr
posi ) will

be replaced by the neighbor solution (Lneig∗

posi , Bneig∗

posi ).
Furthermore, the multi-objective problem in this article aims at generating the approximations of

the non-dominated solutions (ANDS). Let ANDSλ be the set of the potentially efficient solutions
of the single-objective problem defined by λ. At each step of the SA, the generated neighborhoods
are scanned and the set ANDSλ is updated through removing dominated solutions.
Control parameters

• Initial temperature: The initial value of the temperature T init is calculated by the equation,

T init = ∆Z̃init
comp(λ)

/
ln(χinit) , where ∆Z̃init

comp(λ) is the range of change in the objective

function Z̃init
comp(λ) after 50 random moves of the initial solution, and the initial acceptance

ration χinit is defined as the assumed proportion between accepted moves and all the moves
generated for T init.

• Markov chain length: The length of the Markov chain determines the number of transi-
tions at a certain temperature level, which is calculated as L = 10N in this implementation
where N is the number of activities in a project.

• Cooling scheme: In order to make the procedure more selective, we progressively decrease
the temperature according to the decreasing function: T curr := µT curr, in which the cooling
rate µ is set to 0.9.

• Stopping criterion: The search process terminates when the current temperature T curr

drops to a certain threshold, i.e., T curr ≤ T stop, where the final temperature T stop is set as
0.01 in our implementation.

4.3 An illustrative example

The gist of the proposed optimization algorithm can be sketched using still the project instance
shown in Figure 1(a). In the first stage, an un-buffered schedule together with its resource flow
network by the D-MABO procedure is displayed in Figure 5(a), with a project makespan of Zqual =
13 and a stability criterion of Zstab =

∑
stcj = 11.821. Recall that the corresponding values of∑

stcj for the two randomly generated resource allocations shown in Figure 2 are 15.172 and
16.097, respectively (the makespans both being 13). It is obvious in this example that the schedule
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stability gets improved through proper resource allocations compared to the case where random
resource allocations are used.

“Insert here Figure 5”
The SA algorithm is then used in the second stage based on the obtained resource flow network

to generate a buffered project schedule. Table 2 displays the optimized results under different
values of λ. Note that the two components of the objective function without normalization are
listed for practical reasons. Let us take a look at the performance of the proposed two-stage
algorithm when λ = 0.7. Figure 5(b) depicts the corresponding robust schedule with Zqual = 16
and Zstab = 2.469. Recall that the

∑
stcj values for the two buffered schedules shown in Figure

3 are 4.431 and 3.932, respectively (the makespans both being 16). This result indicates that the
buffered schedule obtained by our two-stage algorithm not only further optimizes the schedule
stability within a reasonable project makespan compared with the unbuffered schedule generated
in the first stage, but also achieves higher solution robustness compared to the buffered schedule
with random resource allocations.

“Insert here Table 2”

5. Computational experiments

In this section, the results of an extensive computational experiment are provided to show the capa-
bility of the proposed two-stage algorithm to generate proactive project schedules with composite
robustness.

5.1 Experimental layout

Our computational experimentation was conducted using the 30-activity instances of the well-
known PSPLIB data set, with the number of project instances equal to 480 (i.e. NUM=480)
(Kolisch and Sprecher, 1997). The stochastic activity durations are assumed to follow a right-skewed
lognormal distribution, which is also used by some other works (Herroelen and Leus, 2001; Hu et al.,
2015, 2016). More specifically, the realized duration dRj for activity j is randomly generated by the
lognormal distribution function, allowing us to simulate the project execution with varying levels
of uncertainty (represented by the standard deviation, σ) in the activity durations while keeping
the mean durations unchanged. Three levels of σ (i.e. σ ∈ {0.3, 0.6, 0.9}) are used to represent a
project uncertainty that is Low (L), Medium (M) or High (H), respectively.

The initial project schedule with minimum makespan, s0n, is generated by the branch-and-bound
algorithm of Demeulemeester and Herroelen (1992). The due date of every project is set to 130%
of the minimum project makespan as was done in most literature (Vonder de Vonder et al., 2006,
2008), i.e. δn=1.3 × s0n. The activity weight wj for each non-dummy activity j is drawn from
a discrete triangular distribution with P (wj = x) = 0.21 − 0.02x, in which x ∈ {1, 2, .., 10},
∀j ∈ N\{0, n}. The weight of the dummy end activity, wn, denotes the marginal tardiness penalty
cost of the project completion beyond the due date δn. Van de Vonder et al. (2005) defines a
weighting parameter WP to indicate the ratio between wn and the average of the distribution of

all other activity weights waver, i.e., wn = WP × waver, in which waver =
n−1∑
j=1

wj/(n − 1). This

weighting parameter WP measures the importance of on-time project completion and is set to 5
in our experiment.

In order to evaluate the robustness of the generated proactive schedules against duration variabil-
ities, we need to simulate the real execution of the baseline schedule subject to both technologically
constrained and resource flow-based precedence relations. To this aim, the simulation-based solu-
tion robustness measure, SC =

∑
j∈N

wj × E|sRj − sBj |, is used as the performance metric for each

10
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project schedule rather than the
∑
j∈N

stcj measure in the objective function. And SC is defined to

represent the average stability cost over all J30 instances. The simulated execution of a baseline
project schedule uses the parallel scheduling generation scheme (PSGS) (Kolisch, 1996) and fol-
lows the railway scheduling policy. For each project instance and for each combination of factor
settings, 1,000 simulation replications (M = 1, 000) were generated and the average performances
were calculated for various methods that are to be tested.

5.2 Comparison results of resource allocation methods

In this section, a set of experiments was first conducted to verify the efficiency of the proposed D-
MABO method as opposed to two other approaches for resource allocation, i.e. a random procedure
by Artigues et al. (2003) (termed as RRAS, random resource allocation scheme) and the original
MABO algorithm by Deblaere et al. (2007).

Apart from the SC metric, another four indicators are defined to evaluate the performances of
these three resource allocation algorithms, which are denoted in the following:

• Resource allocation variability, RAV : For each instance in the J30 data set, each resource
allocation method is run 100 trials to generate the corresponding resource flow networks. A
parameter Numinst is used to denote the total number of resource flow networks that are
different from each other for a given instance network. The RAV metric is calculated as

RAV% = (
NUM∑
inst=1

Numinst −NUM)

/
NUM ∗ 100.

• Average relative deviations of SC, ARD: ARD% =
M∑

m=1
|SC(m)− SC|/(SC ∗M) ∗ 100,

where SC(m) denotes the stability cost of the schedule in the mth simulation run.
• Average computational time, ACT .
• Maximum computational time, MCT .

The comparison results of the three resource allocation procedures are presented in Table 3. It
is observed that the proposed D-MABO method always generates lower values of SC and ARD%
than RRAS and MABO under three uncertainty levels. This means that the resource flow networks
generated by D-MABO are more solution-robust (i.e. more stable) than the other two approaches.
Recall that the RAV metric measures the diversity of resource transferring plans for a certain
project schedule. In practice, a unique solution is generally preferred in order to better support
management decisions, otherwise the project manager will be struggling to change plans once
the resource allocation algorithm is applied for a wide variety of scenarios. The D-MABO well
guarantees the uniqueness of resource allocations (i.e. RAV%=0) for a given schedule, whereas the
random or simulation-based nature of RRAS or MABO might lead to different resource allocations
(i.e. RAV% >0) at a time.

As to the computational times, RRAS has the fastest speed. This follows from the fact that
this method only aims to generate feasible resource flow networks without any optimization of
the robustness performance. Besides, the adapted D-MABO algorithm is faster than the original
MABO since it uses a surrogate evaluation index instead of relying on simulation when deciding
on the best resource flows that should be added to the existing network. It is worth noting that
MABO has proven to be superior to any existing resource allocation algorithms with the objective
of minimizing SC (Demeulemeester and Herroelen, 2011). Yet, our method is capable of achieving
a lower SC than MABO with a faster solution speed. This result effectively demonstrates that
it is quite appropriate to adopt

∑
stcj as a surrogate measure, which cannot only save a lot of

computation time, but can also achieve a remarkable stability performance.
“Insert here Table 3”
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5.3 Comparison results of the two-stage algorithm

This section investigates the capability of the proposed SA algorithm to generate buffered, robust
project schedules in combination with the three resource allocation procedures illustrated in the last
section. In practice, the project manager is generally interested in the real data of makespan and
stability metrics rather than the normalized objective function values. Therefore, Table 4 provides
the average project makespan (Cmax) and the average stability cost (SC) over all J30 instances,
based on 1,000 simulation runs per project under three levels of duration variability.

First of all, as uncertainty in the project environment increases both Cmax and SC increase
as predicated in all cases. It is obvious that the higher the duration variability, the more risks
the project will be faced with, inevitably causing an adverse effect on the schedule robustness.
Secondly, as λ increases, meaning that the project manager is more in favor of quality robustness
compared to solution robustness, the project makespan decreases whereas the schedule instability
increases in Table 4. This result accords with common sense and hence verifies the feasibility of the
SA algorithm for deriving near optimal solutions. Remark that in the case of λ = 1 the problem
aims to minimize the project makespan individually, which is equivalent to the first-phase resource
allocation problem (based on the deterministic minimum-makespan schedule). Due to the different
dimensions of the makespan and stability metrics, a proper normalization of the two components is
done from the start, which can better support the manager’s decision to strike a balance between
the two robustness measures based on his/her objective predilection.

Last but not the least, the proposed two-stage algorithm D-MABO+SA always achieves lower
values of Cmax and SC than those of the other two algorithms (RRAS+SA and MABO+SA) in all
cases for λ, which further demonstrates the superiority of D-MABO for generating robust resource
allocations in the first phase. It is notable that the benefit of a robust buffered schedule generated
based on the resource flow network is to avoid the occurrence of resource conflicts. Namely, the
change of the random activity duration will not affect the transmission of resources among activities,
as long as the transfer relationship of resources is unchanged. Therefore, the integration of resource
allocation and time buffering can largely facilitate the generation of a robust project schedule in
practice.

“Insert here Table 4”
In what follows, two multi-objective performance metrics are further defined for comparing sets

of pareto solutions obtained by the three solving algorithms (i.e. RRAS+SA, MABO+SA, and D-

MABO+SA). The first metric is defined by ηh =
NUM∑
inst=1

ηinst,h, where h represents the hth algorithm

that is to be evaluated, and NUM is the total number of project instances. ηinst,h is calculated by
the following equation, based on the work of Al-Fawzan and Haouari (2005):

ηinst,h = |ANDSinst,h ∩ANDSinst|/|ANDSinst|, inst = 1, 2, ..., NUM, h = 1, 2, 3 (16)

Specifically, ηinst,h denotes the contribution of algorithm Vh to the approximate non-dominated
set ANDSinst of the instth instance in the J30 PSPLIB data set. Consequently, if Vh dominates
the other algorithms, the value of ηinst,h would be close to 1.

The second performance metric is the so-called hypervolume value, HV , which represents the
size of the objective space covered by the approximations of the non-dominated set (Batt, 2011;
Yen and He, 2014). The hypervolume value used in our experiment is obtained by the LebMeasure
algorithm (Fleischer, 2003). It calculates the volume that is dominated exclusively by one point
in the approximate set, discards that point and then moves on to the subsequent point until all
points have been processed and all volumes have been summed.

The results of the approximations of non-dominated sets for the three algorithms are displayed in
Table 5. One can well perceive that D-MABO+SA clearly outperforms RRAS+SA and MABO+SA
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regarding the two multi-objective performance metrics. That is, the value of η3 ranks highest among
all three methods, and the hypervolume value of D-MABO+SA is significantly better than any
other algorithms. To sum up, the experiments show that the proposed robust scheduling method
generates high-quality solutions when considering the two objectives simultaneously. The algorithm
is also able to obtain a set of non-dominated solutions with remarkable performance, showing its
practicality and superiority for solving real-world project scheduling problems under uncertainty.

“Insert here Table 5”

6. Conclusion

In this paper, a bi-objective resource-constrained project scheduling problem with objectives of
makespan minimization (quality robustness) and stability maximization (solution robustness) is
investigated. Our contribution is three-fold. First, the starting time criticality is used as an ex-
cellent measure of solution robustness, which is different from the current literature. Second, the
impact of different resource flow networks on the robustness of the buffered predicative schedules
is investigated for the first time, and an integrated bi-objective optimization model for scheduling,
resource allocation and time buffering is therefore proposed. In the model, the two components
of the objective function are properly normalized using min-max normalization in order to deal
with the different scaling of makespan and stability metrics. Third, a two-stage heuristic procedure
is developed for solving the problem with remarkable performance, in which an improved way of
generating robust resource allocations is introduced and a customized simulated annealing algo-
rithm is designed to optimally buffer the schedule. Our simulation experiments demonstrate that
the model and algorithms are applicable and beneficial to the problem in practice.

While the initial findings are promising, further research is necessary. First, due to the fact
that both resources and buffers are allocated to a given initial un-buffered schedule, the impact
of different initial schedules on the effectiveness of the resource allocation and time buffering pro-
cesses can be a topic for future research. Second, although our computational experiment reveals
the advantages of the integration of resource allocation and time buffering for generating robust
project schedules, whether this integrated approach is beneficial for solving the RCPSP with other
optimization criteria (i.e. the net present value) under uncertainty remains to be answered. A third
significant area of research would be to consider multi-objective robust scheduling in a multi-project
environment.
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