Security Patterns 2.0

Towards Security Patterns Based on Security Building Blocks

Alexander van den Berghe Koen Yskout Wouter Joosen
imec-DistriNet imec-DistriNet imec-DistriNet
KU Leuven KU Leuven KU Leuven

Leuven, Belgium
alexander.vandenberghe@cs.kuleuven.be

ABSTRACT

Security patterns are intended to package reusable security solu-
tions and have received considerable research attention in the two
decades since their introduction. Practitioners seem less intent to
use these security patterns while designing software, though, de-
spite the prevalence of reuse in secure software engineering. We
believe this is primarily because current security patterns do not
tackle the security problems practitioners actually face.

In this vision paper, we conceive a new way for expressing se-
curity patterns, built on a set of reusable and well-known security
building blocks. We also advocate the inclusion of these building
blocks as first-class citizens in a security-specific modelling lan-
guage. This not only facilitates unambiguous communication of
security solutions such as patterns, but also allows designers to
construct a security view of their design which in turn opens new
avenues for a broader security by design methodology.

CCS CONCEPTS

« Security and privacy — Software and application security; Soft-
ware security engineering;

KEYWORDS

Security patterns, Software design, Security view, Modelling lan-
guage

ACM Reference Format:

Alexander van den Berghe, Koen Yskout, and Wouter Joosen. 2018. Security
Patterns 2.0: Towards Security Patterns Based on Security Building Blocks.
In SEAD’18:IEEE/ACM 1st International Workshop on Security Awareness from
Design to Deployment , May 27, 2018, Gothenburg, Sweden. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3194707.3194715

1 INTRODUCTION

Introduced 20 years ago, security patterns [21] are meant to en-
capsulate well-proven generic solutions to recurring security prob-
lems [4, 15], inspired by the now famous design patterns [5]. Fur-
thermore, security patterns are promoted as a tool for non-security
experts to incorporate security into their designs [4, 15].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEAD’18, May 27, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5727-2/18/05...$15.00
https://doi.org/10.1145/3194707.3194715

Leuven, Belgium
koen.yskout@cs.kuleuven.be

Leuven, Belgium
wouter.joosen@cs.kuleuven.be

Unfortunately, “until now security patterns have not been used
as much as design patterns” [4], as stated in a recent book on secu-
rity patterns. A survey among Chinese practitioners, for instance,
found that just over 20% has used security patterns at least once in
their career [3]. Despite practitioners’ seemingly limited interest in
security patterns, reusing known security solutions is common. For
example, authenticating users by username and password, and sub-
sequently letting them perform multiple actions within a session
without re-authenticating, is found in most web applications.

Hence, one wonders why the corresponding patterns are not
equally popular among software designers. Some authors point to
the lack of a good catalogue and methodology as likely reasons for
this lack of adoption [4]. Others suggest that the primary culprit is
the patterns’ sub-optimal documentation quality [2, 6, 10, 22]. We
believe these are but symptoms of a more fundamental problem with
the state of the art in security patterns, namely that security patterns
do not tackle the security issues designers actually face in their daily
tasks. More specifically, we have the impression that most security
patterns do not deal with security design flaws [1, 12] that result
from mistakes at the design level. Instead, the existing patterns seem
more often concerned with the encapsulation of security features
to improve the maintainability of any applied security solutions.
While easily maintainable solutions are definitely advantageous,
we believe the primary object of security patterns should be the
avoidance and resolution of security design flaws.

2 THE PROBLEM WITH SECURITY
PATTERNS

To illustrate the problems of current security patterns, we focus
on the well-known solution of authentication with sessions men-
tioned above, which is nowadays implemented in almost every
web application using cookie-based sessions. More specifically, we
assess how well the Authenticator pattern [4] and Security Session
pattern [15] capture these solutions. Note that similar observations
can be made for other patterns from these and other sources.

The Authenticator pattern, at its core, says that a subject’s iden-
tity should always be verified based on some information using
some protocol, before assigning a proof of identity to the subject.
While this is indeed the desired mechanism, the pattern does not
make this much more concrete. The structural view (UML class
diagram) relates the most important concepts to each other while
abstracting away their security-relevant properties, and the dy-
namic view (UML sequence diagram) essentially repeats the flow
of actions sketched above. Even with this pattern as a resource, a
designer thus remains in the dark on how to concretely introduce
authentication into a system. How should the proof of identity be

https://doi.org/10.1145/3194707.3194715
https://doi.org/10.1145/3194707.3194715

SEAD’18, May 27, 2018, Gothenburg, Sweden

associated to the subject? How should authentication information
be verified and stored? How and when should the proof of identity
be verified, if at all? By following the included references to other
patterns (for example, Credential [4] or Single access point [15]),
some of these questions can be (partially) answered, at the expense
of extra work for the designer by making the correct combinations.

The Authenticator pattern seems to focus on capturing essen-
tial concepts and actions related to authentication. While certainly
advantageous for educating someone about authentication, its prac-
tical use when designing software is limited; we believe a security
pattern for authentication should focus on where and how the vari-
ous parts of an authentication mechanism should be integrated into
a design to prevent certain security flaws. The central idea of this
paper is the belief that it is very hard to talk about the integration
of security mechanisms such as authentication in a software design,
given that your primitives (UML classes in this case) are suitable
(only) for reasoning about generic objects and their type, state, and
operations. Such a language strongly pushes towards a ‘domain
model’ of the security solution and its building blocks, rather than
the required combination of (existing) security primitives.

Let’s now look at the Security Session pattern [15], which essen-
tially advocates encapsulating a user’s access rights into a session
object that is created after successful authentication. This object
thus contains sensitive information, and should be adequately pro-
tected from leaking information and unauthorised changes, yet
the pattern barely touches upon this. Furthermore, the pattern in-
troduces unique session identifiers, but hardly mentions that they
should remain confidential and that the integrity must be preserved.
Similarly, the pattern merely mentions that session identiiers should
be unique and not easily guessable without further pointers on how
to ensure this. Again, we believe the use of a generic modelling
language leads pattern creators to focus on describing the impor-
tant concepts that are related to the solution, and neglecting the
security flaws that may arise when instantiating them.

A final issue —shared by all security patterns— is that the attacker
model is implicit. For example, it is up to the designer to work out
that authentication offers little protection against insider threats.

Given these issues, it’s not surprising that security patterns aren’t
picked up very much by practitioners. It appears that they are more
likely to consult other (more practical) guidance, for example cheat
sheets from OWASP [9, 19], which —although sometimes more
focused towards implementation aspects— can also be considered
security patterns (without being explicitly named so).

In summary, our position is that the current shortcomings of
security patterns are due to (wrongly) approaching them from a
general software engineering perspective, instead of a security-
specific one, primarily caused by the lack of a suitable language for
expressing security solutions and patterns. In the next sections, we
outline our vision for such a language, and what opportunities it
offers for security patterns and security by design in general.

3 A NEW VIEW ON SECURITY PATTERNS

We claim that security patterns can be improved by building them
on top of recurring security building blocks, using a language that
directly supports these building blocks. This section first lists the
building blocks that we believe are most relevant, and then uses

van den Berghe, A, et al.

them to revisit the Authenticator and Security Session patterns.
The third part of this section discusses the incorporation of the
building blocks into a dedicated security design language.

3.1 Security Building Blocks

We have observed that security solutions tend to commonly reuse a
restricted set of building blocks, which are also related to common
security design flaws [1]. In what follows, we will go over the set
of common building blocks that we have encountered.

Data is often a central aspect in security, corroborated by the
fact that popular security analysis techniques such as STRIDE [16]
are largely data driven. This importance materialises in four data-
specific security building blocks.

When dealing with security a number of data types, e.g. cryp-
tographic keys, are frequently encountered. It is often important
to easily identify this potentially sensitive data and associate ex-
tra properties with each instance, which can be encapsulated into
built-in data types. For example, the length of cryptographic keys
strongly influences the strength of any applied encryption. Fur-
thermore, such data types simplify specifying relations between
different types, e.g. pairing a public and private key.

Being able to keep track which data flows where within a single
system as well as where data enters and exits a system is paramount
for security. Sensitive data should be protected appropriately to the
applicable attacker model. Data provided by external sources should
be properly validated. For example, any user text input should be
checked for SQL injections before inserting it into a database.

In security, the creation of data sometimes comes with extra
requirements, e.g. session identifiers should both be unique and
difficult to guess. Explicitly modelling where such data is created
in a design allows to expressly incorporate these requirements.

Most software has some sort of data storage and, for security,
it is important to keep track of places where sensitive data is stored,
be it in persistent or volatile storage. Stored passwords, for example,
have to remain confidential and be guarded against tampering.

Security measures in a system are only effective if they are en-
forced, typically via one or more enforcement points in a system.
For example, authenticating users is of little use when this authen-
tication step can be (easily) bypassed. Modelling which measure is
enforced at an enforcement point and for which parts of a system
this enforcement applies can significantly simplify such analysis.

A system frequently has to make security-relevant decisions
based on some provided information. It is important to clearly know
where these decision points are located in a system and ensure
they have access to all required information to make a decision. For
example, authenticating a user requires that the password he or she
provided can be compared to that stored by the system. Furthermore,
it should be assessed whether decisions can be tampered with
by, for instance, influencing its inputs or modifying its result. For
example, an attacker could tamper with the public keys retrieved
from an external key server when authenticating using public-key
cryptography. Different decisions can also depend on each other.
For example, authorising users can only be meaningfully conducted
after they have authenticated. Explicitly modelling each security
decision point in a system helps to ensure they are compatible.

Security Patterns 2.0

Although cryptography is often essential when designing secure
software, designers typically do not, and should not, roll out their
own cryptographic algorithms. Instead designers incorporate well-
known, proven algorithms into their designs using cryptographic
primitives, such as encrypt data or calculate hash value. Explicitly
representing these primitives allows to append them with required
properties and extra requirements. For instance, at places where
data is encrypted or decrypted, key management usually occurs as
well requiring to protect any used keys. Furthermore, if a design
clearly shows any applied cryptography centralising it is simplified.

Finally, security is often subject to the actions of other active
entities such as attackers, users and (non-security) business func-
tionality. Attackers typically have certain capabilities in how they
interact with the system and how they acquire (additional) knowl-
edge. Explicitly modelling these aspects as part of a security design
is paramount to assess whether the implemented security measures
are sufficient. Similarly considering the user is also a principal as-
pect for security. For example, a user’s device is unlikely to be fully
secure, thereby offloading security-relevant functionality is risky.

3.2 The Essence of a Security Pattern

Security patterns can now be expressed in function of the above
pre-defined building blocks. This forces the pattern developer to
describe the essence of the proposed solution, and it simplifies the
verification of pattern instances, at least if these building blocks
have well-defined, precise meanings. Furthermore, pattern devel-
opers and software designers now share a common vocabulary.

Let’s look at the previous session-based authentication example
in terms of the above building blocks (shown graphically in Figure 1
using an ad-hoc notation). The essence of this security mechanism
consists of users that can login and then receive a session identifier
as proof of successful authentication, which is included in subse-
quent requests of the user. This representation makes it explicit that,
for this instance, the security solution in this pattern depends on
the presence of two data storage places (one for storing sessions,
and one for (hashed) passwords) and two enforcement points
(one for opening a session, and one for checking the session token).

Important decision points in this solution concern deciding the
user’s authentication, which involves the cryptographic primi-
tive hashing, (followed by generating a session), and whether the
session identifier in subsequent requests is (still) valid.

By explicitly modelling the data flows of the pattern, as well
as the attacker (as an active entity), places where sensitive data
needs to be protected become explicit. For example, the flow of the
password from the user (another active entity) to the system, and
the returning flow with the session identifier.

The session identifier returned to the user should be unique and
hard to guess. These properties can be explicitly attached to the
element where session identifiers are created.

Note that this example is incomplete (e.g. password changes and
logging out are not covered) and only serves to convey the idea of
expressing security patterns in function of security building blocks.

3.3 Language Support for Security

The idea of expressing security patterns in terms of the building
blocks does not solve the question of how this can be done in

SEAD’18, May 27, 2018, Gothenburg, Sweden

practice. One option would be to express the building blocks in
a general-purpose language such as UML. This usually requires
heavy extensions to UML, as we experienced ourselves [17], and
which can also be seen in UML-based security methodologies such
as UMLsec [8] and SecureUML [11]. The main challenge when
using UML, or another general-purpose language, is precisely and
unambiguously expressing the security aspects within a language
that focuses primarily on functionality. For example, to model an
attacker, UMLsec has to extend UML with stereotypes and tags, and
specify the attacker’s capabilities in function of these constructs
instead of the attacker model being an integrated part of the design.
Furthermore, in practice, UML is less widely used than sometimes
assumed [14], thereby diminishing the argument that UML is used
and known by the intended audience. A final argument against
using UML is that its graphical notation is far from optimal [13].

We believe that using a language specifically founded on the
above recurring security building blocks is a superior option. Such
a language can be tailored to deal with the intricacies of security,
and allows to express an actual security view of the software under
design. For instance, the attacker should be a first-class citizen,
enabling a precise description of its capabilities.

We have previously proposed such a language [20], including
a formal semantics, where the building blocks are directly instan-
tiated as one or more language elements. Our language consists
of data which is operated on by processes, each encapsulating a
single well-defined function. Processes can be linked to each other
to form networks, and each of these elements can be further refined
using assumptions. For example, one provided type of process is the
Attacker, accompanied by a (formal) definition of how it obtains
(new) knowledge which can be tailored by the designer to match
the envisioned attacker model.

Furthermore, processes such as the Authenticator and Enforcer
can respectively be used for making authentication decisions and
enforcing security measures. Likewise there are processes for cryp-
tographic primitives such as encrypting data or constructing digital
signatures. Several built-in data types support common security-
relevant data elements such as credentials and cryptographic keys.

4 BEYOND SECURITY PATTERNS

The availability of a security-oriented modelling language provides
possibilities beyond crafting better security patterns. It allows de-
signers to create an actual security view [7] of their software, which
can be used to thoroughly reason about the software’s security
properties. Furthermore, such a security view can be leveraged to
provide a broader security by design methodology.

Given that the security language comes with precise, unambigu-
ous semantics, as is the case for our previously proposed language,
these semantics can be leveraged to (partially) automate formal
verification of the design. For instance, our proposal already allows
(albeit requiring considerable expertise) to formally prove whether a
security property is satisfied. One can also construct such proofs for
isolated security patterns. Every designer applying such a pattern
automatically receives strong guarantees that the proven property
is satisfied, given that the pattern is correctly instantiated and all
necessary conditions are met. For example, it can be proven that
the Secure Pipe pattern [18] preserves confidentiality of all data

SEAD’18, May 27, 2018, Gothenburg, Sweden

van den Berghe, A, et al.

. pwd id
C Read, Write, Delete Q |« — & > = %
Attacker ﬁ Hash | h(pwd) | Authentication | hpwd’) | Passwords Session Identifier
login+id+pwd id*PWdT ¢ Yes/No generate T ¢ sid
c >) login+id c
User sid Authentication " | Session Manager
request+sid
cane - sid & sid = sid+session
Session |« Session |« Session Information
Yes/No session
C" Active entity £: Data storage request c
A Decision point W#: Data creation —m
©: Enforcement point &: Cryptographic primitive —m
—m

Figure 1: Expressing session-based authentication in function of pre-defined security building blocks forces the pattern devel-

oper to describe the essence of the proposed solution.

transmitted to it under certain conditions, e.g. correct use of strong
encryption. This way, experts can create a catalogue of pre-proven
security patterns readily usable by designers.

A security view in which all applied security measures are ex-
plicitly represented also facilitates strong traceability throughout
the software life cycle. Each element or groups of elements, such as
those instantiating a pattern, can be linked to the security require-
ment that lead to their inclusion. Moreover, these elements can be
associated to later artefacts, such as their actual implementation
in the developed software, as well as their deployed counterparts.
This allows tracing security requirements via their corresponding
countermeasures all the way to the deployed software and vice
versa. Any later changes to the deployed software can be traced
back to the security design thereby allowing to assess how these
changes impact already applied countermeasures and thus whether
all security requirements are still satisfied.

Furthermore, the semantics underlying the elements in the soft-
ware’s security view also define what behaviour other artefacts
such as the implemented software must exhibit. Leveraging the
above traceability possibilities the actual implementation of security
patterns can be verified against their instances in the design.

5 CONCLUSION

Security patterns have not penetrated the software development
practice as far as hoped, despite their popularity among researchers
and the prevalent reuse of security solutions. We believe that this is
mainly because most patterns do not tackle security design flaws,
but rather focus on maintainability aspects of security solutions.

We believe that the definition of security patterns should be based
on a selected set of commonly reused security building blocks. Fur-
thermore, we advocate that security patterns should be documented
using a modelling language specifically tailored to security and in
which these building blocks are first-class citizens.

This security-specific language can also be used by designers to
create a security view of their software and serve as a foundation
for a broader security by design methodology. Such a methodology
opens, with sufficient tool support, the door to verification and
traceability of security requirements and solutions throughout a
software’s lifecycle.

ACKNOWLEDGMENTS
This research is partially funded by the Research Fund KU Leuven.

REFERENCES

[1] L Arce, N. Daswani, J. Delgrosso, D. Dhillon, C. Kern, T. Kohno, C. Landwehr, G.
Mcgraw, B. Schoenfield, M. Seltzer, D. Spinellis, I. Tarandach, and J. West. 2014.
Avoiding the Top 10 Software Security Design Flaws.

[2] M. Bunke. 2015. Software-security patterns: Degree of Maturity. In Proceedings
of the 20th European Conference on Pattern Languages of Programs - EuroPLoP.

[3] G.Elahi, E. Yu, T. Li, and L. Liu. 2011. Security Requirements Engineering in the
Wild: A Survey of Common Practices. In IEEE 35th Annual Computer Software
and Applications Conference.

[4] E.B.Fernandez. 2013. Security Patterns in Practice - Designing Secure Architectures
Using Software Patterns. John Wiley & Sons.

[5] E.Gamma, R. Helm, R. Johnson, and J. Vlissidis. 1994. Design Patterns - Elements
of Reusable Object-Oriented Software.

[6] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen. 2007. An Analysis of
the Security Patterns Landscape. In Software Engineering for Secure Systems,
International Workshop on.

[7] IECISO. 2011. IEEE: ISO/IEC/IEEE 42010: 2011-Systems and Software Engineering—
Architecture Description. Technical Report.

[8] J.Jurjens. 2004. Secure Systems Development with UML. Springer-Verlag.

[9] E. Keary, J. Manico, T. Goosen, P. Krawczyk, S. Neuhaus,
and M. Aude Morales. [n. d.]. Authentication Cheat Sheet.
https://www.owasp.org/index.php/Authentication_Cheat_Sheet.

[10] M-a. Laverdiere, A. Mourad, A Hanna, and M. Debbabi. 2006. Security Design Pat-

terns: Survey and Evaluation. In Canadian Conference on Electrical and Computer

Engineering.

T. Lodderstedt, D. Basin, and J. Doser. 2002. SecureUML : A UML-Based Modeling

Language for Model-Driven Security. In The Unified Modeling Language, Model

Engineering, Concepts, and Tools, 5th International Conference.

G. McGraw. 2006. Software Security: Building Security In. Addison-Wesley.

D. L. Moody. 2009. The "Physics" of Notations: Toward a Scientific Basis for

Constructing Visual Notations in Software Engineering. IEEE Transactions on

Software Engineering 35, 6 (2009).

M. Petre. 2013. UML in Practice. In Proceedings of the 2013 International Conference

on Software Engineering.

[15] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P.

Sommerlad. 2006. Security Patterns - Integrating Security and Systems Engineering.

A. Shostack. 2014. Threat Modeling - Designing for Security. John Wiley & Sons.

L. Sion, K. Yskout, A. van den Berghe, R. Scandariato, and W. Joosen. 2015. MASC:

Modelling Architectural Security Concerns. In Proceedings - 7th International

Workshop on Modeling in Software Engineering, MiSE.

C. Steel, R. Nagappan, and R. Lai. 2006. Core Security Patterns: Best Practices and

Strategies for J2EE, Web Services, and Identity Management. Pearson Education.

[19] J. Steven and J. Manico. [n. d.]. Password Storage Cheat Sheet.
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet.

[20] A.van den Berghe, K. Yskout, R. Scandariato, and W. Joosen. 2017. A Model for
Provably Secure Software Design. In IEEE/ACM 5th International FME Workshop
on Formal Methods in Software Engineering, FormaliSE.

[21] J. Yoder and J. Barcalow. 1998. Architectural Patterns for Enabling Application

Security. In Pattern Languages of Programs Conference (PLoP).

N. Yoshioka, H. Washizaki, and K. Maruyama. 2008. A survey on security patterns.

Progress in Informatics 5 (2008).

—
_

=
.0,

=
oot

— =
o

[18

[22

	Abstract
	1 Introduction
	2 The Problem With Security Patterns
	3 A new view on security patterns
	3.1 Security Building Blocks
	3.2 The Essence of a Security Pattern
	3.3 Language Support for Security

	4 Beyond security patterns
	5 Conclusion
	Acknowledgments
	References

