Jury :

Prof.
Prof.
Prof.
Prof.
Prof.
Prof.
Prof.

Dr.
Dr.
Dr.
Dr.
Dr.
Dr.
Pr.

KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT DER TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK

Kard. Mercierlaan 94 — 3001 Leuven {Heverlee)

ALGORITHMS AND ARCHITECTURES
FOR ADAPTIVE ARRAY SIGNAL PROCESSING

Ir. W. Dutré, vice-decaan, voorzitter
Ir. §. Vandewalle, promotor

Ir. A. Buitheel

Ir. F. Catthoor

Ir. B. De Moor

Ir. E. Deprettere (T.U. Delft)

Ir. J. McWhirter (DRA, UK.)

Dr. Ir. M. Moonen

U.D.C. 621.391

Februari 1995

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de toegepaste wetenschappen

door
Filiep VANPOUCKE







Voor Inge







Voorwoord

Bij de voltooiing van mijn doktoraat wil ik met veel genoegen een woord
van dank richten tot iedereen die ertoe heeft bijgedragen. SISTA is zonder
twijfel een aangename en stimulerende groep met internationale uitstra-
ling. Dit klimaat is niet in het minst het werk van mijn promotor Prof.
Vandewalle. Ik dank hem dan ook oprecht voor de vele kansen die ik in
de voorbije jaren gekregen heb.

Prof. De Moor stond mee aan de wieg van dit doktoraat. Zijn dy-
pamisme en actieve belangstelling stonden altijd garant voor een stevige
zet in de rug.

Mijn speciale dank gaat naar Dr. Marc Moonen. Dit doktoraat stuit
aan bij zijn vroegere werk en is gegroeid uit een intense samenwerking.
Met zijn rijke ervaring heeft hij mij geintroduceerd in de wetenschappe-
lijke wereld. Welgemeend mag ik stellen dat ik me geen betere begeleider
kon wensen.

Een gewaardeerde wetenschapper die ik via Marc heb leren kennen, is
Prof. Deprettere van de Technische Universiteit Delft. De interactie met
hem en de onderzoekers in zijn groep is een constante verrijking. Ik ben
dan ook verheugd dat hij bereid was om deel te nemen aan het leescomité.

Ik wil Prof. Catthoor danken voor de aangename samenwerking op
het viak van architectuurontwerp. De visie op paralielle architecturen
in dit werk is terdege beinviced door het NANA project waarvan hij de
enthousiaste voortrekker is.

It is also a pleasure to have Prof. McWhirter from DRA Malvern as a
member of the jury. He has always shown a sincere interest in my work.
Therefore, I am grateful for his willingness to review this text.

Verder bedank ik ook Prof. Buitheel voor zijn wijde wetenschappelijke
interesse en onmiddellijke bereidheid om in de jury te zetelen. -




iv Voorwoord

Als lid van de facultaire doktoraatscommissie had ik de kans om
Prof, Dutré beter te leren kennen. Ik dank hem voor zijn vilotte me-
dewerking als voorzitter van de jury.

During my work I have had the opportunity to pay two visits to
Prof. Paulraj and Prof. Kailath at the Information Systems Laboratory
of Stanford University. These magnificent stays were very rewarding.
Part of this text is a direct cutcome of a fruitful collaboration.

Alle huidige en vroegere leden van SISTA met naam vermelden is een
delicate aangelegenheid geworden. Laat me enkel de volgende personen
expliciet vernoemen: Bart en Lieven, met wie ik het langst aangename
uren op één bureau gedeeld heb, en Jeroen voor zijn bereidheid om een
eerste versie van dit proefschrift van commentaar te voorzien. Aan allen
dank voor de vele ernstige en minder ernstige discussies over onderwerpen
allerhande.

Qok gaat mijn dank naar Ingrid, Rita en Ann op het secretariaat en
Johan Buelens en de mensen van de systeemmanagementploeg,

Bij het einde van mijn studies wil ik mijn ouders even in de bloemetjes
zetten. Samen met mijn schoonouders, broers en zussen hebben zij zich
dikwijls afgevraagd waarmee ik op de universiteit zo druk bezig was. Ik
hoop dat deze tekst hun nieuwsgierigheid kan stillen.

Ik kan niet onder woorden brengen wat ik verschuldigd ben aan Inge.
Ons huwelijk en dit dokioraat zijn ongeveer gelijktijdig gestart. Met
warme genegenheid heeft ze me de volledige periode intens gesteund. On-
der andere als compensatie voor de slapeloze nachten tijdens mijn talrijke
afwezigheden draag ik dit werk aan haar op.

Tenslotte is dit werk enkel tot stand kunnen komen met de financiéle
steun van het Nationaal Fonds voor Wetenschappelijk Onderzoek en de
ESPRIT BRA 3280 en 6632 projecten van de Europese Unie.



Abstract

Antenna arrays sample propagating waves at multiple locations. They
are employed e.g. in radar, sonar and wireless communication systems
because of their capability of spatial selectivity and localization of radiat-
ing sources. Current model-based algorithms make use of computation-
ally demanding orthogonal matrix decompositions such as the singular
value decomposition (SVD). On the other hand the data rates are often
extremely high. Therefore, real-time execution of complex algorithms of-
ten requires parallel computing. We study the simultaneous design of
new algorithms and parallel architectures for subspace tracking, for ro-
bust adaptive beamforming and for direction finding of narrow-band and
wide-band sources. By structuring all recursive algorithms in a similar
way, they can be mapped efficiently onto the Jacobi architecture, which
was originally developed for SVD updating. The numerical and archi-
tectural aspects of this algorithm are improved by the use of a minimal
parameterization of the orthogonal matrix of short singular vectors. Fi-
nally, a new Fourier-based linear model for direction finding in colored
ambient noise fields is proposed.
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Abstract

Roosterantennes bemonsteren propagerende golven op meerdere plaatsen.
Ze worden o.a. in radar-, sonar- en radiocommunicatiesystemen gebruikt
omwille van de mogelijkheid tot ruimtelijke selectiviteit en plaatsbepaling
van signaalbronnen. De huidige modelgebaseerde algoritmen maken ge-
bruik van rekenintensieve orthogonale matrixdecomposities zoals de sin-
guliere waarden ontbinding (SWO}. Anderszijds zijn de datasnelheden
vaak heel hoog. Daarom vraagt uitvoering in reéle tijd van deze complexe
algoritmen vaak het gebruik van parallelle computers. We bestuderen het
gelijktijdig ontwerp van nieuwe algoritmen en parallelle architecturen voor
recursieve schatting van deeiruimten, voor robuuste adaptieve straalvorm-
ers en voor richtingshoekbepaling van zowel smalbandige als breedbandige
signalen. Door alle recursieve algoritmen op een gelijkaardige manier te
structureren, kunnen ze efficiént geimplementeerd worden op de Jacobi
architectuur die oorspronkelijk ontwikkeld werd voor recursieve SWQ. De
numerieke en architecturale aspecten van dit algoritme worden verbeterd
door het gebruik van een mirimale parameterisatie van de orthogonale
matrix die de korte singuliere vectoren bevat. Tot slot wordt een nieuw
Fourier-gebaseerd lineair model voorgesteld voor richtingshoekbepaling in
gecorreleerde omgevingsruis.



Glossary

Symbols
[ . ] :  general matrix or vector
T transpose of & matrix or vector
| : conjugated matrix or vector
[ . ]H :  Hermitian transpose of a matrix or vector
gl :  Frobenius norm of a matrix or vector
; : th element of vector z
Xi; : element of matrix X on row ¢ and column j
vec(X) : column vector obtained by stacking the columns of X
det(X) : determinant of matrix X
tr(X) @ trace of matrix X
X2 : Cholesky factor of square matrix X
Qi :  matrix embedding of Givens rotation operating
on rows (columns) i and j
I, :  identity matrix of size n X n
Omxn © zero matrix of size m X n
lmxn constant matrix of ones of size m x n
O(z) : order of z operations
o : proportional to
® :  Kronecker product
® :  Khatri-Rao product

* . don’t care vahie
i 1 o4/—1
2

%] :  vector z sampled at sampling time k
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Acronyms
1-D : one dimensional
2-D : two dimensional
ACMP : algebraically coupled matrix pencils algorithm
ACA :  angle of arrival
ARMA 1 autoregressive moving average
CORDIC : coordinate rotation digital computer
CRB : Cramér-Rao bound
DF : direction finding
DG : dependence graph
DOA : direction of arrival
ESPRIT : estimation of signal parameters by rotational
invariance technigues
EVD : eigenvalue decomposition
FDMA :  frequency division multiple access
FIR : finite impulse response
GSC : generalized sidelobe canceler
GSM : global system for mobile communications
GSD : generalized Schur decomposition
LCMV : linearly constrained minimum variance beamformer
LMI : linear matrix inequality
MEMP : matrix enhancement and matrix pencil algorithm
ML 1 maximum likelihood
MSE : mean square error
MUSIC  : maultiple signal classification
QRD ¢ QR decomposition
RLS :  recursive least squares
RMSE : root mean square error
SFG : signal flow graph
SINR : signal to interference and noise ratio
SNR : signal to noise ratio
SOI : signal of interest
SVD : singular value decomposition
TDMA :  time division multiple access
TDOA :  time difference of arrival
TLS :  total least squares
ULA : uniform linear array
VLSI :  very large scale integration

WSF :  weighted subspace fitting
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Algoritmen en architecturen
voor adaptieve
signaalverwerking van
roostersensoren

Nederlandse samenvatting

Inleiding

Het toepassingsgebied van dit proefschift is de verwerking van signalen
afkomstig van roosterantennes of roostersensoren. Een roostersensor is
een verzameling van sensoren die op meerdere plaatsen een golffront be-
monsteren. Het gebruik van roostersensoren biedt tal van nieuwe moge-
lijkheden ten opzichte van enkelvoudige sensoren. Ze kunren ruwweg op-
gedeeld worden in twee categorieén. Een eerste categorie beoogt spatigel
filteren. Door de uitgangen van de sensoren lineair te combineren wordt
de ontvangst van de roosterantenne richtingsgevoelig. Deze structuur
wordt een straalvormer {E. beamformer) gencemd en is afgebeeld in Fi-
guur 0.1. De richtingsgevoeligheid wordt bepaald door de keuze van de
filtercoéfficiénten. In vele applicaties, zoals satellietcommunicatie, wordt
er gestreefd naar een maximale ontvangst uit de richting van het gewenste
signaal terwij] signalen uit andere richtingen zoveel mogelijk onderdrukt
worden. In andere toepassingen is de positie van ongewenste interferenties
gekend, en dient er een nul geplaatst te worden in het ontvangstpatroon.
Het verband met klassieke banddocrlaat FIR filters in het tijdsdomein
ligt voor de hand.

De tweede categorie beoogt karakterisatie van de propagerende golven.
Iedere puntbron wordt gekenmerkt door een beperkt aantal parameters,
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Figuur 0.1: Een straalvormer in een cellulair mobilofoniesysteem. Drie
mobiele zenders met verschillende locaties communiceren simultaan op
dezelfde frequentie met het basisstation. De coéfficienten w; bepalen de
richtingsgevoeligheid van de roosterantenne van het basisstation. Hier is
de roosterantenne gericht naar de linkse mobiele zender. De twee overige
signalen worden volledig onderdrukt.

zoals zijn positie (hoek en afstand) en het uitgezonden signaalvermogen.
Om deze signaaiparameters te kunnen schatten is het gebruik van roos-
terantennes noodzakelijk. Men kan geen informatie over de positie van
een signaalbron afleiden als het golffront niet op meerdere plaatsen be-
monsterd wordt.

Het domein van digitale signaalverwerking voor roosterantennes heeft
sinds de jaren tachtig een sterke groei gekend. Veel nieuwe filter- en
parameterestimatietechnieken zijn voorgesteld. Alle algoritmen hebben
gemeen dat ze sterk steunen op numerieke lineaire algebra. Lineaire al-
gebra vormt het natuurlijke kader om de problemen wiskundig te formu-
leren. Signalen als functie van de tijd kunnen voorgesteld worden door
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vectoren. Ook de uitgangen van de roosterantenne op een bepaald ogen-
blik vormen een vector. De algoritmen manipuleren dus logischerwijze
vectoren en matrices. Uit de onderliggende geometrie van het datamo-
del volgt dat veel informatie vervat is in bepaalde invariante deelruimtes.
Matrixdecomposities spelen dan ook een belangrijke rol. De twee meest
courante matrixdecomposities zijn de QR decompositie (QRD) en de sin-
guliere waardenontbinding (SWQ}. Het domein van de numerieke lineaire
algebra biedt bovendien een rijk gamma robuuste algoritmen om onder
andere matrixdecomposities te berekenen.

De prijs voor de verhoogde performantie van deze signaalverwerkings-
algoritmen is hun relatief hoge rekenkost. Per tijdsstap bedraagt de re-
kencomplexiteit typisch O(M?) waarbij M het aantal sensoren voorstelt.
Daarbij komt dat de datadoorvoersnelheden in typische antennetoepas-
singen zoals radar-, sonar- of communicatiesystemen heel hoog liggen, in
de ordegrootte van 10 kbit/s tot 1Mbit/s.

De combinatie van hoge bitsnelheden en een aanzienlijke rekenkost
maakt uitvoering in reéle tijd problematisch, zelfs met de huidige genera-
tie van snelle processoren. Soms kunnen applicatie-specifieke processoren
een oplossing bieden. Als ook dat niet het geval is, kan de benodigde re-
kenkracht enkel geleverd worden door parallelle computers. Hierbij stellen
zich opnieuw een aantal uitdagingen. Ultvoering op parallelle computers
versnelt de berekening enkel als er een goede afstemming is tussen het
algoritme en de architectuur van de parallelle machine, Er moet een
evenwicht heerser tussen berekening, communicatie tussen de verschil-
lende processoren oanderling en tussen processoren en geheugen.

Een belangrijk aandachtspunt van deze thesis is de afleiding van op-
timale architecturen voor uitvoering in reéle tijd van de geavanceerde
signaalverwerkingsalgoritmen. De motivatie hiervoor is dat simultaan
ontwerp van algoritme en parallelle architectuur het optimale compromis
tussen de verschillende systeemcomponenten (rekenmodules, geheugen en
invoer/uitvoer) het dichtst kan benaderen. Omwille van haar kracht en
bevattelijke visualisatie zal de grafische methode gebaseerd op signaal-
stroomgrafes (E. signal flow graphs) hierbij gebruikt worden. Een sig-
naalstroomgrafe is een gerichte grafe waarin de knopen corresponderen
met de berekeningen in het algoritme en de pijlen de uitgewisselde signa-
len voorstellen. :
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Algemeen overzicht

Twee rode draden lopen door dit proefschrift. Een eerste rode draad is
de ontwikkeling van nieuwe algoritmen voor de verwerking van antenne-
signalen. De nadruk ligt op recursieve algoritmen die geschikt zijn voor
uitvoering in reéle tijd. Zowel spatiaal filteren als invalshoekschatting
worden behandeld. Veel algoritmen in de literatuur zijn gebaseerd op
niet-lineaire optimaliseringstechnieken. Deze zijn echter moeilijk imple-
menteerbaar op een parallelle computer. Daarom beperken we ons zoveel
mogelijk tot matrixdecomposities in de keuze van bouwblokken voor re-
cursieve algoritmen.

De tweede rode draad is toepassingsgerichte parallelle architecturen.
Het is echter niet de bedoeling om per algoritme een totaal verschillende
architectuur te poneren. Onze aanpak bestaat erin voor alle toepassingen
structureel gelijkaardige algoritmen te ontwikkelen, die dan efficiént im-
plementeerbaar zijn op eenzelfde architectuur. Deze raamarchitectuur is
de Jacobi architectuur die oorspronkelijk ontwikkeld werd voor recursieve
singuliere waardenontbinding [66, 67]. De structuur van dit algoritme
is een opeenvolging van matrix-vector vermenigvuldigingen, recursieve
QRD en tweezijdige orthogonale transformaties, Door de signaalverwer-
kingsalgoritmen ook op die manier te formuleren, kan dezelfde Jacobi
architectuur herbruikt worden. Bovendien wordt deze architectuur aan-
trekkelijker om een VLSI implementatie te ontwikkelen. Aan dit ontwerp
wordt momenteel gewerkt [24, 118].

Hoofdstuk 2. Concepten en bouwblokken

Het proefschrift steunt op drie peilers, Een eerste peiler is digitale signaal-
verwerking van meervoudige signalen met de nadruk op roosterantennes.
Dit is het toepassingsdomein. Een tweede peiler is numerieke lineaire
algebra. Dit domein vormt het natuurlijke kader voor de wiskundige pro-
bleemstelling en reikt een veelvoud van algoritmische bouwblokken aan.
Het derde domein is grafische methodologien voor simultaan ontwerp
van algoritmen en architecturen.

Dit inleidend hoofdstuk bevat het nodige achtergrondmateriaal uit
elk van deze drie domeinen. De opbouw van het hoofdstuk velgt de
ontwikkeling van de signaalverwerkingsapplicaties. De bespreking van de
nodige concepten uit lineaire algebra en grafische ontwerpmethodologieén
gebeurt aan de hand van de toepassingen.
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Eerst wordt het datamodel afgeleid. We beschouwen een basishand-
model voor een scenario waarbij de IJ signaalbronnen puntbronnen in het
verre veld van de roosterantenne zijn. De uitgangen van de M antennes
in het rooster op N bemonsteringstijden vormen een matrix X & CMxN
Elke (incoherente) puntbron geeft aanleiding tot een rang-1 bijdrage in
X. Voor D signalen voldoet de datamatrix aan de vergelijking

X=A-S+W,

waarbij A € CM*D de roosterwinstmatrix {E. array gain matriz) wordt
genoemd, S € CP*V de invallende basisbandsignalen bevat en W €
CM*N bestaat uit de additieve ruis. De informatie omtrent de invals-
hoeken van de signalen zit vervat in de kolommen van de roosterwinst-
matrix. Uit dit elementair datamodel volgt onmiddellijk het belang dat
matrixdecomposities zullen spelen in de opbouw van de algoritmen.

Het is bekend dat de bepaling van de coéfficiénten van een optimale
straalformer kan geformuleerd worden als een kleinste kwadraten pro-
bleem met lineaire beperkingen.

min w (X XH) . w waarbij CH.w=m.

De matrix ¢ € CM¥*K bevat de beperkingen en m € CK bevat de op-
gelegde winstvector. Een typische beperking legt de waarde van de ont-
vangst in de richting van het signaal 8, vast.

a(t&is)ﬁr RN

De vector a(f,) € CM wordt de richtingsvector genoemd en bevat de
amplitude en faze van een signaal uit richting 6, voor elk van de sen-
soren. Kleinste kwadraten problemen kunnen elegant opgelost worden
door gebruik te maken van de QR decompositie van de data matrix. De
gewichtsvector w volgt dan uit een bovendriehoekig stelse] lineaire verge-
Hjkingen.

In een tijdsvariante signaal- en ruisomgeving moet de straalvormer
zich voordurend aanpassen aan de veranderingen in zijn omgeving. De
QRD oplossingsmethode leent zich uitstekend tot recursieve berekening.
De nieuwe gewichtsvector kan berekend worden in O(M?) operaties met
de Givens rotatiemethode voor recursieve QRD [33]. Deze methode stelt
een sequentie van 2 x 2 Givens rotaties op die de inkomende datavector
gradueel nul maken. Deze Givens methode is erg geschikt voor parallelle
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implementatie omdat elke rotatie locaal berekend kan worden uit 2 x 2
submatrices. Een driehoekige signaalstroomgrafe (SSG) voor recursieve
QRD is voorgesteld door Gentleman en Kung [31). De complete signaal-
stroomgrafe van de straalvormer met lineaire beperkingen bestaat uit een
rechthoekige grafe voor matrix-vector vermenigvuldiging gevolgd door de
driehoekige grafe voor recursieve QRD. De topologie van deze grafe is een-
voudig. Alle data-afhankelijkheden zijn lokaal. Een knoop wisselt enkel
signalen uit met zijn naaste buren, Bovendien is het afhankelijkheidspa-
troon identiek van knoop tot knoop. Daardoor is de omvorming van deze
signaalstroomgrafe in een planaire architectuur haast triviaal. De omvor-
ming behelst de toewijzing van een processor en een uitvoeringstijd aan
elk stuk van de berekening. Omwille van haar uniformiteit leidt deze grafe
bij maximale pijplijning tot een systolisch rooster. Een systolisch roos-
ter is een synchrone parallelle architectuur waarin alle processoren locale
en regelmatige interconnecties hebben. Omwille van hun regelmaat zijn
ze uitermate geschikt voor VLSI implementatie van applicatie-specifieke
processoren.

Naast spatiale filtering is ook scheiding en invalshoekschatting van
meerdere signalen die invailen op de roosterantenne een belangrijk pro-
bleem. Deelrnimte-algoritmen zoals MUSIC {96] en ESPRIT [92] worden
hiervoor meest gebruikt. Omdat ze modelgebaseerd zijn, kunnen ze een
beduidend hogere resolutie bereiken dan niet-modelgebaseerde technieken
zoals de spatiale Fouriertransformatie. Alle algoritmen uit deze klasse be-
rekenen eerst een singuliere waardenontbinding van de datamatrix. Op
die manier bepalen ze de signaalruimte § = Bereik{4} en onderdrukken
ze de additieve ruis. De tweede stap bestaat uit het vinden van de in-
valshoeken die de geschatte deelruimte zo goed mogelijk verklaren. De
algoritmen onderscheiden zich in deze stap. Het MUSIC algoritme ge-
bruikt niet-lineaire optimalisering. Het heeft dus een hoge rekenkost en
is niet erg geschikt voor parallellisatie. Het ESPRIT algoritme biedt een
oplossing voor beide problemen door de invalshoeken te schatten aan de
hand van een veralgemeend eigenwaardenprobleem. Dit algoritme is enkel
toepasbaar als de roosterantenne kan opgedeeld worden in twee identieke
verschoven subroosters. In de praktijk is dit veelal het geval.

Een recursief Jacobi SWO algoritme met bijhorende signaalstroom-
grafe is ontwikkeld in [66, 67]. Deze grafe is een combinatie van de grafe
voor de adaptieve straalvormer (matrix-vectorvermenigvuldiging en re-
cursieve QRD) met een grafe voor sequenties van tweezijdige Givens ro-
taties. Deze SSG is moeilijk parallelliseerbaar, omdat ze een lange bidi-
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rectionele keten van data-afhankelijkheden bevat. Een efficiénte pijplij-
ning kan enkel door het opbreken van keten. In dit geval zijn standaard
transformatietechnieken op grafen ontoereikend. Het algoritme zelf moet
gewijzigd worden. De techniek van algoritmische transformaties die ont-
wikkeld werd voor recursieve SWO, is sindsdien ook succesvol gebleken
in de afleiding van efficiénte architecturen voor andere recursieve signaal-
verwerkingsalgoritmen zoals recursieve kleinste kwadraten [65].

Hoofdstuk 3. Gefactoriseerde Jacobi SVD up-
dating

Dit hoofdstuk bevat de eerste originele bijdrage van dit proefschrift, nl.
een variant op het originele recursieve Jacobi SWO algoritme met betere
numerieke eigenschappen en VLSI implementeerbaarheid.

Orthogonale matrixdecomposities zijn een belangrijke hoeksteen van
moderne signaalverwerking, identificatie- en controletheorie,. .. Voorbeel-
den zijn de QR decompositie, vaak gebruikt in kleinste kwadratenproble-
men, en de singuliere waardenontbinding, vaak gebruikt voor problemen
in verband met matrices van lage rang. Bovendien is er een rijk gamma
van veralgemeningen en varianten op deze decomposities.

Orthogonale decomposities zijn niet enkel conceptueel belangrijk. Ze
ziin ook geliefd omwille van hun goede numerieke eigenschappen. Fou-
ten in de berekening kunnen niet aangroeien. Nochtans zijn orthogonale
technieken niet helemaal veilig. Als voorbeeld beschouwen we het Jacobi
algoritme voor recursieve SWO [66]. In elke iteratie wordt de matrix van
korte singuliere vectoren V € RM*M vermenigvuldigd met een orthogo-
nale updating matrix ® € RMxM

Viks) < Vi - i (0.1)

Accumulatie van afrondingsfouten in de opeenvolgende matrixvermenig-
vuldigingen leidt tot geleidelijk verlies van de orthogonaliteit van V).

Haast alle recursieve schema’s voor orthogonale decomposities wape-
nen zich hiertegen door periodiek de betrokken matrices te herorthogo-
naliseren. Courante technieken zijn gebaseerd op een Gram-Schmidt or-
thogonalisatie (QRD). Belangrijke nadelen zijn de beduidende rekenkost
(O(M?3)) en de moeilijke parallellisatie.

In dit hoofdstuk stellen we een alternatief voor. Een willekeurige or-
thogonale matrix V € RM*M met positieve determinant wordt uniek
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geparameteriseerd door een sequentie van Givens rotaties Q'V, elk geken-
merkt door één rotatichoek o't/

M-t M
v-1T 11 o
=1 j=itd

Zo'n Givens rotatie matrix Q' is een 2 x 2 rotatiematrix ingebed in een
omvattende identiteitsmatrix. Door impliciet te rekenen met deze para-
meterisatie {Q7} in plaats van met de matrix zelf, blijft Vi) noodzakelij-
kerwijze binnen de verzameling orthogonale matrices. Afrondingsfouten
manifesteren zich enkel nog op de hoeken. Deze fouten worden teniet
gedaan door de terugkoppeling in het recursieve SVD algoritme. Waar
reorthogonalisatiemethodes de afwijking van orthogonaliteit enkel binnen
de perken houden, garandeert deze minimale parameterisatie de orthogo-
naliteit in elke iteratie. We bestuderen nu de implementatie van dit idee
voor het recursieve Jacobi SWO algoritme.

Er zijn twee bewerkingen waarbij de matrix van korte singuliere vec-
toren Vjy) betrokken is. Een eerste bewerking is een matrix-vector verme-
rigvuldiging met de inkomende data vector.

&g = =l - Vs

Deze matrix-vector vermenigvuldiging wordt nu vervangen door een se-
quentie van M (M — 1)/2 Givens rotaties. Hierdoor wordt de SSG gewij-
zigd. De SSG van een matrix-vectorvermenigvuldiging is een rechthoekige
grafe waarbij elke knoop een scalaire vermenigvuldiging en een optelling
uitvoerde. Dit wordt nu vervangen door een driehoekige grafe waarbij elke
knoop een Givens rotatie uitvoert. De impact hiervan op een hardware
implementatie is niet onbelangrijk. Het volledige recursieve Jacobi SWO
algoritme bestaat nu exclusief uit eenzijdige en tweezijdige 2 X 2 rotaties.
Voor snelle en accurate uitvoering van zulke rotaties is een CORDIC
processor {143] de ideale hardware component. De vervanging van ver-
menigvuldigingen door rotaties maakt een parallelle Jacobi architectuur
mogelijk die enkel bestaat uit CORDIC-gebaseerde processoren. Dit ver-
eenvoudigt het ontwerp en de programmering van een toepassingsgerichte
parallelle computer aanzienlijk.

De tweede en laatste operatie op de matrix ¥ is gegeven door verge-
lijking (0.1). De orthogonale matrix @y is het product van M ~1 rotaties
op opeenvolgende kolommen

M {)i+1
Pp; = H ‘I’[k] .

=1



Nederlandse Samenvatting xxi

De origineie bijdrage van dit hoofdstuk is een schema om de rotaties QE%
rechtstreeks aan te passen zonder expliciete berekening van V3. De @;L’.]H
rotaties moeten geleidelijk in de sequentie van Qﬁé verwerkt worden. De
transformaties op de hoeken hangen af van de kolomindices van de twee
interagerende rotaties. Drie types van rotaties zijn noodzakelijk.

1. Als de indexparen totaal verschillen, commuteren de rotaties en is
er geen berekening.

2. Als de indexparen identiek zijn, is de samenstelling van de rotaties
de rotatie over de som van de hoeken.

3. Als de indexparen één index gemeen hebben, moet een derde rotatie
in beschouwing genomen worden om de volgorde van de indices te
wijzigen.

De gecombineerde SSG die zowel de matrix-vector vermenigvuldiging als
het updatingschema bevat, blijft drichoekig. De grafe bevat net als het
oorspronkelijke Jacobi algoritme lange afhankelijkheidsketens. Daarom
moet bij het pijplijnen opnieuw gebruik gemaakt worden van dezeifde
algoritmische transformaties om tot een efficiénte parallelle (systolische)
implementatie te komen.

Hoofdstuk 4. Een gefactoriseerde sferische deel-
ruimtevolger

In dit hoofdstuk passen we de minimale parameterisatie van orthogonale
matrices toe op een tweede algoritme voor recursieve deelruimteschatting,
nl. de sferische deelruimte volger. Een variant op het originele algoritme
wordt voorgesteld en twee systolische architecturen worden afgeleid.

Een belangrijke applicatie van recursieve SWO algoritmen is het vol-
gen van een traag tijdsvariante deelruimte. Een voorbeeld is het schat-
ten van invalshoeken van signalen met behulp van roosterantennes. Als
de bronnen bewegen, moet het algoritme in staat zijn deze evolutie te
volgen. Het recursieve Jacobi SWO algoritme berekent de SWO op elk
ogenblik slechts benaderend. De reden hiervoor is dat per iteratie bij
exacte berekening de rekenkost O(M?®) zou bedragen. In vele applica-
ties is deze kost te hoog. Ook de O(M?) kost van het Jacobi algoritme
kan nog preblemen stellen. Daarom zijn verscheidene ruwere benaderin-
gen voor recursieve SWO ontwikkeld. Het adaptieve sferische deelruimte
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algoritme [22] verlaagt de rekenkost extreem tot O(M - D). Dit wordt
bereikt door twee technieken. Een eerste techniek bestaat erin om op
elk ogenblik de singuliere waarden in de signaaldeelruimte en de ruis-
deelruimte apart uit te middelen. Dit kan in applicaties waar de exacte
kennis van de singuliere waarden zelf miet cruciaal is. Een voorbeeld is
invalshoekschatting waarbij enkel de scheiding van signaal- en ruisdeel-
reimte cruciaal zijn. Een deeiruimte waarvan de geassocieerde singuliere
waarden uitgemiddeld zijn, wordt een sferische deelruimte gencemd om-
dat elke orthogonale basis voor deze deelruimte een basis van singuliere
vectoren vormt. Een tweede techniek bestaat in het bijhouden van enkel
de kleinste deelruimte, bvb. de signaaldeelruimte als D < M. Indien
kennis van de ruisdeelruimte vereist is, kan die op elk ogenblik berekend
worden als het orthogonale complement.

Het originele algoritme is afgeleid als een benaderend recursief eigen-
waardenalgoritme. Om de vergelijking met het recursieve Jacobi SWQ
algoritme expliciet te maken, hebben we ervoor geopteerd om hier het
algoritme opnieuw af te leiden als een benaderend SWO algoritme. Uit
de afieiding blijkt duidelijk dat het sferische algoritme steunt op hetzelfde
werkingsprincipe als het Jacobi algoritme om de deelruimte recursief te
schatten. In elke iteratie wordt een orthogonale matrix die de deelruimte
omspant, aangepast door 2 x 2 kolomrotaties. Daarom is er ook hier weer
gevaar voor geleidelijk verlies van orthogonaliteit van deze matrix. We
stellen daarom voor om dezelfde orthogonale parameterisatie met hoeken
te gebruiken. Daardoor wordt het algoritme perfect numeriek stabiel.

Een nieuw aspect is dat nu enkel een deelmatrix van een orthogonale
matrix moet geparameteriseerd worden. Dit stelt geen probleem. Aan-
gezien de berekening van de rotaties Q" kolomsgewijze gebeurt, volstaat
het deze parameterisatie stop te zetten na I} kolommen.

Bovendien tonen we aan dat het bewaren van een (parameterisatie
van een) orthogonale basis voor de ruisruimte niet hoeft. Het volstaat in
elke iteratie de projectie van de inkomende datavector op de ruisruimte te
berekenen. In het nieuwe schema met hoeken kan dit zelfs veel eleganter
dan in het oude schema waar de matrices expliciet bewaard worden. Daar
vergt de berekening van de geprojecteerde vector een sequentie van twee
matrix-vectorvermenigvuldigingen en een normalisatie. In de SSG geeft
dit aanleiding tot tegengestelde datastromen. Met de parameterisatie is
de berekening veel eenvoudiger en vergt geen tweezijdige datastroom. De
rotatieknopen in de laatste kolom berekenen hun hoek door één codrdi-
naat nul te maken.
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De SSG bestaat opnieuw uit twee delen. Het bovenste irapezoidaal
gedeelte voert een matrix-vector vermenigvuidiging uit. Het onderste ge-
deelte is niet langer driehoekig. Eén rij van rotatieknopen volstaat. Ver-
trekkend vanuit deze nieuwe SSG worden twee systolische architecturen
afgeleid. De eerste architectuur is een hneaire rij van D + 1 processoren
en heeft een pijplijningsperiode van 2M — 1 cycli. Deze architectuur kan
eenvoudig afgeleid worden door alle knopen in eenzelfde kolom van de
SSG aan dezelfde processor toe te wijzen. De uitvoeringstijd volgt dan
uit de data-afhankelijkheden.

De tweede architectuur is planair. Elke knoop in de SSG wordt aan
één enkele processor toegewezen. De pijplijning van deze architectuur is
meer complex. Algoritmische transformaties zijn opnieuw onontbeerlijk
om het kritische pad van lengte (M) verder op te delen. Het eindresul-
taat is minder elegant dan voor het recursieve Jacobi SWO algoritme. De
algoritmische transformaties introduceren nieuwe rotaties die in dit geval
niet eenvoudig toegewezen kunnen worden aan bestaande knopen zonder
de regelmaat en de localiteit van de SSG te verstoren. Dit is de prijs voor
de verhoogde doorvoersnelheid (1 cyclus) van de planaire architectuur,

Hoofdstuk 5. Een robuuste adaptieve LCMV
straalvormer

In dit hoofdstuk stellen we een robuuste adaptieve straalvormer voor. De
parallelle implementatie van dit algoritme kan heel efficiént gebeuren op
de Jacobi architectuur voor recursieve SWQO.

Een belangrijk praktijkgericht probleem van adaptieve straalvormers
is hun hoge gevoeligheid voor perturbaties van de elementen in de gelijk-
heidsbeperkingen. Vooral wanneer de signaal-ruishouding aan de ingang
van de antennes hoog is, is de verslechtering van de signaal-ruisverhouding
aan de uitgang aanzienlijk. Eén van deze vectoren - en vaak ook de enige
- is noodzakelijkerwijze de richtingsvector van het gewenste signaal. In
de praktijk zal de echte richtingsvector altijd wat afwijken van de rich-
tingsvector gebruikt in de beperkingsmatrix door onnauwkeurigheden in
de positionering van de sensoren, amplitude- en fazefouten in de anten-
nes,. ..

Om deze vector zo accuraat mogelijk te kennen, steller we voor om
deze vector continu te schatten uit de data {10]. Dit kan bijvoorbeeld in
communicatietoepassingen waar vaak een referentiesignaal voorhanden is.
Op voorwaarde dat ruis- en eventuele interferentiesignalen ongecorreleerd
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zijn met het referentiesignaal, is de kruiscorrelatievector van uitgangen en
referentiesignaal evenredig met de echte richtingsvector. Mits de schatting
voldoende nauwkeurig gebeurt, wordt de robuustheid van de straalvormer
sterk verhoogd. Een tweede voordeel is dat de straalvormer in staat is
om een bewegende bron te volgen zonder het traject vooraf te kennen.

De wiskundige formulering leidt tot een kleinste kwadratenprobleem
met een tijdsafhankelijke beperking en eventueel nog constante beperkin-
gen. In het inleidend hoofdstuk hebben we al een parallelle architectuur
besproken voor adaptieve straalvorming. Het bovengedeelte is een matrix
die de beperkingen implementeert en het ondergedeelte is een adaptieve
driehoekige kleinste-kwadraten-processor. Boverop deze structuur moet
nu een adaptatieschema geimplementeerd worden. Het adaptatieschema
zorgt ervoor dat de geschatte kruiscorrelatievector tussen uitgangen en
referentie altijd in de laatste kolom behouden blijft. Dit kan opnieuw
gebeuren door tweezijdige rotaties. De kolomrotaties zorgen voor de alig-
nering van de kolommen. Ze moeten ook toegepast worden op de matrix
R van de QR decompositie. Hierdoor verliest deze matrix 2ijn driehoeks-
vorm. Rijrotaties zijn noodzakeli}k om de ingevulde elementen onder de
diagonaal weer weg te werken.

Dit algoritme is structureel haast identiek aan het recursieve Jacobi
SWO algoritme. Het bestaat ook uit een sequentie van een matrix-vector-
vermenigvuldiging, een recursieve QRD stap en tweezijdige orthogonale
rotaties. Daarom kan het onmiddellijk afgebeeld worden op de Jacobi
architectuur. Het verdient ook de aandacht dat de factorisatie van ortho-
gonale matrices uit vorige hoofdstukken ook hier haar nut kan bewijzen.

Hoofdstuk 6. Schatting van tweedimensionale
spectraallijnen

In de laatste hoofdstukken van dit proefschrift gaat de aandacht naar
het schatten van invalshoeken. In dit hoofdstuk stellen we een nieuwe
efficiénte methode voor voor het schatten van invalshoeken van smalban-
dige signalen waarbij hun draagfrequenties niet gekend en verschillend
kunnen zijn. Dit is een toepassing van tweedimensionale (2-D) spectraal-
schatting. De koppels (¢, ¥;) zijn gerelateerd tot de invalshoek 6; en de
draagfrequentie van het signaal f;

ot
%

exp{j2n f; A sin(6;) /¢)
exp{72r f;T,).

i



Nederlandse Samenvatting KXV

De efficiéntie van het voorgestelde algoritme is te danken aan twee eigen-
schappen. Een eerste eigenschap is de separabiliteit van het datamodel.
Hierdoor kan het 2-D estimatieprobleem opgelost worden als twee 1-D
estimatieproblemen. Een complicatie is wel het combineren van de twee
verzamelingen van 1-D schattingen. We tonen aan dat extra berekenin-
gen vermeden kunnen worden door een juiste keuze van transformaties.
Een tweede eigenschap is de Vandermonde structuur van de datamatrix.
Hierdoor kunnen effici¥nte matrixdecomposities gebruikt worden om de
frequenties te schatten.
De datamatrix Z € CV*M is sterk gestructureerd

Z=Xn-A-YE+W

De matrices Xy € CVXP en Var € CM*P 3ijn Vandermonde matrices
in ¢; en v; respectievelijk. A € CPXP is een diagonale matrix met de
amplitude en faze van elke component. De matrix W € CV*M bevat
additieve ruis.

Eerst beschouwen we het geval waarin alle horizontale respectievelijk
verticale frequenties verschillen. In het ruisloze geval is de matrix Z van
lage rang (D). Met ruis is de eerste stap van het algoritme een SWO om de
kolom- en rijruimten te schatien. Omwille van de Vandermondestructuur
van Xy en Yus kan de stap van deelruimte naar frequentieschattingen op-
nieuw gebeuren door matrixdecomposities. Het ESPRIT algoritme {92] is
hiervoor de aangewezen kandidaat. Uitvoering van dit algoritme volgens
de horizontale en verticale richting geeft iwee verzamelingen schattingen.
Het paren van de juiste frequenties vergt in principe O{D?) bewerkingen.
Deze extra berekeningen kunnen vermeden worden door een algebraische
koppelingsmethode [115]. De eigentransformaties van zowel het horizon-
tale als verticale eigenwaardenprobleem kunnern identiek gemaakt worden
door keuze van bepaalde deelmatrices van Z. De winst in berekeningstijd
is beduidend. Er moet maar één eigenwaardenprobleem meer opgelost
worden. Toepassing van dezelfde eigentransformaties op de tweede ma-
trix geeft de complementaire frequenties in de juiste volgorde.

In het geval dat een bepaalde component in meerdere frequentieparen
voorkomt, faalt het beschrever algoritme. In de corresponderende Van-
dermondematrix zijn twee kolommen identiek. Hierdoor zakt de rang tot
D—1. Dit probleem kan opgelost worden door uitmiddeling. Dit kan door
op basis van de oorspronkelijke data een grote matrix J te construeren
die opnieuw van volle rang D is. Bovendien moet J nog altijd separabel
zijn en een Vandermonde-achtige structuur behouden. In het hoofdstuk
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construeren we een ’dubbele’ blokhankelmatrix die aan beide voorwaar-
den voldoet. Deze techniek heeft de eigenschap dat de dimensies van de
matrix enkel vermenigvuidigd worden met de maximale meervoudigheid
van een frequentiecomponent. Dit is een verder voordeel ten opzichte van
bestaande methodes.

Hoofdstuk 7. Localisatie van breedbandige signa-
len met toestandsruimtemodellen

In dit hoofdstuk bestuderen we een verdere uitbreiding van het datamo-
del naar breedbandige stochastische signalen. We stellen een klasse van
deelruimte-algoritmen voor die gestoeld zijn op toestandsruimtemodellen
van de breedbandige signalen. Deze aanpak laat toe om opnieuw op een
vrij eenvoudige manier een effici¥nt parallel recursief algoritme te ontwik-
kelen. :

Over het breedbandige probleem is veel minder literatuur verschenen
dan over het smalbandige. Nochtans zijn er ook belangrijke toepassingen
zoals localisatie van akoestische bronnen. De meeste methodes steunen
op de opsplitsing van het breedbandige signaal in meerdere smalbandige
signalen. De schattingen van al deze deelproblemen worden dan gecom-
bineerd. Een alternatief is de breedbandige signalen te modelleren met
behulp van toestandsmodellen ge&xciteerd door onafhankelijke witte ruis-
signalen. De signalen worden dan oatbonden in modes in plaats van
frequenties. Op voorwaarde dat de bemonstering uniform is en dat de
roosterantenne uit twee verschoven deelroosters bestaat, kan voor elk van
deze modes de invalshoek geschat worden met behulp van matrixdecom-
posities.

In een eerste stap van het deelruimte-algoritme worden blokhankel-
matrices geconstrueerd met de uitgangen van de twee deelroosters. Elk
van deze datamatrices is een som van een term die lineair is in de toe-
stand van het totale systeem, een term die bijdragen van de ingangen
bevat en een ruisterm. Enkel de toestandsterm bevai informatie over de
ligging van de systeempolen en de locatie van de bronnen. Daarom moe-
ten de ingangs- en ruistermen afgescheiden worden. Uit het stochastisch
karakter van de signalen volgt dat dit kan gebeuren door een projectie
op verleden uitgangen. Met de geprojecteerde matrices kunnen, precies
zoals in het vorige hoofdstuk, twee algebraisch gekoppelde eigenwaarden-
problemen opgesteld worden. Uit de eigenwaardeparen kan tenslotte de
invalshoek van elk van de breedbandige bronnen bepaald worden.
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Dit deelruimte-algoritme bestaat uit een opeenvolging van een pro-
jectiestap en meerdere eigenwaardedecomposities op vier matrices. Omn-
wille van numerieke stabiliteit en precisie is het goed de projectiestap
uit te voeren via een QR decompositie. Eigenwaarden kunnen ook be-
rekend worden door een andere orthogonale transformatie, nl. de Schur
decompositie. Omdat het hier in feite om veralgemeende eigenwaarden-
problemen met matrixparen gaat, is de veralgemeende Schurdecompositie
nodig. Uiteindelijk kan het volledige algoritme opgebouwd worden met
enkel orthogonale transformaties.

Het belang van deze opbouw schuilt in de afleiding van een recursief
algoritme. Het uiteindelijke resultaat is een Jacobi schema dat simultaan
rij- en kolomrotaties op de vier matrices uitvoert. De datastroom blijft
echter identiek aan het recursieve Jacobi SWO algoritme. Daarom vergt
de implementatie op de Jacobi architectuur enkel herprogrammering van
de processoren.

Hoofdstuk 8. Een parametrische methode voor
localisatie van bronnen in onbekende omgevings-
ruais

Het laatste hoofdstuk introduceert een nieuwe aanpak voor een belangriik
praktijkgericht probleem. Alle hoge-resolutiemethoden voor het schatten
van invalshoeken van smalbandige signalen gaan vit van de veronderstel-
ling dat de ruis van sensor tot sensor ongecorreleerd is. In de praktiik is
dat nooit zo. Als alle sensoren dezelfde karakteristieken hebben, is dit een
goed model voor ruis intern gegenereerd in de sensoren. Daartegenover
staat dat omgevingsruis die invalt op de roosterantenne altijd gecorreleerd
is.

Men kan corrigeren voor de ruiscorrelatie door de signalen eerst te
filteren met de inverse van de ruiscorrelatiematrix. Daarom zijn metho-
des om goede schattingen van de ruiscorrelatiematrix te vinden van groot
belang. Onze aanpak is modelgebaseerd. We ontwikkelen een model voor
de ruiscorrelatiematrix dat gebaseerd is op een Fourieranalyse van het
ruisvermogen in functie van de invalshoek. Volgens dit model is de ruis-
correlatiematrix een lineaire combinatie van een aantal basismatrices met
onbekende coéfficiénten. De basismatrices corresponderen met een term
in de Fourierexpansie. Ze kunnen vooraf berekend worden op voorwaarde
dat de transfertfunctie van de roosterantenne gekend is. De lineaire para-
meters ziin de Fouriercoéfficiénten. Dit model is aantrekkelijk omwille van
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drie aspecten. Ten eerste is het fysisch betekenisvol. De coéfficiénten zijn
niet zomaar fittingparameters, maar bevatten informatie over de plaatsaf-
hankelijkheid van de ruis. Ten tweede is dit model toepasbaar op antennes
met een willekeurige geometrie. De meeste ruismodellen in de literatuur
zijn enkel geldig voor regelmatige roosterantennes. Tenslotte is er de een-
voud van de parameterisatie. De elementen van de ruiscorrelatiematrix
zijn lineaire functies van de parameters. Dit vergemakkelijkt de algorit-
men.

Een belangrijk aspect is de uniciteit van de parameterisatie. Het is
echter moeilijk onder- of bovengrenzen op het aantal uniek identificeer-
bare Fouriercoéfficiénten te geven. Uit een studie van de topologie van
het probleem volgt dat het aantal oplossingen gelijk is aan het aantal ma-
trices van lage rang die aan twee lineaire matrixongelijkheden voldoen.
Het is bekend dat dit probleem in zijn algemeenheid NP-compleet is [16].

Om de parameters te schatten worden twee methodes besproken. De
eerste aanpak steunt op de theorie van maximale waarschijnlijkheid (E.
mazimum likelihood). Uit de afleiding volgt dat de optimisatie van ruis-
en signaalparameters niet gescheiden kan worden. De oplossing vergt
daarom een niet-lineaire optimisatie in een hoogdimensionale ruimte. Dit
is rekentechnisch niet interessant. Daarom opteren we voor een tweede
lichtjes suboptimale aanpak. Eerst worden de ruisparameters via niet-
lineaire optimisatie geschat. Met deze optimale ruiscorrelatiematrix wor-
den de uitgangen gefilterd. Tenslotte kunnen de signaalparameters zoals
invalshoek en signaalvermogen geschat worden aan de hand van de klas-
sieke hoge-resolutie-algoritmen.

Het nieuwe optimisatiecriterium volgt uit de theorie van maximale
waarschijnlijkheid voor een vereenvoudigd datamodel waarin de structuur
van de richtingsvectoren buiten beschouwing gelaten wordt. Zolang het
aanta] bemonsteringen groot genoeg is, biijft het verschil met optimale
maximale waarschijnlijkheid klein. Het criterium is een maat voor de
gelijkheid van de kleinste eigenwaarden van de ruiscorrelatiematrix. Het
is de verhouding van het geometrisch tot het arithmetisch gemiddelde van
deze eigenwaarden. Deze verhouding komt ook voor in detectiecriteria
voor de bepaling van het aantal bronnen zoals MDL en AIC [147]. Aan
de hand van simulaties wordt aangetoond dat dit algoritme een goede
performantie en robuustheid bezit.



Nederlandse Samenvatting xxix

Hoofdstuk 9. Conclusies en open vragen

In dit proefschrift ging de aandacht naar recursieve algoritmen voor digi-
tale signaalverwerking van roostersignalen in reéle tijd. Numerieke aspec-
ten waren zeer belangrijk. Omwille van de combinatie van aanzienlijke
berekeningskost en hoge datasnelheden hebben we de implementatie van
deze algoritmen op parallelle architecturen bestudeerd.

De (recursieve) singuliere waardenontbinding vormt de ruggegraat van
heel wat voorgestelde algoritmen. In een eerste luik hebben we een nu-
meriek meer betrouwbare variant op het Jacobi algoritme voor recur-
sieve SWO afgeleid. Dit algoritme bood inspiratie voor de afleiding en
parallellisatie van volledige signaalverwerkingsalgoritmen zoals robuuste
straalvormers en localisatie-algoritmen. Voor invalshoekschatting hebben
we algoritmen voor smalbandige signalen uitgebreid naar het geval van
breedbandige signalen, Tenslotte is ook een niet-recursief algoritme voor-
gesteld voor invalshoekschatting in omgevingen met onbekende gekleurde
ruis.

Tot slot sommen we enkele grote lijnen op voor verder onderzoek.
De grote krachtlijn hierbij is een verdere oriéntering naar de specifieke
eigenschappen van de toepassing. Dit zal een belangrijke verdere opti-
malisering van de performantie van de algoritmen toelaten. De algorit-
men zijn nu vooral gegroeid vanuit de theoretische studie van simultaan
ontwerp van algoritmen en architecturen en vanuit de digitale signaalver-
werkingstheorie. In de praktijk betekent dit dat een aantal veronderstel-
lngen waarop de algoritmen steunen maar gedeeltelijk voldaan zijn. Een
voorbeeld zijn de cellulaire mobilofoniesystemen. Het signaal van de mo-
biele zender bereikt het basisstation via meerdere paden met verschillende
sterktes en fazeverschuivingen. Door dit coherente multipad verschijnsel
veriiest de antenneresponsievector zijn spatiale structuur en kan er geen
hoek meer eenduidig mee geassocieerd worden. Het zenden vanuit het
basisstation naar de mobiele zender stelt ook specifieke moeilijkheden.
Het zend- en ontvangstkanaal verschillen in frequentie (45MHz in GSM).
Hierdoor zijn er ook verschillen in de responsievectoren. Daarom kan de
ontvangstresponsievector niet zomaar gebruikt worden voor de bereke-
ning van de zendgewichisvectoren.

Op het domein van de mobiele telefonie-applicatie is er nood aan
een algemeen aanvaard, realistisch, maar mathematisch hanteerbaar mo-
del voor het propagatiekanaal van mobiele zender naar roosterantenne.
Voorlopig zijn heel weinig metingen beschreven [76). Men kan het model
wel theoretisch uitbreiden vertrekkend van bestaande modellen voor één
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antenne.

Op het domein van de algoritmen zijn er twee grote lijnen. Ten eerste
is een statistische gevoeligheidsanalyse van de algoritmen noodzakelijk.
Kleine verschillen in de transfertfunctie van de ontvangstapparatuur of
onnauwkeurigheden in de plaats van de antenne-elementen zorgen voor
afwijkingen tussen het model en het werkelijke systeem. In dit proefschrift
lag de nadruk op simultaan ontwerp van algoritmen en architecturen.
Testen van de algoritmen gebeurde enkel op basis van simulaties. Een
radeel van deze - zij het algemeen aanvaarde — methode is de moeilijke
veralgemeenbaarheid van de resultaten. Een asymptotische analyse in
eerste orde heeft een algemenere geldigheid.

Anderzijds kan er nog in belangrijke mate gesleuteld worden aan de
algoritmen zelf. In communicatietoepassingen is men niet zozeer geinte-
resseerd in de exacte locatie van de zender, maar in de kwaliteit van
de signaalreconstructie. Omwille van het stochastisch karakter van het
propagatiekanaal is de spatiale structuur van de signalen niet goed gedefi-
nieerd. Maar communicatiesignalen zijn veelal sterk gestructureerd. Vele
signalen bezitten een constante modulus of hebben een digitale structuur.
Deze signaalstructuur wordt vrij goed behouden na propagatie. Recent is
er onderzoek verricht naar algoritmen die op basis van de partigle kennis
van de signaalstructuur het propagatiekanaal schatten [109, 117]. Dit is
nog maar een aanzet. Verder onderzoek op deze matrices van lage rang
met zowel een (niet-lineaire) structuur op kolomruimte als op de rijruimte
zal naar alle verwachting een beduidende verbetering van de performantie
brengen.



Chapter 1

Introduction

1.1 Motivation

Array signal processing is the branch of digital signal processing which
studies propagating wavefronts sampled in time and space by sensor ar-
rays. The most common sensor types are antennas, listening to electro-
magnetic radiation, and microphones, registering acoustic pressure waves.
The use of arrays of sensors has a long history. Important applications in-
clude radar and sonar systems, radio astronomy and satellite communica-
tion [44]. However, nowadays they attract a lot of attention for terrestrial
communication {2, 106]. The main reason is the expansion of the market
for wireless communication systems, such as cellular mobile telephony.
The success of the pan-European digital GSM system (Global System for
Mobile communications [72]) operational in Belgium since January 1994
is illustrative. Also wireless data networks gain importance [4]. The huge
demand for user capacity requires economical use of the scarce spectral
resources. Several techniques are in use to maximize the capacity.

First, GSM is a cellular system as illustrated in Figure 1.1. The
propagation environment for mobile communication is such that electro-
magnetic power evolves inversely proportional to r¥* [52], where r is
the distance to the emitter. Because of this fast decay, frequencies can
be reused as soon as a distant signal has become too weak to disturb the
communication with a nearby user. Therefore, the area to be serviced can
be divided into non-overlapping cells. Inside each cell mobile users, such
as phones instalied in cars or hand sets held by pedestrians, communicate
with a central base station. When a user leaves a cell, the communicaiion
is switched to a new base station by a hand-over procedure.
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Figure 1.1: A cellular communication system. The service area is covered
with cells. Al mobile users inside a cell communicate with a central
omnidirectional base station on different channels (dashed lines). Users
from neighboring cells on a same channel are perceived as interferences

(dotted line).

Secondly, GSM makes use of time and frequency division multiple
access (TDMA/FDMA). Two frequency bands of 25 MHz, one for the
uplink and one for the downlink, have been allocated around 900 MHz.
Inside a band there are 8 time slots and 124 frequency slots of 200 kHz
available. In each cycle of 8 slots, a typical channel carrying digitized voice
occupies one time slot on one frequency slot. Therefore, in principle 992
users could be serviced simultaneously inside a cell. The actual number
is much lower. First, in all countries there are (or will be) several system
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operators who run competing GSM systems in parallel. Therefore, an
operator only gets part of the frequency slots. Also, frequencies cannot
be reused in neighboring cells. As seen in ¥Figure 1.1 a user acts as an
interference source in surrounding cells. To keep the interference level
sufficiently low, frequencies are only reallocated to the celis of the second
tier (layer). This further divides the capacity with a factor 7. In an
area where 2 operators coexist, the resulting maximal capacity per cell is
roughly 70 users.

It is clear that this upper lmit can often be reached in busy ar-
eas. A long-term solution is the installation of a new GSM-like system
(DCS1800) in the 1800 MHz band where two 75 MHz band will be avaii-
able. However, this requires a complete redesign of the system, whereas
congestion often occurs in a limited number of busy cells. These local sat-
uration problems can currently only be handled by subdividing a cell into
smaller cells, in the limit leading to microcells only covering a few street
blocks. This approach has important disadvantages. The investment in
expensive base stations becomes prohibitive and frequent hand-overs have

to be performed.

Recently, antenna arrays have been recommended to provide a cheap
local solution to such a local capacity problem [2, 73, 106]. Currently,
the omnidirectional base station has no knowledge of the position of the
mobile user. The communication messages are broadcast omnidirection-
ally over the cell. They are received by all mobile users and each user
selects its own messages. Broadcasting requires substantial power and
possibly creates severe interference in the neighboring cells. In fact, it
is more optimal to establish several point to point communication links.
This can be achieved by directional transmitting and receiving by means
of antenna arrays at the base station. This has several advantages. For
the same reception level at the mobile user, the power emitted by the
base station can go down. This in turn lowers also co-channel interfer-
ence. And last but not least, array signal processing adds the possibility
of spatial division multiple access (SDMA). Several users can be put onto
the same frequency and time slots and still be discriminated according
to their location. If three users with different positions are multiplexed
onto the same channel, then the capacity of a cell is tripled. Only in cells
suffering from saturation a more complex base station benefiting from
antenna array technology has to be installed. Cells where no congestion
occurs, remain unaffected. Also, the antenna array and the additional sig-
nal processing equipment are entirely part of the base station hardware.
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Figure 1.2: Spatial division multiple access. For each co-channel user a
weighted linear combination of the antennas is computed. The associated
directivity pattern of the weight vector w, indicating the directional array
gain, exhibits a beam (maximal reception) pointing towards the desired
user and a null (zero gain) along the directions of co-channel users.

The mobile transceivers are not altered.

Two operations are needed for directional air links. First combina-
tions of the antenna elements have to be computed such that a focusing
in space is attained. As shown in Figure 1.2 this is achieved by linearly
combining the antenna outputs. The weights are determined such that
the array is maximally receptive to the signal from the desired user, while
all signals impinging from other directions are suppressed or at least suffi-
ciently attenuated. This spatial filtering structure is often called a beam-
former. If there is only one mobile user with a known position, then the
weight vector can be computed by least squares estimation techniques. If
there are multiple users with unknown locations, then eigendecomposi-
tion based techniques have to be used to determine the number of users
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and estimate their location. This position information is impossible to
obtain with a single omnidirectional antenna.

As an alternative a similar spatial selectivity can be obtained by a
single sensor with a large continuous aperture. Examples of such sensors
are the parabola antennas used in radio astronomy [44]. However, this ap-
proach is often undesirable, The technical difficulties and the equipment
cost increase more than proportional with the aperture of such a large
sensor. Moreover, array processing offers the user important flexibility.
It is well known that a single antenna with a continuous aperture is only
optimal in a spatially white noise environment [153]. Digital processing
of array signals allows to take into account arbitrary noise correlation.
It also adds the capability to steer notches (zeros} to cancel known in-
terferences and jamming signals. And the adaptation of the weights is
done electronically, without physically moving the sensors. Therefore,
the array can continuously adapt to changes in its environment, such as
moving users or short time interferences. Finally, arrays allow to attain a
resolution which is higher than the one of continuous aperture antennas
of comparable size.

The last decade has witnessed a large activity in the field of digital
array signal processing. New concepts have been brought forward and
many advanced algorithms have been developed. The main break through
is the fact that recent algorithms heavily rely on a mathematical model
for the antenna outputs. The geometry of the data model is expressed
in terms of concepts from linear algebra. The ocutputs of the array at a
certain sampling time form a vector of observations called a snapshot.
Similarly the signals from a single sensor observed over time are collected
in vectors. The observations of the sensor array over a time interval
are stored in matrices. As mentioned earlier, optimal weight vectors can
be computed based on solving a set of linear equations (least squares
estimation) and the position of the users is hidden in certain invariant
subspaces of the data matrix. Therefore, matrix decompositions, such
as the QR decomposition (QRD) and the singular value decomposition
(SVD), play an important role.

In addition to being the natural framework for modeling the data, lin-
ear algebra also provides the algorithm designer with a whole set of robust
algorithmic building blocks. Advanced algorithms offering improved per-
formance can often be built up as-a sequence of matrix decompositions.
The trade off is the increase in computation with respect to simpler, not
model-based algorithms. Therefore, execution of these algorithms in real
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time necessitates the use of powerful computers.

Moreover, throughput rates in the front end processing of antenna
array systems are often extremely high. In the GSM system the bit
duration is only 8.7 usec, which yields a bit rate of 270.3 kbit/s. At this
speed the signal reconstruction has to be performed. It consists of filtering
the antenna outputs and performing equalization in time. The adaptation
of the filter coefficients can be done at a lower speed. The position of
users only changes very slowly compared to the bit rate. However, the
propagation environment changes rapidly. The mobile user evolves at
low height — his antenna is typically at 2 t0 3 m ~ in an environment
full of large structures, such as tall buildings or hills. Due to reflection
and diffraction, a signal from a mobile reaches the antenna array via
various paths with different gains and delays. In a mountainous area these
multipath components may have delays up to 15 usec (%4 bit periods)
which corresponds to a difference in path length of 4500 m. In urban areas
maximum delays of 10 usec are observed [15, 971, Therefore, equalization
is needed. But the interference of the multipath components also causes
fast fading of the signal power. The fast fading may vary substantially in
as little as half a wavelength (16.6 cm at 900 MHz) [5]. For a car driving
at 120 km/h, it takes 5 ms to travel this distance. This number can be
taken as a measure for the rate of change of the mobile channel. A cycle
(sequence of 8 time slots) in GSM lasts 4.65 ms. Therefore, the GSM
system recomputes the 4 5 equalization filter taps in each cycle, based
on a sequence of 26 training bits in the middle of a burst.

At these speeds, even today’s fast digital processors have a hard time
performing complicated digital signal processing tasks on multiple chan-
nels in real time. Single dedicated or application specific processors may
be able to provide the required computing power, If this is not the case,
parallel computing is the natural way to further increase the execution
speed. This is not an easy issue. In order to obtain a good speed up,
one has to carefully balance computation, communication between pro-
cessors and memory access. Of course, the constraints imposed by the
architecture of the particular parallel machine under consideration have
to be taken into account. Important distinctions can be drawn between
synchronous and asynchronous machines and between global memory and
distributed memory machines [26]. This double distinction leads to four
classes of architectures with a different style of programming. Networks
of workstations belong to the class of asynchronous distributed memory
machines. Application specific systolic arrays are clearly a member of the



1.1 Motivation 7

class of synchronous architectures with distributed memory. However,
these features are only important at a later stage of the mapping from
algorithm to architecture.

Whatever the target architecture may be, modern parallel design
methodologies begin with a data flow analysis of the algorithm [50]. The
flavor of these methodologies is mainly graphical. First a dependence
graph (DG} of the algorithm is constructed. This is an acyclic graph
uncovering the order in which signals are generated and consumed by op-
erations. An alternative, more compact representation is the signal flow
graph (SFG) which contains loops, i.e., memory. Various transformations
can already be applied to these graphs to make them more suitable for
mapping onto a parallel machine. In a second phase a processor and an
execution time have to be associated with each node (operation) in the
graph. Assigning nodes to a physical processor is called the placement
step. This step depends of course on the architecture of the particular
machine under consideration. Determining an execution time for each
node is called the scheduling step. Here the important issue is to respect
the ordering imposed by the dependencies. A signal cannot be used in
the computation before it has been calculated.

A large class of matrix algorithms is well suited for parallel execu-
tion because of their intrinsic regularity. Vectors and matrices are reg-
ular data objects. Also the processing is often shift invariant, i.e., the
same operations are to be performed to neighboring entries of the ma-
trix. Moreover, sometimes the operations on a certain entry only require
knowledge of the previous value of the entry and its neighbors. This
property gives rise to local dependencies in the DG. Such algorithms are
ideal candidates for implementation on systolic arrays. A systolic array
is a special purpose synchronous architecture in which the processors are
interconnected to nearest neighbors in a regular pattern. This type of
architecture is attractive because of the extreme degree of pipelining and
its regularity which eases a VLSI implementation. However, it should
be noted that many implementations of algorithms for which a systolic
architecture exists will not be systolic, e.g., asynchronous communication
or global memory may be used. A first reason is that it is unlikely that
an algorithm has to be executed at such high data rates that the ultimate
pipelining is needed. In general, the throughput requirements can already
be met at a Jower cost by allocating large parts of the computation to a
few processors. A second reason is that a systolic array is parameterized
by the problem size, e.g., the size of the antenna array. Often problems
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with different sizes have to be solved on the same architecture. The im-
plemented architecture with a fixed size must then have an additional
control to allocate computation over time and processors. Therefore, the
attribute ’systolic’ is more a property of the aigorithm, indicating that
its SFG is homogeneous and regular with local dependencies such that
a fully systolic architecture is feasible. In this sense, one should realize
that the (systolic) architectures which will be presented later on, are not
really a specification of a physical parallel machine, but a virtual parame-
terized architecture from which an optimal physical paraliel machine can
be derived.

Currently formal methodologies and interactive software tools are un-
der development to assist the designer in developing a special purpose
array processor for his algorithm [23, 62, 84]. This simultaneous design
of the signal processing algorithm and the parallel architecture on which
it is to be executed, offers the largest freedom to obtain an optimal fit
between algorithm and architecture. The corresponding discipline of de-
riving stable versions of algorithms which are well suited for parallel im-
plementation by transformations on the SFG is often labeled algorithmic
engineering' {57, 58, 83].

Economic considerations determine whether the development cost of
an application specific parallel architecture is affordable or not for a par-
ticular application. In the near future the advent of semi-automated par-
allelization software may cut this cost considerably. In any case, whether
an algorithm is to be executed on an application specific or on a general
purpose parallel machine, reconsidering existing algorithms to increase
their parallelism and regularity is an important issue. In a design it is
generally the rule that the largest optimizations can be obtained at the
highest level, i.e., the algorithmic level,

1.2 General survey

As shown in Figure 1.3 two themes recur throughout this text. The first
theme is the development of new algorithms for array processing applica-
tions. The second ane is parallel architectures. Chapters proposing aigo-
rithms for similar applications are ordered sequentially. First chapter 2
introduces the necessary background material. Then chapter 3 and 4 pro-

IMcWhirter and co-workers use the term ‘algorithmic engineering’ for transfor-
mations on the SFG on a high level. Here the term denotes the complete field of
simultaneous design of algorithms and architectures.
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Figure 1.3: Relations between chapters 2 to 8§

pose algorithms for subspace tracking. Tracking the dominant subspace
of the data matrix will be a key compornent of recursive direction finding
algorithms. The difference between the algorithms in chapter 3 and 4
is their computational cost and the accuracy with which they track the
subspace. Chapter 5 introduces an adaptive beamformer with increased
robustness to errors in the constraints, These constraints influence for
instance the position of the main lobe of the beamformer. An example is
a mobile user whose position estimate is subject to estimation errors. In-
sensitivity of the beamformer to this type of errors is an important asset.
Finally, chapters 6 to 8 treat the direction finding problem under various
assumptions. In the standard narrow-band data model there are multiple
signals modulated onto the same known carrier frequency. In chapter 6
a subspace algorithm is proposed for the situation in which the carrier
frequencies are not known. Chapter 7 presents a further generalization
of the data model. Now the signals are assumed to be wide-band signals.
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Such a model is needed for the processing of acoustic signals, such as
speech or audio. Finally, chapter 8 returns to the standard narrow-band
mode] for the signals, but proposes a extension of the noise model. The
often unrealistic assumption that the sensor noise is spatially white, is
relaxed to the assumption that the noise correlation matrix belongs to a
well chosen linear model class. We also discuss an algorithm to estimate
the additional noise parameters.

We will be especially interested in recursive algorithms for real time
execution. Because of our concern for parallel implementation, the al-
gorithms are composed of matrix decompositions, More irregular oper-
ations, such as nonlinear optimization methods, are avoided as much as
possible. An exception is the colored noise algorithm of chapter 8 for
which nonlinear optimization is necessary. But there, we will not be
looking for a recursive algorithm either.

In the text four recursive algorithms will be mapped onto a parallel
architecture. Qur approach is not to come up with a totally different
architecture for each new algorithm. Instead three of the four algorithms
will be mapped efficiently onto the same architecture, i.e., the Jacobi ar-
ray which was originally developed for SVD updating [66, 67]. The fourth
algorithm is mapped onto a related but simplified architecture. The wide
applicability of the Jacobi architecture is at first sight surprising. How-
ever, several recursive signal processing algorithms for seemingly widely
different applications can be formulated as Jacobi algorithms. Here we
take the freedom to call an algorithm a Jacobi algorithm? if its structure
is identical to the structure of the Jacobi SVD updating algorithm to
be discussed in chapter 2, i.e., it consists of & sequence of matrix-vector
multiplication, QRD updating and a series of two-sided Givens rotations.
Their data flow is identical. Only the node descriptions specifying the
input output mapping, may differ. Examples are recursive aigorithms for
SVD and its generalizations, such as quotient SVD, product SVD [60]
and the URV decomposition [68, 102]. Also other signal processing algo-
rithms such as inverse recursive least squares (RLS) [61] and narrow-band
direction finding {71] have been formulated as Jacobi algorithms. Here we
extend this class by three more algorithms: a stable Jacobi SVD updating
algorithm without reorthogonalization, a beamforming algorithm and a
direction finding algorithm for wide-band sources. The fact that a rela-

2Originally the term Jacobi algorithm refers to a symmetric eigenvalue solver using
two sided rotations [42). Later the term was also adopted to denote the Kogbetlianz
algorithm which uses two sided rotations to compute the SVD [48].
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tively large class of relevant signal processing algorithms can be mapped
onto the same Jacobi architecture, makes it much more attractive for im-
plementation in hardware. The only requirement is that this architecture
is not fullv hard wired, but instead slightly programmable. It provides a
limited set of operations, mainly rotations, and the user has to program
certain actions, such as the way the rotation angles are determined. The
design of such an array is currently taking place [24, 118].

1.3 Chapter averview

Below we give a detailed overview of the text. The main contributions of
each chapter are summarized.

Chapter 2. Concepts and tools

In this introductory chapter we give ar outline of the background material
from the fields of array processing, linear algebra and algorithmic engi-
neering. These are the three major areas on which this text is based. The
chapter gradually introduces the field of array processing. First the data
model for narrow-band sources impinging on an array is developed. Next
some algorithms for beamforming and direction-of-arrival estimation are
presented. In later chapters we will propose modifications and exten-
sions to these algorithms. The concepts of linear algebra and algorithmic
engineering are introduced as they are needed.

Chapter 3. Factored Jacobi SVD updating

This chapter presents a first algorithm for stable subspace tracking. As
will be explained in chapter 2, the dominant subspace of the data matrix
is determined by the position of the mobile users. When the mobiles are
moving, this subspace changes. These variations have to be captured in
order to track the position of the mobiles. SVD updating is well suited for
subspace tracking, We propose a modification to the Jacobi algorithm for
SVD updating. The original version of this algorithm requires periodic
reorthogonalization in order to remain numerically stable.

The contribution of this chapter is the introduction of a minimal
factorization for orthogonal matrices. An arbitrary orthogonal matrix
RM*M can be factored as a sequence of M{M — 1)/2 Givens rotations.
This factorization is applied to the matrix of short singular vectors in the
Jacobi SVD updating algorithm. This ensures the numerical stability of
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the algorithm, by excluding accumulation of round off errors in finite pre-
cision arithmetic. Moreover, this approach leads to a new Jacobi systolic
architecture which solely consists of rotation nodes. This resemblance
of the functionality of all nodes simplifies the hardware design of such a
processor node.

The emphasis in this chapter is mainly on numerical linear algebra
and architectures. However, updating the SVD is a key to the array
processing algorithms to follow.

The material from this chapter is published in [135]. More concise
descriptions are given in [136, 137].

Chapter 4. Parallel spherical subspace tracking

The spherical SVD algorithm is a second subspace tracker. It differs from
the Jacobi algorithm in that it requires substantially less computation.
This is due to the fact that it only keeps track of the dominant subspace of
the SVD and that the exact signal and noise singular values are averaged.
In contrast to the Jacobi SVD algorithm, the spherical subspace tracker
is non-iterative. The trade off is a slower convergence speed.

The original algorithm suffers from the same error accumulation as
the Jacobi SVD updating algorithm. Therefore, we propose to apply the
same factorization idea as in the previous chapter. This leads to a novel
factored spherical subspace tracker. Based on its SFG, we obtain by a
linear placement and a piecewise linear schedule a new linear architecture.
Finally, a planar architecture is developed using algorithmic transforma-
tions. Unfortunately, due to some irregularities this planar array is less
efficient than its counterpart for the Jacobi algorithm.

The derivation of the algorithm and the mapping onto a linear array
are described in {128].

Chapter 5. Robust adaptive LCMYV beamforming

In chapter 3 we already proposed a modified Jacobi algorithm for SVD
updating. This chapter introduces a second Jacobi algorithm for ro-
bust beamforming. The adaptive linearly constrained minimum variance
(LCMYV) beamformer is a popular choice for updating the weight vector
of an antenna array, when a single signal-of-interest {SOI} with a known
position is received in an unknown, possibly time-varying, noise and in-
terference environment.
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An application is a cellular communication system in which the base
stations are equipped with antenna arrays, but no spatial multiplexing is
applied. Once the position of the user is estimated, a beamformer can
be computed such that interferences coming from neighboring cells are
attenuated. Ideally in such a scheme the capacity could be multiplied by
a factor close to 7 by reusing all frequencies in all cells {85]. The base
station then has to cancel the co-channel interference from neighboring
cells,

However, the LCMV beamformer is known to be very sensitive to er-
rors in the constraint matrix caused for instance by inaccuracies in the
location estimate. We propose to increase the robustness of the beam-
former by recursively estimating the array response vector of the 501.
This is possible in applications such as GSM where a periodic training
signal is available. The mathematical formulation leads to a recursive
least squares problem with a time-varying constraint. Based on a known
structure for LCMV beamforming with fixed constraints, ¢.e., the general-
ized sidelobe canceler (GSC), a Jacobi-type algorithm can be formulated.
Again, it can be mapped efficiently onto the parallel Jacobi architecture.

This chapter is based on [129]. In this reference also a second ap-
plication specific systolic architecture is derived. Parts of the work are
reported in [124, 125, 138]. An alternative approach to increase the ro-
bustness, based on SVD regularization, is given in [70].

Chapter 6. 2-D Harmonic retrieval

The thesis is concluded with three chapters on direction-of-arrival (DOA)
estimation of multiple signals. Each chapter makes different assumptions
on the data or noise model. In the standard narrow-band model the
sources have a known carrier frequency in common. In this chapter we
assume that the carrier frequencies are not longer known. They may or
may not differ and have to be estimated simultaneously with the DOAs.

An example is a broadband antenna array system for controlling the
regulations on spectral allocation. In every nation there is a governmental
institute distributing licenses for radio transmission. Each licensee has to
comply with the regulations on power levels, bandwidth,... As shown in
Figure 1.4 airborne array systems can be used to check if the regulations
are observed in the field. Such a system has to scan the frequency band of
interest, determine the location of all emitters and measure their spectral
characteristics.
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Figure 1.4: Airborne surveillance system monitoring all radio sources in
a given spectral band, such as radio and TV broadcasting and wireless
communication systems.

In this chapter we restrict our attention to a non-recursive algorithm
for off-line processing. No architectural issues are discussed. The new 2-D
harmonic retrieval algorithm is cheaper than existing algorithms. This is
due to the fact that the 2-D problem is separated into two related 1-D es-
timation problems. For each 1-D estimation problem a matrix pencil has
to be diagonalized. In fact, by careful selection of the matrices in the two
pencils both 1-D problems are solved by the same transformations. Also
an efficient rank restoration method is proposed to cope with situations
where multiple signals have a common carrier frequency.

Part of this material can be found in [130}.

Chapter 7. State space direction finding for wide-band emitters

In this chapter the assumption that the signals are narrow-band is relaxed.
Instead the signals are modeied by a {low order) time-invariant linear
system driven by white noise. Such a model is applicable to microphone
arrays for processing acoustic signals. An interesting application is the
development of a hands-free mobile telephory set [14, 75]. By use of a
small micraphone array a car driver could make a call without having
to hold a handset. The microphone array serves to enhance the speech
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signal in the background noise.

Existing approaches to wide-band direction finding are mainly based
on reducing the wide-band problem to a set of narrow-band problems with
different center frequencies [104, 145]. We do not decompose the wide-
band signals into different frequency bins. Instead the novelty of our
approach lies in the use of state space descriptions for the sensor outputs.
We combine the conceptually new subspace algorithms for identification
of linear systems {63, 121] with array signal processing to simultaneously
identify the system poles and the locations of the sources.

Two algorithms are introduced. The first is a non-recursive algo-
rithm which is related to the 2-D harmonic retrieval subspace algorithm
of chapter 6. Again the estimates of the system poles and the locations
are computed as the rank reducing numbers of two related matrix pen-
cils. The second algorithm is a recursive wide-band direction finding
algorithm, which is structured as a Jacobi algorithm such that the Jacobi
architecture can be used for parallel implementation.

This chapter is largely based on [134]. The relation between the num-
ber of antennas and the number of signals is reported in [127]. An al-
ternative fast algorithm based on displacement structures is reported in
[126]. Early summaries of the chapter are [132, 133].

Chapter 8. A parametric approach to direction finding in un-
known ambient noise fields

The flavor of this last chapter is different from the previous ones. It is
written from the viewpoint of estimation theory and the emphasis is not
on recursive algorithms for real time operation on parallel machines.

We consider again communication systems in which the signals are
narrow-band waves. The standard data model assumes that the sensor
noise is spatially white. This assumption is realistic for noise which is
generated internally in the sensors. However, it is hard to defend for
ambient noise impinging on the antenna array.

It is well known that the performance of subspace algorithms for di-
rection finding is sensitive to unknown noise correlation [141]. Therefore,
good methods to model and estimate the noise correlation matrix are
crucial.

The main contribution of this chapter is a simple linear model for
the ambient noise. If the response of the antenna array as a function of
the direction-of-arrival is known, then the noise correlation matrix is a
linear combination of a set of basis matrices. The noise parameters in the
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model are the Fourier coefficients of the unknown noise field. In contrast
to existing approaches this model is applicable to antenna arrays with an
arbitrary geometry.

Secondly, we discuss the identifiability of the data model in the frame-
work of linear matrix inequalities (LMIs) [7]. We also study maximum
likelihood approaches for the estimation of the noise parameters. Unfor-
tunately, this requires nonlinear optimization. In order to study the con-
vergence, a concise analysis of the object function is presented. Finally,
the performance of a gradient algorithm is illustrated by simulations.

This work has been initiated and elaborated during two visits to Prof.
A. Paulraj at the Information Systems Laboratory of Stanford University.
The noise model and the identifiability are discussed in [139].



Chapter 2

Concepts and Tools

In this introductory chapter we give an overview of the necessary back-
ground material from the three major areas on which the thesis is based,
i.€., array signal processing, linear algebra and algorithmic engineering.
The first section gives a derivation of the data model for narrow-band
point sources impinging on a sensor array. Specific geometric properties
of this data model are crucial for the development of algorithms. The
next section describes the beamforming task and introduces the QR de-
composition. The generalized sidelobe canceler for recursive beamforming
is discussed. This algorithm and its associated parallel architecture will
form the basis for the robust LCMYV algorithm in chapter 5. In the last
section various direction finding (DF) algorithms are reviewed. Here, the
appropriate mathematical tool is the singular value decomposition. We
introduce the Jacobi algorithm for SVD updating. This algorithm and
its parallel Jacobi architecture are the backbone of the recursive array
processing algorithms of later chapters.

2.1 Narrow-band data model

Array signal processing is the branch of signal processing aiming at ex-
tracting information from propagating waves using sensor arrays. For an
excellent introduction to the field, the reader is referred to [44]. Although
array processing has its own peculiarities, there are close links {o the more
familiar theory of time series processing. Time and space are often in-
terchangeable. A sensor array samples a wave at different (equidistant)
points in space, whereas a tapped delay line samples a continuous-time
signal at different points in time. Below we develop a mathematical model
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Figure 2.1: An antenna array with M elements receiving D incident wave-
fronts (full lines). The sources are in the far field of the array since the
wavefronts are planar. The array elements do not have to be equal. This
is indicated by the directivity patterns (dashed lines), which show the
input-output gain of the element as a function of the direction-of-arrival.

for the sensor array output.

A sensor array is a group of M sensors placed at different spatial
locations {r,m}=1 (rm € R®), sampling an electro-magnetic or acous-
tic propagating field at a set of (regularly spaced} time instants {tx}
(Figure 2.1}, Under the assumption that the sensor is a linear device
of non-negligible size (e.g., a parabola antenna) with impulse response
by (r,t), the output ., (t;) of sensor m is related to the wave field f(r,t)

through a spatiotemporal filtering operation

B (t4) =jj[p/1hm(p,r)-f(rm — oty = 7) dp dr

where the vector p € R? is a relative coordinate with respect to the
midpoint r,, of the sensor. If the size of the sensor (i.e., the aperture) is
small by comparison with the variations in the wave field, f(r,¢) can be
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Figure 2.2: The time-difference-of-arrival 7,¢ between the reference sen-
sor and sensor m for a planar wave with propagation vector uy is given
by the ratio of the projected distance between the two sensors onto ug
and the propagation speed c¢.

considered constant as a function of r and the 4-dimensional convolution
reduces to an integral over time.

In many applications the data model can be further simplified. Con-
sider a radio communications application. Here the amplitude-and-phase
modulated information signal has a complex envelope

salt) = a(t) 560!

and the input signal to the reference sensor (sensor 1) is the information
signal modulated onto a carrier wave with frequency f.

34(t) = og(t) - cos(2mf. -t + Sa(t)}.

The output of sensor m is a scaled and delayed sinusoidal signal of
the same frequency f.

Em(t) = gm(84) - 0a(t — Tima) - cos(2mfe - (t =~ Tma) + Galt ~ Tma))

where gm(fy) is the gain of seasor m for a signal impinging from angle-
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of-arrival’? (AOA) 8, and 7, is the time-difference-of-arrival (TDOA)
between the reference sensor and sensor m for signal d. For an emitter
in the far field and a homogeneous non-dispersive medium (i.e., constant
propagation speed ¢}, this TDOA is related to the propagation direction
by

g = uf - Tm =T

¢
where the vector ug € R® denotes the normalized propagation vector
(Figure 2.2}. As an example, consider a typical array for a GSM base
station consisting of M = 10 elements spaced half a wavelength apart at
900 MHz. The maximal TDOA between two consecutive elements is then
of the order of 0.5 nsec. The maximal traveling time across the array
Tmax 18 of the order of 5 nsec. A signal sy(t) is called narrow-band, if
its bandwidth B is smaller than the reciprocal of the maximal TDOA
(B € 1/Tmax) [91]. For GSM, B = 100 MHz and 1/mn., = +200 MHz
such that the narrow-band condition is fulfilled.
The following approximation then holds for all m and d

aq(t)
Balt).

ag(t ~ Tma)
de(t - de)

~
~
=

Therefore, the complex envelope z.,(t) of the sensor output #,,(t) equals
the complex input signal up to a complex scalar a,, (04)

Tm(t) = gm(6a) €7I2TITm L 54(t)
= an(f)-sqlt).
This simple narrow-band relation leads to an elegant fundamental matrix

expression for the sensor array output. Let the vector zp) = z(tx) € cM
be

T
a = | 21(te) -0 Talte) ]
and define the data matrix X € CM*N 4
X=[ay o o |-

Column % of X contains the array output at time ¢z, whereas row [ of X
contains the time series observed by sensor {. The data matrix can now

1We assume that the sensor gain can be fully parameterized by the azimuth angle.
In general, other parameters, e.g., the elevation angle, also affect the sensor gain.



2.1 Narrow-band data model 21

be written as the outer product X = a{8,) - sq of the input signal vector
s e CN
5¢ = { sa(t) -+ sa(in) ]

and the array response vector? a(f;) € CM

a) = (00 - au(@s) ]

The set of array response vectors for all angles @ is called the array man-

ifold A
A={a(f)|0<8<2r}

If the sensor characteristics vary smoothly, then the array manifold draws
a closed continuous curve in C¥ (Figure 2.3). An array manifold A is
called unambiguous when any set of M array response vectors is linearly
independent. This property is crucial for the uniqueness of the direction
finding solution [91].

In case of noisy observations of multiple input signals {sq(¢)}2.,, all
sharing the same carrier frequency but impinging from distinct AOAs
{64}2_,, the data model is extended to

X=A-§S+W (2.1)

where the input signal matrix § € CP*V and the array gain matrix
A e CM*D are given by

S5 = [s'{ SE]T

A

I
-y
f=]
—
el
[y
—
=1
)
o
-
—_—

The matrix W &€ CM*N contains both noise contributions which are
generated internally in the sensors and unwanted observed signals (e.g.,
ambient noise and interference signals).

Without noise on the data, the column vectors of X are contained in
the column space of A. The span of the array gain matrix A is commonly

called the signal subspace S

S={zecCM3yeCP z=A -y}

?Note that the array response vector - also called direction-cf-arrival vector or steer-
ing vector - is only dependent on the array characteristics, i.e., directivity patterns and
location of the sensars.
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Figure 2.3: Geometry of the narrow-band data model (M = 3,D = 2}.
The array response vectors, corresponding to the AQAs are found in the
intersection of the array manifold A and the signal subspace S.

The orthogonal complement of the signal subspace is known as the noise
subspace . The geometry of the narrow-band data model is shown in
Figure 2.3. In the absence of noise each snapshot z is a linear combi-
nation of the array response vectors {a{#;)}2., with varying amplitudes
{sa(t&)}%., and is therefore confined to the signal subspace §. The lo-
cation of the signal subspace is determined by the array response vectors
and thus by the location of the sources.

2.2 Beamforming

A first important motivation for using sensor arrays is to enhance the
signal-to-noise ratio (SNR) beyond that of a single sensor. This objective
is the spatial analogue of FIR filtering in the time domain. Such a spa-
tial linear filter is called a beamformer (Figure 2.4). Its output yy; is a
weighted combination of the sensor outputs

Y = 2fiy - -

The structure of the beamformer reminds of a transversal finite im-
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interference

Figure 2.4: A beamformer linearly combines the antenna outputs with a
weight vector w. The weights determine the directional gain of the array
(dashed curve). The weights are such that the signal of interest {(SOI) is
enhanced while noise and interferences are suppressed.

pulse response (FIR) filter, in which the outputs of a tapped delay line
are weighted and summed. The choice of the weight vector (i.e., the filter
coefficients), determines the spatial sensitivity of the sensor array. This
spatial sensitivity is plotted as a directivity pattern, which is defired as

d(6) = |a(8)™ - |

for the set of angles # under consideration. The directivity pattern shows
the input-output gain as a function of the angle-of-arrival for a sinusoidal
signal of a given frequency. Therefore, it is the analogue of a Bode plot
of the FIR filter which shows the input-output gain as a function of fre-
quency. Often the beamformer acts as a spatial bandpass filter, passing
the signal-of-interest (SOI} in its main-lobe and rejecting signals arriving
from other directions. Ideally the SNR at the output can be increased
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Figure 2.5: Directivity pattern (amplitude) for a 10-element ULA with
spacing A = A/2 and all weights taken to be unity. The directivity
pattern shows the input-output gain of the array in function of the angle-
of-arrival for a signal of a given frequency.

by a factor of M, i.e., the number of sensors. This is illustrated by the
directivity pattern of a Uniform Linear Array (ULA) in Figure 2.5. Such
a ULA is a common sensor array structure, composed of M identical
omni-directional sensors, placed regularly on a straight line.

2.2.1 LCMYV beamforming

In many applications the beamformer needs to reconstruct an SOI com-
ing from a known AOA 8,, maximally rejecting interferences and noise.
The optimal weight vector can be determined by solving a constrained
least squares problem. The total output power is the sum of the output
power, due to the SOI, and the interference and noise power. Optimal
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signal reconstruction is obtained if the output power is minimized sub-
ject to the constraint that the sigral power is kept constant. This can
be accomplished by a priori imposing a non-zero gain-and-phase p in the
direction of the SOI

a(8)7 - w = p. (2.2)

Additional constraints can be added, e.g., to force zero gain along known
interference directions, or to shape the directivity pattern. A frequently
used constraint imposes an extremum of the directivity pattern at the

SOl direction
da

a6
The time-averaged output power is p = -jt?—yH vy = w¥ . R, - w where
y=X" . wand R, = -J—IV—X - X#H is the sample correlation matrix. The
optimal weight is then the unique solution of the following minimization
problem

()7 -w=0.

m&n wi R, w subject to CH.w=m. (2.3)

The matrix C' € CM*X is the constraint matrix and m € C¥ is the gain
vector. Hence, this approach is known as linearly constrained minimum
variance (LCMV) beamforming. In order for the optimization to have a
solution, the number of constraints K is assumed to be smaller than the
number of sensors M. The optimal weight vector @ is readily obtained

as
@=R;'.C-(CH-R;'-C)' m.

An equivalent expression for @ can be derived as follows. The constraints
form an underdetermined set of linear equations. All solutions are char-

acterized by
W= {wjw=w,+B-up}.

The designer is free to choose the so-called ‘quiescent weight vector’ w, €
CM as long as it satisfies the constraints

CH .w, = m.

The ‘blocking matrix’ B € CM*(M-K) i5 a preferably unitary matrix,
whose columns span the null space of C¥

CH.B = Ogym-k)-
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Its name is explained by the observation that the columns of B are or-
thogonal to a{d,). Therefore, they act as notch filters, blocking the SOI
and passing only noise and interferences. The SOI is only present in the
output of the filter w,. The new urknown wy, € CY¥-K is a weight vector
of reduced dimension. Minimizing the output power with respect to wy
then results in

@ =—-(B¥ -R,-B)™ .B¥ . R, . w,. (24)

This expression is implemented by the generalized sidelobe canceler {GSC)
[37], whose high-level signal flow graph (SFG) is shown in Figure 2.6.
We call a SFG a high-level graph when it consists of block operators
transforming vectors or matrices, and the exact internal structure is not
detailed. The upper rectangular operator is called the beamforming net-
work. It contains the compound matrix [ B | w, ] and converts the sen-
sor cutputs from ‘data space’ into ‘beam space’ by matrix multiplication

[Egjlﬂw]:x{f}-[ﬁ'lwq].

The lower operator represents a linear filter of size M — K. The expression
for the optimal weight vector can be highly simplified by the use of the
QR decomposition.

v Given a matriz Z € CN*M N > M, then its QR decomposition is
defined by
Z=0Q R

where Q € CVXM {5 q unitary matriz Q¥ - Q = Iy and the matriz
R e CMXM 45 ypper triangular.

The matrix Iy € RM*M is the identity matrix. On condition that Z has
full rank M, this decomposition is unique up to a diagonal matrix D with
elements of unit-modulus. Its relevance lies in the following properties.

¢ The columns for (J constitute an orthonormal basis of the column
space of Z.

¢ The matrix R is a square-root (even a Cholesky factor) of Z¥ . Z.
The use of the QR decomposition avolds explicit computation of the
latter matrix product. Therefore, so-called square-root algorithms
have better numerical properties.
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Figure 2.6: High-level signal flow graph of the generalized sidelobe can-
celer.

¢ The triangularity of R allows for a cheap solution of the associated
linear system by back substitution. It is also important for fast
updating.

Let the transformed data matrix X¥ ¢ CVN*(M-K) and the vector
¥ e CV be defined as

[ X7 |g|=x"[B|uw].

Substituting X in (2.4) for its QR decomposition X¥ = @ - R, we find
an alternative, much simpler expression for the optimal weight,

Wy=~-R"1-u (2.5)

where the vector u € CM~K is defined by z = Q¥ . §.

2.2.2 Recursive LCMYV beamforming

In 2 time-varying environment, the optimal weight vector has to be adapted
continuously. The sample correlation matrix is time-dependent and the
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weight optimization becomes a recursive least squares problem. Each
data vector is processed as soon as it becomes available. The data matrix
Xx) now continuously grows as new observations are appended

a- X
X1k1=[——7$——1-$ fol ]
N’ {%]
kxM

The real scalar o < 1 is an exponential weighting factor which is incor-
porated to de-emphasize older data.

One possible implementation, well-known for its numerical stability
and intrinsic parallelism, is based on QRD updating. At each time fg,
the optimal weight is still given by Eq. (2.5)

@y g = ~ By - vy

In order to track the weight vector, the QR decomposition of the growing
matrix X [kH} has to be updated. Assume that the QRD of X{{_n = Qre-1]"

Ry.q) is given. The updated matrix X{% can be decomposed as

o H K Xﬁc{q
_ [Qu-nloO ] _ [ afi[?-—ﬁ ]
! @] 1 T
Qp-11 | O H o Ry
= 7o T} -Gy Glig - —?[E{]—L
[ Qua | * ] [ OR[k]D ]

The submatrices O are zero vectors of appropriate dimension and the
symbol + denotes a gquantity of no further interest. The transformation
G|y is unitary and restores the upper triangular structure of the R-matrix.
Several choices are available for the computation of Gyy. In view of a
parallel implementation, the best choice is to construct Gy as a sequence

of M —~ K Givens rotations G;L?J—K+1 ¢ CM-E+1)x(M=K+1) A Givens

rotation GV € C**” is a 2 x 2 rotation matrix embedded in the identity



2.2 Beamforming 29

matrix of size n. It only affects rows/columns (i, j)

Iig

G‘fJ . Ij—z’— 1

-—g* e c

In-j |

where c is real, and c® + |s|?> = 1. With each Givens rotation one can
associate an angle o = tan™? J-z-l and a phase factor e/ = ;%. A VLSI
hardware component which is especially designed to perform 2 x 2 rota-
tions accurately and fast is the CORDIC (coordinate rotation digital com-
puter) processor [35, 38, 143}. It decomposes the rotation in a sequence
of so-called micro-rotations. Each micro-rotation is such that it can be
realized by a single {or a few) shift-and-add operations. The CORDIC
can operate in two modes. In vector rotation mode, it rotates its input
vector over a given angle. In angle accumulation mode, it computes an
angle such that the second component of the input is zeroed.

In the Givens QRD updating algorithm [33], the ith Givens rotation
is computed such that it annihilates the ith entry of i{,’:} by combining it
with the ith diagonal entry of aRy_y) (angle accumulation mode). 1t is
then applied to row ¢ and M — K + 1 (vector rotation mode). A 3 x 2
example is given below.

4 / i !

XX b XX "
13 |3

x | G X =P, x!

X % 0 x' 0 0

The explicit computation of the weight vector @ j;; requires the solu-
tion of a triangular linear system. This requires a back-substitution step,
which has an O{M — K)? complexity. Moreover, during back-substitution
the data flow evolves in the opposite direction of the data flow during the
QRD updating. This complicates efficient pipelining of both operations.
In array processing one is usually not interested in knowing the weight
vector explicitly®. The ultimate goal is knowledge of the reconstructed
signal

Yo = Gis + Efly - Dogur

3If knowledge of the weight vector is desired, it cam be obtained without back
substitution by ’freezing’ the adapiation and inputting an identity matrix [99].
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This so-called residual signal yj;) can be obtained as a side product of
the QRD updating. Consider the QRD update applied to the compound
matrix

o Ry | @ ey ]

i - | Cma1 | Gruae leum]
Iy | 9w

B [ Gi,a1 | G2z } ' [ O |2

where the matrix Gy, is partitioned accordingly. It is an easy exercise to
check that the following equality is satisfied

Gpozz- 2 = Gy + 3« (R - ) -
W
W, 1k}

Therefore, the optimal output of the beamformer is simply given by

yia) = Glag,2z * 23

It follows from the construction of Gy as a sequence of Givens rotations
that the scalar Gy 55 is the product of all cosines of the rotation angles

M=K
Guaz= |1 -

=1
Instead of solving a linear system, the computation of yj; is reduced to
a simple multiplication. This result was originally exposed by Shepherd
and McWhirter [100].
The recursive generalized sidelobe canceler algorithm is summarized
in Algorithm 1. The parameter () accumulates the product of the cosines
of all Givens transformations.

Algorithm 1
Compute w, and B such that
CH-wq = m
CH.B = Ogxp-k)

Ry« Omr-r)x(M-K)
ug — Owr-K)x1

fork=1,.... o
1. Matrix-vector multiplication

(et om ] « ofy-[Blw,]
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2. QRD updating

Ry |um | _
Oix (M=K} | %)

_ H
MK HM~K+1 o By l & Ulk--1]
H G[k] * iH -
L

i=1

MK (M -K+1
TR < H G[k],a‘i

=1
3. beamformer output computation
YRl <= YA

endfor

2.2.3 Parallel mapping

Algorithm 1 is very well suited for parallel implementation. For the map-
ping from algorithm to parallel architecture we will adhere to the canon-
ical mapping methodology described in [50]. This methodology can be
exposed in a graphical way, marnipulating graphical representations of al-
gorithms. The advantage is that the paralielism is much more apparent
in a graph than in a textual description. It also allows to visualize the
transformations by software tools to assist in mapping new algorithms
onto application specific or general purpose parallel architectures.

The starting point is a dependence graph (DG} of the algorithm. Usu-
ally the algorithm is specified as a nested loop program in a standard
computer language. This textual sequential description is converted into
a DG by associating with each operation a node indexed by its loop vari-
ables. The data flow is represented by direcied arcs. An output argument
from one operation which is used as an input argument of another oper-
ation defines an arc d; between the corresponding nodes. The resulting
DG is an acyclic directed graph showing how signals are produced and
consumed by source and sink nodes.

The topology of the DG is crucial for the parallel mapping. For algo-
rithms which are originally described as nested loops, there is a natural
index space defined by the loop indices. The DG is normally represented
in this index space. Important properties are e.g., locality and homo-
geneity of the dependencies. A graph is said to have local dependencies
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if it exchanges signals only with its neighboring nedes in the index space.
It is homogeneous if the dependency pattern is shift-invariant. All nodes
then exhibit the same regular connections.

Executing the algorithm involves allocating each operation in the
DG to a certain processor (assignment or placement) at a certain time
(scheduling). When mapping to a given parallel machine, the proces-
sor space is fixed, whereas for an application specific parallel processor
one still has the freedom to select an optimal processor configuration.
When the DG is homogeneous, a linear placement and schedule is often
a good approach. This corresponds to finding a placement vector pand a
scheduling vector s. All operations on straight lines parallel to the place-
ment vector are allocated to the same processor. The execution time ¢;
of a node with coordinate r; is given by the inner product

L =8 1y

All operations on hyperplanes orthogonal to the scheduling vector s are
executed simultaneously. In order to be permissible the scheduling vector
has to satisfy two conditions

s d; > 0, Vi
[sT-pl # 0.

The first condition states that an operation can only be executed if all its
inputs have been computed. The second condition implies that equitem-
poral operations should not be allocated to the same processor.

A projected scheduled graph is called a signal flow graph (SFG). In
addition to nodes and arcs, it also has delays associated with each arc. A
possible SFG of the generalized sidelobe canceler is depicted in Figure 2.7.
Delays are indicated by the heavy dots. The loops in the upper rectangu-
lar part store the matrix [ B [ Wy ], whereas the loops in the lower part

store the matrix [ Ry I ufy) ] The upper rectangular array is a muiti-
plication array. The lower triangular array performs QRD updating [31].
The processors on the diagonal compute the Givens rotations, and pass
them on to the right. In addition, they accumulate the product of the
cosines. The original DG is obtained by repeating this two-dimensional
graph over and over again for each time iteration. This is shown in the
high-level DG of Figure 2.8,

The SFG level still allows a lot of freedom. Various parallel architec-
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Figure 2.7: SFG for the generalized sidelobe canceler (M = 4, K = 2).
The delay loops in the upper part store the matrix [ B | Wy }, whereas
the delay loops in the lower part store the matrix [ Ry ! Ufx) ] The

vectors p and s indicate the placement and scheduling vector for a linear
systolic architecture. The dotted line is a cut set.
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Figure 2.8; High level DG for the recursive generalized sidelobe canceler.
The graph extends infinitely over the time dimension. The SFG of the
previous figure is obtained by a projection parallel to the time axis.

tures can be derived. If one is interested in a linear array, an additional?
placement and scheduling (multi-projection) can be performed, e.g., with
the vectors p and s shown in the top-left corner of Figure 2.7. If a two-
dimensional array is preferred, then only the scheduling step is performed.
The schedule s indicated in the figure is actually an example of a systolic
schedule. A way to represent the schedule is to associate s . d; delays
with each dependency d;. In this representation a systolic schedule has
the properiy that at least one delay is present on each dependency arc.
in addition to being local in space, the computation is also localized in
time, The resulting systolic array has the advantage of highly pipelined
operation and consequently a high throughput rate. After a very short
cycle new data vectors are fed in, while the others are pushed one stage
further in the pipeline.

An alternative way to convert one SFG into another SFG are the
following two retiming rules [50].

¢ Time-scaling: All delays in the graph may be multiplied by a factor
n > 1, on condition that the input and output rates are slowed
down accordingly.

¢ Delay-transfer: Given any cut-set of the SFG, which partitions the
graph into two components connected by a number of arcs. Delays
may be added on each of the outbound arcs on condition that the
same number of delays is removed on each of the inbound arcs.

It is clear that the placement and scheduling vectors could have been defined
directly on the DG of Figure 2.8,
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Figure 2.9: Final systolic architecture for the generalized sidelobe canceler
(M = 4, K = 2). Multiple delays are indicated by a number.

Such a cut-set is indicated by the dotted line in Figure 2.7. It is a
hyperplane orthogonal to the scheduling vector s. All arcs cross the cut-
set in the same direction. Therefore, it is permitted to add one delay
on all these arcs. By repeating this delay insertion on parallel cut-sets,
the systolic array of Figure 2.9 is obtained. Due to the multiple cuts,
the components of the input vector are skewed before being fed into the
array. Similarly, in order o obtain all output components synchronously,
the cuts introduce delays at the outputs. The pipelining period of the
systolic array is only one cycle. ‘
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2.3 Direction finding

In addition to spatial filtering, sensor arrays are often employed for char-
acterization of the wave field. A model for the field is postulated, e.g., one
assumes that the field consists of a2 sum of narrow-band waves, and some
unknown parameters have to be estimated, e.g., the number of narrow-
band signals. Again one can set up a parallel with time series processing.
The corresponding estimation problem is to determine the frequencies of
a finite sum of sinusoidal time series drowned in noise [86].

{inear algebra is the natural tool for mathematically formulating the
information extraction objective and for deriving algorithms to estimate
the unknowns.

2.3.1 Subspace algorithms

Since 1980 high resolution methods for direction finding of narrow-band
emitters have been proposed. Their resolution exceeds the Rayleigh reso-
lution limit {i.e., the limit for Fourier based techniques} by full exploita-
tion of the narrow-band data model. An important class is formed by
the so-called subspace algorithms, such as MUSIC [96], ESPRIT [92] and
WSF [79, 142]. They perform the mapping from observations into a set
of AOAs in two steps.

First the signal subspace § is determined as the column space of the
data matrix X, Tt follows from the data model that in the noiseless
case the rank of X equals the number of impinging narrow-band (non-
coherent) waves. In the case of noisy observations the data matrix will
have full rank. The signal subspace then has to be estimated. For white
noise on the data the appropriate tool is the singular value decompasition
(SVD).

The singular value decomposition of a matriz Z € CV*M N > M
is defined by

Z=U.x.VH
where U € CV*M gnd V € CM*M gre unitary matrices and & €
RMXM ¢ g diagonal matriz containing the singular volues o; > 0
in non-increasing order,

This singular value decomposition is of fundamental importance in
modern signal processing, statistics, systems identification and control
[93, 114, 123]. Its relevance is due to important properties, which are
conceptual as well as numerical.
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e From a conceptual point of view there is a relation between the
SVD of Z, and the eigenvalue decompositions of Z¥ . Z and Z -
ZH | The singular values ¢; are the square-roots of the eigenvalues.
The singular vectors u; and v; are equal to the eigenvectors of the
'squared’ matrices. The following approximation property provides
the optimal answer for the subspace estimation problem.

Given @ matriz Z € CV*M | then the matriz Y € CV*M,
nearest in Frobenius norm or 2-norm to Z, and of rank D <
min(M, N) is given by the truncated SVD of Z

D
Y:Zug’cr,--v;q.

=1
In the case of independent, identically distributed (i.i.d) white Gaus-
sian noise on the data, the truncation of the SVD yields also the
maximum likelihood estimator for the signal subspace. Moreover,
the smaller singular values can be used for estimation of the noise
level «.

¢ From a numerical point of view excellent algorithms exist for com-
puting the SVD [33]. They exploit the orthogonality of the decom-
position. The theory of many applications is developed based on the
eigenvalue decomposition (EVD) of the matrix ZH . Z. However, in
actual computation the SVD is preferred over the EVD because of
the potential loss of numerical accuracy associated with the explicit
calculation of the matrix-matrix product,

The second mapping from estimated signal subspace to AOAs is per-
formed via (partial) knowledge of the array manifold .A. Basically, one
has to look for the D array response vectors {a(fs), d = 1,---, D}® which
are comprised in §. Here several alternatives exist. We only mention two
of them,

The MUSIC algorithm [96] was the first algorithm to fully exploit the
geometry of the data model. It determines the array response vectors
which are nearest to the estimated signal subspace - or most orthogonal
to the estimated noise space - by a one-dimensional maximization of the

object function
1

dmusicl) = EEE

5We assume an unambiguous array manifold. If this condition is not met, the
mapping from subspace to AOAs may not be unigue.
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where the matrix V;, € CMXM-D contains the singular vectors corre-
sponding to the smallest singular values. This object function is the
reciprocal of the norm of the projection of the array response vector onto
the noise subspace. If the array response vector lies in the signal subspace,
this projection is zero. The D dominant peaks of dysrc(8) are selected
as the ACA estimates. The performance of the MUSIC algorithm is very
good {107]. However, it has a few disadvantages. First the array manifold
A has to be known a priori. If no accurate analytic model of the array
response vectors is available, then the array has to be calibrated. This is
a difficult and expensive operation. Furthermore, a non-linear optimiza-
tion is required. In addition to the convergence problems due to local
minima, this may require a lot of computation.

The ESPRIT algorithm [92] avoids the knowledge of the array mani-
fold and the non-linear optimization. Instead it assumes a translation
structure in the array configuration (Figure 2.10). The sensor array
should consist of M doublets. Such a doublet is a pair of identical sensors
displaced over a known constant vector. No information on the directiv-
ity patterns of the sensors is required. They may be arbitrary, as long
as they are pair-wise identical in a doublet. The advantage of using this
structure is that the need for non-linear optimization is circumvented.
Convergence problems are avoided. Instead the AOAs can be estimated
by a sequence of matrix decompositions. Below we give an outline of the
method.

The array consists of two identical, but translated subarrays. Under
the same assumptions as in section 2.1 the output of the first sub-array
is given by

X=A-5+W,. (2.6)

The output of the second sub-array obeys a similar equation
Y=A-3-5+W, (2.7)

where the diagonal unitary matrix @ ¢ CP*P holds the extra phase shifts
of each emitter d
$yg = exp(—72rAsin(64)/A)

due to the translation of the subarrays. Now consider the noiseless matrix

pencil
Y-A-X=A-(2-X-Ip)-S.

Generically this matrix pencil has full rank D. However, if A = @44, the
rank of the matrix pencil is reduced. Therefore, the phase shifts $44 can
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Figure 2.10: Sensor array configuration for the ESPRIT algorithm. The
array comsists of two identical subarrays, displaced by a vector A,

be computed as the rank-reducing numbers of the above matrix pencil.
After compression of the column and row dimensions from N x M to Dx D
by pre- and post-multiplying with well-chosen Dx N and M x D matrices,
this problem becomes a generalized eigenvalue problem. In order to com-
pute the rank-reducing numbers with orthogonal decompositions only,
the generalized Schur decomposition can be used [11]. In the noisy case,
various selections of compression matrices may yield slightly different es-
timates. The Total Least Squares {119] version of the ESPRIT algorithm
[92] is renowned for its excellent noise suppression. However, it is in-
trinsically sequential. For an algorithm to be amenable to easy parallel
implementation, the left and right compression matrices have to be inde-
pendent of each other. In [113] the compression matrices are computed
based on two independent SVDs. In [71] the noise is first suppressed by
an instrumental variable method. The choice of the compression matrices
then does not matter anymore. A simple choice suffices.
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2.3.2 SVD updating

The first and most time-consuming step of subspace algorithms is the
computation of the SVD of the data matrix X. In real-time applications
which require tracking of the location estimates, the signal subspace has
to be updated recursively. Optimal tracking is obtained when the SVD
of the data matrix is updated exactly.

Unfortunately, this is a computationally expensive operation. It re-
quires O(M?) operations per update. For many real-time applications
this computational cost is a serious impediment. Therefore, approximate
algorithms for SVD updating have been developed which trade off accu-
racy for computational complexity.

Here we concentrate on an O{M?) algorithm, developed by Moonen
et al. [66). It is reprinted below as Algorithm 2 and computes a unitary
decomposition

Xt = Uy By - Vil

where Up € Ck*M and Vi € CMxM are unitary matrices, but now
Ry € CM*M is an upper triangular matrix which is nearly diagonal
{i.e., close to the true Ep). The algorithm only keeps track of Ry and
Vi), which is sufficient for most signal processing applications.

After appending a new observation, the augmented data matrix X{{l
can be written as

H o X{
U1 l 0 @ Ry H
[ 0 l i ! szi] . Vi:k-—l} ' T/[Jc—-l]- (28}

This decomposition has to be turned into a nearly diagonal upper trian-
gular form again. This is accomplished by a sequence of three operations.
The first operation is the matrix-vector multiplication

&) = o+ Vip-1)-

The second operation is a QRD updating, which works &y, into the
weighted triangular matrix o« Rp_q

Ry | _ (s ey H | o B
[0...0]“&(6‘{&1 O )'—“——h'—]-f[kj
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where each GEL‘;HI € CM+IxM+l is 5 Givens rotation matrix. In or-
der to compensate for this QRD updating in the decomposition of (2.8},
the Givens rotations should be applied to the columns of the augmented
Ul-1) matrix. However, since this growing matrix is not tracked by the
algorithm, this part of the computation is dropped.

The QRD updating step degrades the nearly diagonal structure of
the R-matrix. Therefore, the third operation aims at reducing the size
of the off-diagonal elements again. This is done by applying a sequence
of M — 1 Jacobi rotations, i.e., double-sided {row and column) rotations.
This sequence zeroes all entries in the first super-diagonal once. The ith
Jacobi rotation follows from the SVD of the ¢th triangular 2 x 2 block on
the diagonal of R{k]

x 0 ili+1H R{k} i R[k}ii+1 ili+1

— . 1y - 1ty . @ .
[ 6 x J O [ 0 Ryisiin [¥]

For details on how to compute the rotation angles, we refer to the original

paper [66]. Again, applying the row rotations @',l:}“ to the columns of

the U-matrix may be omitted. On the other side, compensation for the

column rotations ‘I)',l:}’f'l is mandatery. They need to be applied to the
columns of Vjx_;). The operation of a single sequence is illustrated below
on a4 x 4 example.

X X X X ] [ x' 0 x' %
X x X el gin x' x' x| ek g
—_— —_—
X X X X
X X
X' € X” X’ B - X’ e Xm X”
%" 0 x" @3;43 als x e !
—
x' X x" 0
X i x’

The zero entry created by the ith Jacobi rotation is filled in again by the
next Jacobi rotation. These fill-in elements are denoted by the es. Zero-
ing the complete strictly upper triangular part thus requires an iterative
algorithm. Each Jacobi rotation decreases the norm of the off-diagonal
elements with Eﬁ{k],;,i+1iz. However, the convergence could stall if a first
super-diagonal of almost zero-entries were created, while other entries are
still significant. Therefore, care has to be taken in the selection of the Ja-
cobi rotations such that all entries are circulated towards and away from
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the first super-diagonal. Two solutions exist for the angles of the Jacobi
rotations. Consequently two circulation strategies may be used. A first
strategy always selects the rotations over the smaller angles followed by
a two-sided 2 x 2 permutation. The second strategy always selects the
larger rotation angles. Both strategies tend to move entries around such
that the convergence is not stalled. More details can be found in [66]. The
final description of the Jacobi SVD updating is given in Algorithm 2.

Algorithm 2

Ry < Omxm

fork=1,-+,00
1. Orthogonal matrix-vector multiplication

iy~ ofy Vieey

2. QRD updating

R k i M41—ilM 412 a- Ry
__L'LO — JlGy el

=1 Tk}

3. Jacobi rotations

ki M-ilM+1-i¥ 5 = ili-+1
Ry « ]I ey -Ryy - IT @4

=1 i=1

M1 i1
Vig < Vie-n - I 234

=1

endfor

The algorithm has several desirable properties. A first point is its
moderate computational complexity, only O(M?) per update. Moreover,
the approximation error with respect to the exact SVD is in many cases
acceptable. In [66] an analysis for the subspace tracking application (e.g.,
for high-resolution parameter estimation) shows that the tracking error,
defined as the distance in terms of canonical angles, between the true
and the estimated signal subspace, both at time t;, is bounded by the
time variation of the true signal subspace in M steps, provided that the
signal-to-noise ratio is moderately high. A numerical example is given in
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Figure 2.11: (a) A ULA with M = 5 antennas and A = A/2 tracks a
mobile traveling with constant angular speed w from -20 deg to 80 deg.
The signal is a constant modulus signal with random phase. The SNR at
the antenna outputs is 20 dB.

(b) The time variation in M samples (T'V) is the angle between the array
manifold vectors at time k and k — M. The tracking error of the Jacobi
SVD updating algorithm is the angle between the array manifold vector
and the estimated dominant singular vector both at time k. TV is an
approximate upper bound on TE. The forgetting factor is low a = 0.8,
such that the algorithm can follow the fast variation of the system.
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Figure 2.11. The relation between the non-stationarity of the data and
the number of rotation sequences required for good tracking performance
is studied in {54].

Secondly, the algorithm consists of orthogonal {unitary) transforma-
tions. These transformations are renowned for their good numerical be-
havior. There is a good reason to prefer Givens and Jacobi rotations over
other types of orthogonal transformations, such as Householder trans-
formations. Givens and Jacobi rotations are computed based on local
information (2 X 2 or 2 X 1 sub-matrices), and therefore attract much
attention in the field of parallel computing.

A high-level SFG of Algorithm 2 is shown in Figure 2.12. The upper
square operator takes in the vector zpy and the matrix Vjg_q;. It com-
putes the product vector Zj), which is propagated to the lower triangular
operator. This operator takes care of the QRD updating and the gener-
ation of the Jacobi rotations and their application to the matrix Rp_y).
The column transformation @ is propagated upwards into the square
operator, where the matrix-matrix product Vi = Vjy_q) - @) is finally
computed. Details on the internal structure of the operators are given in
the next signal flow graph of Figure 2.13. This SFG is an intertwining of
two SFGs.

The first SFG consists of the rectangular nodes and the black arcs.
The nodes execute the matrix-vector multiplication {upper square array)
and QRD updating (lower triangular array). The black arcs indicate the
flow of the row transformation parameters. The rematrkable resemblance
of the data flow of matrix-vector product and the QRD updating, is
due to the fact that the matrix-vector product is considered as a row
transformation

Vien | [ Tu Owsa ][ Vi
i—'% :c[f{] 1 Ol M
The row transformation matrix can easily be decomposed as a sequence
of M elementary Gauss transformations acting on 2 rows

i 1 0
GIIM'-!"] - . ] .
[£] mi’{k] 1

The zero row Oi,.pr is put in at the top side. This first part of the
SFG is actually identical to the SFG of the generalized sidelobe canceler
(Figure 2.7},
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Figure 2.12: High level signal flow graph of the Jacobi-type SVD up-
dating algorithm. The square part performs matrix-vector multiplication
and column rotations. The triangular part performs QRD updating and
computes the two-sided SVD rotations.

The second part of the SFG is dedicated to the Jacobi row and column
rotations. They are executed in the hexagonal nodes. The flow of the
rotation parameters is indicated by the grey shaded arcs. The row and
column transformations are computed simultaneously on the diagonal and
therefore both nodes are linked. The row rotations are then propagated
to the right, whereas the column rotations are propagated upwards.

This SVD updating algorithm is essentially sequential. It contains
long bidirectional dependency paths of length O(4M) (small arrows in
Figure 2.13)}. Since there are no delays in one of the directions, this path
cannot be pipelined using the standard retiming rules. In a synchronized
system, the clock speed is upper bounded by the execution time of the
longest dependency path in the algorithm. Implementing Algorithm 2 as
such on a planar parallel architecture would result in a very inefficient
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Figure 2.13: Detailed SFG of the sequential Jacobi SVD updating algo-
rithm. The arrows indicate the long bidirectional vertical dependency
path.
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Figure 2.14: Detailed SFG of the parallel Jacobi 5VD updating algorithm.
The long bidirectional vertical dependency path has been removed.
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array with throughput Q(M™!). Therefore, the long vertical data depen-
dency loop has to be broken. The only way is to modify the algorithm
itself. The re-engineering of the Jacobi SVD algorithm in function of an
efficient systolic architecture is described in [64]. We do not elaborate
on this technique here. Examples of algorithmic transformations on a
signal flow graph will be treated in later chapters. The final result is
the SFG of Figure 2.14. This SFG corresponds to a second parallelized
version of the SVD updating algorithm. Delays have been introduced on
the upward vertical dependencies. Therefore this SFG can be pipelined
using the time-scaling and delay-transfer retiming rules. The full size sys-
tolic architecture has O{M?) nodes, and a pipelining period of 4 cycles,
independent of M.

2.4 Conclusion

In this introductory chapter, we have presented the necessary background
material, First, 2 mathematical model for the array data was derived.
The concepts of signal subspaces and array manifolds were introduced.
Next two commeon array processing problems, i.e., beamforming and di-
rection finding, were treated. The generalized sidelobe canceler algorithm
for LCMV beamforming and the ESPRIT algorithm for direction finding
were introduced. These algorithms are the starting point for some of the
array processing algorithms in later chapters,

In practice, the signal constellation can often only be considered sta-
tionary for a limited time interval. Therefore, special attention was paid
to recursive algorithms. The combination of high data rates and heavy
computation of matrix decomposition algorithms motivated the study of
parallel architectures. The paradigm of systolic arrays turned out to be
well-matched for the type of matrix problems we address.

The generalized sidelobe canceler array presented a completed solution
for adaptive and recursive parallel LCMV beamforming. The recursive
direction finding problem was only partially solved here. We only focused
on an efficient systolic architecture for the most burdensome part of the
computation, which is the SVD updating. A recursive algorithm and sys-
tolic architecture for narrow-band direction finding, based on the Jacobi
SVD updating method and the ESPRIT algorithm, is described in [71].



Chapter 3

Factored Jacobi SVD
Updating

In this and the next chapter new algorithms and architectures are intro-
duced for subspace tracking. This operation is an important component
of adaptive direction finding algorithms. The new algorithms track the
dominant subspace of the data matrix by an orthogonal matrix spanning
the subspace. They are an illustration of the importance of orthogo-
nal matrix factorizations in modern signal processing. The QR decom-
position, Schur decomposition, singular value decomposition and their
various generalizations have become standard components of advanced
algorithms. Orthogonal decompositions are often used for their good nu-
merical behavior. Errors due to finite precision arithmetic do not blow
up if orthogonal transformations are used. However, the errors do not die
out either. If no other mechanism is provided, rounding errors caused by
successive orthogonal transformations accumulate. This is exactly what
happens for 2 whole class of Jacobi-type updating algorithms, examples
of which are SVD updating and narrow-band and wide-band direction
finding [71, 134], ...

In this chapter, we study this problem for the prototype Jacobi al-
gorithm, f.e., SVD updating. We propose a solution which is based on
a minimal factorization of an orthogonal matrix as a sequence of Givens
rotations. All calculations are performed on the rotation angles, such
that orthogonality is preserved by construction.

Moreover, the factorization replaces the matrix-vector multiplication
in the SVD updating algorithm by a sequence of Givens rotations. This
has an additional benefit on the architectural level, since now a parallel
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architecture can be constructed solely using rotation cells. The outcome
is 2 new elegant systolic Jacobi array for SVD updating.

In the first section the error accumulation phenomenon is illustrated.
Next, in the second section we review the factorization of an orthogonal
matrix V € RM*M and show how an orthogonal matrix-vector multiplica-
tion may be implemented on a triangular array of rotation cells. The third
section presents the major contribution of this chapter, which is an effi-
cient scheme to update the rotation angles without explicit computation
of V. Finally section 4 is concerned with the new parallel architecture.
Its derivation is non-trivial, due to the presence of bidirectional data flow.

3.1 Error accumulation

In section 2.3.2 we have studied the Jacobi SVD updating algorithm. Be-
cause this algorithm is based on orthogonal transformations, one might
be tempted to consider it as fully numerically robust. Unfortunately, this
is not the case. Algorithm 2 suffers from error accumulation in finite pre-
cision arithmetic. At each time instant t; the matrix! Vik~1) is multiplied
by a sequence of M — 1 Givens rotations @E}:]H. When executed on a
standard multiply-and-accumulate processor, rounding errors in the mul-
tiplications perturb V) in a random way. These errors do not decay, but
keep on accumulating. A measure for the deviation from orthogonality
of V) is given by the Frobenius norm

8 = Vi - Vg — Iuall.

The linear growth of dy) in Figure 3.1 illustrates that error accu-
mulation gradually destroys the orthogonality of V};;. A theoretical error
analysis can be found in Gentleman {30]. This unlimited growth is clearly
unacceptable. Moreover, an error analysis has shown that the orthogo-
nality of V) is crucial for the numerical stability and accuracy of the
Jacobi SVD updating algorithm [66].

The algorithm can be stabilized by including a periodic reorthogo-
nalization scheme based on symmetric Gram-Schmidt orthogonalization
[66]. The rows of Vj are continuously reorthogonalized by means of 2 x 2

1We restrict ourselves to real matrices in this chapter. The generalization to complex
matrices is straightforward. However, a complex 2 x 2 rotation has 3 real degrees of
freedom, which would unnecessarily complicate the exposition.
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Figure 3.1: Error accumulation averaged over 10 independent simulations.
In each simulation the identity matrix Iy is multiplied by sequences of
Givens rotations with uniformly distributed angles. The simulation was
done in MATLAB on a DECstation 5000/120 with machine precision
€ = 2.22e - 16.

transformations. However, this scheme does not guarantee orthonormal-
ity at each iteration. In combination with exponential weighting of the
data, it only keeps the deviation sufficiently low and bounded. Secondly,
the resulting parallel implementation is rather tricky and elaborate.

An alternative to keep a matrix orthogonal is to parameterize the ma-
trix in terms of & set of rotation angles. In applications where the matrix
is constant, e.g., orthogonal filters [90], this parameterization has been
used extensively. In time-varying adaptive signal processing, updating
the angles becomes an issue. In [88] a triangular array is presented for
tracking the eigenvalue decomposition {EVD) of a time-varying correla~
tion matrix. The rotation angles are updated using a steepest-descent
technique. This technique is clearly not suited for the Jacobi SVD up-
dating algorithm. In this paper we present a new technique using Givens
rotations only.
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3.2 Orthogonal matrix - vector product

In this section we study the factorization of Vj; as a finite chain of planar
Givens rotations, each characterized by one angle. By tracking the angles
instead of the matrix, Vjy; can never leave the manifold of orthogonal
matrices. Rounding errors only perturb the rotation angles, the perturbed
Wy still being orthogonal. First we show how an arbitrary orthogonal
matrix can be factored uniquely as a chain of Givens rotations? Q.
Secondly we use this factorization to compute a product :r,(i;] *Vik—1)- This
restlts in a regular locally connected array for orthogonal matrix - vector
multiplication.

Lemma 1 Any orthogonal matric V € RM*M can bg 'factared uniquely
into a product of M + (M — 1)/2 Givens rotations Q%7 and a signature

matriz S
M-1 M

=1 jmi4l
where S 15 equal to the identity mairiz of size M, except that the last
diagonal entry is £1.

Example and proof

For a 4 x 4 orthogonal matrix, the factorization is given by
V= Q1|2 A Q1'3 A QIM . Q2]3 . Q2|4 . Q3|4 . 5.

To construct the factorization, it is sufficient to apply the well-
known Givens method for QR decomposition [33].

X X %X X X X X X X X X X
x x x x|1@" 0 x x x [P0 x x x
i ey
X X X X X X X X 0 x x x
X X X % X X X X X X X X

v
1 0 0 0 1 0 0 ¢
@ 10 x x x [e® | ¢ x x x
0 x x x ¢ 0 x x
0 x x x 6 x x x

#The notation Q¥ is used with some flexibility. Depending ar the context it denotes
a 2x 2 rotation matrix, or an embedding of this rotation matrix in a higher dimensional
identity matrix.
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At each stage we need to compute an angle ol such that after
rotation, v}; is zeroed

cos{a’V)  sin(aM) v | | vk
—sin{a?¥)  cos{al) v |10 7
The angle o'/ is unique if the convention is taken that v/, is non-

negative. This holds true if

. - U" . . - Vs
cos(a’) = ——5—’1————2—, sin{a'l) = -—2—”———2-
VUit U VU U

If vy = 0 = v;;, we define o'l = 0.

After zeroing all off-diagonal elements in a column, the diagonal
entry equals 1 since the columns of an orthogonal matrix have unit-
norm. The same argument holds true for the rows. Finally, the sign
of the (M, M)-th entry of S is not controlled by the algorithm. It
is positive or negative depending on the sign of the determinant of
V. ]

Comments

1. In the Jacobi-type updating algorithms only orthogonal matrices
with positive determinant are encountered such that the signature
matrix can be omitted.

2. Here the Givens QRD method introduces zeros column-wise by com-
bining in column j the entries on rows ¢ > § and j. Other choices
of sequences of M—%"&r:ﬂ 2 x 2 rotations are feasible. We could have
zeroed each v;; element by rotating neighboring rows ¢ — 1 and 4
instead of rows ¢ and j. Or we could have introduced zeros row-
by-row instead of column-by-column [33]. Evidently, another choice
and sequence of the rotation planes results in different values for the
rotation angles. Below, we concentrate on the sequence of Lemma 1.
Its dependencies are depicted in Figure 3.2. The results that will
be obtained, can also be derived for the other sequences mentioned.
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Figure 3.2: The dependencies of the sequence of Lemma 1 (M = 5}. Ro-
tations must be sequentially processed from left to right, while rotations
on a vertical line can be processed in parallel.

3. The ideal hardware component for fast computation of the angles,
given a matrix V, is a CORDIC processor in angle accumulation
mode {143].

The SFG for a factored orthogonal matrix-vector product f{Tk] = :c?,;] ‘
Vig—q is shown in Figure 3.3. The triangular graph consists of M - (M ~
1)/2 nodes, having local and regular interconnections. The functionality
of each node is the same. It stores the rotation Q' and applies it to its
input pair coming in from the top and from the left. Its cutput data pair
is propagated to the bottom and to the right respectively. Again the most
efficient implementation of a node is a CORDIC processor, this time in
vector rotation mode.

Explicit knowledge of the matrix V' can be obtained by feeding in the
columns of the identity matrix, 7.e., the array will output the j-th row of
V in response to the unit vector e;,

e = [ O1xj-1 1 O1xm-j ]T-

Adding a systolic schedule to this SFG is straightforward. The SFG
already has regular local connections. To make all nodes local in time, it
suffices to insert a delay cell on all arcs cut by the cut sets (dotted lines)
in Figure 3.3. The throughput of the resulting systolic array is maximal,
since it has a pipelining period of one cycle. All processors are 100% busy
at all time,
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Figure 3.3: SFG for factored orthogonal matrix-vector multiplication
(M = 4). The nodes apply the rotation Q' to their input pair. The
dotted lines represent cut sets to convert the SFG into a systolic array.

This systolic rotation array is not new. It has already been derived in
the context of computing the QR decomposition of an arbitrary square
matrix [1, 43]. There the array operates in two different modes. While
the matrix is passed through the array, the nodes compute their rotation
angles oV and the triangular matrix R becomes available at the output.
Once the rotation angles are fixed, the array performs multiplications
just as in Figure 3.3. The array also bears resemblance to the well-
known Gentleman-Kung array for QRD updating [31]. However, here the
rotation angles are resident in the cells, whereas in the Gentleman-Kung
array they are propagated through the array.

The factored orthogonal matrix-vector multiplication has the addi-
tional benefit that the scalar multipfications in step 1 of the Jacobi SVD
updating algorithm are eliminated. Therefore, the whole algorithm now
consists exclusively of Givens rotations. This regularity is important in
view of a possible hardware realization. It allows to construct a systolic
array for SVD updating only using CORDIC processors, provided that
the updating of Vjx_y) (step 3) can be done in factored form. This is the
topic of the next section.
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3.3 Updating the angles

In step 3 of Algorithm 2, the Vjz_;) matrix is updated with (i.e., post-
multiplied by) a sequence of Givens rotations @E%H. In this section we
present an O{M?) method to update the factors QEE;I] directly, without

explicit computation of the V-matrix.

The updating matrix Py is defined as

M1 '|'+1
o= IT o5

=1

Each transformation of the form® V « V. &1 will alter several rotation
angles. Starting from the tail, the rotation ®i+! is worked backwards
into the factorization and interacts with several rotations. The nature of
the interaction depends on the relative position of the coordinate planes
defined by the indices of the interacting rotations Q* and "+, Three
types of transformations have to be considered.

1. The index pairs (k.1} and (i, + 1) are disjoint.

In this case the rotation matrices Q! and ®+! commute since
they affect different rows or columns.

i+l . Ml = kil . gili+1

2. The index pairs (k,) and (4,14 1) are equal.

Here the rotation angles of Q*t! and @*+1 simply add together.

Qi|i+1 - Qi|i+1 . ili+1

3. The index pairs (k,I) and (¢,i+ 1} share a common index.

This is the complicated case. Let k = ¢+ 1. Generically, the
matrices @I and &%+ do not commute and it is even impossible
to calculate an equivalent pair of rotations such that pii+t 'Q:‘H" =
Q1. &+l However, reordering the indices becomes possible if a

third rotation, Q%¥, is taken into account. The sequence of 3 Givens

31f no confusion can arise, the time index is omitted for notational convenience.
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rotations in the (4,1}, (14 1,1), {4,i+ 1)-planes, defines a rotation in
the 3-dimensional (¢,7+ 1,1)-space

Vih'-}-l]l = Qiil . Qt’-}-l“ . @ﬂi-&-l

This 3-dimensional rotation Vi#+ can also be represented by a
different set of three Givens rotations by choosing an ordering of
the coordinate planes in which the (¢, ¢+ 1)-plane is in front.

. il A\l 1l
V1|¢+1|lm¢:}1+ Q::l . i'i"l

There is no simple trigonometric expression for the mapping from
the former to the latter set of angles. A natural way is to compute
Vil explicitly and refactor it. The computational complexity
of this 3 x 3 core problem is relatively low and independent of the
matrix dimension M.

100 gier | X% 0 Qi X X "
0 1 0| X X 0} X X X AN
g 0 1 0 0 1 X X X
I
X XX | T [ XXX qr |1 0 0 Ty
X X X s 6 x x| = X X 2
X X X X X X 0 X x
| ——
Vititilt
100
D10
001
Nr——— —

I

It is even sufficient to compute only two columns of VilF+1¥ for
the determination of the equivalent set of rotations. By selecting
the first and last column, the operation count is optimized to 7
rotations over a given angle (vector rotation) and 3 rotations in
which a coordinate is zeroed (angle accumulation}). On a CORDIC
processor both operations have the same complexity.
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Below the course of the computations in the 4 x 4 example is detailed for
the first updating rotation ®42. In the first line, 12 can be commuted
with Q% (type 1). To interchange ®'1? with Q?4, Q1 must be adjacent
to Q%4. Therefore, Q*l* is commuted with Q3. Then the equivalent
set of rotations in the (1,2,4)-space is determined (type 3). The same
operations are then repeated in the (1,2, 3)-space. On the last line the
angles in the (1, 2)-plane are summed (type 2).

V. ¢1§2 — QI]Q . Q1|3 . Q1|4 B Q2E3 . Q2I4 . Q3|4 . ¢1|2

Qi . QIB. Q. g3 g2 2. Q3|4 (T1)
= Q.QIB.Q. QU gt pll2. Q3K (T1)
- Qllz,Q1l3_Q2§3_¢1i2_ 314_ 3’4-623'4 (T3)

Q- ol QIF . QI®. i . gl . o1 (T3)

. Qi QI QI . g2 g7 (T2,7)

The above computations are nicely illustrated on the SFG for orthogonal
matrix-vector multiplication in Figure 3.4. Post-multiplying V by @12
creates a new node at the (1,2)-components of the output of the graph.
This node is gradually worked into the SFG. In each group of 3 encircled
cells, a type 3 transformation pushes the &1"*1-node upwards (Figure 3.4a
and 3.4b}. A type 2 transformatior merges two nodes (Figure 3.4c). Since
the ®*1l.node propagates upwards, it is combined only with nodes which
share at least one index. The commutations (fype 1 transformations)
follow naturally from the structure of the graph.

The SFG for updating the complete parameterization is shown in
Figure 3.5. First the bottom-left node updates the rotations Q' and
Q2. Next, the neighboring nodes (up and to the right) perform their
computation in parallel. The computation gradually evelves towards the
diagonal.

The horizontal contraflow in this SFG complicates its pipelining. To
introduce delay elements on all arcs, we need to apply the retiming rules.
First all delays in the graph are doubled {time scaling rule}, and conse-
quently the rate is halved at which new data are fed in into the array.
Then one delay is added on all outward arcs crossing the cut (dotted lines
in Figure 3.5} and one delay is removed on all inward arcs (delay transfer
rule). The outcome is the systolic schedule of Figure 3.6, which has a
pipelining period of 2 cycles. In each cycle, only half of the processors are
active., Therefore, in a hardware realization, two nodes can be clustered
into one processor to obtain 100% utilization of the hardware,
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Figure 3.4: Updating the SFG for factored orthogonal matrix-vector mul-
tiplication {M = 4). In (a) and (b) a type 3 transformation is performed.
In (¢) a type 2 transformation is done.
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Figure 3.5: SFG for updating the angles (M = 4). The dotted lines are

cut sets. In order to fully pipeline the SFG, first all delays have to be
doubled.

3.4 A modified array for SVD updating
The novel factored Jacobi SVD updating algorithm is now as in Algo-
rithm 3.
Algorithm 3
Qi « I for 1<i<M-1i+1<j<M
Ry — Owmxm

fork=1,---,
1. factored orthogonal matrix-vector multiplication

. p MM
gy < ey [1 I1 Qply

1=1 jmil
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The two arrays for orthogonal matrix-vector multiplication and for updat-
ing the parameterization only partially implement Algorithm 3. The com-
plete SVD array consists of the combined triangular array of Figures 3.3
and 3.5, placed on top of a triangular array which performs QRD updat-
ing and generates the row and column transformations [67] (Figure 3.7).
Here we are concerned with the factorization of V3j. Therefore, the lower
array is represented as a black box, which takes in matrix-vector products
and generates column transformations. In the upper array both function-
alities of the matrix-vector product and the updating of the angles are
combined in the node descriptions.

Pipelining the combined array is not straightforward. The key prob-
lem is the long vertical dependence loop. First the matrix-vector product
#[y) runs downwards through the upper array storing the factorization
of Vjx_y) until it reaches the lower array. There a new column trans-
formation @y is generated based on Ry.y; and Zp. Finally, @ runs
upwards again to update Vjz1j to Viz;. Only when this cycle is completed,
a new observation vector z[z4q) can be fed in into the array. This long
feedback loop causes an Q(M™') throughput. Therefore, it has to be
broken to convert the SFG into a pipelined systolic array, which achieves
a throughput independent of the matrix dimension M. Unfortunately, it
is impossible to retime the SFG using the time-scaling and delay-transfer
rules only. These rules can oaly cope with bidirectional data flow on con-
dition that the arcs have at least one associated delay along one of the
directions. This was the case with the horizontal data flow of the SFG in
Figure 3.5. However, the SFG of Figure 3.7 contains vertical arcs without
delays both pointing upwards and downwards.

To introduce delays on the vertical arcs, the algorithm itself has to be
modified. A slightly different algorithm with a small increase in compu-
tations due to additional rotations, will result. This is the price one has
to pay for the increased throughput rate of the systolic schedule. We will
introduce delays on the upward ®-arcs and correct for them on all down-
ward arcs. This technique of algorithmic transformations has already
successfully been applied both in the development of a systolic array for
Algorithm 2 and in the derivation of the most effective array for stable
recursive least squares (RLS) updating known to date [46, 65]. Below we
explain its application to the upper triarray.
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Figure 3.7: SFG of the complete SVD updating problem.
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Assume that in Figure 3.7 delays are added to the $-arcs originating
from the R-array*. After completion of all computations at time #..1, the
array now stores the factorization of Vj;_s) instead of V{4..q}. The updates
of the V-matrix run one time step late. Fortunately, one can easily correct
for this lag. It suffices to reorder the computation at time . If we
ﬂrst update Vi.g) to Vjz.1) and afterwards perform the multiplication

V(;,,I], the lower triarray receives the correct vector Zjz). The modified
SE‘G is shown in Figure 3.8. It is hardly changed. Only the functionalities
in the nodes are swapped (cells Al and B1).

The introduction of delays on the $-arcs in the next (and subsequent)
layer(s) requires much more complicated corrections. (see Figure 3.9).
The updating transformations now run two time steps late, such that the
M — 2 top rows store part of the factorization of Vj;_g) instead of Vix_q).
Let Zy € RM~-1 denote the partial matrix-vector multiplication

2y = 2 - Vip-1)

where zj;) is the vector z() without its last component and the orthogonal
matrix 17[k _1] € R(M”’l}x(M ~1) is the product of the factorization of Vik-1

where all rotations Q (e involving the last row are left out. This vector
Iy should be produced I]Jy the second last row of the triarray at time )
(e.g., see Figure 3.8). However, in Figure 3.9 the second last row outputs
the intermediate matrix-vector product

T T i

k) = Zfg) * Y[k-2)*

Since V[kq} = V{k..zg -5&_1] where &’{k'-l] is the product of the ®-rotations
which are propagated upwards by the last layer at time t;, we can correct
for the delay by an additional multiplication of nyy and @p_q)

[ Tf[k} Ik—-l]
The transformed SFG is shown in Figure 3.9, The missing rotations @?"'H]
are applied in the additional rotation cells of type C. Nothing prevents
to apply the same algorithmic transformation to the remaining $-arcs in
the graph (Figure 3.10). In this figure the C-type and Bi-type cells have
been merged into a single B2-type cell.

“We make the simplifying assumption that the R-array on inputting 2[4}, immedi-
ately generates the @y transformations.
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Figure 3.9: SFG with algorithmic transformations in the second last layer.

By these algorithmic transformations we have introduced a delay on
all upward dependencies. Now the transformed SFG can be pipelined by
making use of the time-scaling and delay-transfer rules. However, these
rules cannot be applied consistently without knowledge of the internal
structure of the R-array. Since this structure is rather complicated, we
choose not to incorporate this scheduling here.

3.5 Conclusion

In this chapter we have presented a modified algorithm for SVD updat-
ing. Two desirable properties are achieved. First the V-matrix is kept
orthogonal at all time by factoring V as a sequence of M - (M — 1)/2
Givens rotations. This factorization prevents V from drifting away from
orthogonality due to linear error buildup. This is crucial for the numer-
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ical stability of the recursive algorithm. Secondly the algorithm consists
exclusively of planar rotations, which increases the regularity of the oper-
ations in its signal flow graph. The modified updating algorithm retains
the O(M?) operation count of the original SVD updating algorithm.

The factored SVD updating algorithm may be converted into an ef-
ficient systolic array. However, because of vertical contraflow, the al-
gorithm has to be manipulated such that the transformed SFG can be
pipelined using the time-scaling and delay-transfer retiming rules. At the
cost of one extra rotation per node which is off the diagonal of the array,
an efficient systolic array with O(M?) throughput may be obtained. This
array consists exclusively of rotation nodes. Therefore, it may be built in
hardware using CORDIC-based processors only.

The parallel implementation on a systolic array makes the algorithm
an ideal candidate for real-time SVD tracking applications when the ap-
plication dictates a throughput unattainable with a single processor.

As a final remark, we mention recent independent work by Olszanskyj
and Bojanczyk [77], in which they use the same factorization idea in an
RLS algorithm. In order to improve the accuracy of a QRD downdating
method, to reduce the amount of storage and to enlarge the potential for
parallel implementation, they keep track of the Q-factor of the windowed
data matrix as a Givens ratation chain, It turns out that updating and
downdating this chain involves the same three types of transformations.



Chapter 4

Factored Spherical
Subspace Tracking

One of the major applications of SVD updating is tracking a slowly time-
varying subspace. In the previous chapter we have proposed a numerically
stable Jacobi SVD updating algorithm. The Jacobi algorithm did not ex-
actly track the SVD. In order to decrease the computational complexity
to O(M?), some tracking speed was sacrificed. Several authors have fol-
lowed the same line of thought [20, 102, 149]. They further reduce the
computation at the cost of larger approximation errors.

We propose a modification of the spherical subspace tracking algo-
rithm [20], This algorithm is a non-iterative algorithm with a very low
complexity O(M - D). Just as in the Jacobi algorithm, the orthogonal
matrix which spans the subspace estimate is updated by sequences of
Givens rotations. Therefore, the algorithm is also subject to error accu-
mulation. Here we stabilize the algorithm using the factorization of the
previous chapter.

In section 2 we derive a spherical SVD updating algorithm, which is a
minor variation on the original spherical EVD updating algorithm. Next,
in section 3 we employ the factorization of orthogonal matrices, developed
in chapter 3, to parameterize the subspace tracking matrix. The novelty
is that now only a dominant subspace is tracked. In section 4 we derive
a linear systolic array for the factored spherical subspace tracker. This
systolic array is very efficient. Finally, in section 5 we present a planar
systolic array which is similar to the Jacobi architecture. Algorithmic
transformations are also needed in its derivation. Due to some irregular-
ities the final planar array is less efficient than its counterpart for Jacobi
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SVD updating.

4.1 Spherical subspace tracking

The Jacobi SVD updating algorithm can be used to track a D-dimensional
subspace in an M-dimensional ambient space at O(M?) operations per
update. In some applications, e.g., radar systems, the number of sensors
M is much larger than the number of sources D. Although a larger
number of sensors results in a better quality of the estimates, it also
increases computation and memory demands quadratically. This fast
increase is undesirable. Various attempts have been made to develop
algorithms with a linear increase of resources as a function of M. An
overview is given in [149]. The key observation is the fact that subspace
algorithms for high-resolution direction tracking or frequency tracking do
not need a full eigenvalue decomposition. Since signal and noise subspace
are each other’s orthogonal complement, it is sufficient to track only the
subspace with the smaller dimension (Here, we assume D < M — D).
Moreover, any (preferably orthogonal) basis spanning this subspace is
acceptable. It should not necessarily be the unique basis of eigenvectors.

An attractive class of subspace tracking algorithms with O{M - D) and
O(M - D*) complexity, is proposed in DeGroat [20]. The sole information
from the noise subspace they use is an averaged noise eigenvalue. The
foundation for averaging the noise eigenvalues is the commonly adopted
white noise data model. If the noise on all M sensors is independent equal-
power and zero-mean, then all M — D noise eigenvalues are identical. In
measured data, due to finite amount of data and non-stationarity, there
is some spread on the noise eigenvalues. An invariant subspace of which
the eigenvalues have been averaged, will be called a spherical subspace.
Its eigenvectors are no longer uniquely determined. Any set of orthogonal
vectors spanning that subspace will do.

The simplest spherical subspace algorithm is obtained if both sig-
nal and noise eigenvalues are averaged. As will be shown below, due to
this double averaging the subspace update becomes non-iterative. It may
seem a crude approximation to retain only two average eigenvalues. How-
ever, Dowling and DeGroat show that in a stationary environment this
doubly spherical subspace tracker is still a consistent subspace estimator
[25]. Also, the spherical subspace tracking algorithms are robust to the
rank degeneracy when tracking crossing sources [20]. By redistributing
eigenvalues equally over all eigenvectors, the rank of the estimated sub-
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spaces is not allowed to drop, and the parameters estimates behave quite
smoothly.

There is one important restriction. The averaging method is only
applicable if the eigenvalue information itself is unimportant. Although
subspace algorithms perform the mapping from subspace to signal param-
eters, based on the subspace estimate only, they need the eigenvalues to
distinguish between noise and signal subspaces. Also hypothesis tests to
determine the number of signals (rank of the data matrix) rely on eigen-
value information [147]. In order to be able to detect rank incrementing
or decrementing, while still discarding the exact knowledge of all singular
values, a four-level spherical subspace algorithm was introduced [21]. All
signal singular values except for the smallest one, and all noise singular
values except for the largest one, are averaged. By monitoring the change
in these four levels, an informed decision on rank changes can be made.

Here the aim is not to compare the performance of the various sub-
space algorithms. We only give a small numerical example in Figure 4.1.
Further experimental studies can be found in [22, 149, 15C). From now
on we concentrate on numerical stability and architecture design.

4.2 Spherical SVD updating algorithm

The spherical subspace updating algorithm we consider, is the ROSA al-
gorithm {Rank-one update, signal averaging) of DeGroat [20]. It is a fast
approximate method to perform rank-one EVD updates of the sample
correlation matrix R ;) = azR,,.'[kul; + 2z xf‘,{}. Here, we derive the
algorithm from a slightly different point of view, i.e., as an approximate
SVD updating algorithm, with averaged singular values instead of eigen-
values. When the eigenvalue spread of the sample correlation matrix is
Jarge, the SVD version may show improved numerical accuracy over the
original EVD algorithm.

The spherical SVD updating algorithm tracks a different decompo-
sition than the Jacobi SVD updating algorithm. At each time #, it
approximates X [‘Ei by the unitary decomposition

~ ¥ — H
X~ X = Uy Dy Vi

where Upy € C**M and Vim € CM=M are unitary matrices given by the
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Figure 4.1: Comparison of the convergence of the spherical and Jacobi
S5VD updating algorithms for a stationary scenario. The example is a real
matrix with M = 5 and N = 40 and singular spectrum {14.14, 8.77, 0.58,
0.49, 0.45}. Both algorithms use a forgetting factor o = 0.9. The left part
shows the evolution of the average singular levels (top) and the estimated
singular values (bottom). The right part shows the cosines of the two
canonical angles between the true and estimated dominant subspace. The
Jacobi algorithm converges in approximately M iterations, whereas the
convergence of the spherical SVD algorithm is slower and depends on the
decay of initial errors,
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SVD of X If,f] and Dy € RM*M i3 4 block-identity matrix

Pw= "0 Toptun

Both the signal- and the noise subspaces are characterized by a single
singular level a[k cr[k] The Frobenius norm || Xz — X[} is minimized if
the singular Ievel]s o[ a[k] are chosen as the root mean square of the two
groups of singular va]lues The decomposition is no longer exact. This
is an important difference in comparison with the Jacobi SVD updating
algorithm. There, an upper triangular matrix Ry is used as an approxi-
mant to the singular value matrix Zgy. The product of the decomposition,
however, equals X[y at all time. The sphericalized subspace algorithm re-
duces the approximant to an extremely simple form, i.e., a block-identity
matrix with two parameters. The error in the decomposition, due to one
averaging step, is small only when the spread on noise and signal singular
values is low.

New data vectors are now recursively appended to the weighted spher-
ical decomposition

= aX{k 1] Up-3 10 | @D | &
X[k]——{ z[k] O 1 xf{]'ﬂk-z] Vie-1)-

Just as in the Jacobi SVD updating algorithm, the first step is the matrix
vector multiplication

2 = 2f - Ve

Let [ Vie-1) l Vik-1) ] denote the partitioning of Vj,_q) into its first D
columns (signal subspace) and last M — D columns (noise subspace}, and
let accordingly

EAE SR RS o] Vie-n |-

The vector 3 has to be worked into the weighted block-identity matrix
aDy.q). The Jacobi SVD updating algorithm used a QRD updating
operation. Here, the block identity structure of Djz.;) can be exploited
to simplify the computation. The first D ~1 (last M — D — 1) components
of Zfj; (&7};) can be zeroed by a sequence of D—1 (M - D-1) Givens
rotations

[0-0 9] =

i (220 P) = 5 - o
oy 0-0] -

R
b4 MM D+i|lD+2 =n¥H n
g (g MR = 2y
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Example
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Because of its block-identity structure, D) commutes with Q[’k] and
@&]. Therefore the update can be written as

> _ | Upy|O] [2-®ulO]. .
K = [ O |1 o |1

[ O:'D[k_i]
0---0 7y vy O

H H
oy ] (O - By Vi
By the commutation, we avoid to apply the column rotations ®f,, and
@E}e] to Di_q3, which would destroy its sparse structure. Instead they act
on the columns of Up,_y). Since the growing matrix Uy, is not stored, this
part of the computation disappears.

As in the Jacobi SVD updating algorithm, the column rotations have
to be applied to Vjz_1). They align the last signal (first noise) singular
vector along the projection of zy) onto the signal (noise) subspace at
time tx.;. These alignments are made possible due to the fact that in a
spherical subspace any orthogonal basis is an admissible set of singular
vectors. All signal power added by z, is captured by the two aligned
singular vectors and only the corresponding singular values are altered.
The adjustment of the 'border’ between signal- and noise subspaces takes -
place in this 2-dimensional space. The update in this space is a 3 x 2
SVD updating problem, which can be solved as a 3 x 2 QRD updating
operation

o U[Sk—l] 0 G1|aH X X G2|3H X X
0 o “[7:-1] M, 0 o a'[*;c__l] A, 0 x
g TH 0 X 0 90

followed by a triangular 2 x 2 SVD

x x |em oy 0
0 x 0 &f;c] i
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In the 2 x 2 SVD computation, care should be taken that the largest
singular value is put first. Finally, the new singular values are obtained
by reaveraging in mean square sense

oy =

\/&fffl +(D-1) o’ of y
3

o |#mtM-D-narofly
W= M~-D '

Comments

1. The rotation ®** can be computed from the following symmetric
eigenvalue problem

~ 32 5 H n
{"ff} o } =y [ L N C I I P
0 Mg @ hen T Il

This can be checked immediately by squaring the 3 x2 SVD updat-
ing problem above. This formulation is part of the original ROSA
EVD updating algorithm. However, to compute the entries of this
symmetric EVD problem the processor must be able to perform
maltiplications. Therefore, on a CORDIC-based architecture the
implementation as a small QRD updating and SVD problem is pre-
ferred.

2. Reaveraging the singular values requires a multiplication, a sum, a
division and a square root.

e VB4 (K = 1) a?
- vE

where K € N and g, b, c € R. This computation can be replaced by
(sequences of} Givens rotations. The numerator can be obtained
by a reduction of the vector v € R¥,

[b]aca] =] x]o-0].

For an arbitrary vector v, X — 1 rotations would be needed. Here,
since almost all entries are equal, this number can be reduced to
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roughly O(log, K) by using intermediate results, e.g., computing
+/10a can be done with 4 instead of 9 rotations.

[a a] -~ [\/ia 0]
{\/ia a] — [\/ga O]
[\/fa ﬁa] - [\/ga 0]
[ﬁa \/ga] — [\/fﬁa 0]

The division by v/ K requires a single rotation over an angle a =

tan=1 (vE = 1).
[ 0] = [ VFo VBRe]

The spherical 8VD updating algorithm is clearly non-iterative. Its com-
plexity is O(M?), since M —1 Givens rotations are applied to the columns
of Vix_1)- A basis is tracked for the signal subspace as well as for the noise
subspace. In order to minimize the computation and memory, operations
involving the larger subspace should be eliminated.

The sole noise-related information needed for the update of the signal
subspace is the projection of z[;) onto the noise subspace at time &,

n ﬂH
2y = Vikeny  Viboy St

Because VElsc—li and V{E—n are each other’s orthogonal complement, the
vector mﬁ; can also be computed as

S JH
zfiy = (Iv = Viiq)* Vi) - 211

The aligned noise singular value vf}; is then obtained by normalization.

My = M=yl
w’l’l
n ¥
v = Te
A2

The update of the signal subspace now only involves D) + 1 singular
vectors and simplifies to

[V[zll*]ﬂ{‘ﬁi—ulvf‘kz]'[@é‘ ?]‘{%1 @?;]
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where * denotes a quantity of no importance.
The final spherical SVD updating algorithm is given in Algorithm 4.
Its computation per update and storage requirements are O{M - D).

Algorithm 4

Ip
Vi & =
o [ O(-p)xD }
ofop oy < 0
fork=1---,00

1. orthogonal matrix-vector multiplication

gl

#Hy = oy Vi-y
2. noise singular vector

5

2y < 2~ Vi Iy

nH

TWO< VIR TR
xn
n [
[ e ———
W i

3. column rotations

ool ] — Tl el

&Sk; G E u ' . | . ao‘{kuﬂ 0 DiD
e n 1j2 142 113 n +1
g 7 « Oy Gy -Gy 0 aofy |- %y

n

o M
D
[ Vi | * } - { Viion | oy ] 'Hli’ii]“
=
4, updating the singular values

[otalo0] « [f]acfin - acfiy |- 9™ 0

[ofgl0-0] « [&]aofoy ooy |- on 2 0l

Lofg | VD =Togy |« [ 6|0 v
[ofy | V=D =Topy | « [of]0] ¥upy

endfor
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Figure 4.2: High level SFG for the spherical SVD updating algorithm.
The upper part only stores a submatrix of a unitary matrix. The nor-
malized projection on its orthogonal complement of the incoming data
vector is computed in the right hand side. The updating rotations are
computed in the lower part.

A high-level SFG of Algorithm 4 is shown in Figure 4.2. Similar to the
SVD Jacobi array, the top-left rectangular operator performs the matrix-
vector multiplication £7, and the update rotations Viiwﬂ . @fk]. In addi-
tion, a second matrix-vector multiplication Vi—l] -5fk] has to be produced
at the right-hand side. Therefore Z(;) has to be entered upwards into the
operator again. This creates a long dependency in the computation of
length O{2M). The same holds for the top-right operator. First the
norm 7& is computed from top to bottom. Then, in order to normalize
zﬁ} to vy, Y is propagated upwards again. Also the last column of
the Vi3, denoted vy}, is circulated to the noise column and back such
that the update CI"[’k] can be performed. The inner-products of the second
matrix-vector multiplication complicate the pipelining of this SFG into
an efficient systolic array.
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4.3 Factored spherical SVD updating

Algorithm 4 has two major disadvantages. The first disadvantage is its
complicated data flow. The second is the deviation from orthogonality
of the subspace basis V;_;). Algorithm 4 uses the same principle as the
Jacobi SVD updating algorithm to adapt the matrix V), i.e., Givens ro-
tations are continuously applied to its columns. Therefore, error buildup
due to finite precision calculations again looms ahead.

The factorization of chapter 3 parameterizing full orthogonal matri-
ces V € RM*M 35 3 chain of Mi.,z._:ll Givens rotations, can solve both
problems. Here, we are only interested in a factorization of the matrix
Vii-1) € CM*D Since the factorization of Lemma 1 was constructed
columnn wise, it suffices to truncate the Givens QRD method to column

D
D M

vip=11 II <
tm] =il
In the triangular SFG for the matrix-vector multiplication (Figure 3.3},
only the left-most D — 1 columns of rotation nodes are retained. Their
operation does not alter, N

The generation of the epdating rotations @’L’ +1, i==1,--+, Dis easier
here than in the case of the Jacobi SVD updating algorithm. No triangu-
Iar QRD updating array is required. A single row of D — 1 rotation nodes
in angle accumulation mode is placed below the rotation array. These
nodes take in the vector ifk] and gradually zero it from left to right.
Meanwhile, they compute the rotations @E}:]“ which are propagated up-
wards into the rotation array. These &"*l.rotations are worked into the
Q*li-rotations using the type 2 (summing angles) and type 3 (reordering
3 rotations) transformations.

The only difficulty left is the computation of the angles which charac-
terize the vector vf and the norm <f};. To this end, the high-level SFG
of Figure 4.3 is instrumental. It shows the spherical SVD updating algo-
rithm in factored form. The factorization of Vj;,..,) is partitioned into three
parts. The left operator stores Qf_;; = 2, ;’_ﬁ_iﬂ ini:-—l} € CM*M
which is the unitary operator composed of the factorization of Vii—l]'
The unitary operator Q'[”;:_l] = Hé‘i D+2 QP+ ¢ ¢M=-D)x(M~Dj jg con-
structed with the rotations which are stored in the D + 1st column of the
SFG of Figure 3.3. The right lower triangular operator stores the oper-
ator, consisting of the remaining rotations in the factorization of Vjx_y,
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Figure 4.3: High level SFG for the factored spherical SVD updating al-
gorithm. The factorization of the unitary tracking matrix is partitioned
in three parts.

33 Qk...]_ nr—ﬂ-;-z ngg+1 Q iy ~1] € C(M =D-1)x(M-D~ 1) HEre both
the mgna,l— and noise subspaces a,re tracked

In the non-factored spherical subspace algorithm, computation and
memory needs are cut by avoiding storage of V{}’c‘] in the algorithm. Here,
Q’ﬁc] must be eliminated. Consider this right operator in detail. First, it

takes in the vector y{%"" e CM-P-1 from the left, and produces the or-

thogonal matrix-vector product i-[ }g = y{kl Q k—1] 3% its bottom-side.

The row of rotation nodes below then computes the updating rotations
@{k] such that the vector 7 [i] comprising the last M — D1 components of
(k)]s is completely zeroed. Jl'hl.s means that after updating the complete
factorization, the rotation array produces a vector with only two non-zero
components at entries D and D+ 1. This can only be true if the updated

array Qpq generates a zero-vector yfi]"'l. This follows from the fact that

Qﬁ] is unitary, and thus preserves the norm of yfz]“' 1
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The right lower triangular operator Q can therefore be eliminated
by forcing the nodes in column D to generate zero components at their
right outputs. This is easily accomplished by operating these rotation
nodes in angle accumulation mode, instead of vector rotation mode.

Algorithm 4 describes the final spherical SVD updating algorithm. It
is oriented towards a CORDIC processor since it is comprised of rotations
only (except for scalings by the weighting ).

Algorithm 5
ol — g for 1<i<Dji+1<i<M

[0
o2 fﬂj y O EB] — 0

fork=1,-++,00
1. orthogonal matrix-vector multiplication

18]~ (I 1T o)

t=} j=it+1

2. noise singular vector rotations
D+1|D+2 AD+1M
[ o0] = o Qg™ i

3. column rotations

D-1
{0...0‘7&]} - gfg,g(ﬁgﬂ

&3 0 aof 1]
(<] 12H a2 1 te-1]

0 8y | = O G Cn 0 adfiy | O
0 0 gl T4

for j «~2to M
s 1|5
- = Quly
endfor
for é‘l:11 to JDM1
it 30
. =Py
for j «— M downto i+ 2
il Q'LIJ 1+1L7 1|_1 QH»EIJ z|z+1

[&] [k-1]
emiifolr litl | gili+l
i+ 1l it
Cny < o
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endfor
4. updating the singular values
. o D-1|D 1j2
[otg|00] « [af|acpyoofy |- w0570l

(283100 = [ | o 00y |- WGP 02,

[akaI\/D—lo*fk}J - [agkllo].lpa’[k]
[ ol |[VII=D=Topy | « [ofy]0] oy

endfor

4.4 A linear array

The SFG of Algorithm 5 is shown in Figure 4.4. The node descriptions
are given in Figure 4.5. This SFG looks very much the same as the SFG
of Jacobi SVD updating. This is the natural consequence of the fact
that the structure and functionality of both algorithms are very simi-
lar. Therefore, when pursuing a systolic array implementation, one is
confronted with the same problem of a long vertical dependency path.
However, in some applications the throughput specifications may already
be met by mapping the algorithm onto a linear array. We first discuss
this simple case. The more complicated derivation of a planar systolic
array is postponed to the next section.

The mapping is derived starting from the SFG of Figure 4.4. A nat-
ural way to assign computation to processors, is to map all nodes in one
column to a single processor (placement vector p in Figure 4.4). The
linear array then consists of D + 1 processors.

Because of the bidirectional vertical data flow, the scheduling (i.e.,
allocation of the computation over time) canr not be done with a single
scheduling vector. Instead, two scheduling vectors are necessary, resulting
in a piece-wise linear schedule.

The orthogonal matrix-vector product and the annihilation of the
components has dependencies from top to bottom and from left to right.
All dependencies are satisfied if the first scheduling vector (s; in Fig-
ure 4.4) points from the top-left to the bottom-right corner of the SFG.
The rotation updating process has dependencies pointing upwards and
to the right. Therefore the second scheduling vector (s; in Figure 4.4)
should point from the bottom-left corner to the diagonal.
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Figure 4.4: Detailed SFG for the spherical SVD updating algorithm (M =
6, D = 2). The description of the rotation nodes is given in the next figure.
The vectors p and s;,s; are the placement and scheduling vectors for a
linear systolic array.
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Figure 4.5: Node descriptions for the spherical SVD updating algorithm.
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Figure 4.6: Phase 1 of the linear systolic array (M = 6,D = 2): or-
thogonal matrix-vector multiplication. The ¢ = ¢ expressions contro] the
switches.
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Figure 4.7: Phase 2 of the linear systolic array: generation of the column
rotations.

In a first phase the linear array computes the orthogonal matrix-vector
product and the rotations in column D + 1. The timing is indicated in
Figure 4.6. The first componert £; becomes available after cycle M — 1.
The initialization of the Z;s requires some control of the inputs. During
the second phase the column rotations @'+ are computed (Figure 4.7).
Finally, during the last phase the factorization is updated (Figure 4.8).
The pipelining period of the linear array is (M ~ 1} +1+ (M -1) =
2M - 1= O(M™1) cycles.




86 Chapter 4 Factored Spherical Subspace Tracking

Q‘zjs Q:;i&l

2]4 Q5|5

o
QUz Qis Que Qus Qi { v
0o [T

|

12 Q?{S

12 Q:JM

Q1]4 Qz[s

Ql]s Qz[s

Qlls

Figure 4.8: Phase 3 of the linear systolic array: application of the column
rotations.

In [28] a similar linear array for the original spherical subspace ROSA
algorithm is derived starting from the textual algorithmic description.
The derivation is tough to follow, and it is difficult to see that all steps
are correct. This example gives a flavor of the power and the clarity of
the graphical methodclogy to map and schedule an algorithm onto various
parallel architectures.

4.5 A planar array

In this section we consider the conversion of the SFG of Figure 4.4 into a
more parallel SFG in which the long dependency paths have disappeared,
This will again involve the use of algorithmic transformations similar to
the Jacobi SVD updating algorithm {Algorithm 3). However, it turns
out that additional corrections are needed at the right-hand border due
to the truncation of the array. Therefore, the derivation is a bit harder
and the resulting planar array is more complicated and less efficient than
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the Jacobi SVD updating array.

The SFG of Figure 4.4 specifies two processes. The first is the matrix-

vector multiplication [ 5{3}3 ] g]H ] = zf" . (I'[,.,_1 ¢ QE,';’ 1]) The
second process is the updating of the rotations Q[k 1 Both processes are
tightly linked, since the ®#+'. and QP+ .rotations which are produced
by annihilation of the matrix-vector multiplication, are instantaneously
consumed by the updating process. Consider the upper-left block in Fig-
ure 4.9 bordered by the dashed line. Its input-output behavior should not
change with respect to Figure 4.4. However, to break the long vertical
data dependency loop, it is necessary to insert delays on the incoming ®-
and @-arcs. This causes the state of the upper-left block (i.e., the set of
stored rotation angles) to lag one cycle behind. One can easxly correct
for this delay by first updating the rotations from Q[k —g O Q[k 1] such
that the new vector zf) is rotated correctly. The new node descriptions
are given in Figure 4.10.

The transformations in the subsequent layers are again more involved.
Although the array does not store the matrix f’[k] = [ Via [ v } €
CMx{D+1) put its factorization, the notation of the latter is elaborate
and complicates the exposition. Therefore, we derive the algorithmic
transformations using the explicit matrix notation V{k]. Delaying the @-
arcs pointing upwards and @-arcs pointing to the right, increases the lag
of the state of the upper-left block to 2 cycles (Figure 4.11). Without the
additional delays, the M — 2nd row of rotation cells outputs the matrix-
vector rmultiplication _

2l = 2 Ve

where V[k} is the product of the factorization of Vik}’ without the rotations
involving row M. Due to the inserted delays, there is a lag in the matrix-

vector product o -
i = 2l Vie-2)-

At the next cycle, 17[k,2§ is updated by the rotations 5[k,.1] coming from
the last layer

Vi = [ Vieny 1% ] = [ Voo | sy |- S0y

where the vector vf} -1, is the unit vector proportional to the projection
of zj;) onto the nmse su ]bspa,ce Vik-11-

T n TI-H
k1.4 % V1) - Vie—1) - 214
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Figure 4.9: First phase of the mapping from SFG to planar array: inser-
tion of a first set of delays. The new node descriptions are given in the
next figure.
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Figure 4.10: Node descriptions of transformed nedes and correction
nodes.

It suffices to apply the ’'missing’ rotations ‘i[k—l] to n{g} to correct for the

delay
3 = ??EE] *Plr—1)

such that the last layer receives the input as specified in Algorithm 5. In
Figure 4.11 this operation is done in the extra nodes labeled F.
Corrections are also needed on the left-pointing Q-arcs. The input to
the C-nodes are also components of 74, such that the nodes compute (the
factorization) of a vector vﬁ_z'k} which is proportional to the projection
of () onto the noise subspace V[}c‘“z} at time t_3. This is not the desired
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Figure 4.11: SFG after insertion of the second set of delays. Additional
rotations have to be inserted to algorithmically correct for the lags.
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behavior prescribed by the algorithm. Instead, the projection onto the
noise subspace at time f..; is needed. Therefore one should not overlook
to update (the factorization of) v Tz 10 Ul = Uy gy The nature of
the update can be denved as follows an:hout dela.ys the SFG computes
vectors &p_p 4 € Ccb+ !U[k-—z,k] € CM such that

T = [ Vien) Yoz | * ] : [""ﬂ&;m—“} .

OM-D-1)x1

The signal subspace estimate VE*’__zl is updated from time .5 to tg..y by
the column rotation matrix @[;..;). This column operation affects the first
D 4 1 columns of the V matrix and leaves all remaining ones unaltered.
The new decomposition is

T[k-2,4] ]

e ¥ n H
Ty = [ V[k-z] Vrk—2,k) l* ] “I’Us—u “I’[k-ﬂ ) [ O(M—D—l}xi

o %
= | Vi_, gm|*|- _&MJ_J
[ [ka1] [k]| ] [ Ot -D1x1

From this last equation it follows that the vector gf) is aligned according
to the projection of zy) onto the noise subspace at time f;.1, such that

Vg = V1,5 = 9l

Above we already discussed the updating of the components of 55{1: 2.4
in the F-nodes. Similarly the updating of the factorization of vf;_, PR
taken care of in the additional G-nodes. For clarity, these G—nocses have
been drawn at the right of the B2-nodes in Figure 4.11. The drawback
of this placement is that the regularity of the SFG is lost. It is better to
think of the SFG in 3 dimensions {Figure 4.15). The G-nodes are then
lying in a second parallel plane behind the B2-nodes with which they
share inputs. When mapping these G- and B2-nodes onto each other and
merging the F- and the underlying B2-nodes, Figure 4.12 is obtained.
Repeating the algorithmic transformations in the remaining layers
finally results in the SFG of Figure 4.13. The long data dependency
loops have disappeared from the SFG. All dependencies are local and
regular. If bidirectional data flow occurs, a delay is present in one of
the directions. Therefore the algorithmically transformed SFG can easily
be turned into a systolic array. First the deiays have to be tripled (time-
scaling rule) and then the delay-transfer rule is applied to cut sets parallel
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Figure 4.12: SFG after insertion of the second set of delays. Regular and
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Figure 4.15: Relative position of the nodes in a three-dimensional SFG. To
obtain a two-dimensional array, the triangle of G-nodes can be projected
orthogonally onto the XY-plane (regular connections but load imbal-
ance), or rotated in between the B2F-polygon and the C-polygon (Joad
balance but broadcast).

to the dashed line in Figure 4.13. The final systolic array is depicted in
Figure 4.14.

Of course, the regularity in the interconnections is due to the orthog-
onal projection of all G-nodes onto one hierarchical node. The trade-off
of this mapping is the linear increase of the load of the nodes in column
D. This increase is caused by the growing gap between generation and
consumption of the QP rotations. Since a systolic array is synchro-
nized by a central clock, the operation speed of the full array is governed
by the slowest node. If the problem size M is large, the throughput of the
array can be slowed down to O{1/M). The alternative is not to project
all G-nodes onto the same column. Instead, the triangle of G-nodes can
be rotated {oblique projection) from the ¥ Z-plane into the XY-plane
(Figure 4.13). The G-nodes are then placed in between the nodes of col-
umn D and D+ 1. The load balancing between the nodes of this array is
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better, and the clock speed is no longer dependent on M. The drawback
of this second mapping is the irregularity and non-locality in the inter-
connection pattern. It requires broadcast links of some data from one
node to several others. The length of the broadcast is proportional to M.
An optimal choice will depend on technological constraints.

4.6 Conclusion

In this chapter we have studied the spherical subspace tracking algorithm
in which both the signal as well as the noise singular values are averaged.
First a spherical SVD updating algorithm was derived. It differs mainly
from the original EVD updating algorithm, in that it can be implemented
using rotations only.

To cure the build-up of numerical errors, which could destabilize the
recursive algorithm, we proposed to track the factorization of the unitary
subspace tracking matrix. The spherical subspace tracking algorithm is
a second example of the usefulness of the factorization, which was devel-
oped in the previous chapter. Other examples will follow. We conjecture
that a large class of adaptive algorithms which update orthogonal (uni-
tary) matrices by sequences of Givens rotations might benefit from the
factorization.

Next, a linear systolic array was derived. It has the advantage that
no extra computation is involved. It is also an efficient array, since with
D + 1 processors its pipelining period is 2M - 1 cycles.

Finally, we developed a 3-dimensional systolic architecture in which
one triangle of nodes is orthogonal to the plane in which all other nodes
are contained. This array is impractical to construct. Two planar arrays
were obtained by linear projections. The orthogonal projection leads
to a systolic array with local connections but suffering from a linearly
increasing load imbalance. The oblique projection yields an array with a
good load balance, but non-local interconnections. Several intermediate
solutions may be derived as well. With O(M - D) processors, the systolic
array attains a (1) throughput.



Chapter 5

Robust Adaptive LCMV
Beamforming

In section 2.2 it was shown that the beamforming problem can be formu-
lated as a linearly constrained recursive least-squares problem. Typically
one or more constraints correspond to array response vectors, fixing the
gain in certain lock directions. It is common to impose a unity gain in
the direction of the signal of interest (SOI). As a second example one
may force a zero gain in the direction of a known interference source. In
practice, it is hard to perfectly know these array response vectors. In-
accuracies in the positions of the sensors, random gain-and-phase errors
or variations in the direction of the SOI are almost unavoidable. The
effect of these errors should not be overlooked. Even small errors in the
nominal array response vector used in the constraints, can cause already
a severe decrease in the signal-to-interference-plus-noise ratio (SINR) at
the output of the beamformer [41, 144].

We propose to solve the sensitivity problem by estimating the array
response vector directly from the data. A necessary condition for the
applicability of the method is that a reference signal is available. An
example is the GSM system in which each normal burst contains in the
middle a training sequence of 26 bits known to the receiver. The advan-
tages of this approach are clear. Pointing and calibration errors can be
eliminated, and the beamformer is able to track the signal-of-interest. A
complication is that now a recursive least squares (RLS) problem with a
time-varying constraint has to be solved. Several paraliel architectures
are known for adaptive beamforming [59, 69, 146, 152]. Our method of
choice is the generalized sidelobe canceler (GSC) discussed in chapter 2,
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because it is best suited to adaptation of the constraint. Moreover, the
algorithm can be formulated as a Jacobi algorithm.

In section 5.1 the sensitivity of the output SINR is explained. Next,
section 5.2 proposes a cure based on estimation of the array response vec-
tor from the data. Section 5.3 demonstrates the increased robustness by
means of simulations. Finally, in section 5.4 the mapping from algorithm
onto architecture is discussed. Throughout the chapter the notation of
section 2.2 is used.

5.1 Signal leakage

To examine the effects of a small mismatch in the array response vector,
let a{d,) € CM denocte the actual (but unknown) array response vector
and assume ¢ = a(#,) +6a(f,) € CM is the nominal array response vector
used in the constraint matrix. Thus, the vector da{f,) contains the (small)
deviations between actual and nominal array response vector.

In the ideal case where ¢ = a{#,) is correct, no SOI components are
contained in the so-called reference inputs a”:{,f] = xf{} - B. The SOI only
appears in the primary signal g = x{z} - wy. This desired behavior is
achieved by the orthogonality conditions BH -c = B¥ .a(8,) = Owm-r)x1
imposed on the choice of a suitable blocking matrix B, However, in case
of a small mismatch, some signal leakage into the reference inputs will
occur. Let sy denote the SOI sample at time ¢x. The signal leakage

BH ‘ G(B,) * S[k] = —BH ' 5&(93) " S[k]

causes a decrease of the output SINR. In the example of Figure 5.1 the
choice of ¢ = a(f,) + da(f,), B and w, is such that there is only a leakage
€ into the first reference input

a6)?-B = e [1 0 0]
1
fell?

The fixed quiescent filter w, results in a SINR of 17.1 dB in the primary
channel §. For each value of the leakage coefficient ¢ the SINR at the
output is computed using the optimal weight vector. The decrease of the
output SINR is pronounced. A small leakage of about 1.5% (e = 0.015)
in one reference channel, already lowers the SINR to the level of the

W, =
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Figure 5.1: The effects of signal leakage: a 4-element half-wavelength
ULA receives a signal {0 deg, 20 dB) and an interference (20 deg, 10
dB). A signal leakage of ¢ in one reference input causes a rapid decrease
in the output SINR {upper part). The lower part shows that this is due
to an increase of the output noise level. The interference level remains 25
dB below the noise. Simulations were performed in Xmath.
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fixed filtered primary channel §j. When even more leakage is present, the
adaptive filter deteriorates the SINR instead of improving it.

The lower half of the figure shows that this decrease in SINR is due
to a same increase in the white noise level at the output. The interfer-
ence signal is still suppressed to an insignificant level. In this example
the signal power in the output remains almost constant. In other cases
substantial signal cancelation may occur.

It should be noted that the decrease of the output SINR is depend-
ing on all parameters of the scene. Especially for large SINRs at the
individual sensors, the decrease is pronounced. This counterintuitive ob-
servation is best explained in Figure 5.2. We assume a virtual array with
two elements, in the sense that all vectors involved are real. The array
response vector of the signal is s7 = { 01 ] The SINR at the input is

50. The output power (Eq. (2.3)) is given by

10
p(w}ﬂwT'[o 51]'“”

a few contour lines of which are plotted in the figure. For a given weight
vector the output noise power is proportional to |w||?, whereas the signal
power is proportional to [s7 -w|2. Therefore the SINR at input and output
are related by a factor cos®(c) where

[s7 - w]
llwit

Vector w4 gives the optimal weight vector when the exact constraint is
used. It is proportional to the array response vector s. The vector wg de-
notes the optimal weight vector when the constraint vector is erroneously
taken to be ¢* = [ cos(85°) sin(85°) ] The misalignment between s
and wg increases as the SINR increases and the contour ellipses stretch
even further. In this simple example and for large input SINRs cos{a) is
inversely proportional to the SINR. In [41] similar conclusions are derived
for the general case.

cos(a) =

5.2 An adjustable constraint

The underlying cause of the signal leakage is the unavoidable imperfect
a priori knowledge of the array response vector. Similarly to the approach
of Castedo et al. {10], we propose to alleviate this problem by estimating
a{8,) directly from the data.
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Figure 5.2: Virtual two element array, exact array response vector s? =

0 1 J, perturbed constraint vector ¢ = [ cos(85%) sin(85°) ], signal
power = 50, noise power = 1. The weight vectors w4 and wp are the
optimal weight vectors for the unperturbed and perturbed constraints
respectively.

In many communications systems the source periodically sends a ref-
erence signal r(y which is known to the receiver. In other applications the
reconstructed waveform can act as a reference signal (e.g., decision feed-
back operation of blind equalizers {82]). In both cases the actual array
response vector af{f;) can be estimated by forming the cross-correlation
vector between the sensor outputs and the reference signal

p= E{z iy} = E{alls) - sy - g} + E{npg - rig}-

If riyy is correlated with sy, but uncorrelated with all interferences and
noise, then p is proportional to a(f,), i.e.,

D= fPor a(ea)'

The signal leakage can thus be counteracted by replacing the time invari-

ant constraint

cH-wz,u

where ¢ & a(#) is the steering constraint vector by the time variart con-
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straint -
P+ Wy, fiz
H R ) Bk '
Pl -w=p cH - w, fi = ik}

where the recursive estimate pyy is defined as

Py =B ppp-y+ (1 - 8) -2y - iy

and 3 is again an exponential forgetting factor. The right-hand side y is
rescaled to ,u,fk] by means of some linear function of the elements of ppy
and ¢ (both approximately parallel to a(6,)). The vector w,, s, is yet to
be defined. In order to develop a robust LCMV beamformer, below we
combine the recursive estimation of the cross-correlation vector with the
GSC algorithm,

The time-varying nature of the constraint matrix Cy has two effects.
First the quiescent weight pattern w, iy becomes time-varying, since it

has to satisfy
o M iz
T Wy k] = '
Pl ! PR

Here Cji, € CM*(E=1) and my;, € CX=! correspond to the fixed, non
time-depending constraints. Secondly the blocking matrix B should be
kept orthogonal to Cf) and thus becomes time-varying as well.

First we focus on the time-dependence of the quiescent weight wg 4.
In the derivation below, it may be useful to keep already Figure 5.4 in
mind.

An equivalent set of constraints in which the last constraint is orthog-
onalized with respect to the space spanned by the fixed constraints, is

given by
[ C"F%r ] . M iz ]
. [k -
e R
where

Pfi] = (I-Cpix- {Cﬁz : Cfir)"i Cﬁz) * Plx
ply = #ig -l (Criz (Che - Crie) ™" - mpiz).
For the quiescent weight vector we choose the minimum norm solution

Wo k) = Ciz - (Chz Crin)™t M fie +P (o] - piy) ™" - By

Wq, fix
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Define the unit vector gy as

L
Pix)

“Pfk}”

QK] =

The primary channel can then be written as

-~ H
Y = Tk Wo,lx)
}Vlic}
= -'B'['Z]'wq,fix“i‘zg]'ﬂk}' T
NGNS TP
Ya2,[%] 91,18
. (st — Pl wg i)
= Ya+ HK" L Uf :
”P[k]”

The primary channel is seen to be a ‘time-varying’ linear combination of
the ‘time-varying’ channel §; and the fixed channel §,. The output of the
beamformer is also given by the same linear combination of the outputs
e1 and es of two separate beamformers, with §; and §, as primary inputs
respectively

(I—‘fk] - P{;{] " Wy, fix)

Y = €2,k + ”p[JE]” *€1,[%]
H
_ 7 oy Py Watiz
B ez’[ki+(cH'wq,fiz ' el L

"

‘uH
The output ¥ is the Schur complement of ”P[i]” in the matrix S €
C2x2
H
Sy = “I;ff;;]!! Pl * Wa.iz |
—H €] €2,[k}

Such a Schur complement can easily be computed by reducing the ma-
trix Sp) to upper triangular form [151]. One possibility is to use Gauss
transformations

pré]“ Pfi]'wq,fix m[ 10 EIpf’;c]]l pf{]-wq,ﬁx
0 Yie) —op 1 —Wery ey

where af) = :-;—T;—?éﬂ. A parallel implementation of matrix triangulariza-
{k]
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p e gt eg Y - wg fi

Figure 5.3: A parallel 1 x 2 Schur complement array performing Gauss
transformations. This array performs the linear combination of the two
channels.

tion is the Schur complement array of Figure 5.3, which performs Gauss
transformations instead of rotations. Alternatively, one may prefer ro-
tations to perform the triangularization on condition that the output of
the array is normalized by multiplication with the cosines of the rotation
angles (see section 2.2).

A global view on the modified GSC signal flow graph (so far) is pre-
sented in Figure 5.4. The major modifications with respect to the SFG of
the standard GSC (Figure 2.7) are the presence of two primary channels
and the small additional post-processing section in the lower right corner.

The second challenge is updating B, gy and Sy such that the
orthogonality conditions

g x (= Crix (ClyCrix) ™ CFo) - piy

Bf{]-[cffz Q[k]] = OmM-K)xK

are satisfied at each sampling time 5. These equations imply that f,
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Figure 5.4: SFG of the generalized sidelobe canceler array with the time-
varying primary channel included. In comparison with the fixed GSC
of Figure 2.7, two weight vectors wy s;» and g are present and a small
output section is added.
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the ‘a posteriori’ cross-correlation vector in ‘beam space’, should equal

ﬁ{i]défpfi]-[Bzﬂl%]=[° °|*]°

The ‘a priori’ cross-correlation vector in ‘beam space’ Py; is computed as

#th = rfhy - | Bi-u | ge-n ] -

If its first M — K components are not zero, they can be zeroed by applying
a sequence of M — K Givens rotations. The ith Givens rotation VEEf +1
is computed to annihilate the ith component of pjy; by combining it with

the neighboring 7 4+ lst component. A 3-element exampie is given below.

Exampie:
Bl yanr | O papr
p — p s
P P P
The transformations are such that [{p[lk};; = [ifx |l is given by the magni-

tude of the last component of py. Let Vi = HgM; 1_K V[}c[}' +H represent the

sequence of M — K column transformations, applied to ﬁf{}. This leads
to the following updating equation
[ B | aw | = [ Ben | @pe-ny |- Vi

The matrix Bjg.1) and the vector gj;..1) are realigned in their own span.
This implies that if they are properly initialized, they will always remain
orthogonal to C;,. Obviously the same column transformations have to
be applied to the R-matrix. Let

Xy = | o opy | oF2ap | | 2y ]

denote the exponentially weighted data matrix. One can write the fol-
lowing QR decompositions
a priori: X'fk] = X{If;] . [ B3 l qk—1} ]
= @By
a posteriori: ka} = X[‘E] . [ By i (K] ] = ka] - Vikg
ka] ) Rfk] Vi

fi
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Unfortunately a column transformation V[ﬁ;H on Rfk] creates a fill-in
under the diagonal of Rfk]. An additional row rotation UEEH
to restore the upper triangular structure of R%k]. In the example below

a column rotation V112 is applied to the first 2 columns of the triangular
matrix. This results in a fill-in e at entry (2,1}. The row rotation U[lklfg
is then computed such that the fill-in e is zeroed. This computation is
repeated for subsequent fill-ins.

Example: creation and annihilation of fill-ins

is required

f ol ™ ™ r’ r’ r - rh’ r” T,I
Vil ’ trife " ’ Vs
ror —t e M r — 0 M r —
r r r
T'” r”! " U”SH Il T'” rl
0 TIH f‘" — 0 T”H rh’l
e 7 o r

After the complete update the a posteriori QR decomposition is given as

o= xfy| B aw | wese |
= R ﬁ" V[k]!O
[ka}l*}'[ é“f THJ'[ 01

o vHio BV la
[le*}.[U[k]IO}.[ {k]! }[ 1&] {k]'ﬁ'f,[k]]

ft

0|1 011 (9] [ =
= U R, Vig | UE - @,

[ Qg U | * ] : [ 3 5"] [&] ll W }

where the Os denote zero matrices of appropriate dimension. From these
equations it is clear that for consistency, the row transformation U{‘i‘i
should be applied to the vector ﬁ},{k] too. The signal flow graph of the
complete generalized sidelobe canceler with an adjustable constraint is
shown in Figure 5.5.

The textual description is given in algorithm 6. The operator null(')
computes an orthogonal matrix spanning the kernel of its input argument.
Due to the fact that 1-’{1{-1} = [ o -+ 0 I* ], the sequence of column
rotations V[;f'+1 computed from B = 3- ﬁf}:_li +(1=0)-rp -5{,{3, already
annihilates Zj;) except for the last entry. Therefore the QRD updating
reduces to a 1 x 1 problem, and the beamformer outputs e, [x) and e; 11
are readily available.
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Figure 5.5: Final SFG for robust LCMV beamforming with an adjustable
constraint.
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Algorithm 6

fork=1, ...

By «
Wq fiz
Py <
9o < pié]
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Rfc] - O
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oy
, 00
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4. beamformer output computation

P[}if] " Wy, fiz

Y <~ 62,{k]+ﬂ"€1,[k]' ”Pflfc]”

endfor

5.3 Simulation results

In the simulation of Figure 5.6 the following scene is considered. A
ten-element uniform linear array with inter-element spacing of a half-
wavelength, receives a 20 dB SOI at 0 deg, a 10 dB main beam interfer-
ence at 5 deg and a 30 dB interference at 17 deg, which is approximately
the maximum of the first sidelobe (see Figure 2.5). The white noise level
is 0 dB. The snapshots of the SOI, interferences and noise ate complex
independent identically distributed (i.i.d.) zero-mean Gaussian random
variables. Furthermore the SOI is assumed to be a training sequence
known to the receiver, and is used as the reference signal. The weighting
factors o and 3 are set to 0.999. The following set of two constraints is
chosen

[a8) Ba) ]” w= [ (1}} :

The first constraint is the mandatory steering constraint, fixing a unity
gain at #,. The second constraint imposes an extremum in the directivity
pattern at 8,, hereby already increasing the robustness of the beamformer
[3]. Only the steering constraint is recursively estimated. Errors in the
second constraint are not compensated for.

The SINR curves and the directivity patterns after 1000 snapshots
are averaged over 50 runs. In each run inaccurate knowledge of the ar-
ray response vector is simulated by independent random perturbations
on the gain and phase of each antenna element such that the gain is uni-
formly distributed in the interval [0.99, 1.01] and the phase in the interval
[—5.4, 5.4] deg, corresponding to position inaccuracies of 3%. The same
signals are used in all runs.

As seen in the upper half of Figure 5.6, the effect of the perturba-
tions is severe. Without perturbations the algorithm attains an average
SINR level of 13 dB. With the perturbations added the SINR drops
to &4 dB. However, if the array response vector is recursively estimated,
the algorithm very quickly reaches a level of £18 dB, which is even higher
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Figure 5.6: Output SINR (upper figure) and the final directivity pattern
(lower figure) averaged over 50 runs. Sensor: ULA with M = 10. Signals:
SOI (0 deg, 20 dB) and 2 interferences at (5 deg, 10 dB} and (17 deg,
30 dB}). Weights: o = 4 = 0.99.

Case 1: (full line) no perturbations and no adaptive estimation.

Case 2: (dashed line) perturbations: gain errors are uniformly distributed
in [-1,1]%, phase errors in [-5.4, 5.4] deg. No adaptive estimation.

Case 3: {dash-dot line} same perturbations. Array response vector is
recursively estimated.
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than in the perturbation free case. The reason for this surprising result
is that the algorithm not only compensates for perturbations in the array
response vector, but also for perturbations caused by the finite sample
effect. In [27] an analysis is presented which shows that estimation errors
due to small data records have the same effect as if a perturbed array
response vector were used,

The lower half of Figure 5.6 shows the corresponding average direc-
tivity patterns. In all three cases the steep notches at the interference
angles are approximately the same. The sidelobe levels however differ,
influencing the white noise power in the output. In the case where the
perturbations are not compensated for, signal cancelation occurs since
the gain at 0 deg is only -4 dB. The extremum at 0 deg imposed by the
derivative constraint, is also clearly noticeable.

5.4 Mapping onto the Jacobi architecture

The SFG of the robust adaptive adaptive LCMYV beamformer (Figure 5.5)
can be mapped efficiently onto the Jacobi architecture for SVD updating.
The structure of both algorithms is identical. Both algorithms consist of a
sequence of orthogonal matrix-vector multiplication, QRD updating and
two-sided rotations,

The main difference is the computation of the column and row rota-
tions. In the Jacobi SVD updating algorithm, they are the result of an
SVD on consecutive 2 x 2 diagonal submatrices. In the robust LCMV
algorithm, the zeroing of the cross-correlation vector and the annihila-
tion of fill-in entries determines the rotation values. Therefore, we can
organize the computation of the robust LCMYV beamforming algorithm
on the same Jacobi array without loss of performance on condition that
the cross-correlation vector fyy is stored in the diagonal nodes.

The functionality of the nodes in the R-array is actually simpler than
for SVD updating. Except for the bottom node, the QRD updating can
be omitted. Also the row and column rotations can now be computed
sequentially, whereas in the SVD updating algorithm they have to be
computed simultaneously. A last remark concerns the implementation
of the output section combining the outputs e; j) and ey ;. Since this
involves only a scalar multiplication and a 1 X 2 Schur complement array,
this computation can easily be added to the nodes in the last but one row
of the R-array. The resulting irregularity in the node descriptions is very
small. '
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Again numerical instability may occur due to error accumulation in
the beamforming matrix [ By 9 I W, fiz :] In order to avoid numer-
ical error-buildup, one can work with a factorization of the beamforming
matrix as described in chapter 3, i.e., the matrix is stored as a sequence
of Givens rotations. The matrix has orthonormal columus, except for the
quiescent weight vector which may not have a unit norm. This is not a
big problem. The inner product with the fixed weight vector can always
be performed as a multiplication with the normalized unit-norm vector
followed by a scalar multiplication with its norm.

5.5 Conclusion

In this chapter an algorithm for robust LCMV beamforming was derived.
The sensitivity of the SINR at the beamformer output with respect to
gain and phase errors in the array response vector is circumvented by
estimating the array response vector directly from the data. A necessary
condition is that a reference signal is available. The algorithm is based
on the well-known generalized sidelobe canceler with fixed constraints.
Simulations indicated that this approach works well and also corrects for
finite sampling effects.

The SFG of the algorithm is very similar to the SFG of the Jacobi
SVD updating aigorithm. Its topology is hardly different. Only the com-
putation of the rotations, which is an internal node program, differs.
Therefore the SFG can be mapped onto the Jacobi architecture of sec-
tion 2.3.2 without loss of performance. The fact that the Jacobi array is
able to execute different recursive algorithms by slightly reprogramming
the nodes, makes it a fairly general architecture.

The mapping onto the Jacobi array is not the only possibility. A sec-
ond architecture, specifically tuned towards this beamforming algorithm
is described in {129]. It does not store the cross-correlation vector in
the diagonal nodes, but in the first row of the R-array. Although its
throughput is slightly higher, the fact that it is not so general makes it
iess attractive for hardware realization.
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Chapter 6

2-D Harmonic Retrieval

in the last three chapters we turn our attention to the direction finding
problem. Each chapter makes different assumptions on the data model.
In the standard data model for DOA estimation of multiple narrow-band
sources discussed in section 2.1, all sources share the same known carrier
frequency. Here we look at a generalized problem. As shown in Figure 6.1
the sources are still assumed to be narrow-band point sources located
in the far field of the sensor array. However, their carrier frequencies
are no longer known and may differ. For each source both the angular
position and the carrier frequency has to be estimated simultanecusly.
This model applies for instance to the surveillance radar system discussed
in chapter 1.

Since the carrier frequencies may differ, it is not longer possible to
work with a base-band representation for the signals. Instead, the model
for the data matrix is a sum of two-dimensional (2-D) complex sinusoids.
The components of the frequency couples are related to the angle-of-
arrival, respectively carrier frequency, of the wavefronts. Estimating these
frequency couples is known as the 2-D harmonic retrieval problem [87].

In section 6.1 an overview of the existing methods is given. Section 6.2
states the data model. Next, in section 6.3 we develop our algebraically
coupled matrix pencils (ACMP} algorithm. It is more computationally
efficient than existing methods in the literature. It splits the 2-D problem
into two related 1-D estimation probiems. In each direction the frequen-
cies are estimated using a computationally efficient shift-invariant sub-
space algorithm. A further increase in efficiency is due to the algebraic
pairing of the horizontal and vertical estimates. Finally, in section 6.4 we
compare the estimation performance of the new algorithm with various
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Figure 6.1: A Uniform Linear Array receives muitiple narrow-band signals
with unknown frequencies f; and angles of arrival #; from the far-field of
the array.

other algorithms by simulations.

6.1 Introduction

Two-dimensional spectral estimation is a problem with many applica-
tions, e.g., in image processing and array processing. Starting from a
2-D data set, one has to determine its 2-D spectral content. Many 1-
D high resolution methods such as the minimum variance method and
maximum entropy method, have already been extended to the multidi-
mensional case [56]. However, they require searching over the entire 2-D
frequency space or finding the roots of a 2-D polynomial. Often their
computational requirements are prohibitive.

From one-dimensional spectral estimation, it is well-known that for
harmonic retrieval the costly optimization or polynomial root-finding
steps can be avoided. If the time-series consists of a linear combination
of a number of sinusoidal signals with unknown amplitude, phase and
frequency, then the frequencies can be estimated by means of matrix de-
composition techniques only. An example is the ESPRIT algorithm which
cleverly exploits the shift-invariant structure of the low-dimensional signal
subspace.

For a matrix of 2-D sinusoids a similar low-rank structure holds, This
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fact was first recognized by Rao and Kung [87]. Their state space method
is the first to fully exploit the eigenstructure of the data for spectral es-
timation. Since the data model is separable along the vertical and hori-
zontal axis, one can model the data by two independent 1-D state space
systems. The poles of these systems are related to the frequency compo-
nents. They are estimated by a state space realization algorithm based on
the shift-invariance of the two observability matrices. The decomposition
of the 2-D problem into two independent 1-D estimation problems gives
rise to a new question. Which horizontal estimate corresponds to which
vertical estimate? In [87] this pairing problem is solved by estimating
the amplitudes corresponding to each possible pairing. The combinations
with the largest amplitudes are finally selected. However, the algorithm
of [87] breaks down when multiple 2-D sinusoids share a same frequency
component due to rank degeneracy,

This problem is addressed by the matrix enhancement and matrix
pencil (MEMP) method of Hua [39]. An enhanced matrix is constructed
in which the data are repeated in a double Hankel structure. In the en-
hanced matrix the original rows and columns are treated differently. This
approach effectively restores the full rank of the matrices spanning the
signal subspaces in a way which is similar to spatial smoothing schemes
for direction-of-arrival estimation of fully coherent narrow-band signals
{98, 111]. The cost is additional computation. This is due to the linear
increase of the dimensions of the enhanced matrix with the number of
2-D sinusoids in the data. The second probiem of pairing the estimates is
again solved by the use of a trial-and-error scheme. Basically all possible
pairings are checked for the orthogonality of their corresponding vectors
to the estimated noise subspace.

Here we present a more efficient 2-D subspace algorithm. This al-
gebraically coupled matrix pencils (ACMP) algorithm is capable of esti-
mating multiple frequency pairs sharing a common component. [t uses
a different enhancement technique, suck that the matrix dimensions do
not increase with the total number of signals. Instead they grow propor-
tional to the maximum multiplicity of a frequency component, i.e., the
maximum number of times that a frequency component is shared. As
opposed to the MEMP algorithm, no enhancing is necessary if the data
do not contain shared frequencies. Moreover, no additional operations
to pair the frequency components are required. The pairing is obtained
by simultaneously solving two algebraically related generalized eigenvalue
problems.
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6.2 Data model

Let the signal consist of a sum of D complex two-dimensional sinusoids
with unknown frequency pairs (u;, v;) and unknown complex amplitude-
and-phase factors ¢;. Examples where this data model applies, are ob-
servations of narrow-band signals taken by a uniform linear sensor array
and images of periodically structured patterns.

The data matrix Z € CV*M can then be written as a sum of D
rank-one matrices due to each of the spectral components

D
ZmZai~x,-oy,-T

=3

where a; = r; - exp(jp;) € C with r; € R the amplitude and p; € [0,27]
the phase of the ith sinusoid and z; € CV and y; € C¥ are Vandermonde
vectors

N U N
i = {1 W P e Mt ]T.

In image processing the poles ¢; and 1; are given by &; = exp(j2ru; ;)
and ; = exp(j2nrv;A,) where (ui, v;) and (A;, Ay} are the spatial fre-
quencies and spatial sampling intervals along the horizontal and vertical
axes respectively. In the array processing example ; and ¢; are defined
as v; = exp(j2n fiA sin{6;}/c) and ¢; = exp(j2x f;Ts) with (f;, 8;) the cen-
ter frequency and DOA of the ¢{th emitter and A, ¢ and T, the distance
between the antenna elements, the speed of propagation of the wave and
the sampling interval respectively. More generally, the data may contain
transient signals, the poles of which lie inside the unit circle.
The data matrix can also be written as follows

Z=Xy-AYL+W

where the ith columns of the Vandermonde matrices Xy € CV*P and
Yar € C¥*D hold the vectors z; and y; and A € CP*P is a diagonal
matrix containing the complex scalars g;. In the sequel the subindex of
the Vandermonde matrices, indicating the number of rows, will often be
omitted for conciseness. The matrix W represents additive measurement
noise on the signals.

The data are linearly dependent on the complex amplitude factors a;
but non-linearly on the poles {¢;, ¥:). Given estimates of the poles, the
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estimation of the amplitudes reduces to a least squares problem. This
is shown in appendix 6.A. Below we solely address the estimation of the
pole pairs (¢;,¢;). For this objective the Vandermonde structure of X
and Y will be exploited.

6.3 The Algebraically Coupled Matrix Pencil al-
gorithm

The ACMP algorithm is a computationally efficient subspace algorithm
for estimating the pole pairs (¢, ¥;). For the estimation of the ¢;s (¥is) a
'vertical’ (horizontal’) matrix pencil is constructed. By careful selection
of the matrices used ('= algebraic coupling of the matrix pencils’) the
pairing of the ¢;s and ;s is obtained without additional operations.

The ACMP algorithm is based on two properties of the data matrix Z.
The first property is the fact that in the theoretical case of noiseless data
Z has rank D (except for cases with coinciding frequency components).
This subspace property allows to reduce the noise level by approximating
the original noisy data matrix by an optimal rank D matrix.

The second useful property is the Vandermonde structure of the X
and Y matrices. Vandermonde matrices are a special class of matrices
obeying a shift-invariant subspace property,

X=X® and VY==Y.V

where & and ¥ are diagonal matrices containing all ¢s and ¥ys. The
matrices V and V. denote a matrix V after omission of its first and last
row respectively. Similarly |V and V| denote the matrix V now with the
first respectively last column omitted.

Below we first develop a subspace algorithm for noiseless data in which
no frequency components are shared by multiple sinusocids. Then we ex-
tend the algorithm with a smoothing scheme such that it is also applicable
to the case in which shared frequency components occur. Finally we com-
ment on the refinements in the case of noisy data.

6.3.1 Noiseless data

In the noiseless case the following equations hold for the top-left, top-
right, bottom-left and bottom-right submatrices obtained by omitting
the first or last column and row.

Zy = Z|=X-AYT
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Zy = Z=X AV =X (A-9).YT
Zy = Z|=X-A-YT=X-(®-4)-Y7
Ze = Z2=X-A-Y'=X-8-4.-9).Y7

These submatrices can all be written as the product of the same Van-
dermonde matrices X and Y7, but with a different diagonal matrix in
between them. Consider now the following two sets of matrix pencils

Zy—p-Zy = X-A-(Y-p-I)-Y7T

Zyp~p-Zy = X-A-(U=~p-I) YT
and

Zyy~AZy = X-A-(@-X-I). 7"

Zy-~X2Zy = X-A-(®-X-).Y%

In the first set of *horizontal’ matrix pencils a submatrix at the left
side is subtracted from a submatrix at the right side. In the second set
of 'vertical’ matrix pencils a submatrix at the top side is subtracted from
a submatrix at the bottom side.

In the common case that the dimensions of the data matrix are bigger
than the number of sinusoidal components {i.e. M > D, N > D) and
that there are no shared poles (i.e. ¢; # ¢;,9; # #; for all i # j7), each of
the above matrix pencils has a generic rank D, Only if A = ¢; and u = ¢,
their rank drops to D — 1. These pairs of rank-reducing numbers {A, u)
are thus equal to the pairs of poles (¢;,1;} we want to estimate. Since
both horizontal {vertical) matrix pencils provide estimates of ¥ (®), it is
sufficient to select only one matrix pencil from each set. It now remains
to be shown how the rank reducing numbers can be calculated. Below
a simple algorithm is given which uses matrix decompositions only. Tt is
inspired by the ESPRIT algorithm for 1-D DOA estimation.

ACMP algorithm
1. Compute the singular value decomposition of Zy € CWV-1)x(M~1)
Zy=U-T.V¥

where U € CV-1%D 4nd Vv € CM~-1%D have unitary columns and
¥ ¢ RP*P is a diagonal matrix.
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2. Multiply the horizontal and vertical matrix pencil containing Zy
on the left by U¥ and on the right by V to compress all matrix
dimensions from (N - 1) x (M ~ 1} toe Dx D.

UR (Zy-p Zg)V = F-(¥—p-1)-G
déf Cer — i+ Cu

U (Zy~X-Z4)V = F(®-X-1)-G
def Cu—-A-Cy

where F = UH . X . A and G = Y7 .V are full rank D x D matrices.
The matrix Cy = ¥ is already given by the SVD of Z.

3. Compute the eigenvalue decomposition (EVD) of
Cil Co=G1.T.G.

This is equivalent to computing the generalized eigenvalue decom-
position of the matrix pair (Cir, Cyt). Since Cy = E, inverting Cy
is always possible and very cheap. This EVI) provides the set of all
horizontal’ poles ;.

4. Apply the eigentransformations G to the other pencil
G-(C;t-Cy) -G = 8.

The same transformation G which is calenlated based on the first
pencil, can be used to calculate the ¢;s. Only one eigenvalue prob-
lem has to be solved. The second one is diagonalized by the same
transformations. This remarkable property guarantees an identical
ordering of the As and the ps. Fach p; and A; correspond to the
same (ith) sinusoidal component. By this "algebraic coupling’ of the
matrix pencils, estimates of frequency pairs are obtained instead of
two unordered sets of frequency estimates. The pairing of the 1-D
estimates is a by-product of the computation, and does not require
any additional operations.

The necessary condition for this property to hold is that all matrices
involved can be written as the product of the same left and right
matrices with possibly a different diagonal matrix in the middle.
This method to pair 1-D estimates in an algebraic manner was pro-
posed by van der Veen ef al. [115], where they address the problem
of simultaneous azimuth and elevation angle estimation of narrow-
band emitters.
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The computational complexity of the algorithm above is very low. It
requires only one SVD of a (M ~ 1) x (N ~ 1) matrix, one EVD of a small
D x D matrix and a few matrix-matrix multiplications.

6.3.2 Shared frequencies

The above algorithm fails if multiple frequency pairs have one component
in common. The obvious reason is the rank deficiency of the X or YV
matrices in that casel. To recover all sinusoidal components the full rank
D property of the submatrices has to be restored.

In [39] Hua constructs an so-called enhanced block Hankel matrix by
partitioning and stacking the original data matrix. A large block Hankel
matrix is formed, the blocks of which are Hankel matrices constructed
from one row of data. The block Hankel matrix is of rank D on condition
that the number of block rows K and the number of rows per block L
is larger than the number of sinusoids D. This method of enhancing
has a few drawbacks. First, as shown in Figure 6.8 in appendix 6.C,
rows and columns are treated differently. Secondly if there are no shared
frequency components, then in the previous section it was argued that
all frequencies can be computed from the original data matrix. However,
the MEMP aigorithm requires that also in this case the large matrix is
constructed. In addition to increasing the computational burden, the
growth in matrix dimensions also limits the applicability of the MEMP
algorithm to data sets in which the number of sinusoids is smaller than
half of the smallest dimension of the data matrix. A third drawback
is that the construction of the matrix pencils in the MEMP algorithm
is not compatible with the algebraic coupling technique. Therefore, an
additional step must be included to pair the 1-D estimates. In [39] the
orthogonality with respect to the estimated noise subspace of the signal
vectors corresponding to all possible pairings is used as selection criterion.
In appendix 6.C we show how the MEMP algorithm may be modified such
that the algebraic pairing technique is applicable.

Below we present an alternative rank-restoration technique. It treats
rows and columns in a symmetric way. The increase in the dimensions
of the matrix is only proportional to the multiplicities of the poles, And
the algebraic pairing of the matrix pencils is retained.

'In narrow-band direction finding all emitters share the same carrier frequency too.
The rank degeneracy is circumvented by using a base-band representation of the signals.
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Figure 6.2: Hlustration of the ACMP enhancing method. Z € C*7 K =
L =4

Let the matrix J € CXN-L+1)xL(M-K+1) be defined as

Zyl 721l L. ZL,I

zi2  gzwr ... gzLz2
J = } . .

ZI.,K Z?:,K s ZI:,K

where the (k, I)th block component Jy € CWV-I+1)x(M-K=+1) 44
Ju = 2% = Zyn- pri M-k 4k

The index notation ;; denotes all rows (columns) from the ith to the
Jth row {column). The enhancing method is illustrated in Figure 6.2.
The blocks of the enhanced matrix J are submatrices taken from the
data matrix Z. Consecutive blocks in a block row, respectively block
column, of J are vertically, respectively horizontally, shifted overlapping
submatrices of Z. It is easy to check that J satisfies a decomposition

J=X. A-YT

where X, and Y, are the Khatri-Rao product [8] of two Vandermonde
matrices, i.e., the ith column of the product is the Kronecker product of
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the ith columns of the two multiplicands.

Xe = YO XN+

T
= [XJT\T~L+1 Xy pa1 ‘I’K—I'XJ{’-HJ
Yo = XpO0VYy-kn
T
= [YI\E—K%—l ® Yir_gxe1 QL_I'YA{'—Kﬂ]

The rank of the enhanced matrix J will be D, if both X, and Y, have
rank D. The Vandermonde matrix X can only be rank-deficient if several
¢;s coincide. However, the corresponding ;s are necessarily different.
Consider the submatrix of X, by stacking every N — L + 1st row, This
is & Vandermonde matrix in the 9;s. Therefore, the matrices X, and ¥,
have full rank D under the conditions that

N-L+1 2 D

M-K+1 > D
K Z m.a‘x{#éf}! 1= 1,"',D
L > m_ax{#'zp,-}, i=1,---,D

where #¢; is the multiplicity of ¢;, i.e. the number of sinusoids having
¢; in common. In contrast to the MEMP enhancing method, the rank is
aiready restored when a dimension of the matrix is multiplied with the
maximal multiplicity of a pole along that direction.

The ACMP algorithm can now be applied to submatrices of the matrix
J. However, the process of omitting the leading and tralling rows and
columns has to be performed on the block components of J, e.g., the
top-left matrix Jy has block components

LE _
Jup = Z|" = ZyNo L1l kM=K 14k

After defining in a similar way the top-right and bottom-left matrices Ji,
and Jy, the ACMP algorithm can operate on the matrix pencils Jg, —p-Jy
and Jy — A - Jy. However, a small modification is required for numerical
reasons. The eigenvectors (and thus part of the matrix G) of an eigenvalue
with multiplicity > 1 are not uniquely determined. Therefore it is safer
to compute the eigentransformations G based on a linear combination of
the two matrix pencils

Cil B Cor+(1=8) C)=G* A-G
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where 3 is a scalar such that A does not contain repeated eigenvalues.
The eigentransformations G are then welldefined. The pole estimates ¥
and ® are finally computed by applying G to C{,‘l - Cyr and Cy 1. Ch.

6.3.3 Noisy data

Additive noise on the data destroys the low-rank property of the data
matrix Z. Its rank will now be equal to min{M, N). However, it is well-
known that low-rank matrices perturbed by noise, can be well recovered
by use of the SVD. Therefore in step 1 of the ACMP algorithm the SVD
of Zy; is truncated explicitly to rank D.

In the case of i.i.d zero-mean noise it can be shown that after trunca-
tion of the SVD of the data matrix Z, the estimation of the frequencies is
still asymptotically unbiased and consistent. If a dimension of the matrix
grows to infinity, the estimates of the frequencies along the other direction
converge with probability 1 to their exact values [17].

However, truncating the SVD of the enhanced matrix J no longer
results in a consistent estimate, due to the coherence of the noise on the
elements which are repeated. An optimal approximant has low rank D
and satisfies the same linear structure as the original enhanced matrix
J, f.e., it belongs to the same subspace of dimension M x N in an am-
bient matrix space of dimension K(N — L+ 1) x L(M - K +1). Itis
possible to impose this structure on the low-rank approximant, e.g., by
an alternating projections algorithm. In each iteration the structured
matrix is approximated by an unstructured rank D matrix by truncating
its SVD. Then this unstructured matrix is projected onto the subspace
of structured matrices by averaging all elements which should be equal.
This preprocessing step is computationally expensive, since each iteration
involves the SVD of a large matrix.

A cheaper alternative for increased noise suppression is proposed in
1115]. In the noiseless case, the eigentransformations calculated from one
matrix pencil perfectly diagonalize the other matrix pencil. Therefore, the
D x D matrices Cy) 1.C, and C{;l -Cy commute, This is no longer true for
noisy observations. Further noise suppression and improved accuracy is
obtained by replacing the matrices above by the 'closest’ set of commuting
matrices. Although this computation requires non-linear optimization, an
important advantage is that now only small D x D matrices are involved.
Moreover, approximate algebraic methods are developed in [115]. One of
the methods computes additive corrections A4, AB € CP*P to the given
non-commuting matrices A, B € CP*P such that they approximately
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ilrop w w

111 0 024 0.26
211 0 024 0.24
311 0 026 0.24

Table 6.1: Parameters of the simulation example

cornmute. The matrices AA, AB are the minimum norm solution of the
equation

(A+AA) - (B+ABY=(B+AB)-(A+ AA4)

after omission of the second-order terms. Under the assumption that
the corrections are small, this first order correction is reported to give
good results. The computation involved is low in comparison to the main
SVD computation, since only a linear system in 2D? unknowns has to be
solved.

6.4 Simulations

Many variations and many refirements on the basic 2-D ACMP algo-
rithm may be devised. They will all behave differently in terms of noise
rejection. An analytical asymptotic analysis up to first order of the per-
formance of SVD based algorithms is hard, although not impossible [53].
However, this is beyond the scope of this chapter. Here we make some
observations on the robustress of the algorithms with respect to noise
based on Monte Carlo simulations.

More specifically we repeat the simulations of [39]. A 20 x 20 matrix is
generated with D = 3 sinusoids whose parameters are given in Table 6.1.
The noise is additive independent normally distributed and zero-mean.
The spacing of the frequencies is less than the Rayleigh resolution limit
which is Au = Awv = 0.05 for a data sequence of length 20. Therefore,
resolving and accurately estimating the three peaks is impossible with a
Fourier based algorithm. Moreover, two pairs of sinusoids share a fre-
quency component. Enhancement by at least a factor of K = L = 2 is
necessary.

We compare the performance of four algorithms on this simulation.
The first algorithm is the original MEMP algorithm [39]. The second
algorithm is the modified MEMP algorithm of appendix 6.C, which is
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Figure 6.3: Comparison of the estimation accuracy of 4 four algorithms
(here and 3 subsequent figures). Here the failure rate is plotted versus the
SNR. Algorithms: (1) MEMP (2) AC-MEMP (3} ACMP (4; ACMP 1st.
Enhancement factors are set to X = L = 6. The simulation results are
averaged for 250 independent runs for each SNR. A failure is reported if
an estimate lies outside the square region (0.1, +0.1) about each exact
frequency pair. Due to wrong pairing of the 1-D estimates, the MEMP
algorithm has a high failure rate, even at high SNRs.

also based on algebraic coupling, but uses the original MEMP enhancing
method. It is denoted by the '"AC MEMP’ algorithm. The third algorithm
is our ACMP algorithm. Finally, the fourth aigorithm is the ACMP
algorithm to which we added the first order commutation method [115].
It is called the ACMP 1st’ algorithm.

In the Monte Carlo simulation the four algorithms are tested on 250
independent data sets for each signal-to-noise ratio. The enhancement
factors are set to K = L = §. Although their meaning in the MEMP and
ACMP enhancing method is different, the size of the enhanced data ma-
trix is roughly K - L times the size of the original data matrix. Therefore,
it is fair to compare all algorithms with the same factors K and L.
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Figure 6.4: Same scenario as Figure 6.3. Plot of the RMSE on u; versus
SNR. The full line is the Cramér-Rao Bound on u;. Algorithms 2 to 4
have a comparable performance, better than algorithm I.

Some simulation results are reported in Figures 6.3 to 6.6. Figure 6.3
shows the average failure rate versus SNR. The failure rate is more or less
the same for all algorithms, except for the MEMP algorithm at higher
SNRs. As can be seen from the scatter plot of Figure 6.6, the 10 % failures
of the MEMP algorithm are due to a wrong pairing of the horizontal and
vertical estimates.

Figares 6.4 and 6.5 show the evolution of the root mean square er-
ror (RMSE) on the u-components of the first and second sinusoid. Be-
cause of the short data length the CRB is not attained by these subspace
algorithms. From Figure 6.4 one is tempted to conclude that the alge-
braically coupled algorithms outperform the MEMP algorithm. However,
this MEMP algorithm has a higher accuracy at estimating the u; com-
ponent.

The noise suppression scheme of the ACMP 1st algorithm decorrelates
the estimates of the outer sinuscids. The scatter plot of the ACMP al-
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Figure 6.5: Same scenario as Figure 6.3. Plot of the RMSE on u; versus
SNR. The full line is the Cramér-Rao Bound on uy. Algorithms 2 to 4
have a comparable performance, worse than algorithm 1.

gorithm in Figure 6.6 exhibits correlation between these estimates, since
the estimate clouds of the sinusoids are aligned towards each other. By
approximately looking for nearby commuting matrices, these estimates
are decorrelated (ACMP 1st), This refinement also roughly halves the
RMSE on %3 at lower SNRs. The RMSE on the us component does not
alter significantly.

More simulations did not bring clear evidence to rank the four sub-
space algorithms according to their robustness with respect to noise. At
higher enhancement factors K = L = 10 the failure rate for lower SNRs
drops somewhat, but the accuracy of the estimates does not increase,
presumably because of the noise coherence in the enhanced matrix.

The second Monte Carlo simulation illustrates the consistency of the
subspace algorithms for growing data matrices. The same data matrix as
in the previous simulation is considered at SNR=30 dB. Now the number
of columns M is varied from 10 to 60 in steps of 10. For each dimension 25
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Figure 6.6: Same scenario as Figure 6.3. Scatter plots for SNR = 20
dB. The failures of MEMP are clearly seen to be due to wrong pairing
of the u and v estimates. The estimate clouds of the outer sinusoids are
less aligned towards each other by imposing approximate commutativity
(ACMP ist}).

independent runs are performed using the ACMP algorithm. Figure 6.7
shows the experimental RMS error on u; and the Cramér-Rao bound.
They approach each other as M increases.

6.5 Conclusion

In this chapter we have presented the ACMP algorithm for estimating the
parameters of a 2-D line spectrum in noise. Although we only considered
undamped sinusoidal signals, the algorithm can equally well be applied to
the general case in which the signals consist of 2-D damped sinusoids. Fur-
ther generalizations to higher dimensional problems are straightforward.
Because of the separability of the data model, the multidimensional esti-
mation problem is split up in a set of algebraically coupled 1-D estimation
problems. These are then solved by an efficient ESPRIT-like algorithm
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Figure 6.7: Dashed line: RMSE on u;. Full line: Cramér-Rao bound. 25
independent runs, K = L = 6, SNR = 30 dB, N = 20 and M varies.

which does not require optimization. Instead the shift-invariant prop-
erty of the column- and row-subspaces is exploited to derive an algerithm
which consists exclusively of a sequence of matrix transformations.

Furthermore a rank-restoration method has been presented to deal
with situations in which a same frequency component is shared by mul-
tiple sinusoids. The method requires less repetition of data than earlier
enhancing methods and is compatible with the algebraic pairing method.

Finally, Monte Carlo simulations indicate that the performance of
the different algorithms for noisy finite data records does not differ sig-
nificantly, except for one feature. Due to the algebraic coupling of the
horizontal and vertical matrix pencils, wrong pairings of the estimates
are eliminated.

No adaptive and parallel version of the algorithm was presented here.
However, the algorithm can be considered as a special case of the wide-
band direction finding algorithm discussed in the next chapter.
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Appendices

6.A Estimation of the amplitudes

Let g = vec{Q) denote the operation of stacking the columns of a matrix
Q into a single column vector g. The data model can be rewritten as an
overdetermined linear system

vee(2) = S(6, %) - alr, p) + vec(iW)

where a € CP is a vector containing the complex mode weights, and the
matrix § € C¥N%D i the Khatri-Rao product of ¥ and X, i.e., column
i of 5 is the Kronecker product y; ® x,.

Given estimates of the set {(¢;, ¥;),t = 1,-+-, D}, the matrix S can be
constructed. In the case of white noise, the optimal least-squares estimate
is then given by

a= (57 .8)1. 5% . vee(Z).

6.B Cramér-Rao Bound

There are 4 unknowns associated with each sinusoid, i.e., the amplitude
r;, the phase p; and the horizontal and vertical normalized frequencies
u; and v;. These unknowns can be stacked in a parameter vector 4 ¢
R4D, The variance on any unbiased estimator 5,- is fundamentally lower
bounded by the Cramér-Rao bound (CRB) [81, 94]

E ((9"; - 9«')2) > (Fyh)u

where the Fisher information matrix Fy € R4P*4D i5 the covariance ma-
trix of the score function sg(z) € R*P

Fy=E (so(2) - (2)) .
This score function sg(2) is the gradient vector of the log-likelihood func-
tion
a
sg(z) = %lnpg(z)

where py(2) is the probability density function of the data. In the deriva-
tion below we assume that the matrix Z has been stacked in a vector
z = vec(Z) as in appendix 6.A.
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For Gaussian i.i.d. zero-mean noise, the probability density function
is

2o(2) = gz ese (e ) (s = m))

where v is the noise power and the mean m € CM¥ is defined as m =
S -a with § and @ given in appendix 6.A. This mean is a function of
all unknown parameters. The log-likelihood function l5(z) = Inpg(z) is
easily derived as

lg(z) = —MN In{2mv) - %{- ((z - m)H (2 - m)) .

Tke next stochastic variable to compute is the score function s4(2). Cal-
culating the derivatives of lg(z) gives a gradient vector

sp(z) = (Bg; (2 —my) + %n;z Az~ ms))

where column ¢ of the Jacobian matrices %’""gfw L ¢ RMNX4D contains
the derivatives with respect to 6; of the real and imaginary part of the

vector m.
The Fisher information matrix is finally obtained as

By = E(ss(2) ] ()
- 42{3mTk ((zr—m,-)T(Zr*mr))?&'F"'

/ AL
Flp
oml om;
i E ((z — mi)7 (2 = my)) 55
'-}‘};D
am? 3m,-
i B (G = me)T (2 - my)) S
Ou;cw
dm? dam,
55 E (5 = m) " (zr = mr)) )
OéD'x-ib

p) amf  om
= “Re( 36 69)
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Ta conclude the derivation of the CRB, we need the derivatives of the
mean m

o = explip)(u @)
dm
8pi
am
Ou;
am

Fuv;

= ja;(y; ® =)
= j2ra;(yi @ (Wn - ;)
= j2ra;((War-9:) ® 20)

where the weighting matrix Wj & R**% is a diagonal matrix with entries
0 1 .-+ k-1 |. An alternative component-wise derivation of this
Cramér-Rao bound is given in [39].

6.C A modified MEMP algorithm

In this appendix we show how the MEMP algorithm of [39] can be adapted
such that the pairing of the estimates is obtained automatically.

The enhanced matrix J ¢ CUHLX(M-LH)N-K+1) in the MEMP
method is a block Hankel matrix, in which each block is again a Han-
kel matrix constructed with the entries from one row of the original data
matrix

2 Zy; - ZNeK41

Zz Za e ZM -K42
J= _

Zx Zx4r o+ 2N

where a block Z; € CL*M-L+1 i defined as

21 Zi3 IR . ¥ S N |
Z: = 2:.:,2 21,3 Tt ZN ~‘—L+2
L FHL4r M

The composition of the enhanced matrix is illustrated in Figure 6.8. Rows
and columns are treated differently. Entries from a single row are found
in an anti-diagonal of blocks, whereas entries from a single column are
located on a particular anti-diagonal of each block.
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Figure 6.8: Illustration of the MEMP enhancing method. Z € C*7, K =
L =4,

For noiseless data this double Hankel matrix has a decomposition
J=X.-A-YF
where the definitions of X, and Y, are

X. = XgCYp

T
= [¥F evf o oF1.¥] ]
Yo = Xn-k410 YaerLa
7
= [YAsz-L-f-l ® YLy @N—K'Y‘Fa—bi-l}

In the original MEMP algorithm the poles are estimated from two in-
dependent matrix pencils. The pairing of the frequency components is
obtained by looking for those manifold vectors which lie closest to the
estimated left singular space.

Here we want to avoid this pairing problem. Instead we construct
two matrix pencils consisting of matrices which have the same eigen-
transformations. As in the original MEMP algorithm we only use the
shift invariances of the left factor X.. Three matrices Ju, Jip, Jix €
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CE-NE-1)X(M-L+1)(N=K+1) 31e defined as
Jo = Xp-A-YF
T
- [XéT 3.v,T ... @K-»Z,ETJ ‘A-YT
Jp = Xp-A YT

_ . o 1T
= [YLT 3.7;7 ... qu-—?.YLT] A YT
Tt = X A-YT
T
= [o.77 #.1T - of-1.y; T " 4. ¥

The matrix Jy; consists of the submatrix of J in which the last block
row and the last row of each block are omitted. The matrix Jip consists
of the submatrix of J in which the last block row and the first row of
each block are omitted. The matrix Jp; consists of the submatrix of J
in which the first block row and the last row of each block are omitted.
These matrices have a rank equal to the number of complex sinusoids D
on condition that

K > D
L > D
(M-L+1)(N~-K+1) > D.

The poles can now be estimated from the two matrix pencils

Jp=Ady = Xu-(P—-X-Ip)-A-YT
Jop—p-du = Xe-(@-p-Ip)-A-YT
Algebraic pairing of the estimates is again obtained by computing the

eigentransformations from one of the pencils and applying them to the
other.



Chapter 7

State Space Direction
Finding for Wide-Band
Emitters

In the previous chapter we have studied the extension of the ESPRIT al-
gorithm for DOA estimation of narrow-band sources to the case in which
the carrier frequencies of the emitters are unknown. Figure 7.1 shows an-
other extension in which the radiating sources emit wide-band signals. An
exampie where this model applies are acoustic arrays for adaptive acoustic
noise reduction, e.g., in hands-free mobile telephony [75] and hearing aids
[12]. The wide-band signals are modeled by a (low-order) time-invariant
linear system driven by white noise. The novelty in our approach lies in
the use of state space descriptions for the sensor outputs. The algorithms
to estimate the system poles and the location of the sources are inspired
by the recent subspace algorithms for system identification {63, 120].

In section 7.2 the data mode} for the wide-band signals is developed.
This is done in a state space description framework. Next, section 7.3 is
devoted to the novel state space direction finding method. The properties
of the data model which are instrumental in the estimation of TDOAs
are discussed. Also the relation between the number of sensors and the
number of emitters is clarified. The section is concluded with a simple
non-recursive algorithm. In section 7.4 this algorithm is used as the back-
bone of a recursive wide-band direction finding algorithm. Again care is
taken that this algorithm is amenable to efficient implementation on the
parallel Jacobi architecture. Finally, section 7.5 gives an evaluation of
the algorithms by means of simulations.
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|53(£)]

NN N
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Figure 7.1: A Uniform Linear Array receives multiple wide-band signals
with unknown spectral power [S;(f)i{? and angles of arrival 8; from the
far-field of the array.

7.1 Introduction

A natural approach to the wide-band estimation problem is to decom-
pose it into a series of related narrow-band estimation problems. First
a finite set of frequencies is selected and after narrow-band filtering, the
signal subspaces are estimated in each of these frequency bins. Then the
mapping from signal subspaces to directions-of-arrivals is done by opti-
mizing a generalized narrow-band criterion. Examples of such methods
are the unit circle eigendecomposition rational signal subspace (UCERSS)
algorithm of Su and Morf {104], and the coherent signal subspace {CSS)
method of Wang and Kaveh (40, 145]. A disadvantage of these methods is
that they utilize only the signal power within individual narrow frequency
bins. Therefore, a large number of frequency points may be needed for
good estimation accuracy. Furthermore, it is unclear how to select these
frequencies if no a priori information of the spectral content of the signals
is available.

An attractive alternative is to model the sensor signals as the output
of a multiple input multiple output (MIMO) linear system driven by
white noise. The wide-band signals are then decomposed into a finite
number of modes and a narrow-band-like technique is applied to each
of the modes. In this way all signal power can be captured by only a
limited number of modes. This type of modeling is especially attractive
when the required model order is low. It was introduced by Su and Morf
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[74, 104] where they extend the concept of signal subspaces from narrow-
band to wide-band signals using vectors of rational functions in the delay
operator z~1. In fact, their modal decomposition signal subspace (MDSS)
algorithm [105] applies the MUSIC criterion [86] to each of the modes.
Therefore, it also inherits the basic disadvantages of this method, namely
a priori knowledge and storage of the array manifold over the entire z-
domain is required and a costly nonlinear optimization procedure has
to be performed. Regalia and Loubaton propose an alternative search
method to estimate the rational subspaces by adapting lossless filters
according to a power splitting criterion {89]. This method is well suited
for recursive operation.

On the other hand, the ESPRIT algorithm [92] discussed in sec-
tion 2.3.1 does not require searching at all. The prerequisite is that
the sensor array consists of two identical subarrays displaced by a known
constant vector, but no further knowledge of the array characteristics is
required. Due to this special structure the global optimization step to
map signal subspaces onto DOAs, can be eliminated since the DOAs are
now computable by using matrix decomposition techniques only.

A generalization of the ESPRIT algorithm to ARMA modeled wide-
band signals has been presented by Ottersten and Kailath [78]. They
develop their algorithm starting again from the z-domain description.
The system poles and corresponding residue matrices are estimated by
means of an overdetermined Yule-Walker method based on a finite number
of estimated output correlation matrices for increasing time lags. Then
the directions-of-arrival of each of the modes are determined by apply-
ing the ESPRIT algorithm to the residue matrices. The algorithm has a
number of drawbacks. From the numerical point of view it is bad to ex-
plicitly compute correlation matrices. Also determining the system poles
as the roots of a differential equation may be ill-conditioned. From the
implementation point of view their method turns out to be intrinsically
sequential. Therefore, it is unsuited for real-time operatiocn.

Here a novel numerically reliable algorithm is presented, which can
be viewed as an alternative generalization of the ESPRIT algorithm from
narrow-band to wide-band emitters. The algorithm works directly on
the data, {.e., it is no longer based on z-domain descriptions. Instead
it models the wide-band signals by siate space descriptions in the time
domain. This idea is apparently new in the fleld of wide-band DOA
estimation. The algorithm shares some ideas with the recently developed
subspace algorithms for system identification [63, 120, 121].
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A basic advantage of using time domain descriptions is the fact that
recursive and parallel algorithms are feasible. We will show how our wide-
band DOA estimation algorithm can be formulated as a Jacobi algorithm,
which is highly parallel and can be mapped efficiently on the systolic
Jacobi architecture discussed in section 2.3.2.

7.2 Data model

We again consider the configuration of Figure 2.10, in which the sensor
array consists of doublets. The propagation medium is assumed to be
non-dispersive and homogeneous, with constant propagation speed ¢. The
time-difference-of-arrival (TDOA) between the X- and the Y-sensor of a
doublet for a signal impinging from the far field under an angle 4;, is given
by

"= Asm(&;).

c

The directions-of-arrival #; are measured from broadside in counterclock-
wise direction. Once the 7s are estimated, the DOAs are easily retrieved
from Egq. (7.1). The sensor set-up is identical to the narrow-band case.
Only the incident signals now have a wide-band spectrum.

The block diagram of Figure 7.2 presents the wide-band signal model
in more detail. The vector v;(t) € RM collects the array observations
due to the [th emitter. These observations are modeled as the output
of a continuoes-time SIMO (single input multiple output) linear system
S; of finite order n; driven by an independent scalar stochastic process
w(t) €R,

(7.1)

z(t) = Ar-zi(t) + By - wlt)
u(t) = Cr-z(t)+ D wit)

where 4; € R™*™ B, € R™*Y C; ¢ RM*™ and D; € RM*! are the
system matrices of the Ith emitter and z(t) € R™ is the state vector of
S1. The assumptions on the independent stochastic processes u(t) are
that they are zero-mean and almost white, in the sense that they have a
finite correlation time which is smaller than the sampling period T

Eut) - wit+7)=0, Vr2>T,. (7.2)

The system &; is a concatenation of a linear system modeling the Ith
emitter and a linear system modeling the array response, which depends
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Figure 7.2: Block diagram of the wide-band signal model. Each emitter
has an associated linear system &; which models the transfer from its
(almost) white noise input u;(t) to the X-array output. The summation
at the Y-array output is preceded by the propagation delay blocks 7.

on the angle ;. Generically the bandwidth of a sensor is much larger than
the bandwidth of the emitter signals. Therefore, the sensor dynamics are
in most cases negligible or at least clearly separable from the dynamics
of the emitter signals. However, this assumption is not crucial for the
algorithm below,

The X-array outputs are coliected in z(t) € RM

D
z(t) = _u(t) + wo(t)
=1

where D is the total number of emitters and the vector w.(¢) adds inde-
pendent white measurement noise, uncorrelated with the emitter signals.
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The full state space model for z(t) is as follows

A 0 0 Bi 0 0
)= Lo o0 |2O+) 0 . 0 | ud)
0 0 Ap 0 0 Bp
. - ) . - )
20) = [ ... Cp ]J-z(t)+l Dy ... Dp|-u(t) +we(t)
c D

with obvious definitions for z(f) € R™ and u(t) € R?

A1) = [a®T - T
wt) = [w@ - w ]

The global system matrix A € R®*™ is thus a block diagonal matrix of
dimension 7 = Y2, #;. In most cases A can be reduced to diagonal form
by a similarity transformation. Only when there are eigenvalues with
multiplicity > 1, this diagonalization may not be possible.

The observations made by the Y-array are given by

D
y(t) = 2 ult = n) +wy(2).

l=1
Here 77 can be any real number in the interval

~Ls-L<ncBan
¢ ¢
where ¢ € N is the smallest positive integer such that the last inequality
holds and T is the sampling period. Now define the time instant tq =
t — gT, such that tg <t — 7 for 1 £ 1 < D, Then the state z/(t — 77) can
be written as the sum of a term due to the state z(to) and a term due to
the inputs from time {5 on

t—T|
lt—-m) = gili=to=m) zi(te) +/ ‘eA‘("'"’"’) - By - w(o) - do.
]

This expansion leads to the following equation for y(t}

y(t) = C. e 8. 2(tg) + f,(to, t) + wy(t) (7.3)
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where the matrices eA(*=%) & € R"*" are defined as

feA;(t-to) 19 o

e.‘i(t-—‘te) . O .'. O
0 O eAplt=to)

FeAm 0 0
L 0 T., O 3

| O O e 4p7

Jfy{to,t) is a term summing the input contributions

D twry
fulte,t) = Zf hi{t -~ o) -wfo)-do
I=1 Vo

and k;(t) is the impulse response of the Ith system

m(t) = Cp-e*t. B, t>0
Dy t=0.

A similar expression for z(t) is easily obtained
o(t) = C - A . 2(t0) + fo(to,t) + we(2) (7.4)

where

Dt

Jz(to,t) = Z fto hi(t — ) - ui{o) - do.
=1
Comparing Eqgs. (7.3} and (7.4) we see that the terms due to the state

at time 1y, only differ in the occurrence of a matrix ®. This property is
due to the doublet structure of the sensor array. Since the X- and the
Y-array are identical, they share the same system matrices, The TDOAs

become apparent in the exponent of the block components of @, reflecting
the exponential decay of the state z(fp). This observation will be utilized

in the algorithm of the next section.

7.3 State space direction finding

In this section we show how the TDOAs can be estimated as a function of
the corresponding generalized eigenvalues of two related matrix pencils.
Each matrix pencil can be viewed as a generalization of a narrow-band




144 Chapter 7 State Space Direction Finding for Wide-Band Emitters

ESPRIT pencil. The first pencil exploits a shift-in-time to estimate the
modes present in the X-sensor outputs. Its generalized eigenvalues are
Ar = e”Ts where the pis are the poles of the continuous-time system.
The second pencil exploits the shift-in-space between the X- and Y-arrays.
Here the generalized eigenvalues are pyp = ¢ 2™,

7.3.1 Input-output equations

In the sequel we make extensive use of block Hankel matrices Xjr4iy €
RM#xJ consisting of sampled data vectors oy = 2{k.T,)

T TRt Pl
Tlee1]  Tht2) T Tlrds
Xlkpie1 = [, ! ka2 [ : 7 (7.5)
Blegimi] T+ " Tlktiti-2]

The subscripts in the above definition indicate the discrete-time indices
of the first and last snapshot in the first column. It will turn out that
the parameters ¢ and j must be chosen such that Mi > n and 7 » Mi.
In practice this choice is not trivial since in general the total number of
modes n is unknown. Here the assumption is made that ¢ can be properly
determined using standard rank determination tests [147, 153).

Block Hankel matrices, formed with the sensor outputs, can be writ-
ten as a linear combination of a state matrix and an input matrix (plus
noise terms). This is a generalization of the input-output equations
(7.3,7.4). The following important expressions are obtained by straight-
forward element-wise substitution of (7.3,7.4) [63]

Xq+ilq+2i-1 = I AT-Z;+ F, z,(ig) Wz,q+1’lq+2i—1 (7.6}
Xopivtjerzi = Dic AV Zi 4 Foony + Wegritigrzi  (7.7)
Y;+='Iq+2i-1 = T @ A" Z;+ Fy,(ﬂa) + Wy grilgt2ie1 (7.8)

where I'; € RMi*7 i5 the extended observability matrix
. T
i=[CT (CAT - (CAT |7,

the block diagonal matrix A € R™*"™ is defined as A = ¢%+, Z; ¢ R™¥/
contains a state sequence

&*[%]%H]”'%H%]’
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F, (iq) € RM™7 bas as (K, I}th entry

and the block Hankel matrices W, jp4i—; are defined as in Eq. (7.5).

7.3.2 An instrumental variable method

It is interesting to compare the first terms, due to the states Z;, in
Eqs. (7.6-7.8) with the narrow-band ESPRIT data model of Eqgs. (2.6,2.7}.
In the case of wide-band emitters the extended observability matrix I';
plays the role of the narrow-band array gain matrix A, the state sequence
Z; replaces the signal matrix 5 and the block diagonal matrix ® is the
equivalent of the narrow-band diagonal matrix . The number of narrow-
band emitters D is substituted by the total number of modes =.

In order to isolate the state term, we use an instrumental variable
approach. We look for an additional matrix such that its row space is
orthogonal to the row spaces of the input and noise matrices in Egs. (7.6-
7.8}, but has a non-zero projection onto the row space of the state term.
A natural choice is the matrix of past outputs

Xopi-1 = i - Zo+ Fr 0,00 + Waofi-1-

‘We now define the projected matrices

Xiigezion = Xotilg2i-1/Xoji-1
p — . - .
Xovisrjgszi = Xgtirtlg+2i/Xoji-1
P feered . . .
Y’H-iiq+2i—1 - Yq+elq+2t—1/Xoiz_1

where A/B is a shorthand notation {121} for the orthogonal projection of
the row space of 4 onto the row space of B

A/B= -}ABT(BBT)-IB.

Under the assumption that the inputs and the measurement noise are
independent zero-mean {almost) white stochastic processes, and that cur-
rent states are uncorrelated with current and later inputs, the following
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relations hold asymptotically

i Z; 1 [ % % O]
Fxs(iQQ) O O O
im X Fo (iq+1) . T T T _10 © O
W gilg42i O 0 0

L Wy gilgrzi-1 O O O]

where the xs denote non-zero matrices and the Os denote zero matrices
of appropriate dimension.

Proof ‘
Assuming ergodicity, the operator lim; .. -}Zﬂ () converges with
probability 1 to the expectation operator E(-). Many of the orthog-
onality relations are straightforward to proof. Below we proof the
orthogonality of the input matrices.

.1
lim ‘-(Fy,{i,q) : Fz{o,o))(k:l) oo

Jmoo g

jroo

i
= lim % S Bylli+m= VT, (4 g+ k+m - 2)T,)-

FF{lm = 1Ty, (m+1 - 2)T3)
= Blfy(Ty, (i+g¢+k=1T)-f2(0,(1- D)

D (i+ghk—11T—Tm - \ ,
) E(LZ.-.:JT i+ g4k~ 1T =7 = 0) - um(e) a]-
b Lu-nT, T
[Z [ m@-on-g- un(ads] )
n=1v0

D D £ 13Ty~ *m - 137,
= LT e [ (hm(').E(um(v)-uf(&))hn(JT)

mz=] =l 0

The fact that E(un (o) - ul (€)) = 0 follows from the independence
of the driving stochastic processes if m # n, and from the following
inequality chain if m=n

0<E(I- )L L(i- 1), <iT, <o

and the agsumption that the maximal correlation time of all driving
noises un, (t) is smaller than the sampling period (Eq. (7.2)). ]
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After projection we can write the following low-rank decompoesition

F4
X gHile+2i-1 T
X%+£+1|q+2i =|Tli-A}-G
Y rijgs2iet Ii-2

where the matrix G € R™ is G = A? - Z;/ Xoi_1.

These asymptotic equations clearly resemble the ESPRIT equations
in the narrow-band case, except that now A and ® may be block diagonal
instead of diagoral matrices. The three matrices share a common column
space of dimension n - the signal subspace - Span(I;), and a common row
space Span(GT), where Span(Q) denotes the range of a matrix @, i.e., the
space spanned by the columns of §}. To reconstruct the signal subspace,
it is clearly necessary that Mi > n.

7.3.3 Estimating the TDOAs

The final stage in the estimation of the TDOAs resembles the 2-D har-
monic retrieval algorithm of the previous chapter. Two low-rank matrix
pencils are constructed

X7 ietjorzi = N Xy igraiot Li-(A-A-L)-G  (7.9)
Yq{t—t’lq-&zi-i TH X«f+ilq+2t‘—1 Ti(@-p-L)-G (7.10)

The rank-reducing numbers A = e?T* of the first matrix pencil give infor-
mation on the spectral content of the signals. The rank-reducing numbers
i = e~P7 of the second pencil give information on the location of the
sources. Given the numbers associated with the same pole p of A, the
TDOA 1 of source { can finally be computed as

n=-Ty t.

The only problem left is how to match the generalized eigenvalues
of the two matrix pencils. Again the transformations which diagonalize
matrix pencil (7.9) also diagonalize (7.10). This is due to the fact that
the Ith block entries of ® and A are related by

@z = g""AITI — (eAITa)*TJ/Ta e (eATS)I“ﬂ/T" - AFT‘/T’ .
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and their eigenvectors are the same

A = Q-A-Q!
D = QJ-A;-TI/T"Q!_J‘.
RS
M,

Therefore if the eigentransformations computed from one of the pencils,
are applied to the other, the kth eigenvalues Ay and pj both correspond
to the same pole p of the continuous-time system.

In the practical case where the projection is not done with infinite
horizon {j is a finite number), the measurement noise and inputs are
not annihilated perfectly. All three matrices X : Fitllgd2i X ;’ +ilg+2i-1 and
Y:f}viiq +2i—7 are then noisy and (generically) have full rank Mi. The low-
rank property can be imposed by solving the following optimization prob-
lem.

Find matrices F € RM**" G ¢ R™* and diagonal matrices Dy, D; €
R™*™ which minimize the Frobenius norm of

Y
X%ﬁ;q—f—ze-q F
X;+z‘+1!q+2i ~| F-D |-G
¥ ilgraint F-Dy

Because of the structure in the low-rank matrices this minimization
problem is not solvable in terms of a singular value decomposition, but re-
quires a non-linear optimization procedure. Algorithms that solve a sim-
ilar so-called ‘Multiple Invariance ESPRIT’ narrow-band problem, have
been proposed [108]. However, as in the case of noisy 2-D harmonic re-
trieval, approximate refinements can be computed which do not require
a lot of computation [115].

7.3.4 Relatior doublets versus emitters

In order to estimate all modes and their corresponding TDOAs the rank
of the pencils in Egs. (7.9,7.10) must be n. The diagonal matrices A
and @ always have rank n. Since the matrix G € R™*/ is a projected
stochastic state sequence, its generic rank is n as well. The rank of the
matrix pencils thus equals the rank of the observability matrix T';. The
Popov-Belevitch-Hautus {PBH) eigenvector test {45] states that a matrix
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pair {C, A} is observable if and only if there exists no eigenvector of A
lying in the null space of C,

~(Jz £ 0)such that A-z = Az and -z = O.

Below we examine this condition in detail. Let K be the maximum geo-
metric multiplicity of an eigenvalue p; of A and let & denote the corre-
sponding eigenspace. Let Sy denote the null space of C. The dimension
of 8 is n — M if C has full rank M (we assume n > M). This property
of unambiguity can be imposed by proper sensor array design. According
to the dimension theorem of Grassmann

R i ~ iy SN - .
K "y < —o (PBH)
<= M > K.

Therefore, the number of antenna doublets A must at least be equal
to the maximum geometric multiplicity of an eigenvalue p of A. If no
wide-band emitters share the same pole, then one sensor doublet suffices
to estimate all DOAs. In the special case of narrow-band direction finding,
all emitters share the same pole p = 72x f, where f, is the common carrier
frequency. This implies that in this case there must be at least as many
doublets as narrow-band emitters.

The same relation doublets versus emitters also holds for the wide-
band algorithm of Ottersten and Kailath [78]. There it is derived based
on the rank of certain residue mazrices.

7.3.5 Basic algorithm

Our alm is not to develop the best possible matrix pencil algorithm in
terms of robustness and noise rejection, but to develop an algorithm which
can also be implemented recursively and which is amenable to parallel
implementation.

A first concern is to avoid the squaring of data when computing the
projection of the block Hankel data matrices, because of the potential
loss of numerical accuracy. The appropriate mathematical tool is the 1.Q
decomposition (LQD, transpose of the QRD) of Xg);.;

Xojie1 =L+ ¢

where L € RMXMiis 5 lower triangular matrix and @ € RMXJ has
orthogonal rows., The projection onto the row space of Xy can then
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be done in a numerically reliable manner by means of the matrix Q
AlXgp1=A-Q7-Q.

The common factor @ may be left out, leading to a first row compression

X;+i|4+2='—1 = Xosijg2i-1- QT
Xovistlgrzi = Xoritrgeni-QF
Y;:H[q+2i—1 = Yotijg+2i-1- QT
where ;+ifq-i-2i-1’ X;+,-+1§q+2,-, y;r-i-ilq-l-ﬁ-l e RMixMi 3160 now square ma-

trices.

The second step in the algorithm is the estimation of the signal sub-
space Span(I’;}. Under the assumption of zero-mean independent pertur-
bations on the matrix entries, this signal subspace can be estimated as
the space spanned by the n left singular vectors, corresponding to the n
largest singular values of the matrix X; Filgd2ie1" Alternatively, the esti-
mate of the signal subspace may be refined by truncating the SVD of the
Mi x 3M+ matrix

r
[ Xovilgr2im1 | Xgtistlgsai |qu+z‘iq+2i—1 ]
at the cost of additional computation. The accuracy improvement will

depend on the noise level. The estimated signal subspaces are then used
to compress the dimensions of the matrices from Mi X Miton xn

) 7T r
qu+t‘|q+2:‘—1 =U; ‘Xq+iiq+2=‘—1 s

The compressed matrices hit1]g+s and K;iilq +2i—1 are defined in a
similar fashion.

The third step is the computation of the generalized eigenvalues of
the matrix pencils Egs. (7.9,7.10}. They can also be calculated using
orthogonal transformations only by means of the generalized Schur de-
compositions (GSD) [11] of the n X n compressed matrices

¢ ¢ — T
Xevitjorzi = A Xgpitggzicr = 2 (Tpaizapgrns — A Touijgr2ia1) - W

[+] [ — . N . . . N T
Yq+e’lq+2i-1 - ‘Xq+i§q+2£~1 = Z- (Sq+=lq+2=—1 T Tq+tl¢+2%-1) w

where again Z7-Z = I, and WT-W = I, but now Tppiinjg2is Tytilasniois
Sytilg+2i-1 € R™*™ are Jower triangular matrices. The generalized eigen-
values are then found as the ratios of the diagonal entries of Topiti|gs2i
and Ty yi1010i-1 and of Sy pijg4ai-1 and Topijgs2i-1 respectively. The final
non-recursive algorithm is given below.
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Algorithm 7

1. LQ decomposition

Xoji-1=L-Q
2. Projection
X;+t'lq+2i-1 = Xq+='|q+2='-1'QT
Xivitijgrzi = Xq+€+llq+2t"QT
Yiiiigroim1 = Yq«:—w’|q+2i-1'QT

3. Signal subspace estimation
by vr
er+£EQ+2£-1 = { Us l Us ] ’ [ -~ E T, J ) [ V’r J

4. Row and column compression

¢ — T r —
Xoritgrzicr = Us * X lipgsnic Vo= 1)

¢ — T, yr .
Xorivrjpdzi = Us " Xipipaygeni- Vs

c — T 1
Y;;-!—ilq-i-Zi—l = U, g+ilg+2i~-1" Vs

5. Generalized Schur decomposition

— T ¢
Tyvifgrzit = 27 - Xiiprnion W

— T c
Tq+£+llq+2i = Z 'Xq+i+1|q+2i'w

o T, ye .
Sepilgrzi-l = 2 Yo W

6. Estimation of A, and 7
fori=1,...,n

A = Totitajgrai

Tytijgt2i-1

(
(
Sq+z‘lq+2i—1(
T
g Tytitgsai-1(

In y
—Tsln Al

i

T

endfor
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7.4 Parallel and adaptive wide-band direction
finding

In real-time applications new columns are continuously appended to the
data matrices Xopi—1y Xgtilg+2i-11 Xori+1je+ai a8 Yopior2i-1, €6,

Xoli-1,[)] = [ o+ Xopiotfk-1] | Thjhti-i ] .

In this recursive definition & < 1 is a exponential weighting factor. The
aim is to track the estimates of the TDOAs at each sampling instant.

In the development of Algorithm 7 care has been taken to use only
orthogoral operations, such as the LQD (one-sided orthogonal transfor-
mations) and the SVD and GSD (two-sided orthogonal transformations).
A recursive algorithm can then be derived using LQD updating and
SVD/GSD updating as its building blocks. For these operations parallel
solutions have already been presented in chapter 2.

The recursive algorithm tracks a slightly different orthogonal decom-
position of the data matrices than Algorithm 7.

Xoh‘—l = U'L'QT

. 0 T
X§+ilq+2i—~1 = Z:-T°-4Q
_ 1. AT
X:+i+1[q+2i = Z.T°-Q
Y? = Z.5-Q7

g+ilg+2i~1

where U, Z € RM*M{ 316 orthogonal matrices, Q € R7*M* has orthonor-
mal columns, L € RMXMi s 5 lower triangular matrix, and T°, 71, S are
block diagonal matrices. Each of the last three decompositions is of the

form | r

Ts Q,

[212] Pz [GH.

The signal block T’ is lower triangular corresponding to the GSD, and the
noise block T, may be a full matrix. Perfect separation between signal
and noise subspace implies zero off-diagonal blocks. This separation is
pursued by the SVD computation. However, inside the signal subspace,
we do not need to compute a basis of singular vectors. Instead we are
looking for the orthogonal basis associated with the generalized Schur

decomposition of a matrix pair. The SVD and GSD are thus operating
on different submatrices and do not interfere with each other. If the row-




7.4 Parallel and adaptive wide-band direction finding 153

and column spaces of the three matrices are not perfectly identical due
to noise, small non-zero entries may occur.

It is easily checked that this orthogonal SVD/GSD decomposition
results from the combination of steps 3,4 and 5 of Algorithm 7. As an
example, the following parts of the decomposition of X ijg40: can be
identified: Z, = U, -2, Z, = U,, Q: = @ -V, - W, @, = Q -V,
T_., = Tq+i|q+2€-—1 and T, = Eﬂ.

However, the LQ decomposition of Xp;_; is modified into a three-
factor decomposition. Because the growing matrix Q7 accumulating all
column rotations is not tracked, it is necessary to apply the SVD/GSD
column rotations to the L matrix too. However, this destroys its triangu-
larity. Therefore, an additional orthogonal row operator U is introduced
to keep L triangular. It differs from the row operator Z associated with
the SVD and GSD.

Updating these two-sided orthogonal decompositions can again be
performed as a Jacobi algorithm, specified in Algorithm 8. Its high-level
SFG is shown in Figure 7.3. In step 1 the incoming data are multiplied
with the matrices U and Z respectively. Step 2 updates the LQD of
Xofi-1- An orthogonal operator Gy is computed such that Zp_, jjx g1
is ’rotated’ into the matrix aRjc.y;. In order to update the projection
this transformation is also applied onto the remaining data. In step 3 se-
quences of rotations are computed based on T[?c} to update the SVD/GSD
decompositions. Details on how to compute the rotation parameters are
given in [131}. The number of applied rotations (here Mi{ — 1) is a com-
promise between accuracy and computational complexity [67]. Finally in
step 4 the TDOAs are estimated based on the current diagonal entries.

Algorithm 8

Ligpic) «— Osixmi
TQvict) “— Obsixni
T[};.;.,-“I} e OnfixMi
S{q+~i——1] —  OMixmi
Uggicy) < I
Zigyi-ny == Imi

fork=¢g+1i,.+, 00
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1. Matrix-vector multiplications

=T T

Fpguilhmg=l T Thmgmilimg-1 " U1

=T T

Thlprio1 ™ Thlk4i-1 " Zlk-1]

T T

Bratleri T Thatfhri * Fr-1)
—

T T
Triktie1 Yijk+i-1 * Zik-1]

2. LQD updating and projection

[I’EH{T[ 1T s

N

ol 17
Gl - [ offi y | oTfy | oTily | O‘S{k—u ]
mk«-q-—-s[kaq-d 'Iklk+s-—1 |$k+1{k+z | ykik+: 1

3. SVD/GSD steps
for{=1,.---, Mi—-1
I+17 Hi+1
‘I’(L1+1 Ly - O
1417 1i+1
Tp Ty O

1T +1
T Ty Oy

fi-+1T 41
Vg SO

1i+1
U [¥] q’[}c]

Ly

I T I

endfor

4. Compute estimates
forl=1,-

In Ty g = In Ty

TP e

s in Sik],” — In T{?E],”
endfor

endfor
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Figure 7.3: High-level SFG of the adaptive wide-band direction find-
ing algorithm. A two-sided decomposition of four matrices is tracked.
The upper part tracks a modified LQD decomposition of Xgj_1-
The lower three parts track a combined SVD/GSD decomposition of

P P P
Xq+£iq+2i._1 X, gtitilg+zi and Yq+i]q+2i-—1'
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Figure 7.4: Stacked high-level SFG of the adaptive wide-band direction
finding algorithm, foreshadowing the implementation on the Jacobi array.

This adaptive wide-band algorithm is again structurally equivalent to
the SVD updating algorithm. A ’layered’ and transposed SFG is shown in
Figure 7.4. Except for the computation of the TDOA estimates, the algo-
rithm involves only matrix-vector multiplications and one- and two-sided
elementary rotations. The data dependencies are unaltered. Therefore
this adaptive wide-band direction finding algorithm can be mapped ef-
ficiently onto the systolic Jacobi array of chapter 2. Again, a limited
flexibility of the node hardware is needed. The Jacobi algorithm now
simultaneously operates on 4 matrices such that the memory needs are
higher. And the way in which the rotation parameters are computed
differs.

Of course, in order to avoid numerical error build-up and to implement
the algorithm on a rotation array, the U/ and Z matrices can again be
factored as sequences of rotations as proposed in chapter 3.
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Figure 7.5: The spectra of the two wide-band emitters overlap. The poles
are p; = —0.1 & 71.4107 and p; = —0.1 & 571.7292.

7.5 Simulations

In the simulations below a uniform linear array (ULA) with M omnidi-
rectional elements is used. Their frequency response is flat (equal to 1)
over the whole frequency band of interest. The subarrays are maximally
overlapping, i.e., the X-array consists of elements 1 to M — 1, and the
Y-array of elements 2 to M. The interelement distance is taken to be
A = ¢. Ty, such that all TDOAs are smaller than one sampling period.

We assume two wide-band emitters are present. Their spectra are
plotted in Figure 7.5. There is a considerable spectral overlap. The wide-
band signals are generated by steering uncorrelated zero-mean Gaussian
(almost) white noise with equal power through second-order systems with
transfer functions

0.894
Hs) §?+0.25+2

1.095
Hy(s) =

2 +02s+3"
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The numerator of both systems is chosen such that [0 [H(f)]? - df = 1.
The simulation data are computed by sampling the wide-band signals,
where per sampling period 10 points are calculated by continuous-time
simulation of the two systems. In between these simulated points, linear
interpolation is used.
The estimates of the TDOAs are computed as

In (g
t= -7, RenW),
In(A)
Although the TDOAs could be estimated based on the moduli or on the
phase of A and ji, the TDOA estimates using this combined modulus-and-
phase estimator turned out to be more accurate.

7.5.1 Non-recursive direction finding

In the first set of simulations, various non-recursive algorithms are com-
pared, The first algorithm is the non-recursive state space ESPRIT al-
gorithm of section 7.3.5. The second algorithm is a refined version of
this algorithm. Just as for the 2-D harmonic retrieval algorithm of chap-
ter 7, the eigentransformations of both pencils are not exactly the same
if noise is present. Therefore, algorithm 2 incorporates the Schur method
of [115] which is compatible with the Jacobi architecture. After apply-
ing the eigentransformations of the first pencil to the second, this second
matrix is not yet fully triangularized, The Schur method further triangu-
larizes the matrix by a few more two-sided rotations with small rotation
angle. This last condition is needed in order to keep the same ordering
of the eigenvalues in both pencils. The third algorithm is the wide-band
Z-domain ESPRIT (Z-ESPRIT) algorithm of Ottersten et al. [78], which
is discussed in the introduction. The number of time lags used in this
algorithm corresponds to the number of block rows in the block Hankel
matrix. Both parameters are set to i = 8.

The sensor array has M = 4 sensors. The number of samples is
n = 500. In the first simulation the sources have normalized TDOAs
11 = 0.2,7, = 0.6. The sample statistics are given in Figure 7.6. The
Z-ESPRIT algorithm is unable to resolve both sources, even at large
SNRs. Therefore, a large bias is present. On the contrary, the state
space algorithms resolve both sources equally well. No improvement is
seen by including the Schur refinement.

In the second simulation both emitters are at the same position, but
their spectra are taken identical to Hy(s). They fully overlap. This is a
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Figure 7.6: Comparison of the estimation accuracy of 3 algorithms. Al-
gorithm 1: state space ESPRIT, Algorithm 2: state space ESPRIT with
Schur refinement, Algorithm 3: Z-ESPRIT. Two wide-band sources with
the overlapping spectra of Figure 7.5 and TDOAs r = [ 0.2 06 ] . Other
parameters: n = 500,i = 8,¢ = 1. Averaged over 25 independent runs.
The upper (lower) figures show the bias (standard deviation) on 7y (72).
The Z-ESPRIT method performs worse than the state space algorithms.

wide-band extension of the narrow-band model where multiple narrow-
band sources have the same center frequency. Figure 7.7 shows that now
the Schur refinement improves the estimates considerably. The reason
is that the poles of both sources coincide. Therefore, their eigentrans-
formations are not unique within the associated eigenspace. The Schur
algorithm further aligns the eigenvectors such that also the second pencil
is triangularized. '
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Figure 7.7: Same comparison as Figure 7.6, except that the spectra of the
two wide-band sources are identical: H(s) = 7284, With coinciding
poles, the Schur refinement (Algorithm 3) improves substantially upon

the state space method (Algorithm 2).

7.5.2 Recursive wide-band direction finding

Here we evaluate the adaptive wide-band algorithm of the previous section
in a time-varying environment. The wide-band emitters have again the
overlapping, not identical spectra. The true evolution of the TDOAs of
the two wide-band emitters is shown in Figure 7.8 (dash-dot line). At first
the TDOAs are 0.4 and 0.6. However, from time k = 300 to & = 500 the
TIOAs linearly evolve towards their final values 0.8 and 0.2 respectively,
corresponding to angles-of-arrival of #; = 53.1 deg and #; = 11.5 deg.
The SNR of both wide-band signals is 20 dB.

The parameters of the adaptive algorithm are selected as follows. The
number of sensors is taken to be M = 6. The number of block rows in
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the Hankel matrices is ¢ = 6 and the delay parameter is ¢ = 1. The
exponential weighting factor « is 0.992 as a compromise between tracking
speed and smoothness of the estimates.

The estimated TDOAs, averaged over 20 independent runs, are given
by the dotted lines. In the beginning the algorithm needs some snap-
shots to converge. From time & = 80 on, the separation between signal
and noise subspace has been properly accomplished and the estimates
converge to a steady state. However a small bias remains visible.

From % = 300 on, the algorithm tries to track the change in its en-
vironment. It lags behind and evolves expomnentially towards the new
TDOAs. A smaller weighting factor o would result in faster tracking at
the cost of more variance in the estimates during time-invariant periods.

When the two emitters cross, the algorithm does not break down since
the system poles are different. The small gap where the curves should
cross, is due to the fact that the ordered estimates are averaged. In each
individual experiment this gap was absent.

7.6 Conclusion

The contribution of this chapter is threefold. First a state-space model
for a class of wide-band direction finding problems was presented. The
mode] relies on two assumptions: the sensor array consists of two identical
but translated subarrays, and the wide-band signals are generated by a
linear system driven by white noise signals.

Secondly it was shown that the data model exhibits a multiple invari-
ance structure. Solving such a structured estimation problem requires
in general non-linear optimization techniques. A simple algorithm was
presented for estimating the time-differences-of-arrival. The algorithm
estimates the generalized eigenvalues of two related matrix pencils by
means of numerically robust orthogonal transformations.

Finally an adaptive algorithm was derived. The computational com-
plexity of the algorithm is moderate, namely (O(M?:%). This algorithm is
also amenable to parallel implementation because of its fine-grain regular
structure. A simulation showed that the algorithm is able to track scenes
in which the locations of the emitters are slowly time-varying.

In [126] a related non-recursive subspace algorithm is presented. It
treats the outputs of the X- and Y-subarrays symmetrically. The compu-
tational complexity of the LQ decomposition is decreased by exploiting
the low displacement rank of the block Hankel data matrices [13].
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Figure 7.8: Recursive wide-band direction finding algorithm. Two second-
order wide-band sources with the overlapping spectra of Figure 7.5. ULA
with M = 6 sensors. i = 6,¢ = 1, & = (.992, The dash-dot linre shows
the exact evolution of the TDOAs. At each time the dots represent the
ordered 4 (2 second-order sources) TDOA estimates, averaged over 25
independent runs. The algorithm needs + 80 iterations to converge. Due
to the exponential weighting the TDOAs estimates lag behind in the
time-varying part.



Chapter 8

A Parametric Approach to
Direction Finding in
Unknown Ambient Noise
Fields

In this last chapter we return to the standard direction finding problem of
multiple narrow-band sources with a common carrier frequency. However,
we relax the modeling assumption that the measurement noise is spatially
white. An accurate noise model is a crucial practical issue. It is well
known that the performance of subspace based high resolution direction
finding algorithms can be highly sensitive to errors in the noise correlation
matrix. In our approach the noise correlation matrix will belong to a
certain model set. This mode! set is specifically tuned to the antenna
array under consideration.

The flavor of this chapter is different from the previous ones. We
do not look for a recursive algorithm suited for real-time execution on a
parallel machine. Instead, we concentrate on modeling the noise and op-
timally estimating the noise parameters. Algorithms related to maximum
likelihood estimation are studied. They will require non-linear optimiza-
tion.

In section 8.1 various approaches to direction finding in colored noise
environments are discussed. Qur approach is mode! based. We develop
in section 8.2 a new physical model for the ambient noise impinging on a
sensor array and show that the elements of the noise correlation matrix
are linear in these parameters. Next, in section 8.3 we concentrate on the
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identifiability of the noise parameters. In section 8.4 we propose a two-
stage subspace algorithm. Unlike true maximum likelihood algorithms,
this algorithm has the nice feature that it separates the optimization of
signal and noise parameters. First the noise parameters are obtained
by a non-linear minimization of a pseudo maximum likelihood criterion.
Secondly, the signal parameters are estimated by one of the standard
high resolution DF algorithms after prewhitening with the optimal noise
correlation matrix. In section 8.5 the performance of this algorithm is
studied by simulations.

8.1 Introduction

All high resolution direction finding (DF) algorithms, such as MUSIC and
ESPRIT, assume that the noise at each sensor is zero-mean, has equal
power and is uncorrelated from sensor to sensor. Such noise is called
spatially white. Its correlation matrix iz the identity matrix multiplied
by the (unknown) noise power. The algorithms can be extended to spa-
tially colored noise fields, on condition that the noise correlation matrix
is known up to a scalar multiplier. By filtering the data (’prewhitening’)
with the inverse of the noise correlation matrix, the noise is decorrelated
and the high-resolution algorithms can be applied without modification.

The performance of high-resolution direction finding algorithms is sen-
sitive to deviations in the white noise assumption, especially when the
signal powers are low. The accuracy of the signal parameters relies on
the accuracy of the signal subspace estimate. If there is considerable noise
correlation, the estimated subspace may be severely biased. A theoretical
analysis of the effect of unmodeled coloring on high-resolution algorithms
and the derivation of worst case noise scenarios can be found in [141].

In applications one often faces the problem that the noise field is non-
white but unknown. The noise correlation matrix has to be estimated
along with the signal parameters. In a limited number of applications,
e.g., speech or data communications, the noise correlation matrix can be
estimated when the sources are absent. If this is not feasible, one has to
estimate signal parameters and noise correlation simultaneously.

A first class of estimation methods is based on higher order statistics
(HOS), e.g., [110]. They rely on the assumption that the probability
density function of the noise is Gaussian, whereas the statistics of the
signals {e.g., communication signals) are non-Gaussian. Since cumulants
of order > 2 are blind for Gaussian statistics, the estimation of signal
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parameters based on cumulants is ideally not deteriorated by the noise.

A second class of methods consists of instrumental variable methods
[103). In scenarios where the correlation in time of the signals is much
longer than the noise correlation, one can eliminate the noise by projecting
new data onto older data. This property has already been used in the
wide-band direction finding algorithm in chapter 7.

A third class restricts the noise correlation matrix to a prescribed
model set [6, 51]. Indeed, if the noise correlation matrix can be any ar-
bitrary positive Hermitian matrix, then the estimation problem is not
uniquely solvable, One could always assume that no signals are present
and set the noise correlation matrix equal to the observed correlation ma-
trix. By limiting the number of degrees of freedom of the noise correlation
matrix, the direction finding task becomes well-posed again.

In [6, 29, 34] maximum likelihood and least squares algorithms are
studied for noise correlation matrices which are linear combinations of
a set of known basis matrices. The noise parameters are the unknown
coefficients. As an example of a linear parameterization, one can approx-
imate the noise power in function of the angle-of-arrival as a piece-wise
constant function. I the array manifold is known, then each basis matrix
can be computed corresponding to a particular angular segment of the
ambient noise field. This approximation method poses the problem of
how to select the angular intervals. An accurate model may require a
lot of parameters. On the other hand, this parameterization guarantees
each basis matrix to be positive definite, which eases the design of an
algorithm.

In [51] the sensor correlation is modeled by a spatial ARMA process.
The noise covariance can then be expressed as R, == Nasy - N;}q - N ﬂ A
where the elements of Nz, are linear in the MA coefficients and the el-
ements of N4p are quadratic in the AR coefficients. Although a small
number of parameters may suffice to model the noise field, this parame-
terization has the disadvantage that it is only applicable to regular array
geometries.

QOur method also belongs to the class of parametric noise models.
It is based on the Fourier expansion of the ambient noise field. Fach
basis matrix then corresponds to a harmonic mode. It has the advantage
that it is applicable to arbitrary arrays. The noise parameters have a
clear physical meaning and the noise correlation matrix is linear in these

parameters.
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8.2 Modeling the noise field

We consider the data model for D far-field narrow-band sources sharing
the same center frequency fy, received by a sensor array of M elements

T = Ag - [ + k)

The notation Ay is used to stress the dependence of the array gain matrix
on the DOAs. The noise vector is denoted as mp) to stress that the
noise is not necessarily white. We adopt a stochastic model for the base-
band signals, i.e., they are assumed to be temporally white, zero-mean,
Gaussian signals with covariance matrix R, € CP*P

E{syy-sfg} = R, 8(tx—1t)
E{syg s} = Obxp.

The measurement noise is also assumed to be a zero-mean temporally-
white complex Gaussian process with covariance matrix YR, € CM*xM
where K, is a normalized noise covariance matrix (e.g., tr(Ry,) = M)

E{n[kl . nffi} = R, J(tk - tl)
E{n[k] . n%%} = OpxM.
The output covariance matrix for zero-lag is then given by
R, = E{ap-af}} = 4¢ - B, - A + YR, (8.1)

We now detail this expression by including a physical model for the
noise. There are two different noise phenomena. A first kind of noise is
generated internally in the sensors, e.g., thermal noise in the receivers.
Since the physical noise processes in the sensors are independent, it is
reasonable to model the noise correlation matrix for this type of noise
and identical sensors as

B{) = yIn

where + is the noise power.

A second source is the noise which is received by the sensor array.
In all environments, background noise in the frequency band of interest
is unavoidable. The assumption that this ambient noise is uncorrelated
from sensor to sensor is hard to defend. An example is a base station in
a mobile communications system, placed at a city border. It is evident
that the urban district generates more noise than the rural area. This
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spatial dependence causes noise correlation from sensor to sensor. Below
we derive a model for this ambient noise.

Assume that one can associate with each angle-of-incidence an in-
finitesimal noise source in the far fieid of the array with angle-dependent
noise power p(f). The ambient noise correlation matrix is then given by

the integral ,
RO = j a(8) - p(8) - a(6)7 - db. (8.2)
[s)

In general p(f) will not be constant, but will smoothly depend on 6.
This assumption of smoothness of the noise field is not restrictive. Sharp
changes in the noise field are due to strongly localized noise sources,
for which the distinction with a point source (a signal or interference)

becomes vague.
Since p{f) is a real periodic function, a real Fourier expansion exists

and is given by

p(8) = ug + i(u; cos(16) + v sin (18)}.
=1

Depending on how smooth p(f#) behaves, the coeflicients of the higher
harmonic terms will rapidly vanish. By truncating the Fourier expansion
to the first () terms, @ real Fourier coefficients characterize the noise field.

When substituting this Fourier expansion for p{#) in Eq. (8.2}, we
obtain a Bnear parameterization of the ambient noise correlation matrix

Q-1
R, = Z aqu,1

I=0

where ay = 7, 0g1.1 = vy and each basis matrix an represents the noise
covariance matrix generated by a pure harmonic noise field

2m
R¥ = /0 a(8) - cos(16) - a(6)¥ - d8

2f-1
k,

fzw a(8) - sin(16) - a(§)% - d8.
a

Example: Uniform Linear Array

The Ith basis matrix R. is function of the array manifold only. If an
analytic expression for the array manifold is available, ther entry (p, ¢q)
can be found by integration over the range of angles. The expression for
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a ULA is derived below. Define z = 232 where A is the distance between
adjacent sensors and A is the wavelength of the carrier wave.

Ril(p: 9) +jR§l—1(p, ‘?) =
= [ exp(=3(p~ 1)z sin(0))- exp(si9) -exp(ifg ~ 1)z sin6) do
i) A - . — - o’
a(d)p ith mode e*(8)q
= [ (0~ (o~ q)esin(@))as
= 2]: cos(lf — (p — ¢)z sin{#))d8 + 70
= 2=(sign(p - ¢))"i({p — gl2) (8:3)

where Ji(z) denotes the Bessel function of the first kind and order {. Here
we used the identity J..;(z) = (~1)'J;(z) and the Bessel integral formula
for integer [ and positive z

Ji(z) = «-?1;/077 cos{lf ~ zsin(6))d8.

As an example, consider a 3-element ULA with A = A/2. The first two
non-zero basis matrices are given by

Jo(0) Jo(m) Jo(2r) 1.00 ~0.30  0.22
R = Jo(m) Jo(0) Jo{x) | =| -0.30 1.00 —0.30
Jo(2m) Jo(m)  Jo(0) 0.22 -0.30 1.00
AL(0)  Ji(x) Jy(2m) 0.00 0.28 -0.21
R = j| -nh{m) KO XNl |=37| -028 000 028
-h(2r) ~h(x)  J(0) 0.21 ~0.28  0.00

Here we have left out the scaling factor 27 since it can be incorporated
into the Fourier coefficients. Because of the shift invariance in a ULA
the correlation matrices are Toeplitz. If [ is even, B? is real symmetric
and Ri"l = Oprxnr- If s odd, Rﬁl = Omxpr and R¥1 s imaginary
anti-symmetric. Only R corresponding to the average noise power, is
a positive definite matrix. All harmonic basis matrices have trace zero
and are therefore indefinite. The R? matrix is not a scalar multiple of
the identity matrix. Its associated eigenspectrum is plotted in Figure 8.1
for M = 8. The eigenvalue spread is Amax/Amin = 3.83. Therefore even
a signal observed in a constant cylindrical ambient noise field must be
prewhitened.
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1 o,

number

Figure 8.1: Eigenspectrum for the noise correlation matrix RS induced
by a cylindrically isotropic ambient noise field on an 8-element ULA with
A= A/2,

8.3 Identifiability

The class of models we consider for the covariance matrix R, is given by
Eq. (8.1). The output covariance matrix depends on the DOAs {6;,i =
1,-++, D}, the source covariance matrix B, (D? real unknowns) and the
Fourier coefficients {a;,0 < ! € @ — 1}. An important guestion is the
uniqueness of the map from parameters to output covariance matrix. In
other words, is there more than a single set of parameters which gives
the same K7 If the answer is affirmative, it is impossible to find unique
estimates for the noise parameters and the DOAs for this R;. In the
case of white noise, it is well-known that the DOA parameters and the
signal correlation matrix are unique on condition that the array manifold
is unambiguous [80]. Now, we also establish some conditions for the
number of noise parameters ¢.

A first natural bound follows from the linear independence of the
noise correlation basis matrices., They are Hermitian matrices living in
CM%M  The dimensionality of this matrix space is M?. It never makes
sense to include basis matrices R, which are linear combinations of other
basis matrices. Therefore, although the Fourier expansion of the ambient
noise power is an infinite series, a first upper bound on ¢} is the number of
degrees of freedom of the matrix space. This upper bound may be smaller
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than M2 For example, due to the regularity in a uniform linear array,
all matrices are Hermitian Toeplitz matrices. Their number of degrees of
freedom is only 2M — 1.

A second natural bound follows from counting the number of equa-
tions and unknowns. For a given R,, Eq. {8.1) is a set of M? non-linear
continuous scalar equations in D(D + 1) + Q unknowns. If the number
of unknowns surpasses the number of equations, then generically there
is an infinity of solutions defined by an (implicit) function. If this is the
case, there is not even local identifiability. A local neighborhood of a
solution contains other solutions. Therefore, the Fisher information ma-
trix at a solution point becomes singular. In order to guarantee local
identifiability, we have to impose a second condition

Q<M -D(D+1).

These two conditions are necessary, but not sufficient. Even if Q is
(much) smaller than the previous two bounds, a finite number of isolated
solutions may exist. To clarify this point, Eq. (8.1) is rewritten as

Ry = 5(a) + Ra(a)

where S{a) is the signal covariance matrix induced at the antenna array
outputs and Rn(a) is the noise correlation matrix.

Q-1

S{e¢) = R;- Z oz;RL >0
=0
Q-1
R.{a) = z O:IRI >0

=0

Both matrix expressions are affine in the noise parameters and have to be
positive semi-definite to be physically meaningful. Such expressions are
called linear matrix inequalities (LMIs) [7, 122]. The parameter vectors
o € R9 satisfying such an LMI, form a convex set. This is illustrated in
the small example (M = 3,D = 1,¢ = 2) of Figure 8.2. The full curves
ir the figure indicate the points o for which the signal covariance matrix
S(a) is rank deficient. They are the solutions to

3-—011 2—ay 1
det(S (o)) = det 2~a; 3-0y 2-—@ =0
i 2—*042 3--&1
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Figure 8.2: Contour lines of zero determinant for S{a) = R, — ay Rl —
az B2 (full line) and R,(0) = a3 RL + az RZ (dash-dot line) where R} =
I3, B2 = Toeplitz([0, 1, 0]). There are two rank-1 matrices S{a) at
points A and B. Solution A: § = 0 deg, 3 = 2,a; = 1, R, = 1. Solution
B: # =90 deg,0p = 2, = 3, R, = 1. However, solution B violates the
positivity constraint on R, (e) (signature {++-}).

and are given by the equations

o = 2
(a7 = 3.5 = 2(e2 —-2)* = 0.25

Similarly, the dash-dot curves represent the solutions to det(N(a)) = 0.

Oy = 0
o = i\/iag

All points on the boundary of the convex set of positive semi-definite
matrices S () represent a decomposition of Ry in a sum of a rank-2 matrix
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_II
-
7 o+

Figure 8.3: Contour lines of zero determinant for S{o«) (full line) and
R,(a) (dash-dot line). ULA with M = 3,A = A/2. Rl = I3;,R: =
Toeplitz([0, 1, 0.5]). There are two valid parameterizations for R,. So-
lution A: @ = 0 deg,oq = 3,0 = 1, R, = 1. Solution B has parameters
6 =90deg, 07 =11/3, 3, =7/3, Rs = 1/3.

and a full-rank noise matrix. When two curves intersect, two eigenvalues
are zero. In general, the multiplicity of the zero eigenvalue is given by
the number of curves intersecting at that point. In this example, there
are only two points (A and B) which yield a decomposition of R, as a
rank-1 matrix and a noise matrix. Point 4 corresponds to the correct
decomposition. The vector corresponding to point B happens to be a
valid array manifold vector for # == 90 deg. In this example point B
can be eliminated since it violates the condition N{(a) > 0. However, as
shown in Figure 8.3 this is not necessarily the case.

In general, finding a sufficient bound for Q, given M, D, 8, such that
there exists only one decomposition for R, is a hard problem. David [16]
proofs the following theorem.



8.4 Maximum likelihood and subspace direction finding 173

Given two real symmetric M x M LMIs S(a) > 0 and N{a) 2 0
and an integer D < M. Checking if there exists an a such that rank
S(e) < D and S{) 2 0, N(a) > 0, is an NP-complete problem.

Qur problem is more general, since the LMIs contain Hermitian ma-
trices. Because real symmetric LMIs are a subset of Hermitian LMIs, the
corresponding problem for complex LMIs is also NP-complete. However,
this theorem only proofs that there exist choices of S{&), N(a) for which
checking the existence of a solution is an NP-complete problem. It does
rot proof that this holds true for each specific choice of the basis matrices.
In our case, we also know by construction that there exists one solution.
We are interested in the existence of a solution which differs from the
known one.

In any case, finding a sufficient condition for @ such that the model
is globally identifiable, seems to be out of reach. In practice, in the
many examples studied during simulations with moderate values for @,
no identifiability problems were observed.

8.4 Maximum likelihood and subspace direction
finding

In this section we investigate two approaches for estimating the signal-
and noise parameters. The first approach is optimal maximum likelihood
estimation. The second one is a subspace approach which is suboptimal
but simplifies the non-linear optimization.

The maximum likelihood approach for direction finding in the case of
white noise has been studied extensively [80, 94, 140]. It is well known
that the optimization of the linear parameters R, and v in Eq. (8.1) can
be separated from the optimization of the DOA parameters. For a given
# the maximum likelihood values of ¥ and R, are given by

B = o L Str(Ph, - Re) (8.4)
Reg = Al-(Rz -3l A7 (8.5)

-1
where the projector mattix is Py = In — Ay - (Aé.’f -Ag) AR A
multi-dimensional non-linear search over a concentrated object function

remains ;
mjn V (6) = Indet(4s - Rop - AR + 3 ng).
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The minimization of this likelihood function is difficult and has to be
done numerically. However, the resulting estimates may be expected to
be excellent. Asymptotically the maximum likelihood estimator is known
to achieve the Cramér-Rao bound [80].

Maximum likelihood estimation in the colored noise case grows even
more complicated. For a given noise correlation matrix R, = RHEZ. gL/
known up to a scalar factor v, Eqgs. (8.4,8.5) still hold after replacing R,

and R, by their prewhitened counterparts

R, = R;R.R..R;'?
Rw = R;le > I%x " R;llz.

The nor-linear optimization now extends over the signal parameters 8
as well as the noise parameters a. The cost of the multi-dimensional
optimization rapidly becomes prohibitive.

Therefore, we look for a subspace based algorithm which first opti-
mizes the noise parameters and secondly estimates the signal parameters.
The underlying idea is as follows. Suppose that the noise parameters
were known, then for large sample amounts the dominant D-dimensional
eigenspace of the prewhitened sample covariance matrix is a consistent
estimator for the true signal subspace. This subspace estimate is the op-
timal solution to a slightly different maximum likelihood problem (called
’pseudo ML’ in [153]). The model class now considered is

Q-1
R.=F -FH 4 y(R% + Z oqRL)
[£5]

where the matrix F' € C¥*P is an arbitrary rank D matrix. Knowledge
of the array manifold is at first not included. The estimated subspace con-
verges to the exact subspace for large amounts of snapshots. Therefore,
the signai parameters can be derived by looking for the array manifold
vectors which are closest to the estimated subspace. This subspace ap-
proach has the important advantage that the optimization can now be
separated. First an optimal estimate for the noise correlation matrix
is determined. Then after prewhitening the signal parameters are esti-
mated by a standard high resolution algorithm such as MUSIC, ESPRIT
or WSF.

The same approach has been taken by Le Cadre [51] where an ARMA
parameterization for the noise is used. Below we first rederive the opti-
mization criterion which is only a function of the noise parameters. We
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discuss its physical meaning and analyze its shape. Finally we propose a
gradient algorithm.
The conditional probability density of the cutput data matrix X is

given by
P(XIR,) = n MV det{R,)~N exp(~Ntr(R R.))

where N is the number of snapshots and R, = # PN ZH xf}:} is the sam-
ple covariance matrix. The maximum likelthood estimator maximizes this
conditional probability function with respect to the unknown parameters
of R,. Equivalently, after omission of terms independent of R, and scaling
factors, one can minimize the negative log-likelihood function

I[(R;) = Indet(R,) + tr{R;1R,).
Using the properties that

detR, = det(R¥/*. R, -RY? =det(R,)  det(R,)
‘tl‘(.;.‘z_;;2 - Rz‘} = tr(R{Ll ' Rw))

we can express [(F;) in function of the whitened observations
I[{R;) = Indet(Ry,) + tr(Ry! Ru) + In det(R.,). (8.6}

Only the first two terms depend on the unknowns F and v. If we denote
the partitioned eigendecomposition of the prewhitened sample correlation
matrix R, by

mo=[ale. ] ] [e1e.]

where the eigenvalues are sorted in descending order, then the optimal

expressions for F, = Rn BI2E and ~ are
ﬁwﬁg = Qﬁs'(As_i’ID)'QAf
1 f :
5’ = My = Ai-
M~ Di=D+1

The optimal estimator for 4 is the arithmetic mean of the M — D smallest
eigenvalues of the prewhitened sample correlation matrix. Substituting
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these optimal expressions in Eq. (8.6) yields

D
Indet Ry, = (M—D}lnma+l][Xh

i=1
(M - D)(inm, — Ingq) +Indet By,
ti(By - R7Y) = M

where g, is the geometric mean of the M — D smallest eigenvalues of the
prewhitened sample correlation matrix

Mo W=D
Ga = ( H /\i) .
i=D+1
Therefore the optimal value of I(R,) is

minl(R;) = (M-D)hn % +Indet B, +Indet B, + M

Y o

= (M- D)ln-T;—“ +Indet B, + M.
[=3

The last terms are clearly independent of the noise parameters o, such
that our final object function for the noise parameters is
m
Vie)= (M - D)In—-=,
o

Property 1 The function V(e) is only defined over the set of positive
definite matrices R,,.

The A;s are the eigenvalues of the prewhitened matrix B, or equivalently
R, - R;!. Since R, is the correlation matrix of the ambient noise field,
it should be positive definite. The function V(a) acts itself as a barrier
function for the convex set B, () > 0. It becomes infinite as an eigenvalue
of R, approaches zero.

Property 2 For positive eigenvalues V(o) is always positive and equal
to 0 if and only if all eigenvalues are identical.

This property establishes a nice physical mearning of the ratio of arith-
metic and geometric mean. It is a measure of the equality of the smallest
M — D eigenvalues and thus of the quality of the noise correlation matrix
estimate. Therefore, it is sometimes used as a test statistic to determine
the number of sources in a white noise environment [153]. This so-called
sphericity test is also part of the more popular AIC and MDL criteria.
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Proof
The extrema of V(i D1y " LA Ar) are given by calculating the zeros
of its gradient.
(V5V); = %‘i = (M-D) (Elm %”;ﬂ - igﬁﬁ)
; o ; Go DA;
11
T oma A

Therefore, the unique extremum is attained if all eigenvalues are

equal .
Ap = mg, i=D+1,--, M.
The Hessian at the extremum is
H 1 1
= mE Iv-p = 57—l -Dyx(M-D)

where 1y} is a matrix consisting of ones. The Hessian has M—~-D-1
eigenvalues 1, and one eigenvalue 0. The extremum is therefore a
minimum. The zero eigenvalue is due to the fact that V' is invariant
to a scaling of all eigenvalues. This scale-invariance is eliminated by
fixing one coefficient (e.g., the first) of the noise correlation matrix,
ie, Rn=RS+ Y% R |

The above property shows that the minimum of the object function in
function of the eigenvalues is unique. Unfortunately, we cannot directly
controi the eigenvalues. They are functions of the Fourier coefficients of
the ambient noise field. The behavior of the object function in terms of
these parameters is much more complex.

Property 3 The function V{a) is the minimum of a set of branch func-
tions which are analytic in the as.

A well known result from matrix perturbation theory states that the
eigenvalues of a matrix which evolves as an analytic function of some
parameter are analytic functions on condition that the eigenvalues are
unordered [9, 19, 47]. The object function V' (a) only uses a subset of
these analytic eigenvalue functions, i.e., the M — D smallest ones. How-
ever, these analytic eigenvalue functions may cross each other. In gen-
eral we can express V(o) as the lower hull of a set of (Mj\f p) analytic

“

functions V/(A?, - --,j\?M_D) where A? is the ith analytic eigenvalue and




178  Chapter 8 Direction Finding in Unknown Ambient Noise Fields

Figure 8.4: Evolution of V{a) {thick line} when the smallest analytic
signal eigenvalue and the largest analytic noise eigenvalue cross (M =
4, D = 2). Three out of the six possible branches are shown (thin lines).
Local minima in V(o) may arise when the derivatives of the crossing
branches have an opposite sign at an intersection.

{#1,-+,ip-p} is a set of indices taken from {1,---,M}. This is illus-
trated in Figure 8.4 for M = 4, D = 2. Although each branch can behave
nicely, e.g., in the figure the branch functions are drawn as convex func-
tions, the lower hull V(a) may exhibit local minima. In practice the
behavior is still more complicated. In Figure 8.5 a small example for a
single noise parameter is presented. The upper part shows the evolution of
V(a). The two bends in the curve remind of the non-differentiable points
caused by crossing eigenvalues in Figure 8.4. Here they are smoothened.
This can be explained by the evolution of the eigenvalues shown in the
lower part of Figure 8.5. The two bends are exactly located where the
smallest signal and the largest noise eigenvalue tend to intersect. How-
ever, the approaching eigenvalues repel each other and smoothly diverge
again. Instead of intersecting, the ordered eigenvalue curves exhibit local
extrema.

Property 4 The gradient V,V is given by

1 . - .
(VaVyi=tr{ (Db = e - QF - (B2 B, BZ7) Q)

o
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Figure 8.5: Evolution of V{a) and the eigenvalues Xfora ULA with M =
6,A = A/2 and D = 2 uncorrelated sources with DOAs (0, 15) deg and
normalized power p = 0.1. The noise correlation matrix is R,, = R2+aR2
with R} given by Eq. 8.3 and a = ~0.1.
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Proof
The gradient of V () with respect to the parameters is given by

v X v ak
2

V.V
(Va¥i= dar 1B O Bay”

or X
V.V = Jé ViV

where the Jacobian matrix J2 € R(@-1X(M=D) i defined as

3AD+1

(i = Do

The A;s are the smaller eigenvalues of the prewhitened sample corre-
lation matrix B,,. From perturbation theory for Hermitian matrices
it is known that for simple eigenvalues

O _ g Ry |
day & doy g

Starting from the identity R. Hiz - R, Ry V2 Ins and the fact
the square root RY? is an upper triangular Cholesky factor, it is

readily derived that

aR"” 2
Ba;

where the operator upph(A) takes the upper triangular part of the
matrix A and halves its diagonal elements, The final expression for

the elements of the Jacobian Ja‘;‘ is

OR
~R-l/2, ~Hf2 Yhin p-1/2
R; upph(R; B RY%)

- RL, "i;‘)

8\ 2 /s
301 =-A (!?F

where Rfm € RM*M is the prewhitened noise basis matrix R,

Due to the occurrence of local minima, a simple descent method is not
sufficient to converge to the global minimum. However, a local minimum
can be detected since the associated value of V(o) is not zero. More-
over, experiments suggest that local minima are associated with (nearly)



8.5 Simulations 181

crossing noise and signal eigenvalues. When the SNRs are high, a distinct
separation between noise and signal eigenvalues is present for all a, low-
ering the probability of local minima. Finally, a global minimum exists
only when the actual noise correlation matrix truly belongs to the model
set. In practice, it is unlikely that perfect prewhitening is attained due
to undermodeling and finite sample effects. The algorithm can then still
provide an important improvement of the location estimates.

8.5 Simulations

In this section we study the performance and robustness of the parame-
terized noise correlation method by means of simulations.

All simulations are performed with the BFGS quasi-Newton algorithm
with mixed quadratic and cubic line search [55]. This is the default
routine for unconstrained non-linear programming in MATLAB’s opti-
mization toolbox [36]. A constrained optimization, ensuring the positive
definiteness of the R,-estimate, could have been implemented. However,
the function V() is itself already a barrier function, tending to infinity
as an eigenvalue tends to zero. Also, the optimal matrix R, is always
full-rank and usually far off the boundary of the convex set of positive
definite matrices. Therefore, an unconstrained optimization algorithm is
preferred. Because of the occurrence of local minima, the selection of a
good initial point is crucial. In the absence of any information on the col-
oring, we always chose the matrix KO as the starting point. This matrix
corresponds to a cylindrically uniform constant ambient noise field.

The simulated data are generated by the model equation

X =As-S+RYZ. W

where RL/? is the Cholesky factor of the given noise correlation matrix
and § € CP*N and W € C¥*Y are matrices containing complex i.i.d.
zero mean Gaussian noise. As R, is now the sample correlation matrix
of this finite data record, Eg. (8.1) is only approximately satisfied. In all
simulations the noise field is heavily colored

p(6) = 1 — 0.7sin(f) + 0.4 cos(6) - 0.2sin(26) + 0.2 cos(26).

The number of coefficients is @ = 5 which is larger than the dimension
of the noise subspaces considered. The signal constellation consists of
D = 2 incoherent sources at (0,20} deg. Their power will be varied.
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B T " y ' y ; y y ULA
M = 68
D = 2
A = AJ2
8, = (0,20) deg
ps = (-7,-10)dB
1.0
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a = 0.4
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Figure 8.6: Spatial power spectrum. Full line: output spectrum, Dashed
line: noise spectrum.

As the noise parameters themselves are of minor importance, the perfor-
mance of the estimation algorithm is assessed by the quality of the DOA
estimates after prewhitening. In the first two simulations the sensor array
is a M = 6 element half-wavelength ULA. The signal powers are weak
Ps = {—7,—-10) dB respectively. The 0 dB level is defined as the average
noise power over all sensors, i.e., tr(R,)/M. The spatial cutput power

spectrum
F(8) = a(6)7 - R, - a(8)

for this scenario is shown in Figure 8.6 (full line). Similarly the noise
power spectrum is shown by the dashed line. The first source at 0 deg is
still discernible {smeared out by the low-resolution spatial Fourier trans-
form) above the average noise level. However, the second source at 20 deg
is hardly noticeable.

Figure 8.7 shows the histograms and the sample statistics of the DOA
estimates obtained with the TLS-ESPRIT algorithm without and with
estimation of the noise parameters. Without prewhitening the algorithm
is unable to detect the weaker source, and the DOA estimates for the
stronger source are heavily biased. After prewhitening both sources are
resolved.

At higher SNR the influence of colored noise is less dramatic. Fig-
ure 8.8 shows the histograms and sample statistics when the respec-
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Figure 8.7: Histogram and sample statistics of the DOA estimates for
the scenario of Figure 8.6. 50 independent runs. N = 250 samples.
M = 6 antennas. p, == (~7, —10) dB. In this case of low signal power the
algorithm is unable to resolve the two sources without prewhitening.

tive signal powers are p; = (3,0) dB. Now both sources are well esti-
mated without even correcting for the colored noise field. However, the
prewhitening still substantially reduces the small bias induced by the un-
dermodeling. Its influence on the variance of the DOA estimates is less
pronounced. In fact, because of the estimation errors on the additional
noise parameters, the variance of the DOA estimates may increase. For
a detailed discussion of these issues, we refer to [141].

In the last simulation we study the effects of undermodeling. The
number of antennas is decreased to M = 4 and only @ = 3 of the §
noise parameters are estimated. The power of the signal sources is set to
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Figure 8.8: Histogram and sample statistics for the scenario of Figure 8.6.
50 independent runs. N = 250 samples. M = 6 antennas. p, = (3,0) dB.
In this case of medium signal power both sources are resolved also without
prewhitening. But prewhitening reduces the bias on the DOA estimates.

ps = (0, -3) dB. As shown in Figure 8.9 the algorithm is still capable of
decreasing the bias considerably.

8.6 Conclusion

We have proposed a parametric model-based algorithm for DOA estima-
tion of multiple narrow-band sources in unknown ambient noise fields.
First, we derived a physical model for the ambient noise impinging on an
array with arbitrary but known geometry. The resulting noise correlation
matrix is an affine combination of noise basis matrices which only depend
on the array geometry. The linear parameters are the Fourier coefficients
of the ambient noise field and have to be estimated along with the sig-
nal parameters. We also presented two upper bounds on the number of
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Figure 8.9; Histogram and sample statistics for the scenario of Figure 8.5.
Undermodeling: only 3 out of 5 noise coefficients are estimated. Only 50
independent runs. N = 250 samples. M = 4 antennas. p, = (0, —3) dB.

identifiable parameters.
Finally we introduced a subspace based algorithm which has the prop-

erty that the estimation of the noise parameters is separated from the
estimation of the signal parameters. The object function is the ratio
of the arithmetic to the geometric mean of the noise eigenvalues of the
prewhitened sample correlation matrix. Minimizirg this function is not
trivial, since local minima may occur. The estimation accuracy and
the robustness obtained with a general non-linear optimization algorithm
were illustrated by simulations.
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Chapter 9

Conclusion and Open
Problems

9.1 Overview of the contributions

In this thesis we have proposed novel algorithms mainly for adaptive an-
tenna arrays. They have great promise for wireless communication sys-
tems such as cellular mobile telephony and paging systems. The acoustic
arrays are employed in hands-free telephony e.g., in & car cabin and under-
water exploration [112]. The algorithms have to process high data rates
in real-time. Therefore, a major concern was the ease with which these al-
gorithms can be implemented on parallel computers. Hereby, we did not
design an application-specific architecture for each new algorithm. In-
stead, we formulated the recursive algorithms as Jacobi algorithms. This
approach is in line with previous research on an efficient parallel {sys-
tolic) Jacobi architecture. This architecture emerges as a fairly general
computational architecture on which an ever expanding set of recursive
signal processing algorithms can be mapped efficiently.

Three signal processing tasks have been studied. The first task was
subspace tracking. The locations of the signal sources determine the dom-
inant subspace of the data matrix. As the sources move, this subspace
has to be estimated recursively. Two algorithms were proposed: a Jacobi
SVD updating algorithm and a spherical subspace tracking algorithm.
The original versions of the two algorithms loose their numerical stability
by error accumulation in finite precision arithmetic. This problem was
overcome by a factorization of the orthogonal subspace tracking matrix as
a sequence of Givens rotations, each parameterized by a rotation angle.
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This parameterization had already been in use for non-adaptive signal
processing applications, such as orthogonal filters. We showed that it is
also applicable to recursive algorithms by presenting an efficient scheme
which updates the rotation angles as each new snapshot is fed in. More-
over, the factored algorithms can be implemented in an elegant way on
parallel architectures. The factored Jacobi SVD updating algorithm leads
to a modified Jacobi architecture which consists solely of rotation nodes.
For the spherical subspace tracking algorithm, two application specific
architectures — a linear and a planar — were derived starting from the
signal flow graph.

Next, a new robust adaptive beamforming algorithm was introduced.
The beamformer features an adjustable constraint, which is recursively
estimated. It alleviates the decrease of the SINR, when errors are present
in the designed constraint matrix. It also enables the tracking of the
signal-of-interest. Starting from the known generalized sidelobe canceler
algorithm for minimum variance beamforming with fixed constraints, an
adaptive algorithm was derived. This algorithm could be formulated as
a Jacobi algorithm, such that it is amenable to parallel implementation
on the Jacobi architecture.

The last group of algorithms were direction finding algorithms. First
the computationally attractive ESPRIT algorithm for direction-of-arrival
estimation of multiple narrow-band sources sharing a known carrier fre-
quency was extended to the case in which the carrier frequencies are
unknown. The carrier frequency and the position of the narrow-band
emitters must be estimated simultaneously. This problem is called the
2-D harmonic retrieval problem. Due to a novel rank restoration method,
our algebraically coupled matrix pencil algorithm can cope with multi-
ple sources sharing a same spatial frequency component. Moreover, the
algorithm is more efficient than current alternatives.

The second extension of the ESPRIT aigorithm concerns the case
of wide-band signals captured by a sensor array. Here, we developed
a subspace algorithm using state space descriptions of the signals. We
combined subspace algorithms for system identification with subspace
algorithms for direction finding. The former estimate the spectrum of the
signal sources, the latter their position. The combined subspace algorithm
only makes use of matrix decompositions. Therefore, a recursive version
of the algorithm could be developed. It is again a Jacobi algorithm, now
operating on multiple data matrices.

Finally, a new parametric approach was presented for direction finding



9.2 Suggestions for further research 189

in the case that the sensor noise has an unknown correlation. Methods to
provide a good estimate of the noise correlation are extremely important
from a practical viewpoint. We proposed a physical linear model for
the ambient noise correlation matrix. It is based on a Fourier expansion
of the ambient noise power and incorporates knowledge of the antenna
array characteristics. Two upper bounds on the number of identifiable
noise parameters were derived. In order to estimate the noise parameters
a pseudo maximum likelihood algorithm was developed. It has the nice
property that the estimation of the noise parameters is decoupled from
the estimation of the signal parameters.

9.2 Suggestions for further research

The algorithms we have proposed, were developed from a more or less
theoretical viewpoint. They are based on previous fundamental work on
simultaneous design of parallel algorithms and architectures and on the
theory of array signal processing. As an example the direction finding
algorithms make use of concepts from linear algebra and system theory.
The assumpiions on the data model are in many applications only par-
tially fulfilled.

A first deviation is caused by errors in the array manifold model.
Inaccuracies in the sensor positions, small differences in the transceiver
hardware, electro-magnetic coupling of the antennas,...are responsible
for deviations between the mathematical model and the actual array re-
sponse. Part of them may be taken into account by calibration of the
array.

A second concern is the influence of the propagation environment.
An example is the standard data model for direction finding of narrow-
band sources. Due to reflection and diffraction a signal from a mobile
reaches the base station via multiple paths with different intensities and
delays. In addition to the time delay spread caused by the different path
lengths, and the frequency spread caused by the Doppler effect induced
by the movement of the mobile, each signal also has an angular spread
due to the different locations of the main reflectors. In urban areas the
dominant ray which normally comes from the exact angular position of
the car may even be blocked. The coherent multipath creates an array
response vector which is the sum of multiple array manifold vectors, but
is not part of the array manifold itself. Therefore, it becomes difficult to
associate an angular position with such an unstructured array response
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vector. Moreover, the instantaneous array response vector is highly time-
varying, due to the time-varying intensities and phases of each of the
signal paths.

Finally, the transmitting problem is much harder than the receiving
problem. A straightforward approach is to measure the receive channel
vector and use it to compute the transmit weight vectors, eventually
after correcting for the frequency translation between the receive and
the transmit band {45 MHz in GSM). The difference in frequency causes
also a difference in the propagation environment. Therefore, the above
straightforward approach is likely to perform poorly. The base station has
no idea how accurately it is transmitting, because it has no knowledge of
the SINRs at the mobiles. More advanced transmitting schemes involving
periodic feedback from the mobile to the base station have recently been
proposed [32].

From this discussion it is clear that robustness with respect to model
deviations and stochastic characteristics of the mobile channe] are at least
as important as high accuracy of the location estimate. Only recently,
researchers start to pay full attention to the application side. Two areas
emerge where more research is required.

On the application side there is a lack of a realistic mathematically
tractable point-to-array propagation model. In this thesis the algorithms
have been simulated on mathematical channel models which are extremely
simple. Unfortunately, very few field measurements with antenna arrays
have been reported to date [76]. However, more realistic point-to-array
models can be obtained by generalization of existing point-to-point mod-
els {5, 15]. The major problem here is the choice of an appropriate dis-
tribution for the positions of scatters.

On the algorithmic side two areas for further research can be defined.
First, we only evaluated the estimation accuracy and the robustness of
the algorithms by means of simulations. Although simulations are widely
accepted as a test vehicle for algorithms, the approach remains unsat-
isfactory. Often, it is hard to predict how simulation results are to be
generalized to other configurations. A better way is to develop a statisti-
cal analysis giving closed-form expressions for the estimation errors. The
asymptotic analysis of several subspace algorithms for direction finding of
narrow-band emitters has already been successfully pursued by a number
of authors [49, 79]. However, the extension to highly structured matrices
or wide-band emitters is not trivial. Moreover, it is necessary to inves-
tigate the sensitivity of the algorithms with respect to different kinds of
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errors in the model.
Finally, there is ample room for refined algorithms. In wireless com-

mupication systems the exact location of the mobiles is only an inter-
mediate result of the computation. The ultimate goal is a good signal
reconstruction. Due to the multipath environment, there is uncertainty
on the angular position of a mobile. Every mobile may have different
angles associated with it. Therefore, the structure on the column space
of the data matrix {the spatial structure) is not well defined anymore. To
circumvent this difficulty, many new ideas have been proposed. One of
the more promising ones is to develop algorithms which make use of signal
structure to reconstruct the messages. Communication signals are highly
structured. Often they are cyclostationary [95, 101, 148]. Frequency or
phase modulated signals have a constant modulus [116] and digital sig-
nals can only have a small number of constellations {73, 109, 117]. This
signal structure imposes strong conditions on the row space of the data
matrix. Moreover it is often better retained by the mobile channel than
the spatial structure. The references cited above, make use of this ad-
dition knowledge in order to improve the signal reconstruction and the
location estimates. But this area still offers many challenges to the sig-
nal processing community. Recently, algorithms have been formulated
to optimally approximate low-rank structured matrices which are affine
in their parameters [18]. In array signal processing the structure of the
data matrix is more complex. The column space and the row space of the
low-rank data matrix depend non-linearly on the array manifold and the
signal set. More research is required to formulate good answers to these
structured matriz problems.
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