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Arithmetic is an essential skill for further mathematical and educational development, and comprises a large part 

of our daily lives. Even tough, over the past few years, an increase in both functional and structural developmental 

neuroscientific research on mathematical cognition and arithmetic has occurred, a lot is still not fully understood. 

This doctoral dissertation aimed to further identify which brain regions are important for typically developing 

children’s arithmetic fluency. 

Neuroimaging work in adults has shown that strategy use (i.e., fact retrieval vs. procedures) modulates the 

arithmetic brain network, however, this was never clearly studied in children. A first fMRI study investigated 

children’s neural activation associated with the use of these strategies in subtraction and multiplication, and 

observed distinct neural networks associated with each strategy, but no differences between operations when taking 

strategy into account. Next, within children’s multiplication fact retrieval, performance can be influenced by 

various effects, such as the problem size and interference effect, as evidenced by behavioral research. A second 

fMRI study investigated the neural basis of both effects, and, concurring with previous studies, revealed clear 

behavioral effects of problem size and interference, but at the neural level, only a clear effect of problem size. The 

interference effect was not detected; no clear neural distinctions were observed between low and high interfering 

items.  

Other than its functionality, the structure of grey matter regions has also been associated to cognitive skills. 

Accordingly, a third study investigated the structural grey matter correlates of children’s arithmetic fluency, by 

looking at both volume and cortical complexity, and observed associations with various cortical grey matter 

structures. Furthermore, as the grey matter regions of the arithmetic brain network are spatially distant, it is also 

crucial to study the structural white matter connections between these regions. In a fourth study, the white matter 

integrity of previously observed arithmetic-related white matter pathways was correlated to children’s arithmetic 

fluency, implementing spherical deconvolution, a novel non-tensor method which goes beyond classic DTI to 

tackle its methodological constraints. Clear associations were observed between the right inferior longitudinal 

fasciculus and arithmetic.  

Finally, a fifth study investigated the added value of the collected structural brain imaging data on top of well-

known behavioral measures in predicting individual differences in the children’s arithmetic fluency, and revealed 

that the neuro-anatomical measures provided the best prediction of performance, highlighting the value of brain 

imaging measures for the prediction of cognitive skills and striving towards a bridge between cognitive 

neuroscience and education. 

In all, the combination of both functional and structural neuroimaging in these studies has led to results which 

further expand our understanding of the neural substrates of children’s arithmetic fluency. 
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Rekenen is een essentiële vaardigheid voor verdere ontwikkeling en omvat een groot deel van ons dagelijkse leven. 

Ondanks dat er de voorbije jaren een toename in functioneel en structureel neurowetenschappelijk onderzoek rond 

numerieke cognitie en rekenvaardigheid bij kinderen heeft plaats gevonden, is er nog veel onduidelijk. Dit 

doctoraat tracht de hersengebieden die belangrijk zijn voor de rekenvaardigheid van typisch ontwikkelende 

kinderen verder te identificeren. 

Neurowetenschappelijke studies bij volwassenen hebben aangetoond dat strategiegebruik (rekenfeiten of 

procedurele manipulaties) het hersennetwerk voor rekenen moduleert, maar dit werd nog nooit bestudeerd bij 

kinderen. Een eerste fMRI studie onderzocht de neurale activatie geassocieerd met deze strategieën tijdens 

aftrekken en vermenigvuldigen en observeerde diverse neurale netwerken voor beide strategieën, maar geen 

verschillen tussen de bewerkingen. Vervolgens heeft gedragsmatig onderzoek aangetoond dat prestatie op 

rekenfeiten bij vermenigvuldigingen beïnvloed wordt door verscheidene effecten, zoals het probleemgrootte- en 

interferentie-effect. Een tweede fMRI studie onderzocht de neurale basis van deze effecten en vond een duidelijk 

gedragsmatig effect van zowel probleemgrootte als interferentie, maar alleen een duidelijk neuraal effect van 

probleemgrootte. Het interferentie-effect werd niet gedetecteerd; er werden geen duidelijke verschillen in neurale 

activatie gevonden tussen laag en hoog interfererende rekenproblemen.  

Buiten functie, werd de structuur van grijze stof ook eerder gekoppeld aan cognitieve vaardigheden. Zo onderzocht 

een derde studie hoe structurele eigenschappen van grijze stof samenhangen met rekenvaardigheid, door te kijken 

naar zowel volume als corticale complexiteit. Meerdere associaties werden zo gevonden met verscheidene 

corticale structuren. Daarenboven liggen de hersengebieden van het rekenkundige hersennetwerk niet naast elkaar, 

waardoor het ook cruciaal is om de structurele witte stofbanen die deze regio’s met elkaar verbinden te bestuderen. 

In een vierde studie werd de integriteit van deze witte stofbanen bestudeerd aan de hand van spherical 

deconvolution, een nieuwe non-tensor methode die verder gaat dan klassieke DTI om bepaalde methodologische 

beperkingen tegen te gaan. Er werden duidelijke associaties gevonden tussen de rechter inferieur longitudinale 

fasciculus en kinderen hun rekenvaardigheid. 

Tot slot onderzocht een vijfde studie de toegevoegde waarde van de geobserveerde structurele neurale correlaten 

bovenop gedragsmatige predictoren in het voorspellen van individuele verschillen in kinderen hun 

rekenvaardigheid. Deze studie toonde aan dat de neuro-anatomische maten de beste predictie van prestatie geven, 

wat de waarde van deze correlaten benadrukt en bijgevolg streeft naar een brug tussen cognitieve 

neurowetenschappen en onderwijs.  

Bij elkaar genomen heeft de combinatie van zowel functionele en structurele neurale maten gezorgd voor resultaten 

die ons begrip van de neurale basis van de rekenvaardigheid van kinderen uitbreiden. 
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Arithmetic refers to the ability to do addition, subtraction, multiplication or division, and is constantly 

present in our daily lives. For example, we maintain a budget when shopping and compare the prices of 

different products, or might double recipes based on the amount of people we are cooking for. This 

ubiquitous presence is especially true for children, who encounter arithmetic during various classes 

throughout their scholastic careers. The importance of arithmetic and the general ability to efficiently 

process numerical information, however, really becomes clear when looking at the impact it might have 

later in life. For example, a study by Gerardi, Goette, & Meier (2013) matched the numerical and 

cognitive abilities of subprime mortgage borrowers to their administrative mortgage records and 

provided empirical evidence for a negative association between efficient numerical processing and the 

tendency to default on one’s mortgage, which could affect a person’s life direly. Furthermore, problems 

with arithmetic are a key component of dyscalculia (American Psychiatric Association, 2013), in which 

people experience persistent deficits in acquiring basic mathematical competencies, making the study 

of arithmetic in general crucial for the study of this learning disorder. 

Being able to fluently process numbers and do arithmetic is thus important, yet arithmetic is not as one-

sided as one might think. An important aspect of arithmetic fluency lies in the notion that arithmetic 

problems can be solved, not only through complex procedural manipulations, but also through the fast 

retrieval of arithmetic facts form long-term memory (e.g., Siegler, 1996; Siegler, Adolph, & Lemaire, 

1996). Although a vast body of behavioral literature exists on arithmetic fluency and these arithmetic 

strategies (e.g., De Smedt, 2016; Geary, Bow-Thomas, & Yao, 1992; Siegler, 1996; Vanbinst, 

Ghesquière, & De Smedt, 2012), relatively little is known about its neural basis, especially in children, 

even though knowledge on these neural correlates is highly important from a perspective of educational 

neuroscience. Placing themselves at the intersection of psychology, education, and cognitive 

neuroscience, developmental brain imaging studies are exceedingly promising to understand the 

biological processes that play a role for educationally relevant skills (De Smedt, 2018a; De Smedt & 

Grabner, 2015; Howard-Jones et al., 2016). They make it possible to investigate the brain during the 

learning phase of cognitive skills and to see if brain imaging measures are able to predict subsequent 

learning gains (Hoeft et al., 2011), or if they can predict responses to educational interventions (Supekar 

et al., 2013). Against this background, the current doctoral project aims to increase our knowledge on 

the functional and structural neural correlates of typically developing children’s arithmetic fluency. 

In this introduction, different arithmetic problem-solving strategies are discussed, elucidating how these 

strategies are formed and how they can be implemented to fluently and efficiently solve arithmetic 

problems. This is followed by a summary of the brain imaging techniques used throughout this project. 

Next, the existing literature on the neural correlates of arithmetic in adults and typically developing 

children is presented, standing still at shortcomings or gaps of the existing literature. The introduction 

ends by a disclosure of the concrete aims of this doctoral dissertation.  
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1.1. Arithmetic strategy use 

Throughout arithmetic development, changes occur in the strategies children use to solve arithmetic 

problems, which has often been studied at the behavioral level (e.g., Bailey, Littlefield, & Geary, 2012; 

Barrouillet, Mignon, & Thevenot, 2008; Siegler, 1996). At the very beginning of arithmetic 

development, children tend to count all numbers in a problem in order to get to the solution (e.g., 2 + 3 

= 1, 2, 3, 4, 5). As arithmetic development progresses, these counting procedures progress as well, 

becoming more advanced, such as counting onwards from the largest operand in the problem (e.g., 2 + 

3 = 3, 4, 5; Geary et al., 1992). Through the repeated use of such counting strategies, children then 

develop solid associations of the arithmetic problem and its solution, and thus develop representations 

of basic arithmetic facts, stored in long-term memory, making it possible to very quickly and 

automatically solve the problem at hand (Siegler & Shrager, 1984). These arithmetic facts are also relied 

upon in later arithmetic development, when more advanced procedural problem-solving strategies are 

needed, such as a tie strategy (e.g., 6 + 7 = 6 + 6 + 1 = 13, in which case the answer to 6 + 6 is retrieved 

from memory), or a decomposition of operands strategy (e.g., 6 + 7 = 6 + 4 + 3 = 13, in which case the 

answer to 6 + 4 is retrieved from memory; Siegler, 1996). 

Recent studies, however, have observed linear increases in the reaction time of addition problems, along 

the magnitude of both operands, involving operands up to 4 (Barrouillet & Thevenot, 2013). This 

suggests that, instead of fact retrieval, children and adults may actually use fast automatized counting 

procedures for small addition items, as the use of a retrieval strategy would not show such a linear effect 

(Barrouillet & Thevenot, 2013; Thevenot, Barrouillet, Castel, & Uittenhove, 2016). In other words, the 

very fast responses for these small items, that are most often interpreted as reflecting the direct retrieval 

of the answer from long-term memory, might actually be due to compiled automated procedures that 

are even faster than retrieval, providing an answer while the subject remains unaware of the process, 

and mistaking it for fact retrieval (Uittenhove, Thevenot, & Barrouillet, 2016).  

Either way, arithmetic problems can thus be solved by means of fact retrieval or fast automatized 

counting procedures, or through a variety of procedural manipulations, such as counting, tie, or 

decomposition strategies, in which, over development, a shift is observed towards the increased use of 

a fact retrieval strategy (Siegler, 1996), or from slow to quick counting procedures (Thevenot et al., 

2016). However, the strategies used to solve arithmetic items are often dependent on aspects such as 

problem size (i.e., smaller single-digit items such as 3 + 4 or 3 × 4 are more likely to be solved through 

fact retrieval than larger multidigit items such as 13 + 8 or 13 × 8) or operation (i.e., as associations 

between multiplication problems and their answers are explicitly learned by rote in elementary school, 

multiplication problems are more likely to be retrieved than, for example, subtraction or division 

problems; Dehaene & Cohen, 1995; Siegler et al., 1996). Approaches for studying arithmetic strategy 

use based on problem size or operation, however, are rather limited and have been criticized over the 

past years, as items of a certain operation or size are not necessarily solved through the same strategy 
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(De Smedt, 2016; Siegler & Stern, 1998). This issue can be resolved though, by measuring strategy use 

through self-reports on a trial-by-trial basis (Siegler & Stern, 1998). Furthermore, a crucial aspect of 

arithmetic strategy development lies in the ability to alternate the strategies used to solve certain items. 

Such strategy flexibility or adaptivity is often defined as using a variety of solution strategies, without 

any further qualification (e.g. Heirdsfield & Cooper, 2002). However, the mere use of different solution 

strategies on similar arithmetic problems, without directing any attention to which strategies the children 

use best, or to the efficiency of the chosen strategy for the problem at hand, can hardly be characterized 

as adaptive, making it necessary to define such flexibility or adaptivity in terms of subject and task 

characteristics (Verschaffel, Torbeyns, De Smedt, Luwel, & Van Dooren, 2007). Accordingly, 

throughout typical arithmetic development, children learn to link each strategy to a particular type or 

arithmetic problem, leading towards fluent and efficient problem-solving. 

Additionally, large subject-variability exists in the use of these strategies, as, with age, an increased use 

of fact retrieval is observed (Siegler, 1996), and as children differ in the amount they rely on such a fact 

retrieval strategy (Dowker, 2005; Imbo & Vandierendonck, 2007). This is especially apparent in 

children with dyscalculia, who rely on retrieval strategies to a much lesser extent (American Psychiatric 

Association, 2013). Moreover, even within a fact retrieval strategy, individual differences on 

performance exist, as performance can be affected by various effects, to which people may be more or 

less sensitive. For example, the problem size effect implies that smaller arithmetic problems are solved 

faster and more accurately (e.g., Berteletti, Prado, & Booth, 2014; De Brauwer, Verguts, & Fias, 2006; 

De Smedt, Holloway, & Ansari, 2011; Prado et al., 2013; Prado, Mutreja, & Booth, 2014). This problem 

size effect is most often explained by the notion that smaller problems are more likely to be retrieved in 

comparison to larger problems (Zbrodoff & Logan, 2005), but within fact retrieval itself, it could be 

explained by the frequency theory, which emphasizes that smaller problems appear more frequently and 

are therefore solved faster and more accurately (Ashcraft & Christy, 1995). Alternatively, this problem 

size effect could be explained by the distribution of associations model, which states that each problem 

is associated with previously computed answers, making the amount of errors increase as problem size 

increases (Siegler, 1988), or the network interfering theory, which suggests that magnitude 

representations follow a psychophysical scale that is more compressed as magnitude increases, making 

the representations of large answers more similar to one another than representations of small answers 

(Campbell, 1995). Another, more recently observed, effect on performance within fact retrieval, and 

more specifically within multiplication, is the interference effect, which states that when retrieving the 

answer to a problem, the more similar the problem is to a previously learned one, the more that previous 

problem will interfere and impact storing in long-term-memory, leading to poorer performance (De 

Visscher & Noël, 2013; De Visscher & Noël, 2014a; De Visscher & Noël, 2014b). Accordingly, an 

interference parameter can be calculated for each problem, representing the weight of proactive 

interference. For example, the first multiplication problems children learn are 2 × 2 = 4 and 2 × 3 = 6, 
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which have no interference as they do not share two or more digits with one another. However, the next 

item, 2 × 4 = 8, shares the digits 2 and 4 with 2 × 2 = 4, and is thus subject to interference in memory. 

This, however, does not mean that problems encountered later are always more interfering, but means 

that the more similar a certain problem is to previously learned problems, the larger the impact of 

interference will be. Accordingly, the more sensitive a person is to this interference in multiplication 

facts storing, the more detrimental the effect can be for arithmetic development. 

Individual differences in arithmetic strategy use and performance could also be explained by various 

other arithmetic-related cognitive skills, such as the domain-specific ability to represent numerical 

magnitudes (i.e., children with better access to magnitude representations from symbolic digits retrieve 

more facts from memory and are faster in executing fact retrieval as well as procedural strategies; e.g., 

Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Schneider et al., 2017; Vanbinst et al., 2012). 

These individual differences might also be explained by domain-general cognitive correlates of 

arithmetic, such as working memory, which refers to the capacity of storing information for short periods 

of time when engaging in cognitively demanding activities (Baddeley, 1986). Here, working memory is 

important as arithmetic often involves the processing and storing of information simultaneously (e.g., 

remembering numbers and solutions when using a decomposition strategy for multi-digit problems; 

Peng et al., 2017). Another relevant domain-general skill is rapid automatized naming (i.e., the fast 

retrieval of phonological information from long term memory;  Koponen et al., 2013), which is 

important for arithmetic as poor (access to) phonological representations in long-term memory can 

interfere with the retrieval, manipulation, and retention of phonological codes, which in turn means that 

if phonological representations for number words or facts in long-term memory are weak, they will be 

more difficult to retrieve quickly and accurately (Koponen et al., 2013; Simmons & Singleton, 2008). 

Finally, it is also worth mentioning that the choice of the used strategy, be it fact retrieval or procedure, 

or be it the type of procedural strategy used, is highly dependent on cultural aspects, such as the general 

educational environment in which these skills evolve, as well as the emphasis on automatization 

processes within the mathematics curriculum (De Smedt, 2016). Behavioral studies have clearly shown 

cross-cultural differences in retrieval use depending on the emphasis of the math curriculum on fact 

retrieval and automatization (e.g., Campbell & Xue, 2001). For example, the mandatory guidelines of 

the Flemish education system, in which all participants of this doctoral dissertation are receiving 

education, puts a high emphasis on the use of fact retrieval strategies for single digit problems (especially 

for multiplication), and on the use of a decomposition of operands strategy for larger problems, which 

is often coupled with a limited attention for, or even prohibition of counting, and differs from other 

cultures, such as North America. A comparison of the fact retrieval frequencies in single-digit addition 

and subtraction in Belgian (Torbeyns, Verschaffel, & Ghesquière, 2004) and American (Geary, Hoard, 

Byrd-Craven, & Desoto, 2004) third-graders even revealed a relative retrieval frequency of 88% for the 

Belgian children, but only a retrieval frequency of 38% for the American children, clearly emphasizing 
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these cultural differences. It should thus be noted that all studies in the current doctoral dissertation were 

performed with research samples of Flemish children. 

 

1.2. Magnetic resonance imaging 

Throughout this doctoral dissertation, neural data was collected by means of magnetic resonance 

imaging (MRI). MRI is a non-invasive imaging technique able to provide three dimensional detailed 

anatomical images without the use of radiation. An MRI scanner employs powerful magnets which 

produce a magnetic field that forces hydrogen atoms in the body to align with that field. When a 

radiofrequency current is then pulsed through the person in the scanner, the hydrogen atoms spin out of 

equilibrium, straining against the pull of the magnetic field. When that radiofrequency current is then 

turned off, the MRI sensors are able to detect the energy that the hydrogen atoms release when they 

realign with the original magnetic field. The time it takes for the hydrogen atoms to realign with this 

magnetic field (i.e., T1 relaxation), and the process by which the transverse components of 

magnetization decay or diphase (i.e., T2 relaxation), as well as the amount of energy released, depends 

on the tissue. This makes it possible to tell the difference between various types of tissues based on the 

collected three dimensional images (McRobbie, Moore, Graves, & Prince, 2006). For this doctoral 

project, MRI was used to investigate brain functionality, as well as various structural components of the 

brain, which is elaborated below. An example of MRI images of each acquisition method used in this 

doctoral dissertation is found in Figure 1.1. 

 

Figure 1.1. Coronal, sagittal, and axial visualizations of the MRI methods used throughout the current 

doctoral dissertation.  

Note: A = fMRI activation maps, B = T1-weigthed structural images, C = extracted cortical surface, D = dMRI 

tractography. 
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1.2.1. Functional magnetic resonance imaging 

Functional magnetic resonance imaging (fMRI) uses sequences sensitive to T2 relaxation to measure 

task-related brain activation based on the coupling of neuronal activation and cerebral blood flow 

(Arthurs & Boniface, 2002). In typical fMRI studies, a blood-oxygen-level dependent (BOLD) contrast 

is used to measure the hemodynamic response (i.e., the change in oxygenated blood flow), which occurs 

after brain cells get activated in order to perform a task, and is related to the energy used by those brain 

cells to perform that task. Accordingly, the BOLD contrast results from the change in magnetic field 

surrounding the red blood cells depending on the oxygen state of hemoglobin (Glover, 2011).  

Studies using fMRI aim to induce different neural states in the brain, by manipulating visual, auditory 

or other stimuli during scanning. These tests result in activation maps that are a function of the 

probability that the brain states differ; the activation maps are obtained by comparing the signals 

recorded during different states. For data analysis, statistical testing for activation is mainly done via a 

general linear model, in which the effect of each condition (i.e., experimental conditions such as the 

various arithmetic tasks used for the current dissertation, or control conditions such as looking at a 

fixation point) on the neural responses is estimated per individual voxel, making statistical analysis 

possible (Glover, 2011; Huettel, Song, & McCarthy, 2014).  

1.2.2. Structural magnetic resonance imaging 

In contrast to fMRI, which can thus be regarded as the method providing dynamic physiological 

information, structural MRI provides static anatomical information of the human brain. The two types 

of structural MRI used for this doctoral dissertation are discussed below. 

1.2.2.1. T1-weighted magnetic resonance imaging 

T1-weighted imaging is one of the basic pulse sequences in MRI and demonstrates differences in the 

abovementioned T1 relaxation times of tissues. These T1 relaxation times thus measure how quickly the 

magnetic moments of the individual hydrogen atoms being measured recover to their ground state in the 

direction of the main static magnetic field of the MRI scanner. As not all tissues return back to 

equilibrium in the same amount of time, different neural structures can be dissociated from each other 

as they appear in a different shade of grey (e.g., fluids are black, muscle and grey matter are grey, fat 

and white matter are white; McRobbie et al., 2006).  

The most commonly applied method to relate properties from T1-weighted images to cognitive 

measures is voxel-based morphometry, which uses T1-weighted volumetric MRI scans and makes it 

possible to perform statistical tests (e.g., a series of t-tests) across voxels to identify grey or white matter 

volume or density differences between groups. Whether or not volume or density is being investigated, 

depends on whether or not the segmentation output after nonlinear registration gets modulated, in order 

to compensate for local changes in volume caused by the alignment process (Ashburner & Friston, 

2000). Furthermore, with voxel-based morphometry it is also possible to perform regression analyses 
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across voxels for the assessment of neuroanatomical correlates of cognitive or behavioral skills within 

a typically developing population, instead of comparing clinical and control groups (Whitwell, 2009). 

Although voxel-based morphometry has often been used to study associations of cortical volume and 

cognitive skills, it only takes cortical volume or density into account, disregarding other structural 

properties, such as surface shape. New techniques for structural data analysis, however, have arisen over 

the past years, allowing the study of structural brain differences to go beyond looking at volume alone 

(Yotter, Ziegler, Nenadic, Thompson, & Gaser, 2011). For example, by extracting the cortical surface 

from T1 images, surface-based morphometry makes additional metrics of cortical structure applicable, 

such as cortical complexity through fractal dimensionality, which studies surface shape by quantifying 

the spatial frequency of gyrification and fissuration of the brain surface, and has been linked to gender, 

age, but most importantly also to cognitive ability (Luders et al., 2004; King, Brown, Hwang, Jeon, & 

George, 2010; Im et al., 2006; Madan & Kensinger, 2016; Mustafa et al., 2012; Sandu et al., 2014).  

1.2.2.2. Diffusion-weighted magnetic resonance imaging 

White matter connections between cortical regions are also integral to efficient cognitive processing, as 

distant neural regions often cooperate for the completion of cognitive tasks (Johansen-Berg, 2010). Such 

white matter connections can be specifically examined with diffusion-weighted magnetic resonance 

imaging (dMRI), in which the MRI signal is sensitized to the random molecular motion, or diffusion, of 

groups of water molecules (e.g., all water molecules in a voxel) by the addition of diffusion encoding 

gradients in distinct directions to the standard magnetic pulse (Jones & Leemans, 2011). The diffusion 

thus represents the displacement of a group of water molecules, which is either isotropic (i.e., the water 

molecules diffuse freely in all directions) or anisotropic (i.e., diffusion is limited in the direction of an 

obstruction). This anisotropic diffusion occurs in neural tracts, where the water molecules diffuse more 

along the longitudinal direction of the tract rather than to the sides (Chilla, Tan, Xu, & Poh, 2015). In 

dMRI, the diffusion of these molecules is thus exploited to visualize the internal physiology.  

The most frequently applied model to relate the dMRI signal to the underlying neurophysiology is 

Diffusion Tensor Imaging (DTI). Within DTI, it is possible to, for each voxel separately, infer properties 

such as fractional anisotropy or FA (i.e., the degree to which diffusion has a directional preference), 

mean diffusivity (i.e., the amount of molecular diffusion), axial diffusivity (i.e., the diffusion rate along 

the main axis of diffusion), and radial diffusivity (i.e., the diffusion rate in the transverse direction; 

Soares, Marques, Alves, & Sousa, 2013). The most frequently applied diffusion index to discuss white 

matter properties is FA, in which the estimated direction of diffusion per voxel is assumed to correspond 

to the dominant fiber orientation, and the estimated FA is assumed to correspond to the density, 

myelination and underlying architecture of the underlying axons, which can be related to performance 

on various cognitive abilities (Basser, Matiello, & LeBihan, 1994; Tournier, Calamante, & Connelly, 

2007).  
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DTI, however, is subject to methodological limitations, as it can only estimate the direction of one fiber 

per imaging voxel, leading to inaccurate representations of the underlying neuroanatomy in regions with 

crossing white matter fibers (Assaf, Freidlin, Rohde, & Basser, 2004; Tournier et al., 2007). This is 

highly problematic, as the percentage of white matter voxels that contain crossing fibers in the human 

brain is estimated around 70-90% (Farquharson et al., 2013). A second methodological limitation lies 

in the interpretation of the FA index, which is ambiguous, as it provides a quantitative measure per 

voxel, determined by microstructural properties, such as the myelination of fibers, or size and density 

of cells, but also by macrostructural properties, such as the number of crossing fibers. The FA index 

thus reduces a lot of information to just one number, which in turn means that individual differences in 

FA could be due to a number of reasons.  

These methodological limitations can be resolved through the use of more complex non-tensor models, 

such as spherical deconvolution, which has the asset that it can characterize the orientation of more than 

one fiber per voxel (Dell’Acqua et al., 2007, Tournier, Calamante, Gadian, & Connelly, 2004). 

Furthermore, the hindrance modulated orientational anisotropy (HMOA) index can be derived for 

quantitative spherical deconvolution analyses, which is defined as the absolute amplitude of each lobe 

of the fiber orientation distribution, and, in contrast to FA, is fiber-specific, and highly sensitive to 

changes in fiber diffusivity, such as myelination processes or axonal loss, and to differences in the 

microstructural organization of white matter, such as axonal diameter and fiber dispersion (Dell’Acqua, 

Simmons, Williams, & Catani, 2013). Accordingly, even in regions with fiber crossings, the HMOA 

index provides information about microscopic properties along each fiber orientation. 

 

1.3. Neural correlates of arithmetic  

In the next section, an overview will be given of the current literature on the functional and structural 

neural correlates of arithmetic in both adults and typically developing children. 

1.3.1. Adults 

At a functional level, arithmetic in the brain has been shown to be constituted of five clusters of brain 

regions (Figure 1.2; Menon, 2015). First, a cluster in the ventral temporal-occipital cortex is involved in 

decoding the visual form of the number at hand (Dehaene, Piazza, Pinel, & Cohen, 2003; Grotheer, 

Jeska, & Grill-Spector, 2018). Second, the intraparietal sulcus and superior parietal lobe are involved in 

the processing of number magnitude, cardinality, and numerical quantity, which are considered the 

building blocks from which arithmetic is composed (Menon, 2015). Together, these systems are thus 

able to build semantic representations of quantity from primary visuospatial events such as eye gazing 

and pointing (Ansari, 2008; Simon, Mangin, Cohen, Le Bihan, & Dehaene, 2002). Third, activation in 

the medial temporal cortex, anterior temporal lobe, and angular gyrus is linked to episodic and semantic  
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Figure 1.2. Schematic diagram of brain regions involved in arithmetic (Menon, 2015; pp. 503). 

Abbreviations: V1 = primary visual cortex, VTOC = ventral temporal-occipital cortex, IPS = intraparietal sulcus, 

SPL = superior parietal lobe, AG = angular gyrus, MTL = medial temporal lobe, ATL = anterior temporal lobe, 

SMA = supplementary motor area, PMC = premotor cortex, DLPFC = dorsolateral prefrontal cortex, BG = basal 

ganglia, AI = anterior insula, VLPFC = ventrolateral prefrontal cortex. 

 

long-term memory systems. Fourth, within arithmetic, systems for procedural memory, working 

memory, and cognitive control are also often engaged to, for example, manipulate multiple numbers and 

quantities. These systems are anchored in the dorsolateral prefrontal cortex, pre-motor cortex, 

supplementary motor area, and basal ganglia. Finally, the anterior insula and ventrolateral prefrontal 

cortex are important for attentional control processes, making it possible to maintain attention in service 

of goal-directed problem-solving (Menon, 2015). 

When it comes to studying the neural basis of different arithmetic problem-solving strategies, fMRI 

studies first made assumptions on strategy use by investigating neural activation differences based on 

problem size. Increased activation for large in comparison to small problems, thus for problem assumed 

to be solved procedurally, has previously been observed in a fronto-parietal network including the 

intraparietal sulci, left inferior frontal gyrus, left precentral sulcus, right dorsolateral prefrontal cortex 

and bilateral cingulate gyri. Activation for small in comparison to large problems, thus problems 

assumed to be solved through fact retrieval, has been observed in the angular and supramarginal gyri, 

as well as the right inferior precentral gyrus, right superior temporal gyrus, and left insular cortex 

(Stanescu-Cosson et al., 2000). Such assumptions on strategy use were also made by studying 

differences between operations (e.g., Arsalidou & Taylor, 2011; Dehaene & Cohen, 1997; Lee, 2000; 

Prado et al., 2011; Zhou et al., 2007). For example, a study by Zhou et al. (2007) observed neural 

differences between addition and multiplication, where addition problems elicited more activation in the 

intraparietal sulcus, suggesting increased use of procedural strategies for addition, and multiplication 
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elicited more activation in the precentral gyrus, supplementary motor areas, and posterior and anterior 

superior temporal gyrus, indicating a greater reliance on verbal processing and thus on fact retrieval. 

Similar results were observed for subtraction and multiplication in a study by Prado et al. (2011), where 

subtraction was found to be associated with greater activity in the intraparietal sulcus, again suggesting 

the use of procedural strategies, and multiplication elicited greater activation in regions involved in 

verbal processing, such as the middle temporal gyrus and the inferior frontal gyrus. Activation 

differences were also observed in a training study on complex multiplication problems by Delazer et al. 

(2003), where untrained problems mainly revealed increased activation in the left intraparietal sulcus 

and inferior frontal lobe, and in the left inferior frontal gyrus, and trained items showed activation 

differences in the left angular gyrus. None of these studies, however, directly measured the strategies 

used by the participants on a trial-by-trial basis, which is more suitable for capturing differences between 

arithmetic strategies, as not all items of a certain operation or problem size are consistently solved 

through the same arithmetic strategy (Siegler & Stern, 1998). Therefore, studies by Grabner et al. (2009) 

and Tschentscher and Hauk (2014) studied activation differences in arithmetic strategies through trial-

by-trial self-reports, and observed that especially the angular gyri show stronger activation when 

retrieving, while the use of procedural manipulations leads to activation in the aforementioned fronto-

parietal network, including the posterior superior parietal lobe and sensory-motor regions (Grabner et 

al., 2009; Tschentscher & Hauk, 2014). Noteworthy, however, is that the study by Tschentscher and 

Hauk (2014) also showed that, when taking arithmetic strategy use into account, no differences between 

operations could be observed (Tschentscher & Hauk, 2014), confirming that earlier findings on 

differences in brain activity between arithmetic operations were most likely due to differences in strategy 

use.  

It is thus clear that the arithmetic brain network, as well as arithmetic performance, can be affected by 

various aspects such as problem size or strategy use. Furthermore, as elucidated above, arithmetic 

performance, and more specifically performance within multiplication fact retrieval, can also be affected 

by the more recently discovered interference effect. This interference effect has also been clearly studied 

at the neurofunctional level, which mainly indicates that activation in the angular gyri is, next to problem 

size, training, and strategy use, also modulated by interference, as higher activation was found for low 

interfering items in comparison to high interfering items (De Visscher, Berens, Keidel, Noël, & Noël, 

2015; De Visscher et al., 2018), which all reflects an automated mapping between problem and solution, 

stored in long-term memory in the angular gyri. 

Literature on the structural grey matter correlates of arithmetic and mathematical ability in adults is very 

scarce. A voxel-based morphometry study by Aydin et al. (2007), however, did indicate that cortical 

gray matter density in the left inferior frontal and bilateral inferior parietal lobes of experts in 

mathematics (i.e., academics working at departments of mathematics) were significantly increased 

compared to control subjects, again highlighting the importance for the inferior frontal and parietal lobes 
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within mathematics. Overall, research on the structural neural correlates of arithmetic is thus focused 

more around white matter connectivity. Previously, FA and radial diffusivity in left parietal white matter 

have been shown to predict mathematical skill, indicating the left superior corona radiata, corticospinal 

tract, and superior longitudinal fasciculus as key pathways (Matejko, Price, Mazzocco, & Ansari, 2013). 

Furthermore, as the functional neuroimaging literature has clearly indicated distinct neural networks for 

different arithmetic problem-solving strategies (Grabner et al., 2009; Tschentscher & Hauk, 2014), it 

has also been hypothesized that different white matter networks are likely to support the processing for 

these different problem-solving strategies. Accordingly, two distinct pathways have been observed to 

be correlated with fact retrieval or procedural strategies. A first pathway, associated to more difficult 

problems, more likely to be solved through procedural manipulations, includes both dorsal (i.e., superior 

longitudinal fasciculus) and ventral (i.e., lateral and inferior to the external capsule) streams. A second 

pathway, related to problems more likely to be solved by fact retrieval, includes a ventral stream of 

fibers between fronto-parietal areas corresponding to the middle longitudinal fasciculus (Klein, Moeller, 

Glauche, Weiller, & Willmes, 2013). Finally, looking at white matter structure and brain function 

simultaneously, white matter integrity in the left superior corona radiata has also been correlated with 

arithmetic activation in the left angular gyrus, for problems likely to be solved through fact retrieval 

(Van Eimeren et al., 2010).  

1.3.2. Typically developing children 

The overview of the neural correlates of arithmetic above was all based on research in adults (Arsalidou 

& Taylor, 2011; Menon, 2015) and is not necessarily transferable to children (Ansari, 2010). At the 

functional level, overall number and arithmetic processing from childhood to adulthood is characterized 

by a decreasing engagement of the prefrontal cortex and an increasing engagement and functional 

specialization of the inferior and posterior parietal cortex (Ansari, Garcia, Lucas, Hamon, & Dhital, 

2005; Cantlon, Libertus, Pinel, & Dehaene, 2009; Rivera, Reiss, Eckert, & Menon, 2005). Even the 

short interval from second to third grade is linked to significant task-related changes in brain activation, 

such as greater activity in both dorsal and ventral visual stream areas (Rosenberg-Lee, Barth, & Menon, 

2011), pointing towards a large developmental trajectory in the arithmetic brain network, and 

highlighting the importance of studying samples with small age ranges as to not miss important 

neurodevelopmental changes that occur during key stages of academic learning (Menon, 2015). 

Furthermore, in contrast to adults, increased activation in the hippocampus is often observed in children 

(e.g., De Smedt et al., 2011; Qin et al., 2014), as the initial transition from counting to memory-based 

retrieval strategies, as well as longitudinal improvements in fact retrieval use, are paralleled by increased 

hippocampal engagement (Qin et al., 2014). Accordingly, children’s functional arithmetic brain network 

is similar but not identical to the adult arithmetic brain network and includes a large set of interconnected 

frontal (both ventro- and dorsolateral prefrontal cortex), parietal (intraparietal sulcus, angular gyrus, and 

supramarginal gyrus), occipito-temporal and medial temporal (including the hippocampus) areas. It is, 
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however, crucial to know how exactly these neural correlates develop, in order to understand how 

instruction affects this development, and to assess and remediate abnormal developmental patterns at an 

early age (Geary, Bailey, & Hoard, 2009; Rykhlevskaia, Uddin, Kondos, & Menon, 2009). 

The abovementioned shift from increased engagement of the intraparietal sulci (i.e., numerical 

processing) and prefrontal cortex (i.e., working memory) towards an increased reliance on left 

perisylvian language-related areas, such as the angular gyrus (Houdé, Rossi, Lubin, & Joliot, 2010; 

Kaufmann, Wood, Rubinsten, & Henik, 2011; Menon, 2015), has also been linked to the clear shift in 

strategy children use to solve arithmetic problems (i.e., inefficient procedural strategies gradually get 

replaced with the retrieval of domain relevant facts; Geary et al., 1992; Geary et al., 2004; Siegler, 1996). 

Previous neuroimaging studies, however, have never explicitly investigated the neural activation 

associated with different arithmetic problem-solving strategies in children, but have only made 

assumptions on strategy use based on reaction time, problem size, operation, or presentation (Cho, Ryali, 

Geary, & Menon, 2011; De Smedt et al., 2011; Peters, Polspoel, Op de Beeck, & De Smedt, 2016; Prado 

et al., 2014). For example, when comparing single-digit addition to subtraction, De Smedt et al. (2011) 

observed increased activation in the left hippocampus for addition, and in a fronto-parietal network for 

subtraction, relating it to retrieval and procedural strategy use, respectively. Prado et al. (2014), on the 

other hand, contrasted multiplication and subtraction and found grade-related increases of activation for 

multiplication, assumed to be solved through retrieval, in the left temporal cortex, and activation 

increases for subtraction, assumed to be solved through procedural strategy use, in the right parietal 

cortex. These studies, however, made the assumption that the items of the same operation would be 

solved with the same strategy at the same age. In another study, Cho et al. (2011) assessed children’s 

strategy use in a single-digit addition task and compared participants that solved over 60% of the items 

with a retrieval or procedural strategy, respectively. Doing so, they observed that the retrievers more 

strongly activated the left ventrolateral prefrontal cortex, but again, this study did not analyze brain 

activity during calculation as a function of the strategy used during problem solving. Finally, Peters et 

al. (2016) investigated brain activation during a subtraction task in symbolic (i.e., Arabic digits or 

number words) and non-symbolic (i.e., arrays of dots) formats, and showed that the symbolic formats, 

assumed to be solved by a fact retrieval strategy, showed increased activity in the bilateral angular and 

supramarginal gyri. Overall, these studies thus point towards increased activation in the left temporal 

cortex, left hippocampus, left angular gyrus, and left supramarginal gyrus for items assumed to be 

retrieved, and increased activation in a fronto-parietal network for items assumed to be solved 

procedurally. As mentioned, however, this approach has been criticized for many years in developmental 

behavioral studies (e.g., Siegler, 1987; Siegler, 1996), as not all problems of a similar size or operation 

are always solved through the same strategy. This is especially problematic in the context of 

developmental research, as the strategies that children use to solve particular types of arithmetic 

problems change over time (i.e., with education and practice), as do the brain regions responsible for 
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those strategies. For example, the longitudinal study by Qin et al. (2014) showed that the recruitment of 

hippocampal-dependent memory processes is important in the development of children's memory-based 

problem-solving strategies (i.e., fact retrieval), yet this hippocampal activation for retrieval strategies is 

not observed in adults, but rather replaced by activation in the angular gyri (Grabner et al., 2009; 

Tschentscher and Hauk, 2014). In Chapter 2 of the current doctoral dissertation, we aimed to resolve 

these issues by using fMRI to investigate the neural differences between children’s arithmetic strategies 

on a trial-by-trial basis.  

Within arithmetic fact retrieval specifically, the previously mentioned effects of problem size and 

interference have been clearly studied at the behavioral level (e.g., De Brauwer et al., 2006; De Visscher 

& Noël, 2014b), yet the neural basis of the interference effect and how it differs from the problem size 

effect was never studied in children. This, however, would be highly interesting as this interference 

effect has been shown to determine a substantial part of arithmetic performance beyond the problem 

size effect, and has possible detrimental consequences for the storing of arithmetic facts (De Visscher 

and Noël, 2014a; De Visscher and Noël, 2014b). Accordingly, in Chapter 3, in order to increase our 

understanding of the development of the arithmetic brain network and its time course, and to potentially 

help chart the development of individual differences, we set out to investigate the neural basis of both 

the problem size and the interference effects in children’s multiplication fact solving, similar to previous 

fMRI studies in adults (De Visscher et al., 2015; De Visscher et al., 2018). 

The amount of studies looking at the structural grey matter correlates of children’s arithmetic, on the 

other hand, is scarce (Arsalidou, Pawliw-Levac, Sadeghi, & Pascual-Leone, 2018; Peters and De Smedt, 

2018). Using voxel-based morphometry, however, the existing studies investigated associations between 

grey matter volume and arithmetic within typically developing children, and mainly observed positive 

correlations between arithmetic fluency and grey matter volume in the left intraparietal sulcus (Li, Hu, 

Wang, Weng, & Chen, 2013; Price, Wilkey, Yeo, & Cutting, 2016), between arithmetic growth in 

primary school and grey matter volume in the posterior parietal cortex, ventral occipito-temporal cortex, 

and prefrontal cortex (Evans et al., 2015), and between third graders’ learning gains of one-on-one 

tutoring sessions and the volume of the right hippocampus (Supekar et al., 2013). When comparing 

groups of children who differ in their level of arithmetic skill (Isaacs, Edmonds, Lucas, & Gadian, 2001; 

Ranpura et al., 2013; Rotzer et al., 2008; Rykhlevskaia et al., 2009), increased volume for the children 

that performed better was observed in the bilateral intraparietal sulci, left inferior frontal gyrus, bilateral 

middle frontal gyri, and bilateral fusiform gyri, concurring to the arithmetic brain network described 

above. A lot of these studies, however, were conducted in research samples with wide age ranges, which 

is problematic as, even though statistically controlled for, the study of samples with wide age ranges 

might lead to maturational confounds and to a possible over-interpretation of the observed results. 

Furthermore, these existing studies are rather limited as they only took cortical volume into account, 

without regarding other relevant structural properties, such as cortical shape, which has also been related 
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to cognitive ability (e.g., Im et al., 2006; Sandu et al., 2014). In Chapter 4 of the current doctoral 

dissertation, we aimed to investigate the structural neural correlates of children’s arithmetic fluency, but 

looked beyond cortical volume by also implementing cortical complexity analyses in typically 

developing 9- to 10-year-old children.  

Research on structural connectivity in children’s arithmetic is also scarce and inconclusive, as many 

different white matter pathways have been found to be related to individual differences in arithmetic or 

other mathematical skills (Matejko and Ansari, 2015; Moeller, Willmes, & Klein, 2015). These 

pathways include (1) the arcuate fasciculus, generally associated to phonological, reading and language 

skills, (2) the superior longitudinal fasciculus, often confused for the arcuate fasciculus and important 

for regulating motor behavior, spatial attention, and language skills, (3) the inferior longitudinal 

fasciculus, mainly involved in visual processing, (4) the inferior fronto-occipital fasciculus, related to 

orthographic processing, (5) the uncinate fasciculus, associated with memory, (6) the corona radiata and 

corticospinal tract, important for efficient motor functions, and (7) the corpus callosum, connecting both 

cerebral hemispheres. (Li et al., 2013; Kucian et al., 2013; Navas-Sánchez et al., 2014; Rykhlevskaia et 

al., 2009; Tsang, Dougherty, Deutsch, Wandell, & Ben-Sachar, 2009; Van Beek, Ghesquière, Lagae, & 

De Smedt, 2013; Van Eimeren, Niogi, McCandliss, Holloway, & Ansari, 2008). These studies, however, 

applied classic DTI to study the various white matter tracts, which, as mentioned, is subject to 

methodological limitations (e.g., Assaf et al. 2004; Dell'Acqua et al. 2013; Farquharson et al. 2013; 

Tournier et al. 2007). Research using novel imaging techniques to tackle these limitations in the field of 

arithmetic, however, do not exist. Furthermore, the existing studies were again often conducted in 

research samples with wide age ranges (e.g., 7- to 10- or 10- to 15-years-old; Matejko & Ansari 2015), 

which possibly has missing neurodevelopmental processes that only occur at a single point in arithmetic 

development as a consequence. Therefore, in Chapter 5 of this doctoral dissertation, the structural white 

matter correlates of 9- to 10-year-old children’s arithmetic fluency was investigated via spherical 

deconvolution. 

 

1.4. Aims of the doctoral project 

In this doctoral project, we aimed to contribute knowledge on both the functional and structural neural 

basis of typically developing children’s arithmetic fluency. This was done through two functional 

imaging studies, two structural imaging studies, and one study looking at the predictive value of various 

behavioral and structural brain imaging measures for children’s arithmetic fluency simultaneously.  

First of all, as mentioned, the neural basis of arithmetic strategy use has not been properly studied in 

children, as only assumptions on strategy use have been made, based on reaction time, problem size, 

operation, or stimuli presentation (see De Smedt, 2016, for a discussion). Trial-by-trial self-reports are 

more appropriate to capture arithmetic strategy use, as they allow for the estimation of individual 
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differences in the choice of strategy (Siegler & Stern, 1998). Neuroimaging studies in adults have 

already used such an approach and have shown that the strategy used to solve arithmetic items modulates 

activation in the arithmetic brain network (Grabner et al., 2009; Tschentscher & Hauk, 2014). In 

children, however, this has never been clearly studied. In Chapter 2, we therefore investigated the neural 

activation associated with both fact retrieval and procedural manipulations in subtraction and 

multiplication in typically developing children, by verifying the used strategy on a trial-by-trial basis, 

and contrasting both strategies and operations to see if, similar to adults, observed operation differences 

disappear when taking strategy into account. 

Second, within the development and acquisition of arithmetic facts, especially in multiplication, 

performance can be influenced by various effects, such as the problem size (De Brauwer et al., 2006) 

and interference effect (De Visscher & Noël, 2013; De Visscher & Noël, 2014a; De Visscher & Noël, 

2014b), as evidenced by behavioral research. In Chapter 3, we aimed to achieve a more detailed 

understanding of the regions in the neural network of children’s arithmetic fact retrieval (e.g., regarding 

the interpretation of activation in the angular gyrus), by studying the functional neural basis of both of 

these effects in typically developing children, as was previously done in adults (De Visscher et al., 2015; 

De Visscher et al., 2018). 

Third, only a small amount of studies have looked at the structural neural correlates of children’s 

arithmetic, and those that did mainly implemented voxel-based morphometry, which only takes the 

volume of regions into account, without looking at other structural properties, and often used research 

samples with wide age ranges, which might lead to the over-interpretation of observed associations (e.g., 

Evans et al., 2015; Isaacs et al., 2001; Price et al., 2016). Therefore, in Chapter 4, the structural neural 

correlates of typically developing children’s arithmetic fluency were investigated, not only through 

voxel-based morphometry, but, as to gain a more holistic view on these structural correlates, also 

through cortical complexity analyses (i.e., fractal dimensionality analyses) to also take the shape of 

cortical structures into account.  

Fourth, within mathematical cognition, some studies exist on the structural white matter connections in 

children’s arithmetic, but these studies implemented classic DTI (which has methodological limitations), 

often used samples with wide age ranges, and correlated structural neural markers to various broad 

mathematical skills (see Matejko & Ansari, 2015, and Moeller et al., 2015 for reviews). In Chapter 5, 

these previously observed arithmetic-related white matter pathways were studied and correlated to a 

specific arithmetic fluency task in 9- to 10-year-old children, implementing spherical deconvolution. 

Finally, a lot of behavioral and neural research has thus already been done on children’s arithmetic to, 

on the on hand, try and gain insights into how arithmetic fluency develops and into which cognitive 

factors might explain or predict individual differences in arithmetic, and, on the other hand, try and 

unravel the neural basis of these individual differences. However, in contrast to research on other 
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cognitive skills such as reading (Hoeft et al., 2011), hardly any studies have studied the various relevant 

behavioral and neural correlates of arithmetic simultaneously, in order to examine the added value of 

one type of predictor over and above the other type. Therefore, in Chapter 6, we investigated the added 

value of the structural brain imaging measures collected in Chapters 4 and 5 in predicting individual 

differences in children’s arithmetic fluency on top of well-known behavioral predictors, based on 

previous behavioral research, and including symbolic numerical magnitude processing (e.g., Schneider 

et al., 2017), working memory (e.g., Peng, Namkung, Barnes, & Sun, 2016), and rapid automatized 

naming (Hecht, Torgesen, Wagner, & Rashotte, 2001).  

For the entire doctoral project, behavioral and neuroimaging data of 50 children were collected. For all 

particpants of Chapter 2 (n = 26), behavioral data collection included the assessment of intelligence, 

arithmetic, reading, number comparison, working memory, rapid automatized naming, and motor 

reaction time, as well as a study-specific task on arithmetic strategy use. Neuroimaging data collection 

included fMRI (on arithmetic strategy use), T1-weighted MRI (to be used in Chapter 4), and dMRI (to 

be used in Chapter 5). Participants of Chapter 3 (n = 24) went through the same behavioral data 

collection, except for a study-specific task on interference and problem size instead of on arithmetic 

strategy use. Neuroimaging data collection again included fMRI (now on interference and problem size), 

T1-weighted MRI (to be used in Chapter 4), and dMRI (to be used in Chapter 5). For Chapters 4, 5 and 

6, the collected behavioral data and structural neuroimaging data of Chapters 2 and 3 were thus 

combined to form the total research sample (n = 50). 

In all, the current doctoral project attempted to complement the observed gaps in the current literature 

and intended to reevaluate previous studies by implementing novel methods of analyzing brain imaging 

measures, and by focusing on arithmetic fluency in research samples with a narrow age range to 

minimize maturational confounds. Accordingly, all studies were performed in 9- to 10-year-old children 

(i.e., 4th graders), which is a point in development where considerable arithmetic knowledge has already 

been automatized. 
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Abstract 

Arithmetic development is characterized by strategy shifts between procedural strategy use and fact 

retrieval. The current study is the first to explicitly investigate children’s neural activation associated 

with the use of these different strategies. Participants were 26 typically developing 4th graders (9- to 

10-year-olds), who, in a behavioral session, were asked to verbally report on a trial-by-trial basis how 

they had solved 100 subtraction and multiplication items. These items were subsequently presented 

during functional magnetic resonance imaging (fMRI). An event-related design allowed us to analyze 

the brain responses during retrieval and procedural trials, based on the children’s verbal reports. During 

procedural strategy use, and more specifically for the decomposition of operands strategy, activation 

increases were observed in the inferior and superior parietal lobes (intraparietal sulci), inferior to 

superior frontal gyri, bilateral areas in the occipital lobe, and insular cortex. For retrieval, in comparison 

to procedural strategy use, we observed increased activity in the bilateral angular and supramarginal 

gyri, left middle to inferior temporal gyrus, right superior temporal gyrus, and superior medial frontal 

gyrus. No neural differences were found between the two operations under study. These results are the 

first in children to provide direct evidence for alternate neural activation when different arithmetic 

strategies are used and further unravel that previously found effects of operation on brain activity reflect 

differences in arithmetic strategy use. 
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2.1. Introduction 

To date, relatively little is known about the neural substrate of arithmetic in children, an academic skill 

of clear importance in everyday life (e.g., we maintain budgets, or work with proportions when cooking). 

On the other hand, accumulating evidence in adults is suggesting that a fronto-parietal network, which 

includes the superior and inferior parietal lobes, the inferior frontal gyri and the insular cortex, is 

consistently being activated during arithmetic (for a review, see Arsalidou & Taylor, 2011; Menon, 

2015). Most of these studies, however, did not directly take strategy use – arithmetic problems can be 

solved through fact retrieval or by means of procedural manipulations – into account. This is important, 

as strategy use has been shown to modulate the adult arithmetic brain network (Grabner et al., 2009; 

Tschentscher & Hauk, 2014). Studies in children have never directly investigated the neural activity 

during these strategies. The current study is therefore the first to investigate neural activation during 

arithmetic while taking into account individual differences in children’s arithmetic strategy use, which 

is crucial considering the large developmental changes in children’s acquisition of arithmetic strategies 

(Siegler, 1996). 

Functional magnetic resonance imaging (fMRI) research in adults has often implicated dorsal parts of 

the parietal cortex, including the intraparietal sulcus, as a critical hub for the representation and 

manipulation of numerical quantity (e.g., Ansari, 2008; Cohen Kadosh, Lammertyn, & Izard, 2008; 

Dehaene et al., 2003). These regions make up the magnitude code of the adult Triple Code Model as 

postulated by Dehaene and Cohen (1997). This model also proposed a visual code, located in bilateral 

inferior ventral occipito-temporal regions, in which numbers are represented as identified strings of 

digits. The Triple Code Model also postulated a verbal code, located in left-hemispheric temporo-

parietal areas, in which numbers are phonologically represented, and which is implicated in accessing 

arithmetic facts (Dehaene & Cohen, 1997). Although many brain imaging studies in numbers and 

arithmetic have limited their focus to the parietal cortex, many areas outside the parietal cortex are also 

involved in arithmetic (Arsalidou & Taylor, 2011; Menon, 2015). Calculation places a demand on 

various cognitive systems (e.g., working memory or cognitive control), and thus multiple regions, such 

as the anterior insula and anterior cingulate cortex for directing attention, and the ventro- and 

dorsolateral prefrontal cortex for effortful maintenance and manipulation of information, respectively, 

are also typically activated during calculation (e.g., Arsalidou & Taylor, 2011; Menon, 2015).  

Only a very small number of fMRI studies have investigated the functional properties of the arithmetic 

network in children (Menon, 2015; Peters & De Smedt, 2017, for a review). This network involves a 

large set of interconnected areas that include frontal (both ventro- and dorsolateral prefrontal cortex), 

parietal (intraparietal sulcus, angular gyrus, and supramarginal gyrus), occipito-temporal and medial 

temporal (including the hippocampus) areas. This network shows some similarities to the network 

observed in adults, but it is a clearly different network which is recruited by children, particularly during 

the development of arithmetic facts (Menon, 2015; Peters & De Smedt, 2017). For example, adults 
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typically show activation increases in angular and supramarginal gyri during more easy problems, which 

are likely to be solved by fact retrieval, yet these changes in brain activity have not been consistently 

observed in children. Moreover, increased activity in the hippocampus has been observed in the early 

stages of learning arithmetic, more specifically in addition (e.g., De Smedt et al., 2011). It is important 

to take into account, however, that previous fMRI studies in children used samples with wide age ranges, 

which may have affected these reported findings. This is particularly relevant, as arithmetic development 

is characterized by a decreasing engagement of the prefrontal cortex and by an increasing engagement 

and functional specialization of the inferior and posterior parietal cortex (Kucian, von Aster, Loenneker, 

Dietrich, & Martin, 2008; Rivera et al., 2005). Even the short interval from second to third grade is 

linked to significant task-related changes in brain activation, such as greater activity in both dorsal 

stream parietal and ventral visual stream areas (Rosenberg-Lee et al., 2011), pointing towards a large 

developmental trajectory in the arithmetic brain network (Menon, 2015). In all, this suggests a need for 

studies that focus on one particular age range. 

As mentioned, arithmetic problems can be solved through different strategies. Furthermore, a well 

validated fact through decades of behavioral research (e.g., Siegler, 1996), is that, over development, 

changes occur in the strategies that children use, yet this has never been explicitly investigated in 

children through fMRI. These strategies can be categorized as retrieval (i.e., remembering the solution 

to a certain problem) or procedure. Such a procedural strategy is used when the solution to a certain 

problem cannot be directly retrieved from memory, and procedural manipulations, such as counting or 

the decomposition of operands (e.g., 24 – 7 = 24 – 4 – 3 = 20 – 3 = 17 or 3 × 13 = (3 × 10) + (3 × 3) = 

30 + 9 = 39) are needed. When learning to solve arithmetic problems, children initially rely heavily on 

effortful and time consuming procedures, such as counting. Repeated use of counting, however, will 

lead to the formation of associations between a problem and its solution, which will in turn lead to the 

retrieval of the correct answer whenever that problem is presented (Siegler & Shrager, 1984).  

Previous studies, particularly neuroimaging work, however, have often made assumptions on strategy 

use based on reaction time, problem size, or operation, yet it is crucial to emphasize that these 

approaches are limited (see De Smedt, 2016, for a discussion), as not all problems of a particular size or 

operation are solved with the same strategy at the same point in development (Siegler, 1987). For 

example, behavioral studies have shown that, even in adults, single-digit arithmetic items are sometimes 

solved by procedures, such as counting (LeFevre, Sadesky, & Bisanz, 1996). Ignoring the use of 

different strategies is especially problematic in the context of developmental research, as, with education 

and practice, the strategies that children use to solve particular types of problems change over time. 

Therefore, trial-by-trial self-reports, which (in children) have sufficient reliability and validity (Siegler 

& Stern, 1998), might be more appropriate to capture arithmetic strategy use, as it allows for the 

estimation of individual differences in the choice of strategy. 



23 | C h a p t e r  2   S t r a t e g y  U s e  -  f M R I  

 

 

 

Adult fMRI studies have recently started to take arithmetic strategy use into account, and revealed that 

the choice of strategy modulates brain activity during arithmetic (Grabner et al., 2009; Tschentscher & 

Hauk, 2014). In an event-related fMRI study, Grabner et al. (2009) provided the first evidence for 

alternate neural activation when using different strategies. The study implemented trial-by-trial self-

reports in adults immediately after scanning, by asking the participants how they had solved the items 

during scanning. Their results pointed out that adults show stronger activation of the left angular gyrus 

when retrieving, while procedural strategy use leads to activation in a more widespread fronto-parietal 

network. Extending these results, Tschentscher & Hauk (2014) also used strategy self-reports, during 

addition and multiplication in adults, and mainly found increased activation in the bilateral angular gyrus 

for fact retrieval. For procedural strategy use, increased activation was observed in the prefrontal 

cortices, motor areas, posterior superior parietal lobe, and intraparietal sulcus. The results of these 

studies are thus in line with the idea that the angular gyrus supports retrieval processes in adults, while 

more activation in the posterior superior parietal lobe and sensory-motor regions is linked to procedural 

strategy use. It remains to be determined if a similar pattern of findings can be found in children. 

Importantly, Tschentscher & Hauk (2014) did not observe any effect of arithmetic operation on brain 

activity once arithmetic strategy was taken into account. This suggests that earlier findings on 

differences in brain activity between arithmetic operations (e.g., Arsalidou & Taylor, 2011; Dehaene & 

Cohen, 1997; Prado et al., 2011; Zhou et al., 2007) should be interpreted with great caution. In children, 

such operation effects have also been reported repeatedly (e.g., De Smedt et al., 2011; Prado et al., 

2014). More specifically, De Smedt et al. (2011) observed increased activity in the left hippocampus for 

single-digit addition in comparison to subtraction, and in a fronto-parietal network for subtraction in 

comparison to addition, while Prado et al. (2014) found grade-related increases of activity for 

multiplication, but not for subtraction, in the left temporal cortex, and increases of activity for 

subtraction, but not for multiplication, in the right parietal cortex. These studies, however, did not take 

the participants’ strategy use into account, and were only able to make implicit assumptions about 

strategies, as they assumed that the items of the same operation would be solved with the same strategy 

at the same age. Consequently, it is still unclear how strategy use modulates activation of the arithmetic 

brain network in children, and whether previously found operation effects in children might be due to 

differences in arithmetic strategy use.  

Interestingly, Cho et al. (2011) assessed children’s strategy use through verbal reports with a single-

digit addition task prior to scanning, but categorized their participants into retrievers and counters if they 

had solved over 60% of the items with a retrieval or procedural strategy, respectively. Subsequently, 

they compared the brain activity of those two groups during an addition task and observed that the 

retrievers more strongly activated the left ventrolateral prefrontal cortex. Here as well, brain activity 

during calculation was not analyzed as a function of the strategy used during problem solving. 

Furthermore, the study only included one operation (i.e., addition), leaving it open whether these results 
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were transferable to different operations. Research which uses trial-by-trial self-reports, and checks the 

neural activation patterns for different strategies in different operations, is thus yet to be done in children. 

The present study is the first to investigate children’s neural activation during calculation, as a function 

of strategy use, determined on a trial-by-trial basis. The study follows an approach similar to Grabner et 

al. (2009) and Tschentscher & Hauk (2014) in adults, who implemented trial-by-trial strategy 

assessment outside of the scanner in order to analyze strategy use for each item separately. Such a trial-

by-trial approach is even more needed in children, given that children are more likely to implement a 

variety of strategies, and that, during development, changes in strategy use occur (Siegler, 1996).  

We developed an arithmetic task designed to elicit retrieval (single-digit items) or procedural (double-

digit items) strategies. The task included both subtraction and multiplication, allowing us to investigate 

potential operation effects. Strategy use was recorded on a trial-by-trial basis and the task was 

administered approximately three weeks prior to scanning. During fMRI acquisition, children were 

presented with a subset of problems of the strategy assessment task, implemented in a 2 × 2 full factorial 

design (strategy: retrieval vs. procedure × operation: subtraction vs. multiplication). We employed an 

event-related design that, for each child individually, allowed us to use the trial-by-trial strategy data, 

obtained prior to scanning, to categorize each trial during scanning into retrieval or procedure.  

In light of the existing literature, we expected to find increases in activation in the hippocampus (based 

on the strategy assumptions of developmental literature; De Smedt et al., 2011; Qin et al., 2014) for fact 

retrieval trials. For procedural trials, we predicted an increase in brain activity in a more widespread 

fronto-parietal network (De Smedt et al., 2011) as has been observed in adults (Grabner et al., 2009; 

Tschentscher & Hauk, 2014). 

As the current study used both subtraction and multiplication, we were also able to test differences 

between operations and possible interaction effects between strategy use and operation. This allowed us 

to directly verify whether the previously observed operation effects in children (De Smedt et al., 2011; 

Prado et al., 2014) reflect differences in strategy use. If the latter is the case, then operation effects will 

disappear when these strategies are taken into account, as has been observed in adults (Tschentscher & 

Hauk, 2014).  

It is important to point out that, different from most of the existing developmental fMRI studies in the 

field of mathematical cognition, we have focused our study on children with a very narrow age range 

(i.e., only 4th graders). This is crucial, as merging data across wide age ranges could lead to missing 

important neurodevelopmental changes, given that substantial differences in brain activity can already 

be observed after one year of schooling (Rosenberg-Lee et al., 2011). By minimizing the variability in 

age, we reduced potential effects of different stages of development and of the received amount of 

mathematics instruction. 
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2.2. Methods 

2.2.1. Participants 

Participants were 26 typically developing Flemish 4th graders (ages 9 to 10), with no history of learning 

difficulties, or neurological or psychiatric disorders. All children were recruited via the elementary 

school they attended. Data of six children, however, were discarded, five of which due to excessive 

motion during functional scanning (see details below), one due to technical acquisition problems. We 

thus analyzed data of 20 children (M = 9.6, SD = 0.29; 13 boys, 7 girls; 1 left-handed). In return for 

participating, all children were given a financial compensation. Written informed consent was obtained 

from a parent or legal guardian of each participating child. The study was approved by the Medical 

Ethical Committee of the University of Leuven.  

2.2.2. Procedure 

All children took part in two test sessions. The first session, during which only behavioral data were 

collected, always preceded the second one by approximately three weeks (M = 21.92 days, SD = 6.13), 

and included both standardized and strategy assessment. The second session included the actual 

acquisition of MRI data. 

2.2.2.1. Standardized assessment 

Standardized assessment consisted of the evaluation of arithmetic, reading, and intellectual ability. 

Arithmetical competence was measured by the Tempo Test Arithmetic (TTA; de Vos, 1992); a 

standardized test of arithmetical fluency, similar to the Math Fluency subtest of the Woodcock-Johnson 

III tests of Achievement (Woodcock, McGrew, & Mather, 2003). The test exists of five columns of 

arithmetic items, increasing in difficulty (one column per operation and a column with mixed 

operations); each child gets one minute per column to provide as many correct answers as possible. 

Reading ability was assessed using a combination of the One-Minute Test (OMT; Brus & Voeten, 1979) 

and the Klepel (Van den Bos, Spelberg, Scheepstra, & De Vries, 1994), which measure the reading of 

words and pseudowords, respectively; both tests consist of 116 words. For the OMT, the children get 

one minute to correctly read aloud as many words as possible; for the Klepel, the time limit is set to two 

minutes, and the children read aloud pseudowords. Finally, an index of intellectual ability was measured 

by the WISC-III-NL Block Design and Vocabulary subtests, as measures of performance and verbal IQ 

respectively (Wechsler, 2005). Standardized scores were calculated for all tasks. Figure 2.1 displays box 

plots with the descriptive statistics of this cognitive assessment. These results show that the means of 

our sample were close to the population averages, and show proper variation – especially for the TTA – 

as is expected in the general population. It is important to note that even though the minimum score for 

the TTA was low, none of the participating children had been diagnosed with learning disabilities, or 

dyscalculia in particular. 
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Figure 2.1. Box plots displaying the performance of the standardized assessment.  

Note: The scores above are standardized scores. The scores on the arithmetic test are standardized as M = 5, SD = 

2, with a maximum of 10. The scores on the other tests are standardized as M = 10, SD = 3, with a maximum of 

20. 

 

2.2.2.2. Strategy assessment 

Strategy use was assessed by a task in which the children were read aloud 100 arithmetic problems, and 

were asked to verbally solve them. They had to report how they had solved each item on a trial-by-trial 

basis; children were allowed and encouraged to use any strategy they wanted. The 100 items were 

divided into 50 subtraction and 50 multiplication items, each of which in turn were divided into items 

that were a priori expected to elicit either a retrieval or procedural strategy. The problems were presented 

in a pseudo-randomized order (i.e., never more than five consecutive items of the same operation). For 

each item, the children’s accuracy and used strategy was registered. 

In subtraction, the retrieval items consisted of two single-digit operands (e.g., 8 – 3), which have been 

indicated to be mainly answered through fact retrieval by previous verbal report data in children of a 

similar age range and math curriculum (Vanbinst et al., 2012). The procedural items crossed the bridge 

of either 20 or 30 (i.e., the first operand varied from 21 to 28 or 31 to 38, the second operand varied 

from 4 to 9, solutions varied from 12 to 19 or 22 to 29; e.g., 25 - 8). These items were expected to be 

solved procedurally, as it is unlikely for them to be stored in memory; as the children reported in the 

verbal reports, multiple steps were needed to find the answer. In multiplication, the retrieval items 

existed of two single-digit operands (e.g., 4 × 3), which, by previous verbal report data in a similar 

sample of children, have also been indicated to be mainly answered through retrieval (Imbo & 

Vandierendonck, 2008). As all participating children came from Flemish schools, which have a high 

emphasis on fact retrieval for all single digit multiplication items, it was impossible to use a homogenous 

subset of single-digit problems to investigate procedural strategy use. Therefore, for the procedural 
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items, one operand varied from 3 to 6 and the other from 12 to 16, leading to solutions between 35 and 

100 (e.g., 3 × 14). As multiplication tables beyond 10 are not taught in our curriculum, it is, again, 

unlikely that, in our sample, these items were stored in memory; as the children reported, multiple steps 

were needed to find the answer to these problems, making it very likely that these items would be solved 

by using procedural strategies.  

After solving each item, the children were asked how they had solved it; responses were categorized as 

retrieval (i.e., the participant knew the answer without any sign of overt calculations), procedural (i.e., 

the participant indicated to have used any form of procedural strategy, such as counting or the 

decomposition of operands; the type of procedural strategy was also registered) or undefined (i.e., the 

participant did not know how (s)he had solved the item or used an unclear strategy); this last category 

was rare as it only occurred in 1.04% of the items.  

2.2.2.3. fMRI experimental design 

Each participant was presented with a set of 80 of the 100 problems of the strategy assessment task (i.e., 

20 items per operation, per expected strategy). Stimuli were presented with E-prime 2.0 (Psychological 

Software Tools, Pittsburgh, PA), via an NEC projector onto a screen behind the participants, made 

visible through a mirror attached to the head coil. All stimuli were presented in white (Arial, font size 

60) on a black background. Problems were presented horizontally in Arabic digits, and after two seconds 

two possible answers (a correct and an incorrect one) were simultaneously presented (Figure 2.2). The 

children were asked to indicate the correct answer by pressing the left or right button on the response 

box for the left or right response alternative, respectively. For the subtraction items, incorrect answers 

were created by adding or subtracting 1 or 2 from the correct answer. For the multiplication items, 

incorrect answers were created by adding or subtracting the value of the smallest operand to or from the 

correct answer; the proposed false answers were thus always a table related product. When choosing the  

 

Figure 2.2. Schematic overview of an expected retrieval (left) and procedural (right) trial. 
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proposed false answers, however, we made sure the equations could not be solved more easily by 

applying a certain rule, such as the five rule (e.g., in the item 2 × 9, the proposed false answer was 16 

instead of 20; in the item 6 × 14, the proposed false answer was 78 instead of 90). The position of the 

correct answers was balanced. 

The task was presented across four functional runs in an event-related fMRI design (similar to De Smedt 

et al., 2011 and Grabner et al., 2009). Each run consisted of 15 s of fixation at the start of the run, 20 

trials (5 items per operation, per expected strategy), and 15 s of fixation at the end of the run. Every trial 

included the presentation of a problem (2000 ms), followed by a centered equality sign and a blank 

screen (750 ms and 250 ms, respectively), followed by the presentation of the response alternatives 

(2000 ms). In between trials, a jittered inter-trial interval of 5.5, 8 or 10.5 s (averaged at 8 s) was 

randomly added to enable the deconvolution of the hemodynamic response functions (see Figure 2.2 for 

a schematic overview of a trial). The children were asked to answer as accurately and quickly as possible 

and were allowed to answer during both the presentation of the response alternatives and the inter-trial 

fixation period. Only the first 5000 ms of the trial were used for data analysis. The duration of each run 

was approximately 5 minutes. 

2.2.3. MRI data acquisition and analysis 

Functional and structural images were acquired by a Philips Ingenia 3.0T CX MRI scanner with a 

SENSE 32-channel head-coil, located at the Department of Radiology of the University Hospital in 

Leuven, Belgium. To minimize head motion, wash cloths were used to stabilize the children’s heads. 

For the fMRI data, 52 slices were recorded in an ascending order, using a T2*-sequence (2.19 × 2.19 × 

2.2 mm voxel size, 2.2 mm slice thickness, 0.3 mm interslice distance, 96 × 95 acquisition matrix, 90º 

flip angle) and covered the whole brain (field of view: 210 × 210 × 130 mm). Each run consisted of 94 

measurements (TR = 3000 ms, TE = 29.8 ms). Anatomical images were acquired with a T1 weighted 

sequence (0.98 × 0.98 × 1.2 mm voxel size, 256 × 256 acquisition matrix, 8º flip angle, TE 4.6 ms, 250 

× 250 × 218 mm field of view). 

All preprocessing was conducted with the Statistical Parametric Mapping software package for Matlab 

(SPM12, Wellcome Department of Cognitive Neurology, London). Preprocessing included correcting 

the functional images for slice timing differences, motion correction by realignment to the first 

functional image, coregistration (alignment to the respective high-resolution anatomical image), 

normalization to the standard Montreal Neurological 152-brain average template, and spatial smoothing 

with a 10 mm FWHM Gaussian smoothing kernel. 

We only included the correctly answered items into our general linear model. In runs that showed 

excessive motion (i.e., if the movement from one image to the next was greater than the voxel size of 

2.2 mm), only the items before the time point of excessive movement were included. This was only the 

case if at least one item per condition remained in that run; if this was not the case, the entire run was 
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discarded. Data of participants with less than two completely usable runs were discarded entirely. 

Following these motion criteria, and taking into account the technical acquisition problems for the data 

collection of one participant, we completely discarded the data of six participants. Of the remaining 20 

participants, five runs (i.e., 6.25%) were discarded, and five runs were only partially added to the model.  

A general linear model, modelling only the correctly solved items, was calculated per participant. The 

motion realignment parameters were included as regressors of no interest to control for variation as a 

result of movement artifacts. A whole-brain full factorial 2 × 2 ANOVA was performed on the imaging 

data, with strategy (retrieval vs. procedure) and operation (subtraction vs. multiplication) as within-

subject factors. To provide more information on the direction of any found main effects, t-contrasts were 

calculated between all conditions. All whole-brain activation maps were corrected for multiple 

comparisons through a family wise error (FWE) correction with a p < .05 threshold. 

 

2.3. Results 

2.3.1. Behavioral results 

Results of the strategy assessment task are displayed in Table 2.1. Overall accuracy on this task was 

very high. Furthermore, the verbal reports indicated that children used a retrieval strategy on most of 

the items designed to elicit fact retrieval; the same was true for procedural strategy use. It is important 

to note that the vast majority of the reported procedural items were solved through the decomposition 

of operands strategy. Other procedural strategies were rare; repeated addition, for example, was only 

reported in 0.34% of all trials, and a counting strategy was never reported. The consistency of retrieving  

 

Table 2.1 

Performance on strategy assessment task 

Condition Accuracy (% correct)  Frequency (%) 

 M SD  M SD 

Retrieval      

     Multiplication 99.33 1.37  90.83 11.49 

     Subtraction 100 0  100 0 

Procedure      

     Multiplication 98.50 3.28  99.75 1.12 

     Subtraction 99.50 2.24  91.50 12.68 

Note: The differentiation between retrieval and procedure is based on the self-reports of the participants.  
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single digit items and the absence of counting for procedural items was expected as, in the Flemish 

educational system, there is a high emphasis on either fact retrieval or on using the decomposition of 

operands strategy, while counting, from a very early point on in first grade, is discouraged or even 

prohibited (De Smedt, 2016, for a discussion). This exclusive focus on the decomposition strategy in 

teaching arithmetic also resulted in large similarities in the way procedural subtraction and 

multiplication items were solved. Children always reported a similar decomposition strategy for both 

operations: e.g., 25 – 8 = 25 – 5 – 3 = 17 for subtraction, and 4 × 13 = (4 × 10) + (4 × 3) = 40 + 12 = 52 

for multiplication. As this decomposition strategy was used throughout almost all procedural trials, the 

current study can only discuss this particular strategy and cannot make any claims regarding other 

procedural strategies, such as counting or repeated addition. 

Behavioral data on the arithmetic task in the scanner are displayed in Figures 2.3 and 2.4. We performed 

a 2 × 2 repeated measures ANOVA with strategy (retrieval vs. procedure; i.e., retrieval vs. 

decomposition) and operation (multiplication vs. subtraction) as within-subject factors for both accuracy 

and reaction time. Note that the reaction times were measured starting from the onset of the presentation 

of the response alternatives, and of not the problem itself.  

 

Figure 2.3. Box plots displaying the accuracy per category on the arithmetic task during fMRI. 

 

Figure 2.4. Box plots displaying the reaction time per category on the arithmetic task during fMRI. 
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The analyses of accuracy indicated main effects of both strategy (F(1,19) = 24.59, p < .001, ηp² = .56) 

and operation (F(1,19) = 5.24, p = .034, ηp² = .22), showing more accurate performance for retrieval 

than for the decomposition strategy, and for subtraction than for multiplication. There was no strategy 

× operation interaction (F(1,19) = 0.68, p = .42, ηp² = .04). 

With regard to reaction time, similar results were observed, as main effects for strategy (F(1,19) = 49.07, 

p < .001, ηp² = .72) and operation (F(1,19) = 16.94, p = .001, ηp² = .47) were found, indicating faster 

responses for retrieval compared to the decomposition strategy, and for subtraction compared to 

multiplication. A significant strategy × operation interaction was also found (F(1,19) = 7.69, p = .012, 

ηp² = .29), revealing a larger difference between the use of a decomposition strategy and retrieval in 

multiplication compared to subtraction.  

2.3.2. Imaging results 

Neural differences between both strategies were found, as our whole-brain analysis revealed a main 

effect of strategy on brain activation (an overview of all significantly activated clusters can be found in 

Table 2.2; a visualization of this main effect is displayed in Figure 2.5). Retrieval strategy use was 

associated with stronger activation in the bilateral angular and supramarginal gyri, the left middle to 

inferior temporal gyrus, the right superior temporal gyrus, and the bilateral middle orbital and superior 

medial frontal gyrus. The stronger activation found for the retrieval vs. decomposition contrast, 

however, does not reflect an actual increase in activation, but a lesser amount of deactivation compared 

to baseline. This was determined by extracting the beta values of each activation cluster for each contrast 

separately, for which a negative value would imply lower activation in comparison to baseline. The use 

of a decomposition strategy more strongly activated a large bilateral, mainly fronto-parietal, network, 

which includes the inferior and superior parietal lobes, including the intraparietal sulci, inferior to 

superior frontal gyri, but also bilateral areas in the occipital lobe, and insular cortex. 

 

 

Figure 2.5. Transverse slices of differences in brain activation between self-reported retrieval and 

procedural strategy use (p < .05, FWE corrected). 
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Table 2.2  

Regions, peak coordinates, cluster sizes (k), and t-values of the significantly activated clusters (p < .05, 

FWE corrected) for the main effect of strategy 

Cluster  Peak coordinates k t 

  x y z   

Retrieval > Procedural       

Bil frontal pole (middle orbital / superior medial frontal G / ACC)  -6 50 -4 943 7.40 

L middle / inferior middle temporal G  -52 -4 -32 894 6.41 

L inferior parietal lobe (angular / supramarginal G)  -54 -58 36 104 5.86 

R superior temporal G to inferior parietal lobe (angular G)  70 -48 8 76 6.33 

R inferior parietal lobe (supramarginal G)  66 -44 42 37 5.06 

Procedural > Retrieval       

Bil superior / medial frontal G   -12 16 50 2687 9.09 

L superior to inferior parietal lobe (intraparietal sulcus)  -44 -46 52 2273 8.93 

R superior to inferior parietal lobe (intraparietal sulcus)  32 -62 54 1917 8.60 

L inferior frontal G (Broca’s region) / precentral G  -50 6 38 1802 10.22 

R occipital lobe (V1 / occipital G)  24 -90 -6 1236 8.60 

L occipital lobe (V1 / occipital G)  -22 -96 4 1234 8.60 

R inferior frontal G (Broca’s region)  52 10 26 433 7.69 

L insula  -34 20 4 294 7.24 

R insula  36 20 8 161 6.34 

R middle to superior frontal G  32 6 66 111 5.31 

L inferior frontal G  -50 46 10 69 5.92 

Note: Only clusters of 20 voxels or more are reported. 

Abbreviations: L = left hemisphere; R = right hemisphere; Bil = bilateral; G = gyrus; ACC = anterior cingulate 

cortex; V1 = primary visual cortex.  

 

 

 

Figure 2.6. Transverse slices of differences in brain activation between multiplication and subtraction 

(p < .05, FWE corrected). 
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Table 2.3  

Regions, peak coordinates, cluster sizes (k), and t-values of the significantly activated clusters (p < .05, 

FWE corrected) from the main effect of operation. 

Cluster  Peak coordinates k t 

  x y z   

Multiplication > Subtraction       

R occipital lobe (V1 / inferior occipital G / calcarine G)  18 -96 4 243 5.80 

L occipital lobe (V1 / middle occipital G)  -22 -96 2 128 5.78 

Subtraction > Multiplication       

/  / / / / / 

Note: Only clusters of 20 voxels or more are reported.  

Abbreviations: L = left hemisphere; R = right hemisphere; G = gyrus; V1 = primary visual cortex.  

 

Turning to the main effect of operation (Table 2.3; Figure 2.6), we have only observed differences in 

the bilateral primary visual cortex, with higher activity during multiplication than for subtraction. The 

strategy × operation interaction revealed no significantly activated clusters, indicating that the effect of 

strategy was not different for both operations. 

2.3.3. Additional control analyses 

To verify that the observed activation differences were not merely explained by task difficulty effects, 

we performed an additional control analysis (see Table 2.4 and Figure 2.7), in which we compared 

problems that had a similar level of difficulty, but varied in terms of their strategies. This was done by 

splitting the trials from both operations into easy and hard items, based on the size of both operands, 

and comparing the hard retrieval and easy decomposition items (i.e., items of comparable size and 

difficulty; e.g., large retrieval: 3 × 8 vs. small decomposition: 3 × 12). As these analyses were intended 

as control analyses, and as taking task difficulty into account led to less trials per contrast, and hence a 

decrease in statistical power, these analyses were performed without a correction for multiple 

comparisons (p < .001).  

 

Figure 2.7. Transverse slices of differences in brain activation between hard retrieval and easy 

procedural items (p < .001, uncorrected). 
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Table 2.4  

Regions, peak coordinates, cluster sizes (k), and t-values of the significantly activated clusters (p < .001, 

uncorrected) from the control analysis comparing hard retrieval items to easy procedural items. 

Cluster  Peak coordinates k t 

  x y z   

Large retrieval > Small procedural       

R supramarginal G  64 -40 38 295 5.19 

Bil ACC  -6 34 0 198 5.02 

L middle temporal G  -56 -22 -8 161 4.94 

L inferior temporal G  -48 -4 -30 36 4.33 

Bil frontal pole (superior medial frontal G)  4 56 2 28 4.07 

R inferior parietal lobe  54 -56 38 21 3.81 

Small procedural > Large retrieval       

L superior frontal to medial frontal G  -20 4 60 1321 6.31 

L precentral G  -48 4 34 1106 6.26 

L superior to inferior parietal lobe (intraparietal sulcus)  -48 -40 50 1023 7.20 

R superior to inferior parietal lobe (intraparietal sulcus)  28 -56 50 1010 6.03 

R middle frontal G / precentral G  24 -4 48 127 4.52 

L inferior frontal G  -52 46 12 103 5.33 

L middle frontal G  -50 32 40 75 4.08 

L insula  -34 18 4 74 4.47 

R inferior frontal G  52 10 26 70 4.44 

L occipital lobe (middle occipital G)  -28 -94 6 47 4.41 

L occipital lobe (inferior occipital G / lingual G)  -22 -90 -12 37 4.22 

R cuneus  20 -98 10 36 5.01 

R inferior frontal G   58 30 30 30 4.36 

R occipital lobe (lingual gyrus / V1)  22 -88 -6 29 4.23 

Note: Only clusters of 20 voxels or more are reported.  

Abbreviations: L = left hemisphere; R = right hemisphere; G = gyrus; ACC = anterior cingulate cortex; V1 = 

primary visual cortex.  

 

First, for each subject, we compared the difference in accuracy and reaction time between retrieval and 

decomposition trials vs. the difference in accuracy and reaction time between hard retrieval and easy 

decomposition items. These differences were significantly smaller in the latter (accuracy: t(19) = 3.474, 

p = .003; reaction time: t(19) = -3.781, p = 0.001), suggesting that the effect of task difficulty is 

significantly smaller in the hard retrieval vs. small decomposition contrast compared to the overall 

retrieval vs. decomposition contrast. If the outcome of the retrieval vs. decomposition contrast merely 

reflected an effect of task difficulty on brain activity, we expected that the contrast with a significantly 

reduced task difficulty effect (i.e., between hard retrieval vs. easy decomposition items) would show no 

differences or different activation clusters in comparison to the more general retrieval- decomposition 
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contrasts. This is, however, not what we observed. The neural activation differences between hard 

retrieval and easy decomposition were very similar to those of the general retrieval-decomposition 

contrasts (Tables 2.2 and 2.4, Figures 2.5 and 2.7). More specifically, when contrasting the hard retrieval 

with the easy decomposition items, increased activation was found in the right supramarginal gyrus, left 

middle to inferior temporal gyrus and the bilateral frontal pole. The easy decomposition vs. hard retrieval 

contrast, on the other hand, revealed increased activation in a wide fronto-parietal network, including 

the bilateral inferior to superior parietal lobes and inferior frontal gyri, but also bilateral occipital areas. 

The fact that these networks were very similar to those of the general retrieval-decomposition contrasts, 

further supports the idea that the abovementioned results are not merely due to task difficulty effects. 

 

2.4. Discussion 

To date it is still unclear how children’s arithmetic brain network is modulated by the strategies used to 

solve different problems, as earlier studies were only able to make implicit assumptions on strategy use, 

based on, for example, operation (Prado et al., 2014; De Smedt et al., 2011). This approach has been 

criticized for many years in developmental behavioral studies (e.g., Siegler, 1987; Siegler, 1996), as not 

all problems of a particular operation are solved with the same strategy. This is especially problematic 

in the context of developmental research, as the strategies that children use to solve particular types of 

problems change over time (i.e., with education and practice). Trial-by-trial self-reports offer a valid 

and reliable way of capturing these differences in (children’s) strategy use (Siegler & Stern, 1998), and 

adult brain imaging studies have already successfully applied this approach to investigate brain activity 

during different solution strategies (Grabner et al., 2009; Tschentscher & Hauk, 2014). To the best of 

our knowledge, no such approach had been used in children. Against the background of the previously 

reported neural activation differences during arithmetic between adults and children, the present study 

set out to investigate the neural differences in children’s arithmetic strategy use.  

The present study was thus the first to explicitly investigate the neural activation underlying different 

arithmetic strategies during subtraction and multiplication in children of a narrow age range (i.e., 4th 

grade). Our data show a clear effect of strategy on brain activity, which is similar in both subtraction 

and multiplication. These data suggest that previously found effects of operation (subtraction vs. 

multiplication) on brain activity reflect differences in strategy use, rather than differences in operations. 

During retrieval use, we observed increased activation in the supramarginal and angular gyri, middle 

temporal gyri and frontal pole. These results concur with previous adult studies that used a similar 

methodology (Grabner et al., 2009; Tschentscher & Hauk, 2014), as temporo-parietal regions (more 

specifically the angular gyri) have been shown to be related to fact retrieval. Similar to the data of 

Tschentscher & Hauk (2014), we found bilateral activation in these areas, which is in contrast to earlier 

observations by Grabner et al. (2009), in which the activity in these areas was left-lateralized. 
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The current results further extend previous fMRI studies in children, which could only make implicit 

assumptions on children’s strategy use (Cho et al., 2011; De Smedt et al., 2011; Peters et al., 2016; Prado 

et al., 2014). For example, we have found stronger activation in the middle temporal gyrus during 

retrieval, which echoes earlier findings by Prado et al. (2014), who showed that activity in this area 

increases with age during multiplication, potentially due to increased use of retrieval strategies. The 

current study goes beyond the findings of Prado et al. (2014), as we directly correlated brain activity 

with participant’s strategy use and observed the same effect of strategy use for both multiplication and 

subtraction. The current data consequently confirm that the earlier reported operation differences reflect 

the increased use of fact retrieval strategies, and that this activity is independent of the operation that is 

being performed. Our results also coincide with an fMRI study in children by Peters et al. (2016), who 

manipulated the presentation format to study differences between retrieval and procedural strategies. 

Specifically, these authors investigated brain activation during a subtraction task in symbolic (i.e., 

Arabic digits or number words) and non-symbolic (i.e., arrays of dots) formats. The symbolic formats, 

assumed to be solved by fact retrieval, showed increased activity in the bilateral angular and 

supramarginal gyri, as was also found in the current study.  

In contrast to our expectations and to previous developmental fMRI studies (i.e., De Smedt et al., 2011; 

Qin et al., 2014), our analyses did not reveal specific increases in the hippocampus during fact retrieval. 

However, when applying a less stringent correction for multiple comparisons (i.e., a False Discovery 

Rate (FDR) correction with a p < .05 threshold), we observed an activated cluster in the left 

hippocampus (x = -24, y = -16 z = -18, k = 208, t = 4.18), which is in line with the earlier developmental 

reports. This observation is also in line with a recent adult study on the interference effect in 

multiplication problems by De Visscher et al. (2015) that also found greater activation in the left 

hippocampus for fact retrieval, implying that the hippocampus might not only play a role in fact retrieval 

during the early stages of arithmetic development.  

The current study also tried to examine neural activation during procedural strategy use, but as the 

children in our sample almost exclusively implemented a decomposition of operands strategy for all 

procedural items, only claims can be made on this particular strategy. Furthermore, this decomposition 

of operands strategy cannot be seen as a procedural strategy in the same way as, for example, counting 

can, for it – to some extent – also involves fact retrieval. However, it is crucial to emphasize that this 

decomposition of operands, and consequently the small degree of fact retrieval involved, is not random, 

as is the case during mere fact retrieval. The decomposition strategy follows a fixed sequence (i.e., in 

subtraction it starts with subtracting to tens, and in multiplication it includes a multiplication by ten), 

and, to find the correct solution, both solutions to the newly formed items still need to be subtracted 

from or added to one another, thus clearly making it a multistep procedural strategy. For the 

decomposition of operands strategy, we observed increased activation in a fronto-parietal network, 

which includes the bilateral inferior to superior parietal lobes (including the intraparietal sulci), and the 
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inferior to superior frontal gyri, but also bilateral areas in the occipital lobe, and insular cortex. These 

results converge with previous studies in adults (Grabner et al., 2009; Tschentscher & Hauk, 2014), 

although the adult data were more left-lateralized, in contrast to the bilateral network we have found. 

These results on the decomposition strategy concur with studies in children who manipulated operation 

(De Smedt et al., 2011; Prado et al., 2014) or presentation format (Peters et al., 2016) to investigate 

strategy use. The effect of decomposition on brain activity was also the same across both operations, 

again indicating that it is the strategy and not the operation that elicits changes in brain activity. The 

observed increases in fronto-parietal activation for the decomposition strategy might point to an 

increasing demand on working memory and attentional resources, as reflected by increases in frontal 

activation, especially in the insula and inferior to middle frontal gyrus (Duncan & Owen, 2000; Menon, 

2015), as well as a larger involvement of quantity-based processes, reflected by the increased parietal 

activation, specifically in the intraparietal sulci (De Smedt et al., 2011). The current study, however, 

cannot disentangle these different processes; future studies should, therefore, adopt a carefully selected 

localizer approach in order to test this. 

Besides the decomposition of operands strategy, other types of procedural strategies exist, including 

repeated addition or counting. The choice of the used (procedural) strategy, however, is highly 

dependent of the math curriculum under study. The participants in the current study all came from 

schools with a high emphasis on fact retrieval for single digit problems and on the use of the 

decomposition of operands strategy for larger problems (coupled with a limited attention or even 

prohibition of counting), as is in accordance with the mandatory guidelines of the Flemish education 

system. Consequently, and as expected, strategies other than the decomposition of one of the operands 

(e.g., counting or repeated addition) were hardly used. It is noteworthy that different types of procedural 

strategies (e.g., counting vs. decomposition) might elicit alternate neural activation patters, but 

unfortunately this could not be tested in the current sample as children were very homogenous in their 

choice of procedural strategies (i.e., decomposition). In all, it is important to acknowledge potential 

educational differences between countries. A fact that is often overlooked in educational neuroscience 

studies that deal with culturally transmitted skills, is that the way these skills are taught in school, will 

affect children’s performance on an educationally relevant task and will consequently affect brain 

activity (De Smedt & Grabner, 2015, for a discussion). Future brain imaging studies should therefore 

take this educational context into account and might consider to investigate cross-curricular differences. 

Next, we should also consider to what extend the current differences are driven by task difficulty effects. 

To investigate this possibility, we ran a control analysis in which we compared problems with a similar 

level of difficulty, but for which different strategies were needed. Consequently, we split all items into 

easy and hard items, based on the size of both operands and contrasted the hard retrieval and easy 

decomposition items, which showed a significantly reduced task difficulty effect (for both accuracy and 

reaction time) in comparison to the general retrieval-decomposition contrasts. The results of this control 
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analysis showed similar neural activation networks between the hard retrieval vs. easy decomposition 

contrasts and the general retrieval vs. decomposition contrasts. For the hard retrieval vs. easy 

decomposition contrast, we observed increased activation in the right supramarginal gyrus, left middle 

to inferior temporal gyrus and the bilateral frontal pole , which is very similar to the retrieval vs. 

procedural contrast. The easy decomposition vs. hard retrieval contrast, on the other hand, displayed 

increased activation in a fronto-parietal network, similar to the procedural vs. retrieval contrast. The 

similarities between these findings suggest that the differences between retrieval and decomposition 

trials are unlikely to be merely driven by task difficulty effects.  

Further, it needs to be noted that the stronger activation found for the retrieval condition reflected less 

deactivation and not increased activation in comparison to baseline (see also, De Smedt et al., 2011; 

Peters et al., 2016). The regions showing this deactivation are to some extent part of the default mode 

network (Raichle et al., 2001; Supekar et al., 2010), which decreases in activation as the cognitive 

demand of a task increases and vice versa. However, the less deactivated regions that were found for the 

retrieval condition do not fully coincide with the areas active in this resting brain state, as, for example, 

no activation in the retrosplenial cortex was found (Vann, Aggleton, & Maguire, 2009). The regions 

found to be activated more strongly for the decomposition condition, on the other hand, seem to coincide 

with those of the so-called multiple-demand network (Fedorenko, Duncan, & Kanwisher, 2013), which, 

in adults, shows increases of activation for any kind of cognitive demand, independent of the content of 

the task. These differences between fact retrieval and decomposition, and differences in regions that 

seem to be part of the default mode and multiple-demand network respectively, might be explained by 

the inevitable association between strategy use and the task load of the items at hand. As evidenced by 

research of Siegler (1984, 1996) fact retrieval is an easy, accurate and fast strategy for solving arithmetic 

problems, which has a smaller cognitive demand than decomposition strategy use. This was also 

apparent in our data, as the retrieved items were solved more quickly and more accurately, while the 

decomposition items showed the opposite pattern.   

Concurring with the adult data of Tschentscher & Hauk (2014), we did not find any differences in 

activation between operations. Although such operation differences have been previously observed in 

children (e.g., De Smedt et al., 2011; Prado et al., 2014), those studies did not directly assess strategy 

use. The current data show for the first time that such operation differences in children, just as in adults, 

are explained by the strategy that is used. In other words, it is the strategy and not the operation itself 

that determines brain activity. One small main effect of operation was observed, however, but only for 

regions in the primary visual cortex, that were increasingly activated for multiplication in comparison 

to subtraction. This is due to the inevitable, yet subtle, differences in visual presentation between the 

subtraction and multiplication items: The response alternatives for multiplication were unavoidably 

larger in subtraction items, hence more visual information was displayed during multiplication.   
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In contrast to the approach of the current study, which is based on the distinction between retrieval and 

procedural strategies, recent studies have suggested that, instead of retrieval, children may use 

automatized procedural strategies, which over time contrasts the dominant view of an evolution from 

counting to retrieval strategies, but implies a shift from slow to quick counting procedures (Thevenot et 

al., 2016). Although this notion cannot strictly be excluded, the current data still point to alternate neural 

activation between both strategy conditions, and more importantly, provide evidence against the idea 

that the arithmetic brain network is modulated by the operation of items (Tschentscher & Hauk, 2014). 

Furthermore, the effects found by Thevenot et al. (2016) were only described in small addition problems, 

and not in subtraction or multiplication. As these small addition problems are consistently solved faster 

than, for example, subtraction problems, it is uncertain if these automatized counting procedures would 

also occur in subtraction, let alone in multiplication. 

Future developmental imaging studies on mathematical cognition should thus avoid thinking in terms 

of operations, but instead take strategy use into account. Our results, coupled with those of Tschentscher 

and Hauk (2014) clearly indicate that arithmetic strategy rather than operation modulates brain activity. 

Furthermore, behavioral research has implicated large developmental aspects in strategy use, especially 

in the frequency and efficiency of those strategies (Imbo & Vandierendonck, 2008; Siegler, 1996; 

Siegler et al., 1996; Vanbinst, Ceulemans, Ghesquière, & De Smedt, 2015a). Consequently, future brain 

imaging studies should longitudinally study how the neural networks found in our group of 4th graders 

for both retrieval and procedural strategies develop, from an early-arithmetic stage (e.g., 1st or 2nd 

graders) to a more advanced arithmetic stage. Moreover, as difficulties in arithmetic strategy use are 

considered the hallmark of children with dyscalculia, who experience persistent deficits in acquiring 

basic mathematical competencies (American Psychiatric Association, 2013), and as fact retrieval 

deficits have also been observed in children with dyslexia (Evans, Flowers, Napoliello, Olulade, & Eden, 

2014), future brain imaging studies on strategy use in these atypical populations are also needed.  

One limitation of the current study lies in the differences in format of the arithmetic task during strategy 

assessment outside the scanner and during MRI-acquisition in the scanner (i.e., a production task with 

auditory input and verbal output in the strategy assessment session, and a delayed verification task with 

visual input and manual output during MRI-acquisition). This was done to find a balance between 

ecologically valid strategy assessment (allowing for precise measurement of strategies) and the practical 

limitations of the scanning environment for the scanning task. In view of the high consistency in the 

implementation of strategies during the behavioral task, coupled with the use of delayed verification, 

which limits the possibility of parity checking, five-checking and other estimation strategies, we contend 

that children employed the same strategy in the scanner as in the behavioral session. The validity of this 

verbal protocol is also supported further by the fact that we found a significant main effect for both 

accuracy and reaction time for the in-scanner task, pointing to more accurate and faster responses during 

the retrieval condition, which concurs with previous behavioral findings (e.g., Siegler, 1984; Siegler, 
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1996). It is also supported by the fact that significantly larger hard-easy performance differences can be 

found for the decomposition strategy in comparison to fact retrieval, for both accuracy and reaction time 

(accuracy: t(19) = 2.598, p = .018; reaction time: t(19) = -3.748, p = .001). 

We would like to highlight again that the acquisition and use of arithmetic strategies does not occur in 

isolation, but depends on the extent to which math curricula emphasize the importance of fact retrieval 

and automatization, and on the particular strategies these curricula focus on; behavioral studies have 

clearly shown cross-cultural differences in retrieval use in adults depending on the emphasis of the math 

curriculum on fact retrieval and automatization (e.g., Campbell & Xue, 2001). The  children of the 

current study came from Flemish elementary schools with a curriculum that puts a high emphasis on 

automatization processes and fact retrieval on the one hand, and on the decomposition of operands as 

an effective procedural strategy on the other hand, leading to a limited generalization of the current 

findings to other cultures. Future studies might therefore explore how, for example, differences in the 

emphasis on fact retrieval or certain procedural strategies in math curricula correlate with strategy-

related brain activity. Such studies have the potential to provide a fruitful contribution to the emerging 

field of educational neuroscience.  

Finally, the current study focused on fourth graders, which were capable of both retrieving the answers 

to multiplication items and solving more difficult items procedurally. As mentioned, we have chosen to 

focus on a narrow age range, as merging data across wide age ranges, even though statistically controlled 

for, might lead to misleading conclusions. Accordingly, we would like to emphasize the need for similar 

studies in children of different ages (e.g., sixth graders or children in secondary school), and for studies 

with a longitudinal follow-up throughout development, as such studies are destined to provide 

meaningful insights in the development of these strategies. 
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Abstract 

Within children’s multiplication fact retrieval, performance can be influenced by various effects, such 

as the well-known problem size effect (i.e., smaller problems are solved faster and more accurately) and 

the more recent interference effect (i.e., the quality of memory representations of problems depends on 

previously learned problems; the more similar a problem is to a previously learned one, the more 

proactive interference impacts on storing in long-term-memory). This interference effect has been 

observed in behavioral studies, and determines a substantial part of performance beyond problem size. 

Unlike the problem size effect, the neural basis of the interference effect in children has not been studied. 

To better understand the underpinning mechanisms behind children’s arithmetic fact retrieval, we aimed 

to investigate the neural basis of both effects in typically developing children. Twenty-four healthy 9- 

to 10-year-olds took part in a behavioral and fMRI scanning session, during which multiplication items 

had to be solved. Data were analyzed by manipulating problem size and interference level in a 2 × 2 

factorial design. Concurring with previous studies, our results reveal clear behavioral effects of problem 

size and interference, with larger and high interfering items being solved significantly slower. At the 

neural level, a clear problem size effect was observed in a fronto-parietal and temporal network. The 

interference effect, however, was not detected; no clear neural distinctions were observed between low 

and high interfering items.  
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3.1. Introduction 

Over the past few years, an increase in developmental neuroscientific research on numerical cognition 

and arithmetic, both functionally and structurally, has occurred, aimed at identifying which brain regions 

are involved in children’s arithmetic (Peters & De Smedt, 2018). Accordingly, accumulating evidence 

suggests that children’s arithmetic brain network involves a large set of interconnected areas, including 

frontal (i.e., both ventro- and dorsolateral prefrontal cortex), parietal (i.e., intraparietal sulcus, angular 

gyrus, and supramarginal gyrus), occipito-temporal, and medial temporal (i.e., hippocampus) areas. 

Though this network shows some similarities to the network observed in adults (Menon, 2015), 

children’s arithmetic network is different, as, in children, less involvement of the superior parietal lobe 

is observed, along with larger involvement of the hippocampus, and of occipito-temporal, and prefrontal 

medial regions (Menon, 2015; Peters & De Smedt, 2018). This arithmetic network is modulated by 

strategy use, as different neural regions get activated when children solve problems through a fact 

retrieval strategy instead of through procedural manipulations (Polspoel, Peters, Vandermosten, & De 

Smedt, 2017). As such, it is important to note that within arithmetic fact retrieval, performance (both 

accuracy and reaction time) can be influenced by various effects. Two of these effects regard the well-

studied problem size effect (i.e., better performance is often observed for small in comparison to large 

problems; e.g., Berteletti et al., 2014; De Smedt et al., 2011; Prado et al., 2013; Prado et al., 2014), and 

the more recently found interference effect (i.e., the quality of memory representations of multiplication 

problems depends on previously learned problems; the more similar a problem is to a previously learned 

one, the more proactive interference will impact on storing in long-term-memory, leading to poorer 

performance; De Visscher et al., 2015; De Visscher et al., 2018). This interference effect has been 

observed in children’s behavioral studies, both in typical and atypical development, and determines a 

substantial part of performance over and above the problem size effect. Unlike the problem size effect, 

the interference effect in children’s multiplication has never been investigated at the neural level. To 

achieve a more detailed understanding of the exact function of the regions in this arithmetic fact retrieval 

network, the current study aimed to investigate the neural basis of both problem size and interference 

effects in typically developing children. 

A clearly studied aspect of arithmetic fact retrieval thus lies in the notion that better performance (i.e., 

more accurate and faster performance), is often observed for small problems in comparison to large 

problems (De Brauwer et al., 2006). This problem size effect is most often explained by the idea that 

smaller problems are more likely to be retrieved in comparison to larger problems (Zbrodoff & Logan, 

2005). However, the problem size effect still exists within retrieved items only. Various other 

explanations for these performance differences exist as well, such as the frequency theory (i.e., smaller 

problems are solved faster and more accurately because they appear more frequently; Ashcraft & 

Christy, 1995), the distribution of associations model (i.e., each problem is associated with all previously 

computed answers, both correct and wrong, making the amount of errors increase as problem size 
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increases; Siegler, 1988), or the network interfering theory (i.e., magnitude representations follow a 

psychophysical scale that is more compressed as magnitude increases, making the representations of 

large answers more similar to one another than representations of small answers; Campbell, 1995).  

At the neural level, studies show that the activation of the arithmetic brain network is modulated by the 

problem size effect (e.g., Stanescu–Cosson et al., 2000; Molko et al., 2003). As such, the angular gyri 

show increased activation for small retrieved items, in both children (Polspoel et al., 2017) and adults 

(Grabner et al., 2009; Stanescu-Cosson et al., 2000; Tschentscher & Hauk, 2014). The associated 

activation for larger problems, on the other hand, lies more in fronto-parietal and temporal brain regions, 

including the superior parietal lobe and intraparietal sulcus, inferior frontal gyrus, and fusiform gyrus 

(Grabner et al., 2007; Grabner et al., 2009; Polspoel et al., 2017; Tschentscher & Hauk, 2014). 

Furthermore, in children, the hippocampus has been suggested to be involved in the learning phase of 

arithmetic facts, as it also shows greater activation for small problems in comparison to large problems 

in 10-12-year-old children (De Smedt et al., 2011).  

The interference effect, on the other hand, constitutes a more recent hypothesis on performance 

differences within multiplication fact retrieval (De Visscher & Noël, 2013; De Visscher & Noël, 2014a; 

De Visscher & Noël, 2014b). The main idea behind the hypothesis lies in the notion that arithmetic facts 

are learned through associations of operands and answers which all use the same 10 elements (i.e., the 

digits 0 to 9), and are acquired in a specific order. Items that have been memorized, can then interfere 

with the memorization process of new items, if the items share element combinations and are thus 

similar. This interference theory, based on the feature overlap theory (Nairne, 1990), thus implies that 

the quality of memory representations of multiplication problems depends on previously learned 

problems, and that, the more similar a problem is to a previously learned one (i.e., through similar 

elements used in a new combination), the more interference will occur during the storage phase, and 

hence will reduce the probability of retrieval (De Visscher & Noël, 2014b). Based on this theoretical 

framework, De Visscher and Noël (2014b) calculated an interference parameter for all 36 different 

multiplication problems (considering that a unique representation underpins each problem and its 

commutative pair; e.g., 3 × 4 and 4 × 3) from table 2 up to table 9. This was done by calculating the 

frequency of associations of two digits in all problems (in both operands and product). The parameter 

thus represents the weight of proactive interference for each problem. For example, the first 

multiplication problems children learn are 2 × 2 = 4 and 2 × 3 = 6, both items without any interference. 

However, the next item children learn, 2 × 4 = 8, shares the digits 2 and 4 with 2 × 2 = 4, and is thus 

subject to interference in memory; it receives an interference level of 1. This, however, does not mean 

that problems encountered later are always more interfering, but means that the more similar a certain 

problem is to previously learned problems, the larger the impact of interference will be. For example, 7 

× 7 = 49, has a lower interference weight than 4 × 8 = 32, even though it is encountered later in arithmetic 

development.  
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At a behavioral level, the effect of the sensitivity-to-interference in memory has been studied in a single 

case study (De Visscher and Noël, 2013) in which it was proposed that a deficit in arithmetic facts 

storage could stem from hypersensitivity-to-interference in memory. Through elaborate cognitive (e.g., 

intelligence, attention, memory, and reading tasks) and mathematical (e.g., dot enumeration, numerical 

stroop, and arithmetic facts tasks) assessment, the interference effect was first established in a certain 

profile of dyscalculia, with a restricted deficit in arithmetic facts knowledge. Furthermore, in a 

comparison of fourth graders with low arithmetic fluency (i.e., low arithmetic fact learners) to controls 

(De Visscher and Noël 2014a), group differences were also observed. Children with poor arithmetic 

fluency displayed hypersensitivity-to-interference in memory and showed worse performance (i.e., more 

incorrect responses) on a custom multiplication task (i.e., a computerized task including one of each 

possible commutative pair of operands from 2 to 9) in comparison to the control group.  

The interference effect has not only been studied in people with math difficulties, but also in typically 

developing children and adults. In a comparative study of 3rd graders, 5th graders and adults, De 

Visscher & Noël (2014b) showed that the interference parameter explains a large part of the reaction 

time variance in all three age groups; the time needed to solve multiplication items increased, as the 

level of interference increased. The interference effect even determined a substantial part of participants’ 

reaction times beyond the problem size effect, emphasizing that both effects constitute two separate 

characteristics of performance. Furthermore, individuals’ sensitivity to the interference parameter (i.e., 

the slope of a regression with reaction time as the dependent variable and interference level of the items 

as the independent variable) substantially predicted multiplication performance in both children and 

adults.  

Even though this interference effect has thus been clearly established in children at a behavioral level, 

determining a substantial part of performance beyond the problem size effect, and having possible 

detrimental consequences for the storing of arithmetic facts (De Visscher and Noël, 2014a; 2014b; De 

Visscher, Noël, & De Smedt, 2016), the neural substrates of the effect have not yet been studied in 

children. A few studies have examined the neural basis of the effect in adults (De Visscher et al., 2015; 

De Visscher et al., 2018). In the study by De Visscher et al. (2015), which contrasted the neurocognitive 

correlates of the problem size effect and the interference effect in multiplication fact retrieval in adults, 

the problem size effect was found to modulate the bilateral intra-parietal sulci. The left angular gyrus, 

on the other hand, was found to be specifically modulated by the interference effect, as higher activation 

was found for low interfering items in comparison to high interfering items. This result specifies the role 

of the angular gyrus within multiplication fact retrieval and suggests a sensitivity of the angular gyrus 

to the level of interference of retrieved multiplication problems, which might reflect an automated 

mapping between problem and solution, stored in long-term memory. Furthermore, various other brain 

regions (i.e., bilateral insula lobes, bilateral supplementary motor area, middle cingulate gyri, and 
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bilateral inferior frontal gyri) were modulated by both problem size and interference effect (De Visscher 

et al., 2015).  

A more recent study on the neural basis of the interference effect in adults (De Visscher et al., 2018) 

also observed increased activation for low interfering problems in the angular gyrus, albeit in the right 

hemisphere, instead of the left. The study also pointed towards increased activation for low interfering 

problems in another cluster in the right inferior parietal lobe and bilaterally in the middle orbital gyri. 

This study also went a step further than contrasting low and high interfering items, and took individual 

differences in arithmetic fluency into account, and observed a neural interference effect in the left 

inferior frontal gyrus, which showed a negative relation with individual differences in arithmetic 

fluency, indicating a higher neural interference effect for low performers in comparison to high 

performers. 

As clear behavioral evidence for both the problem size and interference effect has thus been found in 

children, with the interference effect explaining a large part of reaction time variance for retrieved 

arithmetic items over and above the problem size effect in typically developing children (De Visscher 

and Noël 2014b), the current study set out to investigate the neural basis of both the problem size and 

the interference effects in children’s multiplication fact solving. In doing so, we will follow a similar 

fMRI design of De Visscher et al. (2015) and De Visscher et al. (2018) that was used in adults. More 

specifically, we will manipulate both problem size and interference level in a 2 × 2 full factorial, event-

related design. This will allow us to investigate which brain regions become increasingly activated for 

small and large, and low and high interfering items, and whether the interference effect in children 

modulates the activation in different brain regions in comparison to the problem size effect. Based on 

previous studies on the problem size effect (e.g., De Smedt et al., 2011; Polspoel et al., 2017; Prado et 

al., 2013; Prado et al., 2014), we mainly expect to find increased activation in a fronto-parietal network 

(e.g., superior parietal lobe, inferior fontal gyrus) for large items in comparison to small items. For the 

interference effect, a modulation of children’s arithmetic fact retrieval network is mainly expected in 

the angular gyrus (as was previously observed in adults). As such, this study will help to understand the 

development of the arithmetic network and its time course, and potentially help chart the development 

of individual differences. 

 

3.2. Methods 

3.2.1. Participants 

Participants for this study were 24 typically developing Flemish 9- to 10-year-olds; all participants were 

in the 4th grade of primary school. This age group was selected as 4th graders already have sufficient 

capabilities in arithmetic fact retrieval; the small age range was selected in order to minimize 

maturational confounds. None of the participants had a history of learning difficulties, or neurological 
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or psychiatric disorders. Due to excessive in-scanner motion (for more details, see below), data of four 

children had to be discarded. Ultimately, data of 20 children (M = 9.79, SD = 0.29; range = 9.33-10.76; 

7 males; 4 left-handed) were analyzed. All children were recruited via the elementary school they 

attended, in the surrounding area of the university, and were given a financial compensation for their 

participation. Written informed consent was obtained from a parent or legal guardian of each 

participating child. This study was approved by the Medical Ethical Committee of the University of 

Leuven (S59167).  

3.2.2. Procedure 

All participants took part in two test sessions (i.e., a behavioral and scanning session). Behavioral testing 

always preceded fMRI scanning by approximately 2 weeks (M = 17.2 days, SD = 5.8 days). Each 

behavioral session included standardized assessment of arithmetic, reading, and intellectual ability, as 

well as a custom multiplication task to measure each child’s sensitivity-to-interference during 

multiplication. The second session included the actual acquisition of the fMRI data. This fMRI 

acquisition session also partly contained diffusion MRI data collection for another study, which is 

reported in Polspoel, Vandermosten, & De Smedt (2018). 

3.2.2.1. Standardized assessment 

In order to characterize the research sample, the standardized assessment session contained the 

evaluation of arithmetic, reading, and intellectual ability. Arithmetic fluency was assessed by the Tempo 

Test Arithmetic (TTA; de Vos, 1992), which is a standardized test of arithmetical fluency. Similar to 

the Math Fluency subtest of the Woodcock-Johnson III tests of Achievement (Woodcock et al., 2003), 

the TTA comprises five columns of arithmetic items, one column per operation and a mixed column, 

each increasing in difficulty. Participants get one minute per column to provide as many correct answers 

as possible. Reading ability was assessed by the One-Minute Test (OMT; Brus & Voeten, 1979) and the 

Klepel (van den Bos et al., 1994), which measure the reading of words and pseudowords, respectively. 

The OMT contains 116 words for which the participants get one minute to correctly read aloud as many 

words as possible; for the Klepel, the time limit is set to two minutes, and the children have to read aloud 

pseudowords. Finally, intellectual ability was assessed through the WISC-III-NL Block Design and 

Vocabulary subtests, as proxies of performance and verbal IQ, respectively (Wechsler, 2005). 

Standardized scores were calculated for all tasks.  

3.2.2.2. Custom multiplication task 

The custom multiplication task to measure sensitivity to problem size and interference, which was part 

of the behavioral session, consisted of the same 24 items used in De Visscher et al. (2015) and De 

Visscher et al. (2018), which were subsequently also used during fMRI scanning (see Table 3.1 for an 

overview of the items and their respective problem size and level of interference). Using the E-Prime 2  

 



48 | C h a p t e r  3  P r o b l e m  S i z e  &  I n t e r f e r e n c e  -  f M R I  

 

 

 

Table 3.1  

Overview of the items used for the interference task by level of interference and problem size 

 Small problem size Large problem size 

 Item IL PS Item IL PS 

Low 

interfering  
2 × 6 = 

5 × 5 = 

2 × 7 = 

4 × 4 = 

2 × 8 = 

9 × 2 = 

3 

3 

4 

5 

7 

7 

12 

25 

14 

16 

16 

18 

6 × 6 = 

6 × 5 = 

5 × 9 = 

9 × 9 = 

5 × 7 = 

7 × 7 = 

4 

6 

6 

6 

7 

7 

36 

30 

45 

81 

35 

49 

       

High 

interfering  
3 × 6 = 

5 × 4 = 

4 × 3 = 

4 × 6 = 

3 × 7 = 

8 × 3 = 

8 

8 

10 

12 

13 

13 

18 

20 

12 

24 

21 

24 

3 × 9 = 

9 × 4 = 

8 × 5 = 

7 × 8 = 

6 × 7 = 

4 × 8 = 

9 

9 

9 

9 

22 

25 

27 

36 

40 

56 

42 

32 

Note: IL = Interference Level; PS = Problem Size. Problem size was defined as the product of both operands. 

Small items had a product of 25 or smaller. Interference level was calculated as in De Visscher & Noël (2014b), 

where items receive a level of interference each time they have two digits in either operands or solution in common 

with a previously learned item. Low interfering items had an interference level of 7 or lower. Similar to previous 

research (De Visscher et al., 2015; De Visscher et al., 2018), both interference level and problems size were 

considered categorical variables (i.e., low-high and small-large).  

 

 

software (Psychology Software Tools), participants were presented with multiplication items in white 

on a black background. All 24 items were presented once. Each trial started with 2 seconds of fixation, 

followed by the item, which was displayed until an answer was provided. Participants were asked to 

verbally respond as quickly as possible. Reaction times were measured through voice key, after which 

the experimenter indicated if (a) the voice key registration was successful, (b) whether or not the 

provided answer was correct, and, after asking the child after each item, (c) whether or not the item was 

solved through fact retrieval or through any kind of procedural manipulation. After these checks, the 

next trial started.  

Participants’ individual sensitivity to problem size and to interference was calculated similarly as in De 

Visscher and Noël (2014b). A multiple regression was calculated for each participant, with reaction time 

as the dependent variable and the problem size and interference level of each item as the independent 

variables. The slopes of the independent variables were then used as a measure of individual differences 

in sensitivity to problem size or interference.  
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Figure 3.1. Example of a trial of the in-scanner multiplication task. 

 

3.2.2.3. fMRI experimental design 

In an event-related fMRI design, the children performed a multiplication verification task with the same 

items as the behavioral interference task (Figure 3.1). Stimuli were presented with E-prime 2.0 

(Psychological Software Tools), via an NEC projector onto a screen behind the participants, made 

visible through a mirror attached to the head coil. All stimuli were presented in white (Arial, font size 

60) on a black background. A trial started with the presentation of one of the 24 multiplication problems 

for 2s. After an equality sign and a black screen were presented (1s in total), a potential answer for the 

item was presented for 2s, during which the participants had to decide if the answer was correct or not, 

by pressing the left and right response button, respectively. All proposed answers that were incorrect, 

were always a table-related product, created by adding or subtracting the smallest operand to or from 

the correct answer, all of which was balanced within and across runs. To assure that the participants 

pressed the correct button for the response they wanted to give, two assisting labels were also displayed 

on the response screen (i.e., a green and red “juist” and ”fout” label – Dutch for “right” and ”wrong” – 

were displayed on the left and right bottom side of the screen, respectively). In between trials, a jittered 

inter-trial interval of 5.5, 8 or 10.5s (averaged at 8s) was randomly added to enable the deconvolution 

of the hemodynamic response functions. Only the first 5000ms of the correctly answered trials were 

used for data analysis. On average, only 5.2 out of 96 items per participant had to be discarded (range 0 

– 9) due to incorrect answers.  

3.2.3. MRI data acquisition and analysis 

Functional and structural images were acquired by a Philips Ingenia 3.0T CX MRI scanner with a 

SENSE 32-channel head-coil, located at the Department of Radiology of the University Hospital in 

Leuven, Belgium. Wash cloths were used to stabilize the children’s heads and consequently minimize 

head motion. For the fMRI data, 52 slices were recorded in ascending order, using a T2*-sequence (2.19 
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× 2.19 × 2.2 mm voxel size, 2.2 mm slice thickness, 0.3 mm interslice distance, 96 × 95 acquisition 

matrix, 90º flip angle) and covered the whole brain (field of view: 210 × 210 × 130 mm). Each run 

consisted of 111 measurements (TR = 3000 ms, TE = 29.8 ms), and lasted approximately six minutes. 

Anatomical images were acquired with a T1 weighted sequence (0.98 × 0.98 × 1.2 mm voxel size, 256 

× 256 acquisition matrix, 8º flip angle, TE 4.6 ms, 250 × 250 × 218 mm field of view), which lasted 

approximately eight minutes. 

All preprocessing was conducted with the Statistical Parametric Mapping software package for Matlab 

(SPM12, Wellcome Department of Cognitive Neurology, London). Preprocessing included correcting 

the functional images for slice timing differences, motion correction by realignment to the first 

functional image, coregistration (alignment to the respective high-resolution anatomical image), 

normalization to the standard Montreal Neurological 152-brain average template, and spatial smoothing 

with a 10 mm FWHM Gaussian smoothing kernel. 

Only correctly answered items were included for data analysis. If a participant displayed excessive 

motion during a run (i.e., movement greater than the voxel size of 2.2 mm from one image to the next), 

only the items before the time point of excessive movement were included. If a run did not contain at 

least one item for each condition (i.e., small or large problem size and low or high interference), the 

entire run was discarded (Vogel, Matejko, & Ansari, 2016). This, however, only occurred in 8.75% of 

the data. Data of participants with less than two completely usable runs were also entirely discarded. 

Following these motion criteria, the eventual analyses were performed on 20 participants. 

To analyze the data, a general linear model, modelling only the correctly solved items, was calculated 

per participant. The motion realignment parameters were included as regressors of no interest to control 

for variation as a result of movement artifacts. A whole-brain full factorial 2 × 2 ANOVA was performed 

on the imaging data, with problem size (small vs. large) and interference level (low vs. high) as within-

subject factors.   

 

3.3. Results 

3.3.1. Behavioral results 

Descriptive statistics of the standardized assessment can be found in Table 3.2. These results show that 

the means of our sample were close to population averages and show proper variation. An important 

note is that, even though some of the minima were low (especially for arithmetic), none of the 

participating children had been diagnosed with any kind of learning or intellectual disability.  

On the multiplication task outside of the scanner, participants had an average accuracy of 96.67% (SD 

= 4.19%; Range = 87.5 to 100%) and an average reaction time of 3295ms (SD = 1226ms; Range = 1500 

to 5940ms). The average amount of items that were retrieved was 87% (SD = 16). To study the effects  
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Table 3.2 

Descriptive statistics of the standardized assessment 

 Mean SD Minimum Maximum 

Arithmetic – Total 4.70 3.15 1 10 

Arithmetic – Multiplication 4.90 2.83 1 10 

Reading 9.84 2.76 6 16.50 

Block Design 11.35 3.44 6 19 

Vocabulary 11.42 1.61 8 14 

Note: The scores of arithmetic, reading, block design, and vocabulary are standardized scores. The scores on 

arithmetic are standardized as M = 5, SD = 2, with a maximum of 10. The scores on reading, block design, and 

vocabulary are standardized as M = 10, SD = 3, with a maximum of 19. 

 

of problem size and interference level on both accuracy and reaction time, both frequentist and Bayesian 

statistics were performed at item and participant level. Bayesian statistics have the advantage of being 

able to quantify the evidence that the data provide for one hypothesis over another (Andraszewicz et al. 

2015). Accordingly, Bayes factors (BF10) of 1, 1-3, 3-10, 10-30, 30-100, or > 100 respectively point 

towards no, anecdotal, substantial, strong, very strong, or decisive evidence for the alternative 

hypothesis (Jeffreys, 1961). 

To check for continuous associations between the variables, group level linear regressions were first 

calculated on both accuracy and reaction time. This was done by calculating the average reaction time 

for each item across participants, and by then calculating a regression model on reaction time with both 

interference level and problem size as dependent variables. Statistics for these analyses can be found in 

Table 3.3. For accuracy, neither problem size nor interference level were found to be significant 

predictors. For reaction time, on the other hand, problem size was not found to be a significant predictor, 

while interference level was.  

Next, across participants, two-way ANOVAs were performed with problem size and interference level 

as independent variables, and accuracy and reaction time as dependent variables, to check for general 

group differences between the conditions. For accuracy, no significant main or interaction effects were 

found (interaction effect: F(1, 76) = 3.021, p = .086, BF10 = 0.995; main effect of problem size: F(1, 76) 

= 0.062, p = .805, BF10 = 0.239; main effect of interference: F(1, 76) = 0.551, p = .460, BF10 = 0.294). 

For reaction time, on the other hand, two significant main effects were observed (main effect of problem 

size: F(1, 76) = 5.503, p = .022, BF10 = 1.792; main effect of interference: F(1, 76) = 13.916, p < .001, 

BF10 = 57.44), but no significant interaction effect was found for interference level and problem size 

(F(1, 76) = 0.014, p = .906, BF10 = 0.319).  
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Table 3.3 

Multiple regression analyses across items, with interference level and problem size as independent 

variables, and accuracy and reaction time as dependent variables 

Measure Zero-order 

correlation 

Partial 

correlation 
B SE B  t p BF10 R2 

Accuracy          

   PS -.173 -.166 0.000 0.001 -.166 -0.772 .449 0.478 .038 

   IL -.104 -.092 -0.001 0.002 -.090 -0.421 .678 0.407  

Reaction time          

   PS .287 .300 20.557 14.266 .237 1.441 .164 0.755 .434 

   IL .615 .619 157.532 43.637 .595 3.610 .002 23.383  

Note: IL = Interference Level; PS = Problem Size. Problem size was defined as the product of both operands. 

 

3.3.2. Imaging results 

3.3.2.1. In-scanner performance 

A two-way ANOVA with problem size and interference level as independent variables, and accuracy as 

a dependent variable was also calculated for the in-scanner task. Here, no significant interaction effects 

(interaction effect: F(1, 76) = 0.009, p = .925, BF10 = 0.681), or main effect of problem size (F(1, 76) = 

1.105, p = .296, BF10 = 0.369) were observed, but the analysis did reveal a main effect of interference 

(F(1, 76) = 4.703, p = .033, BF10 = 1.780). However, as the Bayes Factor for this main effect of 

interference is between 1 and 3, indicating anecdotal evidence at best (Jeffreys, 1961), this result must 

be interpreted with caution. An ANOVA with reaction time as a dependent variable, however, was not 

possible for the in-scanner task, as, due to our experimental fMRI design with delayed verification, 

participants were only able to answer 3 seconds after the initial presentation of the problem, leading to 

inaccurate reaction times. For example, it is possible for a participant to solve a certain item in the first 

3 seconds, before being able to actually answer the item, thus not providing an accurate reaction for that 

item. Because of this issue, only statistical analyses on the reaction time data of the custom 

multiplication task outside of the scanner are discussed.   

To assure that the fMRI signal for the same amount of items per category would be analyzed, we also 

calculated a 2 × 2 ANOVA on the number of items of each category (i.e., small or large problem size 

vs. low or high interference level). In this analysis, no significant main or interaction effects were 

observed, indicating no differences in the amount of items analyzed per condition (interaction effect: 

F(1, 76) = 0.006, p = .937, BF10 = 0.072; main effect of problem size: F(1, 76) = 0.250, p = .618, BF10 

= 0.260; main effect of interference: F(1, 76) = 0.433, p = .512, BF10 = 0.282). Furthermore, the Bayes 
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Factors (BF10) for this analysis were consistently below 0.3, indicating at least substantial evidence for 

the null hypothesis of no differences between conditions. 

3.3.2.2. fMRI data analysis 

The fMRI data were first analyzed through a 2 × 2 ANOVA with problem size (small vs. large) and 

interference level (low vs. high) as within-subject factors, only modeling the correctly solved items. Due 

to the stringency of the ANOVA analysis, however, no significantly activated clusters for all main or 

interaction effects were found. Because of this, we calculated all separate t-contrasts (i.e., small vs. large 

problem size, large vs. small problem size, low vs. high interference, and high vs. low interference), 

with an FDR (p < .05) correction for multiple comparisons. The results of these analyses can be found 

in Table 3.4. Significantly activated clusters, however, were only observed for the problem size effect 

(large vs. small contrast), in fronto-parietal regions, but also in the fusiform gyri. A visual representation 

of these results can be found in Figure 3.2. 

 

 

Table 3.4 

Regions, peak coordinates, cluster sizes (k), and t-values of the significantly activated clusters (p < .05, 

FDR corrected) for all separate t-contrasts 

Cluster  Peak coordinates k t 

  x y z   

Problem Size       

     Small > Large        

     No suprathreshold voxels found       

       

     Large > Small  

     R Fusiform gyrus   42 -60 -18 487 7.18 

     L Fusiform gyrus  -34 -78 -18 429 5.95 

     R Calcarine gyrus  18 -96 4 223 5.33 

     R Fusiform gyrus   22 -86 -20 193 5.54 

     L Superior parietal lobe  -6 -84 48 171 5.72 

     L Middle/superior frontal gyrus / precentral gyrus  -28 0 56 143 4.63 

     R Inferior occipital gyrus  46 -82 -6 109 4.82 

Interference       

     Low > High        

     No suprathreshold voxels found       

       

     High > Low       

     No suprathreshold voxels found       

Note: Only clusters of 20 voxels or more are reported. 
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Figure 3.2. Visual representation of differences in brain activation of the t-contrasts (p < .05, FDR 

corrected) large vs small problem size. 

 

 

As, when controlling for multiple comparisons, no significantly activated clusters were observed for any 

of the contrasts for interference, the contrasts were also calculated without controlling for multiple 

comparisons (p < .001), as a too stringent correction for multiple comparisons could have resulted in a 

lack of power to detect an effect. These results can be found in Table 3.5. A visual representation of 

these results can be found in Figure 3.3. In these separate t-contrasts without controlling for multiple 

comparisons, differences were observed between both conditions, with increased activation in the right 

middle temporal gyrus, left insula, and right angular gyrus for low interfering items in comparison to 

high interfering items. However, as these results were only observed without any form of controlling 

for multiple comparisons, they must be interpreted with caution.  

 

 

            

Figure 3.3. Visual representation of differences in brain activation of t-contrasts (p < .001, uncorrected) 

between small and large items (left) and low and high interfering items (right). 
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Table 3.5  

Regions, peak coordinates, cluster sizes (k), and t-values of the significantly activated clusters (p < .001, 

uncorrected) for all separate t-contrasts 

Cluster  Peak coordinates k t 

  x y z   

Problem Size       

     Small > Large       

     R Limbic lobe / ACC  20 36 -6 26 4.24 

     L Limbic lobe / ACC  -18 42 -4 22 4.33 

       

     Large > Small  

     R Fusiform gyrus / calcarine gyrus / temporal/occipital lobe   42 -60 -18 1724 7.18 

     L Fusiform gyrus  -36 -78 -18 727 5.95 

     L Superior occipital/parietal lobe  -6 -84 48 320 4.31 

     L Middle/superior frontal gyrus / precentral gyrus  -28 0 56 313 3.74 

     L Superior parietal lobe  -28 -66 56 75 3.38 

     R Superior parietal lobe / superior occipital gyrus  24 -64 48 23 3.43 

Interference       

     Low > High       

     R Inferior/middle temporal gyrus / fusiform gyrus  64 -54 -8 172 4.62 

     L Insula  -38 0 20 110 5.41 

     R Angular gyrus / supramarginal gyrus  58 -64 38 63 4.23 

       

     High > Low       

     Cingulate gyrus  8 -22 26 102 5.25 

     L Posterior medial frontal (BA6)  -6 14 56 83 4.49 

Note: All results above were not controlled for multiple comparisons (p < .001). Only clusters of 20 voxels or 

more are reported. 

 

To further explore this clear presence of a neural problem size effect, but possible absence of a neural 

interference effect, average beta weights were extracted for regions-of-interest (ROIs) expected to be 

activated by either effect. ROIs were created and beta weights were extracted with the Marsbar toolbox 

for Matlab (Brett, Anton, Valabregue, & Poline, 2002). Next, for both contrasts of interest (i.e., large 

vs. small problem size, and high vs. low interference level), one sample t-tests were performed on the 

beta weights with both frequentist and Bayesian statistics. The results of this analysis can be found in 

Table 3.6. Results point towards a clear effect of problem size in the left superior parietal lobe and right 

fusiform gyrus, indicating increased activation for large in comparison to small problems. A significant 

result, was also observed for the left fusiform gyrus, but the Bayes Factor (BF10) for this t-test was only 

1.785, pointing towards anecdotal evidence at best (Jeffreys, 1961). For the high vs. low interference 

level contrast, significant results were observed for the left angular and middle temporal gyrus, with 

increased activation observed for low in comparison to high interfering items. The Bayes Factor (BF10)  
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Table 3.6 

One sample t-tests for the beta weights of expected ROIs for both high vs. low interference level, and 

large vs. small problem size contrasts 

 Large vs. Small Problem Size High vs. Low Interference 

 t p BF10 t p BF10 

L Angular Gyrus 0.534 .599 0.264 -2.396 .027 2.264 

R Angular Gyrus 1.447 .164 0.572 -1.494 .152 0.605 

L Supramarginal Gyrus 0.986 .337 0.357 -2.031 .057 1.263 

R Supramarginal Gyrus 0.248 .807 0.239 -1.779 .091 0.876 

L Superior Parietal Lobe 3.194 .005 9.536 -.0194 .848 0.236 

R Superior Parietal Lobe 1.990 .061 1.188 -0.484 .634 0.258 

L Inferior Frontal Gyrus 1.230 .234 0.449 -0.794 .437 0.308 

R Inferior Frontal Gyrus 1.620 .122 0.708 0.089 .930 0.233 

L Middle Frontal Gyrus 1.565 .134 0.660 -0.872 .394 0.326 

R Middle Frontal Gyrus 1.864 .078 0.988 -0.618 .544 0.276 

L Middle Temporal Gyrus 0.175 .863 0.236 -2.168 .043 1.562 

R Middle Temporal Gyrus 0.746 .465 0.298 -1.885 .075 1.019 

L Fusiform Gyrus 2.251 .036 1.785 -0.706 .489 0.290 

R Fusiform Gyrus 2.708 .014 3.890 -0.733 .473 0.295 

L Insula 0.758 .458 0.300 0.035 .973 0.232 

R Insula 0.831 .416 0.316 0.551 .588 0.266 

Anterior Cingulate Cortex -0.038 .970 0.233 0.141 .890 0.234 

Medial Frontal Gyrus 0.904 .377 0.334 -0.648 .525 0.280 

Note: L = Left; R = Right. 

 

for these t-tests, however, were only 2.264 and 1.562, respectively, again indicating anecdotal 

evidenceat best (Jeffreys, 1961). For most of the other ROIs, the Bayes Factors (BF10) were below 1, 

pointing towards, albeit not necessarily substantial, evidence for the null hypothesis of no differences 

between both conditions.  

3.3.3. Explorative statistical pattern recognition analyses 

The inconclusive results of the analyses for interference effect above may have emerged from the 

implementation of univariate methods to measure the overall activation differences between conditions. 

Such an approach, however, limits our understanding of the information encoded by neural populations 

in a certain region. Therefore, it has been suggested that applications of multivariate pattern analysis to 

fMRI data, such as statistical pattern recognition analysis, allow for the detection of differences between 

conditions with higher sensitivity than conventional univariate analyses. This is done by focusing on the 

analysis and comparison of distributed patterns of activity within a certain region, and might thus offer 
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solutions to the limitations of univariate analyses (Ansari, 2008; Bulthé, De Smedt, & Op de Beeck, 

2014; Cohen Kadosh & Walsh, 2009; Haxby, 2012). Consequently, we decided to further explore our 

data through statistical pattern recognition analyses, using PRoNTo (Pattern Recognition for 

Neuroimaging Toolbox; Schrouff et al., 2013) in SPM12. Statistical pattern recognition is a field within 

the area of machine learning, concerned with the automatic discovery of regularities in data using 

computer algorithms. Consequently, these regularities can be used to, for example, classify data into 

different categories (Bishop, 2006), such as low and high interference, as in the current study. 

Using this type of multivariate analysis, we only looked at the interference effect and calculated 

classification models in 20 different ROIs. Every ROI was defined using predefined ROIs in standard 

MNI space, using the anatomical WFU PickAtlas Toolbox in SPM. ROIs were first selected on a large 

spatial scale (i.e., all separate brain lobes), after which ROIs were selected on an intermediate spatial 

scale (Bulthé et al., 2014), based on the results of our univariate analyses and based on the existing 

adults studies (e.g., angular gyri, inferior frontal gyri, and insular cortices; De Visscher et al., 2015; De 

Visscher et al., 2018). To start the analyses, data were put into the system clarifying which data points 

of each subject were from low or high interfering items, after which a feature set was made per ROI. 

Subsequently, classification models were specified and estimated, based on a leave-one-subject-out 

(LOSO) cross-validation scheme. Within this cross-validation structure, the voxel-wise mean was 

subtracted from each data vector, and samples were constructed by computing the average of all scans 

for each subject and condition. The LOSO cross-validation then leaves one subject out of the model and 

tries to classify the data of that subject, based on the data that remained in the model, repeating this 

process across all subjects. However, as in functional neuroimaging, the assumption that data are 

independently and identically distributed is often not met, which leads to confidence intervals not always 

being appropriate, multiple permutation tests (i.e., 1000 for each ROI) were calculated for each ROI. If 

consistent differences between and similarities within conditions (i.e. low vs. high interference) exist, 

the model will then be able to classify the data across subjects with an above-chance accuracy. Finally, 

the model then provides a balanced accuracy (i.e., taking the number of samples in each class into 

account) of the classification model, as well as an associated p-value of that accuracy.  

A full overview of the ROIs (i.e., first looking at all ROIs on a large scale, then on an intermediate scale) 

and their respective balanced accuracies can be found in Figure 3.4. Performing these analyses, only a 

small significant classification above chance was observed when looking at the left parietal lobe in its 

entirety, at a balanced classification accuracy of 52.96% (p = .01). For all other ROIs, no significant 

classifications above chance were observed across subjects.  
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Figure 3.4. Overview of the ROIs and respective balanced accuracies for the statistical pattern 

recognition analyses, after 1000 permutations for each ROI. On top are the ROIs on a large spatial scale, 

at the bottom on an intermediate spatial scale. 

 

3.4. Discussion 

In order to get more detailed insights into children’s neural arithmetic fact retrieval network, and to 

determine the specific functions of the relevant neural regions more precisely, the present study aimed 

at investigating the neural basis of both the problem size and interference effect in typically developing 

9- to 10-year-olds (i.e., 4th graders), by implementing a similar design as previous adult studies (De 

Visscher et al., 2015; De Visscher et al., 2018). Following this interference paradigm, our behavioral 
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results show clear effects of both problem size and interference level for multiplication items, both 

across items and across participants. These results corroborate previous research findings in similar age 

groups (with similar  values in the regression models; De Visscher and Noël, 2014b; De Visscher, 

Noël, & De Smedt, 2016), by showing that both larger and high interfering problems take significantly 

longer to solve, and that this behavioral effect for reaction time is stronger for the interference level. For 

accuracy, also in accordance with previous studies in typically developing children, no clear effects of 

problem size or interference level could be found. A significant effect on the accuracy of the in-scanner 

task was observed for interference level, yet, as the Bayes Factor for this main effect of interference was 

between 1 and 3, indicating anecdotal evidence at best, this result must be interpreted with caution. 

At the neural level, the t-contrasts, corrected for multiple comparisons, displayed clear neural differences 

for problem size. Increased activation for large items was found in bilateral fusiform gyri, the left 

superior parietal lobe, and the left precentral gyrus. These results were also confirmed by our ROI 

analysis. Furthermore, these results (i.e., the increased activation of fronto-parietal and temporal regions 

for larger items) agree with previous studies on the problem size effect (e.g., Stanescu–Cosson et al., 

2000; Molko et al., 2003), but show weaker effects, as the current study only looked at multiplication 

within fact retrieval, and not at other, procedural strategies. These results also concur greatly to the 

results of the interference studies in adults (De Visscher et al., 2015; De Visscher et al., 2018) and with 

previous developmental imaging work on the problem size effect (De Smedt et al., 2011). We also 

observed a problem size effect in the visual areas of the occipital cortex. These differences could be due 

to small but consistent differences in the presentation of the answers for small and large items. For 

example, the displayed false answer to the small items could be single digit (e.g., 3 × 4 = 9), while this 

could not be the case for the large items. These observed differences could also be due to cognitively 

induced visual processing mechanisms. For example, it is possible that participants may have used more 

visual resources (e.g., looking at the problem multiple times) to process more difficult items, where 

easier items would not need reevaluation of the presented stimuli. 

For the interference effect, on the other hand, results of the current study are inconclusive, as no 

activation differences between low and high interfering problems were found in the full factorial model, 

or in the whole-brain separate t-contrasts when correcting for multiple comparisons. Accordingly, these 

results are in contrast to previous adult studies (De Visscher et al., 2015; De Visscher et al., 2018), 

which, in a full factorial model, mainly observed increased activation in the angular gyri for low 

interfering items, and in a bilateral fronto-parietal network, including superior medial gyri, middle 

frontal gyri, inferior and superior frontal gyri, intraparietal sulci, and insular cortices for high interfering 

problems.  

As, against our expectations, no neural differences between both conditions were observed in our full 

factorial model, or in the separate t-contrasts when controlling for multiple comparisons, we decided to 

perform additional explorative analyses (i.e., separate t-contrasts at p < .001 uncorrected, ROI analyses, 
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and statistical pattern recognition analyses). In the separate t-contrasts without controlling for multiple 

comparisons, differences were observed between both conditions, with increased activation in the right 

middle temporal gyrus, left insula, and right angular gyrus for low interfering items in comparison to 

high interfering items. The results of our one sample t-tests with the beta weights of the high vs. low 

interference level contrast in theoretically relevant ROIs, on the other hand point towards increased 

activation in the left angular and middle temporal gyrus, but only provide anecdotal evidence at best 

(Jeffreys, 1961). These findings of increased activation in the angular gyrus might concur with the adult 

studies of De Visscher et al. (2015) and De Visscher et al. (2018), in which similar activation was found 

for low interfering items. However, as the results of the current study were only observed without 

controlling for multiple comparisons, or only provide anecdotal evidence at best in case of our ROI 

analysis, this comparison between De Visscher et al. (2015) and De Visscher et al. (2018), and our study 

must be interpreted with great caution. Furthermore, for the other ROIs, the Bayes Factors (BF10) were 

consistently below 1, which points towards, albeit not necessarily substantial, evidence for the null 

hypothesis of no differences between both conditions. 

Additionally, when conducting the explorative statistical pattern recognition analyses, the model was 

only able to classify subjects’ neural responses to low and high interfering items when looking at the 

left parietal lobe in its entirety, and the effect was very small; only a barely above-chance classification 

accuracy of 52.96% was observed. In the angular gyri, however, no significant classification results 

were found. In all, this secondary set of analyses confirms the notion that no clear evidence of a neural 

interference effect was to be found in this sample. 

In contrast to our hypotheses, and to the previous studies in adults (De Visscher et al., 2015; De Visscher 

et al., 2018), we only observed a neural effect of problem size, as no clear neural distinctions between 

low and high interfering items were observed at our predefined threshold. This is particularly unexpected 

as the behavioral data revealed clear effects of both problem size and interference. This inconsistency 

across children and adults, and across behavioral and neural results could be due to a number of reasons. 

First of all, studies in adults (De Visscher et al., 2015; De Visscher et al., 2018) especially point towards 

increased activation in the angular gyri for low interfering items in comparison to high interfering items. 

The fact that these results were not observed in children at the FDR level, leads to the prediction that, 

as (mathematical) development progresses, more neural distinctions are made between multiplication 

items, based on the degree to which they are similar to previously learned items (i.e., based on their level 

of interference). Accordingly, it is possible that, as the fourth graders of the current sample, in contrast 

to adults, are still frequently in contact with these multiplication items, clear neural distinctions are not 

yet made at this stage of development. In line with this notion, we suggest that similar research needs to 

be done across different age groups, such as 2nd graders, who are at the beginning of learning 

multiplication tables, or adolescents, who are no longer being trained to memorize these multiplication 

tables, but have reached higher levels of mathematical ability. Similarly, longitudinal research following 
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children across arithmetic development is certain to deliver critical insights into how these effects of 

problem size and interference develop.   

Furthermore, it is important to emphasize that stimuli for both interference conditions were highly 

similar (i.e., both conditions contained multiplication items of both small and large problem sizes, all of 

which were regularly solved through fact retrieval), and that behavioral differences between both 

conditions were only observed for reaction time. Consequently, it is possible that neural differences 

between both conditions should not be investigated at a spatial level, looking at certain regions showing 

increased activation for one condition in comparison to the other, but more at a temporal level, focusing 

on the speed to which certain brain regions respond to either condition. From this point of view, the use 

of fMRI might not have been optimal for studying the neural differences between high and low 

interfering items in children. Data collection methods with a greater temporal resolution (e.g., 

electroencephalography) should be implemented.  

Another possible venture for future research could lie in the analysis of made errors, as, if the 

interference effect were to affect performance differently, this would become apparent in erroneous 

trials. This type of analysis, however, was not possible in the current study due to the high accuracy on 

the in-scanner task. An analysis of errors could be possible when adjusting the research design to elicit 

as many errors as possible, by for example lowering the allotted time to answer, thus increasing pressure 

and possibly maximizing the amount of errors made. Further research investigating this principle is 

necessary. 

Finally, the interference effect has also been studied in atypical populations. For example, in a case study 

by De Visscher and Noël (2013), a hypersensitivity to the interference parameter was established in a 

certain profile of dyscalculia, with a restricted deficit in arithmetic facts knowledge. Consequently, it is 

also possible that clear neural correlates of the interference effect in children might only be found in 

children with low arithmetic performance, or even more specifically, in atypical populations, such as 

children with developmental dyscalculia, and therefore not in the current research sample. Future fMRI 

studies should explore this possibility. 

In conclusion, our results confirm the observations of previous behavioral studies that both the problem 

size and level of interference of multiplication items that are retrieved from memory affect the speed 

with which children solve those items. Next to these behavioral effects, our results also point towards 

clear neural distinctions between small and large multiplication items. However, no clear neural 

differences could be observed when contrasting low and high interfering items (at the FDR level), 

suggesting that, even though strong behavioral effects were found, the neural basis of this effect is not 

as strong as was previously observed in adults (De Visscher et al., 2015; De Visscher et al., 2018), and 

is not as strong as the problem size effect, but might develop over time. Future research is needed to 

evaluate this. 
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  The Association of Grey Matter Volume and  

Cortical Complexity with Individual Differences  

in Children’s Arithmetic Fluency   
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Abstract 

Only a small amount of studies have looked at the structural neural correlates of children’s arithmetic. 

Furthermore, these studies mainly implemented voxel-based morphometry (VBM), which only takes 

into account the volume of regions, without looking at other structural properties. The current study 

aimed to contribute knowledge on which brain regions are important for children’s arithmetic at a 

structural level, by not only implementing VBM, but also cortical complexity analyses, based on the 

fractal dimension index. This complexity measure describes a characteristic of surface shape. Data of 

43 typically developing 9-10 year-olds were analyzed. All children were asked to take part in two test 

sessions: behavioral data collection and MRI data acquisition. For data analysis, mean values for volume 

and cortical complexity were estimated within regions of interest (ROIs) and extracted for further 

analysis. The selected ROIs were based on regions found to be related to children’s mathematical 

abilities in previous research. Results point towards associations between arithmetic fluency and the 

volume of the right fusiform gyrus, as well as the cortical complexity of the left postcentral gyrus, right 

insular sulcus, and left lateral orbital sulcus. Remarkably, no significant associations were observed 

between the children’s arithmetic fluency and the volume or cortical complexity of typically arithmetic-

associated parietal regions, such as the superior parietal lobe, intraparietal sulcus, or angular gyrus. 

Accordingly, the current study highlights the importance of structural characteristics of brain regions 

other than typically arithmetic-associated parietal regions for children’s arithmetic fluency. 
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4.1. Introduction 

Arithmetic, or the ability to add, subtract, multiply or divide numbers, is an essential skill for further 

mathematical development (Kilpatrick, Swafford, & Findell, 2001), with a ubiquitous role in daily life, 

especially for children. Over the past few years, many neuroimaging studies have aimed to unravel the 

neural basis of children’s arithmetic, but have mainly focused on functional neural aspects (Arsalidou 

et al., 2018, for a meta-analysis; Peters and De Smedt, 2018, for a review). The amount of studies looking 

at the structural neural correlates of children’s arithmetic is scarce (e.g., Evans et al., 2015; Isaacs et al., 

2001; Price et al., 2016). The current study aims to contribute knowledge on which brain regions are 

important for children’s arithmetic at a structural level, by not only implementing voxel-based 

morphometry (VBM), but also cortical complexity analyses, based on the fractal dimension index 

(Yotter et al., 2011), and focuses on children with a small age range (9-10 year-olds, all 4th graders) to 

minimize maturational confounds.  

In children, accumulating evidence of functional magnetic resonance imaging (fMRI) research points 

towards an arithmetic brain network involving a large set of interconnected areas, including frontal (i.e., 

both ventro- and dorsolateral prefrontal cortex), parietal (i.e., inferior and superior parietal lobes), 

occipito-temporal, and medial-temporal (i.e., hippocampus) regions. Though this network shows some 

similarities to the network observed in adults (Menon, 2015), children’s arithmetic network is different, 

as overall less involvement of the superior parietal lobe is observed, along with larger involvement of 

the hippocampus, occipito-temporal, and prefrontal medial regions (Arsalidou et al., 2018, for a meta-

analysis; Peters and De Smedt, 2018, for a review). 

Only a small amount of studies have looked at the structural neural correlates of children’s arithmetic. 

The few studies that did study these structural correlates (see Peters and De Smedt, 2018 for an 

overview) mainly implemented VBM, which typically uses T1-weighted volumetric MRI scans and 

performs statistical tests across voxels to identify volume differences between groups. Accordingly, a 

series of t-tests can be performed at every voxel to identify differences in patterns of regional anatomy 

between groups of subjects (Whitwell, 2009). Using this method of data analysis, some structural 

imaging studies have compared groups of children who differed in their level of arithmetic skill (Isaacs 

et al., 2001; Ranpura et al., 2013; Rotzer et al., 2008; Rykhlevskaia et al., 2009). The first study reporting 

such data was Isaacs et al. (2001), who performed VBM analyses on 24 adolescents born preterm at 30 

weeks gestation or less, but without any neurological disabilities, comparing those with and without 

difficulties in arithmetic calculation. Doing so, the study observed reduced grey matter volume in the 

left intraparietal sulcus for the children with a deficit in calculation ability. Subsequent studies then 

similarly aimed to investigate differences between children with dyscalculia, which is a specific 

neurodevelopmental learning disorder characterized by difficulties in calculation which cannot be 

explained by intellectual disabilities, uncorrected sensory problems, mental or neurological disorders or 

inadequate instruction (American Psychiatric Association, 2013), and typically developing children. For 
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example, a study by Rotzer et al. (2008) compared 12 9-year-old children with developmental 

dyscalculia to 12 age-matched controls, and observed reduced grey matter volume for the children with 

dyscalculia in the right posterior parietal cortex (including the right intraparietal sulcus), the anterior 

cingulum, the left inferior frontal gyrus, and the bilateral middle frontal gyrus (Rotzer et al., 2008). A 

later study by Ryklehvskaia et al. (2009) investigated 24 7- to 9-year-old children with developmental 

dyscalculia, and compared them to a group of typically developing children matched on age, gender, 

intelligence, reading abilities and working memory capacity. This study also revealed reduced grey 

matter volume for the children with dyscalculia in the superior parietal lobule (again including the right 

intraparietal sulcus), but also in the bilateral fusiform gyrus, parahippocampal gyrus and right anterior 

temporal cortex. Finally, a study by Ranpura et al. (2013) investigated volumetric differences between 

11 8- to 14-year-old children with dyscalculia, and typically developing children, the results of which 

again pointed towards reduced grey matter volume in the right parietal cortex for children with 

dyscalculia, as well as volumetric reductions in the right occipital, fusiform and parahippocampal gyri. 

In all, these studies consistently showed that poor arithmetic performance is accompanied by less 

volume in (mostly right-hemispheric) parietal grey matter, but also highlight the importance of regions 

outside of the parietal cortex for children’s arithmetic. 

The group comparison method of the studies above, however, is limited, as it only allows for categorical 

comparisons of, for example, clinical or atypical groups of children to typically developing peers. Within 

VBM, however, it is possible to perform regression analyses across voxels to assess neuroanatomical 

correlates of cognitive or behavioral skills, thus applying a more dimensional approach (Whitwell, 

2009). Doing so, the structural correlates of arithmetic can also be examined within a typically 

developing population. Surprisingly few studies, however, have examined this association between grey 

matter and arithmetic in typically developing children. A study by Li et al. (2013) revealed that, in 59 

9- to 11-year-old Chinese children, individual differences in scores on the arithmetic subtest of the 

WISC-RC were significantly and positively correlated with the grey matter volume in the left 

intraparietal sulcus. Using a longitudinal design, Evans et al. (2015) investigated whether grey matter 

volume in early childhood (43 children, 7- to 9-year-olds) was predictive of outcomes in numerical 

abilities (based on the Numerical Operations subscale of the WIAT-II) six years later. The study reported 

that grey matter volumes of various parts of the arithmetic network (i.e., posterior parietal cortex, ventral 

occipito-temporal cortex, and prefrontal cortex) predicted the growth in arithmetic across primary 

school. Price et al. (2016) also investigated the relation between grey matter volume and math 

competence (based on the Woodcock–Johnson III Tests of Achievement) over one year in a sample of 

50 6- to 8-year-olds. Their results displayed that grey matter volume in the left intraparietal sulcus at the 

end of the 1st grade is related to math competence at the end of the 2nd grade. Grey matter volume of 

the intraparietal sulcus, however, did not change over that year, but was still correlated with math 

competence at the end of 2nd grade. Finally, Supekar et al. (2013) had a group of 3rd graders (24 
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children, 8-9 years-old) follow an 8 week math tutoring program that focused on efficient counting and 

fact retrieval, in between two structural scanning sessions. Accordingly, they observed that the volume 

of the right hippocampus predicted the learning gains of the one-on-one tutoring sessions, with larger 

hippocampal volumes before the intervention predicting larger intervention gains, confirming the role 

of the hippocampus in arithmetic fact retrieval.  

All of the studies above confirm that the grey matter volume of different neural regions (e.g., superior 

parietal lobe, intraparietal sulcus, inferior and middle frontal gyrus, fusiform gyrus, hippocampus) is 

associated with individual differences in arithmetic performance. These studies, however, have often 

merged data across wide age ranges (e.g., 8-14 years old), which might lead to the over-interpretation 

of associations between differences in volume and differences in mathematical development, as results 

might still be affected by maturational confounds. To minimize such maturational confounds, samples 

with small age ranges are necessary to clearly define brain regions of the arithmetic network for which 

grey matter volume is correlated to arithmetic fluency at a certain point in development.  

New techniques for structural data analysis have also arisen over the past years, allowing the study of 

structural brain differences to go beyond looking at volume alone. For example, surface-based 

morphometry (SBM) has numerous advantages over the use of volumetric data, as it has been shown 

that the implementation of brain surface meshes for spatial registration increases the accuracy of brain 

registration compared to mere volume-based registration (Desai, Liebenthal, Possing, Waldron, & 

Binder, 2005). Accordingly, additional metrics of cortical structure are applicable. One such metric is 

cortical complexity, which quantifies the spatial frequency of gyrification and fissuration of the brain 

surface (Luders et al., 2004), and is most commonly measured through the use of a gyrification index, 

defined as the ratio of the inner surface size to the outer surface size of an outer hull. However, 

gyrification analyses have certain shortcomings, such as that the gyrification metric depends on how the 

outer hull is defined, on the normalization of the brain to reduce the effect of brain size, and on noise in 

the surface reconstruction, which could artificially inflate the surface area without corresponding to the 

actual anatomy. These shortcomings can be resolved by quantifying cortical complexity through the 

fractal dimensionality index (Yotter et al., 2011). 

The fractal dimensionality index was originally designed to quantify the structure of fractals (Kiselev, 

Hahn, & Auer, 2003), but can describe a characteristic of the surface shape (see Yotter et al., 2011 for 

an in depth description of how brain complexity is measured), without relying on the definition of an 

outer hull (Lopes & Betrouni, 2009). In this sense, cortical complexity does not directly measure the 

intuitive meaning of the word complexity, such as the surface being more detailed. A fractal is a structure 

that is self-similar across a range of scales, making the complexity analysis correspond to how space-

filling the fractal surface is. As such, regions with high fractal dimensionality values generally appear 

to be more periodically spaced (e.g., like a sine wave with regular peaks and troughs). This may be 
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because the more periodically spaced structures also tend to fill more space over the range of scales 

examined for derivation of complexity values (Yotter et al., 2011).  

Fractal dimensionality analyses have successfully been implemented in studies comparing patient 

groups, such as individuals with Alzheimer’s disease (e.g., Ruiz de Miras et al., 2017) or Williams 

syndrome (e.g., Thompson et al., 2005), to controls, demonstrating a decline in fractal dimensionality 

in these group comparisons. Moreover, being sensitive to other differences in grey matter structure that 

are not indexed by volume or cortical thickness, cortical complexity has also been used to study age and 

gender related differences in brain structure (Luders et al., 2004; Madan & Kensinger, 2016), and, most 

notably, to study differences in cognitive function (King, et al., 2010; Im et al., 2006; Mustafa et al., 

2012; Sandu et al., 2014). For example, Im et al. (2006) observed positive correlations between whole-

brain fractal dimensionality and both IQ and years of education. Noteworthy, however, was that the 

correlations with education were slightly stronger than those with IQ, indicating a possible influence of 

education-related development on cortical complexity. King et al. (2010) even found that fractal 

dimensionality correlated more strongly with scores on a cognitive battery compared to measures of 

cortical thickness and gyrification. A study by Mustafa et al. (2012) observed that seniors with greater 

whole-brain white matter complexity had higher fluid intelligence scores and less evidence of age-

related cognitive decline. Finally, Sandu et al. (2014) observed that decreases in late life cortical 

complexity are associated with declines in information processing speed, auditory-verbal learning, and 

reasoning. Cortical complexity analyses have not yet been used in mathematical cognition, but the 

studies above support the use of cortical complexity through fractal dimensionality as a sensitive metric 

for capturing relations between brain structure and cognitive function. Their implementation within the 

field of mathematical cognition could thus provide interesting insights into children’s arithmetic brain 

network.  

Against this background, the first aim of the current study was to use VBM to study how structural 

differences in brain anatomy relate to differences in typically developing 9- to 10-year-old children’s 

arithmetic fluency. Secondly, as general associations have previously been observed between cognitive 

function and cortical complexity, we also aimed to examine if specific associations between arithmetic 

fluency and the cortical complexity of regions in children’s arithmetic brain network (e.g., in the parietal 

cortex, including the superior and inferior parietal lobes, and the intraparietal sulcus) can be found. 

While doing these analyses, we will implement a region of interest (ROI) approach based on the neural 

regions that were previously found to be both structurally and/or functionally related to children’s 

mathematical abilities (Arsalidou et al., 2018; Peters and De Smedt, 2018). To the best of our 

knowledge, this study is the first to go beyond VBM analyses by investigating such associations through 

fractal dimensionality.  
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4.2. Methods 

4.2.1. Participants 

For the current study, data of 50 typically developing Flemish 4th graders were collected, yet data of 3 

children were discarded due to technical acquisition problems (n = 1), excessive motion (n = 1), or 

problems during standardized testing (n = 1), and data of 4 more children were discarded after data 

quality control (see below for more details). Of the remaining 43 participants (ages 9 to 10; M = 9.68 

years, SD = 0.34) 23 were boys, 20 were girls, and 8 children were left-handed. No participants had a 

history of learning difficulties, or neurological or psychiatric disorders. All participants were recruited 

via the elementary school they attended, in the surrounding area of the university, and were given a 

financial compensation for their participation. Written informed consent was obtained from a parent or 

legal guardian of each participating child. The study was approved by the Medical Ethical Committee 

of the University of Leuven (S59167).  

Each child was asked to take part in two test sessions. During the first session, behavioral data were 

collected through various standardized measures. The second session included the acquisition of the 

MRI data, and always followed the first session by two to three weeks (M = 19.54 days, SD = 6.34). 

This MRI acquisition session also contained the collection of diffusion (Polspoel et al., 2018) and 

functional data (Polspoel et al., 2017) that have been reported elsewhere. Only the T1-data and their 

association with the general standardized tests are reported in the current study. 

4.2.2. Standardized assessment 

The standardized assessment session consisted of the evaluation of arithmetic (i.e., our main variable of 

interest), reading (i.e., to check the specificity of our results to arithmetic), and intelligence and motor 

reaction time (i.e., as control variables). To measure children’s arithmetic competence, the Tempo Test 

Arithmetic (TTA; de Vos, 1992) was used. This standardized arithmetic test, which is similar to the 

Math Fluency subtest of the Woodcock-Johnson III tests of Achievement (Woodcock et al., 2003), is 

very sensitive to individual differences in arithmetic fluency. The TTA contains five columns of 

arithmetic items: one column per operation and a fifth column with mixed operations. Each column 

starts with single digit items and increases in difficulty. Participants get one minute per column to write 

down as many correct answers as possible. As the current sample included a small age range, all 

participating children were part of the same norm group, and thus the raw scores (i.e., the sum of the 

amount of correctly answered items in each column) were used for statistical analysis.  

Reading was assessed through tests that are similar in their conceptualization as the TTA, as they are 

timed tests as well: the One Minute Test (OMT; Brus and Voeten, 1979) and the Klepel (van den Bos 

et al., 1994), which respectively measure the reading of words and pseudowords. Both the OMT and 

Klepel consist of 116 words, but for the OMT, the children get one minute to correctly read aloud as 

many words as possible, while for the Klepel, the time limit is set to two minutes, and the children read 
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aloud pseudowords. Again, raw scores (i.e., the amount of correctly read words) were used for statistical 

analysis.  

Next, the WISC-III-NL Block Design and Vocabulary subtests were used to measure intellectual ability, 

as measures of performance and verbal IQ, respectively (Wechsler, 2005). For intellectual ability, norm 

scores were used for the statistical analyses. Finally, to measure motor reaction time, participants had to 

indicate which of two figures (always a circle, triangle, square, star, or heart; one on the left, one on the 

right) presented on a computer screen was filled in white by, as quickly as possible, pressing the 

corresponding key. Accuracy and reaction time were recorded for each trial, yet, as ceiling levels were 

reached for accuracy, only reaction time was used for the subsequent analyses (De Smedt & Boets, 

2010).  

4.2.3. MRI data acquisition 

MRI scanning was performed with a Philips Ingenia 3.0T CX MRI scanner with a SENSE 32-channel 

head-coil, located at the Department of Radiology of the University Hospital in Leuven, Belgium. Wash 

cloths were used to stabilize the children’s heads and consequently minimize head motion. The 

anatomical T1 images were acquired with the following sequence: 0.98 × 0.98 × 1.2 mm voxel size, 256 

× 256 acquisition matrix, 8º flip angle, TE 4.6 ms, 250 × 250 × 218 mm field of view (approximately 8 

minutes of scanning time). As part of data collection for different studies (e.g., Polspoel et al., 2017; 

Polspoel et al., 2018), the scanning session also included four functional MRI runs of 5 minutes, and a 

diffusion MRI run of 12 minutes, leading to a total scanning time of approximately 40 minutes. 

All preprocessing was done with the Computational Anatomy Toolbox (CAT12) within the Statistical 

Parametric Mapping software package for Matlab (SPM12, Wellcome Department of Cognitive 

Neurology, London), following the standard processing pipeline within the CAT12 software. First, 

preprocessing included segmentation of the anatomical images; both grey matter and surface estimations 

were calculated. Next, data quality and sample homogeneity was tested through the Mahalanobis 

distance. This is a combination of weighted overall image quality, which is a measure of noise and 

spatial resolution before preprocessing, and mean correlation, which is a measure of the homogeneity 

of the data and thus the quality after preprocessing. Data of four subjects were discarded, as their 

Mahalanobis distance was larger than two standard deviations of the sample average. Finally, spatial 

smoothing was performed with 8 mm (VBM) and 20 mm (cortical complexity) FWHM Gaussian 

smoothing kernels. 

4.2.4. Selection of ROIs 

ROIs for statistical analyses were selected from the available atlases in the CAT12 software package 

(i.e., the Hammers and lpba40 atlases for VBM; the aparc.a2009s atlas for cortical complexity). The 

selected ROIs were based on regions found to be related to children’s mathematical abilities in previous, 

both structural and functional, research (Arsalidou et al., 2018; Peters and De Smedt, 2018). After 
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preprocessing, mean values for volume and cortical complexity were estimated within each ROI and 

extracted for further analysis. An overview of the selected ROIs can be found in Table 4.1. 

4.2.5. Statistical analyses 

For statistical analyses, the JASP software package (JASP Team, 2017) was used to calculate Pearson 

correlations and their corresponding Bayes Factors between the results of the TTA and the extracted 

mean values of the ROIs. The Bayesian approach has the advantage to quantify the evidence that data 

provide for one hypothesis over another (Andraszewicz et al., 2015). Accordingly, Bayes factors (BF10) 

of 1, 1-3, 3-10, 10-30, 30-100, or > 100 respectively point towards no, anecdotal, substantial, strong, 

very strong, or decisive evidence for the hypothesis of an association between two variables (Jeffreys, 

1961). The results of the frequentist approach to statistical testing are also reported. For these analyses, 

the Bonferroni method of controlling for multiple comparisons (p = Target Alpha Level / number of 

ROIs; p = .05/42 = .001 for VBM and p = .05/78 = .0006 for cortical complexity) was implemented. 

Partial correlations were also calculated with IQ and motor reaction time simultaneously added as 

control variables. To test the specificity of the results, the significant correlations were also calculated 

with our reading measure as to check whether any observed associations with arithmetic are also 

observed with another symbolic academic skill (i.e., reading), measured in a similar, i.e., timed, way.  

 

Table 4.1  

Overview of selected ROIs for the VBM and cortical complexity analyses  

 Frontal  Parietal Temporal Occipital 

Voxel-based 

morphometry 

Orbito Front Gyr 

Inf Front Gyr 

Mid Front Gyr 

Sup Front Gyr 

Ant Cingulate Gyr 

Precentral Gyr 

Insular Cortex 

Postcentral Gyr 

Inf Par Lobe 

Sup Par Lobe 

Angular Gyr 

Supramarginal Gyr 

Insular Cortex 

Ant Med Temp Lobe 

Fusiform Gyr 

Inf Mid Temp Gyr 

Sup Temp Gyr 

Post Temp Lobe 

Insular Cortex 

Hippocampus 

Fusiform Gyr 

Lingual Gyr 

Lat Occ Lobe 

Cortical 

complexity 

Orbital Sulc/Gyr 

Inf Front Sulc/Gyr 

Mid Front Sulc/Gyr 

Sup Front Sulc/Gyr 

Ant Cingulate Gyr 

Precentral Sulc/Gyr 

Insular Sulc/Cortex 

Postcentral Sulc/Gyr 

Inf Par Lobe 

Sup Par Lobe 

Angular Gyr 

Supramarginal Gyr 

Intraparietal Sulc 

Precuneus 

Par-Occ Sulcus 

Insular Sulc/Cortex 

Inf Temp Sulc/Gyr 

Mid Temp Gyr 

Sup Temp Sulc/Gyr 

Med Occ-Temp Sulc 

Lat Occ-Temp Sulc 

Insular Sulcus/Cortex 

Parahippocampal Gyr 

Fusiform Gyr 

Ant Occ Sulc 

Inf Occ Gyr & Sulc 

Par-Occ Sulc 

Med Occ-Temp Sulc 

Lat Occ-Temp Sulc 

Lingual Sulc/Gyr 

Fusiform Gyr 

 

Note: Sup = Superior; Inf = Inferior; Ant = Anterior; Post = Posterior; Mid = Middle; Med = Medial; Lat = Lateral; 

Front = Frontal; Par = Parietal; Temp = Temporal; Occ = Occipital; Gyr = Gyrus; Sulc = Sulcus. All ROIs were 

looked at bilaterally. 
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4.3. Results 

4.3.1. Behavioral results 

Figure 4.1 displays box plots with the descriptive statistics of arithmetic, reading, intellectual ability (all 

in standardized scores), and motor reaction time. These box plots demonstrate that our sample shows 

proper variation and has means close to the expected population averages. As the results of the different 

columns of the TTA highly correlated with each other, ranging from r = .616 to r = .818, only the raw 

total score was used for analysis (M = 102.12, SD = 19.01, Min = 73, Max = 160). Important to note is 

that, even though the minimum score for some of the tasks was low, none of the participating children 

had been diagnosed with any type of learning disorder or intellectual disability.  

4.3.2. Voxel-based morphometry  

Results of the VBM analyses only point towards statistical significance (p < .05) and substantial 

evidence (BF10 > 3) for an association between arithmetic fluency and the right fusiform gyrus (r = .376; 

BF10 = 3.760; p = .013). A visualization on transverse slices and a scatterplot of this correlation can be 

found in Figure 4.2. Due to the high amount of ROIs under study, the results using a frequentist approach 

to statistics did not survive after controlling for multiple comparisons. However, Bayesian statistics are 

affected less by this multiple comparison problem (Dienes, 2011), and still point towards substantial 

evidence for an association between arithmetic and the volume of the right fusiform gyrus, although 

these results must be interpreted with caution. 

 
Figure 4.1. Box plots displaying performance on arithmetic, reading, intellectual ability, and motor 

reaction time. 

Note: The scores for arithmetic, intellectual ability, and reading are standardized scores. The scores on the 

arithmetic test are standardized as M = 5, SD = 2, with a maximum of 10. The scores on the intelligence and reading 

tests are standardized as M = 10, SD = 3, with a maximum of 19. The scores for motor reaction time are raw scores 

displaying the average reaction time.  
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Figure 4.2. Transverse slices and scatterplot with fit line of the correlation between the total score of the 

TTA and the volume of the right fusiform gyrus.  

 

Remarkably, no significant associations were observed between the children’s arithmetic fluency and 

the volume of previously observed, typically arithmetic-associated parietal regions (i.e., superior parietal 

lobe, angular gyrus and supramarginal gyrus). Furthermore, the Bayes factors (BF10) for the correlations 

of the TTA with the volume of these regions were consistently below 1, pointing towards, albeit not 

necessarily substantial, more evidence for the null hypothesis of no association between these parietal 

regions and arithmetic fluency. These results can be found in Table 4.2. 

 

Table 4.2  

Correlations between arithmetic fluency and typically arithmetic-associated parietal regions for the 

VBM analyses 

  L SPL R SPL  L AG  R AG L SMG R SMG 

TTA 

Total 

r .046 .191 .171 .098 .099 .113 

BF10 0.198 0.395 0.340 0.229 0.231 0.244 

p .767 .219 .272 .533 .526 .472 

Note: SPL = Superior Parietal Lobe; AG = Angular Gyrus; SMG = Supramarginal Gyrus. The used atlases only 

consider VBM possible on gyri, hence the absence of the intraparietal sulcus in this analysis, yet all typically 

arithmetic-associated areas that surround the intraparietal sulcus (i.e., postcentral gyrus, superior parietal lobe, 

angular gyrus, and supramarginal gyrus) were included. The critical p-values for Bonferonni correction for 

multiple comparisons is p < .001. 
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Finally, to assess the specificity of our results, correlations were calculated with our reading measure, 

yet no substantial evidence or statistical significance (r = .231, BF10 = 0.555, p = .136) was observed 

for the correlations between reading and the right fusiform gyrus.  

4.3.3. Cortical complexity  

For the cortical complexity analyses, statistical significance (p < .05) and substantial evidence (BF10 > 

3) was observed for associations with the left postcentral gyrus (r = .539; BF10 = 155.773; p < .001), 

right insular sulcus (r = .425; BF10 = 9.388; p = .005), and left orbital sulcus  (r = .382; BF10 = 4.183; 

p = .011). Visualizations on transverse slices and scatterplots of these correlations are displayed in 

Figure 4.3. These observed correlations remained significant when simultaneously correcting for 

intellectual ability and motor reaction time. Due to our stringent control for multiple comparisons, only 

the results for the left postcentral gyrus survived after controlling for multiple comparisons.  

For the cortical complexity analyses as well, no substantial evidence was observed for associations 

between the children’s arithmetic fluency and typically arithmetic-associated parietal regions (i.e., the 

intraparietal sulcus, superior parietal lobe, angular gyrus and supramarginal gyrus). The Bayes factors 

(BF10) for these correlations were consistently below 1 (except for the left angular gyrus), again pointing 

towards more evidence for the null hypothesis of no association between the variables. These results 

can be found in Table 4.3. 

 

 

Figure 4.3. Transverse slices and scatterplots with fit lines of the correlations between the total score of 

the TTA and the cortical complexity of the left postcentral gyrus, right insular sulcus, and left orbital 

sulcus.  
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Table 4.3  

Correlations between arithmetic fluency and typically arithmetic-associated parietal regions for the 

cortical complexity analyses 

  L SPL R SPL  L AG  R AG L SPL R SPL L IPS R IPS 

TTA  

Total 

r -.086 -.168 .291 -.120 -.077 .229 .136 .070 

BF10 0.220 0.334 1.073 0.253 0.214 0.544 0.274 0.209 

p .581 .280 .059 .442 .140 .581 .384 .655 

Note: SPL = Superior Parietal Lobe; AG = Angular Gyrus; SMG = Supramarginal Gyrus; IPS = Intraparietal 

Sulcus. The critical p-values for Bonferonni correction for multiple comparisons is p < .0006. 

 

When calculating the correlations with our reading measure, strong evidence was observed for an 

association between reading and the left lateral orbital sulcus (r = .471, BF10 = 26, p = .001), suggesting 

that the associations with the left orbital sulcus are not specific to arithmetic. No substantial evidence 

(BF10 > 3) was found for an association with any of the other ROIs found to be associated with arithmetic 

fluency (left postcentral gyrus: r = .306, BF10 = 1.309, p = .046; right insular sulcus: r = .224, BF10 = 

0.520, p = .149). 

 

4.4. Discussion 

Previous studies on the structural neural correlates of children’s arithmetic have used VBM to highlight 

an association between arithmetic and grey matter volume in the superior parietal lobe, including the 

intraparietal sulcus, as well as other brain regions outside of the parietal cortex, such as the inferior and 

middle frontal gyrus, the fusiform gyrus and the hippocampus (Evans et al., 2015; Isaacs et al., 2001; Li 

et al., 2013; Price et al., 2016; Ranpura et al., 2013; Rotzer et al., 2008; Rykhlevskaia et al., 2009; 

Supekar et al., 2013). These existing studies, however, have often used research samples with wide age 

ranges, not fully eliminating possible maturational confounds, and were limited to VBM, which only 

takes the volume of brain structures into account, disregarding other structural properties. The current 

study studied children of a narrow age range and aimed to move beyond VBM analyses and implemented 

SBM analyses to correlate with 9- to 10-year-old children’s arithmetic fluency, focusing on cortical 

complexity through fractal dimensionality. This cortical complexity looks at differences in the shape 

rather than the size of cortical structures, and is a sensitive metric for capturing relations between brain 

structure and cognitive function (King et al., 2010; Im et al., 2006; Madan and Kensinger, 2016; Mustafa 

et al., 2012; Sandu et al., 2014). Consequently, as general associations have previously been observed 

between cognitive function and cortical complexity, the current study aimed to examine if specific 

associations between arithmetic and the cortical complexity of regions in children’s arithmetic brain 
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network were to be found. Taken together, the current study thus aimed to provide a more 

comprehensive depiction of the structural neural correlates of children’s arithmetic.  

The results of the VBM analyses point towards positive correlations between arithmetic and the right 

fusiform gyrus. These results, however, must be interpreted with caution as, even though the Bayesian 

analysis indicated substantial evidence for an association of the fusiform gyrus with children’s 

arithmetic, the frequentist results did not remain significant after controlling for multiple comparisons. 

Nevertheless, the finding aligns with previous research, as the volume of the fusiform gyrus had already 

been related to children’s arithmetic in a study by Rykhlevskaia et al. (2009), who observed reduced 

volume of the fusiform gyrus for children with developmental dyscalculia in comparison to their 

typically developing peers. Furthermore, previous diffusion MRI research (e.g., Polspoel et al., 2018; 

Rykhlevskaia et al., 2009) has indicated the right ILF, which connects the occipital lobe to the anterior 

part of temporal lobe, including the fusiform gyrus, as a crucial white matter tract for children’s 

arithmetic fluency, again emphasizing the importance of the fusiform gyrus within children’s arithmetic 

(Pinheiro-Chagas, Daitch, Parvizi, & Dehaene, 2018). In fMRI research in adults, ventral visual stream 

areas, including the fusiform gyrus, are also found to be consistently co-activated with the intraparietal 

sulcus across a wide range of numerical tasks (Arsalidou and Taylor, 2011), with functional responses 

which increase with arithmetic complexity (Keller & Menon, 2009; Menon, 2015; Pinheiro-Chagas et 

al., 2018; Rickard et al., 2000; Rosenberg-Lee, Tsang, & Menon, 2009; Wu et al., 2009; Zago et al., 

2001). Being part of the inferior temporal cortex, the fusiform gyrus probably plays an important role 

in the encoding of complex visual stimuli (i.e., orthographic processing, or the recognition and 

discrimination of number-letter strings; Allison, Puce, Spencer, & McCarthy, 1999; Binder, Medler, 

Westbury, Liebenthal, & Buchanan, 2006; Milner & Goodale, 2008). More recently, however, it has 

been suggested that the inferior temporal cortex may have a role of early identification of problem 

difficulty, beyond mere digit recognition (Pinheiro-Chagas et al., 2018). Accordingly, even though the 

VBM results of the current study must be interpreted with caution, this result is in line with previous 

research and emphasizes the importance of the right fusiform gyrus in children’s arithmetic. 

Next, the results of our fractal dimension analyses mainly point towards positive correlations between 

children’s arithmetic and cortical complexity in the left postcentral gyrus. The postcentral gyrus is 

adjacent to the superior parietal lobe and lies in continuity with the intraparietal sulcus, whose roles 

within the representation and manipulation of numerical quantity and arithmetic in general have been 

clearly established (Menon, 2015). Consequently, cortical complexity in the postcentral gyrus might 

become important as the region acts as an extension of, and might affect its adjacent arithmetic-related 

regions. Previously, activation in the postcentral gyrus itself was mainly observed during grasping tasks 

(Simon et al., 2002), but postcentral activations have also been linked to the use of arithmetic strategies, 

such as subvocalization and finger counting, as the region corresponds to somatotopic regions 

responsible for lips, mouth, fingers, and hands (Kesler, Menon, & Reiss, 2006). Furthermore, the 
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postcentral gyrus has also been discussed as being important for number tasks in children (Arsalidou et 

al., 2018), as, in both adults and children, activations in the right inferior parietal cortex (including the 

intraparietal sulcus and the postcentral gyrus) has been related to nonsymbolic numerical and spatial 

processing (Kaufmann et al., 2008). The current structural imaging study can only but speculate on the 

function of this postcentral region; further research investigating the region’s exact functional role 

within arithmetic is necessary. 

Our results also displayed positive correlations between the cortical complexity of the right insular 

cortex (more specifically the right insular sulcus) and children’s arithmetic. Due to the stringency of our 

correction, this result did not remain statistically significant after controlling for multiple comparisons, 

yet a Bayes Factor (BF10) close to 10 was observed, suggesting strong evidence for an association 

between both variables. Previously, structural associations between the right insula and children’s 

arithmetic have been observed in a study by Han et al. (2013), who used deformation-based 

morphometry (DBM; based on the application of non-linear registration procedures to spatially 

normalize one brain to another one, where deformations then provide information about the type and 

localization of structural differences between the brains, which can be used for data analysis; Gaser, 

Nenadic, Buchsbaum, Hazlett, & Buchsbaum, 2001) to study anatomical variations between the brains 

of third graders with and without mathematical difficulties. The insula has also often been observed in 

studies on numerical cognition (Arsalidou and Taylor, 2011), but its exact function in arithmetic is still 

unclear. Over all, the insula is known for directing attentional resources and decision-making (Arsalidou 

and Taylor, 2011; Menon, 2015; Supekar & Menon, 2012), but has also been implicated to be important 

for emotional processing (Damasio et al., 2000) and speech-motor function (Fox et al., 2001). As such, 

the insula may be involved in intrinsically motivated behaviors (Arsalidou et al., 2018). The right insula 

in particular has also been identified as a key ROI in specific phobias, including mathematics anxiety 

(Lyons & Beilock, 2012). More specifically, these authors observed that the higher one’s math anxiety 

is, the more increases in activity in regions such as the bilateral dorso-posterior insula (which are 

associated with visceral threat detection and the experience of pain itself) can be observed (Lyons & 

Beilock, 2012). As a result, disturbances in any one of the cognitive processes above could lead to 

disruptions in the normal course of procedures, and consequently interrupt the processes of solving 

calculation problems (Han et al., 2013).  

The fractal dimensionality analyses also indicate the left orbital sulcus as being related to children’s 

arithmetic, yet, due to this result not surviving controlling for multiple comparisons and the Bayes Factor 

only pointing towards substantial evidence at best, it must again be interpreted with caution. This result, 

however, does agree with previous research, as structural differences in the left orbitofrontal cortex were 

also observed in the study by Han et al. (2013) between children with and without mathematical 

difficulties. Similar to the insular cortex, the orbitofrontal cortex is associated with attention, decision-

making, and executive function. Consequently, the function of this region is most likely not arithmetic-
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specific. Our data align with this because significant correlations were also observed between the fractal 

dimensionality of the left lateral orbital sulcus and our reading measure. 

Surprisingly, no substantial evidence was observed for associations between the volume or cortical 

complexity of the previously reported number and arithmetic brain regions, i.e., the superior and inferior 

parietal lobes, with the intraparietal sulcus. Even more, the Bayes Factors (BF10) for these correlational 

analyses were consistently below 1, pointing towards, albeit not necessarily substantial, evidence for the 

null hypothesis of no association between the volume or cortical complexity of these regions and the 

children’s arithmetic fluency. This discrepancy with the available literature could be due to the wide age 

ranges used in previous studies, or to the implementation of different tasks for arithmetic assessment 

across studies. Together with these points, it is also possible that the importance of the intraparietal 

sulcus (at least at a structural level) mainly becomes apparent when comparing children with extremely 

low arithmetic fluency or developmental dyscalculia to typically developing peers, which was not the 

case for the present sample. Given these results, the current study does emphasize the importance of 

neural regions outside of the parietal cortex for children’s arithmetic fluency.  

Using the fractal dimensionality analyses within children’s arithmetic, the current study also shines light 

on the implementation of structural MRI research that takes into account the shape of structures, to better 

capture individual differences in the organization of cortical regions. Furthermore, the current study was 

conducted with a research sample of only 9- to 10-year-olds, to minimize maturational confounds. Such 

narrow-aged studies are critical as merging data across wide age ranges, even though statistically 

controlled for, might lead to over-interpretations of associations between differences in grey mater 

volume/structure and differences in mathematical development. Accordingly, we feel it is crucial to 

emphasize the need for similar studies in children of different ages, such as first or second graders, who 

are at the beginning of their arithmetic development, or children in secondary school, who have reached 

a more advanced level of arithmetic. As previous research (Im et al., 2006) also observed stronger 

associations of cortical complexity to years of education than to IQ, indicating a possible influence of 

education-related development on cortical complexity, and keeping in mind (educational-based) neural 

plasticity, studies with a longitudinal follow-up throughout educational development are also deemed 

necessary to understand the direction of observed associations between cortical complexity and 

cognitive function, as well as to pinpoint when in development these associations start to emerge. 

Finally, we would like to stress the necessity of similar research (i.e., research that moves beyond 

looking at volume for studying the structural correlates of arithmetic), not just across age groups, but in 

atypical populations, such as math-gifted children, or children with developmental dyscalculia, as this 

could deliver additional insights into the neural development of their mathematical skills.   
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Abstract 

Connectivity between brain regions is integral to efficient complex cognitive processing, making the 

study of white matter pathways in clarifying the neural mechanisms of individual differences in 

arithmetic abilities critical. This white matter connectivity underlying arithmetic has only been 

investigated through classic diffusion tensor imaging (DTI), which, due to methodological limitations, 

might lead to an oversimplification of the underlying anatomy. More complex non-tensor models, such 

as spherical deconvolution, however, allow a much more fine grained delineation of the underlying brain 

anatomy. Against this background, the current study is the first to use spherical deconvolution to 

investigate white matter tracts and their relation to individual differences in arithmetic fluency in 

typically developing children. Participants were 48 typically developing 9- to 10-year-olds, who were 

all in grade 4, and who underwent structural dMRI scanning. Theoretically relevant white matter tracts 

were manually delineated with a region of interest approach, after which the hindrance modulated 

orientational anisotropy (HMOA) index, which provides information on the structural integrity of the 

tract at hand, was derived for each tract. These HMOA indices were correlated with measures of 

arithmetic fluency, using frequentist and Bayesian approaches. Our results point towards an association 

between the HMOA of the right inferior longitudinal fasciculus (ILF) and individual differences in 

arithmetic fluency. This might reflect the efficiency with which children process Arabic numerals. Other 

previously found associations between white matter and individual differences in arithmetic fluency 

were not observed.  

 

  



81 | C h a p t e r  5  W h i t e  M a t t e r  P a t h w a y s  -  d M R I  

 

 

 

5.1. Introduction 

Many studies have investigated the neural basis of arithmetic. Accumulating evidence in adults points 

towards a fronto-parietal network, including superior and inferior parietal lobes, inferior frontal gyri and 

the insular cortex, as being consistently activated during arithmetic (for a review, see Arsalidou & 

Taylor, 2011; Menon, 2015). In children, this arithmetic network involves a large set of bilateral areas, 

including frontal (both ventro- and dorsolateral prefrontal cortex), parietal (intraparietal sulcus, angular 

gyrus, and supramarginal gyrus), occipito-temporal and medial temporal (including the hippocampus) 

areas (Peters & De Smedt, 2018, for a review; Arsalidou et al., 2018, for a meta-analysis). Furthermore, 

arithmetic development is characterized by a decreasing engagement of the prefrontal cortex and by an 

increasing engagement and functional specialization of the inferior and posterior parietal cortex (Kucian 

et al., 2008; Rivera et al., 2005). This shift has been interpreted as reflecting a change in strategy use, 

from demanding procedural manipulations to fact retrieval; a hypothesis that has recently been 

confirmed at the neural level (Polspoel et al., 2017). Finally, within arithmetic, large individual 

differences exist at a behavioral level, which have also been established at the neural level, in both adults 

(Grabner et al., 2007) and children (De Smedt et al., 2011). 

The functional regions of the abovementioned arithmetic brain network, however, are not adjacent, but 

spatially distant from one another, which makes it crucial to study the structural white matter 

connections between these regions. This connectivity between brain regions is integral to efficient 

cognitive processing (Johansen-Berg, 2010). Understanding the role of white matter pathways in 

arithmetic may thus further clarify the neural mechanisms of individual differences in arithmetic abilities 

(Matejko & Ansari, 2015).  

These white matter connections can be examined with diffusion-weighted Magnetic Resonance Imaging 

(dMRI), an imaging technique that sensitizes the MRI signal to the diffusion (i.e., random molecular 

motion) of water molecules by adding diffusion encoding gradients in distinct directions to a standard 

MR pulse sequence (Jones & Leemans, 2011). As yet, the simplest and most frequently applied model 

to relate the dMRI signal to the actual underlying neuroanatomy, is Diffusion Tensor Imaging (DTI). 

The classic DTI model estimates the degree to which diffusion is not spherical but increased in a certain 

direction (fractional anisotropy or FA) per voxel. The estimated direction of diffusion per voxel is then 

assumed to correspond to the dominant fiber orientation, and the estimated fractional anisotropy is 

assumed to correspond to the density, myelination and underlying architecture of the underlying axons 

(Basser et al., 1994; Tournier et al., 2007).  

To date, structural connectivity within arithmetic has only been investigated through classic DTI, which 

is subject to methodological limitations. For example, DTI can only estimate the direction of one fiber 

per imaging voxel, which leads to an oversimplification of the underlying anatomy in regions with 

multiple crossing white matter fibers (Assaf et al., 2004; Tournier et al., 2007). As many of these 
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crossing fibers are situated in and around the parietal lobe, results of the available DTI studies must be 

interpreted with caution. The current study is the first to tackle these issues in the field of arithmetic, by 

implementing a more novel and complex non-tensor model (i.e., spherical deconvolution), which, 

among other things, has the asset that it can characterize the orientation of more than one fiber per voxel, 

and consequently provides the possibility of making more accurate statements about the associations 

between white matter tracts and arithmetic fluency (Dell’Acqua et al., 2007; Tournier et al., 2004). 

Despite the availability of these techniques, structural connectivity research in children’s arithmetic is 

scarce and inconclusive, as many different white matter pathways have been found to be related to 

individual differences in arithmetic or other mathematical skills (see Matejko & Ansari, 2015, and 

Moeller et al., 2015 for reviews). For example, studies on children with atypical mathematical abilities 

(i.e., math-gifted children or children with developmental dyscalculia) point towards higher FA in 

several temporo-parietal regions for math-gifted children (ages 12 to 15), including the uncinate 

fasciculus (UF), superior longitudinal fasciculus (SLF), and inferior longitudinal fasciculus (ILF; Navas-

Sánchez et al., 2014), or a significantly lower probability of connectivity to the right inferior temporal 

gyrus (i.e., the right ILF and inferior fronto-occipital fasciculus; IFOF) in children with mathematical 

difficulties (ages 7 to 9; Rykhlevskaia et al., 2009). A study by Kucian et al. (2014) also compared a 

group of children with dyscalculia to a group of age matched controls (ages 8 to 11), and found lower 

FA in parietal and insular white matter clusters. Even though these studies on children with atypical 

mathematical abilities provide insights into which white matter pathways are related to arithmetic 

performance, making generalizations to typically developing children about the neurocognitive 

processes at hand might be difficult.  

Looking at typically developing children, a DTI study on individual differences in children’s arithmetic 

by Van Eimeren et al. (2008) found a correlation between children’s (ages 7 to 9) scores on the numerical 

operations subtest of the Wechsler individual achievement test (i.e., a test of written calculation 

including simple arithmetic problems of all operations) and FA in the left ILF and the left corona radiata 

(CR). The authors speculated that the ILF could be related to participants’ processing efficiency of 

Arabic numerals, as inferior temporal brain regions, to which the ILF connects, were previously found 

to be important for visual representations of numerical symbols and calculation problems (Dehaene et 

al., 2003; Shum et al., 2013). The relation of this temporo-parietal connections to arithmetic fluency 

might also reflect verbal/memory representations of numbers, as they connect the fusiform regions with 

temporo-parietal white matter (Catani & Mesulam, 2008). To a certain extent, these findings coincide 

with those of Rykhlevskaia et al. (2009), who found a correlation with the ILF in the right hemisphere, 

yet Van Eimeren et al. (2008) observed a correlation in the left hemisphere. These differences in 

hemisphere could be due to the atypical numerical processing in children with mathematical difficulties 

in Rykhlevskaia et al. (2009), yet, further research would need to clarify this. The left CR, on the other 

hand, had already been related to individual differences in reading skills (Ben-Shachar, Dougherty, & 
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Wandell, 2007), which led Van Eimeren et al. (2008) to suggest that its involvement in mathematical 

processing could become co-opted for exact, verbal mathematical skills. However, as these projection 

fibers connect the thalamus with the sensorimotor cortex (Catani & Thiebaut de Schotten, 2008), the 

notion of it having a role in perceptual and motor functions is more straightforward (Schmahmann & 

Pandya, 2008). 

A study by Tsang et al. (2009) used DTI tractography in 10 to 15 year-old children to investigate the 

relationship between fronto-parietal white matter and mathematical performance (i.e., the SLF and 

arcuate fasciculus (AF) connect frontal and parietal regions that are typically activated during 

arithmetic). This was done by studying simple arithmetic facts, exact two-digit addition, and 

approximate two-digit addition. The study revealed an association between approximate addition and 

FA in the left anterior SLF, but not in the AF. However, remarks can be made on how both tracts were 

delineated. The AF needs to be divided into three different segments, which all connect different regions 

with one another and thus might have different functions (i.e., a direct, anterior and posterior segment, 

as proposed by Catani, Jones, & ffytche, 2005), and the SLF in its entirety contains three different parts 

as well (i.e., SLF I, SLF II, and SLF III; Thiebaut de Schotten et al., 2011). These distinctions were not 

made in Tsang et al. (2009), as the AF was considered a fronto-temporal part of the SLF. What was 

called the AF and SLF in the study by Tsang et al. (2009), however, seems to coincide with the direct 

and anterior segments of the AF, respectively, as discussed by Catani et al. (2005). A supplementary 

Tract-Based Spatial Statistics (TBSS) analysis in Tsang et al. (2009) also demonstrated correlations with 

approximate arithmetic beyond the left SLF/AF, including the bilateral SLF/AF, ILF, IFOF, CR, and 

corpus callosum (CC), thus suggesting that a broad network of white matter pathways is related to 

individual differences in children’s arithmetic.  

In a study by Van Beek et al. (2014), the critical segmentation of the AF into the three subcomponents 

was made, and an association was found between 12 year-old children’s scores on addition and 

multiplication on a standardized timed arithmetic test (i.e. Tempo Test Arithmetic; de Vos 1992), and 

the FA of the anterior segment of the AF. However, the SLF as delineated by Tsang et al. (2009) and 

the anterior segment of the AF as delineated by Van Beek et al. (2014) coincide to a great extent. 

Historically speaking, the AF and the SLF have been thought to be the same tract, however, recently, 

attempts have been made to dissociate both tracts (e.g., Dick & Tremblay, 2012; Zhao et al., 2016). This 

ambiguity in defining both the SLF and the AF especially becomes apparent in comparing these two 

studies, as it is thus presumable that they are discussing the same tract; classic DTI analyses might not 

be fine-grained enough to properly disentangle both tracts (Zhao, Thiebaut de Schotten, Altarelli, 

Dubois, & Ramus, 2016). To resolve such issues, more novel and complex non-tensor models (e.g., 

spherical deconvolution) are necessary to make accurate statements about the tracts’ relevance to 

arithmetic performance. Either way, the existing studies seem to establish the importance of fronto- and 

temporo-parietal white matter pathways in children’s arithmetic.  



84 | C h a p t e r  5  W h i t e  M a t t e r  P a t h w a y s  -  d M R I  

 

 

 

These available studies on white matter pathways in children’s arithmetic, however, have some major 

shortcomings. To begin, all of them have analyzed the diffusion data by means of classic DTI, which is 

subject to various methodological limitations. First, DTI is unable to resolve the orientation of multiple 

crossing fibers within a voxel, as it can only estimate the direction of one fiber per imaging voxel. 

Consequently, this leads to an oversimplification or inaccurate representation of the underlying anatomy 

in regions with multiple crossing white matter fibers. Using DTI, the major eigenvector in voxels with 

crossing fibers generally does not correspond to the actual orientation of any of the fibers (Assaf et al., 

2004; Tournier et al., 2007). This is highly problematic, as the percentage of white matter voxels that 

contain multiple crossing fibers in the human brain is around 70-90% (Dell'Acqua et al., 2013; 

Farquharson et al., 2013). As many of these crossing fibers are situated in and around the parietal lobe, 

which is a critical region for arithmetic, and even contains multiple smaller regions with distinct 

functions within arithmetic (e.g., intraparietal sulcus, angular gyrus, supramarginal gyrus; Arsalidou et 

al., 2018; Peters and De Smedt, 2018), it is especially difficult to interpret the results from previous DTI 

studies on arithmetic, as tracts such as the SLF and AF that connect to these regions might have been 

difficult to disentangle with classic DTI.  

Secondly, the interpretation of the FA index is not clear-cut, as it provides a quantitative measure per 

voxel that is determined by both microstructural (e.g., myelination of fibers, or size and density of cells) 

and macrostructural (e.g., number of crossing fibers) properties. A lot of anatomical information is thus 

reduced to just one index, implying that individual differences in FA could be due to a number of 

reasons, leading to difficulties in interpretation (Vanderauwera, Vandermosten, Dell’Acqua, Wouters, 

& Ghesquière, 2015). Because of these shortcomings, results of previous DTI studies should be 

interpreted carefully, as they might not accurately reflect the associations between white matter tracts 

and arithmetic. 

These two methodological limitations can be resolved by using more complex non-tensor models, such 

as spherical deconvolution, which estimates a continuous 3D distribution of all possible fiber 

orientations within each voxel (Dell’Acqua et al., 2007, Tournier et al., 2004). Doing so, spherical 

deconvolution has the asset that it can characterize the orientation of more than one fiber per voxel, thus 

solving the crossing fibers problem. Furthermore, in comparison to other non-tensor models such as q-

Ball imaging (Tuch, 2004), diffusion spectrum imaging (Wedeen, Hagmann, Tseng, Reese, & 

Weisskoff, 2005), and composite hindered and restricted model of diffusion (CHARMED; Assaf et al., 

2004) imaging, which require the acquisition of higher or multiple b-values and consequently demand 

extended scanning sessions, spherical deconvolution has an acquisition time close to DTI, and is 

therefore much more suited to use with children.  

The advantages of spherical deconvolution have been clearly shown in a comparative study by 

Farquharson et al. (2013), who pointed out that, in voxels containing two fiber populations, spherical 

deconvolution properly identifies both fiber populations, while DTI does not provide an orientation 
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estimate that corresponds to either of the populations. More specifically, in their study, DTI consistently 

failed to identify well-known corticospinal connections extending to the majority of the sensorimotor 

cortex, while spherical deconvolution produced the expected fan-shaped configuration of the 

corticospinal fiber pathways that much more closely resemble the known anatomy. Furthermore, to 

extract information on microscopic properties of the white matter tracts, the hindrance modulated 

orientational anisotropy (HMOA) index can be derived for quantitative spherical deconvolution 

analyses. This index can be defined as the absolute amplitude of each lobe of the fiber orientation 

distribution (Dell’Acqua et al., 2013). In contrast to FA, which provides a quantitative measure per voxel 

indexing both micro- and macroscopic properties, HMOA is a tract-specific index, highly sensitive to 

changes in fiber diffusivity (e.g., myelination processes or axonal loss) and to differences in the 

microstructural organization of white matter (e.g., axonal diameter and fiber dispersion). The index thus 

provides information about microscopic properties along each fiber orientation, even in regions with 

fiber crossings. Accordingly, the HMOA index can detect small changes in the microstructural 

properties along single white matter tracts, which are not detectable with classic DTI. By applying this 

tract‐specific index, we might thus be able to detect fiber diffusivity changes (e.g., developmental 

myelination processes) and can improve tractography to better map white matter complexity inside the 

brain (Dell’Acqua et al., 2013). Against this background, spherical deconvolution is particularly suited 

to overcome the limitations associated with the classic tensor model. 

Another problem in many of the existing DTI studies in children’s arithmetic, is that data were collected 

from children with wide age ranges (e.g., 7 to 10 or 10 to 15 years old). The problem here is that this 

period in time is characterized by large structural white matter development (e.g., Barnea-Goraly et al., 

2005), and that, consequently, although statistically controlled for, the observed correlations between 

individual differences in arithmetic and white matter might still be swayed by maturation, instead of 

being purely related to mathematical achievement. As mathematical achievement also improves over 

child development, high experience-dependent plasticity can be expected in white matter (e.g., Casey, 

Tottenham, Limston, & Durston, 2006), which means that homogenous age groups (i.e., research 

samples with a small age range) should be studied in order to take such maturation effects into account.  

To the best of our knowledge, the current study is the first to use spherical deconvolution to investigate 

which white matter tracts are related to differences in children’s arithmetic fluency. We will also focus 

on children with a small chronological age range to minimize confounds of maturation. In addition, we 

not only implemented frequentist, but also Bayesian statistics for data analyses, as Bayesian statistics 

have the advantage of being able to quantify the evidence that the data provide for one hypothesis over 

another (Andraszewicz et al., 2015). In contrast to classic frequentist hypothesis testing, these Bayesian 

statistics are particularly informative when no association is observed, as they can quantify the evidence 

in favor of the null hypothesis of no association. These statistics are also not affected by the multiple 
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comparison problem (Dienes, 2011). In light of the above-reviewed DTI literature, we expect to find 

relations between arithmetic fluency and the white matter integrity of the SLF/AF, and ILF. 

 

5.2. Methods 

5.2.1. Participants 

The study started with 50 typically developing Flemish 4th graders, yet due to technical acquisition 

problems (n = 1) , excessive motion (n = 1), or problems during standardized testing (n = 1), data of 3 

children were discarded. The remaining 47 participants (ages 9 to 10; M = 9.68, SD = 0.33; 26 boys, 21 

girls; 8 left-handed) had no history of learning difficulties, or neurological or psychiatric disorders. All 

children were recruited via the elementary school they attended, in the vicinity of our university, and 

were given a financial compensation in return for participating. Written informed consent was obtained 

from a parent or legal guardian of each participating child. The study was approved by the Medical 

Ethical Committee of the University of Leuven (S59167).  

All participants took part in two test sessions. During the first session, behavioral data were collected 

through standardized measures. This session always preceded the second session by two to three weeks 

(M = 19.54 days, SD = 6.34), which included the acquisition of the MRI data. This MRI acquisition 

session also partly contained fMRI data collection for another study, which is reported in Polspoel et al. 

(2017).  

5.2.2. Standardized assessment 

The standardized assessment session consisted of the evaluation of arithmetic, as well as intelligence, 

motor reaction time, and reading. First of all, the Tempo Test Arithmetic (TTA; de Vos, 1992) was used 

to measure the children’s arithmetic competence. This is a standardized test of arithmetical fluency, 

similar to the Math Fluency subtest of the Woodcock-Johnson III tests of Achievement (Woodcock et 

al., 2003), and is very sensitive to individual differences in arithmetic fluency. The TTA is constructed 

of five columns of arithmetic items of increasing difficulty (i.e., one column per operation and a fifth 

column with mixed operations; each column starts with single digit items), for which each child gets 

one minute per column to write down as many correct answers as possible. Next, intellectual ability was 

measured by the WISC-III-NL Block Design and Vocabulary subtests, as measures of performance and 

verbal IQ respectively (Wechsler, 2005). To measure motor reaction time, two figures (always a circle, 

triangle, square, star, or heart) were presented on a computer screen. Each participant had to indicate 

which of both figures (i.e., left or right) was filled in white, by, as quickly as possible, pressing the 

corresponding key. Accuracy and reaction time were recorded for each trial (De Smedt & Boets, 2010). 

Finally, we measured the children’s reading ability to investigate the specificity of our results (i.e., in 

comparison with a different symbolic skill). Reading ability was assessed using a combination of the 

One-Minute Test (OMT; Brus & Voeten, 1979) and the Klepel (van den Bos et al., 1994), which measure 
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the reading of words and pseudowords, respectively; both tests consist of 116 words. For the OMT, the 

children get one minute to correctly read aloud as many words as possible; for the Klepel, the time limit 

is set to two minutes, and the children read aloud pseudowords. Other behavioral measures, such as 

strategy assessment, or sensitivity-to-interference, were also assessed in sub-samples of this study, but 

not reported here as they were linked to fMRI protocols of different studies (e.g., Polspoel et al., 2017). 

5.2.3. MRI data acquisition and tractography 

MRI scanning was done with a Philips Ingenia 3.0T CX MRI scanner with a SENSE 32-channel head-

coil, located at the Department of Radiology of the University Hospital in Leuven, Belgium. Wash cloths 

were used to stabilize the children’s heads and consequently minimize head motion. dMRI sagittal slices 

were obtained using the following parameters: 60 noncollinear directions b-value 2000 s/mm2, 30 

noncollinear directions b-value 700 s/mm2 (which were eventually discarded for spherical 

deconvolution analyses), 6 nondiffusion-weighted images, 2.5 × 2.5 × 2.5  mm voxel size, 90º flip angle, 

repetition time (TR) 7000 ms, echo time (TE) 72 ms, and 240 × 125 × 240 mm field of view 

(approximately 12 minutes of scanning time). Anatomical T1 images were acquired with the following 

sequence: 0.98 × 0.98 × 1.2 mm voxel size, 256 × 256 acquisition matrix, 8º flip angle, TE 4.6 ms, 250 

× 250 × 218 mm field of view (approximately 8 minutes of scanning time). As a part of data collection 

for different studies (e.g., Polspoel et al., 2017), the scanning session also included four fMRI runs of 

approximately 5 minutes, leading to a total scanning time of approximately 40 minutes. 

All pre-processing was done using the Explore DTI software (Leemans, Jeurissen, Sijbers, & Jones, 

2009), and existed of visual quality assurance, and rigorous motion, eddy current-induced distortion, 

and EPI distortion correction. After motion correction, data of participants which displayed excessive 

motion (n = 1), defined as a mean translation in any direction greater than the voxel size of 2.5 mm, 

were discarded. No normalization to a standard atlas took place. Whole-brain DTI tractography was 

performed with FA-threshold = 0.20, maximum turning angle = 30º, and step length between 

calculations = 1 mm. For the spherical deconvolution analyses, additional processing was done with the 

StarTrack software (Dell’Acqua et al., 2013), using the following parameters: iterations = 200, n = 0.04, 

and r = 8. Finally, the following parameters were used for the spherical deconvolution whole-brain 

tractography: absolute HMOA threshold = 0.06, relative HMOA threshold = 5%, maximum turning 

angle = 30º, and step length between calculations = 1 mm. 

Tractography of the white matter tracts was performed with the TrackVis software (Wang, Benner, 

Sorensen, & Wedeen, 2007). All tracts were manually delineated for each subject using a region of 

interest (ROI) approach, based on anatomical landmarks in color-coded maps (Catani & Thiebaut de 

Schotten, 2008; Thiebaut de Schotten et al., 2011; Wakana et al., 2007). In this approach, each ROI 

represents an obligatory passage for the tract at hand. The colors in these maps refer to the direction the 

fibers run in; red are commissural fibers, green are associative fibers, and blue are projection fibers.  
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The white matter pathways that were investigated in the current study were based on the existing 

literature (Matejko & Ansari, 2015), as well as the ROIs used to perform the manual segmentation of 

each tract (Catani & Thiebaut de Schotten, 2008; Thiebaut de Schotten et al., 2011; Wakana et al., 2007). 

An overview of the connections of each tract and the ROIs used for delineation, can be found in Table 

5.1. The same ROIs were used for both the spherical deconvolution and DTI delineations, in order to 

maximize the comparability of the HMOA and FA metrics, respectively. A visual overview of the tracts 

under study, delineated with spherical deconvolution, can be found in Figure 5.1. For comparison, the 

same tracts for the same participant, but delineated with classic DTI, can be found in Appendix (Figure 

5.A1).  

After manually delineating a white matter pathway, the TrackVis software offers statistical information 

of the tract at hand (e.g., HMOA value, amount of fibers, volume etc.), which can then be used for 

statistical testing. 

5.2.4. Statistical analyses 

All statistical analyses were performed with the JASP software package (JASP Team, 2017). We 

calculated Pearson correlations between the results of the TTA (i.e., of all columns separately and of the 

total score) and the HMOA values of all tracts under study, and their corresponding Bayes Factors. Since 

our sample had a small age range, and all participants were part of the same norm group, raw scores of 

the TTA (i.e., number of correctly solved items within one minute) were used for the correlation 

analyses. Only tracts with a minimum of 20 fibers were used for data analyses. The Bayesian approach 

was implemented, as it has the advantage to quantify the evidence that data provide for one hypothesis 

over another (Andraszewicz et al., 2015). Accordingly, Bayes factors of 1, 1-3, 3-10, 10-30, 30-100, or 

> 100 respectively point towards no, anecdotal, substantial, strong, very strong, or decisive evidence for 

the alternative hypothesis (Jeffreys, 1961). Additionally, Bayesian analyses allow us to verify the extent 

to which the data are in favor of the null hypothesis of no association (i.e., Bayes factors of 1-1/3, 1/3-

1/10, 1/10-1/30, 1/30-1/100, < 1/100 respectively point towards anecdotal, substantial, strong, very 

strong, or decisive evidence for the null hypothesis; Jeffreys, 1961). These statistics are also not affected 

by the multiple comparison problem (Dienes, 2011). Results of frequentist approaches to statistical 

testing are also reported, implementing the Bonferroni method of controlling for multiple comparisons 

(p = Target Alpha Level / number of delineated tracts; p = 0.05/25 = 0.002). In order to control for other 

variables such as IQ, and motor reaction time, partial correlations were calculated with IQ and motor 

reaction time simultaneously added as control variables. Correlations were also calculated with our 

reading measure as to assure that any observed associations between the tracts and arithmetic fluency, 

are not observed with another symbolic skill, measured in a similar (i.e., time-limited) way, thus testing 

the specificity of the results. For the sake of comparison, all analyses were also conducted with the FA 

values when implementing classic DTI to analyze the neural data. 



89 | C h a p t e r  5  W h i t e  M a t t e r  P a t h w a y s  -  d M R I  

 

Table 5.1 

Overview of connections and regions of interest (ROI) for each tract under study 

Tract Connections ROIs 

Inferior fronto-occipital fasciculus Occipital cortex to frontal lobe, through deep temporo-basal areas and 

insula (Martino, Brogna, Robles, Vergani, & Duffau, 2010) 

ROI 1: Coronal slice at anterior edge of the genu 

ROI 2: Occipital lobe on coronal slice at middle point between posterior edge of the cingulum 

and posterior edge of parieto-occipital fissure 

Inferior longitudinal fasciculus Occipital lobe to anterior part of temporal lobe, including fusiform gyri 

and parahippocampal regions (Catani et al., 2005) 

ROI 1: Coronal slice at posterior edge of cingulum 

ROI 2: Entire temporal lobe at most posterior coronal slice where temporal lobe is separated 

from frontal lobe 

Arcuate fasciculus Perisylvian regions of frontal, parietal, and temporal lobes with each 

other – separated into a direct segment (ROIs 1 and 3), an anterior 

segment (ROIs 1 and 2, without 3) and a posterior segment (ROIs 3 and 

4, without 1) (Catani et al., 2005) 

ROI 1: Arch-shaped dorsal ROI on coronal slice at middle of posterior limb of internal capsule 

ROI 2: Association fibers on coronal slice at middle of splenium 

ROI 3: Lateral posterior ROI on axial slice at level of anterior commissure 

ROI 4: Lateral posterior ROI on axial slice, similar to ROI 3, yet 5 to 7 slices more superior 

Superior longitudinal fasciculus Large parieto-frontal connections, separated into a dorsal superior (SLF1; 

ROIs 1 and 2), middle (SLF2; ROIs 1 and 3), and ventral part (SLF3; 

ROIs 1 and 4) (Thiebaut de Schotten et al., 2011) 

ROI 1: Entire parietal lobe on coronal slice at level of posterior commissure 

ROI 2: Superior frontal gyrus on coronal slice at level of anterior commissure 

ROI 3: Middle frontal gyrus on coronal slice at level of anterior commissure 

ROI 4: Precentral gyrus on coronal slice at level of anterior commissure 

Uncinate fasciculus Lateral orbitofrontal cortex to anterior temporal lobe  (Von Der Heide et 

al., 2013) 

ROI 1: Entire temporal lobe at most posterior coronal slice where temporal lobe is separated 

from frontal lobe 

ROI 2: All projections towards frontal lobe in the same slice as ROI 1 

Corona radiata & corticospinal tract Projection fibers, carrying neural traffic to and from cerebral cortex. 

(CST – specifically to and from primary motor cortex; Han et al., 2010) 

ROI 1: Entire cerebral peduncle on axial level of decussation of superior cerebellar peduncle 

ROI 2 (CST): ROI around bundle of trajectories that reach primary motor cortex 

Corpus callosum Largest of commissural fibers, linking cerebral cortex of left and right 

hemisphere (Wakana et al., 2007) 

Forceps major 

ROI 1 & 2: Coronal slice at most posterior edge of parieto-occipital fissure (bilaterally). 

Forceps minor 

ROI 1 & 2: Coronal slice in the middle of anterior edge of frontal cortex and genu (bilaterally). 
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Figure 5.1. Overview of the white matter pathways under study, delineated with spherical 

deconvolution: in red the SLF I, SLF II, and SLF III; in fuchsia the AF; in yellow the IFOF; in cyan the 

ILF; in green the UF; in blue the CR. 

Note: For purpose of clarity, the corpus callosum is not depicted in this image, yet it was also under study. 

 

5.3. Results 

5.3.1. Behavioral results 

Figure 5.2 displays box plots with the descriptive statistics of arithmetic, intellectual ability, motor 

reaction time, and reading. The means of our sample were close to the expected population averages, 

and show proper variation. An important note is that even though the minimum score for some of the 

tasks was low, none of the participating children had been diagnosed with any type of learning disorder 

or intellectual disability. 

5.3.2. Correlations with white matter integrity 

Pearson correlations, using both Bayesian and frequentist approaches, were calculated between the 

HMOA values of the various tracts and participants’ scores on the TTA. Table 5.2 summarizes the main 

results of the spherical deconvolution analyses and presents positive correlations for which we observed 

at least substantial evidence in favor of the hypothesis of an association between HMOA of a given tract 

and individual differences in TTA (BF10 > 3; see Jeffreys, 1961 for an interpretation of Bayes Factors), 

and for which a significant correlation using frequentist statistics (p < .05) was found.  
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Figure 5.2. Box plots displaying performance on arithmetic, intellectual ability, motor reaction time, 

and reading. 

Note: The scores for arithmetic, intellectual ability, and reading are standardized scores. The scores on the 

arithmetic test are standardized as M = 5, SD = 2, with a maximum of 10. The scores on the intelligence and 

reading tests are standardized as M = 10, SD = 3, with a maximum of 19. The scores for motor reaction time are 

raw scores displaying the average reaction time.  

 

Correlations were found between the HMOA values of the right ILF and arithmetic performance across 

all operations. The Bayesian analyses indicated that the evidence for these associations was strong for 

addition and multiplication, very strong for division, and decisive for subtraction, the mixed column and 

the total score of the TTA. Using the frequentist approach, all correlations, except for addition, remained 

significant when using a Bonferroni method of controlling for multiple comparisons. The results also 

remained significant when simultaneously controlling for IQ, and motor reaction time. We also observed 

an association between the HMOA values of the right UF and subtraction, for which the evidence was 

substantial. Using the frequentist approach, significant correlations were also found for division, the 

mixed column and the total score of the TTA. These significant correlations, however, did not survive 

a Bonferroni method of controlling for multiple comparisons. The correlation for subtraction was also 

the only one that remained significant when controlling for IQ and motor reaction time.  
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Table 5.2 

Correlations between the HMOA (spherical deconvolution) and FA (DTI) values of the right ILF and 

right UF, and participants’ scores on the TTA for each operation and in total 

Note: The Bayes Factors (BF10) report the amount of evidence found for a positive association between the tracts 

and the TTA. Such evidence is considered substantial, strong, very strong, or decisive for the alternate hypothesis 

if the Bayes factor is above 3, 10, 30, or 100, respectively, or for the null hypothesis if the Bayes factor is below 

1/3, 1/10, 1/30, or 1/100, respectively. 

 

Visual representations of the right ILF and right UF can be found in Figure 5.3. Scatterplots with fit 

lines of the associations between the HMOA values of these tracts and performance can be found in 

Figure 5.4. To test the specificity of these results to arithmetic fluency, we checked whether these 

associations could also be observed with a different symbolic measure (i.e., reading, calculated as the 

average score on both OMT and Klepel tests). This was not the case, as no significant correlations were 

observed between reading with either the right ILF (r = .213; p = .075; BF10 = 0.914) or right UF (r = 

.183; p = .109; BF10 = 0.673). 

No evidence was found for associations between scores on the TTA and the HMOA values of any of 

the segments of either SLF or AF, even though this was hypothesized based on the available literature. 

The Bayes factors (BF10) for almost all of these correlations were below 1, indicating that the null 

hypothesis of no association between arithmetic fluency and these tracts is more likely than the existence 

of an association. This evidence for the null hypothesis, however, was not substantial (i.e., BF10 < 1/3) 

across all segments and operations, but was often anecdotal (i.e., 1 < BF10 < 1/3; Jeffreys, 1961; see 

Appendix - Table 5.A1 for a more detailed overview). 

 

 

  
TTA 

addition 

TTA 

subtraction 

TTA 

multiplication 

TTA 

division 

TTA 

mix 

TTA 

total 

  HMOA FA HMOA FA HMOA FA HMOA FA HMOA FA HMOA FA 

Right 
ILF 

Pearson’s r .395 .249 .570 .451 .423 .370 .430 .252 .481 .404 .528 .391 

 BF10 14.25 1.37 1771.5 49.21 25.63 8.62 30.04 1.42 105.52 16.9 414.11 13.1 

 p-value .003 .046 < .001 <.001 .002 .005 0.001 .044 < .001 .002 < .001 .003 

Right 

UF 
Pearson’s r .096 -.008 .353 .274 .063 .076 .255 .233 .277 .249 .254 .204 

 BF10 0.327 0.174 6.419 1.902 0.261 0.285 1.476 1.144 1.971 1.370 1.468 0.830 

 p-value .260 .523 .007 .031 .337 .305 .042 .057 .030 .046 .042 .084 
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Figure 5.3. Visual representations of the white matter tracts found to be associated with individual 

differences in arithmetic fluency.  

Note: Cyan: Right-hemispheric ILF delineated on a color-coded map; the ILF is delineated by an entire coronal 

slice at the posterior edge of the cingulum, and an ROI entailing the entire temporal lobe on the most posterior 

coronal slice in which the temporal lobe is not connected to the frontal lobe. Green: Right-hemispheric UF; the 

UF is delineated by an ROI on the entire temporal lobe at the most posterior coronal slice where the temporal lobe 

is separated from the frontal lobe, and a second ROI that includes all projections towards the frontal lobe in the 

same slice as the first ROI. 

 

Finally, the associations between the tracts under study and individual differences in arithmetic fluency 

were also analyzed by using classic DTI metrics (i.e., the FA index). These analyses yielded similar 

results for the right ILF (see Table 5.2). The spherical deconvolution analyses, being more specific to 

white matter properties, also displayed stronger associations between arithmetic fluency and the right 

ILF than the DTI analyses. With DTI, only anecdotal evidence was found for associations between FA 

and addition and division for the right ILF. Using the frequentist approach, significant results were found 

across operations, yet only the results for subtraction survived controlling for multiple comparisons. For 

the right UF, which did display significant associations with arithmetic fluency when using spherical 

deconvolution, only anecdotal evidence was found when using classic DTI. Significant p-values were 

observed for the associations between FA and subtraction and the mixed column, yet these results did 

not survive when controlling for multiple comparisons. All significant correlations, however, stayed 

significant when simultaneously controlling for IQ and motor reaction time. As with the spherical 

deconvolution analyses, no evidence for an association with any of the other tracts was found. 

Furthermore, using classic DTI, parts of the SLF were only traceable in 5 out of 47 participants, due 

crossing fibers with either CR, AF, or corpus callosum. This made it impossible to examine the 

correlations between FA in the SLF and arithmetic (Appendix – Table 5.A1).  
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Figure 5.4. Scatterplots with fit lines of the associations between all the columns and the total score of 

the TTA, and the HMOA values of the right ILF and right UF. 

 

5.4. Discussion 

When it comes to arithmetic fluency, contemporary DTI research points to a variety of tracts (i.e., the 

AF, SLF, ILF, IFOF, UF, and others) as being related to children’s arithmetic performance (Matejko & 

Ansari, 2015). However, the existing studies all applied classic DTI to study various white matter tracts, 

a method which is subject to methodological limitations (e.g., Assaf et al., 2004; Dell'Acqua et al., 2013; 
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Farquharson et al., 2013; Tournier et al., 2007) such as the fact that DTI can only estimate the direction 

of one fiber per imaging voxel, leading to an oversimplification or inaccurate representation of the 

underlying anatomy. Furthermore, these studies were all conducted in research samples with wide age 

ranges (e.g., 7 to 10 or 10 to 15 years old; Matejko & Ansari, 2015), which, even though statistically 

controlled for, might lead to maturational confounds and consequently to the over-interpretation of 

associations between differences in connectivity and differences in mathematical development. As a 

result, not that much is known about the actual relation between structural white matter tracts and 

children’s arithmetic. These limitations, however, can be tackled by implementing spherical 

deconvolution, which can characterize the orientation of more than one fiber per voxel, and from which 

the HMOA index, which is tract-specific and provides information about the diffusion properties along 

each fiber orientation (Dell’Acqua et al., 2013), can be derived. The current study was the first to 

implement spherical deconvolution to investigate the associations of white matter tracts and individual 

differences in typically developing children’s arithmetic fluency, and focused on children with a small 

age range (9- to 10-year-olds), as to minimize confounds of maturation.  

Our results primarily point towards an association of the right ILF and individual differences in 

children’s arithmetic fluency. The current findings echo previous results with classic DTI in which 

associations between FA in the ILF and individual differences in mathematics have been observed (Li 

et al., 2013; Navas-Sánchez et al., 2014; Rykhlevskaia et al., 2009; Van Eimeren et al., 2008). For 

example, correlations were found between FA in the left ILF and the arithmetic subtest of the WISC in 

9-11 year-olds (Li et al., 2013) and the numerical operations subtest of the WIAT in 7-9 year-olds (Van 

Eimeren et al., 2008), albeit in the left hemisphere instead of the right. Furthermore, group differences 

were found in the FA of the bilateral ILF between controls and math-gifted children, with math-gifted 

children having higher FA values (Navas-Sánchez et al., 2014) and in the right ILF between controls 

and children with dyscalculia, with the control group having higher FA values (Rykhlevskaia et al., 

2009). The current study in typically developing children thus found similar results, as correlations were 

found between the white matter integrity of the ILF and children’s arithmetic fluency. Our findings, 

however, go beyond the existing literature, by focusing on a narrow age range, and by implementing a 

more reliable method of analyzing the diffusion data (i.e., spherical deconvolution, with the associated 

HMOA index).  

What could this association between the ILF and arithmetic fluency potentially reflect? The ILF 

connects the occipital lobe to the anterior part of temporal lobe, including the fusiform gyri and 

parahippocampal regions. In arithmetic, this tract might be related to the efficiency with which children 

process Arabic numerals, as research has shown that inferior temporal regions are involved in the 

processing of visual representations of numerical symbols (Dehaene et al., 2003; Shum et al., 2013). 

More recently, increased activation in the inferior temporal gyrus has even been observed to be driven 

by broader mathematical processing, instead of a specific preference to Arabic numbers (Grotheer et al., 
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2018), which might also explain the ILF’s relevance within arithmetic. The ILF also mediates the 

interaction between medial, inferior and anterior temporal cortices with Perisylvian areas, and is thus 

related to language (Catani & Mesulam, 2008). As such, it is possible that the ILF is important for exact 

verbal arithmetic skills (e.g., fact retrieval), as it could subserve as a first step in connecting the lingual, 

fusiform, and parahippocampal regions in the ventral visual stream, upwards to the dorsal visual stream 

and thus, possibly via other tracts such as the AF or SLF, eventually to the IPS and superior parietal 

lobe (Rykhlevskaia et al., 2009). Furthermore, recent fMRI research in children has indicated middle 

temporal regions as being increasingly activated during fact retrieval, which coincide with the 

anatomical location of the ILF (Polspoel et al., 2017). The function of the ILF could thus go beyond 

fluency in processing numerical symbols, but it may also be relevant for general arithmetic fluency. 

Further research is thus needed to define the exact role of the ILF within arithmetic fluency.  

Correlations were also found between arithmetic – yet mainly in subtraction – and the HMOA values of 

the right UF. This result concurs with previous research, in which increased FA in the right UF was 

observed when using TBSS to compare math-gifted children to controls (ages 12 to 15; Navas-Sánchez 

et al., 2014). The exact function of the UF within arithmetic, however, is still unclear. The main role of 

the UF, which connects the lateral orbitofrontal cortex with the anterior temporal lobes, seems to lie 

within temporal lobe-based mnemonic associations (Von Der Heide, Skipper, Klobusicky, & Olson, 

2013). As such, the UF could have an assisting role within memory, which could also explain the tract’s 

role within arithmetic. Recently, a meta-analysis in children’s arithmetic also highlighted the importance 

of the right insular cortex (i.e., a locus of the right UF) within calculation (Arsalidou et al., 2018), thus 

supporting the possibility of importance for this tract within children’s arithmetic. A recent fMRI study 

on the neural differences between fact retrieval and procedural strategy use even points towards 

relevance for temporal regions and the orbitofrontal cortex during fact retrieval (Polspoel et al., 2017). 

It is thus plausible that the UF maintains this connection and is consequently important for more 

automated processes within arithmetic. The association between UF and individual differences in 

arithmetic, on the other hand, needs to be interpreted with caution, as the Bayesian analyses indicated 

that the evidence for this association was mainly anecdotal. 

It is important to point out that none of the other previously found associations between white matter 

tracts (i.e., CC, CR, CST, AF, SLF, or IFOF; Matejko & Ansari, 2015) and mathematical abilities were 

found in the present study. The Bayesian statistics implemented in the current study even pointed to 

towards, albeit not always substantial, evidence for the null hypothesis of no association between 

arithmetic and the AF and SLF, even though these tracts were found to be related to children’s arithmetic 

in previous studies (e.g., Tsang et al., 2009; Van Beek et al., 2014).  

The absence of associations with these tracts in our results can be explained by various factors. First, in 

contrast to the current study in which we tried to minimize confounds of maturation, the available studies 

have been conducted in typically developing samples of children with wider age ranges than those of 
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the current study (e.g., 7 to 9 years old; Van Eimeren et al., 2008; 10 to 15 years old; Tsang et al., 2009), 

leaving it unresolved to which extent found associations are due to maturation or to actual individual 

differences in performance. Second, the absence of a correlation with some of the previously observed 

tracts in the current study might also be due to the specificity of the tasks under study. The current study 

used results on the TTA (i.e., a timed arithmetic task based on fluency, with basic arithmetic items across 

all operations) for correlations with white matter indices. Some of the previous studies, however, did 

not focus on arithmetic fluency, but implemented a broader and/or untimed assessment of mathematical 

abilities. For example, Van Eimeren et al. (2008) assessed mathematics through the numerical 

operations and mathematical reasoning subtests of the WIAT-II, and in Navas-Sánchez et al. (2014), the 

math-gifted children were selected based on their enrolment in a program for mathematically talented 

children, and not on their arithmetic skills. This could also explain differences in results, as the tracts 

found in the current study might be specific to arithmetic fluency, but might not be found for individual 

differences in other mathematical skills, such as mathematical reasoning. Finally, all of the existing 

dMRI literature in the field of arithmetic has implemented classic DTI, which, as mentioned, has some 

methodological constraints (Assaf et al., 2004; Dell'Acqua et al., 2013; Farquharson et al., 2013; 

Tournier et al., 2007). Even though, as the results of the current study point out, DTI and spherical 

deconvolution analyses lead to similar results, the spherical deconvolution analyses are more accurate 

and provide stronger results. Consequently, it is possible that, in combination with a wider age range 

and with the use of different mathematical tasks, the use of classic DTI in previous studies might have 

led to the analyses not being powerful enough to consistently detect relationships with the right ILF, or 

to observing relationships with other tracts such as the AF or SLF.  

The associations of the right ILF with arithmetic fluency were also observed across operations, even 

though in previous research, neural differences between operations have been observed, both 

functionally (e.g., De Smedt et al., 2011; Prado et al., 2011) and structurally (Van Beek et al., 2014). 

These neural differences, however, were most likely due to differences in the arithmetic strategies used 

to solve items of a certain operation (Polspoel et al., 2017; Prado et al., 2011). As the TTA largely 

consists out of single-digit items, the likelihood of a fact retrieval strategy in the children under study 

occurring across all operations was large, which might explain the fact that no clear operation differences 

were observed. However, our measure of arithmetic did not allow us to analyze the used strategies for 

each operation, as the problems were not selected to specifically elicit one strategy or the other, and we 

did not ask children to report on their strategy use, thus making it hard to form conclusions on this issue. 

We contend that future research implements more carefully designed tests of each operation (i.e., 

targeting particular strategies) or the collection of strategy data through verbal self-reports as an 

alternative avenue. Such research might also aid in clearly defining the role of the ILF within arithmetic.  

In line with previous research (e.g., Farquharson et al., 2013), the current study shines light on dMRI 

research that goes beyond classic DTI, and implements more complex non-tensor models such as 
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spherical deconvolution when studying arithmetic ability. Furthermore, it needs mentioning that the 

existing studies on white matter involvement in children’s arithmetic often collected data from children 

with wide age ranges (e.g., 7 to 10 or 10 to 15 years old; Matejko & Ansari, 2015), which is a time 

period characterized by large white matter development (e.g., Barnea-Goraly et al., 2005). 

Consequently, merging data across wide age ranges, even though statistically controlled for, might lead 

to the over-interpretation of associations between differences in connectivity and differences in 

mathematical development, as results might still be affected by maturational confounds. To take this 

problem into account, the current study was conducted with a research sample of only 9 to 10 year-olds 

(i.e., fourth graders). Accordingly, it is crucial to emphasize the need for similar studies in children of 

different ages, such as first or second graders (i.e., children who are at the beginning of their arithmetic 

development) or children in secondary school. Studies with a longitudinal follow-up throughout 

development are also deemed necessary.  

It is also important to emphasize that learning arithmetic does not occur in isolation, but that it is highly 

dependent on the general educational environment in which these skills evolve, as well as the emphasis 

on automatization processes within the mathematics curriculum (De Smedt, 2016). For example, a 

comparison of the fact retrieval frequencies in single-digit addition and subtraction in American (Geary 

et al., 2004) and Belgian (Torbeyns et al., 2004) third-graders revealed a relative retrieval frequency of 

38% and 88%, respectively. As all participants of the current study came from Belgian elementary 

schools, high automatization skills were to be expected. In accordance, it is plausible that studies across 

cultures with differences in the emphasis on such automatization processes might point towards the 

involvement of different white matter tracts for the same set of arithmetic items as were found in our 

sample. 

Finally, we would like to emphasize the necessity of similar research, not just across age groups or 

different cultures, but in atypical populations, such as math-gifted children, or children with 

developmental dyscalculia, as this could deliver additional insights into the neural development of these 

mathematical skills.  

Alongside the abovementioned existing studies, the current study implemented a structural approach to 

connectivity (i.e., dMRI), leaving the possibility open of studying connections between neural regions 

involved in children’s arithmetic in a functional manner. Functional connectivity analyses use fMRI to 

study consistent signal changes in anatomically distant regions, yet only a very limited number of such 

studies exist within arithmetic (Peters & De Smedt, 2018). In all, we feel that these suggestions yield 

the possibility of providing a fruitful contribution to the emerging field of educational neuroscience. 
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5.5. Appendix 

 
Figure 5.A1. Overview of the white matter pathways under study, delineated with spherical 

deconvolution (left) and classic DTI (right): in red the SLF I, SLF II, and SLF III; in fuchsia the AF; in 

yellow the IFOF; in cyan the ILF; in green the UF; in blue the CR. 

Note: The tracts for both images were delineated on the same participant. Using classic DTI, the SLF is often not traceable, as 

was the case for this participant. For purpose of clarity, the corpus callosum is not depicted in this image, yet it was also under 

study. 
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Table 5.A1 

Results of correlations between the HMOA values (spherical deconvolution) and FA values (DTI) of the 

AF, SLF, IFOF, CST, CR, and CC, and participants’ scores on the TTA for each column and in total 

  TTA 

addition 

TTA 

subtraction 

TTA 

multiplication 

TTA 

division 

TTA 

mix 

TTA 

total 

  HMOA FA HMOA FA HMOA FA HMOA FA HMOA FA HMOA FA 

Left 

AFant 
Pearson’s r -.048 -0.152 .138 -.059 .043 -.030 .110 .078 -.015 .013 .061 -.023 

BF10 0.144 0.101 0.450 0.143 0.231 0.163 0.361 0.293 0.168 0.201 0.258 0.168 

p-value .625 0.326 .178 .706 .386 .847 .231 .614 .541 .932 .342 .880 

Right 

AFant 
Pearson’s r .053 -0.001 .264 .148 .128 -.115 .121 .129 .150 .055 .168 .065 

BF10 0.246 0.181 1.670 0.489 0.415 0.109 0.394 0.419 0.499 0.248 0.586 0.266 

p-value .361 0.996 .036 .322 .196 .441 .209 .387 .157 .716 .129 .662 

Left 

AFdir 
Pearson’s r -.009 -.029 .087 .239 -.071 -.037 .032 .118 .073 .150 .033 .116 

BF10 0.174 0.157 0.307 1.228 0.130 0.152 0.217 0.385 0.278 0.500 0.218 0.378 

p-value .523 .845 .280 .105 .682 .807 .415 .429 .314 .313 .412 .438 

Right 

AFdir 
Pearson’s r .049 -.049 .205 .177 -.059 .032 .204 .257 .165 .090 .146 .136 

BF10 0.240 0.161 0.837 0.596 0.137 0.233 0.833 1.251 0.569 0.323 0.482 0.438 

p-value .372 .768 .084 .281 .652 .849 .084 .114 .134 .586 .163 .408 

Left 

AFpost 
Pearson’s r -.087 -.079 .035 .137 -.007 .093 .130 .167 .053 .173 .040 .123 

BF10 0.122 0.126 0.221 0.445 0.175 0.320 0.423 0.579 0.245 0.609 0.227 0.399 

p-value .720 .599 .407 .360 .520 .534 .191 .262 .363 .246 .395 .411 

Right 

AFpost 
Pearson’s r -.069 .041 .007 .240 -.025 .185 -.038 .260 -.025 .258 -.032 .234 

BF10 0.132 0.228 0.189 1.231 0.160 0.684 0.151 1.573 0.161 1.545 0.155 1.153 

p-value .676 .785 .480 .105 .567 .214 .601 .078 .565 .080 .586 .113 

Left 

SLF1 
Pearson’s r .080 / .151 / .236 / .162 / .262 / .202 / 

BF10 0.293 / 0.505 / 1.174 / 0.551 / 1.628 / 0.810 / 

p-value .296 / .155 / .055 / .139 / .037 / .087 / 

Right 

SLF1 
Pearson’s r -.006 / .072 / -.083 / -.050 / .051 / -.001 / 

BF10 0.176 / 0.277 / 0.124 / 0.143 / 0.242 / 0.181 / 

p-value .516 / .315 / .710 / .631 / .368 / .502 / 

Left 

SLF2 
Pearson’s r -.048 / -.017 / .036 / .034 / .044 / .012 / 

BF10 0.144 / 0.167 / 0.222 / 0.219 / 0.232 / 0.194 / 

p-value .626 / .545 / .404 / .411 / .386 / .467 / 

Right 

SLF2 
Pearson’s r -.196 / -.133 / -.169 / .031 / -.114 / -.119 / 

BF10 0.083 / 0.102 / 0.091 / 0.216 / 0.110 / 0.108 / 

p-value .906 / .814 / .871 / .417 / .777 / .787 / 

Left 

SLF3 
Pearson’s r -.044 / .188 / -.073 / .040 / -.065 / .022 / 

BF10 0.147 / 0.706 / 0.129 / 0.227 / 0.133 / 0.205 / 

p-value .615 / .103 / .687 / .394 / .669 / .441 / 

Right 

SLF3 
Pearson’s r -.081 / .186 / .017 / -.027 / .058 / .039 / 

BF10 0.125 / 0.689 / 0.199 / 0.159 / 0.253 / 0.226 / 

p-value .707 / .106 / .456 / .572 / .350 / .397 / 

Left 

IFOF 
Pearson’s r -.068 -.091 .213 .217 .012 -.079 .069 .082 .111 .135 .087 .077 

BF10 0.132 0.120 0.910 0.947 0.194 .0126 0.271 0.296 0.363 0.440 0.307 0.286 

p-value .649 .542 .151 .144 .935 .596 .647 .585 .459 .365 .560 .609 
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Note: Parts of the SLF were only traceable in 5 out of 47 participants with DTI, making the correlation analyses 

with the FA index impossible. 

 

  

Right 

IFOF 
Pearson’s r -.066 -.053 .130 .160 -.031 .037 -.110 .141 -.062 .082 -.031 .095 

BF10 0.133 0.141 0.422 0.543 0.156 0.223 0.112 0.461 0.136 0.296 0.156 0.324 

p-value .661 .722 .384 .283 .837 .806 .463 .345 .681 .585 .837 .525 

Left 

CST 
Pearson’s r .114 -.018 .150 .081 .097 .020 .030 .035 .225 .080 .137 .049 

BF10 0.374 0.168 0.494 0.295 0.330 0.204 0.216 0.222 1.026 0.294 0.447 0.241 

p-value .450 .905 .321 .593 .521 .895 .842 .817 .132 .597 .363 .748 

Right 

CST 
Pearson’s r .098 .014 .182 .205 .246 .174 .116 -.039 .180 .168 .184 .113 

BF10 0.331 0.198 0.663 0.830 1.293 0.615 0.378 0.152 0.647 0.580 0.670 0.370 

p-value .519 .927 .225 .171 .100 .246 .444 .798 .231 .265 .222 .455 

Left 

CR 
Pearson’s r -.123 .023 -.211 .258 -.386 .078 -.124 .047 -.286 .146 -.247 .131 

BF10 0.108 0.208 0.081 1.503 0.052 0.289 0.107 0.238 0.066 0.481 0.073 0.423 

p-value .417 .878 .160 .083 .008 .607 .411 .757 .054 .332 .098 .387 

Right 

CR 
Pearson’s r .091 -.014 .210 .149 .087 -.018 -.009 -.126 .139 .067 .116 .011 

BF10 0.315 0.171 0.872 0.491 0.309 0.168 0.176 0.107 0.453 0.270 0.378 0.194 

p-value .550 .926 .161 .324 .564 .908 .953 .403 .357 .658 .444 .944 

CC 

Forc. 

Minor 

Pearson’s r .137 -.026 .210 .096 .157 .045 .187 .183 .335 .120 .237 .106 

BF10 0.446 0.159 0.883 0.326 0.528 0.235 0.697 0.671 4.718 0.389 1.193 0.352 

p-value .359 .860 .157 .521 .293 .761 .209 .219 .021 .423 .109 .476 

CC 

Forc. 
Major 

Pearson’s r -.104 -.207 -.056 -.033 -.146 -.089 -.025 .105 .009 -.055 -.065 -.047 

BF10 0.114 0.080 0.139 0.155 0.098 0.121 0.161 0.349 0.190 0.139 0.133 0.145 

p-value .487 .162 .709 0.827 .327 .552 .869 .481 .954 .712 .662 .754 
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CHAPTER 6 
 

 

The Added Value of Structural Brain Imaging Measures in 

Predicting Children’s Academic Achievement:  

The Case of Arithmetic Fluency   
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Abstract 

The current study aimed to investigate the added value of various structural brain imaging measures on 

top of behavioral measures in predicting individual differences in children’s arithmetic fluency. 

Participants were 43 typically developing 9-10-year-olds. Individual differences in grey matter structure 

were investigated by looking at volume through voxel-based morphometry, and at cortical complexity 

through fractal dimensionality. Individual differences in white matter were examined through diffusion 

weighted magnetic resonance imaging and were analyzed via spherical deconvolution. As behavioral 

predictors, children’s  numerical magnitude processing, working memory, and rapid automatized 

naming were assessed. Motor reaction and intelligence were assessed as control variables. Neural and 

behavioral measures were added to a series of multiple regression models to predict arithmetic fluency. 

Symbolic number processing and RAN emerged as critical behavioral predictors. The white matter 

integrity of the right inferior longitudinal fasciculus and the cortical complexity of the left postcentral 

gyrus were found to be critical neuroanatomical predictors. Adding both behavioral and neural measures 

to one model revealed that the neuro-anatomical predictors of arithmetic fluency provided the best 

prediction of performance. These results highlight the value of brain imaging measures for the prediction 

of cognitive skills and strive towards a bridge between cognitive neuroscience and education. 
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6.1. Introduction 

The ability to add, subtract, multiply or divide numbers, or arithmetic, is an essential skill for further 

mathematical and educational development (Kilpatrick et al., 2001). Within children’s arithmetic, 

however, large individual differences exist, which has led recent research to try and gain insights into 

which cognitive factors might explain or predict these individual differences (e.g., Peng et al., 2016; 

Schneider et al., 2017; Vanbinst & De Smedt, 2016). Furthermore, over the last few years, many 

neuroimaging studies have also aimed at unraveling the neural basis of these individual differences in 

children’s arithmetic, mainly on a functional, but also at a structural level (e.g., Arsalidou et al., 2018; 

Peters & De Smedt, 2018). From a perspective of educational neuroscience, which places itself at the 

junction of cognitive neuroscience, psychology, and educational research, these studies are exceedingly 

promising to understand the biological processes that play a role for educationally relevant skills, but 

additionally, in terms of the so-called process of neuro-prediction (De Smedt & Grabner, 2015), to 

predict educational outcomes, and generate predictions to be tested in educational research (De Smedt, 

2018a; Hoeft et al., 2011; Howard-Jones et al., 2016; Supekar et al., 2013). For example, brain imaging 

data collected before the acquisition of certain behavioral skills, such as arithmetic or reading, could 

allow the identification of at-risk children before the start of formal education, leading to opportunities 

for early intervention (Diamond & Amso, 2008; Goswami, 2008; Ozernov-Palchik & Gaab, 2016). 

Moreover, these neuroimaging studies can also investigate if brain imaging measures are able to predict 

subsequent learning gains (Hoeft et al., 2011), or if they can predict responses to educational 

interventions (Supekar et al., 2013). In all, these brain imaging measures thus clearly have value in the 

prediction of the individual differences that exist in children’s arithmetic. However, to this day, hardly 

any studies have studied the various relevant behavioral and neural correlates of arithmetic 

simultaneously in one sample of participants. Accordingly, it is highly interesting to consider the added 

value of different neural predictors for children’s arithmetic fluency on top of well-known cognitive 

correlates, and whether the combination of behavioral and brain imaging measures leads to better 

prediction of children’s arithmetic fluency. The current study aims to fill this gap by calculating multiple 

regression models with behavioral measures known to be strong predictors of arithmetic achievement 

(including numerical magnitude processing, working memory, and rapid automatized naming) and 

structural brain imaging data, including measures of both grey and white matter based on previous 

research (Arsalidou et al., 2018; Matejko & Ansari, 2015; Moeller et al., 2015; Peters & De Smedt, 

2018) and collected through novel, more advanced imaging techniques (i.e., cortical complexity 

analyses and spherical deconvolution), on typically developing children’s arithmetic fluency. To 

minimize maturational confounds, the current study focuses on children with a narrow age range (i.e., 

9-10 year-olds; all 4th graders), at a point in development where considerable arithmetic knowledge has 

already been automatized. 
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6.1.1. Behavioral correlates  

A prominent domain-specific cognitive predictor of mathematic achievement is numerical magnitude 

processing. This ability to understand and process numerical magnitude information is considered an 

important foundation for higher-level mathematical competence (Ansari, 2008; De Smedt, Noël, 

Gilmore, & Ansari, 2013; Schneider et al., 2017). Generally, children's magnitude representations have 

been studied through magnitude comparison tasks, in which children have to, as quickly as possible, 

indicate the largest of two presented numerosities (Ansari, 2008), in both a symbolic (digits) and non-

symbolic (dots) format. Across development, individual differences in both tasks are linked to general 

arithmetic skills (e.g., Inglis, Attridge, Batchelor, & Gilmore, 2011; Price, Palmer, Battista, & Ansari, 

2012), however, the association for symbolic numerical magnitude processing, which includes the 

notion that we can obtain abstract representations of numerical magnitude, is found to be a stronger and 

more robust predictor of arithmetic achievement (r = .30; Schneider et al., 2017). Furthermore, recent 

studies (e.g., Vanbinst et al. 2015a; Vanbinst, Ghesquière, & De Smedt, 2015b) have shown that 

symbolic numerical magnitude processing is especially important for children’s ability to acquire and 

retrieve arithmetic facts, potentially over the entire primary school period (Vanbinst & De Smedt, 2016). 

Accordingly, symbolic numerical magnitude processing becomes important for further mathematical 

development as arithmetic facts could be stored in long-term memory in a meaningful way (i.e., 

according to their magnitude; Butterworth, Zorzi, Girelli, & Jonckheere, 2001; Robinson, Menchetti, & 

Torgesen, 2002).  

Other than numerical magnitude processing, domain-general cognitive correlates of arithmetic 

achievement must also be considered for their predictive value. One of the most prominent domain-

general predictors of arithmetic is working memory (for a meta-analysis, see Peng et al., 2016), which 

refers to the capacity of storing information for short periods of time when engaging in cognitively 

demanding activities (Baddeley, 1986). From a theoretical viewpoint, working memory is important for 

arithmetic development as arithmetic often involves the processing and storing of information 

simultaneously (e.g., remembering numbers during multi-digit calculations and word-problem solving; 

e.g., Raghubar, Barnes, & Hecht, 2010; Swanson & Jerman, 2006). The meta-analysis by Peng et al. 

(2016) confirmed the role of working memory as a domain-general predictor of mathematics 

performance and found that the relationship between working memory and arithmetic (i.e., whole-

number calculations) is of medium strength (r = .35). Furthermore, the meta-analysis also showed that 

these associations were similar across domains of working memory (i.e., verbal, visuospatial, or 

numerical), yet they were different depending on the mathematical ability under study (Peng et al., 

2016). 

Another domain-general cognitive structure that can act as a predictor for arithmetic fluency lies in rapid 

automatized naming (RAN), or the fast retrieval of phonological information from long term memory 

(De Smedt, 2018b; De Smedt, Taylor, Archibald, & Ansari, 2010; Koponen, Salmi, Eklund, & Aro, 
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2013). For example, the well-known triple code model (Dehaene & Cohen, 1995) states that numbers 

can be represented in a verbal-phonological code, which is activated during the retrieval of arithmetic 

facts from semantic memory. In general, it has thus been suggested that poor (access to) phonological 

representations in long-term memory can interfere with retrieval, manipulation, and retention of 

phonological codes; if phonological representations for number words or facts in long-term memory are 

weak, they will be more difficult to retrieve quickly and accurately (Koponen et al., 2013; Simmons & 

Singleton, 2008). Rapid automatized naming thus reflects this ability to easily and rapidly access 

phonological information stored in long-term memory (Torgesen, Wagner, and Rashotte, 1994; 

Torgesen, Wagner, Rashotte, Burgess, & Hecht, 1997). Accordingly, measures of RAN have been 

shown to predict arithmetic achievement (e.g., Chard et al., 2005; Hecht et al., 2001; Koponen, 

Mononen, Räsänen, & Ahonen, 2006; Landerl, Bevan, & Butterworth, 2004; Mazzocco & Grimm, 

2013).  

6.1.2. Structural grey matter imaging 

Over the past few years, many studies have aimed to unravel the neural basis of children’s arithmetic, 

but have mainly focused on grey matter functionality. The amount of studies looking at the structural 

grey matter correlates of children’s arithmetic, however, is very scarce (Arsalidou et al., 2018; Peters & 

De Smedt, 2018). The few studies that did study these structural correlates (see Peters & De Smedt, 

2018 for an overview) mainly implemented voxel-based morphometry, which typically uses T1-

weighted volumetric MRI scans and performs statistical tests across voxels to identify volume 

differences between groups (Whitwell, 2009). Accordingly, some structural imaging studies have 

compared groups of children who differed in their level of arithmetic skill (Isaacs et al. 2001; Ranpura 

et al. 2013; Rotzer et al. 2008; Rykhlevskaia et al. 2009), and have mainly observed group differences 

(i.e., reduced grey matter volume for the children with deficits in calculation ability) in the bilateral 

intraparietal sulci, left inferior frontal gyrus, bilateral middle frontal gyri, and bilateral fusiform gyri.  

Within voxel-based morphometry, it is also possible to perform regression analyses across voxels to 

assess neuroanatomical correlates of cognitive or behavioral skills, thus applying a more dimensional 

approach. Doing so, a small amount of studies also exists on the association between grey matter volume 

and arithmetic within typically developing children. For example, a study by Li et al. (2013) revealed 

that, in 9 to 11 year-old Chinese children, individual differences in arithmetic were positively correlated 

with grey matter volume in the left intraparietal sulcus. Using a longitudinal design, Evans et al. (2015) 

observed that grey matter volume of various parts of the arithmetic brain network (i.e., posterior parietal 

cortex, ventral occipito-temporal cortex, and prefrontal cortex) predict the growth in arithmetic across 

primary school. A study by Price et al. (2016) showed that grey matter volume in the left intraparietal 

sulcus at the end of the 1st grade is related to math competence at the end of the 2nd grade. Finally, 

Supekar et al. (2013) observed that the volume of the right hippocampus predicted the learning gains of 
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one-on-one tutoring sessions in third-graders, with larger hippocampal volumes before the intervention 

predicting larger intervention gains. 

A more recent study (Polspoel et al., submitted) also aimed to contribute knowledge on which grey 

matter regions are important for children’s arithmetic at a structural level. Polspoel et al. (submitted) 

tested 47 typically developing 9-10 year-old children (a small age range was selected to minimize 

maturational confounds) and observed positive correlations between arithmetic fluency at this single 

point in development and the volume of the right fusiform gyrus. Furthermore, Polspoel et al. 

(submitted) went beyond the limitations of voxel-based morphometry, and also studied cortical 

complexity based on fractal dimensionality (i.e., the notion that fractal geometry can be used to quantify 

neural complexity) as discussed in Yotter et al. (2011). Unlike voxel-based morphometry, cortical 

complexity is sensitive to other differences in grey matter structure (e.g., the shape of structures) that 

are not indexed by volume or cortical thickness. Such fractal dimensionality analyses have been 

implemented in comparing patient groups (e.g., Alzheimer’s disease; Ruiz de Miras et al., 2017 or 

Williams syndrome; Thompson et al., 2005) to controls, and have also been used to study age and gender 

related differences (Luders et al., 2004; Madan & Kensinger, 2016), and, most notably, differences in 

cognitive function (King et al., 2010; Im et al., 2006; Mustafa et al., 2012; Sandu et al., 2014). 

Implementing this novel technique, Polspoel et al. (submitted) observed positive correlations between 

children’s arithmetic fluency and cortical complexity in the left postcentral gyrus, the right insular cortex 

(more specifically the right insular sulcus), and the left orbital sulcus.  

6.1.3. Structural white matter imaging 

As the brain regions of the well-known fronto-parietal arithmetic brain network (Menon, 2015) are not 

adjacent, but spatially distant from one another, it is also crucial to study the structural white matter 

connections between these regions. Furthermore, the connectivity between brain regions is integral to 

efficient cognitive processing (Johansen-Berg, 2010), making understanding the role of white matter 

pathways in arithmetic crucial for further clarification of the neural mechanisms of individual 

differences in arithmetic abilities (Matejko & Ansari, 2015). These white matter connections can be 

examined with diffusion-weighted Magnetic Resonance Imaging (dMRI), for which the most frequently 

applied model to relate the dMRI signal to the underlying neuroanatomy is Diffusion Tensor Imaging 

(DTI). This classic DTI model estimates the degree to which diffusion is not spherical but increased in 

a certain direction (fractional anisotropy or FA) per voxel (Tournier et al., 2007).  

Structural connectivity research in children’s arithmetic, however, is scarce and inconclusive. Many 

different white matter pathways have been found to be related to individual differences in arithmetic or 

other mathematical skills (see Matejko & Ansari, 2015, and Moeller et al., 2015 for reviews). These 

pathways include the arcuate fasciculus (Van Beek et al., 2014), superior longitudinal fasciculus (Li et 

al., 2013; Kucian et al., 2013; Navas-Sánchez et al., 2014; Rykhlevskaia et al., 2009; Tsang et al., 2009), 
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inferior longitudinal fasciculus (Li et al., 2013; Navas-Sánchez et al., 2014; Rykhlevskaia et al., 2009), 

inferior fronto-occipital fasciculus (Li et al., 2013; Navas-Sánchez et al., 2014; Rykhlevskaia et al., 

2009; Van Eimeren et al., 2008), uncinate fasciculus (Navas-Sánchez et al., 2014), corona radiata 

(Navas-Sánchez et al., 2014; Van Eimeren et al., 2008), corticospinal tract (Navas-Sánchez et al., 2014; 

Rykhlevskaia et al., 2009), and corpus callosum (Navas-Sánchez et al., 2014; Rykhlevskaia et al., 2009). 

All of these studies, however, applied classic DTI to study the various white matter tracts, which is 

subject to methodological limitations (e.g., Assaf et al. 2004; Dell'Acqua et al. 2013; Farquharson et al. 

2013; Tournier et al. 2007). These limitations include the fact that DTI can only estimate the direction 

of one fiber per imaging voxel, leading to an oversimplification or inaccurate representation of the 

underlying anatomy. Furthermore, these studies were all conducted in research samples with wide age 

ranges (e.g., 7 to 10 or 10 to 15 years old; Matejko & Ansari 2015), which, even though statistically 

controlled for, might lead to maturational confounds and possible over-interpretation of associations 

between differences in connectivity and differences in mathematical development. 

A study by Polspoel et al. (2018), on the other hand, correlated the white matter integrity of these 

previously observed arithmetic-related white matter pathways, to typically developing 9-10-year-old 

children’s (i.e., the same 47 children as Polspoel et al., submitted) arithmetic fluency. In doing this, 

Polspoel et al. (2018) went beyond classic Diffusion Tensor Imaging (DTI), to tackle the existing 

methodological limitations by implementing the more novel and complex non-tensor model spherical 

deconvolution. Spherical deconvolution has the asset that it can characterize the orientation of more than 

one fiber per voxel, consequently providing the possibility of making more accurate statements about 

the observed associations with white matter tracts (Dell’Acqua et al., 2007; Tournier et al., 2004). 

Furthermore, to extract information on microscopic properties of the white matter tracts, the hindrance 

modulated orientational anisotropy (HMOA) index was derived for quantitative spherical deconvolution 

analyses. Using this more advanced technique to study the associations between white matter tracts and 

children’s arithmetic fluency, Polspoel et al. (2018) observed significant positive correlations mainly 

between the right inferior longitudinal fasciculus (ILF) and children’s arithmetic fluency across 

operations. 

6.1.4. Current study 

The current study aims to investigate the added predictive value of previously observed structural grey 

and white matter imaging measures, on top of well-known behavioral measures, for children’s arithmetic 

fluency. In order to investigate this added value in predicting children’s arithmetic fluency, the current 

study will combine and contrast behavioral measures (including numerical magnitude processing, 

working memory and RAN) and brain imaging measures based on previous reviews and meta-analyses 

(Arsalidou et al., 2018; Matejko & Ansari, 2015; Moeller et al., 2015; Peters & De Smedt, 2018) to 

calculate multiple regression models on typically developing children’s arithmetic fluency. Doing so, 

the current study will use a sample with a narrow age range to minimize maturational confounds. 
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Based on the previous literature, we hypothesize that the collected behavioral measures will show unique 

associations with the children’s arithmetic fluency. Furthermore, we expect that, similarly to previous 

research in reading (Hoeft et al., 2007), the regression models with both relevant behavioral and brain 

imaging measures will be more predictive of children’s arithmetic fluency than regression models that 

only take either behavioral or brain imaging measures into account. 

 

6.2. Methods 

6.2.1. Participants 

In total, data of 50 typically developing Flemish 4th graders were collected. These participants were the 

same as in Polspoel et al. (submitted), which reported the results on the associations between arithmetic 

and the voxel-based morphometry and cortical complexity data of this sample, and Polspoel et al. (2018), 

which reported the results on the associations between arithmetic and the dMRI data of this sample. 

Data of 7 children were discarded due to technical acquisition problems (n = 1), excessive motion (n = 

1; see below for more details), problems during standardized testing (n = 1), or data quality (n = 4; see 

below for more details). Of the remaining 43 participants (ages 9 to 10; M = 9.68 years, SD = 0.34) 20 

were girls, 23 were boys, and 8 children were left-handed. None of the participants had a history of 

learning difficulties, or neurological or psychiatric disorders. All participants were recruited via the 

elementary school they attended, all nearby the university, and were given a financial compensation for 

their participation. Written informed consent was obtained from a parent or legal guardian of each 

participating child. The study was approved by the Medical Ethical Committee of the University of 

Leuven (S59167).  

All children were asked to take part in two test sessions. The first session contained the collection of 

behavioral data through various measures. In the second session, the MRI data were acquired. The 

second session always followed the first session by two to three weeks (M = 19.54 days, SD = 6.34), 

and also contained the collection of two different fMRI experiments that are not reported here (e.g., 

Polspoel et al. 2017).  

6.2.2. Arithmetic assessment 

First of all, children’s arithmetic competence was measured through the Tempo Test Arithmetic (TTA; 

de Vos, 1992), as the main variable of interest. This standardized arithmetic test, similar to the Math 

Fluency subtest of the Woodcock-Johnson III tests of Achievement (Woodcock et al., 2003), is sensitive 

to individual differences in arithmetic fluency. The TTA contains five columns of increasingly difficult 

arithmetic items (i.e., one column per operation and a fifth column with mixed operations). Participants 

get one minute per column to write down as many correct answers as possible. The current sample 

included a small age range, leading to all participating children being part of the same norm group. 
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Consequently, the raw scores (i.e., the sum of the amount of correctly answered items per column) were 

used for statistical analyses.  

6.2.3. Cognitive measures 

6.2.3.1. Numerical magnitude processing 

To assess the children’s numerical magnitude processing (i.e., as a domain-specific predictor of 

arithmetic), a number comparison task was used (De Smedt & Gilmore, 2011). For this task, two 

numerosities are depicted on a computer screen (one on the left, one on the right) in either a symbolic 

(i.e., Arabic digits) or non-symbolic (i.e., dots) format. The goal is to indicate the larger of two response 

alternatives as quickly as possible. Both accuracy and reaction time were recorded, yet, as ceiling levels 

were reached for accuracy (symbolic M = 97.77%; non-symbolic M = 97.33%), only reaction time was 

used for analysis.  

6.2.3.2. Working memory 

As a domain-general predictor, working memory was assessed through the Corsi block-tapping test 

(Corsi, 1972), and a backwards digit span task (De Smedt et al., 2009). For the Corsi block-tapping test, 

children have to repeat a pattern of blocks tapped by the assessor, in increasing difficulty. The backwards 

digit span task involves the serial recall of spoken lists of digits between one and nine in reverse order. 

For both working memory tasks, the sequence increased with one block/number if two out of three 

sequences of the same size were correctly repeated. If not, the task was stopped. The amount of correctly 

repeated sequences was registered for analysis.  

6.2.3.3. Rapid automatized naming 

As another domain-general predictor, a RAN task was used to measure the children’s fast retrieval of 

phonological information from long-term memory. The RAN task assesses how fast children can name 

colors, objects (all high-frequent, one-syllable Dutch words), numbers, and letters (van den Bos, 1998). 

Due to its numerical nature, however, the numbers subtest was not assessed to exclude possible 

confounds with the TTA. Each child was thus presented with three different sheets of paper, containing 

ten rows and five columns of images. The first sheet existed of rectangular shapes in five different colors 

(i.e., yellow, blue, green, red and black), the second one of five different objects (i.e., tree, duck, chair, 

bike and scissors), the third one of five different letters (i.e., a, d, o, p and s). For each page, participants 

have to name all colors, objects, or letters as fast as possible. Participant’s timing was registered for 

every page separately. For data analysis, the average reaction time across pages was used.  

6.2.4. Control measures 

Finally, intelligence and motor reaction time were assessed as control variables. The WISC-III-NL 

Block Design and Vocabulary subtests were used to take intellectual ability into account, as measures 

of performance and verbal IQ, respectively (Wechsler, 2005). For intellectual ability, norm scores were 
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used for the statistical analyses. Motor reaction time was measured to control for motoric speed during 

behavioral assessment, by having participants indicate which of two figures (always a circle, triangle, 

square, star, or heart; one on the left, one on the right) presented on a computer screen was filled in white 

by, as quickly as possible, pressing the corresponding key. Accuracy and reaction time were recorded 

for each trial, yet, as ceiling levels were reached for accuracy (M = 96.86%), only reaction time was 

used for analysis (De Smedt and Boets, 2010).  

6.2.5. MRI data acquisition and pre-processing 

All MRI scanning was done with a Philips Ingenia 3.0T CX MRI scanner with a SENSE 32-channel 

head-coil, located at the Department of Radiology of the University Hospital in Leuven, Belgium. Wash 

cloths were used to stabilize the children’s heads and consequently minimize head motion. Next to the 

T1 and dMRI sequences, as a part of data collection for two different studies (e.g., Polspoel et al., 2017), 

the scanning session also included four fMRI runs of approximately 5 minutes each, leading to a total 

scanning time of approximately 40 minutes. 

For the anatomical T1 images, the following parameters were implemented: 0.98 × 0.98 × 1.2 mm voxel 

size, 256 × 256 acquisition matrix, 8º flip angle, TE 4.6 ms, 250 × 250 × 218 mm field of view 

(approximately 8 minutes of scanning time). For the voxel-based morphometry and cortical complexity 

analyses, all preprocessing was done with the Computational Anatomy Toolbox (CAT12) within the 

Statistical Parametric Mapping software package for Matlab (SPM12, Wellcome Department of 

Cognitive Neurology, London), following the standard processing pipeline within the CAT12 software.  

Preprocessing included segmentation of the anatomical images; both grey matter and surface estimations 

were calculated. Next, for data quality and sample homogeneity testing, the Mahalanobis distance was 

used, which is a combination of weighted overall image quality (i.e., a measure of noise and spatial 

resolution before preprocessing) and mean correlation (i.e., a measure of the homogeneity of the data 

and thus the quality after preprocessing). Data with a Mahalanobis distance greater than two standard 

deviations of the sample average (n = 4) were discarded for further analysis. Finally, spatial smoothing 

was performed with 8 mm (voxel-based morphometry) and 20 mm (cortical complexity) FWHM 

Gaussian smoothing kernels. After preprocessing, mean values for volume and cortical complexity were 

estimated within each ROI (based on the existing literature; Arsalidou et al., 2018; Peters & De Smedt, 

2018) and extracted for further analysis. 

For the dMRI acquisition, sagittal slices were obtained using the following parameters: 60 noncollinear 

directions b-value 2000 s/mm2, 30 noncollinear directions b-value 700 s/mm2 (which were discarded 

for spherical deconvolution analyses), 6 nondiffusion-weighted images, 2.5 × 2.5 × 2.5  mm voxel size, 

90º flip angle, repetition time (TR) 7000 ms, echo time (TE) 72 ms, and 240 × 125 × 240 mm field of 

view (approximately 12 minutes of scanning time). All pre-processing of the dMRI data was done using 

the Explore DTI software (Leemans et al., 2009), and existed of visual quality assurance, and rigorous 
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motion, eddy current-induced distortion and EPI distortion correction. After motion correction, data 

displaying excessive motion (n = 1), defined as a mean translation in any direction greater than the voxel 

size of 2.5 mm, were discarded. No normalization to a standard atlas took place. Whole-brain DTI 

tractography was performed with the following parameters: FA-threshold = 0.20, maximum turning 

angle = 30º, and step length between calculations = 1 mm. For spherical deconvolution, additional 

processing steps were taken with the StarTrack software (Dell’Acqua et al., 2013): iterations = 200, n = 

0.04, and r = 8. Finally, for the spherical deconvolution whole-brain tractography, the parameters were: 

absolute HMOA threshold = 0.06, relative HMOA threshold = 5%, maximum turning angle = 30º, and 

step length between calculations = 1 mm. Tractography of the white matter tracts was performed with 

the TrackVis software (Wang et al., 2007). All tracts were manually delineated for each subject using a 

region of interest (ROI) approach, based on anatomical landmarks in color-coded maps (Catani & 

Thiebaut de Schotten, 2008; Thiebaut de Schotten et al., 2011; Wakana et al., 2007). In such an 

approach, each ROI represents a mandatory (or prohibited) passage for the tract at hand. The colors in 

these maps refer to the direction the fibers run in; red fibers are commissural, green fibers are associative, 

and blue fibers are projection fibers. After manually delineating all white matter pathways, the TrackVis 

software offered statistical information of the tract at hand (i.e., HMOA value) which was then used for 

statistical testing.  

6.2.6. Statistical analyses 

First, both Bayesian and frequentist correlations were calculated for all behavioral and brain imaging 

measures with the results of the TTA. Bayesian statistics have the advantage of quantifying the evidence 

that data provide for one hypothesis over another (Andraszewicz et al., 2015). Accordingly, Bayes 

factors (BF10) of 1, 1-3, 3-10, 10-30, 30-100, or > 100 respectively point towards no, anecdotal, 

substantial, strong, very strong, or decisive evidence for the hypothesis of an association between two 

variables (Jeffreys, 1961). For inclusion in the regression models, only the predictors for which at least 

substantial evidence (BF10 > 3) for an association between that measure and the total score of the TTA 

were considered. The control measures were always added to the models, regardless of any evidence for 

associations with the TTA. Both frequentist and Bayesian multiple regression models were calculated, 

first with the behavioral and brain imaging predictors separately, then with all predictors in the same 

model, for the total score of the TTA. For each model, all measures were simultaneously added to the 

model. Accordingly, p-values and inclusion Bayes factors (BFinc; the change from prior to posterior 

inclusion odds and thus the extent to which the data support inclusion of the factor of interest, taking all 

models into account) were calculated, as well as which combination of variables constitutes the most 

predictive model. All models were checked for problems with multicollinearity for predictors that 

correlate highly with one another. All regression models were also calculated for the different columns 

of the TTA (i.e., for each operation and for the mixed column) separately; as similar results were 
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observed between all operations and the total score, the results for these analyses are added to the 

appendix.  

Finally, to assess the added value of one type of predictor (i.e., behavioral or brain imaging) on top of 

the other, hierarchical Bayesian regressions were calculated with the control variables and variables of 

one of two types added to the model first, then adding the variables of the second type of predictor to 

the model in a second step. Accordingly, the BF10 of the best predictive model in this second step 

indicates the increase in likeliness of predicting arithmetic fluency on top of the control variables and 

the predictors added in the first step, thus indicating the added predictive value of the variables in the 

second step of the hierarchical regression.  

 

6.3. Results 

6.3.1. Descriptive statistics 

Table 6.1 displays the descriptive statistics of arithmetic, numerical magnitude processing, working 

memory, RAN, intellectual ability, and motor reaction time. The means of our sample were close to the 

expected population averages, and show proper variation. Even though the minimum scores for some of 

the tasks were low, none of the participating children had been diagnosed with any type of learning 

disorder or intellectual disability.  

 

Table 6.1  

Descriptive statistics of the arithmetic, numerical magnitude processing, working memory, rapid 

automatized naming, intellectual ability, and motor reaction time tasks 

 Mean SD Minimum Maximum 

Arithmetic – Total (Raw) 102.1 19.01 73 160 

Arithmetic – Total 5.54 2.82 1 10 

Symbolic Number Comparison 804.6 180.7 567.7 1511 

Non-Symbolic Number Comparison 1273 507.7 617.2 2682 

Corsi 11.51 1.869 9 16 

Digit Span Backwards 7.256 2.117 3 12 

RAN 38.51 5.67 27.91 52.07 

Block Design 10.86 3.21 6 19 

Vocabulary 11.44 2.51 3 16 

Motor Reaction Time 487.9 107.7 350.1 840.6 

Note: Both raw and standardized scores are given for arithmetic. The scores on the arithmetic test are standardized 

as M = 5, SD = 2, with a maximum of 10. The scores for number comparison are raw scores displaying the average 

reaction time in ms. The Corsi and digit span scores are the raw scores displaying the amount of correctly repeated 

series. The rapid automatized naming scores are raw scores displaying the average reaction time in ms. The scores 

on Block Design and Vocabulary are standardized scores, standardized as M = 10, SD = 3, with a maximum of 

19. The scores for motor reaction time are raw scores displaying the average reaction time in ms.  
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Table 6.2  

Correlations between arithmetic assessment and all cognitive and control measures 

  
TTA  

Total 

Symb  

Numb Comp 

Non-Symb  

Numb Comp 
Corsi 

Backwards 

Digit Span  
RAN Average Block Design Vocabulary 

Motor  

RT 

TTA Total Pearson’s r /         

BF10 /         

p-value /         

Symb Numb 

Comp 

Pearson’s r -.475 /        

BF10 28.360 /        

p-value .001 /        

Non-Symb 

Numb Comp 

Pearson’s r -.288 .633 /       

BF10 1.037 4360.611 /       

p-value .061 <.001 /       

Corsi Pearson’s r .393 -.287 -.215 /      

BF10 5.076 1.028 0.480 /      

p-value .009 .062 .166 /      

Backwards 

Digit Span 

Pearson’s r .194 -.039 .080 .189 /     

BF10 0.403 0.196 0.215 0.387 /     

p-value .213 .806 .612 .225 /     

RAN 

Average 

Pearson’s r -.445 .315 .145 -.218 -.162 /    

BF10 14.382 1.472 0.288 0.496 0.320 /    

p-value .003 .040 .353 .159 .299 /    

Block Design Pearson’s r .441 -.365 -.241 .571 .195 -.223 /   

BF10 13.235 3.153 0.614 437.805 0.405 0.518 /   

p-value .003 .016 .119 <.001 .211 .150 /   

Vocabulary Pearson’s r .066 .068 .138 .321 .301 -.050 .07 /  

BF10 0.207 0.208 0.277 1.603 1.220 0.200 0.209 /  

p-value .675 .664 .377 .036 .050 .749 .656 /  

Motor RT Pearson’s r -.395 .647 .505 -.165 .039 .294 -.278 .055 / 

BF10 5.247 7814.293 60.740 0.325 0.196 1.115 0.924 0.202 / 

p-value .009 <.001 <.001 .292 .805 .056 .071 .725 / 
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6.3.2. Correlations 

Table 6.2 shows the results of the correlation analysis between the total score of the TTA and all 

cognitive and control measures. As mentioned, only the predictors for which at least substantial evidence 

(BF10 > 3) for an association between the measure and the total score of the TTA were used for further 

analysis. Accordingly, only results of the symbolic number comparison, Corsi block-tapping, and RAN 

tests were used for further analysis. Results of the non-symbolic number comparison and backwards 

digit span tests were not analyzed further. The control measures (i.e., block design, vocabulary, and 

motor reaction time) were always added to the models, regardless of any evidence for associations with 

the TTA. 

Results of the correlation analyses between the total score of the TTA and the brain imaging measures 

have been reported in Polspoel et al. (submitted) for the voxel-based morphometry and cortical 

complexity analyses, and in Polspoel et al. (2018) for the dMRI analyses. Based on the correlation results 

of the voxel-based morphometry and cortical complexity analyses (Polspoel et al., submitted), data of 

the volume of the right fusiform gyrus, and cortical complexity of the left postcentral gyrus, right insular 

sulcus, and left orbital sulcus were used for statistical analyses. Transverse slices with a visualization of 

these results can be found in Figure 6.1. Based on the correlation results of the dMRI (Polspoel et al., 

2018), the HMOA values of the right ILF were used for further data analysis. A visual representation of 

this white matter tract can be found in Figure 6.2. 

 

 

Figure 6.1. Visual representations of the structural ROIs for which the volume (left) or cortical 

complexity (right) is associated with children’s arithmetic fluency.  
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Figure 6.2. Visual representation of the right inferior longitudinal fasciculus. The ILF is delineated 

through an ROI on a coronal slice at the posterior edge of the cingulum, and an ROI entailing the entire 

temporal lobe on the most posterior coronal slice in which the temporal lobe is not connected to the 

frontal lobe.  

 

6.3.3. Regression models 

As some of the predictors in the multiple regression models correlated with one another, we checked for 

problems with multicollinearity by quantifying its severity. This was done by calculating the variance 

inflation factor (VIF), which is the ratio of variance in a model with multiple terms, divided by the 

variance of a model with one term alone (Allison et al., 1999). A rule of thumb is that multicollinearity 

is considered high and possibly problematic once the VIF is above 5 (Kutner, Nachtsheim, & Neter, 

2004). In our data, however, the highest observed VIF was 2.2, indicating no problems with 

multicollinearity.  

The regression model of all behavioral predictors on the total score of the TTA can be found in Table 

6.3; based on the Bayesian regression analyses, the most predictive model is also stated. The adjusted 

R2 for the entire model was R2 = .305. With all behavioral predictors added to the model, no significant 

results or an inclusion Bayes factor above 3 are observed. The most predictive model, however, is a 

combination of symbolic magnitude processing, RAN and Block Design.  

The regression model of the brain imaging predictors on arithmetic fluency can be found in Table 6.4. 

The adjusted R2 for the entire model was R2 = .665. For the total score of the TTA, the HMOA values 

of the right ILF and the cortical complexity of the left postcentral gyrus, right insular sulcus and left 

orbital sulcus all remain significant predictors (with a BFinc above 3). The most predictive model is a 

combination of these four brain imaging measures.  
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Table 6.3  

Multiple regression of the behavioral predictors on the total score of the TTA 

 Correlations 
B SE B  t p BFinc R2 

Zero-order Partial 

Control Variables Most predictive model: Block Design + Numb Comp + RAN (BF10 = 127.44) 

   Block Design .441 .192 1.141 0.971 0.193 1.176 .247 1.375 .305 

   Vocabulary .066 .016 0.102 1.052 0.013 0.097 .924 0.381  

   Motor RT -.395 -.097 -0.018 0.030 -0.099 -0.582 .564 0.679  

          

Primary Variables         

   Numb Comp -.475 -.196 -0.023 0.019 -0.214 -1.200 .238 1.699  

   Corsi .393 .137 1.431 1.726 0.141 0.829 .413 0.868  

   RAN -.445 -.313 -0.919 0.464 -0.274 -1.981 .055 2.767  

Note: The provided R2 values are adjusted R2. All variables were simultaneously added to the model. 

 

 

Table 6.4  

Multiple regression of the brain imaging predictors on the total score of the TTA 

 Correlations 
B SE B  t p BFinc R2 

Zero-order Partial 

Control Variables Most predictive model: R ILF +LG Postcentral + RS Insula + LS Orbital (BF10 = 5.63e+6) 

   Block Design .441 .224 0.826 0.617 0.140 1.339 .190 0.809 .665 

   Vocabulary .066 -.002 -0.010 0.701 -0.001 -0.014 .989 0.256  

   Motor RT -.395 -.188 -0.019 0.017 -0.110 -1.118 .271 0.649  

          

Primary Variables         

   R ILF HMOA .551 .597 1108.311 255.576 0.434 4.337 < .001 559.353  

   R Fusiform Vol .376 .036 1.073 5.135 0.023 0.209 .836 0.328  

   LG Postcentral Comp .539 .522 43.847 12.300 0.354 3.565 .001 79.683  

   RS Insula Comp .425 .376 39.063 16.515 0.238 2.365 .024 5.168  

   LS Orbital Comp .382 .373 17.676 7.532 0.222 2.347 .025 3.885  

Note: The provided R2 values are adjusted R2. All variables were simultaneously added to the model. 

 

 

The regression model of all predictors on the total score of the TTA can be found in Table 6.5. The 

adjusted R2 for the entire model was R2 = .656. Significant results and an inclusion Bayes factor above 

3 are only observed for the HMOA values of the right ILF and the cortical complexity of the left 

postcentral gyrus and right insular sulcus. The most predictive model for the total score contains these 

three brain imaging measures, but also the cortical complexity of the left orbital sulcus.  



119 | C h a p t e r  6  A r i t h m e t i c  P r e d i c t i o n  

 

 

 

Table 6.5  

Multiple regression of behavioral and brain imaging predictors on the total score of the TTA 

 Correlations 
B SE B  t p BFinc R2 

Zero-order Partial 

Control Variables Most predictive model: R ILF +LG Postcentral + RS Insula + LS Orbital (BF10 = 5.63e+6) 

   Block Design .441 .127 0.516 0.721 0.087 0.715 .480 0.532 .656 

   Vocabulary .066 -.042 -0.181 0.778 -0.024 -0.233 .817 0.279  

   Motor RT -.395 -.104 -0.012 0.021 -0.070 -0.581 .566 0.476  

          

Primary Variables         

   Numb Comp -.475 -.056 -0.004 0.014 -0.042 -0.314 .756 0.596  

   Corsi .393 .074 0.550 1.337 0.054 0.411 .684 0.428  

   RAN -.445 -.222 -0.460 0.363 -0.137 -1.268 .214 1.161  

   R ILF HMOA .551 .594 1070.916 260.643 0.419 4.109 < .001 338.146  

   R Fusiform Vol .376 .039 1.252 5.719 0.026 0.219 .828 0.363  

   LG Postcentral Comp .539 .522 42.739 12.540 0.345 3.408 .002 73.339  

   RS Insula Comp .425 .351 35.947 17.223 0.219 2.087 .045 3.322  

   LS Orbital Comp .382 .249 12.330 8.608 0.155 1.432 .162 1.394  

Note: The provided R2 values are adjusted R2. All variables were simultaneously added to the model. 

 

All analyses were also calculated for the different columns (i.e., all four operations and the mixed 

column) of the TTA. Yet, as similar results were observed between all operations and the total score, 

these analyses are not discussed further. The results of these analyses can be found in the appendix 

(Tables 6.A1 – 6.A5). 

Finally, the hierarchical Bayesian regressions to assess the added value of one type of predictor on top 

of the other, indicated a strong increase in the likelihood of predicting arithmetic fluency when adding 

the brain imaging measures to the behavioral and control measures. The most predictive model in this 

analysis existed of the HMOA values of the right ILF, and cortical complexity of the left postcentral 

gyrus and right insular sulcus, and had a BF10 = 4445.56. Adding the behavioral to the brain imaging 

measures, however, did not improve the prediction of the model, as the most predictive model, only 

existing of RAN, had a BF10 = 0.687.  

 

6.4. Discussion 

The current study aimed to investigate the added value of various structural brain imaging measures 

over well-known behavioral predictors of arithmetic, in predicting typically developing children’s 

arithmetic fluency. First of all, we performed a correlation analysis between various behavioral measures 

and arithmetic fluency and, in accordance with the existing literature, observed significant associations 

for symbolic numerical magnitude processing (Ansari, 2008; De Smedt et al., 2013; Schneider et al., 



120 | C h a p t e r  6  A r i t h m e t i c  P r e d i c t i o n  

 

 

 

2017; Vanbinst & De Smedt, 2016), working memory (Peng et al., 2016; Raghubar et al., 2010; Swanson 

& Jerman, 2006), and RAN (Chard et al., 2005; Hecht et al., 2001; Koponen et al., 2006; Landerl et al., 

2004; Mazzocco & Grimm, 2013). These behavioral predictors were then added to a multiple regression 

model, together with structural grey and white matter imaging measures based on previous reviews and 

meta-analyses (Arsalidou et al., 2018; Matejko & Ansari, 2015; Moeller et al., 2015; Peters and De 

Smedt, 2018), which displayed statistical significance and at least substantial evidence for an association 

with the TTA. The results of the correlations of the TTA with the structural brain imaging measures are 

discussed in two different studies (i.e., Polspoel et al., 2018, and Polspoel et al., submitted), which took 

the methodological limitations of voxel-based morphometry and classic DTI into account.  

The results of the correlations calculated between the behavioral measures and the results of the TTA 

were to be expected and corroborated findings of previous research. First of all, statistical significance 

and (at least) substantial evidence was observed for associations between the children’s arithmetic 

fluency and numerical magnitude processing (De Smedt et al., 2013; Schneider et al., 2017). Noteworthy 

is that the associations found for numerical magnitude processing and the TTA were only observed for 

symbolic, and not for non-symbolic, number comparison. This agrees with the notion that symbolic 

numerical magnitude processing is a more robust predictor of individual differences in arithmetic 

achievement (De Smedt et al., 2013), for which evidence was found in the meta-analysis by Schneider 

et al. (2017), who reported significantly larger associations for symbolic numerical magnitude 

processing as a predictor of mathematics achievement. Secondly, significant correlations were also 

observed for working memory (i.e., Corsi block-tapping), corroborating previous studies (e.g., Peng et 

al., 2016; Raghubar et al., 2010; Swanson & Jerman, 2006), and highlighting the importance of this 

domain general skill as arithmetic often involves the processing and storing of information 

simultaneously. Finally, RAN was also observed to be significantly correlated to children’s arithmetic 

fluency, highlighting the importance of being able to easily and rapidly access phonological information 

stored in long-term memory (Chard et al., 2005; Hecht et al., 2001; Koponen et al., 2006; Landerl et al., 

2004; Mazzocco & Grimm, 2013; Torgesen et al., 1994; Torgesen et al., 1997). 

Next, multiple regression models were calculated of the behavioral measures predicting the total score 

of the TTA. The results of these analyses show that, when putting all five behavioral predictors into the 

same model, none of the predictors remain significant over the other predictors added to the model. 

However, when calculating the most predictive model for the total score through Bayesian analyses, 

symbolic number comparison and RAN were added to the model, next to the control variable Block 

Design. These results thus stress the importance of symbolic numerical magnitude processing as a 

domain-specific predictor (De Smedt et al., 2013; Schneider et al., 2017), but also of RAN as a domain-

general predictor of children’s arithmetic fluency, again highlighting the importance of rapidly accessing 

phonological information within children’s arithmetic (Chard et al., 2005; Hecht et al., 2001; Koponen 

et al., 2006; Landerl et al., 2004; Mazzocco & Grimm, 2013). 
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The used brain imaging measures for the current study include the volume of the right fusiform gyrus 

(analyzed through voxel-based morphometry; Whitwell, 2009), the cortical complexity of the left 

postcentral gyrus, right insular sulcus, and left orbital sulcus (calculated through the fractal 

dimensionality index; Yotter et al., 2011), and the white matter integrity of the right ILF (analyzed 

through spherical deconvolution; Dell’Acqua et al., 2007; Tournier et al., 2004). Multiple regression 

models were calculated for these five structural brain imaging measures on the total score of the TTA. 

The results of these analyses mainly point towards the cortical complexity of the left postcentral gyrus 

and the white matter integrity of the right ILF as important predictors for children’s arithmetic, and to a 

lesser extent to the cortical complexity of the right insular sulcus and left orbital sulcus. The volume of 

the right fusiform gyrus, on the other hand, was not found to be a significant predictor when the other 

predictors were added to the model. The postcentral gyrus lies in continuity of the intraparietal sulcus 

and is adjacent to the superior parietal lobe, whose roles within the representation and manipulation of 

numerical quantity and arithmetic in general have been clearly established (Menon, 2015). The cortical 

complexity of the postcentral gyrus may then become important as the region acts as an extension of, 

and might affect its adjacent arithmetic-related regions. Previously, activation in the postcentral gyrus 

was mainly observed during grasping tasks (Simon et al., 2002), but the region has also been linked to 

the use of arithmetic strategies such as subvocalization and finger counting (Kesler et al., 2006). 

Furthermore, in both adults and children, activation in the right inferior parietal cortex (including the 

intraparietal sulcus and the postcentral gyrus) has also been related to nonsymbolic numerical and spatial 

processing (Kaufmann et al., 2008), indicating the region’s importance for number-related tasks 

(Arsalidou et al., 2018).  

Next, the ILF connects the occipital lobe to the anterior part of the temporal lobe, including the fusiform 

gyri and parahippocampal regions. Accordingly, the observed associations to children’s arithmetic 

fluency might be related to the efficiency with which children process Arabic numerals as research has 

shown that inferior temporal regions are involved in the processing of visual representations of 

numerical symbols (Dehaene et al., 2003; Shum et al., 2013). Alternatively, arithmetic fluency might be 

related to broader mathematical processing as the function of the inferior temporal gyrus has been 

assumed to go beyond a specific preference to Arabic numbers (Grotheer et al., 2018). Finally, as the 

ILF also mediates the interaction between medial, inferior and anterior temporal cortices with 

Perisylvian areas, it might thus be related to language (Catani & Mesulam, 2008), making it vital for 

exact verbal arithmetic skills (e.g., fact retrieval), as it could subserve as a first step in connecting the 

lingual, fusiform, and parahippocampal regions in the ventral visual stream, upwards to the dorsal visual 

stream (Rykhlevskaia et al., 2009).  

As mentioned, the results of the brain imaging regression model also points, to a lesser extent, to the 

importance of the right insular sulcus and left orbital sulcus. The insula has often been observed in 

arithmetic studies (Arsalidou and Taylor, 2011), but its exact function in arithmetic is still unclear. In 
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general, the insula is known for directing attentional resources and decision-making (Arsalidou and 

Taylor, 2011; Menon, 2015), but has also been implicated to be important for emotional processing 

(Damasio et al., 2000) and speech-motor function (Fox et al., 2001). Similar to the insular cortex, the 

function of the orbitofrontal cortex within arithmetic could be associated with attention, decision-

making, and executive function (Han et al., 2013). Further research is necessary to definitively identify 

the functions of both the insular and orbitofrontal cortices. 

Finally, large multiple regression models were calculated with both behavioral and brain imaging 

predictors added to the model simultaneously. In these analyses, the brain imaging measures, especially 

the cortical complexity of the left postcentral gyrus and the HMOA values of the right ILF, seem to be 

stronger predictors of the children’s arithmetic fluency than any of the behavioral measures. With the 

brain imaging measures added to the regression model, the behavioral measures never reach statistical 

significance, and are never added to the most predictive model. However, to definitively assess the 

added value of one type of predictor on top of the other (i.e., behavioral or brain imaging), hierarchical 

Bayesian regressions were calculated with the control variables and variables of one of two types added 

to the model first, then adding the variables of the second type of predictor to the model in a second 

step, and calculating the BF10 of the best predictive model to indicate the increase in likeliness of 

predicting arithmetic fluency on top of the control variables and the predictors added in the first step. 

These analyses indicated a strong increase in the likelihood of predicting arithmetic fluency when adding 

the brain imaging measures to the behavioral and control measures, but a reverse effect when adding the 

behavioral measures to the brain imaging measures.  

Overall, our results thus show that the structural neuroimaging measures predict the children’s 

arithmetic fluency better than the current standardized assessment tests. These results are not in line with 

similar research on children’s reading skills (Hoeft et al., 2007), where a combination of behavioral and 

neuroimaging measures predicted reading outcome significantly better than either behavioral or 

neuroimaging models alone. Obviously, our results do not mean that neuroimaging measures have 

sufficient value and should be implemented for practical predictions or educational interventions on 

their own, but do stress their importance. Accordingly, combinations of behavioral and neural measures 

hold potential for understanding the biological processes that play a role for educationally relevant skills 

(Black, Myers, & Hoeft, 2015; De Smedt, 2018a). Furthermore, from a perspective of neuro-prediction, 

taking brain imaging measures into account could assist in predicting educational outcomes or in 

generating predictions to be tested in educational research, and improving the specificity and 

effectiveness of interventions (De Smedt, 2018a; Hoeft et al., 2011; Howard-Jones et al., 2016; Supekar 

et al., 2013). Similar to Hoeft et al. (2007), the current study strives towards a point where a bridge can 

be built between cognitive neuroscience and education.  

Furthermore the current study was conducted with a research sample of only 9 to 10 year-olds (i.e., 

fourth graders), to minimize maturational confounds. Consequently, we feel it is essential to highlight 
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the need for similar studies in children of different ages, such as in first or second grade (i.e., in early 

arithmetic development), or in secondary school (i.e., in more advanced levels of arithmetic). 

Accordingly, studies with a longitudinal follow-up throughout arithmetic development would also be 

highly informative to investigate how the balance between these predictors might shift over time, 

keeping educational-based neural plasticity in mind.  

Finally, we would like to stress that arithmetic development is to a large extent dependent on the 

educational environment in which it develops. Accordingly, the emphasis on automatization processes 

within mathematics curricula might influence the results of (brain imaging) research on arithmetic 

fluency (De Smedt, 2016). Since all participants of the current study, however, came from Belgian 

elementary schools, high automatization skills were to be expected (Torbeyns et al., 2004). Hence, it is 

plausible that studies across cultures with differences in the emphasis on automatization might point 

towards different neural associations for the same set of arithmetic items as were found here, leading to 

different predictive models. 
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6.5. Appendix 

Table 6.A1  

Descriptive statistics of all separate columns of the arithmetic assessment 

 Mean SD Minimum Maximum 

Addition (Raw) 23.26 3.730 16 33 

Addition 5.84 2.886 1 10 

Subtraction (Raw) 21.09 4.815 12 34 

Subtraction 5.51 3.104 1 10 

Multiplication (Raw) 20.09 3.379 13 26 

Multiplication 5.86 2.731 1 10 

Division (Raw) 18.28 5.128 9 35 

Division 5.74 2.564 1 10 

Mix (Raw) 19.40 4.387 12 32 

Mix 4.98 2.816 1 10 

Note: Both raw and standardized scores are given for arithmetic. The scores on the arithmetic test are standardized 

as M = 5, SD = 2, with a maximum of 10.  
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Table 6.A2  

Correlations between all columns of the TTA and the cognitive and control measures used for the multiple regression models 

  
TTA  

Addition 

TTA  

Subtraction 

TTA  

Mult 

TTA  

Division 

TTA  

Mix 

Symb  

Numb 

Comp 

Corsi 
RAN 

Average 

Block 

Design 
Vocabulary 

Motor  

RT 

TTA 

Addition 
Pearson’s r /           

BF10 /           

p-value /           

TTA 

Subtraction 
Pearson’s r .818  /          

BF10 4.782e +8  /          

p-value < .001  /          

TTA  

Mult 

Pearson’s r 0.727  .681  /         

BF10 476469.060  38505.342  /         

p-value < .001  < .001  /         

TTA  

Division 

Pearson’s r .691  .616  .711  /        

BF10 62067.753  2175.364  189581.002 /        

p-value < .001  < .001  < .001  /        

TTA  

Mix 

Pearson’s r .833  .824  .770  .691  /       

BF10 2.254e +9  9.002e +8  8.247e +6  63828.781  /       

p-value < .001  < .001  < .001  < .001  /       

Numb 

Comp 
Pearson’s r -.520  -.474  -.435  -.242  -.477  /      

BF10 91.045  27.726  11.615  0.622  30.188  /      

p-value < .001  .001  .004  .117  .001  /      

Corsi Pearson’s r .503  .492  .154  .223  .355  -.287  /     

BF10 58.109  43.274  0.305  0.517  2.666  1.028  /     

p-value < .001  < .001  .323  .150  .019  .062  /     

RAN 

Average 
Pearson’s r -.472  -.347  -.413  -.316  -.461  .315  -.218  /    

BF10 26.329  2.332  7.379  1.491  20.295  1.472  0.496  /    

p-value .001  .023  .006  .039  .002  .040  .159  /    

Block 

Design 
Pearson’s r .466  .494  .264  .312  .406  -.365  .571  -.223  /   

BF10 23.128  45.137  0.787  1.410  6.508  3.153  437.805  0.518  /   

p-value .002  < .001  .087  .042  .007  .016  < .001  .150  /   

Vocabulary Pearson’s r .051  .239  -.033  -.067  .083  .068  .321  -.050  .070  /  

BF10 0.200  0.601  0.194  0.208  0.218  0.208  1.603  0.200  0.209  /  

p-value .744  .123  .833  .669  .596  .664  .036  .749  .656  /  

Motor RT Pearson’s r -.374  -.310  -.478  -.322  -.308  .647  -.165  .294  -.278  .055  / 

BF10 3.613  1.368  30.832  1.624  1.347  7814.293  0.325  1.115  0.924  0.202  / 

p-value .014 .043  .001  .035  .044  < .001  .292  .056 .071 .725 / 
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Table 6.A3  

Multiple regression of the behavioral predictors on all columns of the TTA 

  Correlations 
B SE B  t p BFinc R2 

 Zero-order Partial 

Addition Control Variables Most predictive model: Numb Comp + Corsi + RAN (BF10 = 2384.86) 

    Block Design .466  .138  0.146  0.175  0.126  0.833  .410  0.705 .412 

    Vocabulary .051  -.063  -0.072  0.190  -0.048  -0.377  .709  0.357  

    Motor RT -.374  -.022  -7.161e -4  0.005  -0.021  -0.132  .896  0.440  

           

 Primary Variables         

    Numb Comp -.520  -.274  -0.006  0.003  -0.281  -1.711  .096  3.212  

    Corsi .503  .305  0.599  0.311  0.300  1.925  .062  3.815  

    RAN -.472  -.351  -0.188  0.084  -0.286  -2.247  .031  3.534  

           

Subtract Control Variables Most predictive model: Numb Comp + Corsi (BF10 = 221.82) 

    Block Design .494  .240  0.353  0.238  0.235  1.484  .146  1.623 .349 

    Vocabulary .239  .214  0.339  0.258  0.177  1.316  .196  0.833  

    Motor RT -.310 .026  0.001  0.007  0.026  0.156  .877  0.433  

           

 Primary Variables          

    Numb Comp -.474  -.292  -0.008  0.005  -0.316  -1.832  .075  2.919  

    Corsi .492  .180  0.465  0.423  0.180  1.099  .279  1.645  

    RAN -.347 -.188  -0.131  0.114  -0.154  -1.148  .259  0.746  

           

Mult Control Variables Most predictive model: Motor RT + RAN (BF10 = 55.33) 

    Block Design .264  .095  0.104  0.183  0.099  0.571  .571  0.475 .219 

    Vocabulary -.033  -.016  -0.019  0.198  -0.014  -0.095  .925  0.381  

    Motor RT -.478  -.255  -0.009  0.006  -0.287  -1.585  .122  2.822  

           

 Primary Variables          

    Numb Comp -.435  -.121  -0.003  0.004  -0.139  -0.734  .467  0.844  

    Corsi .154  -.041  -0.081  0.325  -0.045  -0.248  .805  0.387  

    RAN -.413  -.296  -0.163  0.087  -0.273  -1.861  .071  2.054  

           

Division Control Variables Most predictive model: Block Design + RAN (BF10 = 2.05) 

    Block Design .312  .158  0.290  0.301  0.182  0.963  .342  0.980 .079 

    Vocabulary -.067  -.117  -0.230  0.327  -0.113  -0.705  .486  0.502  

    Motor RT -.322  -.199  -0.011  0.009  -0.239  -1.215  .232  1.066  

           

 Primary Variables          

    Numb Comp -.242  .066  0.002  0.006  0.081  0.394  .696  0.514  

    Corsi .223 .078  0.253  0.536  0.092  0.472  .640  0.575  

    RAN -.316 -.221  -0.196  0.144  -0.216  -1.357  .183  1.144  
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Mix Control Variables Most predictive model: Block Design + Numb Comp + RAN (BF10 = 106.596) 

    Block Design .406 .056  0.248  0.226  0.182  1.095  .281  1.037 .289 

    Vocabulary .083 .056  0.083  0.245  0.048  0.338  .737  0.402  

    Motor RT -.308 -.291  0.002  0.007  0.059  0.339  .737  0.428  

           

 Primary Variables          

    Numb Comp -.477 -.291  -0.008  0.004  -0.330  -1.828  .076  2.845  

    Corsi .355 .080  0.194  0.403  0.083  0.481  .633  0.656  

    RAN -.461 -.349  -0.242  0.108  -0.313  -2.237  .032  3.877  

Note: The provided R2 values are adjusted R2. All variables were simultaneously added to the model. 
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Table 6.A4  

Multiple regression of the brain imaging predictors on all columns of the TTA 

  Correlations 
B SE B  t p BFinc R2 

 Zero-order Partial 

Addition Control Variables Most predictive model: Block Design + R ILF + LG Postcentral + LS Orbital (BF10 = 455400.53) 

    Block Design .466  .320  0.262  0.133  0.225  1.968  .057  3.086 .597 

    Vocabulary .051  .033  0.029  0.151  0.020  0.195  .847  0.295  

    Motor RT -.374  -.141  -0.003  0.004  -0.090  -0.830  .412  0.492  

           

 Primary Variables         

    R ILF HMOA .407 .371  128.042  55.038  0.255  2.326  .026  4.522  

    R Fusiform V .339 .025  0.161  1.106  0.017  0.146  .885  0.376  

    LG Postcentral C .525 .476  8.360  2.649  0.344  3.156  .003  35.520  

    RS Insula C .358 .205  4.345  3.556  0.135  1.222  .230  0.670  

    LS Orbital C .505 .537  6.025  1.622  0.386  3.714  < .001  92.538  

           

Subtract Control Variables Most predictive model: Block Design + R ILF + LG Postcentral + RS Insula (BF10 = 2.35e+6) 

    Block Design .494  .162  0.283  0.154  0.189  1.836  .075  1.919 .674 

    Vocabulary .239  .171  0.341  0.175  0.178  1.942  .060  1.116  

    Motor RT -.310 -.025  -0.001  0.004  -0.028  -0.287  .776  0.317  

           

 Primary Variables          

    R ILF HMOA .589 .399  289.111  63.925  0.447  4.523  < .001  691.905  

    R Fusiform V .429 .099  1.449  1.284  0.120  1.128  .267  0.779  

    LG Postcentral C .519 .307  10.704  3.076  0.342  3.479  .001  50.590  

    RS Insula C .372 .133  6.222  4.131  0.150  1.506  .141  1.366  

    LS Orbital C .285 .144  3.085  1.884  0.153  1.638  .111  0.886  

           

Mult Control Variables Most predictive model: Motor RT + R ILF + LG Postcentral (BF10 = 23147) 

    Block Design .264  .016  0.012  0.127  0.011  0.092  .927  0.331 .548 

    Vocabulary -.033  -.177  -0.152  0.145  -0.113  -1.046  .303  0.435  

    Motor RT -.478  -.424  -0.010  0.004  -0.312  -2.727  .010  10.503  

           

 Primary Variables          

    R ILF HMOA .437 .519  186.839  52.776  0.411  3.540  .001  12.534  

    R Fusiform V .097 -.310  -2.017  1.060  -0.239  -1.902  .066  0.822  

    LG Postcentral C .520 .492  8.359  2.540  0.380  3.291  .002  49.795  

    RS Insula C .360 .343  7.259  3.410  0.249  2.129  .041  1.259  

    LS Orbital C .285 .187  1.727  1.555  0.122  1.110  .275  0.549  
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Division Control Variables Most predictive model: R ILF + LG Postcentral + RS Insula (BF10 = 423.55) 

    Block Design .312  .058  0.077  0.230  0.048  0.337  .738  0.469 .363 

    Vocabulary -.067  -.169  -0.261  0.261  -0.128  -0.999  .325  0.564  

    Motor RT -.322  -.118  -0.004  0.006  -0.094  -0.691  .494  0.601  

           

 Primary Variables          

    R ILF HMOA .488 .450  279.576  95.096  0.406  2.940  .006  18.086  

    R Fusiform V .345 .072  0.802  1.911  0.062  0.420  .677  0.541  

    LG Postcentral C .400 .326  9.203  4.577  0.276  2.011  .052  3.283  

    RS Insula C .335 .262  9.734  6.145  0.220  1.584  .122  1.584  

    LS Orbital C .264 .135  2.224  2.802  0.104  0.794  .433  0.617  

           

Mix Control Variables Most predictive model: R ILF + LG Postcentral + RS Insula + LS Orbital (BF10 = 53304.5) 

    Block Design .406 .193  0.192  0.167  0.141  1.148  .259  0.809 .538 

    Vocabulary .083 .029  0.033  0.190  0.019  0.171  .865  0.314  

    Motor RT -.308 -.030  -8.167e -4  0.005  -0.020  -0.173  .863  0.348  

           

 Primary Variables          

    R ILF HMOA .487 .486  224.743  69.328  0.381  3.242  .003  42.842  

    R Fusiform V .392 .083  0.678  1.393  0.062  0.487  .630  0.434  

    LG Postcentral C .451 .348  7.220  3.337  0.253  2.164  .038  3.555  

    RS Insula C .460 .403  11.503  4.480  0.304  2.568  .015  10.662  

    LS Orbital C .386 .361  4.615  2.043  0.252  2.259  .030  3.321  

Note: The provided R2 values are adjusted R2. All variables were simultaneously added to the model. 
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Table 6.A5  

Multiple regression of behavioral and brain imaging predictors on all columns of the TTA 

  Correlations 
B SE B  t p BFinc R2 

 Zero-order Partial 

Addition Control Variables Most predictive model: Numb Comp + Corsi + R ILF + LG Postcentral + LS Orbital (BF10 = 3.57e+6) 

    Block Design .466  .093  0.076 0.145 0.065  0.522  .606  0.477 .639 

    Vocabulary .051  -.116  -0.101  0.156  -0.068  -0.649  .521  0.325  

    Motor RT -.374  -.030  -7.082e -4  0.004  -0.020  -0.165  .870  0.418  

           

 Primary Variables         

    Numb Comp -.520  -.173  -0.003  0.003  -0.135  -0.975  .337  0.955  

    Corsi .503  .355  0.568  0.269  0.285  2.115  .043  5.732  

    RAN -.472 -.158  -0.065  0.073  -0.099  -0.893  .379  0.599  

    R ILF HMOA .407 .381  120.093  52.387  0.240  2.292  .029  3.163  

    R Fusiform V .339 -.099  -0.636  1.149  -0.068  -0.553  .584  0.311  

    LG Postcentral C .525 .515  8.425  2.520  0.347  3.343  .002  77.471  

    RS Insula C .358 .147  2.867  3.462  0.089  0.828  .414  0.405  

    LS Orbital C .505 .434  4.643  1.730  0.298  2.684  .012  17.495  

           

Subtract Control Variables Most predictive model: Numb Comp + Corsi + R ILF + LG Postcentral (BF10 = 1.32e+7) 

    Block Design .494  .174  0.175  0.178  0.117  0.981  .334  0.628 .673 

    Vocabulary .239  .273  0.303  0.192  0.158  1.577  .125  0.864  

    Motor RT -.310 .105  0.003  0.005  0.070  0.589  .560  0.308  

           

 Primary Variables         

    Numb Comp -.474  -.248  -0.005  0.003  -0.187  -1.426  .164  1.529  

    Corsi .492 .115  0.213  0.330  0.083  0.645  .524  1.364  

    RAN -.347 -.092  -0.046  0.090  -0.054  -0.514  .611  0.380  

    R ILF HMOA .589 .618  281.855  64.354  0.436  4.380  < .001  638.490  

    R Fusiform V .429 .132  1.046  1.412  0.087  0.741  .464  0.496  

    LG Postcentral C .519 .527  10.690  3.096  0.341  3.453  .002  87.142  

    RS Insula C .372 .189  4.555  4.252  0.110  1.071  .292  0.769  

    LS Orbital C .285 .148  1.771  2.125  0.088  0.833  .411  0.488  

           

Mult Control Variables Most predictive model: Motor RT + R ILF + LG Postcentral (BF10 = 23147) 

    Block Design .264  -.022  -0.019  0.151  -0.018  -0.123  .903  0.359 .523 

    Vocabulary -.033  -.174  -0.160  0.163  -0.119  -0.981  .334  0.462  

    Motor RT -.478  -.323  -0.009  0.004  -0.271  -1.898  .067  3.826  

           

 Primary Variables         

    Numb Comp -.435  -.046  -7.606e -4  0.003  -0.041  -0.257  .799  0.533  

    Corsi .154  .001  0.002  0.280  0.001  0.008  .993  0.387  

    RAN -.413  -.186  -0.080  0.076  -0.134  -1.054  .300  0.889  

    R ILF HMOA .437 .511  180.568  54.522  0.398  3.312  .002  11.644  

    R Fusiform V .097 -.267  -1.845  1.196  -0.218  -1.543  .133  0.791  
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    LG Postcentral C .520 .486  8.127  2.623  0.370  3.098  .004  35.415  

    RS Insula C .360 .321  6.809  3.603  0.233  1.890  .068  1.189  

    LS Orbital C .285 .085  0.857  1.801  0.061  0.476  .637  0.467  

           

Division Control Variables Most predictive model: R ILF + LG Postcentral + RS Insula (BF10 = 423.553) 

    Block Design .312  .094  0.140  0.266  0.088  0.527  .602  0.504 .358 

    Vocabulary -.067  -.168  -0.273  0.287  -0.133  -0.951  .349  0.624  

    Motor RT -.322  -.217  -0.010  0.008  -0.205  -1.238  .225  0.665  

           

 Primary Variables         

    Numb Comp -.242  .251  0.008  0.005  0.265  1.442  .159  0.496  

    Corsi .223 -.046  -0.126  0.493  -0.046  -0.255  .800  0.428  

    RAN -.316 -.144  -0.108  0.134  -0.119  -0.809  .425  0.688  

    R ILF HMOA .488 .460  277.320  96.019  0.402  2.888  .007  14.705  

    R Fusiform V .345 .133  1.573  2.107  0.123  0.747  .461  0.614  

    LG Postcentral C .400 .323  8.779  4.620  0.263  1.901  .067  2.946  

    RS Insula C .335 .310  11.517  6.345  0.260  1.815  .079  1.631  

    LS Orbital C .264 .135  2.411  3.171  0.112  0.760  .453  0.604  

           

Mix Control Variables Most predictive model: RAN + R ILF + LG Postcentral + RS Insula (BF10 = 79258.76) 

    Block Design .406 .134  0.144  0.191  0.105  0.755  .456  0.562 .547 

    Vocabulary .083 .043  0.049  0.206  0.028  0.239  .812  0.330  

    Motor RT -.308 .108  0.003  0.006  0.084  0.605  .549  0.351  

           

 Primary Variables         

    Numb Comp -.477 -.163  -0.003  0.004  -0.142  -0.919  .365  0.700  

    Corsi .355 -.055  -0.108  0.354  -0.046  -0.306  .761  0.364  

    RAN -.461 -.288  -0.161  0.096  -0.208  -1.677  .104  2.061  

    R ILF HMOA .487 .482  211.079  68.957  0.358  3.061  .005  25.671  

    R Fusiform V .392 .131  1.115  1.513  0.102  0.737  .467  0.522  

    LG Postcentral C .451 .342  6.718  3.318  0.235  2.025  .052  3.115  

    RS Insula C .460 .373  10.198  4.557  0.269  2.238  .033  6.431  

    LS Orbital C .386 .204  2.647  2.277  0.144  1.162  .254  1.026  

Note: The provided R2 values are adjusted R2. All variables were simultaneously added to the model. 
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An important aspect of arithmetic lies in the fact that arithmetic problems can be solved through various 

strategies, in which the development of automatization skills and fact retrieval from long-term memory 

are crucial for reaching the most efficient and fluent levels of arithmetic problem-solving. Although a 

vast body of behavioral literature exists on children’s arithmetic fluency, its neural correlates are not 

completely understood. The overall aim of this doctoral project was thus to broaden our knowledge on 

both functional and structural neural correlates of arithmetic fluency. Doing so, we wanted to improve 

on the existing literature by complementing detected gaps and by using novel methods of analyzing the 

neural data, such as cortical complexity and spherical deconvolution analyses, which had never been 

used in research on children’s arithmetic. 

In this general discussion, a summary and discussion of the main findings of the abovementioned studies 

will be given, followed by a methodological reflection, and suggestions for future research. 

 

7.1. Main findings and theoretical implications 

7.1.1. Functional neural correlates  

The first two studies of this doctoral dissertation aimed to gather knowledge on the functional neural 

correlates of children’s arithmetic fluency, by identifying the brain regions that show increased 

activation for a fact retrieval strategy in comparison to a procedural strategy (Chapter 2), and by, within 

arithmetic fact retrieval, studying the neural basis of two established effects on arithmetic performance, 

namely the problem size and interference effect (Chapter 3). 

In our first study (Chapter 2), we thus investigated the neural activation during children’s arithmetic 

while taking individual differences in arithmetic strategy use into account. Previous research had already 

shown that brain activation in adults is modulated by the use of a fact retrieval or procedural strategy to 

solve arithmetic problems (Grabner et al., 2009; Tschentscher & Hauk, 2014), yet in children, only 

assumptions on strategy use were made, based on reaction time, problem size, operation, or presentation 

(De Smedt et al., 2011; Peters et al., 2016; Prado et al., 2014). As all problems of a particular size or 

operation are not necessarily solved through the same strategy, we applied a trial-by-trial approach to 

clearly investigate the neural differences between arithmetic fact retrieval and the use of procedural 

manipulations. Doing so, we looked at both multiplication and subtraction problems to see if previously 

observed operation differences (e.g., De Smedt et al., 2011; Prado et al., 2014) could also be found here, 

or if, similar to previous research on arithmetic strategies in adults (Tschentscher & Hauk, 2014), 

activation differences between operations disappear when taking strategy use into account. 

During fact retrieval, we observed increased activation in the supramarginal and angular gyri, middle 

temporal gyri and frontal pole, which first of all concurs with the previous adult studies, where the 

angular gyri were shown to be related to fact retrieval strategy use. Similar to the data of Tschentscher 

and Hauk (2014), but in contrast to Grabner et al. (2009), this activation was found bilaterally. Extending 
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the results of the fMRI studies in children that could only make assumptions on strategy use based on 

reaction time, problem size, operation, or presentation, we found stronger activation for retrieval in the 

middle temporal gyrus, observed during small multiplication items in Prado et al. (2014), and the 

bilateral angular and supramarginal gyri, observed during subtraction in a symbolic format in Peters et 

al. (2016). In contrast to our expectations and to previous developmental fMRI studies (i.e., De Smedt 

et al., 2011; Qin et al., 2014), our analyses did not reveal strong increases in hippocampal activation 

during fact retrieval (increased activation was only observed with a less stringent – i.e., FDR – correction 

for multiple comparisons). The longitudinal study by Qin et al. (2014), however, did point out that 

hippocampal engagement during arithmetic problem solving increases initially during childhood and 

subsequently decreases, reaching adult-like levels by adolescence. The weaker hippocampal activation 

found in our study could thus mean that the children of our research sample had already started the 

neural shift for arithmetic fact retrieval, from the hippocampus towards inferior parietal regions such as 

the angular gyrus (Grabner et al., 2009; Tschentscher & Hauk, 2014). Together, our results thus indicate 

the importance of both middle temporal and inferior parietal brain regions for arithmetic fact retrieval. 

As, when using a procedural strategy during assessment, children were also asked to explain what their 

exact strategy was, this fMRI study also aimed to investigate neural activation during different possible 

procedural strategies. However, the children in our sample almost exclusively implemented a 

decomposition strategy for the procedural items. This was most likely due to the fact that our participants 

all came from Flemish primary schools, which put a high emphasis on decomposition strategies as being 

the most effective for solving problems when fact retrieval is not applicable. Accordingly, our study 

could only make claims on decomposition and not on any other procedural strategies, such as backwards 

counting for subtraction or repeated addition for multiplication, which should be investigated further in 

future research, as different neural activation might be observed across different procedural strategies. 

For the decomposition of operands strategy, we observed increased activation in a fronto-parietal 

network, including the bilateral inferior to superior parietal lobes, the inferior to superior frontal gyri, 

and bilateral areas in the occipital lobe and insular cortex. These results largely agree with the previous 

studies in adults, and again extend the studies in children that manipulated problem size, operation, or 

presentation format (De Smedt et al., 2011; Peters et al., 2016; Prado et al., 2014). Furthermore, this 

network seems to coincide with the multiple-demand network (Fedorenko et al., 2013), which, in adults, 

shows increases of activation for any kind of cognitive demand, independent of the content of the task. 

Accordingly, this fronto-parietal activation could also be explained by the inevitable association 

between strategy use and the task load of the procedural items, which is also evidenced by the increased 

reaction time for these items. 

Most interestingly, our results did not reveal any activation differences between operations when taking 

strategy use into account, clearly indicating that arithmetic strategy rather than operation modulates 

brain activity. This in turn echoes the results of Tschentscher & Hauk (2014) in adults and emphasizes 
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that assumptions on strategy use should not made based on operation alone. Accordingly, future imaging 

studies on arithmetic need to avoid indisputably linking certain operations to problem-solving strategies 

(e.g., multiplication to fact retrieval or subtraction to procedures), but instead consistently assess strategy 

use on a trial-by-trial basis. 

In our second fMRI study (Chapter 3), we aimed to investigate the neural correlates of two known 

effects that can influence performance in arithmetic fact retrieval. In a similar design as previous adult 

studies (De Visscher et al., 2015; De Visscher et al., 2018), we studied the problem size effect, which 

states that more accurate and faster performance is often observed for small problems in comparison to 

large problems (De Brauwer et al., 2006), and the interference effect, which states that the quality of 

memory representations of multiplication problems depends on the problems that were previously 

learned, and that the more similar a problem is to previously learned problems, the more proactive 

interference will impact on encoding, leading to worse performance (De Visscher & Noël, 2014b). The 

problem size effect has been well established in children at both a behavioral (e.g., De Brauwer et al., 

2006) and neural (e.g., De Smedt et al., 2011) level, but the interference effect is more recent and had 

never been studied in children at the neural level. Behaviorally, however, previous studies observed that 

the interference effect determines a substantial part of performance beyond the problem size effect (De 

Visscher & Noël, 2014a, 2014b; De Visscher et al., 2016). By investigating both the interference and 

problem size effect at the neural level in typically developing children, we intended to get a more 

detailed view of the brain network responsible for arithmetic fact retrieval, and to determine the specific 

functions of the relevant neural regions more precisely.  

At the behavioral level, our results corroborated previous research findings (De Visscher and Noël, 

2014b; De Visscher et al., 2016) and clearly showed that both problem size and interference level affect 

performance in multiplication, as both larger problems (i.e., problems with a product above 25, such as 

6 × 7) and high interfering problems (i.e., problems with an interference level of 8 or higher, such as 4 

× 6) were found to take significantly longer to solve. For accuracy, also in accordance with previous 

studies, no clear effects of problem size or interference level could be found, which, in the current 

sample, could be due to a ceiling effect on the multiplication task. The results from our imaging analyses, 

however, brought forth a different story. We observed clear neural differences between small and large 

problems; agreeing with previous studies (e.g., De Smedt et al., 2011; Molko et al., 2003; Stanescu–

Cosson et al., 2000), increased activation for large items was observed in the bilateral fusiform gyri, the 

left superior parietal lobe, the left precentral gyrus, and the occipital cortex. However, no clear neural 

differences were observed for low and high interfering items, contrasting previous research in adults 

(De Visscher et al., 2015; De Visscher et al., 2018). In our univariate analyses, for example, no activation 

differences between low and high interfering problems were found when correcting for multiple 

comparisons, and our statistical pattern recognition analysis, which allows for the detection of 
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differences between conditions with higher sensitivity than the conventional univariate analyses, also 

did not provide us with clear results.  

The observed inconsistency across these results in children and previous results in adults, and across our 

behavioral and neural results, could be due to the notion that, as arithmetic development progresses, 

more neural distinctions are made between problems, based on the degree to which they are similar to 

previously learned problems. Accordingly, as the fourth graders of the current sample are still frequently 

in contact with these multiplication items in school, it is possible that clear neural distinctions are not 

yet made at this stage of development. Furthermore, it is possible that the used imaging modality (fMRI) 

was not perfectly suited to study the neural basis of the interference effect, as behavioral differences 

between low and high interfering items were only observed for reaction time, and as fMRI has a rather 

poor temporal resolution (Kim, Richter, & Uğurbil, 1997). Data collection methods with a greater 

temporal resolution such as electroencephalography (EEG) might have been more suitable, by focusing 

on the speed to which certain brain regions respond to either condition. However, because of the lower 

spatial resolution of EEG, its implementation would lead to other issues in localizing the involved brain 

regions (Burle et al., 2015). In all, our results indicate that the neural basis of the interference effect is 

not as strong in children as was previously observed in adults, but might develop over time (De Visscher 

et al., 2015; De Visscher et al., 2018), even though the research paradigm in our study was highly similar 

to that of the previous adult studies, and is not as strong as the problem size effect, which was clearly 

observed here. 

7.1.2. Structural neural correlates  

Two studies were also performed on the structural neural correlates of children’s arithmetic fluency, 

looking at the volume and cortical complexity of theoretically relevant grey matter regions observed in 

previous arithmetic research (Chapter 4), and the structural integrity of white matter connections 

(Chapter 5).  

In Chapter 4, we thus investigated structural properties of grey matter regions that were previously 

found to be related to arithmetic (Arsalidou et al., 2018; Peters and De Smedt, 2018). Previous studies 

had already used voxel-based morphometry and found an association of arithmetic and grey matter 

volume in the superior parietal lobe, the intraparietal sulcus, the inferior and middle frontal gyrus, the 

fusiform gyrus, and the hippocampus (see Peters and De Smedt, 2018 for an overview), but often used 

research samples with wide age ranges, and only took grey matter volume into account, disregarding 

other structural properties. Our study, however, used a research sample with a narrow age range (9- to 

10-year-olds) and went beyond looking at volume alone, by also studying cortical complexity through 

fractal dimensionality. This cortical complexity looks at differences in the shape rather than the size of 

cortical structures (Yotter et al., 2011), and is highly sensitive for capturing relations between brain 

structure and cognitive function (King, et al., 2010; Im et al., 2006; Mustafa et al., 2012; Sandu et al., 
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2014). Very recently, within the field of mathematics, cortical complexity was used to study group 

differences in adults with dyslexia, dyscalculia, both disorders, and controls, yet revealed no evidence 

for differences in grey matter complexity associated with either dyslexia, dyscalculia, or their comorbid 

manifestation (Moreau, Wiebels, Wilson, & Waldie, 2019). However, as general associations had 

previously been observed between cognitive function and cortical complexity, we aimed to investigate 

if specific associations between arithmetic fluency and the cortical complexity of regions in children’s 

arithmetic brain network were to be found, consequently aiming to provide a more comprehensive 

depiction of the structural neural correlates of children’s arithmetic.  

First of all, our results indicated associations between arithmetic fluency and the volume of the right 

fusiform gyrus, aligning with previous research where reduced volume of the fusiform gyrus was 

observed for children with developmental dyscalculia (Rykhlevskaia et al., 2009). The fusiform gyrus 

has previously been suggested to play a role in encoding complex visual stimuli (i.e., the recognition 

and discrimination of number-letter strings; Allison et al., 1999; Binder et al., 2006; Milner and Goodale, 

2008), but has also been indicated to have a role in the early identification of problem difficulty, beyond 

mere digit recognition (Pinheiro-Chagas et al., 2018).  

Second, our results pointed towards associations between arithmetic fluency and the cortical complexity 

of the left postcentral gyrus, right insular sulcus, and left orbital sulcus. The postcentral gyrus is adjacent 

to the superior and inferior parietal lobe, and thus also the intraparietal sulcus, and might act as an 

extension of its adjacent number-related regions. Here, it thus became apparent that the shape of the 

postcentral gyrus, which possibly affects, or is affected by, the superior and/or inferior parietal lobe, is 

a key correlate for typically developing children’s arithmetic fluency. Furthermore, the postcentral gyrus 

was previously linked to the use of arithmetic strategies, such as subvocalization and finger counting 

(Kesler et al., 2006), and has been related to non-symbolic numerical and spatial processing (Arsalidou 

et al., 2018; Kaufmann et al., 2008). Accordingly, our study suggests an extension of the region’s 

purpose for arithmetic fluency. The right insular cortex and left orbital sulcus, on the other hand, were 

previously associated with directing attentional resources and decision-making (Arsalidou and Taylor, 

2011; Menon, 2015; Supekar and Menon, 2012). The function of these regions is thus most likely not 

arithmetic-specific, making our study highlight the importance of the directing of such attentional 

resources for arithmetic fluency. The right insula specifically has also been identified as a key region in 

emotional processing (Damasio et al., 2000), speech-motor function (Fox et al., 2001), and specific 

phobias, including mathematics anxiety (Lyons & Beilock, 2012).  

Interestingly, our study did not find any associations, and even found evidence for no association, 

between the volume or cortical complexity of previously reported number and arithmetic brain regions, 

such as the superior and inferior parietal lobes. This discrepancy with previous studies could be due to 

various reasons, such as the wide age ranges used in previous studies (e.g., 8- to 14-year-olds), the 

different assessment of arithmetic (e.g., arithmetic fluency vs. broader mathematical reasoning), or the 
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notion that the structural importance of the intraparietal sulcus might only become apparent when 

comparing children with extremely low arithmetic fluency or developmental dyscalculia to typically 

developing peers. Nonetheless, our study did direct the attention to the importance of other, less often 

discussed cortical regions for arithmetic fluency, as well as the importance of structural neural correlates 

other than volume. 

As proper white matter connections between cortical regions are also crucial for cognitive development, 

our second structural MRI study (Chapter 5) aimed to investigate the associations of white matter tracts 

and individual differences in typically developing children’s arithmetic fluency. These associations had 

already been studied in previous research, implicating a variety of tracts as relevant for arithmetic 

(Matejko and Ansari, 2015). However, these studies all applied classic diffusion tensor imaging (DTI), 

which is subject to methodological limitations, such as the problem with crossing fibers (e.g., Assaf et 

al., 2004; Dell'Acqua et al., 2013; Farquharson et al., 2013; Tournier et al., 2007). Furthermore, these 

studies were often conducted in research samples with very wide age ranges, such as 10- to 15-year-

olds, which might lead to maturational confounds, leaving it unresolved to which extent previously 

found associations are due to maturation or to actual individual differences in performance. Our study 

aimed to take these limitations into account by using spherical deconvolution, a novel imaging technique 

that can characterize the orientation of more than one fiber per voxel and from which the hindrance 

modulated orientational anisotropy (HMOA) index can be derived, to study white matter pathways in a 

sample of 9- to 10-year-olds.  

Results mainly pointed towards an association of arithmetic fluency and the right inferior longitudinal 

fasciculus (ILF), echoing results of previous studies where associations between fractional anisotropy 

in the ILF and individual differences in mathematics were observed (Li et al., 2013; Navas-Sánchez et 

al., 2014; Rykhlevskaia et al., 2009; Van Eimeren et al., 2008). As the ILF connects the occipital lobe 

to the anterior part of temporal lobe, including the fusiform gyri and parahippocampal regions, this 

association could be related to the efficiency with which children process Arabic numerals (Dehaene et 

al., 2003; Shum et al., 2013). Accordingly, these results can also be linked to our results in Chapter 4, 

where the importance of the fusiform gyrus was emphasized for its involvement in the processing of 

visual representations of numerical symbols. As mentioned, however, the inferior temporal gyrus has 

also been found to be driven by broader mathematical processing, instead of having a specific preference 

to Arabic numbers (Grotheer et al., 2018), which might also explain the ILF’s relevance within 

arithmetic. Furthermore, as the ILF is important for the interaction between medial, inferior and anterior 

temporal cortices with Perisylvian areas, and as such is related to language (Catani & Mesulam, 2008), 

the tract could also be important for exact verbal arithmetic skills (e.g., fact retrieval), as it could act as 

a first step in connecting ventral stream areas upwards to the dorsal visual stream, via other tracts such 

as the arcuate fasciculus (AF) or superior longitudinal fasciculus (SLF), eventually to the intraparietal 

sulcus and superior parietal lobe (Rykhlevskaia et al., 2009). Accordingly, this result can also be linked 
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to our results in Chapter 2, where middle temporal regions were found to be increasingly activated 

during self-reported fact retrieval. This is especially relevant when considering the structure of the 

Tempo Test Arithmetic (de Vos, 1992), which was used as a measure of arithmetic fluency, and is 

mainly constituted of single-digit items likely to be solved through fact retrieval.  

To a lesser extent, correlations were also observed with the HMOA values of the right uncinate 

fasciculus, which connects the lateral orbitofrontal cortex with the anterior temporal lobes, and might 

be relevant for temporal lobe-based mnemonic associations (i.e., it might have an assisting role within 

memory and be relevant for automated processes in arithmetic; Von Der Heide et al., 2013). Taken 

together, the study thus again highlighted the importance of temporal brain structures for children’s 

arithmetic fluency. 

Notably, our study did not replicate other previously found associations between white matter tracts 

(e.g., AF and SLF) and arithmetic, and even pointed towards, albeit not necessarily substantial, evidence 

for the null hypothesis of no association between arithmetic and these tracts. This absence of 

associations, however, could be explained by various factors, such as the use of samples with wide age 

ranges in previous studies, possibly leading to maturational confounds, the use of group comparisons or 

the specificity of the tasks under study, such as broad mathematical reasoning tests (e.g., Van Eimeren 

et al., 2008) versus the more specific timed arithmetic test used here, or the implementation of classic 

DTI, which, in combination with the abovementioned wider age ranges and different mathematical 

tasks, might have led to the analyses not being powerful enough to consistently detect relationships with 

the right ILF, or to observe relationships with other tracts such as the AF or SLF. Accordingly, it would 

be interesting to do similar research across different ages and with a variety of mathematical measures, 

to clearly define which white matter pathways are related to which mathematical tasks across 

development.  

7.1.3. Predictive value of brain imaging measures 

Finally, in Chapter 6, we aimed to investigate the added value of the structural brain imaging measures 

observed in Chapters 4 and 5 over well-known behavioral predictors of arithmetic, in predicting 

typically developing children’s arithmetic fluency. This was done by first performing a correlation 

analysis between various behavioral measures and arithmetic fluency, which, in agreement with 

previous behavioral studies, displayed significant associations between arithmetic and symbolic 

numerical magnitude processing (Ansari, 2008; De Smedt et al., 2013; Schneider et al., 2017), working 

memory (Peng et al., 2016; Raghubar et al., 2010; Swanson & Jerman, 2006), and rapid automatized 

naming (Chard et al., 2005; Hecht et al., 2001; Koponen et al., 2006; Landerl et al., 2004; Mazzocco & 

Grimm, 2013).  

Next, separate multiple regression models were calculated for these behavioral measures and for the 

observed structural grey and white matter imaging measures that showed at least substantial evidence 
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for an association with arithmetic fluency. When putting all behavioral predictors into a regression 

model simultaneously, symbolic number comparison and rapid automatized naming emerged as crucial 

predictors of performance, stressing the importance of symbolic numerical magnitude processing as a 

domain-specific predictor (De Smedt et al., 2013; Schneider et al., 2017), but also of rapid automatized 

naming as a domain-general predictor, highlighting the importance of rapidly accessing phonological 

information in long-term memory for children’s arithmetic (Chard et al., 2005; Hecht et al., 2001; 

Koponen et al., 2006; Landerl et al., 2004; Mazzocco & Grimm, 2013). When putting all previously 

observed brain imaging measures into a regression model simultaneously, the cortical complexity of the 

left postcentral gyrus, highlighting its possible importance as an extension of the superior and inferior 

parietal lobes and the intraparietal sulcus, and the white matter integrity of the right ILF, highlighting 

its possible importance for efficiently processing Arabic numerals and for exact verbal arithmetic skills, 

emerged as the most important predictors for children’s arithmetic fluency.  

All significantly correlated predictors, both behavioral and brain imaging, were then added to a multiple 

regression model together, which indicated that the brain imaging measures, especially the cortical 

complexity of the left postcentral gyrus and the HMOA values of the right ILF, are stronger predictors 

of arithmetic fluency than any of the behavioral measures. To definitively assess the added value of 

these brain imaging measures, we then performed a hierarchical Bayesian regression with control and 

behavioral measures added to the model first, then adding the brain imaging measures and calculating 

the BF10 of the best predictive model to indicate the increase in likeliness of predicting arithmetic fluency 

on top of the control and behavioral measures. Results of this analysis indicated a strong increase in the 

likelihood of predicting arithmetic fluency when adding the brain imaging measures to the behavioral 

and control measures, clearly emphasizing the importance of these neurophysiological measures. When 

adding the behavioral measures to the brain imaging measures, however, a reverse effect (i.e., worse 

prediction of arithmetic fluency) was observed. 

These results are in accordance with previous similar research in the field of reading (Hoeft et al., 2011) 

as the observed structural neuroimaging measures provided a clear unique prediction (for children’s 

arithmetic fluency), yet also differ from this research, as, in the study by Hoeft et al. (2011), the 

combination of behavioral and neuroimaging measures provided the best prediction, whereas here, the 

neuroimaging measures alone provided the best prediction. This is, however, similar to other research 

in reading (Vanderauwera, Wouters, Vandermosten, & Ghesquière, 2017), where cognitive, familial risk 

and neuroanatomical predictors of dyslexia were combined into a model to define the strongest unique 

predictor of dyslexia, which pointed towards a white matter measure (i.e., the FA values of the long 

segment of the arcuate fasciculus) as being the only significant predictor. Even though these results thus 

clearly show that the structural neuroimaging measures predict children’s arithmetic fluency better than 

the cognitive predictors, we in no way mean that these neuroimaging measures by themselves have 

sufficient value and should be implemented for practical predictions or educational interventions on 
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their own. Furthermore, it is perfectly possible that other cognitive predictors that were not assessed in 

this study do have additional predictive value on top the other behavioral and brain imaging measures. 

One such example could lie in the domain-general predictor inhibition, referring to the ability to suppress 

distracting information and inappropriate responses (Bull & Lee, 2014), which has been shown to be a 

significant predictor of mathematics after controlling for other executive functions, such as working 

memory (Espy et al., 2004). We, however, do feel that our results stress the importance of brain imaging 

measures, and suggest that a combination of behavioral and brain imaging measures holds potential for 

understanding the biological processes that play a role for educationally relevant skills (Black et al., 

2015; De Smedt, 2018a). This, in turn, could assist in predicting educational outcomes, and in improving 

the specificity and effectiveness of educational interventions, as they could be followed-up at a neural 

level (De Smedt, 2018a; Hoeft et al., 2011; Howard-Jones et al., 2016; Supekar et al., 2013).  

 

7.2. Methodological reflection 

The current doctoral dissertation presented novel findings on the functional and structural neural 

correlates of children’s arithmetic fluency, and used a variety of methods to do so. Accordingly, it is 

crucial to reflect upon both strengths and limitations of the implemented methodology, which will be 

discussed in the next few paragraphs.  

First and foremost, in order to study the structural neural correlates of children’s arithmetic fluency, we 

aimed to go beyond the existing literature, by implementing novel methods of analyzing the neural data. 

This becomes clear in the T1-imaging study in Chapter 4, where the structural correlates of children’s 

arithmetic were not only analyzed through voxel-based morphometry, as was done in previous studies 

(Evans et al., 2015; Isaacs et al., 2001; Li et al., 2013; Price et al., 2016; Ranpura et al. 2013; Rotzer et 

al. 2008; Rykhlevskaia et al. 2009; Supekar et al., 2013), but also through cortical complexity, quantified 

by the fractal dimensionality index. This cortical complexity was previously used to study differences 

in cognitive function (King, et al., 2010; Im et al., 2006; Mustafa et al., 2012; Sandu et al., 2014), and 

most recently even to study group differences in adults with dyslexia, dyscalculia, both disorders, and 

controls (Moreau et al., 2019). Basically, cortical complexity is a method of doing surface-based 

morphometry, in which analyses are done on a segmentation of the cortical surface, which quantifies 

the spatial frequency of gyrification and fissuration of the brain surface (Luders et al., 2004). The fractal 

dimensionality index specifically was originally designed to quantify the structure of fractals (Kiselev 

et al., 2003; Yotter et al., 2011), but can be used to characterize cortical surface shape, and makes it 

possible for the complexity analysis to determine how periodically spaced and space-filling the fractal 

surface is. Doing so, the study in Chapter 4 was thus able to provide novel insights into the structural 

neural correlates of children’s arithmetic, by implementing a method that is sensitive to differences in 

grey matter structure that are not indexed by volume. By thus combining both voxel-based morphometry 
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and cortical complexity analyses, we aimed to get a more holistic view on the structural grey matter 

correlates of children’s arithmetic fluency. However, as cortical complexity is focused around the shape 

of cortical structures, a gap in this research lies in the fact that subcortical regions were not studied. The 

basal ganglia, for example, are subcortical brain regions that are part of procedural memory systems, 

which create a hierarchy of short-term representations that allow the manipulation of multiple discrete 

quantities. As such, the basal ganglia become more engaged depending on task complexity, with 

increased engagement as procedural memory requirements increase (Menon 2015). The basal ganglia 

are thus known to be important for the regulation of procedural memory (Chang, Crottaz-Herbette, 

Menon, 2007; Graybiel, 2005; Packard & Knowlton, 2002), making the study of structural 

characteristics of these regions important for providing additional insights into the neural basis of 

arithmetic fluency, but which was not possible for this type of analysis. 

Such novel insights through the implementation of innovative imaging techniques are also present in 

the dMRI study in Chapter 5, in which spherical deconvolution was used to correlate the quality of 

white matter pathways to individual differences in children’s arithmetic fluency, instead of classic DTI, 

which was implemented in the previous studies on the white matter correlates of children’s mathematical 

abilities (Matejko and Ansari, 2015). It is true that our DTI and spherical deconvolution analyses led to 

similar results, bearing the question why spherical deconvolution should be preferred above classic DTI. 

However, being able to characterize the orientation of more than one fiber per voxel, spherical 

deconvolution provides a direct and more accurate (through the use of the more specific HMOA index; 

Dell’Acqua et al., 2007; Tournier et al., 2004) estimate of the underlying distribution of fiber 

orientations (Dell’Acqua & Tournier, 2017), emphasizing its usefulness as an essential tool for the study 

of the human brain. Nevertheless, the spherical deconvolution analysis used in this study has limitations 

as well, such as the fact that it assumes a zero-mean Gaussian distribution of underlying noise, even 

though this actual distribution is known to be non-Gaussian. This issue, however, could be resolved by 

other novel imaging techniques, such as diffusional kurtosis imaging (DKI), which extends classic DTI 

by estimating the kurtosis (i.e., a statistic for the skewed or non-Gaussian distribution) of the water 

diffusion probability distribution function. This could be important as water diffusion in biological 

tissues is non-Gaussian due to the effects of cellular microstructure, which is evident in the brain, where 

water diffusion is strongly restricted by myelinated axons (Steven, Zhuo, & Melhem, 2014; Wu & 

Cheung, 2010). Keeping all advantages and limitations in mind, the current doctoral dissertation thus 

strongly emphasizes and recommends the application of such novel data analysis methods in order to 

improve on the existing literature and broaden our knowledge on the neural correlates of various 

cognitive skills.  

Second, throughout the studies discussed above, we consistently used a sample of 9- to 10-year-old 

children (i.e., all 4th graders). This age range was selected as a substantial amount of arithmetic 

knowledge is already automatized at this point in development. Furthermore, we chose this small age 
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range to minimize possible maturational confounds. Many of the existing studies on the neural substrates 

of children’s arithmetic used research samples with wide age ranges (e.g., 7- to 10- or 10- to 15-years-

old), even though this period in time is characterized by large neural development (e.g., Barnea-Goraly 

et al. 2005). Consequently, although statistically controlled for, the observed correlations between 

individual differences in arithmetic and brain structure and function might still be swayed by maturation, 

instead of being purely related to arithmetic achievement. Furthermore, mathematical achievement also 

improves throughout child development, meaning that high experience-dependent plasticity can also be 

expected in the brain (e.g., Casey et al. 2006; Huber, Donnelly, Rokem, & Yeatman, 2018). Taken 

together, we recommend that homogenous age groups (i.e., research samples with a small age range) 

should be studied in order to take maturation effects into account, as to not miss any important 

neurodevelopmental changes that occur during key stages of academic learning (Menon, 2015). The 

difficulty in this, however, lies in the notion that it is perfectly possible to collect data from a research 

sample with a small age range in which the desired results would be impossible to find, which might 

even be what happened in our interference study in Chapter 3. For example, it is possible that, as the 

fourth graders of our sample, in contrast to adults, were still frequently in contact with multiplication 

items, clear neural distinctions were not yet made, leading to the absence of the neural interference 

effect. 

Third, it is important to stand still at how arithmetic was measured throughout this dissertation. In the 

fMRI studies, highly specific custom-made measures were used to study the neural basis of arithmetic 

problem-solving strategies (Chapter 2) and to study how well-known effects on arithmetic performance 

(more specifically on multiplication fact retrieval) affect activation in the arithmetic brain network 

(Chapter 3). Not only was strategy use assessed on a trial-by-trial basis in these tasks, they were also 

developed solely for these studies. In the structural studies (Chapters 4 and 5), however, arithmetic 

fluency was assessed in a more general fashion, through the Tempo Test Arithmetic (de Vos, 1992), 

meaning that these studies could not make specific statements on how the observed structural neural 

correlates of arithmetic fluency relate to such problem-solving strategies. The Tempo Test Arithmetic 

does mainly contain single-digit items, which are more likely to be solved through fact retrieval than 

through procedural manipulations, yet any statements on the relations between fact retrieval and these 

structural neural correlates would have been based on assumptions (mainly of problem size), which is 

exactly what we strongly advised against in Chapter 2. Accordingly, it was only possible for us to 

discuss the structural neural correlates of arithmetic fluency in general. 

Fourth, this doctoral dissertation focused on children’s arithmetic fluency, which is obviously time-

sensitive, but implemented fMRI to study neural activation, which has a limited temporal resolution due 

to the intrinsic nature of the hemodynamic response function (i.e., the change in oxygenated blood flow 

that occurs after brain cells get activated to perform a task) that it is based on (Kim et al., 1997). This is 

especially relevant for the fMRI study on the interference effect in Chapter 3, for which the items of 
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both interference conditions were highly similar (i.e., multiplication items of comparable problem size), 

were consistently solved through fact retrieval, and for which behavioral differences were only observed 

for reaction time. Consequently, instead of benefitting from the high spatial resolution of fMRI (Kim, 

Jin, & Fukuda, 2010), and looking at certain regions showing increased activation for one condition in 

comparison to the other, it might have been more suited to implement an imaging technique with a 

higher temporal resolution, such as event-related potentials (ERPs) in EEG (Burle et al., 2015). As these 

ERPs measure the actual direct electrophysiological response to a specific sensory, cognitive, or motor 

event, they can be valuable to better investigate the speed to which certain brain regions respond to 

certain stimuli, and could thus be used to study arithmetic fluency. For example, it is possible that an 

interference effect could have been found through ERPs when comparing the electrophysiological 

responses of a priori determined ROIs (e.g., based on previous research in adults; De Visscher et al., 

2015; De Visscher et al., 2018) of low and high interfering multiplication problems. The downside of 

ERPs, however, then lies in the poorer spatial resolution the technique offers (Luck, 2005).   

Fifth, a key aspect to keep in mind when analyzing MRI data regards the quality of the collected data, 

which can be strongly affected by motion. This is especially true for children, as children tend to move 

more than adults during data acquisition, possibly inducing undesirable noise in the neuroimaging data 

(Blumenthal, Zijdenbos, Molloy, & Giedd, 2002). Therefore, throughout the studies of this doctoral 

dissertation, we aimed to minimize motion by including a training session in a mock MRI scanner during 

behavioral assessment. Furthermore, during data analysis, we implemented strict criteria for motion 

correction and maintaining data quality. In the fMRI studies in Chapters 2 and 3, we implemented the 

rule that when participants displayed greater movement than the size of one voxel (i.e., 2.2 mm) on two 

consecutive images, only the items before the time point of excessive movement were included, and 

that, if a run did not contain at least one item for each condition the entire run was discarded (Vogel et 

al., 2016). For the structural grey matter analyses in Chapter 4, we aimed to maintain data quality by 

using the Mahalanobis distance, which combines weighted overall image quality, measuring noise and 

spatial resolution before preprocessing, and mean correlation, measuring the homogeneity of the data 

and thus the quality after preprocessing. Accordingly, we discarded data with a Mahalanobis distance 

greater than two standard deviations of the sample average. Finally, for the structural white matter 

analyses in Chapter 5, we discarded data for further analysis when, after motion correction, the data 

displayed excessive motion defined as a mean translation in any direction greater than the dMRI voxel 

size of 2.5 mm. Although the implementation of these criteria led to us losing a substantial amount of 

data, possibly leading to less statistical power for data analysis, the data quality criteria aimed to 

minimize noise and maximize data quality, actually giving rise to more accurate results. Of course, even 

more strict criteria could have been implemented, but we feel that, by using these criteria for motion and 

data quality, we achieved a proper balance between data quantity and quality. 
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Sixth, as mentioned, all research in the current doctoral dissertation was done with 9- to 10-year-old 

children. Accordingly, in order to ensure data quality and limit the amount of discarded data due to the 

abovementioned motion criteria, and to make the unusual experience of going through MRI scanning as 

pleasant as possible, we limited our scanning time to approximately 45-50 minutes per child (Ernst, 

Rumsey, & Munson, 2003). Unfortunately, due to this time constraint, it was impossible to incorporate 

extra runs into our imaging designs, which could have led to more statistical power to analyze the data. 

For example, in the fMRI study on the interference effect (Chapter 3), we were only able to include four 

fMRI runs per participant, instead of six, as was done previously in adults (De Visscher et al., 2015). 

This, of course, does not mean that the neural interference effect would have been found when six fMRI 

runs would have been used per participant, but it would have increased statistical power, giving us the 

opportunity to make more powerful statements about the collected neural data. Furthermore, we were 

also not able to add additional experiments to control for potentially confounding factors (e.g., on visual 

differences between conditions, which might have led to differences in occipital activation), or to 

implement runs with independent functional localizers based on previous research (e.g., to clearly 

localize the angular gyri for the interference study), in order to perform more powerful region of interest-

based analyses. 

Seventh, the functional neuroimaging data in this doctoral dissertation was consistently normalized to a 

standardized adult template. Even though this is in accordance with all previous neuroimaging studies 

on children’s arithmetic that either normalized their data to MNI or Talairach space (Arsalidou et al., 

2018), the use of such an adult template for children is not without problems, as children’s brain structure 

does in fact differ from adults (e.g., Mills et al., 2016). A recent study (Phan et al., 2018a) even showed 

that using a pediatric atlas for 6-year-olds increases accuracy of segmentation for structural volume 

measurements. However, as most available pediatric templates focus on very young children (e.g., up 

to 4-year-olds; Phan, Smeets, Talcott, & Vandermosten, 2018b), at the time of data analysis, there were 

hardly any standardized pediatric templates available for 9- to 10-year-old children. This is why we 

mainly implemented whole-brain approaches for our fMRI studies, as it is difficult to anatomically 

localize specific regions in children based on region of interest software designed for adult brains. 

Finally, a great strength of this doctoral project lies in the fact that, to perform statistical analyses, we 

used Bayesian statistics next to the more commonly used frequentist approach to statistics. In regard to 

the studies at hand, Bayesian statistics mainly have the advantage of being able to quantify the evidence 

that data provide for one hypothesis over another. Not only is this interesting to calculate the likelihood 

of the alternative hypothesis being true, Bayesian statistics, in contrast to classic frequentist hypothesis 

testing, are also able to quantify the evidence in favor of the null hypothesis when no association is 

observed (Andraszewicz et al., 2015). For example, this allowed us to, in Chapter 5, quantify evidence 

for the null hypothesis of no association between arithmetic and the AF and SLF, even though these 

white matter tracts were found to be related to children’s arithmetic in previous research.  
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7.3. Ventures for future research 

Although the results of the studies described above provide new insights in the functional and structural 

neural correlates of children’s arithmetic, a lot remains not fully understood. In this section, we suggest 

possible ventures for future neuroimaging research in this field.  

First, the structural studies in this doctoral dissertation used the Tempo Test Arithmetic (de Vos, 1992) 

to correlate children’s arithmetic fluency to different components of neuroanatomy. Considering the 

structure of the Tempo Test Arithmetic (i.e., each column mainly contains single-digit items likely to 

be solved through fact retrieval – within the time limit, children often do not reach the larger items that 

are more often solved through procedural manipulations), only associations between brain structure and 

arithmetic fluency in general (however most likely based on fact retrieval) could be discussed. However, 

as we observed functional neural differences between the use of a fact retrieval or procedural strategy 

in Chapter 2, differences might also be observed in the structural neural correlates of both problem-

solving mechanisms. Future research could thus use tasks specifically eliciting fact retrieval and 

procedural manipulations, preferably based on trial-by-trial self-reports (Siegler & Stern, 1998), in order 

to assess performance for both strategies and to more precisely study the structural neural correlates 

underlying arithmetic.  

Second, all of the studies above were conducted with a research sample of 9- to 10-year-olds, to 

minimize maturational confounds. However, aside obvious neural development throughout childhood 

years (e.g., Barnea-Goraly et al., 2005), research has also implicated large development in arithmetic, 

with shifts in strategy use, especially in the frequency and efficiency of those strategies (Imbo & 

Vandierendonck, 2008; Siegler, 1996; Siegler et al., 1996; Vanbinst et al., 2015). Consequently, it is 

essential to highlight the need for similar functional and structural imaging studies in children of 

different ages, such as children in the early steps of their arithmetic development (i.e., first or second 

graders, who might show an increased involvement of hippocampal regions), or children who have 

reached more advanced levels of arithmetic (i.e., children in secondary school, whose arithmetic brain 

network might much closer resemble that of adults). Keeping this in mind, studies that longitudinally 

follow children throughout development could especially be informative to better understand how and 

when in time the neural networks for both retrieval and procedural strategies develop. Similarly, such 

functional longitudinal research might help to understand how and when the modulation by problem 

size and interference on the arithmetic fact retrieval network develops, as clear neural differences 

between low and high interfering items were observed in adults, but not in children. For example, it is 

possible that the neural effect of interference emerges at a later point in development, which can only 

be pinpointed by such longitudinal research. Furthermore, to clearly investigate if and how education-

related development might affect both grey and white matter structures, or whether arithmetic-related 

structural neural differences are already present before the onset of formal arithmetic education, 

structural longitudinal research starting in preschool and following children throughout elementary 
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school could also provide crucial insights. Longitudinal research is thus important, as through cross-

sectional research, it is impossible to make strong statements on the causal link between brain structure 

and function, and arithmetic fluency (i.e., it is unclear whether individual differences in brain structure 

or function lead to differences in arithmetic performance, or vice versa). Based on a similar premise, 

another venture might lie in experimental research that manipulates the process of automatization and 

fact retrieval by teaching children to retrieve the answers to certain problems they would otherwise solve 

procedurally (e.g., single-double digit problems such as 3 × 14). Such research could then compare 

neural activation before and after the intervention, which would make it possible to see how 

automatization skills develop in the brain.  

Third, as all research of this dissertation was done in participants with no history of learning difficulties, 

it would be highly interesting to do similar research in children with such difficulties, such as children 

with dyscalculia, who experience persistent deficits in acquiring basic mathematical competencies, or 

children with dyslexia, who experience severe impairments in reading (American Psychiatric 

Association, 2013). Such research would especially be interesting considering the fact that difficulties 

in arithmetic strategy use are considered the hallmark of dyscalculia, and considering that fact retrieval 

deficits have also been observed in children with dyslexia (Evans et al., 2015). Further research on the 

functional and neural correlates of arithmetic fluency in these atypical populations are thus deemed 

necessary, as they could provide additional insights into the neural correlates of arithmetic, and might 

be indicative for alternative remedial programs or mathematical instruction for children with learning 

disorders.  

Fourth, throughout this doctoral dissertation, novel methods of analyzing structural neural data were 

used (i.e., cortical complexity and spherical deconvolution analyses). The benefits of these novel 

techniques were elaborately discussed in Chapters 4 and 5, yet, as we were among the first to implement 

these methods in the field of mathematical cognition and only looked at typically developing children, 

it stands to reason that future research should aim to apply similar methods in investigating adults or 

atypically developing children, where such techniques have not yet been used. Such studies could thus 

improve on the existing literature, by, among other things but in the example of our study in Chapter 4, 

regarding other structural characteristics than volume and their relation to arithmetic. Accordingly, this 

doctoral dissertation aims to emphasize how the implementation of novel data acquisition or analysis 

techniques can increase our understanding, not only of mathematics, but of the neural basis of various 

cognitive skills, be it reading, auditory processing, memory etc., and on clinical conditions characterized 

by deficits in those skills, such as dyslexia in the case of reading. 

Finally, as mentioned above, the studies of this doctoral project were all performed with Flemish 

participants, all receiving formal schooling in the Flemish educational system, which strongly 

emphasizes the automatization of arithmetic facts, discourages, or even prohibits the use of counting 

strategies, and teaches the use of a decomposition of operands strategy as the most effective procedural 
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strategy. Accordingly, it is crucial to highlight that arithmetic and the acquisition and use of arithmetic 

strategies is highly dependent on the math curriculum of the culture under study. For example, the 

emphasis on automatization may not be as strong in North America, where children are allowed to use 

counting strategies to solve arithmetic problems (e.g., Campbell & Xue, 2001). To this day, the neural 

correlates of these differences in arithmetic instruction remain unclear, but could be investigated through 

cross-cultural research designs. Future studies could thus explore how, for example, differences in the 

emphasis on fact retrieval or certain procedural strategies (i.e., different strategies, be it fact retrieval or 

procedural strategy use, or the use of different procedural manipulations, could be used for the same set 

of arithmetic problems) correlate with strategy-related brain activity. Similarly, from a perspective of 

experience-dependent neural plasticity, such studies could investigate if structural differences can be 

observed between children following different educational programs. For example, as the use of fact 

retrieval is emphasized to a much lesser extent in North America, results on arithmetic fluency tests 

such as the Tempo Test Arithmetic might actually correlate to structural characteristics of different 

neural regions, such as the intraparietal sulcus which is more involved in procedural manipulations. 

Similarly, such results might also correlate to the quality of other white matter pathways then the ILF, 

such as the arcuate fasciculus which connects the fronto-parietal brain regions of the procedural 

arithmetic brain network. 

In all, we believe these suggestions will contribute to the existing body of literature, providing additional 

insights into the neural correlates of arithmetic. Only by longitudinally and cross-culturally studying 

arithmetic through specific tasks, and by implementing novel and more accurate neuroimaging 

techniques, can we gain a full overview of the neurobiological correlates that underlie this crucial skill. 

  



150 | C h a p t e r  7  G e n e r a l  D i s c u s s i o n  

 

 

 

 

  



 

 

 

 

REFERENCES 
 

 

  



152 | R e f e r e n c e s  

 

 

 

Allison, T., Puce, A., Spencer, D. D., & McCarthy, G. (1999). Electrophysiological studies of human 

face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. 

Cerebral Cortex, 9, 415–430. 

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th 

ed.). Washington, MD: American Psychiatric Association. 

Andraszewicz, S., Scheibehenne, B., Rieskamp, J., Grasman, R., Verhagen, J., & Wagenmakers, E. J. 

(2015). An introduction to Bayesian hypothesis testing for management research. Journal of 

Management, 41(2), 521-543. 

Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. 

Nature Reviews. Neuroscience, 9(4), 278–291. 

Ansari, D. (2010). Neurocognitive approaches to developmental disorders of numerical and 

mathematical cognition: The perils of neglecting the role of development. Learning and Individual 

Differences, 20(2), 123–129. 

Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number 

processing in children and adults. Neuroreport, 16, 1769–1773. 

Arsalidou, M., & Taylor, M. J. (2011). Is 2 + 2= 4? Meta-analyses of brain areas needed for numbers 

and calculations. NeuroImage, 54(3), 2328-2393. 

Arsalidou, M., Pawliw-Levac, M., Sadeghi, M., & Pascual-Leone, J. (2018). Brain areas associated with 

numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive 

Neuroscience, 30, 239-250. 

Arthurs, O. J., & Boniface, S. (2002). How well do we understand the neural origins of the fMRI BOLD 

signal? Trends in Neurosciences, 25(1), 27–31. 

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry: The methods. NeuroImage, 11(6), 

805-821. 

Ashcraft, M. H., & Christy, K. S. (1995). The frequency of arithmetic facts in elementary texts: Addition 

and multiplication in Grades 1-6. Journal for Research in Mathematics Education, 26(5), 396–421.  

Assaf, Y., Freidlin, R. Z., Rohde, G. K., & Basser, P. J. (2004). New modeling and experimental 

framework to characterize hindered and restricted water diffusion in brain white matter. Magnetic 

Resonance in Medicine, 52(5), 965–978. 

Aydin, K., Ucar, K. K., Oguz, O. O., Okus, A., Agayev, Z., Unal, S., … Ozturk, C. (2007). Increased 

gray matter density in the parietal cortex of mathematicians: A voxel-based morphometry study. 

American Journal of Neuroradiology, 28(10), 1859-1864. 

Baddeley, A. D. (1986). Working memory. New York, NY: Oxford University. 

Bailey, D. H., Littlefield, A., & Geary, D. C. (2012). The co-development of skill at and preference for 

use of retrieval-based processes for solving addition problems: Individual and sex differences from 

first to sixth grade. Journal of Experimental Child Psychology, 113, 78–92. 



153 | R e f e r e n c e s  

 

 

 

Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., … Reiss, A. L. 

(2005). White matter development during childhood and adolescence: A cross-sectional diffusion 

tensor imaging study. Cerebral Cortex, 15(12), 1848-1854. 

Barrouillet, P., & Thevenot, C. (2013). On the problem-size effect in small additions: Can we really 

discard any counting-based account? Cognition, 128(1), 35-44.  

Barrouillet, P., Mignon, M., & Thevenot, C. (2008). Strategies in subtraction problem solving in 

children. Journal of Experimental Child Psychology, 99(4), 233–251. 

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. 

Biophysical Journal, 66(1), 259–267. 

Ben-Shachar, M., Dougherty, R. F., & Wandell, B. A. (2007). White matter pathways in reading. 

Current Opinion in Neurobiolgy, 17(2), 258–270. 

Berteletti, I., Prado, J., & Booth, J. R. (2014). Children with mathematical learning disability fail in 

recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex, 

57, 143-155. 

Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the 

human left fusiform gyrus to sublexical orthographic structure. NeuroImage, 33, 739–748. 

Bishop, C. M. (2006). Patter recognition and machine learning. New York, NY: Springer. 

Black, J. A., Myers, C. A., & Hoeft, F. (2015). The utility of neuroimaging studies for informing 

educational practice and policy in reading disorders. New Directions in Child and Adolescent 

Development, 147, 49-56. 

Blumenthal, J. D., Zijdenbos, A., Molloy, E., & Giedd, J. N. (2002). Motion artifact in magnetic 

resonance imaging: implications for automated analysis. NeuroImage, 16, 89–92. 

Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM 

toolbox. Presented at the 8th International Conference on Functional Mapping of the Human Brain, 

Sendai, Japan. 

Brus, B. T., & Voeten, M. J. M. (1979). Een Minuut Test (One minute Test). Lisse, The Netherlands: 

Swets & Zeitlinger. 

Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development 

Perspectives, 8(1), 36-41. 

Bulthé, J., De Smedt, B., & Op de Beeck, H. (2014). Format-dependent representations of symbolic and 

non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses. 

NeuroImage, 87, 311-322. 

Burle, B., Spieser, L., Roger, C., Casini, L., Hasbroucq, T., & Vidal, F. (2015). Spatial and temporal 

resolutions of EEG: Is it really black and white? A scalp current density view. International Journal 

of Psychophysiology, 97(3), 210-220. 



154 | R e f e r e n c e s  

 

 

 

Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition 

facts: The role of number comparison. The Quarterly Journal of Experimental Psychology, 54(4), 

1005-1029. 

Campbell, J. I. D. (1995). Mechanisms of simple addition and multiplication: A modified network 

interference theory and simulation. Mathematical Cognition, 1(2), 121–164. 

Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental 

Psychology: General, 130(2), 299–315. 

Cantlon, J. F., Libertus, M. E., Pinel, P., & Dehaene, S. (2009). The neural development of an abstract 

concept of number. Journal of Cognitive Neuroscience, 21(11), 2217-2229. 

Casey, B. J., Tottenham, N., Limston, C., & Durston, S. (2006). Imaging the developing brain: What we 

have learned about cognitive development. Trends in Cognitive Sciences, 9(3), 104-110. 

Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and 

aphasia: History and current state. Cortex, 44(8), 953-961. 

Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual 

in vivo dissections. Cortex, 44(8), 1105–1132. 

Catani, M., Jones, D. K., & ffytche, D.H. (2005). Perisylvian language networks of the human brain. 

Annals of Neurology, 57(1), 8-16. 

Chang, C., Crottaz-Herbette, S., & Menon, V. (2007). Temporal dynamics of basal ganglia response and 

connectivity during verbal working memory. NeuroImage, 34, 1253-1269. 

Chard, D. J., Clarke, B., Baker, S., Otterstedt, J., Braun, D., & Katz, R. (2005). Using measures of 

number sense to screen for difficulties in mathematics: Preliminary findings. Assessment for 

Effective Intervention, 30, 3–14. 

Chilla, G. S., Tan, C. H., Xu, C., & Poh, C. L. (2015). Diffusion weighted magnetic resonance imaging 

and its recent trend-a survey. Quantitative Imaging in Medicine and Surgery, 5(3), 407-422. 

Cho, S., Ryali, S., Geary, D. C., & Menon, V. (2011). How does a child solve 7 + 8? Decoding brain 

activity patterns associated with counting and retrieval strategies. Developmental Science, 14(5), 

989-1001. 

Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not 

abstract? Behavioral and Brain Sciences, 32, 313-373. 

Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of 

chronometric, neuroimaging, developmental and comparative studies of magnitude representation. 

Progress in Neurobiology, 84(2), 132–147. 

Corsi, P. M. (1972). Memory and the medial temporal region of the brain (Unpublished doctoral 

dissertation). McGill University, Department of Psychology, Montreal, Canada. 

Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L., Parvizi, J., & Hichwa, R. D. 

(2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature 

Neuroscience, 3, 1049–1056. 



155 | R e f e r e n c e s  

 

 

 

De Brauwer, J., Verguts, T., & Fias, W. (2006). The representation of multiplication facts: 

Developmental changes in the problem size, five, and tie effects. Journal of Experimental Child 

Psychology, 94(1), 43–56. 

De Smedt, B. (2016). Individual differences in arithmetic fact retrieval. In D. Berch, D. Geary, & K. 

Mann-Koepke (Eds.). Mathematical cognition and learning (Vol. 2; pp. 219-243). San Diego, CA: 

Elsevier Academic.  

De Smedt, B. (2018a). Applications of cognitive neuroscience in educational research. In Oxford 

Research Encyclopedia of Education.  

De Smedt, B. (2018b). Language and arithmetic: the potential role of processing. In A. Henik & W. Fias 

(Eds.), Heterogeneity of function in numerical cognition (pp. 51-74). San Diego, CA: Elsevier. 

De Smedt, B., & Boets, B. (2010). Phonological processing and arithmetic fact retrieval: Evidence from 

developmental dyslexia. Neuropsychologia, 48(14), 3973-3981. 

De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical 

magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child 

Psychology, 108(2), 278-292. 

De Smedt, B., & Grabner, R. (2015). Applications of neuroscience to mathematics education. In A. 

Dowker & R. Cohen Kadosh (Eds.), The Oxford handbook of numerical cognition (pp. 613-636). 

Oxford: University Press.  

De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation 

on brain activation during calculation in children with varying levels of arithmetical fluency. 

NeuroImage, 57, 771-781. 

De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working 

memory and individual differences in mathematics achievement: A longitudinal study from first 

grade to second grade. Journal of Experimental Child Psychology, 103(2), 186-201. 

De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic 

numerical magnitude processing skills relate to individual differences in children's mathematical 

skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 

48-55. 

De Smedt, B., Taylor, J., Archibald, L., & Ansari, D. (2010). How is phonological processing related to 

individual differences in children's arithmetic skills? Developmental Science, 13(3), 508-520.  

De Visscher, A., & Noël, M.-P. (2013). A case study of arithmetic facts dyscalculia caused by a 

hypersensitivity-to-interference in memory. Cortex, 49(1), 50–70. 

De Visscher, A., & Noël, M.-P. (2014a). Arithmetic facts storage deficit: The hypersensitivity-to-

interference in memory hypothesis. Developmental Science, 17(3), 434-442. 

De Visscher, A., & Noël, M.-P. (2014b). The detrimental effect of interference in multiplication facts 

storing: Typical development and individual differences. Journal for Experimental Psychology: 

General, 143, 2380-2400. 



156 | R e f e r e n c e s  

 

 

 

De Visscher, A., Berens, S. C., Keidel, J. L., Noël, M.-P., & Bird, C.M. (2015). The interference effect 

in arithmetic fact solving: An fMRI study. NeuroImage, 116, 92-101. 

De Visscher, A., Noël, M.-P., & De Smedt, B. (2016). The role of physical digit representation and 

numerical magnitude representation in children’s multiplication fact retrieval. Journal of 

Experimental Child Psychology, 152, 41-53. 

De Visscher, A., Vogel, S. E., Reishofer, G., Hassler, E., Koschutnig, K., De Smedt, B., & Grabner, R. 

H. (2018). Interference and problem size effect in multiplication fact solving: Individual differences 

in brain activations and arithmetic performance. NeuroImage, 172, 718-727. 

de Vos, T. (1992). Tempo-Test-Rekenen. Nijmegen, The Netherlands: Berkhout. 

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-42. 

Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. 

Mathematical Cognition, 1(1), 83-120. 

Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote 

verbal and quantitative knowledge of arithmetic. Cortex, 33, 219–250. 

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. 

Cognitive Neuropsychology, 20(3), 487–506. 

Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning 

complex arithmetic: An fMRI study. Cognitive Brain Research, 18(1), 76-88. 

Dell’Acqua, F., Rizzo, G., Scifo, P., Clarke, R. A., Scotti, G., & Fazio, F. (2007). A model-based 

deconvolution approach to solve fibercrossing in diffusion-weighted MR imaging. IEEE 

Transactions on Biomedical Engineering, 54(3), 462–472. 

Dell’Acqua, F., Simmons, A., Williams, S. C. R., & Catani, M. (2013). Can spherical deconvolution 

provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a 

true-tract specific index to characterize white matter diffusion. Human Brain Mapping, 34(10), 

2464-2483. 

Dell’Acqua, F., & Tournier, J.-D. (2018). Modelling white matter with spherical deconvolution: How 

and why? NMR in Biomedicine. doi:10.1002/nbm.3945 

Desai, R., Liebenthal, E., Possing, E. T., Waldron, E., & Binder, J. R. (2005). Volumetric vs. surface-

based alignment for localization of auditory cortex activation. NeuroImage, 26, 1019-1029. 

Diamond, A., & Amso, D. (2008). Contributions of neuroscience to our understanding of cognitive 

development. Current Directions in Psychological Science, 17, 136-141. 

Dick, A. S., & Tremblay, P. (2012). Beyond the arcuate fasciculus: Consensus and controversy in the 

connectional anatomy of language. Brain, 135(12), 3529-3550. 

Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on 

Psychological Science, 6(3), 274-290. 

Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and 

education. Hove, UK: Psychology Press. 



157 | R e f e r e n c e s  

 

 

 

Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse 

cognitive demands. Trends in Neurosciences, 23(10), 475–483. 

Epsy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2014). The 

contribution of executive functions to emergent mathematic skills in preschool children. 

Developmental Neuropsychology, 26(1), 465-486. 

Ernst, M., Rumsey, J., & Munson, S. (2003). Update on functional neuroimaging in child psychiatry. In 

C. Fu, C. Senior, T. Russell, D. Weinberger, & R. Murray (Eds.), Neuroimaging in Psychiatry (pp. 

51–80). Boca Raton: CRC. 

Evans, T. M., Flowers, D. L., Napoliello, E. M., Olulade, O. A., & Eden, G. F. (2014). The functional 

anatomy of single-digit arithmetic in children with developmental dyslexia. NeuroImage, 101, 644-

652. 

Evans, T. M., Kochalka, J., Ngoon, T. J., Wu, S. S., Qin, S., Battista, C., & Menon, V. (2015). Brain 

structural integrity and intrinsic functional connectivity forecast 6 year longitudinal growth in 

children’s numerical abilities. Journal of Neuroscience, 35, 11743–11750. 

Farquharson, S., Tournier, J. D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G. D., & 

Connelly, A. (2013). White matter fiber tractography: Why we need to move beyond DTI. Journal 

of Neurosurgery, 118(6), 1367-1377. 

Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal 

and parietal cortex. PNAS, 110(41), 16616-16621. 

Fox, P. T., Huang, A., Parsons, L. M., Xiong, J. H., Zamarippa, F., Rainey, L., & Lancaster, J. L. (2001). 

Location probability profiles for the mouth region of human primary motor-sensory cortex: Model 

and validation. NeuroImage, 13, 196–209.` 

Gaser, C., Nenadic, I., Buchsbaum, B., Hazlett, E., & Buchsbaum, M. S. (2001). Deformation-based 

morphometry and its relation to conventional volumetry of brain lateral ventricles in MRI. 

NeuroImage, 13, 1140-1145. 

Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and 

mathematical learning disability with a simple screening tool the number sets test. Journal of 

Psychoeducational Assessment, 27(3), 265–279. 

Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in cognitive 

addition: A comparison of normal and mathematically disabled children. Journal of Experimental 

Child Psychology, 54(3), 372-391. 

Geary, D. C., Hoard, M. K., Byrd-Craven, J., & Desoto, M. C. (2004). Strategy choices in simple and 

complex addition: Contributions of working memory and counting knowledge for children with 

mathematical disability. Journal of Experimental Child Psychology, 88(2), 121-151. 

Gerardi, K., Goette, L., & Meier, S. (2013). Numerical ability predicts mortgage default. Proceedings 

of the National Academy of Sciences of the United States of America, 110(28), 11267–11271. 



158 | R e f e r e n c e s  

 

 

 

Glover, G. H. (2011). Overview of Functional Magnetic Resonance Imaging. Neurosurgery Clinics of 

North America, 22(2), 133-139. 

Goswami, U. (2008). Principles of learning, implications for teaching: A cognitive neuroscience 

perspective. Journal of Philosophy of Education, 42, 381-399. 

Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve 

or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. 

Neuropsychologia, 47, 604-608. 

Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual 

differences in mathematical competence predict parietal brain activation during mental calculation. 

NeuroImage, 38(2), 346-356. 

Graybiel, A. M. (2005). The basal ganglia: Learning new tricks and loving it. Current Opinion in 

Neurobiology, 15, 638-644. 

Grotheer, M., Jeska, B., & Grill-Spector, K. (2018). A preference for mathematical processing 

outweighs the selectivity for Arabic numbers in the inferior temporal gyrus. NeuroImage, 175, 188-

200. 

Han, B. S., Hong, J. H., Hong, C., Yeo, S. S., Lee, D. H., Cho, H. K., & Jang, S. H. (2010). Location of 

corticospinal tract at the corona radiata in human brain. Brain Research, 1326, 75-80. 

Han, Z., Davis, N., Fuchs, L., Anderson, A. W., Gore, J. C., & Dawant, B. M. (2013). Relation between 

brain architecture and mathematical ability in children: A DBM study. Magnetic Resonance 

Imaging, 31, 1645–1656.  

Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 62(2), 

852-855. 

Hecht, S. A., Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (2001). The relations between 

phonological processing abilities and emerging individual differences in mathematical 

computational skills: A longitudinal study from second to fifth grades. Journal of Experimental 

Child Psychology, 79, 192–227. 

Heirdsfield, A. M., & Cooper, T. J. (2002). Flexibility and inflexibility in accurate mental addition and 

subtraction: Two case studies. Journal of Mathematical Behavior, 21, 57–74. 

Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., . . . Gabrieli, J. D. E. 

(2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National 

Academy of Sciences of the United States of America, 108(1), 361-366.  

Hoeft, F., Ueno, T., Reiss, A. L., Meyler, A., Whitfield-Gabrieli, S., Glover, G. H., … Gabrieli, J. D. E. 

(2007). Prediction of children’s reading skills using behavioral, functional, and structural 

neuroimaging measures. Behavioral Neuroscience, 121(3), 602-613. 

Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and 

executive functions in the developing brain: an fMRI meta-analysis of 52 studies including 842 

children. Developmental Science, 13(6), 876–885. 



159 | R e f e r e n c e s  

 

 

 

Howard-Jones, P. A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., . . . Thomas, 

M. S. C. (2016). The Principles and Practices of Educational Neuroscience: Comment on Bowers 

(2016). Psychological Review, 123(5), 620-627. 

Huber, E., Donnelly, P. M., Rokem, A., & Yeatman, J. D. (2018). Rapid and widespread white matter 

plasticity during an intensive reading intervention. Nature Communications. doi: 

10.1038/P2theo0kz-018-04627-5 

Huettel, S. A., Song, A. W., & McCarthy, G. (2014). Functional Magnetic Resonance Imaging (2nd ed.). 

Sunderland, MA: Sinauer Associates. 

Im, K., Lee, J.-M., Yoon, U., Shin, Y.-W., Hong, S. B., Kim, I. Y., ... Kim, S. I. (2006). Fractal 

dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal 

depth, and folding area. Human Brain Mapping, 27(12), 994-1003.  

Imbo, I., & Vandierendonck, A. (2007). The development of strategy use  in  elementary  school  

children:  Working  memory  and individual differences. Journal of Experimental Child 

Psychology, 96, 284–309. 

Imbo, I., & Vandierendonck, A. (2008). Effects of problem size, operation, and working-memory span 

on simple-arithmetic strategies: Differences between children and adults? Psychological Research, 

72(3), 331-346. 

Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011).Non-verbal number acuity correlates with 

symbolic math-emtics achievement: but only in children. Psychonimic Bulletin & Review, 18(6), 

1222-1229. 

Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of 

very low birthweight: A neural correlate. Brain, 124, 1701-1707. 

JASP Team (2017). JASP (Version 0.8.5) [Computer software]. 

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, United Kingdom: Oxford University. 

Johansen-Berg, H. (2010). Behavioural relevance of variation in white matter microstructure. Current 

Opinion in Neurology, 23(4), 351-358. 

Jones, D. K., & Leemans, A. (2011). Diffusion tensor imaging. In M. Modo & J. W. M. Bulte  (Eds.), 

Magnetic resonance neuroimaging: Methods and protocols (pp. 127-144). New York, NY: 

Humana. 

Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L.-B., & Koten, J. W. 

(2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 

44(4), 376-385. 

Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI 

studies investigating typical and atypical trajectories of number processing and calculation. 

Developmental Neuropsychology, 36(6), 763–787. 

Keller, K., & Menon, V. (2009). Gender differences in the functional and structural neuroanatomy of 

mathematical cognition. NeuroImage, 47, 342–352. 



160 | R e f e r e n c e s  

 

 

 

Kesler, S. R., Menon, V., & Reiss, A. L. (2006). Neurofunctional differences associated with arithmetic 

processing in Turner Syndrome. Cerebral Cortex, 16(6), 849-856. 

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. 

Washington, DC: The National Academies. 

Kim, S. G., Richter, W., & Uğurbil, K. (1997). Limitations of temporal resolution in functional MRI. 

Magnetic Resonance in Medicine, 37(4), 631-636. 

Kim, S.-G., Jin, T., & Fukuda, M. (2010). Spatial resolution of fMRI techniques. In S. Ulmer & O. 

Jansen (Eds.), fMRI: Basics and clinical applications (pp. 15-21). Berlin, Germany: Springer. 

King, R. D., Brown, B., Hwang, M., Jeon, T., & George, A. T. (2010). Fractal dimension analysis of the 

cortical ribbon in mild Alzheimer's disease. NeuroImage, 53(2), 471-479. 

Kiselev, V. G., Hahn, K. R., & Auer, D. P. (2003). Is the brain cortex a fractal? NeuroImage, 20, 1765-

1774. 

Klein, E., Moeller, K., Glauche, V., Weiller, C., & Willmes, K. (2013). Processing pathways in mental 

arithmetic-evidence from probabilistic fiber tracking. PLoS One, 8(1). 

Koponen, T., Mononen, R., Räsänen, P., & Ahonen, T. (2006). Basic numeracy in children with specific 

language impairment: Heterogeneity and connections to language. Journal of Speech, Language, 

and Hearing Research, 49, 58 –73. 

Koponen, T., Salmi, P., Eklund, K., & Aro, T. (2013). Counting and RAN: Predictors of arithmetic 

calculation and reading fluency. Journal of Educational Psychology, 105(1), 162-175. 

Kucian, K., Ashkenazi, S. S., Hänggi, J., Rotzer, S., Jäncke, L., Martin, E., & von Aster,M. (2013). 

Developmental dyscalculia: A dysconnection syndrome? Brain Structure and Function, 219(5), 

1721-1733. 

Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural 

networks for exact and approximate calculation: A fMRI study. Developmental Neuropsychology, 

33(4), 447–473. 

Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied multiple regression models (4th ed.). New 

York, NY: McGraw-Hill. 

Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical 

capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. 

Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional 

Magnetic Resonance Imaging study and correlation with a case of selective acalculia. Annals of 

Neurology, 48(4), 657–661. 

Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. K. (2009). ExploreDTI: A graphical toolbox for 

processing, analyzing, and visualizing diffusion MR data. In Proceedings of the 17th Scientific 

Meeting, International Society for Magnetic Resonance in Medicine (p. 3537). Honolulu.  



161 | R e f e r e n c e s  

 

 

 

LeFevre, J. A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: 

Reassessing the problem size effect in adults. Journal of Experimental Psychology: Learning, 

Memory, and Cognition, 22(1), 216–230. 

Li, Y., Hu, Y., Wang, Y., Weng, J., & Chen, F. (2013). Individual structural differences in left inferior 

parietal area are associated with schoolchildren’s arithmetic scores. Frontiers in Human 

Neuroscience, 7. 

Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: A review. Medical Image Analysis, 

13, 634-649. 

Luck, S. J. (2005). An introduction to the event-related potential technique. MIT. 

Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L., Steinmetz, H., & Toga, A. W. (2004). 

Gender differences in cortical complexity. Nature Neuroscience, 7(8), 799-800. 

Lyons, I. M., & Beilock, S. L. (2012). When math hurts: Math anxiety predicts pain network activation 

in anticipation of doing math. PLOS One, 7. doi:10.1371/journal.pone.0048076 

Madan, C. R., & Kensinger, E. A. (2016). Cortical complexity as a measure of age-related brain atrophy. 

NeuroImage, 134, 617-629. 

Martino, J., Brogna, C., Robles, S. G., Vergani, F., & Duffau, H. (2010). Anatomic dissection of the 

inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex, 46(5), 

691–699. 

Matejko, A. A., Price, G. R., Mazzocco, M. M. M., & Ansari, D. (2013). Individual differences in left 

parietal white matter predict math scores on the preliminary scholastic aptitude test. NeuroImage, 

66, 604–610. 

Matejko, A., & Ansari, D. (2015). Drawing connections between white matter and numerical and 

mathematical cognition: A literature review. Neuroscience & Biobehavioral Reviews, 48, 35-52. 

Mazzocco, M. M. M., & Grimm, K. J. (2013). Growth in rapid automatized naming from grades K to 8 

in children with math or reading disabilities. Journal of Learning Disabilities, 46(6), 517-533. 

McRobbie, D. W., Moore, E. A., Graves, M. J., & Prince, M. R. (2006). MRI from picture to proton (2nd 

ed.). Cambridge University. 

Menon, V. (2015). Arithmetic in the child and adult brain. In R. Cohen Kadosh & A. Dowker (Eds.), 

The Oxford handbook of numerical cognition (pp. 502-530). Oxford, United Kingdom: Oxford 

University. 

Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J., Crone, E. A., … Tamnes, 

C. K. (2016). Structural brain development between childhood and adulthood: Convergence across 

four longitudinal samples. NeuroImage, 141, 273-271. 

Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774–

785. 

Moeller, K., Willmes, K., & Klein, E. (2015). A review on functional and structural brain connectivity 

in numerical cognition. Frontiers in Human Neuroscience, 9. 



162 | R e f e r e n c e s  

 

 

 

Molko, N., Cachia, A., Riviere, D., Mangin, J.F., Bruandet, M., Le Bihan, D., … Dehaene, S. (2003). 

Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of 

genetic origin. Neuron, 40, 847–858. 

Moreau, D., Wiebels, K., Wilson, A. J., & Waldie, K. E. (2019). Volumetric and surface characteristics 

of gray matter in adult dyslexia and dyscalculia. Neuropsychologia. doi: 

10.1016/j.neuropsychologia.2019.02.002 

Mustafa, N., Ahearn, T. S., Waiter, G. D., Murray, A. D., Whalley, L. J., & Staff, R. T. (2012). Brain 

structural complexity and life course cognitive change. NeuroImage, 61, 694–701. 

Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251–269. 

Navas-Sánchez, F. J., Alemán-Gómez, Y., Sánchez-Gonzalez, J., Guzmán-De-Villoria, J. A., Franco, 

C., Robles, O., … Desco, M. (2014). White matter microstructure correlates of mathematical 

giftedness and intelligence quotient. Human Brain Mapping, 35(6), 2619–2631. 

Ozernov-Palchik, O., & Gaab, N. (2016). Tackling the 'dyslexia paradox': Reading brain and behavior 

for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science, 

7(2), 156-176. 

Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual 

Review of Neuroscience, 25, 563-593. 

Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta-analysis of mathematics and working 

memory: Moderating effects of working memory domain, type of mathematics skill, and sample 

characteristics. Journal of Educational Psychology, 108(4), 455-473. 

Peters, L., & De Smedt, B. (2018). Arithmetic in the developing brain: A review of brain imaging 

studies. Developmental Cognitive Neuroscience, 30, 265-279. 

Peters, L., Polspoel, B., Op de Beeck, H., & De Smedt, B. (2016). Brain activity during arithmetic in 

symbolic and non-symbolic formats in 9-12 year old children. Neuropsychologia, 86, 19-28. 

Phan, T. V., Sima, D. M., Beelen, C., Vanderauwera, J., Smeets, D., & Vandermosten, M. (2018a). 

Evaluation of methods for volumetric analysis of pediatric brain data: The childmetrix pipeline 

versus adult-based approaches. NeuroImage: Clinical, 19, 734-744. 

Phan, T. V., Smeets, D., Talcott, J. B., & Vandermosten, M. (2018b). Processing of structural 

neuroimaging data in young children: Bridging thegap between current practice and state-of-the-art 

methods. Developmental Cognitive Neuroscience, 33, 206-223. 

Pinheiro-Chagas, P., Daitch, A., Parvizi, J., & Dehaene, S. (2018). Brain Mechanisms of arithmetic: A 

crucial role for ventral temporal cortex. Journal of Cognitive Neuroscience, 30, 1757-1772. 

Polspoel, B., Peters, L., Vandermosten, M., & De Smedt, B. (2017). Strategy over operation: Neural 

activation in subtraction and multiplication during fact retrieval and procedural strategy use in 

children. Human Brain Mapping, 38(9), 4657-4670. 



163 | R e f e r e n c e s  

 

 

 

Polspoel, B., Vandermosten, M., & De Smedt, B. (2018). Relating individual differences in white matter 

pathways to children’s arithmetic fluency: A spherical deconvolution study. Brain Structure and 

Function, 224(1), 337-350. 

Polspoel, B., Vandermosten, M., & De Smedt, B. (submitted). The association of grey matter volume 

and cortical complexity with individual differences in children’s arithmetic fluency.  

Prado, J., Lu, J., Lio, L., Dong, Q., Zhou, X., & Booth, J. R. (2013). The neural bases of the 

multiplication problem-size effect across countries. Frontiers in Human Neuroscience, 7. 

Prado, J., Mutreja, R., & Booth, J. R. (2014). Developmental dissociation in the neural responses to 

simple multiplication and subtraction problems. Developmental Science, 17(4), 537-552. 

Prado, J., Mutreja, R., Zhang, H., Metha, R., Desroches, A. S., Minas, J. E., & Booth, J. R. (2011). 

Distinct representations of subtraction and multiplication in the neural systems for numerosity and 

language. Human Brain Mapping, 32(11), 1932–1947. 

Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude 

comparison: Reliability and validity of different task variants and outcome measures, and their 

relationship to arithmetic achievement in adults. Acta Psychologica, 140, 50-57. 

Price, G. R., Wilkey, E. D., Yeo, D. J., & Cutting, L. E. (2016). The relation between 1st grade grey 

matter volume and 2nd grade math competence. NeuroImage, 124, 232–237. 

Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-

neocortical functional reorganization underlies children’s cognitive development. Nature 

Neuroscience, 17(9), 1263-1269. 

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review 

of developmental, individual differences and cognitive approaches. Learning and Individual 

Differences, 20, 110–122. 

Raichle, M. E., Macleod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). 

A default mode of brain function. PNAS, 98(2), 676-682. 

Ranpura, A., Isaacs, E., Edmonds, C., Rogers, M., Lanigan, J., Stinghal, A., … Butterworth, B. (2013). 

Developmental trajectories of grey and white matter in dyscalculia. Trends in Neuroscience and 

Education, 2(2), 56-64. 

Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The 

calculating brain: An fMRI study. Neuropsychologia, 38, 325–335. 

Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental 

arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. 

Cerebral Cortex, 15(11), 1779–1790. 

Robinson, C. S., Menchetti, B. M., & Torgesen, J. K. (2002). Toward a two-factor theory of one type of 

mathematics disabilities. Learning Disabilities Research & Practice, 17(2), 81–89. 



164 | R e f e r e n c e s  

 

 

 

Rosenberg-Lee, M., Barth, M., & Menon, V. (2011). What difference does a year of schooling make? 

Maturation of brain response and connectivity between 2nd and 3rd grades during arithmetic 

problem solving. NeuroImage, 57(3), 796-808. 

Rosenberg-Lee, M., Tsang, J. M., & Menon, V. (2009). Symbolic, numeric, and magnitude 

representations in the parietal cortex. Behavioral and Brain Sciences, 32, 350–351. 

Rotzer, S., Kucian, K., Martin, E., Aster, M., von Klaver, P., & Loenneker, T. (2008). Optimized voxel-

based morphometry in children with developmental dyscalculia. NeuroImage, 39, 417-422. 

Ruiz de Miras, J., Costumero, V., Belloch, V., Escudero, J., Avila, C., & Sepulcre, J. (2017). Complexity 

analysis of cortical surface detects changes in future Alzheimer's disease converters. Human Brain 

Mapping, 38(12), 5905-5918. 

Rykhlevskaia, E., Uddin, L. L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of 

developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in 

Human Neuroscience, 3. 

Sandu, A.-L., Staff, R. T., McNeill, C. J., Mustafa, N., Ahearn, T., Whalley, L. J., & Murray, A. D. 

(2014). Structural brain complexity and cognitive decline in late life - A longitudinal study in the 

Aberdeen 1936 Birth Cohort. NeuroImage, 100, 558-563. 

Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, 

cerebrocerebellar systems. Cortex, 44(8),1037-1066. 

Schneider, M., Beeres, K., Coban, L. Merz, S., Schmidt, S., Stricker, J., & De Smedt, B. (2016). 

Associations of non‐symbolic and symbolic numerical magnitude processing with mathematical 

competence: A meta‐analysis. Developmental Science, 20(3). 

Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., … Mourao-Miranda, 

J. (2013). PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics. 

Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., … Parvizi, J. (2013). 

A brain area for visual numerals. Journal of Neuroscience, 33(16), 6709–6715. 

Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition. 

Journal of Experimental Psychology General, 116(3), 250-264. 

Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill. Journal 

of Experimental Psychology: General, 117, 258–275. 

Siegler, R. S., & Shrager, J. (1984). Strategy choice in addition and subtraction: How do children know 

what to do? In C. Sophian (Ed.). Origins of cognitive skills (pp. 229-293). Hillsdale, NJ: Erlbaum. 

Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic 

analysis. Journal of Experimental Psychology: General, 127(4), 377–397. 

Siegler, R. S., Adolph, K. E., & Lemaire, P. (1996). Strategy choices across the life span. In L. R. Reder 

(Ed.), Implicit memory and metacognition (pp. 79–121). Mahwah, NJ: Erlbaum. 

Siegler, R.S. (1996). Emerging minds: The process of change in children’s thinking. New York, NY: 

Oxford University.  



165 | R e f e r e n c e s  

 

 

 

Simmons, F. R., & Singleton, C. (2008). Do weak phonological representations impact on arithmetic 

development? A review of research into arithmetic and dyslexia. Dyslexia, 14(2), 77-94. 

Simon, O., Mangin, J.-F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, 

eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475-487. 

Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker's guide to diffusion tensor 

imaging. Frontiers in Neuroscience, 7, 31. 

Stanescu–Cosson, R., Pinel, P., Moortele, P. F. V. D., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). 

Understanding dissociations in dyscalculia. A brain imaging study of the impact of number size on 

the cerebral networks for exact and approximate calculation. Brain, 123, 2240–2255. 

Steven, A. J., Zhuo, J., & Melhem, E. R. (2014). Diffusion Kurtosis Imaging: An emerging technique 

for evaluating the microstructural environment of the brain. American Journal of Roentgenology, 

202(1), 26-33. 

Supekar, K., Swigart, A. G., Tenison, C., Jolles, D. D., Rosenberg-Lee, M., Fuchs, L., & Menon, V. 

(2013). Neural predictors of individual differences in response to math tutoring in primary-grade 

school children. Proceedings of the National Academy of Sciences of the United States of America, 

110(20), 8230-8235.  

Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of 

functional and structural connectivity within the default mode network in young children. 

NeuroImage, 52(1), 290-301. 

Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. 

Review of Educational Research, 76, 249–274. 

Thevenot, C., Barrouillet, P., Castel, C., & Uittenhove, K. (2016). Ten-year-old children strategies in 

mental addition: A counting model account. Cognition, 146, 48-57. 

Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G. M., 

& Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 

14, 1245-1246. 

Thompson, P. M., Lee, A. D., Dutton, R. A., Geaga, J. A., Hayashi, K. M., Eckert, M. A., … Reiss, A. 

L. (2005). Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. The 

Journal of Neuroscience, 25(16), 4146-4158. 

Torbeyns, J., Verschaffel, L., & Ghesquière, P. (2004). Strategic aspects of simple addition and 

subtraction: The influence of mathematical ability. Learning and Instruction, 14(2), 177-195. 

Torgesen, J. K., Wagner, R. K., & Rashotte, C. A. (1994). Longitudinal studies of phonological 

processing and reading. Journal of Learning Disabilities, 27(5), 276-286. 

Torgesen, J. K., Wagner, R. K., Rashotte, C. A., Burgess, S., & Hecht, S. (1997). Contributions of 

phonological awareness and rapid automatic naming ability to the growth of word-reading skills in 

second- to fifth-grade children. Scientific Studies of Reading, 1, 161–185.  



166 | R e f e r e n c e s  

 

 

 

Tournier, J. D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation 

distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. 

NeuroImage, 35(4), 1459–1472. 

Tournier, J. D., Calamante, F., Gadian, D. G., & Connelly, A. (2004). Direct estimation of the fiber 

orientation density function from diffusion-weighted MRI data using spherical deconvolution. 

NeuroImage, 23(3), 1176–1185. 

Tsang, J. M., Dougherty, R. F., Deutsch, G. K., Wandell, B. A., & Ben-Shachar, M. (2009). 

Frontoparietal white matter diffusion properties predict mental arithmetic skills in children. PNAS, 

106(52), 22546-22551. 

Tschentscher, N., & Hauk, O. (2014). How are things adding up? Neural differences between arithmetic 

operations are due to general problem solving strategies. NeuroImage, 92, 369-380. 

Tuch, D. S. (2004). Q-ball imaging. Magnetic Resonance in Medicine, 52(6), 1358–1372. 

Uittenhove, K., Thevenot, C., & Barrouillet, P. (2016). Fast automated counting procedures in addition 

problem solving: When are they used and why are they mistaken for retrieval? Cognition, 146, 289-

303. 

Van Beek, L., Ghesquière, P., Lagae, L., & De Smedt, B. (2014). Left fronto-parietal white matter 

correlates with individual differences in children's ability to solve additions and multiplications: A 

tractography study. NeuroImage, 90, 117-127. 

van den Bos, K. P. (1998) IQ, phonological awareness and continuous-naming speed related to Dutch 

poor decoding children’s performance on two word identification tests. Dyslexia, 4, 73–89. 

van den Bos, K. P., Spelberg, H. C. L., Scheepstra, A. S. M., & De Vries, J. R. (1994). De Klepel: 

Pseudowoordentest. Nijmegen, The Netherlands: Berkhout. 

Van Eimeren, L., Grabner, R. H., Koschutnig, K., Reishofer, G., Ebner, F., & Ansari, D. (2010). 

Structure-function relationships underlying calculation: a com-bined diffusion tensor imaging and 

fMRI study. NeuroImage, 52(1), 358–363. 

Van Eimeren, L., Niogi, S. N., McCandliss, B. D., Holloway, I. D., & Ansari, D. (2008). White matter 

microstructures underlying mathematical abilities in children. Cognitive Neuroscience and 

Neuropsychology, 19(11), 1117-1121. 

Vanbinst, K., & De Smedt, B. (2016). Individual differences in children's mathematics achievement: 

The roles of symbolic numerical magnitude processing and domain-general cognitive functions. 

Progress in Brain Research, 227, 105-130. 

Vanbinst, K., Ceulemans, E., Ghesquière, P., & De Smedt, B. (2015a). Profiles of children’s arithmetic 

fact development: A model-based clustering approach. Journal of Experimental Child Psychology, 

133, 29-46. 

Vanbinst, K., Ghesquière, P., & De Smedt, B. (2012). Numerical magnitude representations and 

individual differences in children’s arithmetic strategy use. Mind, Brain and Education, 6(3), 129–

136. 



167 | R e f e r e n c e s  

 

 

 

Vanbinst, K., Ghesquière, P., & De Smedt, B. (2015b). Does numerical processing uniquely predict first 

graders’ future development of single-digit arithmetic? Learning and Individual Differences, 37, 

153-160. 

Vanderauwera, J., Vandermosten, M., Dell’Acqua, F., Wouters, J., & Ghesquière, P. (2015). 

Disentangling the relation between left temporoparietal white matter and reading: A spherical 

deconvolution tractography study. Human Brain Mapping, 36(8), 3273-3287. 

Vanderauwera, J., Wouters, J., Vandermosten, M., & Ghesquière, P. (2017). Early dynamics of white 

matter deficits in children developing dyslexia. Developmental Cognitive Neuroscience, 27, 69-77. 

Vann, S. D., Aggleton, J. P., & Maguire, E. A. (2009). What does the retrosplenial cortex do? Nature 

Reviews Neuroscience, 10(11), 792-802. 

Verschaffel, L., Torbeyns, J., De Smedt, B., Luwel, K., & Van Dooren, W. (2007). Strategy flexibility 

in children with low achievement in mathematics. Educational and Child Psychology, 24(2), 16-

27. 

Vogel, S. E., Matejko, A. A., & Ansari, D. (2016). Imaging the developing human brain using functional 

and structural Magnetic Resonance Imaging: Methodological and practical guidelines. Practical 

Research with Children, 46–69. 

Von Der Heide, R. J., Skipper, L. M., Klobusicky, E., & Olson, I. R. (2013). Dissecting the uncinate 

fasciculus: disorders, controversies and a hypothesis. Brain, 136(6),1692-1707. 

Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., … Mori, S. 

(2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. 

NeuroImage, 36(3), 630–644. 

Wang, R., Benner, T., Sorensen, A. G., & Wedeen, V. J. (2007). Diffusion toolkit: A software package 

for diffusion imaging data processing and tractography. In 15th Annual Meeting, International 

Society for Magnetic Resonance in Medicine. Berlin. 

Wechsler, D. (2005). Wechsler Intelligence Scale for Children – WISC-III-NL. Amsterdam, The 

Netherlands: Pearson. 

Wedeen, V. J., Hagmann, P., Tseng, W. Y. I., Reese, T. G., & Weisskoff, R. M. (2005). Mapping 

complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic 

Resonance in Medicine, 54(6), 1377–1386. 

Whitwell, J. L. (2009). Voxel-based morphometry: An automated technique for assessing structural 

changes in the brain. Journal of Neuroscience, 29, 9661-9664. 

Woodcock, R. W., McGrew, K. S., & Mather, N. (2003). Woodcock-Johnson III Tests of Achievement. 

Itasca, IL: Riverside. 

Wu, E. X., & Cheung, M. M. (2010). MR diffusion kurtosis imaging for neural tissue characterization. 

NMR in Biomedicine, 23, 836-848. 



168 | R e f e r e n c e s  

 

 

 

Wu, S., Chang, T. T., Majid, A., Caspers, S., Eickhoff, S. B., & Menon, V. (2009). Functional 

heterogeneity of inferior parietal cortex during mathematical cognition assessed with 

cytoarchitectonic probability maps. Cerebral Cortex, 19, 2930–2945. 

Yotter, R. A., Ziegler, G., Nenadic, I., Thompson, P. M., & Gaser, C. (2011). Local cortical surface 

complexity maps from spherical harmonic reconstructions. NeuroImage, 56, 961-973. 

Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural 

correlates of simple and complex mental calculation. NeuroImage, 13, 314–327. 

Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem-size effect. In J. I. D. 

Campbell (Ed.), Handbook of mathematical cognition (pp. 331-345). New York, NY: Psychology. 

Zhao, J., Thiebaut de Schotten, M., Altarelli, I., Dubois, J., & Ramus, F. (2016). Altered hemispheric 

lateralization of white matter pathways in developmental dyslexia: Evidence from spherical 

deconvolution tractography. Cortex, 76, 51-62. 

Zhou, X., Chen, C., Zang, Y., Dong, Q., Chen, C., Qiao, S., & Gong, Q. (2007). Dissociated brain 

organization for single-digit addition and multiplication. NeuroImage, 35(2), 871-880. 


