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Abstract

The study of pedestrian walking behaviour and crowd dynamics is an
important topic with many applications. Many computationally efficient
but less accurate macroscopic models (where the crowd is described as a
whole using average quantities such as density and velocity at a certain
location and time) and computationally less efficient but more accurate
microscopic models (where each pedestrian is described as a separate en-
tity) have been developed to describe the walking behaviour of individual
pedestrians and large crowds. Moreover, many optimisation models have
been proposed to solve problems involving pedestrians. Most of these
models have hitherto focused on evacuation problems, where for a given
building and an initial distribution of pedestrians, the optimal evacuation
plan for each pedestrian is computed. A few researchers have also focused
on design problems to find the optimal layout of a pedestrian facility or

bottleneck passages.

In this thesis, we consider the link between timetabling problems and
crowd flow optimisation. Indeed, the assignment of events to timeslots
and rooms in a timetable has an impact on the resulting people flows.
For example, in a university course timetable, at the end of each timeslot,
students have to switch rooms to go to their next class. This can cause

congestion problems in the halls and stairwells in universities where the
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class rooms are concentrated in one or a few buildings. Furthermore,
if the building needs to be evacuated at a certain time, this evacuation
process is also influenced by the university course timetable. After all,
the timetable determines how many people are present in the building
in each timeslot and in which rooms. University course timetables are
not the only example. The timetable at large conferences, music festivals,
cultural events, or sports events also determines the people flows during

the event.

This thesis consists of four main parts. Chapter 2 presents a review of opti-
misation models for pedestrian evacuation and design problems. Relevant
empirical research and descriptive (mathematical) models of pedestrian
walking behaviour are also discussed. This review shows that most mod-
els include the inverse relationship between density and walking speed, but

that calibration and implementation of the proposed models are lacking.

Chapter 3 focuses on the university course timetabling problem (UCTP)
at KU Leuven Campus Brussels. A two-stage mixed-integer program-
ming (MIP) approach is developed to build a timetable that maximises the
scheduling preferences and minimises the travel times of students between
lectures in consecutive timeslots. Pedestrians are modelled using a macro-
scopic network model with a density-dependent arc traverse time. The
model is extended to optimise evacuations time of students in the event
of an emergency. Computational results show that the model succeeds in
constructing timetables with reduced travel or egress times. However, the
model fails to solve large real-life instances, such as the KU Leuven in-
stance. Therefore, a heuristic approach is developed to solve the problem.
In contrast to the two-stage MIP approach, the heuristic is able to find
good quality solutions for the KU Leuven instance. Moreover, it succeeds
in improving upon the solutions found by the two-stage MIP approach for

all other test instances.
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In Chapter 4, we develop a generic, flexible model for timetabling incor-
porating resulting people flows. To keep the model generic and tractable,
only the assignment of events to rooms is optimised, while the assignment
of events to timeslots is considered given. The pedestrian walking be-
haviour and crowd dynamics are described using the microscopic pedes-
trian simulator Menge developed by Curtis et al. (2016). A surrogate-
based tabu search heuristic is proposed to solve the problem. The sur-
rogate model is used to speed up the search by filtering the number of
candidate solutions that are evaluated using the expensive Menge simu-
lator. The performance of different surrogate models is evaluated. The
model is used to solve two applications, one where we minimise evacu-
ation times and one where we minimise travel times between events in
consecutive timeslots. The results show that for both applications the
model succeeds in building timetables with significantly reduced travel or
egress times. Finally, the model is implemented in a scheduling tool with
graphical user interface and applied to the room assignment problem at
KU Leuven Campus Brussels. It shows that our model is able to tackle

real-life problem instances with large numbers of pedestrians.

Finally, Chapter 5 compares the network model of Chapter 3 and the
microscopic Menge simulator of Chapter 4. Using exhaustive search on
small problem instances, the quality assigned to each solution in the so-
lution space by the different models is compared in detail. Moreover, the
modelling power and the robustness of the models with respect to the

calibration of their parameters is discussed.
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Chapter 1

Introduction

1.1 Motivation

On 22 May 1967, a fire took place at the Innovation store in Brussels,
resulting in the deaths of 251 people. Contributing to the high death
toll were inadequate fire extinguishers, a complex building layout, and
a lack of emergency exists. On 29 May 1985, one of the largest disas-
ters in football history occurred at the Heysel stadium in Brussels during
the European Cup Final between Liverpool and Juventus. Liverpool fans
charged at Juventus fans who were standing in an adjacent ‘neutral sec-
tion’. In the resulting turmoil, people were pressed against a collapsing
wall and trampled. 39 people were killed and hundreds were injured in
the confrontation. More recently, 21 people died at the 2010 Love Parade
dance festival in Duisburg. The location of the festival had a capacity of
only 250,000 people, while around 400,000 people had arrived in Duisburg.
This resulted in large flows of people pushing into each other, effectively

crushing people to death.



1.1. Motivation

Events such as these have inspired a great deal of research into pedestrian
walking behaviour and crowd dynamics (see, e.g., Helbing and Johansson,
2010; Schadschneider et al., 2009). Most of this research focuses on empir-
ical investigations of pedestrian dynamics and developing mathematical
models that describe these dynamics truthfully (Vermuyten et al., 2016a).
By contrast, optimisation models for pedestrian evacuation and design
problems are less well-researched. More specifically, most optimisation
models are concerned with the derivation of optimal evacuation plans for
pedestrian facilities in the event of an emergency. There are, however,
other interesting problems, such as design problems and crowd manage-
ment under normal conditions that have not yet been studied in detail
(Vermuyten et al., 2016a).

In this thesis, we are interested in the optimisation of people flows that are
the result of scheduling decisions in a timetable. The research was inspired
by congestion problems at the halls, elevators and stairwells during lecture
transitions at KU Leuven Campus Brussels and the observation that the
course timetable has an impact on this. For this reason, we formulate
the problem starting from this context. However, the methodologies we
develop are much more general and could be useful for all situations in
which a timetable impacts (the magnitude of) people flows. At large
conferences, the schedule of the different talks determines the flows of
people who travel from one talk to the next. At music festivals, cultural
events, or sports events, the schedule of music bands or sports games has
a large impact on the resulting spectator flows before, during, and after

the event.

To the best of our knowledge, Al-Yakoob and Sherali (2007), Al-Yakoob
et al. (2010), Ferdoushi et al. (2014), Hertz (1991), Pongcharoen et al.
(2008), and Rudova et al. (2011) are the only articles that incorporate
people flows into timetabling problems. However, these papers do not
model the people flows in much detail. Al-Yakoob and Sherali (2007)
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study the university course timetabling problem and address the problem
of parking and traffic congestions by adequately spreading lectures over all
the available timeslots by constraints that impose an upper bound on the
number of students that follow classes during each timeslot. Al-Yakoob
et al. (2010) instead focus on the exam timetabling problem. Parking and
traffic congestions are addressed by imposing a constraint on the number
of students that can be involved in one exam period. Pongcharoen et al.
(2008) and Ferdoushi et al. (2014) use soft constraints to ensure that stu-
dents attend lectures in the same classroom as much as possible. However,
distances between classrooms are not taken into account. Hertz (1991) in-
cludes a penalty term in the objective function when pairs of consecutive
lectures are scheduled at distant classrooms. Rudové et al. (2011) consider
the distances between rooms and penalise class assignments that require
students or instructors to travel large distances between consecutive lec-
tures. Moreover, to the best of our knowledge, none of the approaches
proposed in the literature takes into account safety aspects. Occupational
and public safety regulations provide for general principles to apply, such
as the overall responsibility of the employer or organiser to ensure the
safety of workers, visitors, contractors and the public at large, the im-
portance of risk analyses and a hierarchy of prevention principles to take
into account, such as priority for collective, material and organisational

measures (Van Heuverswyn, 2009).

This research is innovative because it is the first attempt to build an op-
timisation model and develop a solution procedure that explicitly links
timetabling processes with the resulting people flows, analysing in a de-
tailed way the impact of scheduling decisions on, e.g., the resulting travel
time from a given origin to a given destination. Furthermore, the project
is innovative because it is the first attempt (as far as we know) to in-
corporate safety aspects (dependent on the resulting people flows) when

constructing timetables.



1.2. Scope

1.2 Scope

In this dissertation, we focus on developing new techniques for automated
timetabling that focus on optimising the resulting people flows and max-
imising safety. There are many different ways, however, in which these
two objectives could be quantified to compare the quality of different
timetabling solutions. We limit ourselves to two objective function mea-
sures that are common in the literature (see Chapter 2) and the most
relevant for our problem setting. Another possible objective function
measure that could be used to rate the quality of different solutions is
the maximum crowd density. However, we believe this measure is more
relevant to mass crowd events such as music festivals and does not pose
a problem in the timetabling problems we focus on in this thesis, such as

the university course timetabling problem.

A first objective function measure concerns the minimisation of the travel
times between events in consecutive timeslots (see Figure 1.1). For exam-
ple, in a university course timetable, at the end of each timeslot, students
have to switch rooms to go to their next class. This can cause congestion
problems in the halls and stairwells in universities where the class rooms
are concentrated in one or a few buildings. These flows occur between
each pair of consecutive timeslots in the timetable. We define the travel
time between timeslot ¢ and timeslot ¢ + 1 as the time it takes for the
last person to arrive at his or her destination in timeslot t + 1. It is as-
sumed that events in the same timeslot start and end at the same time
and people start walking from the location of their current event to the
location of their next destination immediately after the first event ends.
We can then minimise either the sum or the maximum of the travel times
between all pairs of consecutive timeslots. The former objective focuses

on the average case, while the latter focuses on the worst case.

A second objective function measure concerns the safety aspect. We define
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Figure 1.1: An example of scheduling decisions in a timetable and the resulting flows

between events in consecutive timeslots.

The table on the left-hand side shows an example of a university course timetable.
Events marked with the same colour are followed by the same groups of students. One
group takes Algebra I in timeslot 1 and Probability Theory I in timeslot 2. Another
group takes Physics in timeslot 1 and has no class in timeslot 2. Finally, multiple
groups can take a certain class. This is indicated by the three yellow events. One
group takes Topology in timeslot 1 and another group takes Calculus II in timeslot
1, but both take Operations Research in timeslot 2. The assignments of these events
to the given rooms in timeslot 1 and 2 determines the flows of students between both
timeslots. On the right-hand side a floor plan is shown. This floor plan represents
a building consisting of four rooms divided over two floors. The blue stripes indicate
stairs going down, while the red stripes indicate stairs going up. The students who take
Algebra I and Probability Theory I will walk from room R11 in the building to room
R12; the students who take Physics walk from room R12 to the exit of the building;
the students who take Topology and Operations Research stay in room R21; finally,

the students who take Calculus II and Operations walk from room R22 to room R21.

Timeslot 1 | Timeslot2 | Timeslot 3
N

i~ R21 R11
Room R11| Algebral Geometry |

) Probablity
Room R12 |  Physics T
Theory |
Operations | Differential

Room R21| Topolo;
) Research Equations

exit

Room R22 | Calculus II R22 R12
A A y,




1.3. Thesis outline

the safety of a timetable as the time required to evacuate the building in
the event of an emergency. This evacuation process is also influenced
by the scheduling decisions taken when building the timetable. Indeed,
the timetable determines how many people are present in the building
in each timeslot and in which rooms (see Figure 1.2). We define the
evacuation time or egress time as the time it takes for the last person to
exit the building to a safe location. This choice is the most common in
optimisation models for evacuation problems, as is shown in Chapter 2.
However, we could also define the egress time as the time when a certain
percentage of people has reached safety. We explore these choices further
in Chapter 5. We can then again minimise either the sum or the maximum

of the travel times in all timeslots.

1.3 Thesis outline

An overview of the structure of this thesis is given in Figure 1.3. Chap-
ter 2 provides a review of optimisation models for pedestrian evacuation
and design problems. We first provide a classification of the different
articles based on the problem type, objective function measures, and de-
cisions that are considered. Next, we discuss relevant empirical research
and the implications for modelling pedestrian walking behaviour. We also
consider the inclusion of uncertainty into the models and their applica-
bility. Finally, we compare modelling techniques used in optimisation
models with techniques used in descriptive models. An article based on
this chapter has been published as Vermuyten, H., Belién, J., De Boeck,
L., Reniers, G., Wauters, T. (2016). A review of optimisation models for
pedestrian evacuation and design problems. Safety Science, 87, 167-178.
doi:10.1016 /j.8s¢i.2016.04.001.

In Chapter 3, we focus on the university course timetabling problem


https://doi.org/10.1016/j.ssci.2016.04.001
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Figure 1.2: An example of scheduling decisions in a timetable and the resulting flows

in the event of an evacuation.

The table on the left-hand side shows an example of a university course timetable.
In timeslot 2, a first group of students takes Probability Theory I and a second group
takes Operations Research. The assignment of these events to the given rooms in every
timeslot also determines the people flows if the building were to be evacuated in that
timeslot. On the right-hand side a floor plan is shown. This floor plan represents
a building consisting of four rooms divided over two floors. The blue stripes indicate
stairs going down, while the red stripes indicate stairs going up. Given the assignments
of events to rooms, the first group of students needs to walk from room R12 towards
the exit of the building, while the second group needs to walk from room R21 towards
the exit.

Timeslot 1 | Timeslot 2 | Timeslot 3
s < R21 R11

Room R11 | Algebral Geometry |

Probablity

R R12 | Physi

oom VSIS | Theory | | > (UMD
Operations ||Differential

Room R21 | Topolo
pology Research || Equations

exit

Room R22 | Calculus Il R22 R12




1.3. Thesis outline

Figure 1.3: Overview of the thesis.

Chapter 2:
Literature review

Pedestrian model
Macroscopic Microscopic

KU Leuven UCTP Chapter 3
Generic timetabling
problem: only room Chapter 4
assignments

[ Chapter 5: Comparison ]

pedestrian models

(UCTP) at KU Leuven Campus Brussels, where there are congestion
problems in the halls and at the stairwells between lecture transitions.
The flows of students between consecutive lectures are modelled using
a network model. The layout of the building is represented by a graph
G = (W, A), where the set A of nodes represents the destinations or junc-
tions and the set A of arcs the corridors between them. Congestion is
taken into account by assuming density-dependent travel times through
the arcs based on the relationship between crowd density and walking
speed in line with empirical research into pedestrian walking behaviour.
The travel times between events in consecutive timeslots are minimised.
The problem is formulated as a mixed-integer programming (MIP) model
and is solved using a two-stage decomposition approach. The first stage
assigns lectures to timeslots and rooms and minimises the penalty score

for the scheduling preferences while taking into account the standard non-
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overlap constraints as well as regulations for the working time of teachers
and constraints for a compact timetable. The second stage starts from
the solution of the first stage and reassigns lectures to rooms to minimise
either the sum or the maximum of the travel times of students between
consecutive lectures. We then shift our focus to the safety concern and
show that the two-stage model can easily be extended to minimise the
sum of the evacuation times over the different timeslots. Due to its hi-
erarchical approach, the two-stage MIP approach can only find a single
point on the Pareto front for the trade-off between the optimisation of the
scheduling preferences on the one hand and the minimisation of the travel
or egress times on the other hand. Moreover, the two-stage MIP approach
is not able to solve the complex KU Leuven instance. For these reasons,
a metaheuristic approach is developed that does not suffer from these
drawbacks. Results show that the metaheuristic succeeds in finding good
solutions for the KU Leuven instance and finds solutions for the set of test
instances with lower evacuation times than the two-stage MIP model. An
article based on parts of this chapter has been published as Vermuyten, H.,
Lemmens, S., Marques, 1., Belién, J. (2016). Developing compact course
timetables with optimized student flows. European Journal of Operational
Research, 251(2), 651-661. doi:10.1016/j.ejor.2015.11.028.

In Chapter 4 we develop a generic, flexible model for timetabling that in-
corporates both objective function measures, i.e. the minimisation of the
(sum of the) travel times between events in consecutive timeslots and the
minimisation of the (sum of the) evacuation times. The model does not
focus on the UCTP; instead, it considers a generic timetabling problem so
that it can be applied to different settings, such as conference scheduling
or scheduling for music festivals and sports events. To keep the prob-
lem mathematically tractable, however, only the assignment of events to
rooms is optimised, while the assignment of events to timeslots is con-

sidered given. This limitation makes it easier to implement the model in
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practice. The difficult real-world timetabling problem can be solved by
other methods, after which our model could be used to optimise the people
flows by changing the room assignments. The travel and evacuation times
are calculated using the microscopic pedestrian simulator Menge, devel-
oped by Curtis et al. (2016). This microscopic simulator allows a much
more realistic description of the people flows. The algorithm consists of
a tabu search that iteratively searches for better solutions. All candidate
solutions in the neighbourhood are first evaluated with a computationally
efficient surrogate model and only the best candidate solutions are re-
evaluated with the Menge simulator to save computation time. Different
surrogate models are compared along three performance criteria both on
training data as well as during the search process. Finally, the surrogate-
based tabu search is implemented in a scheduling tool with graphical user
interface and applied to the timetable for the second semester of academic
year 2018-2019 at KU Leuven Campus Brussels.

In Chapter 5 a detailed comparison between the results of the network
model of Chapter 3 and the microscopic Menge simulator of Chapter 4 is
performed. By means of exhaustive search on small problem instances, the
relative objective values assigned to each solution in the solution space by
both models are compared. Furthermore, the robustness and modelling

power of the models are investigated.



Chapter 2

A review of optimisation
models for pedestrian
evacuation and design

problems

2.1 Introduction

There are many situations in which a large number of people gathers in a
single location. Examples include spectators at music and sports events,

commuters in railway and metro stations, and employees in large office

An article based this chapter has been published as Vermuyten, H., Belién, J.,
De Boeck, L., Reniers, G., Wauters, T. (2016). A review of optimisation mod-
els for pedestrian evacuation and design problems. Safety Science, 87, 167-178.
doi:10.1016/j.ss¢i.2016.04.001.

11
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buildings. To ensure the safety and comfort of the people present, a careful
design of pedestrian facilities and good crowd management are required.
Furthermore, in the event of emergencies, such as a fire, a gas leak, or a
bomb threat, the efficient evacuation of the facility is of primary impor-
tance. The terrorist attacks at the Bataclan theatre in Paris, where 89
people died, and the stampede during the 2015 Hajj pilgrimage in Mecca,
where more than 2,070 people died, illustrate the need for developing good

crowd management and emergency evacuation procedures.

The study of pedestrian and evacuation dynamics is very complex, due
to the large number of people involved and the non-linear interactions
between them, psychological factors influencing human behaviour, and
the influence of external factors such as the layout of a pedestrian facility.
As a consequence, the topic has received attention from researchers in
different fields, including psychologists, sociologists, physicists, computer

scientists, and traffic scientists (Helbing and Johansson, 2010).

Three distinct, yet interrelated, research streams can be distinguished.
The first stream focuses on the empirical study of pedestrian behaviour
and crowd dynamics, while the second is concerned with the develop-
ment of mathematical models to describe the movement and interactions
of pedestrians as realistically as possible (Teknomo, 2002). Finally, the
third stream of research uses an optimisation-based methodology to de-
velop models which determine optimal evacuation plans or design solu-
tions (Abdelghany et al., 2014). Most of the research falls under the first
two categories. Several review articles discuss the empirical research on
and modelling of pedestrian and evacuation dynamics. Schadschneider
et al. (2009) provide a summary of the empirical studies and theoretical
modelling that has been done and give two examples of possible appli-
cations of this research. Helbing and Johansson (2010) give a similar
overview, and additionally discuss research into situations of panic and

critical crowd conditions. Schadschneider and Seyfried (2009) investi-
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gate the quantitative data on pedestrian dynamics for the calibration of
evacuation models. They focus on the fundamental diagram (see Sec-
tion 2.3.1) and consider the implications for cellular automata models
(see Section 2.4.1). Papadimitriou et al. (2009) assess two different topics
of research, namely route choice models and crossing behaviour models,
which study how pedestrians cross the street under different traffic con-
ditions. Gwynne et al. (1999) classify 22 evacuation models based on
the nature of the model application, the enclosure representation (i.e.,
how is the building or the area under study represented in the model),
the population perspective (i.e., are agents modelled as seperate entities
or is the crowd treated as a whole and described using average quanti-
ties), and the behavioural perspective (i.e., which assumptions or rules
are used to describe the behaviour of pedestrians). Zheng et al. (2009)
distinguish seven methodological approaches: cellular automata, lattice-
gas, social-force, fluid dynamics, agent-based, game-theoretic models, and
experiments with animals. (We give an overview of these approaches in
Section 2.4.1.) They also look at the possibility of modelling heteroge-
neous individuals, the scale of representation, whether time and space
are discrete or continuous, whether a normal or an emergency situation
is assumed, and the typical phenomena that the model can represent.
In addition, Duives et al. (2013) identify eight motion base cases and six
self-organising crowd phenomena which a simulation model should be able
to reproduce. Furthermore, they look at ten other model characteristics,
such as the ability to simulate pressure in crowds and the computational
requirements of the model, in order to assess the models’ applicability.
Their classification distinguishes between cellular automata, social-force,
activity-choice, velocity-based, continuum, hybrid, behavioural, and net-
work models. Kalakou and Moura (2014) present a general overview of
models from different research areas to analyse the design of pedestrian
facilities, while Lee et al. (2003) focus on models for the evacuation of

ships. Finally, Bellomo et al. (2012) focus on the mathematical proper-
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ties of models for pedestrian behaviour. The third category of research
has received less attention in the literature. Moreover, to the best of our
knowledge, the work of Hamacher and Tjandra (2002) is the only review
that focuses on optimisation models for evacuation problems. However,
most of the models they discuss are network models with constant (i.e.
density-independent) travel times. This chapter tries to fill the gap by crit-
ically reviewing the different properties of the optimisation models that
are currently available for evacuation and design problems and identifying

opportunities for future research.

We first searched for literature reviews and articles that discuss general
topics related to pedestrian dynamics or evacuation and design problems
(Bellomo et al., 2012; Duives et al., 2013; Gwynne et al., 1999; Hamacher
and Tjandra, 2002; He et al., 2013; Helbing and Johansson, 2010; Kalakou
and Moura, 2014; Lee et al., 2003; Papadimitriou et al., 2009; Schadschnei-
der et al., 2009; Schadschneider and Seyfried, 2009; Sime, 1995; Stanton
and Wanless, 1995; Zheng et al., 2009) and checked the references therein.
Next, we used the Web of Knowledge database to find relevant articles.
We used combinations of the keywords ‘optimisation’, ‘problem’, ‘evacu-
ation, ‘pedestrian’, ‘crowd’, ‘model’, ‘movement’, and ‘flow’. No a priori
cut-off date was used, since no previous review articles exist that follow
our perspective, apart from the work of Hamacher and Tjandra (2002).
Articles on the traffic assignment problem and articles on evacuation and
design problems which do not focus on pedestrian traffic and crowd dy-
namics, are not included. This resulted in a broad, but not exhaustive,
overview of the current literature on optimisation models for crowd and

evacuation dynamics.

In our review, we distinguish between optimisation and non-optimisation
articles. The optimisation category consists of all papers that use a
methodology to obtain an optimal or a good solution to a specific problem

involving crowd dynamics, such as the efficient evacuation of a building.
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All articles that describe empirical results or descriptive models for the
movement of pedestrians that do not use an optimisation methodology,
belong to the non-optimisation category. We only take the optimisation
articles into account in our classification process. However, we summarise
the empirical research and descriptive modelling approaches in our text
in order to give the reader the necessary background information for the
discussion of the optimisation models. We ended up with 31 optimisation

articles that are included in our classification process.

Figure 2.1a lists the journals in which most of the articles in this chapter
have been published. We use a cut-off value of two articles. Another 27
articles are all published in different journals. Taking the different types
of articles (empirical, descriptive, optimisation, overview) together, Safety
Science and Transportation Research Part B: Methodological are the two
journals that publish most of the articles related to pedestrian walking
behaviour research. Furthermore, Figure 2.1b gives information on the
changing number of articles over the years. It is clear that this research

topic has received increasing attention in the last five years.

We use different perspectives for organising the literature. Each section
discusses a specific perspective and presents detailed tables in which the
relevant articles are categorised. Section 2.2 discusses the different prob-
lem types that are studied in the literature, the criteria used to assess the
quality of the resulting solutions, i.e. the objective function measures, and
the types of decisions that are considered in the model. The realism of the
proposed models and their conformity to empirical results on pedestrian
dynamics is investigated in Section 2.3. Finally, Section 2.4 analyses the
modelling and solution techniques employed to solve the different models.
The chapter concludes with the main findings and perspectives for future

research in Section 2.5.
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2.2 Problem type, objective function mea-

sures, and decisions considered

Optimisation models are used to tackle different types of problems related
to pedestrian dynamics. As can be seen from Table 2.1, by far the most
attention has been devoted to the development of optimal evacuation
plans for pedestrian facilities. Many articles specifically focus on a certain
type of pedestrian facility, as this enables researchers to tailor models to
the specifics of the environment (e.g., Cepolina, 2005). Most models focus
on the evacuation of buildings or large rooms with multiple exits. One of
the first articles that studied the building evacuation problem was written
in 1982 by Chalmet et al. (1982).

A second type of problem is studied by Johansson and Helbing (2005),
who look at the problem of finding designs that improve the flow through
a bottleneck. Flow is the number of pedestrians who pass through a line
segment per meter per second. The study of the influence of design on
flow was prompted by the observation that placing an obstacle in front
of the exit can reduce the magnitude of clogging. A genetic algorithm is

used to find the configuration that maximises the outflow.

Thirdly, Selim and Al-Rabeh (1991) study crowd management to improve
the safety and comfort of pedestrians at mass crowd events. Finally, a
fourth type of problem is introduced by Vermuyten et al. (2016b). They
minimise student flows in a university course timetable, since the assign-
ment of lectures to classrooms in the timetable determines student flows

and the resulting travel times between consecutive lectures.

In each of these problem types, different objective function measures can

be chosen to evaluate the quality of a solution (see Table 2.2). In the case
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Table 2.1: Problem type.

Evacuation planning consists of determining the optimal way to evacuate pedestrian
facilities as quickly and safely as possible. Some studies focus on a specific type of
facility, such as a building or a room. Design of bottlenecks considers the optimal
lay-out that maximises flow or minimises egress time. Crowd management decides on
control policies to ensure the safety and comfort of people at mass-crowd events. In
timetabling, the problem is to minimise the travel time between events in consecutive
timeslots or to minimise the evacuation time in the event of an emergency that is the

result of the timing and location of events.

Evacuation planning

Building Borrmann et al. (2012); Cepolina (2005, 2009);
Chalmet et al. (1982); Chen and Feng (2009);
Choi et al. (1988); Deng et al. (2008); Fahy
(1994); Georgoudas et al. (2010); Hoppe and Tar-
dos (1994, 2000); Kang et al. (2015); Kisko and
Francis (1985); Li and Xu (2014); Park et al.
(2009); Talebi and Smith (1985)

Room Abdelghany et al. (2014); Ding (2011); Pursals
and Garzoén (2009); Zhao and Gao (2010)
Other Lim et al. (2015); Ng and Waller (2010);

Opasanon and Miller-Hooks (2009); Zarboutis
and Marmaras (2007); Zheng and Liu (2010)

Design of bottlenecks Bakuli and Smith (1996); Berseth et al. (2015);
Johansson and Helbing (2005); Tavares (2010)
Crowd management Selim and Al-Rabeh (1991)

Timetabling Vermuyten et al. (2016b), Chapter 3, Chapter 4
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of evacuation problems, the evacuation time is an important measure of
the quality of the proposed plan. Both the average and the maximum
evacuation time for all evacuees are used, but the latter is a more popular
indicator as it indicates the time that the last person is brought to safety
and thus optimises the safety of the least fortunate person. Opasanon and
Miller-Hooks (2009) also include the number of people evacuated before a
certain time. Other researchers minimise the number of people left in the
building at each discrete time step (Hoppe and Tardos, 1994), minimise
the maximum probability of congestion that might occur in the evacuation
network (Lim et al., 2015), or provide the reader with a set of alternatives
to choose from (Zarboutis and Marmaras, 2007). For a further discus-
sion of the many possible performance measures that can be employed for
evacuation systems, see Lgvas (1995). For design purposes, the maximisa-
tion of flow is often used to increase the efficiency of pedestrian facilities,
which is important both for normal situations where large pedestrian traf-
fic takes place and for evacuations to reduce congestion and egress times.
In the crowd management model of Selim and Al-Rabeh (1991), the au-
thors minimise a penalty function based on the number of people that
are denied access at each time interval. Finally, Vermuyten et al. (2016b)
minimise the maximum travel time between consecutive lectures across

all different timeslots and series of students in their timetabling problem.

In addition to the objective function measures employed, models can also
be classified according to the decisions that are included, as is shown
in Table 2.3. The choice of evacuation routes for people to use is the
most obvious type of decision included in evacuation models. Some mod-
els, however, also incorporate phased evacuation, where different groups
of people start evacuation at different times. Phased evacuation is used
to reduce congestion on the evacuation routes and consequently improve

overall egress times. Zarboutis and Marmaras (2007) instead develop
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Table 2.2: Problem type and objective function measure.

Evacuation

Avg. evac. time Abdelghany et al. (2014); Chalmet
et al. (1982); Ng and Waller (2010)

Maz. evac. time Borrmann et al. (2012); Cepolina
(2005, 2009); Chalmet et al. (1982);
Chen and Feng (2009); Choi et al.
(1988); Deng et al. (2008); Ding
(2011); Fahy (1994); Georgoudas et al.
(2010); Hoppe and Tardos (1994,
2000); Kang et al. (2015); Kisko and
Francis (1985); Li and Xu (2014); Lim
et al. (2015); Park et al. (2009); Pursals
and Garzén (2009); Talebi and Smith
(1985); Zhao and Gao (2010); Zheng
and Liu (2010)

Number of people to safety Choi et al. (1988); Hoppe and Tardos
(1994); Opasanon and Miller-Hooks
(2009)

Other Hoppe and Tardos (1994); Lim et al.
(2015); Zarboutis and Marmaras
(2007)

Design

Maz. evac. time Bakuli and Smith (1996); Tavares
(2010)

Flow Bakuli and Smith (1996); Berseth et al.
(2015); Johansson and Helbing (2005)

Crowd management

Other Selim and Al-Rabeh (1991)
Timetabling
Maz. travel time Vermuyten et al. (2016b), Chapter 3,
Chapter 4

Maz. evac. time Chapter 3, Chapter 4
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generic guidelines for evacuations under different disaster scenarios, in-
stead of proposing a fixed plan for a specific scenario. Furthermore, Talebi
and Smith (1985) determine the optimal number of nurses to be assigned
to each hospital section to achieve the quickest possible evacuation of pa-
tients. A different type of decision is modelled by Selim and Al-Rabeh
(1991), who develop an admission control policy for pedestrians on the
Jamarat Bridge to ensure crowd density does not reach hazardous levels.
For the category of design problems, Bakuli and Smith (1996) determine
the optimal widths of exits in a building that maximise throughput, while
Berseth et al. (2015) derive the optimal placement of obstacles in corridors
and at exits to reduce the amount of clogging. Finally, Vermuyten et al.
(2016b) reassign lectures to classrooms in a university course timetable
to minimise the maximum travel time of students between consecutive

lectures.

2.3 Model realism

It is important that optimisation models represent crowd dynamics in a re-
alistic way and are calibrated with empirical data to provide useful results
for evacuation and design purposes. In Subsection 2.3.1, we first present a
summary of the main findings of the empirical research on pedestrian and
crowd dynamics. In Subsection 2.3.2, we discuss the implications of these
findings for the development of optimisation models and the problem of
parameter calibration. Finally, in Subsections 2.3.3 and 2.3.4, we discuss
the incorporation of uncertainty into the models and their applicability

respectively.
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Table 2.3: Problem type and decisions considered.

Evacuation

Route choice

Phased evacuation

Generic guidelines
Allocation of staff
Design

Location of obstacles

Crowd management
Admission control policy
Timetabling

Location of events

Timing of events

Borrmann et al. (2012); Cepolina (2005);
Chalmet et al. (1982); Chen and Feng
(2009); Choi et al. (1988); Deng et al.
(2008); Ding (2011); Fahy (1994); Geor-
goudas et al. (2010); Hoppe and Tardos
(1994, 2000); Kang et al. (2015); Kisko
and Francis (1985); Li and Xu (2014);
Lim et al. (2015); Opasanon and Miller-
Hooks (2009); Park et al. (2009); Pursals
and Garzén (2009); Zhao and Gao (2010);
Zheng and Liu (2010)

Abdelghany et al. (2014); Cepolina (2009);
Ng and Waller (2010)

Zarboutis and Marmaras (2007)

Talebi and Smith (1985)

Bakuli and Smith (1996); Berseth et al.
(2015); Johansson and Helbing (2005);
Tavares (2010)

Selim and Al-Rabeh (1991)
Vermuyten et al. (2016b), Chapter 3,

Chapter 4
Chapter 3
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2.3.1 Empirical research on pedestrian and crowd dy-

namics

A lot of early empirical research focused on the relationship between walk-

people

s ), of pedestrian flows. In the same

way, the relationship between flow, ¢ ( BRI
m.s

ing speed, v (%), and density, p (

, and density can be derived,
where ¢ (p) = pv (p). These relationships are called the ‘fundamental di-
agram’, because of their importance in determining the optimal dimen-
sions of pedestrian facilities (Schadschneider and Seyfried, 2009). An early
study in 1958 by Hankin and Wright (1958) carried out experiments with
schoolboys, in which they measured speeds at various concentrations and
various passage widths, to obtain the shape of the speed-density and flow-
density curves. Then observations were done at a London underground
station in order to obtain absolute values for the established relationships.
The four parameters that describe this relationship are p;,q4, i.e. the max-
imum density at which walking speed reaches zero, vg, i.e. the maximum
free walking speed at zero density, and p. and ¢4z, Which denote the

critical density at which the maximum flow is reached.

There are, however, significant differences between the results of various
studies (Fruin, 1971; Helbing et al., 2007; Johansson et al., 2008; Mori
and Tsukaguchi, 1987; Polus et al., 1983; Seyfried et al., 2005). Table 2.4
summarizes the values obtained by different authors. Several explanations
have been suggested for the differences in the obtained results (Schad-
schneider and Seyfried, 2009): Helbing et al. (2007) mention cultural and
population differences; Predtechenskii and Milinskii (1978) argue that the
incentive of the movement matters; and Oeding (1963) suggests the type

of traffic plays a role (e.g., commuters compared to shoppers).

Additionally, the standard fundamental diagram is derived for unidirec-
tional flows. There is discussion as to whether the diagram is different
for uni- and bidirectional flows (Schadschneider and Seyfried, 2009). Re-
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cently, Flotteréd and Lammel (2015) studied the bidirectional fundamen-
tal diagram. They analytically derive a bidirectional fundamental diagram
from a simple cellular automata model. Their model is compared with the
social-force model of Helbing (1991) and Helbing and Molnér (1995) and
their results are validated against empirical data and well-known crowd
phenomena. A discussion of these modelling techniques is provided in
Section 2.4.1.

Venuti and Bruno (2007) develop a mathematical model for the funda-
mental relationship that takes into account various factors to reconcile
the different observed values in the literature. They specifically focus on
the lateral movement of the ground surface, the geographic area, and the
travel purpose, but the model can be extended to include other factors
as well. Their model is able to explain the differences in results between
the various empirical studies. Additionally, Galiza and Ferreira (2013)
use the concept of equivalent factors to convert heterogeneous pedestrian

flow into an equivalent base flow.

Finally, some researchers have observed that at densities higher than p,,4.,
walking speed does not reach zero as is predicted in other studies and ‘tur-
bulent’ crowd conditions arise, in which people can no longer move freely
but instead are pushed around by pressure waves in the crowd (Helbing
and Johansson, 2010; Helbing et al., 2007; Johansson et al., 2008).

Besides the standard fundamental diagram for walking speeds on regular
horizontal surfaces, walking speeds on stairs have been investigated by
some researchers, both descending (Ma et al., 2012) and ascending (Lam
et al., 2014), as well as for different dimensions (e.g., the height and length

of a step) and circumstances (normal and emergency) (Yang et al., 2012).

A second and related topic of study has been the flow through bottle-

necks (e.g., exits). Hoogendoorn and Daamen (2005) study the unidirec-
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Table 2.4: Parameters for the speed-density and flow-density relationship from various

studies.

Study v () pmas (P5F°)

Fruin (1971) 1.30 6.60

Hankin and Wright (1958) 1.61 6.46

Johansson et al. (2008) 0.60 10.79

Mori and Tsukaguchi (1987) 1.40 9.00

Polus et al. (1983) 1.25 7.18

Seyfried et al. (2005) 1.34 5.55

tional flow through a bottleneck for different widths. They observe that
pedestrians dynamically form layers inside the bottleneck, where pedes-
trians are positioned diagonally to the people in front and behind. This
phenomenon is called the ‘zipper effect’; because the layers overlap like
interlocking teeth in a zipper. This implies that the capacity of a bottle-
neck increases in a stepwise manner with the bottleneck width, instead
of linearly, depending on how many layers can be formed. Seyfried et al.
(2009), however, do find a linear relationship between flow and bottleneck
width. They argue that the stepwise relationship is based on the faulty
assumption that within the bottleneck layers are formed with a constant
distance. They also find that jamming occurs below the capacity limit
and formulate three hypotheses as an explanation: flow fluctuations, the
local organisation of pedestrians, and a preference for larger distances
than necessary from the person in front. Helbing et al. (2005) and Liu
et al. (2014) study bidirectional flows through bottlenecks. They find
oscillation effects, where multiple pedestrians consecutively pass the bot-
tleneck in a single direction, and clogging effects, where at high densities
the movement of pedestrians comes to a halt and dangerous pressures are

built up in the queues.

Aside from studies that derive quantitative results for pedestrian flows

under normal circumstances, other studies have focused on evacuations,
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since the correct estimation of evacuation times is critical for safety. Ols-
son and Regan (2001) study the evacuation times of three university build-
ings. They specifically include pre-movement times, i.e. the time people
need to realise that they need to evacuate and to decide on a course of
action. They argue that the SIMULEX software can be used in evacua-
tion scenario analysis to obtain reliable results. Kady (2012) studies the
relationship between the density and crawling movement of pedestrians
in the event of a fire. The author finds that exit width has a signifi-
cant impact on crawling speed, while population size is less important.
Spearpoint and MacLennan (2012) use a Monte Carlo simulation model
to investigate the impact of gender, age, and obesity on the evacuation

time from a high-rise building.

Furthermore, an important factor of safety concerns the pressures which
are experienced by pedestrians in extremely high-density crowds (Helbing
and Johansson, 2010; Helbing et al., 2007). Smith and Lim (1995) inves-
tigate the pressure which people can ‘comfortably’ endure when pushed

against barriers.

Finally, various self-organising crowd phenomena have been observed (Duives

et al., 2013; Helbing and Johansson, 2010; Moussaid et al., 2009). These
phenomena are self-organising because they are the result of local in-
teractions between many pedestrians, without any conscious actions of
pedestrians to arrive at these phenoma (Helbing and Johansson, 2010).

The most important phenomena are:

Lane formation: In bidirectional flows, pedestrians automatically start
forming a number of lanes of varying width, with people in each lane

moving in the same direction (Schadschneider et al., 2009).

Stripe formation for two intersecting flows: When two pedestrian flows
intersect, stripes are formed in which pedestrians move forward with

the stripes and sidewards within the stripes. This is a result of



Chapter 2. A review of optimisation models for pedestrian evacuation
and design problems

27

pedestrians trying to minimise friction with pedestrians moving in
opposite directions. For three or more intersecting flows, no stable

patterns emerge (Helbing et al., 2005).

Stop-and-go waves: At high densities pedestrians cannot move continu-

ously. Instead, the crowd moves in waves (Helbing et al., 2007).

Turbulence: At extremely high densities pedestrians cannot control their
own movements anymore, but are pushed around by the forces act-
ing upon them (Helbing et al., 2007).

Herding: When individuals do not have knowledge of the optimal route,
they start following others. This happens especially during evacua-
tions (Helbing et al., 2005).

Zipper effect: In a bottleneck individuals move diagonally in front of
others such that narrower lanes are formed and the capacity of the

bottleneck increases (Hoogendoorn and Daamen, 2005).

Faster-is-slower effect: When people keep moving forward when a bot-
tleneck is congested, crowd motion is slowed down by the resulting
friction (Helbing and Johansson, 2010).

2.3.2 TImplications for modelling

In order to provide realistic results, optimisation models for evacuation
or design problems should explicitly incorporate the different empirical
results described in the previous section. To asses the realism of the
models reviewed, we first focus on three model attributes which capture

the different elements of pedestrian and crowd dynamics:

Congestion: Does the model include the relationship between walking
speed and density? This means that travel times or flow capacities

cannot be assumed to be constants, but should be modelled as en-
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dogenous variables dependent on the number of pedestrians present

at a certain location.

Bottlenecks: Are bottlenecks such as exits explicitly included in the
model? Bottleneck capacities should be based on the width of the
bottleneck and the number of people queuing upstream of the bot-

tleneck.

Direction of flow: Does the model distinguish between uni- and bidirec-

tional flows?

The first part of Table 2.5 lists the models which explicitly include these
modelling aspects. We see that the majority of articles include congestion
in their models, while only a smaller number explicitly include bottle-
necks. Finally, most articles do not distinguish between uni- and bidirec-
tional flows. Overall, these results might be considered as being positive,
because the most important aspect (congestion) is included in most of the
recent articles. Furthermore, incorporation of the direction of flow is less
important, because there is still debate as to whether there even is a sig-
nificant difference between the parameter values for uni- and bidirectional
flows (Schadschneider and Seyfried, 2009).

A second way to judge the realism of optimisation models is by looking at
their ability to reproduce (some of) the self-organising crowd phenomena
that have been observed empirically. We base our assessment on the
information the authors provide in their articles (we have not tested the
models ourselves). The second part of Table 2.5 shows the results. In only
three articles do the authors validate their model by testing its ability
to reproduce these phenomena. Of course, only microscopic simulation
models, in which each pedestrian is modelled individually, are able to
show these dynamics explicitly. However, this does not imply that other

modelling techniques cannot reproduce realistic results for evacuation or
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Table 2.5: Model realism.

Incorporation of crowd dynamics

Congestion

Bottlenecks

Direction of flows

Reproducing crowd phenomena

Calibration

Model tweaking

Real-world data

Abdelghany et al. (2014); Bakuli and
Smith (1996); Berseth et al. (2015);
Borrmann et al. (2012); Cepolina
(2005, 2009); Choi et al. (1988); Deng
et al. (2008); Fahy (1994); Georgoudas
et al. (2010); Johansson and Helbing
(2005); Kang et al. (2015); Lim et al.
(2015); Park et al. (2009); Pursals
and Garzén (2009); Talebi and Smith
(1985); Tavares (2010); Vermuyten
et al. (2016b); Zarboutis and Mar-
maras (2007); Zhao and Gao (2010);
Zheng and Liu (2010), Chapter 3,
Chapter 4

Berseth et al. (2015); Borrmann et al.
(2012); Cepolina (2009); Chen and
Feng (2009); Johansson and Helbing
(2005); Kang et al. (2015); Li and
Xu (2014); Park et al. (2009); Pursals
and Garzén (2009); Talebi and Smith
(1985); Tavares (2010); Zhao and Gao
(2010), Chapter 4

Berseth et al. (2015); Deng et al
(2008); Georgoudas et al. (2010);
Tavares (2010); Zarboutis and Mar-
maras (2007); Zhao and Gao (2010),
Chapter 4

Borrmann et al. (2012); Johansson and
Helbing (2005); Zhao and Gao (2010)

Borrmann et al. (2012); Zhao and Gao
(2010); Zheng and Liu (2010)
Cepolina (2005, 2009); Fahy (1994);
Georgoudas et al. (2010); Pursals and
Garzén (2009)
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design purposes.

Finally, to produce output that has real-world applicability, optimisation
models need to calibrate their parameters based on empirical data on
walking behaviour and crowd dynamics. There are two ways in which
model parameters can be calibrated. The preferred method is to match
the value of model parameters, e.g., the preferred walking speed of an indi-
vidual, to their observed value in empirical studies (Bellomo et al., 2012).
However, in reality model parameters are often iteratively adjusted, un-
til the model produces realistic phenomena and output values (Bellomo
et al., 2012). The third part of Table 2.5 lists the articles which use the a
priori or the a posteriori calibration method respectively. Only a quarter
of the papers that we have reviewed mention calibration of their models.
One reason for this is the difficulty of calibrating parameters caused by
the significant differences in results that have been obtained in empiri-
cal studies (Schadschneider and Seyfried, 2009). The approach taken by
Venuti and Bruno (2007) of including factors that can explain the differ-
ences in results in empirical studies of the fundamental diagram, could

lead to progress in this area (Bellomo et al., 2012).

2.3.3 Incorporation of uncertainty into the model

Evacuations often happen in response to a disaster such as a fire. How-
ever, this event usually happens unexpectedly, giving rise to a lot of un-
certainty. Indeed, the number of people present at a certain facility and
their locations are often not known with certainty. Also, the way the dis-
aster affects the environment, e.g. the propagation of smoke during a fire,
and the resulting effects on the evacuation process, can often not be pre-
dicted accurately. This has prompted researchers to include uncertainty
in their models. We make a distinction between two methods of including

uncertainty: predefined probabilities, where parameters or events have a
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Table 2.6: Incorporation of uncertainty.

Predefined probabilities Lim et al. (2015); Ng and Waller (2010);
Opasanon and Miller-Hooks (2009); Talebi and
Smith (1985); Zheng and Liu (2010)

Real-time updating Chen and Feng (2009); Deng et al. (2008);
Fahy (1994); Georgoudas et al. (2010); Li
and Xu (2014); Opasanon and Miller-Hooks
(2009); Park et al. (2009)

range of possible values or probabilities instead of being deterministic and
known, and real-time updating, where the optimisation model uses real-
time information on the event to update and adjust the proposed solution.

The resulting classification is shown in Table 2.6.

2.3.4 Applicability of the model

Optimisation models should of course be tested to illustrate their appli-
cability to real-world cases. In Table 2.7, we therefore classify the articles
into three categories, namely ‘no testing’, ‘theoretical data’, and ‘real-
world data’. It is clear that the majority of papers use theoretical data
to test their models. So there is still a lack of implementation of the

proposed optimisation models to practical problems.

2.4 Modelling and solution techniques

In this section, we discuss the different modelling and solution techniques

that are proposed in the literature for evacuation problems and design
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Table 2.7: Applicability of research.

No testing Choi et al. (1988); Hoppe and Tardos (1994, 2000)

Theoretical data Abdelghany et al. (2014); Bakuli and Smith
(1996); Berseth et al. (2015); Borrmann et al.
(2012); Cepolina (2005, 2009); Chalmet et al.
(1982); Chen and Feng (2009); Deng et al. (2008);
Ding (2011); Johansson and Helbing (2005); Kisko
and Francis (1985); Li and Xu (2014); Lim et al.
(2015); Ng and Waller (2010); Opasanon and
Miller-Hooks (2009); Park et al. (2009); Pursals
and Garzén (2009); Tavares (2010); Vermuyten
et al. (2016b); Zarboutis and Marmaras (2007);
Zhao and Gao (2010); Zheng and Liu (2010),
Chapter 3, Chapter 4

Real-world data Fahy (1994); Georgoudas et al. (2010); Kang et al.
(2015); Selim and Al-Rabeh (1991); Talebi and
Smith (1985), Chapter 3, Chapter 4

of pedestrian facilities. To provide some background information and
ideas for the development of more realistic optimisation models in the
future, we first discuss the main techniques used in descriptive models in
Subsection 2.4.1 to realistically represent pedestrian walking behaviour.
Afterwards, we compare this with the modelling and solution techniques

that are currently used in optimisation models in Subsection 2.4.2.

2.4.1 Modelling techniques used in descriptive mod-

els

As mentioned above, we briefly discuss some of the approaches that have
been developed in the literature for the modelling of pedestrian behaviour
and crowd dynamics. We do not intend to give an exhaustive overview of
the different modelling techniques or an in-depth discussion of the proper-

ties of each model that is included. The interested reader can find detailed
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Figure 2.2: An overview of the modelling techniques used in descriptive models.

Continuum
— Macroscopic
Network
Descriptive
— — Cellular automata
models

— Agent-based

‘- Microscopic

—  Social-force

'+ Game-theoretic

assessments of the existing modelling approaches and simulation models
in Duives et al. (2013), Papadimitriou et al. (2009), and Zheng et al.

(2009). An overview of the different techniques is shown in Figure 2.2.

2.4.1.1 Continuum models

Continuum models are macroscopic simulation models. Pedestrians are
not represented individually; instead crowds are described as a fluid using
average quantities such as the density at a given location. Mathemati-
cally, these models consist of a system of partial differential equations,
expressing the relationship between average speed, flow, and density at a
given location and time (Bellomo et al., 2012). Both time and space are
continuous. A distinction can be made between first-order models, which
only include an equation for the conservation of mass, and second-order

models, which also include a momentum balance equation (Bellomo et al.,
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2012). Since it is computationally efficient, the continuum approach is of-
ten used when very large crowds need to be modelled or when only an
estimation of the average quantities is required. One of the first authors
that applied these continuum models to pedestrian traffic was Hughes
(2002). He develops a first-order model based on three hypotheses: (i)
pedestrians’ speed is determined by the local density at their location,
(ii) pedestrians’ movement is perpendicular to lines of constant poten-
tial, and (iii) pedestrians want to take the path with the shortest travel
time, but only if the density on this path is not too high. Huang et al.
(2009) prove that Hughes’ model satisfies the reactive dynamic user equi-
librium, which means that pedestrians choose the route that minimises
their instantaneous travel cost to the destination. They also develop an
efficient solution method to solve the model. Hoogendoorn and Bovy
(2001) present a continuum model which applies to different types of traf-
fic, i.e. both vehicular and pedestrian traffic. They develop the concept
of generalised phase-space density, to include different attributes such
as user-class, roadway lane, destination, velocity, and desired velocity.
Appert-Rolland et al. (2011) focus on the incorporation of the maximally
allowable density into continuum models. Finally, Héanseler et al. (2014)
combine the continuum approach and the cell transmission approach from
vehicular traffic in order to predict travel times and densities. They apply
their model to two case studies and obtain good results. A review of some

continuum models is given by Twarogowska et al. (2014).

2.4.1.2 Network-based models

Network models represent a pedestrian facility as a graph G = (N, A),
where the set A/ of nodes represents the different rooms and the set A of
arcs the links between them. Lgvas (1994) describes pedestrian dynamics

in the network by a queuing model where each pedestrian is a seperate
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flow object. This model is implemented in the evacuation software EVAC-
SIM (Drager et al., 1992) and solved using discrete-event simulation. In
a subsequent paper, the same author (Lgvas, 1998) discusses different
wayfinding models that can be used in a network setting. Guo et al.
(2011) develop a network-based model for the evacuation of pedestrians
in indoor areas. The model discretises each part of the building in de-
tail using hexagonal cells and allows consideration of internal obstacles,
giving a realistic representation. However, each cell can contain multiple
pedestrians, so the model is not microscopic in that sense. This gives
computational advantages. Pedestrians choose their route based on a po-

tential field, which denotes the trade-off between distance and congestion.

2.4.1.3 Cellular automata models

Cellular automata models are microscopic simulation models where pedes-
trians are considered individually. They represent the building lay-out by
a grid divided into cells. Usually, each cell can be occupied by a single
pedestrian (e.g., Blue and Adler, 2001). However, some models allow sev-
eral pedestrians into one cell for scaling purposes, while others use smaller
cells where each pedestrian occupies multiple cells, to allow for a greater
degree of detail (e.g., Guo et al., 2012). Time is discretised and at each
time step, pedestrians either move to a neighbouring cell or remain at
their current location. The decision taken by a pedestrian depends on
the status of the adjacent cells and is based on a predefined set of rules.
Updating of cells can be executed either sequentially (e.g., Guo et al.,
2012) or in parallel (e.g., Blue and Adler, 2001), in which case movements
can only be executed when all conflicts between pedestrians are resolved.
One of the first cellular automata models for the simulation of pedestrian
movements was developed by Blue and Adler (2001). The authors fo-

cus on the various phenomena observed in bidirectional flows. Guo et al.
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(2012) develop two route choice models, for the case of good and bad visi-
bility respectively. Bad visibility means that pedestrians cannot see which
direction they should walk to. It can be the result of the propagation of
smoke through the building in case of a fire. Pereira et al. (2013) explic-
itly include the relationship between average speed of a pedestrian and the
density in the model. An advantage of the approach is its computational

efficiency.

2.4.1.4 Agent-based models

Agent-based models take a bottom-up approach as well, where only the
behaviour of individual pedestrians is modelled and the resulting interac-
tions between them determine the macroscopic behaviour. Agent-based
models can use both discrete and continuous time and space represen-
tations. Each agent can have a unique set of behavioural rules, which
allows for modelling heterogeneity in the population (e.g., different pre-
ferred walking speeds for old and young people). A disadvantage of this
flexibility is the high computational cost of running the model. Antonini
et al. (2006) use a discrete choice framework in which pedestrians choose a
direction and speed based on the utility of each of the alternatives. This
utility is influenced by the presence of other pedestrians. Chooramun
et al. (2012) combine three space representations (continuous space, fine
network, and coarse network) into a single model to achieve an optimal
trade-off between computational efficiency and model realism. Behaviour
of agents is based on a different set of rules at each representation level.
The MOBEDIC tool developed by Doheny and Fraser (1996) models the
actions of people in specific emergency situations, specifically focusing on
the evacuation of an offshore environment. EXODUS is a similar soft-
ware tool, developed by Galea and Perez Galparsoro (1994), intended

for the evacuation of mass-transport vehicles such as aircraft. It is also
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able to simulate crawling movement during evacuations (Muhdi et al.,
2009). A third software tool, developed for simulating the evacuation of
geometrically complex buildings, is the SIMULEX model of Thompson
and Marchant (1995a,b,c). Recently, Wagner and Agrawal (2014) devel-
oped an agent-based model for the evacuation of concert venues. The
propagation of fire and smoke is included in the model and influences
the route choice behaviour of individuals. However, there are still many
challenges involved in the development of agent-based models, see Crooks

et al. (2008) for a discussion.

2.4.1.5 Social-force models

A third set of microscopic models consists of the so-called social-force
models. In this type of model, pedestrians have a desired velocity in the
direction of their destination and their acceleration (deceleration) is the
result of different forces. An individual experiences an attractive force in
the direction of his target destination, and repulsive forces from obstacles
(e.g., walls) and other pedestrians. Time and space are modelled in a
continuous way. The social-force model was developed by Helbing (1991)
and Helbing and Molndr (1995). The model reproduces well-known self-
organising crowd phenomena such as lane formation in bidirectional flows
and oscillatory effects at bottlenecks. Langston et al. (2006) represent
pedestrians by three intersecting circles instead of a single circle, to in-
corporate the rotation of the pedestrians into the model. The model
is realistic for dense crowd flow scenarios, but more complex scenarios
are not yet fully realistically represented. Yuen and Lee (2012) extend
the social-force model to include overtaking behaviour, where pedestrians
with a higher desired velocity catch up with and move past pedestrians
heading in the same direction with a lower desired velocity. Qu et al.

(2014) also use a three-circle representation to model rotation and extend
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the social-force model to describe pedestrian movement on stairs.

2.4.1.6 Game-theoretic models

Hoogendoorn and Bovy (2003) use the theory of differential games to de-
scribe the walking behaviour of pedestrians. In this model, pedestrians
predict the behaviour of other pedestrians based on the current state and
anticipated actions of other pedestrians in their neighbourhood (predictive
dynamic user equilibrium principle). They base their pedestrian walking
behaviour model on a clear theoretical foundation based on the micro-
economic notion of subjective utility maximisation. The same authors de-
velop a comprehensive theory of pedestrian activity and path determina-
tion in the two-dimensional space (Hoogendoorn and Bovy, 2004). Huang
et al. (2009) instead use a reactive user equilibrium principle in which
pedestrians only evaluate the immediate conditions of their environment
without anticipating the behaviour of pedestrians in their surroundings
(Tong and Wong, 2000). Their model is an extension of the macroscopic
model of Hughes (2002). Lachapelle and Wolfram (2011) present a pedes-
trian crowd model based on the theory of mean field games. The model is
macroscopic, i.e. it describes crowd behaviour in terms of aggregates, but
it is based on a realistic microscopic model in the sense that it considers
smart pedestrians with rational expectations. Pedestrians are represented
as agents having preferences (i.e., they want to maximise their utility) and
perform strategic interactions within the crowd. They also anticipate the
future. This approach is similar to that of Hoogendoorn and Bovy (2003),
but an advantage of the former model is its lower computational cost as

compared to microscopic simulation models.
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2.4.1.7 Advantages and disadvantages of different models

Agent-based models offer a wide variety of modelling choices. However,
this also makes the models more sensitive to the assumptions used and the
choice of parameter values. Computational costs are usually high since
pedestrians are represented as separate entities and can have complex
behaviours. The theory of subjective utility maximisation on which game-
theoretic models are based is very intuitive. These models can describe
the various motion base cases such as bidirectional flows, four-directional
flows, or crossing flows, and exhibit many of the self-organising crowd
phenomena discussed in Section 2.3.1 (Duives et al., 2013). These models
are again computationally costly for the same reasons as the agent-based
models. Social-force models are also based on an intuitive foundation,
namely an analogy with physical forces that result in accelerations and
decelerations. These models are more or less able to simulate the same
behaviours and crowd phenomena as the game-theoretic models (Duives
et al., 2013). However, these models are not robust (i.e., they require a
small time step when solving the system of differential equations to achieve
accurate results) and are thus not as computationally efficient. The first
reason is that the forces need to be integrated twice to obtain the positions
of pedestrians. The second reason is that the equations for the repulsive
forces between pedestrians and obstacles are stiff, meaning that small
changes in relative positions have a large impact on the resulting forces
(Curtis, 2014). Network models on the other hand, are computationally
very cheap but less realistic. Continuum models offer a trade-off between
network models and microscopic models. They give fairly accurate results
on an aggregated level and their computation time does not depend on the
number of people present in the model. Network and continuum models
are also less sensitive to the choice of parameter values than microscopic

models.
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2.4.2 Modelling techniques used in optimisation mod-

els

Table 2.8 lists the different papers according to the optimisation modelling

technique that is used.

Many early models focus on exact methods, such as standard network
flow models and dynamic programming (i.e. shortest path) to determine
optimal evacuation plans. Chalmet et al. (1982) represent a building by a
graph in which the nodes denote the rooms and the arcs the connections,
i.e. doors, between them. They use a dynamic network flow algorithm
to simultaneously minimise the average evacuation time, the maximal
evacuation time, and to maximise the total number of people evacuated
by a given time. Another example is the EVACNET+ software developed
by Kisko and Francis (1985), which uses a network flow algorithm to

determine optimal evacuation routes.

Additionally, many authors develop a dedicated algorithm to solve their
respective models. Ding (2011) presents an evacuation model where peo-
ple are assigned to different exit routes, each with a certain length and
width, such that the total evacuation time is minimised. The author
derives an expression for the number of people that should be assigned
to each exit route, based on the observation that the evacuation time
over all routes should be equal, since it is the last person’s egress time
that should be minimised. A similar problem is described by Pursals
and Garzén (2009). The expressions proposed by Nelson and MacLennan
(1995) are used to model the movement of people, i.e. to represent the
non-linear relationship between density and travel time on a given route.
The authors then adapt the algorithm of Brown (1979) for the knapsack

sharing problem to solve their problem.
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Table 2.8: Solution technique.

Mathematical programming
Shortest path

Network flow transshipment

Integer programming

Chance constraint programming
Heuristic
Simulated annealing

Genetic algorithm

Other
Simulation

Cellular automata

Agent-based modelling

Other

Queuing

Dedicated algorithm

Chen and Feng (2009); Fahy
(1994); Park et al. (2009)
Borrmann et al. (2012); Chalmet
et al. (1982); Choi et al. (1988);
Kisko and Francis (1985)

Kang et al. (2015); Lim et al
(2015); Vermuyten et al. (2016b),
Chapter 3

Ng and Waller (2010)

Cepolina (2005, 2009)
Abdelghany et al. (2014); Johans-
son and Helbing (2005)

Chapter 3, Chapter 4

Abdelghany et al. (2014); Geor-
goudas et al. (2010); Zhao and Gao
(2010)

Tavares (2010); Zarboutis and
Marmaras (2007)

Berseth et al. (2015); Deng et al.
(2008); Johansson and Helbing
(2005); Zheng and Liu (2010),
Chapter 4

Bakuli and Smith (1996); Deng
et al. (2008); Talebi and Smith
(1985)

Choi et al. (1988); Ding (2011);
Georgoudas et al. (2010); Hoppe
and Tardos (1994, 2000); Kang
et al. (2015); Li and Xu (2014);
Miller-Hooks

Pursals and

Opasanon and
(2009);
(2009); Selim and Al-Rabeh
(1991)

Garzén
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However, while computationally efficient, these models do not model pedes-
trian dynamics well, as they assume capacities and arc-traverse times to
be constant instead of density-dependent. In recent years, the develop-
ment of more realistic models which better represent crowd phenomena,
has shifted attention towards the use of queuing models and heuristics on
the one hand and the use of simulation on the other hand to cope with

the increased complexity.

Queuing models can represent buildings as a graph where nodes corre-
spond to rooms or bottlenecks and arcs correspond to the connections
between them (Bakuli and Smith, 1996; Talebi and Smith, 1985), or by
a lattice where each cell can be occupied by a number of people and has
a queuing process associated with it (Deng et al., 2008). The travel and
waiting time are modelled by the queuing process at each node. The
service rate is a function of the number of people present because of the
inverse relationship between walking speed and density of pedestrians.
The advantage of these models is that they include this non-linear rela-
tionship, instead of assuming constant travel times and capacities, while
at the same time being computationally efficient to solve. Deng et al.
(2008) combine Markov Decision Process models and queuing theory to
model the evacuation of a building. The Markov process describes the
typical egress behaviour of an agent, while a queue at each building node
is used to model congestion. Optimal evacuation routes are derived using
a MaxWeight policy for decentralised routing, where each agent chooses
from a set of Markov transition matrices at each time step. It is a myopic
policy, because at each time step the routing is chosen based only on the
current state of the network, and essentially translates to diverting traffic

from the most congested nodes to other routes.

Cepolina (2005) uses simulated annealing to find the optimal evacuation
routes in a building. Only a special case of building geometry is consid-

ered, which restricts the solution space so that a simple transition rule
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can be applied in the simulated annealing heuristic. The author extends
this work (Cepolina, 2009) to include the capacity drop phenomenon in
bottlenecks under oversaturated conditions. The problem is extended not
only to finding the optimal egress routes, but also to deciding on the op-
timal start times of evacuation for each floor of the building (so-called

phased evacuation).

Currently, simulation models are often used in an iterative solution pro-
cedure to solve evacuation and design problems. The reason is that sim-
ulation models represent the complex interactions between pedestrians
realistically and can be adapted to many different scenarios, while simul-
taneously remaining mathematically tractable compared to monolithic
non-linear mathematical programming models. An example of such an
iterative solution procedure is provided by Abdelghany et al. (2014) who
use a genetic algorithm combined with a cellular automata simulation
model to evacuate a heterogeneously distributed group of people from a
large room with multiple exits. Every chromosome in the population rep-
resents a solution where each group of people is assigned to a specified
exit. The cellular automata model then simulates the evacuation dynam-
ics resulting from this assignment and the corresponding evacuation time.
After each run a new population is created from the previous one, until
a stopping criterion is reached. The solution with the lowest evacuation

time then represents the best evacuation plan that has been found.

Similar techniques are used by Johansson and Helbing (2005) and Tavares
(2010) for design problems. Johansson and Helbing (2005) use a genetic
algorithm in combination with the social-force model to find an improved

layout to increase the flow through a bottleneck.

Most articles that we studied do not discuss the computational require-
ments of their models. An exception is the models by Georgoudas et al.
(2010) and Li and Xu (2014), which track pedestrians in real-time and
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suggest rerouting pedestrians based on anticipated congestion at exits. In
this case, computational efficiency is of the utmost importance in order

to be able to determine optimised evacuation routes in real-time.

2.5 Discussion and conclusion

In this chapter, we have reviewed optimisation models from the field of
pedestrian walking behaviour and crowd dynamics. These models are
used for a wide range of evacuation and design problems. We have also
discussed the relevant empirical research and descriptive modelling tech-
niques to provide a background for the reader and to substantiate the

criteria that are used in the assessment of the different models.

Currently, most of the attention is directed to the development of optimal
evacuation plans, followed by the effective design of pedestrian facilities.
However, there are other interesting problems related to pedestrian flows
which have not yet received much attention in the literature, such as crowd
management under normal conditions. An example is the minimisation of
flows resulting from the timing and location of certain events, such as the
assignment of lectures to rooms and timeslots in a university timetable,
the scheduling of acts at music festivals, or the planning of different dis-
ciplines at large sports events, to ensure the safety (i.e., crowd densities
do not reach hazardous levels) and comfort (i.e., people do not have to
walk large distances or through high-density crowds and can reach their

destinations in time) of the people present.

While many of the earlier models concerning evacuation problems did not
include the fundamental relationship between walking speed and crowd
density, and instead assumed constant travel times, most of the recent
articles represent these dynamics in their models. By way of contrast, the

calibration of models should receive more attention in future work. How-
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ever, calibration is still difficult because of the lack of consensus between
data of different empirical studies. More research is needed in this area

to reconcile or explain the contradictory results obtained in experiments.

Closely related to this is the validation and application of optimisation
models. Currently, most authors only test their models on theoretical
data. To implement the models in practice, it is important that their
results and predictions closely resemble real-world values. Furthermore,
practitioners could benefit if authors describe the different challenges and

pitfalls in implementing their models.

Finally, there currently is a discrepancy between the techniques used in
descriptive models and those used in optimisation models. The former
are mostly variants of microscopic simulation models, because they seek
to represent pedestrian dynamics as realistically as possible. By way
of contrast, the latter gravitate towards network models in combination
with flow transshipment algorithms or queuing processes, because of their
mathematical tractability. Some of the recent models use an iterative
process where a heuristic searches for good solutions, which are conse-
quently tested by a simulation model that represents the resulting crowd
dynamics in a realistic way. Future research should focus on integrating
techniques of descriptive models within an optimisation framework to find

the optimal trade-off between model realism and tractability.






Chapter 3

Developing compact
course timetables with

optimised student flows

3.1 Introduction

The growing student numbers at colleges and universities have resulted
into an enlarged complexity in terms of planning and organisation. One
of the tasks that becomes increasingly complex is the development of
course timetables. Daskalaki et al. (2004) define the University Course
Timetabling Problems (UCTP) as the construction of a weekly timetable

in which all operational rules and requirements of the academic institution

An article based on parts of this chapter has been published as Vermuyten, H.,
Lemmens, S., Marques, I., Belién, J. (2016). Developing compact course timetables
with optimized student flows. FEuropean Journal of Operational Research, 251(2),
651-661. doi:10.1016/j.ejor.2015.11.028.
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are met and as many wishes as possible of the staff and students are
satisfied. According to Carter and Laporte (1998) the UCTP can be
formulated as a multi-dimensional assignment problem. Students and
lecturers need to be assigned to lectures which are in turn assigned to
rooms and timeslots such that no overlap occurs. Course timetables have
to satisfy various requirements of different stakeholders including non-
overlap of courses, free hours, lecturers’ preferences, student preferences,
etc. Furthermore, the course timetable can have a huge impact on queues
in stair halls and elevators, particularly for universities or colleges with
many students that follow courses in a single building. The congestion
problems in stair halls and elevators are caused by travelling students
that all have to switch rooms at the same time between two consecutive
lectures. Clearly, student flows can be controlled and monitored via the
course timetables. For example, if the schedules are arranged so that
consecutive lessons take place in rooms situated on the same floor (or on
a floor as close as possible), there will be far fewer queues at the elevators
and in the stairwells. Thus, next to the various constraints and preferences
of different stakeholders, the resulting student flows should also be taken

into account when building the course timetable.

This research was motivated by the UCTP at the KU Leuven Faculty of
Economics and Business (FEB) campus Brussels. As described in Mercy
(2012) the FEB campus Brussels has gone through a process of campus
consolidation in which several buildings at different locations in Brussels
have been sold and the lectures of all economic programs have been con-
centrated at a single location in the center of Brussels. As a result, over
8000 students daily follow classes in a single building, which inevitably
causes major congestion problems at the elevators and the stairwells dur-
ing lecture transitions. This congestion is already alleviated by assigning
different starting times for the academic and professional programmes.

However, long waiting times and difficult passages remained to exist. Stu-
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dent flows could also be minimised by maximally spreading the lectures
over the day and over the week. However, students and teachers are often
dissatisfied with a timetable with free periods in-between. Being not able
to attend or to teach lectures consecutively requires more time for travel-
ling towards and away from classrooms. Commuting students especially
often prefer to have a compact timetable instead of having free time be-
tween lectures. Particularly, days with only one scheduled lecture should

be avoided.

Despite the large complexity in building UCTPs, many educational insti-
tutes still develop their UCTP manually, which requires a lot of time and
creativity of the planners. It is nearly impossible for human planners to
solve the enormous puzzle taking into account the constraints and pref-
erences of all stakeholders, let alone to incorporate the resulting student
flows. After showing that a monolithic integer programming (IP) model
is intractable for a state-of-the-art commercial solver for solving real-life
UCTPs taking into account student flows, this chapter presents a two-
stage IP approach. In the first stage, lectures are assigned to timeslots
taking into account the various constraints and maximising the stakehold-
ers’ preferences. The second stage uses the timetable of the previous stage
as input and reassigns the classrooms with the objective of minimising the
resulting student flows. Through extensive computational tests, we show
that, in contrast to a monolithic IP, this two-stage IP approach is capa-
ble of finding quality solutions with minimised student flows for real-life
UCTPs.

The remainder of this chapter is organised as follows: Section 3.2 dis-
cusses related literature of different timetabling problems, modelling and
solving techniques. Section 3.3 introduces the timetabling problem of the
KU Leuven Campus Brussels. Next, a mathematical formulation for the
problem is discussed in Section 3.4, followed by a discussion of the solution

method used in Section 3.5. Section 3.6 subsequently applies the model to
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the data of the Faculty of Economics and Business of KU Leuven Campus
Brussels. The latter section also reports on results from tests using data
available from the literature. Section 3.10 concludes this chapter and lists

directions for future research.

3.2 Literature review

In the following sections, we first give an overview of the solution tech-
niques that have been developed in the literature. Next, we look at the
issue of compact timetables, where free hours between consecutive lectures
are avoided as much as possible as this is preferred by most students and
staff. In the third section, we discuss the literature on the incorporation of
student flows into the timetabling problem. In the last section, we outline

the approach taken in this chapter.

3.2.1 Solution techniques

Various solution techniques have been proposed for automating the de-
velopment of course timetables (Chiarandini et al., 2006). Overviews
were given by Babaei et al. (2015), Burke and Petrovic (2002), Carter
and Laporte (1996, 1998), Lewis (2008), MirHassani and Habibi (2013),
Petrovic and Burke (2004), and Schaerf (1999). Below, we discuss three
approaches that are most widely used for course timetabling more into de-
tail, namely graph coloring, metaheuristic approaches, and mathematical
programming. Other solution approaches include constraint logic pro-
gramming (e.g., Guéret et al., 1996), case-based reasoning (e.g., Burke
et al., 2006a,b), and neural networks (e.g., Carrasco and Pato, 2004).

Graph colouring approaches are often used for timetabling thanks to the

ease of implementation (Petrovic and Burke, 2004). In graph coloring
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approaches the timetabling problem is modelled as a graph in which the
nodes correspond to the events (lectures) and the arcs correspond to the
event-clash constraints (De Causmaecker et al., 2009). Next, each node
needs to be assigned to a color, which represents a timeslot, such that
connected nodes have a different color. The goal is to find a solution in
which the number of colors used does not exceed the number of available
timeslots Lewis (2008). Usually, room assignments are not taken into ac-
count in these approaches. Instead, the assignment of lectures to rooms is
done after the conflict graph has been constructed and coloured. However,
it is possible to include room assignments in the graph colouring process
as shown by Redl (2004).

Metaheuristics start with one or a set of solutions which are iteratively
improved using local search operators with a protection mechanism that
avoids getting stuck in a local optimum. Recent examples of metaheuris-
tic approaches applied to UCTPs can be found in Aladag et al. (2009),
De Causmaecker et al. (2009), Lii and Hao (2010), Zhang et al. (2010),
and Geiger (2012). A hyperheuristic is a framework in which an upper-
level metaheuristic selects the most appropriate heuristic out of a set of
lower-level heuristics to solve a particular optimisation problem (Petro-
vic and Burke, 2004). Hyperheuristics are a growing research topic for
tackling timetabling problems (Burke and Petrovic, 2002). Hybrid ap-
proaches combine different techniques, for instance Bellio et al. (2012)
present a hybrid local search approach, while Gunawan and Kien Ming
(2012) propose a hybrid approach that combines Lagrangian relaxation

and simulated annealing.

In the past, due to computational difficulties the use of mathematical
programming for solving UCTPs has been limited to small size instances.
However, thanks to strong advances in computer software and hardware,
and in IP formulations, mathematical programming approaches for timetabling

problems have become more popular (Daskalaki et al., 2004; Wren, 1996).
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Examples of IP formulations for UCTPs can be found in Daskalaki et al.
(2004), Dimopoulou and Miliotis (2001), Phillips et al. (2015), and Schim-
melpfeng and Helber (2007). One advantage of mathematical program-
ming approaches is the ease of incorporating additional soft constraints
(Carter and Laporte, 1998).

Unfortunately, UCTPs continue to cause problems for the planning de-
partments of universities and colleges, because implementations of the
proposed solution techniques are scarce. According to McCollum (2007)
this is due to incomplete data and the difficulty of incorporating implicit
knowledge about the preferences of lecturers and the scheduling policies.
There are a few notable exceptions. Daskalaki et al. (2004) apply an
integer programming model to the timetabling problem of the depart-
ment of Electrical and Computer Engineering at the University of Pa-
tras. De Causmaecker et al. (2009) use a decomposed metaheuristic ap-
proach to solve the timetabling problem for the KaHo Sint-Lieven School
of Engineering. Dimopoulou and Miliotis (2001) report on the implemen-
tation of a computer system for the joint development of a course and
examination timetable at The Athens University of Economics and Busi-
ness. Schimmelpfeng and Helber (2007) describe the implementation of
an integer programming approach to create a complete timetable of all
courses for a term at the School of Economics and Management at Han-
nover University. Badri (1996) develops a two-stage optimisation model
to solve a faculty-course-time timetabling problem at United Arab Emi-
rates University. Finally, Al-Yakoob and Sherali (2007) and Al-Yakoob
et al. (2010) use integer programming to obtain, respectively, a course and

exam timetable at Kuwait University.

As shown in this chapter, computational difficulties inherent to huge IP
models can be overcome by decomposing the problem in separate stages
that can be solved efficiently with state-of-the-art IP solvers. Badri (1996)

also uses a two-stage multi-objective scheduling model for the assignment
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of faculty members to courses and timeslots. Four types of preferences,
each with an associated priority, are grouped into one objective function:
the load requirement for each faculty, the satisfaction of the number of
available classrooms, the number of evening classes and personal prefer-
ences of faculties with respect to course-time assignments. The results
of the first stage, the faculty-course assignments, are the input for the
second stage. The second stage assigns faculties to timeslots. Burke et al.
(2010) propose a general framework for the decomposition of large prob-
lems into multiple restricted submodels, which only consider a subset of
the objectives at first. The solutions to the subproblems are then aggre-
gated to obtain feasible solutions to the original problem. An advantage
to their method is that it is easily implemented using a general IP solver

and provides bounds on the solution quality.

3.2.2 Compact timetables

Students and teachers often prefer compact timetables. A compact timetable
refers to the absence of free hours between consecutive lectures. Below we
describe three contributions that also focus on compact timetables. San-
tos et al. (2012) include constraints regarding the number of free periods
in the timetables of the teachers. A compact and an extended formulation
are proposed. The authors use cut and column generation to increase the
dual bounds of the extended formulation. Dorneles et al. (2014) present
a mixed integer linear programming model to a high school timetabling
problem. Among the different requirements that are considered in Brazil-
ian schools, two compactness constraints must be met on a teacher’s sched-
ule: the minimisation of working days and the avoidance of idle timeslots.
The authors propose a fix-and-optimise heuristic combined with a variable
neighbourhood descent method using three different types of decomposi-

tion (class, teacher and day). Burke et al. (2010) distinguish four penalty
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terms: classroom capacity, spread of the lectures of a course, time com-
pactness and classroom stability. The penalisation of classroom capacity
and stability is respectively done by penalising classrooms if insufficient
seats are available and distinct classrooms are used for different lectures
of a course. The spread of the lectures is penalised when the actual spread
is smaller than the prescribed spread. For a given curriculum, every time
a lecture is not adjacent (an isolated lecture) to another lecture on the

same day, time compactness is penalised.

3.2.3 Student flows

As mentioned earlier, the motivation of this chapter is the congestion that
occurs in the corridors and at the stairwells at the Faculty of Economics
and Business at KU Leuven Campus Brussels and the observation that
the timetable has an impact on this. Therefore, we discuss previous work
that incorporates the travelling of students between consecutive lectures
into the timetabling problem. To the best of our knowledge, the studies
in Al-Yakoob and Sherali (2007), Al-Yakoob et al. (2010), Ferdoushi et al.
(2014), Hertz (1991), Pongcharoen et al. (2008), and Rudov4 et al. (2011)
are the only ones that, to a limited extent, incorporate student flows. Al-
Yakoob and Sherali (2007) present a Mixed Integer Programming (MIP)
model for class timetabling problems and consider a related congestion
topic. The authors address the problem of parking and traffic conges-
tions for students and faculty members when lectures are inadequately
spread over all the available timeslots. Students and faculty members
are adequately spread over all the available timeslots by constraints that
impose an upper bound on the number of students that follow classes
(take exams) during each timeslot. These bounds are not necessary the
same for different timeslots. For example, the timeslots when employees

and staff start and finish working can have a smaller upper bound. Stu-
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dent flows are also taken into account by Al-Yakoob et al. (2010). The
authors present a MIP for exam timetabling and address the same top-
ics: parking and traffic congestions and an inadequately spread of the
exams. Therefore, scheduling consecutive exams at distant campuses is
undesirable. Parking and traffic congestions are addressed by imposing a
constraint on the number of students that can be involved in one exam
period. Pongcharoen et al. (2008) present a stochastic optimisation model
for the UCTP. They tackle the problem of student movement by a soft
constraint ensuring that students attend lectures in the same classroom
as much as possible. More recently, Ferdoushi et al. (2014) also consider
the minimisation of the movement of students between rooms through
soft constraints. The authors develop a modified hybrid particle swarm
optimisation approach to a highly constrained realistic environment in
the Computer Science and Engineering department of Khulna Univer-
sity of Engineering & Technology, Bangladesh. In both papers, distances
between classrooms are not taken into account. Hertz (1991) uses tabu
search and graph theory for solving timetabling problems. In addition to
the classical feasibility constraints of the timetable, precedence require-
ments and geographical constraints are taken into account. Precedence
requirements are, for example, lectures which should be followed by ex-
ercise sessions in the same day. Geographical constraints are related to
the distance of two classrooms of two consecutive lectures. The objective
function penalises infeasible timetables and pairs of consecutive lectures
at distant classrooms. Rudovd et al. (2011) use a generic iterative for-
ward search and a branch-and-bound algorithm for a complex university
timetabling problem. They try to develop a generic method that is not
specifically tailored to a single problem type so that it can be used in
practice to solve different concrete timetabling problems with different
constraints. The authors also consider the distances between rooms and
penalise class assignments that require students or instructors to travel

large distances between consecutive lectures.
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3.3 Problem description

3.3.1 The KU Leuven Campus Brussels timetabling

problem

In the timetabling problem for the KU Leuven Campus Brussels, a weekly
timetable needs to be built, where lectures (events) need to be assigned

to timeslots and rooms. Two things need to be taken into account:
e Teachers are already assigned to lectures.

e A series is a group of students that have exactly the same timetable.
For each series, it is known in advance how many students there are

in the series and which lectures they need to attend.

Series are divided in four different types of education: daytime educa-
tion, morning education, evening education and evening education only
on Tuesday and Thursday. The number of available timeslots for a series
depends on the type of education of the series. These Educational Pref-
erences (EPF) can be violated by scheduling a lecture at a timeslot when
some student series are unavailable to attend this lecture due to their type

of education.

Every teacher can submit his teaching preferences regarding the timeslots
at the start of the academic year. These Teacher Preferences (TPF) can
be violated by scheduling a lecture at a timeslot when a teacher does not
prefer to teach this lecture. A first objective is then the minimisation of
the violation of the aforementioned teacher preferences and educational

preferences.

An additional concern in building the timetable for the KU Leuven Cam-
pus Brussels, is the congestion caused by students travelling from one

classroom to another in between consecutive lectures. A consequence of
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this congestion is that lectures often start late because it takes a lot of
time for students to travel to their next classroom. Therefore, we include
the minimisation of the maximum of the travel time for each series of

students for all timeslots as a second objective.

3.3.2 Incorporating student flows

To model the flow and resulting travel times of students, we employ some
of the modelling techniques used in traffic assignment models. Traffic
assignment models try to predict traffic flows and the resulting conges-
tion and travel times on each route in the network, given the estimated
number of people who want to travel between different origin-destination
pairs (Patriksson, 2015). They represent the road network as a graph
G = (W, A), where the set N of nodes represents destinations or junc-
tions and the set A of arcs the roads between them. Analogously, to
model the flow and resulting travel times of students, we represent the
layout of the building by a graph in which a number of adjacent class-
rooms are grouped into a single node. The number of classrooms that are
combined into one node is based on a trade-off between the complexity of
the model on the one hand and its realism on the other hand. Next, only
nodes which represent physical locations that are adjacent to each other
in the actual building are connected by an arc, through which a ‘flow’
of students can pass. This implies that it is possible that students who
travel from some classroom A to some classroom B have to pass through
multiple arcs to reach their destinations (e.g., if they have to travel from
the 3rd floor to the 5th floor, they need to pass through the arc for the
stairs between the 3rd and 4th floor first, and then through the arc for
the stairs between the 4th and 5th floor). Secondly, in reality it can be
that there are multiple routes one can take to reach the same destination

from a given location. Therefore, in the model a route choice probability
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Figure 3.1: An example of a building layout and the corresponding graph.

In this building, there are 7 classrooms. Rooms A and B are assigned to node 1, rooms
C and D to node 3, rooms E and F' to node 4 and room G to node 6. Rooms E, F,
G and the entrance are on the first floor and rooms A, B, C' and D are on the second
floor, so arc (2, 5) represents stairs. It is clear that in this specific layout only one route

can be taken between any two classrooms.

ENTRANCE

has to be specified to determine the percentage of students that will cause
flow in each possible arc of a certain route. For example, if students can
take two possible routes from room A to room B, we need to make an
assumption on the percentage of students that will use route 1 and the
percentage of students that will use route 2. Figure 3.1 gives an example
of layout of a building and the corresponding graph to model the student

flows.

An important element in the analysis of traffic assignment models is the
notion of congestion (Patriksson, 2015). As traffic volume on a link in-
creases, the average travel speed on the link decreases, until a situation
of total congestion is reached. The travel time of a link is modelled with

a link performance function, which relates the travel time through a link
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to the volume of traffic on that link. A similar concept has been observed
for pedestrian flows. In the literature this relationship between crowd
density and walking speed is called the ‘fundamental diagram’, because
of its importance in models describing human walking behaviour (for a
general overview of the pedestrian walking behaviour research, see, e.g.,
Helbing and Johansson (2010) and Kalakou and Moura (2014)). Since we
are interested in the travel time of students between classrooms, we will

describe this concept in more detail.

Schadschneider and Seyfried (2009) give an overview of the state of empir-
ical research and examine the data relating to the fundamental diagram.
Their data only consider planar walking facilities such as corridors and
do not apply to stairs. They observe that there is a lot of variance in the
data, which has been attributed to a variety of factors. Secondly, there
is no consensus whether there is even any significant difference between
uni- and multidirectional flows. Therefore, we do not distinguish between

uni- and bidirectional flows through an arc.

Based on the data of Schadschneider and Seyfried (2009), we assume the

following relationship between crowd density p, and walking speed v, i.e.

o(p) = 2, (3.1)

where « is a scaling parameter. The reason for this choice is that the travel
time as a function of crowd density is then linear. Another possibility is of
course to assume a linear relationship between crowd density and walking
speed, and afterwards fit a piecewise linear function to the resulting non-
linear travel time function. There are, however, two arguments to support
our choice: (i) at high crowd densities, walking speed does not actually
reach zero, but ‘turbulent crowd movements’ are observed (Helbing et al.,
2007), and (ii) in traffic assignment models it has been observed that
asymptotic travel time functions empirically lead to unrealistically high

travel times (Boyce et al., 1981). Other empirical studies have looked at
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the fundamental diagram for the movement on stairs. As expected, walk-
ing speed here is lower than on planar surfaces, see e.g. Qu et al. (2014).

Therefore, we include a correction term v € [0, 1], such that

(%

oo = (2). (32)

p

Then the travel time through arc (7, j) is the length of the physical loca-
tion represented by this arc divided by the walking speed of the students
walking through it; that is, it depends on the total flow of students going
through the arc:

e () = length,;  lengthy; n lengthij'

tij

(3.3)

U(p) o Umazx

The second term in equation (3.3) ensures a minimal travel time when
the density is zero. Furthermore, the crowd density p at time ¢ equals the
number of students that travel through arc (¢,7) at time ¢, denoted by
Fyj, divided by the surface area of the physical location represented by

this arc, i.e.

F,.

p=—2_. (3.4)

areag;
This representation can also be extended to a situation where there are
multiple buildings. In this case, it suffices to define an arc between the
entrances of each pair of buildings and assume a fixed travel time for
that arc, since in public spaces and roads the density is ‘given’ and only

marginally influenced by the number of travelling students.

In the computational tests in this chapter, we set v,q. = 1.25 (Polus et al.,
1983), @ = 1, v = 1.271. In Chapter 5 we perform a sensitivity analysis

to evaluate the impact of changes in the values of these parameters.
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3.4 MIP formulation

Building on the explanation of the previous section, we are now able to
derive a mixed integer programming formulation for our model to jointly
minimise the violation of teacher and educational preferences on the one

hand and the travel times of students on the other hand.

3.4.1 Notation

e Constants

— 0: number of available timeslots in one day. This number is
assumed to be the same for every day that lectures can be
scheduled.

e Sets

— s € S: series of students

— I,m € L: lectures. Every lecture takes two hours, is unique and
is scheduled once. A course that consists of, for example, two
lectures is scheduled twice.

— t € T: available timeslots. These are the different time periods
that a lecture can be scheduled.

— ¢,d € C: classrooms. Every lecture needs a classroom of the
correct type and with sufficient capacity. Different types of
classrooms, for example PC-rooms and laboratories, can exist.

— r € R: teachers

— k € K: days. These are the days (Monday = 1, ..., Friday = 5)
that lectures can be scheduled.

— p € P: paths

— 4,J € N: nodes

e Subsets
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— L$: lectures that need to be attended by series s

LE: lectures that can be scheduled in classroom c
LE: lectures that are taught by teacher r

T4: timeslots on day k

C;: classrooms that can be used to schedule lecture [

P.q: all paths that connect room ¢ and room d

e Parameters

cy: penalty cost for scheduling lecture [ in timeslot ¢. These
costs include both the teacher preferences and educational pref-

erences.

apeq: percentage of students who use path p to travel from

room ¢ to room d
byjp: equals 1 if arc (4, ) is on path p, 0 otherwise

n,: number of students in series s

e Decision variables

Xie € {0,1}: equals 1 if lecture [ is scheduled at time ¢ in room
¢, 0 otherwise
Uisp € [0,1]: the percentage of students from series s who use

path p at time ¢
Fy; > 0: the total student flow through arc (¢,7) at time ¢

T%;7 > 0: the travel time through arc (7, j) at time ¢
Tiotal > 0: the total travel time for those students of series s

that use path p at time ¢
Ty = max, ,{Ti2!*!}: the travel time in timeslot ¢, i.e. the time
when all series of students have reached their destination

Tinaz = max {T;}
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3.4.2 The model

The first set of constraints ensure a feasible timetable. These are hard
constraints. Constraint set (3.5) implies that every lecture has to be sched-
uled in a feasible timeslot and classroom. Constraints (3.6) guarantee that
every teacher can teach at most one lecture at a particular timeslot. This
lecture is able to be taught by this teacher and is scheduled in a feasible
timeslot. Constraint set (3.7) ensures that, for each timeslot, at most one
feasible lecture can be scheduled in each classroom. A series of students
can only attend one lecture at a time. This is implied by constraint set
(3.8).

S xue =1 Vi e L (3.5)

teT ceC;

Y xue <1 VreR,VteT (3.6)

leLR ceCy

> xue <1 Vte T,Vee C (3.7)
leL¢

S xue <1 VseS,vteT (3.8)

1eLS ceC,

Labour legislation also enforces a number of constraints regarding the
working hours of teachers. The first constraint is that teachers cannot
teach more than A; lectures of two hours per day. Constraints (3.9)
ensure these terms of employment. Next, teachers are also not allowed to
teach more than As lectures consecutively. This is enforced by constraints

(3.10). Here Q denotes a subset of Ay + 1 consecutive timeslots.
SN xue <A Vr € R,Vk € K (3.9)
LELR teTy ceCy

DN xue <A, Vr € R,Vk € K,VQ C Ty (3.10)

IELR teQ ceC,
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Furthermore, teachers are not allowed to teach in the first timeslot if they
taught in the last timeslot on the previous day. Constraint set (3.11)

shows how this prohibition is enforced.

SN Kukse + Xikorre) <1 VreRVE € {L,...,[K| -1} (3.11)
IELR c€Cy
Finally, the legislator does not allow that a docent teaches in the first and

last timeslot of a particular day. This is implied by constraint set (3.12).

Z Z (Xl,1+(k—1)6,c + X1 ks,c) <1 Vr € R,Vk € K (3.12)
leLR ceCy

Constraints (3.13) are the compactness constraints: these constraints
avoid two-hour free periods in the timetables. If a lecture is scheduled
at timeslots ¢t and t + 2 of a particular day, then another lecture needs to

be scheduled at timeslot ¢t + 1 of the same day.

Z Z (Xltc +Xl7t+27c - Xl,t+1,c) < 1

leLS ceCy (313)
Vs € S,Vk e K,Vt € {6k +1,...,0k + |Ty| — 2}

The second set of constraints determines the student flows. For every
series of students s we need to determine which paths they use given
the assignment of lectures to classrooms. To this end, U, indicates
the percentage of students from series s that use path p at time t. The

relationship between xj. and Uy is then as follows:

Utsp 2 apcd (Xltc + Xm,t+1,d — 1)

(3.14)
VteT,VseS,Vl,mels VpeP,Vee C,de C,y,

However, we also need to include the flow caused by students who leave
the building when they do not have class at time ¢ 4 1, and students who
enter the building when they did not have class at time ¢. The following
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two expressions include the first and second type of flow respectively:

Utsp Z Ape,exit | Xite — § E Xm,t+1,d

meL$ deCyy, (3.15)

Vte T,Vs €S,V € LS,Vp € P,Ve € C

Utsp > Apc,exit | Xl t+1,c — § E Xmtd

meLs deC, (3.16)

Vt e T,VseS,VlelS VpeP,VeeC

Then, the flow through each arc (i, j) at time ¢ can be calculated as follows:

Frj =Y Y nibijpUsy VteT,Vi,jeN (3.17)
pEP s€S

To assure that crowd density does not reach hazardous levels (see e.g. Hel-
bing et al. (2007)), the flow through an arc cannot exceed a predetermined

maximum level:

Fiij < Foaz vte T,Vi,j €N (3.18)

Now the travel time through arc (4,7) at time ¢ is derived from the flow

as follows

Tare — length;; Fi . length;;

tij Vte T,Vi,j €N (3.19)

« area.; Vmaz

where the correction factor v needs to be included if arc (i, j) represents
stairs. Then, the travel time of a given series s from their first classroom
¢ to their next classroom d is given by the sum of the individual travel
times of each arc (4, j) that is on path p used by that series. When there
are multiple paths that students can take, the travel time of the series

is taken as the maximum of the travel times over all possible paths. To
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model this, the following two constraints are added:

- Z bZJPTZr]C g?;t;al < M( — Xjtc — Xm,t+1,d)
(4,9) (3.20)

VteT,VseS,Vi,melS VYee CdeC,,,VpePy

Z szpT?zer Tiggt)al <M (2 — Xite — Xm,t+1,d)

(i.4) (3.21)
VteT,Vs € S,Vl,m e L5 Ve e C,d € Cpp,¥p € Py

where M is a large number. These constraints work as follows: if two
consecutive lectures [ and m, which are followed by series s, are planned

in rooms ¢ and d respectively, then (3.20) and (3.21) reduce to:

- Z bijp THE + Thotl < 0 (3.22)
(4,9)
r al
D by T — Tig <0, (3.23)

which is equivalent to Tfot! = 3 (i) Pip T - This means that the travel
time of this series over path p should equal the sum of the individual travel
times of all arcs (7, 7) that are on path p. On the other hand, if at least

one of the variables xj. and x,, ¢4 1,4 equals 0, then

— > by T + Tio < M (3.24)
(4,9)
D by Tie — Tiok < M, (3.25)

(4,9)
such that nothing is implied for Tt i.e. Tio%! can be set to 0. Fur-
thermore, there can be at most one combination of xj. and Xy ¢+1,q4 for

Ttotal

top 18 then uniquely defined.

which both variables are equal to 1, so

Finally, the travel time T in timeslot ¢ is given by:

total <T, Vi e T,Vs € S,Vp e P (326)

tsp
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and the maximum travel time over all timeslots by

When calculating the travel time in a given timeslot (T;), we do not
include series who do not have lecture at time t + 1, because they leave
the building and consequently don’t have to arrive at their next lecture
as quickly as possible. Similarly, we do not include series who do not
have lecture at time ¢, because they enter the building from outside, so
they naturally enter in waves instead of all simultaneously; also, they can
come earlier to be in class on time. We also remark that two consecutive
timeslots for which there is a lunch break in between or that are on two

consecutive days should obviously not be included.

The objective function then consists of two parts: the minimisation of the
violation of the teacher and educational preferences on the one hand, and
the minimisation of the travel times on the other hand. We can choose to
either minimise the average (or equivalently, the sum) of the travel times

in each timeslot:
minimise A > “epxpe + (1-X1) Y Ty (3.28)
IEL te€T ceC teT
or minimise the maximum over all timeslots:

minimise A > " cpxpe + (1= A) Tras (3.29)

leL teT ceC

The weight of A € [0, 1] reflects the importance of each of the respective
separate terms in the objective function. This parameter should be set by

the university based on the relative importance they attach to each term.
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3.5 Solution approach

We have tried to solve the mathematical model presented in Section 3.4
directly using an integer programming solver. However, the ‘Big M’ con-
straints make the problem formulation intractable for real-world instances.
Therefore, we use a two-stage integer programming approach, which is an
adaptation of the decomposition method of Burke et al. (2010). The
first stage then finds a timetable that is feasible with respect to the hard
constraints and minimises the violation of the teacher and educational
preferences. Next, the second stage uses the timetable obtained in stage 1
as input and minimises the student flows by reassigning lectures to class-

rooms.

The first stage model uses the same decision variable x,. as the monolithic
model. It consists of equations (3.5) - (3.13) and its objective function is
the first part of equation (3.27). The second stage model uses a variable
wy. which equals 1 if lecture [ is assigned to room ¢ and 0 otherwise. Let
ki equal 1 if lecture [ is planned in timeslot ¢ in the solution of the first

stage model and 0 otherwise. The second stage model is now given by:

minimise Ty ~ or  minimise Y T, (3.30)
teT
subject to:
> wie=1 vl e L (3.31)
ceCy
> kuwie <1 vt e T,Ve e C (3.32)

leL¢
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Utsp Z apcd (kltwlc + kmtVV'md - 1)

(3.33)
Vt e T,Vse€S,Vl,meLS ¥peP,Vee C,deC,,

Utsp Z Apc, exit klthc - § E km,t+lwmd
meLs deC,, (3.34)

Vt e T,Vs e S,VlelS VpeP,VeeC

Utsp Z Apc, exit kl,t+lwlc - E § kmtwmd ( )
maels d<Cn 3.35

Vte T,Vs €S,V € L5,Vp € P,Ve € C

Fuj = Z Z n5byip Utsp Vt € T,Vi,j € N (3.36)
peEP s€S
Frij < Frnao Vte T,Vi,jeN (3.37)

lengthij Ftij + lengthij

arc __
Ttij -

VteT,Vi,j €N (3.38)

o area Vinaz

=Y by THS + T < M (2 = kiywie — Kyt Wana)
(&.3) (3.39)
VteT,VseS,Vi,melS Vee Cpde Cpp,VpePy
D by T3 = T < M (2 = kiswie — Kot Wina)
(i.4) (3.40)
Vte T,Vs e S,Vl,m e LS Ve e C,d e Cpp,Vp € Py

Tl < T, Vt € T,Vs € S,Vp e P (3.41)
Tt S Tmaa: vi (342)

Constraints (3.31) ensure that each lecture is assigned to exactly one
room. Constraints (3.32) ensure that in each timeslot at most one lecture
is assigned to every room. Constraints (3.33) - (3.42) are the travel time

constraints based on the new decision variable definition.
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It is thus a hierarchical approach where the first objective is solved to
global optimality first, and only then the second objective is improved
as much as possible without changing the value of the first objective.
This reflects the fact that the first objective is deemed considerably more
important than the second one. An advantage of the two-stage model is
also that the second stage is guaranteed to find a feasible solution since

the first stage already ensures the feasibility of classroom assignments.

3.6 Experimental results

This section discusses the input data of the two-stage model for the KU
Leuven FEB Campus Brussels and shows the results of the two-stage
model. In addition, this section briefly describes the adaptation of the
data available from the literature, as well as the results obtained for the

two-stage model with these instances.

3.6.1 Data of the KU Leuven FEB Campus Brussels

An academic year consists of two semesters with 13 weeks of teaching
per semester. Lectures can be scheduled from Monday till Friday. Every
class takes two hours. This permits an efficient use of the classrooms. Six
different timeslots can be distinguished: from 8h30 to 10h30, from 10h30
to 12h30, from 13h30 to 15h30, from 15h30 to 17h30, from 17h30 to 19h30
and from 19h30 to 21h30. There is a lunch break between the second and
the third timeslot.

Every course has a certain number of Teaching Hours (THs): 13, 26, 39
or 52. The number of THs determines how many course lectures need to
be scheduled per week. A course of 26 THs and 52 THs is scheduled once

and twice per week respectively. One lecture per two weeks is needed for
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Table 3.1: Number of series that attends a particular type of education.

Type of education Number of series
Daytime education 365
Morning education 23
Evening education 41
Evening education on Tuesday and Thursday 7

a course of 13 THs. A course of 39 THs needs to be scheduled alternately
once or twice per week. Courses of 13 and 39 THs that are attended by
the same series can be coupled to each other. Two courses of 13 THs can
use the same timeslot every week by scheduling these courses alternately
in this particular timeslot. The same can be done for two courses of 39
THs: two timeslots of one week can be used for scheduling two courses.
The course scheduled in one of these timeslots alternates weekly. The
availability of the teachers needs to be taken into account when courses
are coupled. The coupling of courses allows to timetable one week and

using this timetable for the whole semester.

The FEB Campus Brussels offers academic programmes, preparatory pro-
grammes and bridging programmes. There exist 436 series in total. Table
3.1 shows the number of series that attend a particular type of education.
As can be deducted from this table, the majority of the series attends
daytime education. The available timeslots for each type of education are
shown in Table 3.2.

The compactness constraints given by equation (3.13) need to be built only
for series that attend daytime education. For other types of education,
there can never be free timeslots in between. There are a total of three

compactness constraints for the case of 5 and 6 timeslots per day, i.e.
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Table 3.2: Available timeslots for each type of education.

Lunch breaks are scheduled between the second and third timeslot.

Monday Tuesday Wednesday Thursday Friday
12 345 6/1 2 3456/ 12 3456/ 12 3 45 6 3 4 5 6
Daytime X X X X x X X X X x X X X X X X X X X X x x x
education
Morning X X X X X X X X X X
education
Evening X X X X X X X X X X
education
Evening X X X X
education
Tuesday
and Thurs-
day
Figure 3.2: The FEB campus Brussels building.
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between timeslot 1 and 3, between timeslot 2 and 4, and between timeslot

3 and 5.

For these series, 396 lectures need to be scheduled. A PC-room is required
for 31 lectures. The other lectures can be scheduled in normal classrooms.
The FEB has 56 classrooms at its disposal: 9 PC-rooms and 47 standard
classrooms. As shown in Figure 3.2 these rooms are distributed over 9

floors (from -1 (cellar) till 7) in one building, called the Hermes building.

All the lectures are taught by 171 teachers. Teacher working time regula-
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tions state that teachers cannot teach more than eight hours per day or
more than six hours consecutively. This implies that A; = 4 in constraint
(3.9) and Ay = 3 in constraint (3.10). Four types of teachers are dis-
tinguished to determine teacher preferences: guest speakers, researchers,
part-time and full-time teachers. Every teacher can submit his teaching
preferences regarding the timeslots at the start of the academic year. The
penalty cost for violating the teacher preferences depends on the type
of the teacher. Guest speakers have the highest freedom regarding their
preferences which translates to a preference violation cost of 20. Next, ac-
tive researchers have a preference violation cost of 15. Finally, part-time
and full-time teachers receive the lowest weights, 10 and 5 respectively. A
cost of 1000 is incurred for a lecture when at least one series cannot at-
tend this lecture because of the series’ unavailability at the timeslot under
consideration. These are the penalty costs for the violation of the educa-
tional preferences. There is no ‘correct’ value for the penalty value for the
violation of each type of preferences; it should be set by management con-
siderations on the importance attached to each of them. In the case of the
FEB timetable, the satisfaction of the educational preferences is deemed

much more important than the satisfaction of teacher preferences.

3.6.2 Data from the literature

International timetabling competitions (ITC) regularly provide a num-
ber of benchmark problems that are widely used in timetabling literature
to develop computational experiments. Badoni et al. (2014) describe a
hybrid algorithm combining a genetic algorithm with local search using
events based on groupings of students to solve a UCTP. The authors apply
their algorithm on instances based on the datasets from the first interna-
tional timetabling competition (ITC2002). Hao and Benlic (2011) com-
bine tabu search and IP for finding new lower bounds for the ITC2007 cur-
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riculum based course timetabling problem. Phillips et al. (2015) validate
their IP model for solving a UCTP through a real-life case at the Univer-
sity of Auckland and on instances from the ITC2007. Dorneles et al. (2014)
use the ITC2011 instances to test their algorithm dedicated to a high

school timetabling problem.

In order to test and validate the two-stage model, we adapt the first set of
7 instances that were used for the Curriculum-based Course Timetabling
Track of the International Timetabling Competition in 2007-08 (ITC2007)
(Bonutti et al., 2012). These are real cases taken mainly from the Uni-
versity of Udine. Information on the curriculum-based course timetabling
problem of the I'TC2007 is available at http://www.cs.qub.ac.uk/itc
2007/curriculmcourse/report/curriculumtechreport.pdf. The in-
stances themselves can be downloaded from http://www.cs.qub.ac.uk
/1tc2007/Login/SecretPage.php. Since the objective of the timetabling
problem of the FEB Campus Brussels is novel in the literature (minimi-
sation of the travel times between lectures in consecutive timeslots), we
do not intend to compare the results or validate the solutions obtained

with the ones available in the web application for benchmarking.

Table 3.3 shows the main features of the comp instances: number of avail-
able timeslots in one day (J), number of days (|K|), number of lectures
(IL]), number of classrooms (|C|), number of teachers (|R|), number of
series of students (|S|), and number of students that attends a particular
type of education (|SP]| for daytime education, |S*| for morning educa-
tion, |S¥| for evening education, and |[SFTT| for evening education on
Tuesday and Thursday). The available timeslots for each type of educa-
tion for the cases with five timeslots in one day (6 = 5) are shown in Table
3.4 (the cases with six available timeslots per day are described in Table
3.2). For simplicity evening education on Tuesday and Thursday is re-
moved from the table since this type of education uses the same timeslots

as evening education but only on Tuesday and Thursday.


http://www.cs.qub.ac.uk/itc2007/curriculmcourse/report/curriculumtechreport.pdf
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/report/curriculumtechreport.pdf
http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php
http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php
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Table 3.3: Description of the instances tested.

Instance 5 |K| |L|_[C| [P| [SP| |SM| [SP| [SFTT| 8]
FEB2012 6 5 396 56 171 365 23 41 7 436
comp01 6 5 160 7 24 13 0 14
comp02 5 5 283 16 71 61 6 0 70
comp03 5 5 251 16 61 48 13 7 0 68
comp04 5 5 286 18 70 29 15 10 3 57
comp05 6 6 152 9 47 70 68 0 1 139
comp06 5 5 361 18 &7 54 12 4 0 70
comp07 5 5 434 20 99 60 6 10 1 7

Table 3.4: Available timeslots for each type of education on a single day with 5

available timeslots.

The lunch breaks are scheduled between the second and third timeslot.

1 2 3 4 5

Daytime education x x x X X

Morning education x x

Evening education X X

Information not available in comp instances was randomly generated ac-
cording to the distribution of the corresponding information in the dataset
of the FEB Campus Brussels. More specifically, for each course, the type
of teacher (guest speaker, researchers, part-time or full-time teachers) was
randomly generated in order to fix the penalty cost for the violation of
the teacher preferences. A type of education was assigned to each series in
such a way that the number of available timeslots are sufficient to schedule

all the lectures that need to be attended by the corresponding series.

Finally, in the comp instances the rooms are distributed among buildings.

Courses at The FEB Campus Brussels take place in only one building (as
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shown in Figure 3.2) and the congestion of the students at the escalators
and corridors is a real problem. In order to test the models in this thesis,
we generate a set of five buildings, named B-8-1, B-8-2, B-16-1, B-16-
2, and B-20. Detailed information on these buildings can be found in
Appendix B. In the tests in this chapter, we use building B-8-2 for instance
comp01, building B-16-1 for instances comp02, comp03, and comp05, and
building B-20-1 for instances comp04, comp06, and comp07. Classrooms
in the timetable instance are randomly assigned to one of the rooms of
the building.

3.6.3 Results

The monolithic model and the two-stage model of Section 3.4 are pro-
grammed in C+4 and compiled with Microsoft Visual Studio 2017. The
callable library of ILOG CPLEX 12.6.3 is used as a MIP solver. The
code is executed on a PC with an AMD Ryzen 7 1700X processor of 3.40
GHz and a RAM of 16 GB. The C++ code for both models, as well as de-
tailed information on the problem instances, can be found at the following
website: https://github.com/HendrikBV/ModelsPhDThesisChapter3.

The second stage model requires a lot of variables and constraints to rep-
resent the flow through the different arcs in the graph. To reduce memory
requirements, we therefore split our model into a number of submodels,
where each submodel solves the problem for the morning or afternoon of
each different day respectively. This is possible since no flows occur be-
tween the lunch breaks or between different days, so that the classroom

assignments in one submodel do not affect flows in another submodel.

The computational results are shown in Tables 3.5, 3.6, and 3.7. The
first stage model can be solved to optimality relatively quickly for all
eight problem instances. For the second stage model, the small problem

instances can be solved to optimality quickly, while for the larger instances


https://github.com/HendrikBV/ModelsPhDThesisChapter3

Chapter 3. Developing compact course timetables with optimised student
flows

7

Table 3.5: Results for the first stage of the two-stage model.

Instance Building  Obj. Opt. gap (%) Time (s)

FEB2012 B-KUL 10,080 0 122
comp01 B-8-2 0 0 4

comp02 B-16-1 150 0 402
comp03 B-16-1 17,180 0 84
comp04 B-20 3055 0 12
comp05 B-16-1 168,235 0 626
comp06 B-20 5130 0 44
comp07 B-20 2000 0 83

the computation time grows exponentially. The reason for this is that the
‘Big M’ constraints of equations (3.20)-(3.21) provide poor bounds in
the LP relaxation of the problem. The second stage model is able to
find considerable improvements compared to the solution from the first
stage model for all comp instances. Unfortunately, CPLEX is unable to
solve the second-stage model for the FEB instance, as the high number
of lectures and more importantly series of students in the KUL instance,
in combination with the large building with 56 classrooms, lead to an

intractable number of variables and especially constraints.

There is also a significant difference in the required computation time be-
tween minimising the maximum of the travel times over all timeslots com-
pared to minimising the average of the travel times over all timeslots. The
latter requires significantly more computation time for instances comp02
(532 s vs. 920 s), comp04 (1025 s vs. 3934 s), comp06 (6424 s vs. 11,122
s), and comp07 (10,816 vs. 14,340). Table 3.8 compares the results of
both types of objective function in more detail. For most instances, there

is a clear trade-off between the two objectives.



78

3.6. Experimental results

Table 3.6: Results for the second stage of the two-stage model when Ty q, is min-

imised.

Each of the subproblems of the second stage MIP had a time limit of 3600s. ‘Not opt.’
indicates the number of subproblems that could not be solved to optimality within the
time limit. ‘Init obj.” refers to the initial objective value of the solution provided by

the first stage, while ‘Obj. BFS’ refers to the objective value of the best found solution.

Instance  Building Init. obj. Obj. BFS Not opt. Time (s)
FEB2012 B-KUL

compO01 B-8-2 2025 161 0/10 12
comp02 B-16-1 7534 1057 0/10 532
compO03 B-16-1 31,840 5110 0/10 309
comp04  B-20 32,312 776 0/10 1025
comp05 B-16-1 55,277 42,939 0/12 106
comp06 B-20 39,683 3987 1/10 6424
comp07  B-20 54,408 6396 1/10 10,816

Table 3.7: Results for the second stage of the two-stage model when ﬁ ZteT Ty is

minimised.

Each of the subproblems of the second stage MIP had a time limit of 3600s. ‘Not opt.’
indicates the number of subproblems that could not be solved to optimality within the
time limit. ‘Init obj.” refers to the initial objective value of the solution provided by

the first stage, while ‘Obj. BFS’ refers to the objective value of the best found solution.

Instance  Building Initial obj. Obj. BFS Not opt. Time (s)
FEB2012 B-KUL

comp0l  B-82 910 42 0/10 12
comp02  B-16-1 5966 205 0/10 920
comp03  B-16-1 24,555 1160 0/10 472
comp04  B-20 19,151 344 0/10 3934
comp05  B-16-1 26,422 10,527 0/12 101
comp06  B-20 36,627 1316 1/10 11,122

comp07  B-20 50,384 2670 3/10 14,340
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Table 3.8: Comparison between the two types of objectives for the second stage

model.

‘Min max’ refers to the objective function where Ty,q2 is minimised and ‘Min avg’

refers to the objective function where ﬁ ZteT T is minimised.

Instance Building % 2er Tt Tmaz
Min max Min avg Min max Min avg

comp0l B-8-2 49 42 161 161
comp02 B-16-1 270 205 1057 1339
comp03 B-16-1 1413 1160 5110 5110
comp04 B-20 422 344 776 785
comp05 B-16-1 12,433 10,527 42,939 42,939
comp06 B-20 1437 1316 3987 3987
comp07 B-20 2976 2670 6396 7780

3.7 The impact of timetabling on the effi-

cient evacuation of a building

The importance of the efficient evacuation of a building in the event of an
emergency such as a fire cannot be overstated. In the U.S. alone, there
were an estimated average of 15,400 structure fires in high-rise buildings
and 5690 in educational properties per year, resulting in an overall average
of 47 deaths and 615 injuries (National Fire Protection Association, 2016).

As a result, the study of the building evacuation problem has increas-
ingly received attention from researchers over the last decade. Most of
the existing optimisation models minimise the maximum egress time, i.e.

the time that the last person reaches a safe location, by determining the
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optimal evacuation routes for all people (Vermuyten et al., 2016a). In
practice, each room in the building is assigned to a certain (emergency)
exit and the people present in the respective room are expected to follow
a certain route through the building to their given exit (e.g., Cepolina,
2005, 2009). Some authors consider so-called phased evacuation, which
tries to reduce congestion and to improve overall egress times, by letting
different parts of the building start their evacuation at a different time
(Abdelghany et al., 2014; Cepolina, 2009; Ng and Waller, 2010).

However, to the best of our knowledge, no articles currently include the
impact of timetabling decisions on the evacuation process (Vermuyten
et al., 2016a). In the same way that the timetable impacts the flow of
students who travel from lectures in one timeslot to lectures in the next
timeslot, the timetable also impacts the student flows during an evacua-
tion. By reassigning lectures to different timeslots peaks in the number of
people present could be avoided, which leads to less congestion and con-
sequently a lower egress time. Analogously, by optimising the assignment
of lectures to classrooms, congestion on certain routes within the building

could be minimised, again with a lower egress time as a result.

We can extend the model of Section 3.4 to include evacuations. Section
3.7.1 describes how the MIP model can be extended to include evacua-

tions. Section 3.7.2 discusses the computational results.

3.7.1 MIP formulation

In this case, all students that attend the same lecture travel from the room
to which the lecture is assigned towards the exit of the building. We thus
define Upp© as the percentage of students in lecture [ that use path p at

time ¢ to walk towards the exit of the building. The relationship between
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Xite and Uj’t‘;f‘c is then as follows:

USRS > ape caitXite V¢t € T,Wl € L,Yce C,Vp e P (3.43)

The flow through each arc (i, j) at time ¢ is then given by:
e =3 by, U Vt e T,Vi,j €N, (3.44)
peP leL

where n; denotes the number of students that attend lecture .

The travel time through arc (i,5) at time ¢ can be derived from the flow

as follows:

length,; Fyec N length, ;

pevac.arc _
tig -

vVt e T,Vi,j €N, (3.45)

o area;; Vinaz

where the correction factor v needs to be included if arc (i, j) represents

stairs.

The evacuation time for the students in a given lecture [ is the sum of the
individual travel times of each arc (i,j) that is on path p used by that

group of students. We model this using the following two constraints:

evac,arc evac,total
- § :bijPTtij + Ton ™ < M (1 — xue)
(@.9) (3.46)

vt € T,Vl € L,Ve € C;,Vp € Pc ezit

Z bijpng;w,arc o T;}[\:C,total < M (1 . Xltc)

(2.3) (3.47)
vt € T,Vl € L,Ve € C;,Vp € Peerit

The maximum evacuation time in timeslot ¢ is then given by:

T:lv;c,total < Tctsvac Vte T,Vie L ,VpeP (348)

and the maximum over all timeslots by

Tevee < ovac VteT (3.49)

max
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vac

Table 3.9: Results for the second stage of the two-stage model when % ZteT TS

is minimised.

‘Init obj.” refers to the initial objective value of the solution provided by the first stage,
while ‘Obj. BFS’ refers to the objective value of the best found solution.

Instance  Building Initial obj. Obj. BFS Time (s)
FEB2012 B-KUL

comp(1 B-8-2 340 243 26
comp02 B-16-1 3693 2107 153
comp03 B-16-1 3633 1618 137
comp04 B-20 9021 4510 217
comp05 B-16-1 2908 2773 217
comp06 B-20 12,835 5167 287
comp07 B-20 12,696 7103 407

We can again minimise either the sum of the evacuation times over all

timeslots

minimise Z Tyvac (3.50)
teT

or the maximum evacuation time over all timeslots

minimise Tiyac (3.51)

max

3.7.2 Results

We use the same timetable instances and buildings to test the model
with respect to the minimisation of the evacuation times. We take as
the objective function the average evacuation time over all timeslots, i.e.
ﬁ > et T§¥2. Since the evacuation in every timeslot is independent of
the evacuations in other timeslots, we can again split the second stage
model into a number of subproblems to reduce the complexity. We thus

solve a subproblem for every timeslot.
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All submodels could be solved to optimality for all problem instances. The
results show that the model is able to significantly improve the evacuation
times and thus the safety of students by simply improving upon the room
assignments. The required computation time for the second stage is much
smaller when the evacuation times are minimised compared to when the
travel times between lectures in consecutive timeslots are minimised. This
is because in the former problem scheduling decisions in one timeslot do
not impact the evacuation time of other timeslots, while in the latter

problem those decisions are linked.

3.8 Trade-offs, solution quality and scalabil-
ity

In this section, we look at the trade-offs between the minimisation of the
different objectives. We also discuss the solution quality and scalability
of the two-stage model compared to the monolithic model. There are
three types of trade-offs: (i) the trade-off between the optimisation of the
scheduling preferences and the minimisation of the travel times, (ii) the
trade-off between the optimisation of the scheduling preferences and the
minimisation of the evacuation times, and (iii) the trade-off between the
minimisation of the travel times and the minimisation of the evacuation

times.

We generate a small instance (ML) that can be solved by the monolithic
model and test it again with building B-8-2. We first find the optimal solu-
tion with respect to one objective. Then we iteratively solve the problem

with the objective of minimising the other objective while we set a con-
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Table 3.10: Trade-off between the minimisation of the penalty score for the scheduling

preferences and the minimisation of the travel times.

Model Preferences Travel times Time (s)
Monolithic unconstrained XA =1 125 0.33
A=0.5 >3600
A=0 >3600
Monolithic constrained 125 3276 13.45
130 3080.2 19.05
135 2777.8 47.66
140 2405.6 64.33
145 2207.3 58.41
Two-stage 125 3382.4 0.67

straint on the maximally allowable value for the first objective, where each
time the right-hand side of the constraint is increased slightly. This way

we can derive the set of Pareto optimal solutions for the problem instance.

Table 3.10 shows the results for the trade-off between the minimisation of
the penalty score for the scheduling preferences and the minimisation of
the travel times between lectures in consecutive timeslots. First, there is
indeed a trade-off between the two objective function measures. Moreover,
the trade-off is not convex, as is clear from Figure 3.3. The two-stage
model finds a solution with an optimality gap of 3.2 percent. Secondly,
the computation time of the two-stage model is up to 100 times smaller
than that of the constrained monolithic model. For the unconstrained
monolithic model, the difference is much larger still. We can thus conclude
that our two-stage approach achieves a significant reduction in required
computation time and at the same time is still able to obtain good quality
solutions that are close to one of the endpoints on the Pareto-optimal

frontier.

Figure 3.4 shows the same trend for the trade-off between the minimisation

of the penalty score for the scheduling preferences and the minimisation
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Figure 3.3: Visualisation of the trade-off between the minimisation of the penalty

score for the scheduling preferences and the minimisation of the travel times.
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Figure 3.4: Visualisation of the trade-off between the minimisation of the penalty

score for the scheduling preferences and the minimisation of the evacuation times.
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Figure 3.5: Visualisation of the trade-off between the minimisation of the travel times

and the minimisation of the evacuation times.
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of the evacuation times. The two-stage model again achieves a very good

solution with an optimality gap of 1 percent.

For the trade-off between the minimisation of the evacuation times and
the minimisation of the travel times between lectures in consecutive time-
slots, we use the two-stage model and iteratively solve the second-stage
to find the Pareto-optimal frontier. The results are visualised in Figure
3.5. It can be seen that there are also considerable trade-offs between
the minimisation of the travel times on the one hand and the evacuation

times on the other hand. Again, the trade-off is not convex.

First, we can conclude that there are significant trade-offs between the
three types of objectives. Because the trade-offs are not convex, an objec-
tive function that optimises a weighted average of the different types of
objectives might not be able to find all Pareto-optimal solutions. Second,

the two-stage model quickly finds solutions that are close to one endpoint
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of the Pareto-optimal frontier, but it is unable to explore other solutions

on the frontier.

3.9 Heuristic approach

In the previous sections, a MIP formulation has been developed that de-
scribes the UCTP at KU Leuven Campus Brussels with the objective of
either minimising the travel times between lectures in consecutive time-
slots or minimising the evacuation times in the event of an emergency.
The mathematical model was solved with a two-phase decomposition ap-
proach using a commercial MIP solver and was able to find good solutions
in reasonable computation times. However, the two-stage approach is only
able to find solutions near one endpoint on the Pareto front. Furthermore,
the required computation time increases exponentially for larger problem
instances and the model is unable to solve the large KU Leuven FEB in-
stance. Therefore, in this section, we turn to metaheuristic approaches to

solve our problem.

Metaheuristics are a popular approach for tackling timetabling problems,
because they are easy to implement, can accommodate different types
of constraints and objectives and achieve good results (De Causmaecker
et al., 2009; Geiger, 2012; Lewis, 2008; Shambour et al., 2013). Exam-
ples of metaheuristics often used in timetabling problems are simulated
annealing (SA) (e.g., Gunawan and Kien Ming, 2012; Kalender et al.,
2012; Zhang et al., 2010) and tabu search (TS) (e.g., Aladag et al., 2009;
Hertz, 1991; Li and Hao, 2010). A metaheuristic starts with one or a
set of solutions which are iteratively improved using local search opera-
tors. Worsening moves are also accepted from time to time based on some
criterion (such as a certain acceptance probability in SA), to enable the

algorithm to break free from local optima.
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In the next section, we explain the different steps of our algorithm. First,
an initial solution is constructed, as is explained in Section 3.9.1. Next,
this solution is improved using a metaheuristic with a local search opera-
tor. The neighbourhood structure used in our local search is explained in
Section 3.9.2. Subsequently, we describe the metaheuristic implemenation
we use in combination with our neighbourhood structure in Section 3.9.3.

Finally, Section 3.9.4 discusses the computational results.

3.9.1 Initial solution

Since the first stage of the two-stage model is able to find optimal solutions
relatively quickly for most problem instances, we simply use this MIP
formulation in combination with a commercial MIP solver to obtain a

good initial solution for the heuristic.

3.9.2 Neighbourhood structure

The initial solution obtained by the constructive methods is iteratively
improved using local search within a metaheuristic framework. During
each iteration of the metaheuristic a candidate solution is obtained by
changing some assignments of lectures to timeslot-room pairs. We define
a cell as a timeslot-room pair and we will refer to a change in some as-
signments of lectures to cells as a move. All solutions that can be reached
within one move of the current solution constitute the neighbourhood of
the solution. The neighbourhood structure used in our implementation

consists of three types of moves, which are explained below.

An important speed-up technique in local search is incremental cost re-
calculation (Ross et al., 1994). Since only small changes are made to the
solution, it is not necessary to calculate the objective value of this candi-

date solution from scratch. Instead, it is much more efficient to start from
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Figure 3.6: Example of a lecture swap move, where two lectures are swapped.

Time 1 | Time 2 | Time 3 Time N Time 1 | Time 2 | Time 3 Time N
Room 1 A B C Room 1 A B C
Room 2 D E F G Room 2 | E F G
Room 3 H I ) |:> Room 3 H D )
Room M K L M N Room M K L M N

Figure 3.7: Example of a lecture swap move, where a lecture is moved to an empty

timeslot and room.

Time 1 | Time 2 | Time 3 Time N Time 1l | Time 2 | Time 3 Time N
Room 1 A B C Room 1 A G B C
Room 2 D E F G Room 2 D E F
Room 3 H | J |:> Room 3 H I J
Room M K L M N Room M K L M N

the previous value and add or subtract only the impact the changes have
on the objective value. For example, when a room swap is executed, the
part of the objective value that depends on the timing of lectures does not
change and as such does not need to be calculated again for the candidate

solution.

3.9.2.1 Lecture swap

In a lecture swap (LS) move, two timeslots ¢; and ¢ are randomly se-
lected. Then, within each timeslot a classroom is randomly chosen. If
both timeslot-classroom combinations contain lectures, then both lectures
swap between their timeslots and rooms (Figure 3.6). Alternatively, if only
one cell contains a lecture, this lecture is moved from its current cell to

the empty cell (Figure 3.7).
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Figure 3.8: Example of a room swap move, where two lectures are swapped.

Time 1l | Time2 | Time 3 Time N Time 1 | Time 2 | Time 3 Time N
Room 1 A B C Room 1 A | C
Room 2 D E F G Room 2 D E F G
Room 3 H i I |:> Room 3 H B J
Room M K L M N Room M K L M N

Figure 3.9: Example of a room swap move, where a lecture is moved to an empty

room.
Time 1 | Time 2 | Time 3 Time N Time 1 | Time 2 | Time 3 Time N
Room 1 A B C Room 1 B C
Room 2 D E F G Room 2 D E F G
Room 3 H | ) |:> Room3| A H | )
Room M K L M N Room M K L M N

3.9.2.2 Room swap

A room swap (RS) move first selects a certain timeslot at random and
then randomly chooses two classrooms in this timeslot. Again, either
both lectures swap rooms (Figure 3.8), or a single lecture is moved from

its current room to an empty room (Figure 3.9).

3.9.2.3 Kempe chain

The previous two moves have a high chance of replacing one set of infea-
sibilities with a new set of infeasibilities, due to the many dependencies
between curricula and teachers in the timetable. Therefore, multiple re-
searchers have included Kempe chain (KC) moves in their neighbourhood
search (e.g., Tuga et al., 2007; Fonseca et al., 2016b). Minor differences
between implementations exist, ours follows the implementation of Tuga
et al. (2007). Two timeslots ¢; and to are randomly selected. Then a bi-

partite graph is constructed where all lectures planned in timeslot t; are
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denoted by a first group of nodes N and all lectures planned in timeslot
to are denoted by a second group of nodes 5. A node in N is connected
by an edge to a node in N5 if and only if the two corresponding lectures
have a conflict (i.e., if they have the same teacher, if they are part of the
same curriculum, or if they are currently planned in the same room). Let
a chain be a connected subset of nodes from N; UN5. For every chain, we
calculate the change in the objective function if all lectures corresponding
to the nodes in A on this chain are swapped with their corresponding
lectures in N3. Then the new candidate solution is obtained by swapping

all lectures on the chain which improves the objective value most.

Figure 3.10 illustrates the move. Timeslots 11 and 25 are randomly se-
lected. Then all lectures planned in timeslot 11 are denoted by a node and
connected to the nodes in timeslot 25, if and only if they have a conflict.
The dotted nodes indicate that no lecture is planned in this room in this
timeslot. Subsequently, we calculate the resulting objective value if all
nodes from N; are swapped with their connected counterpart in AVs. This
gives an objective value of 1667 for the blue chain, 1467 for the red chain,
and 1417 for the green chain. Consequently, the lectures that are part
of the green chain are swapped, since this chain has the lowest objective

value.

3.9.3 Parallel simulated annealing

SA was developed by Kirkpatrick et al. (1983), based on an analogy with
thermodynamics. Starting from a given initial solution, at each iteration
a candidate solution is obtained by performing one of the neighbourhood
moves on the current solution. If this candidate solution is better than the
current solution, it is always accepted. If the candidate solution is worse,
it is accepted with a certain probability, which enables the algorithm to

break free from local optima. This acceptance probability is based on
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Figure 3.10: Example of a Kempe chain move.

Three chains are identified. The numbers for each chain indicate the objective value
of the candidate solution that is obtained by swapping the lectures on the respective
chain. Since swapping the lectures of the green chain results in the best candidate

solution with a value of 1417, we retain this candidate solution.

Time 11 Time 25 Time 11 Time 25
Room 1
Room 2
Room 3
Room 4
1667
Room 5 1417
1467
Room 6

Room 7
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the current temperature of the system 7" and the difference between both
objective values A, i.e. Pr(accept) = exp(—A/T). After a given number
of neighbourhood moves at the same temperature, the temperature is
lowered to decrease the probability of accepting worsening moves. After a
certain time the temperature will be so low that no worsening moves are

accepted and as a result the algorithm will converge to a local optimum.

Nowadays most CPUs have multiple cores, which allows us to increase
the efficiency of heuristic methods by means of parallelisation. Paralleli-
sation means that different cores of the CPU execute different calculations
simultaneously. This enables us to explore significantly more candidate
solutions in the same computation time compared to single core imple-
mentations. While the SA heuristic is intrinsically sequential, different
methods exist to parallelise it (Lee and Lee, 1996). A first method is
to decompose the cost function in a number of disjunct functions. The
different functions can then calculate the objective value of a candidate so-
lution in parallel. A second method is to decompose the search space into
disjunct sets. Each thread then explores one of the subdomains. A third
method is to run multiple SA procedures in parallel. Two implementations
are possible (Ferreiro et al., 2013). In the asynchronous implementation,
each thread executes one SA procedure. The different threads can start
either from the same initial solution or from different initial solutions.
Similarly, they can use either the same parameter settings or different pa-
rameter settings. Each SA procedure runs independently from the other
and when the time limit is reached the best solution found over all threads
is returned. In the synchronous method on the other hand, threads run
independently for a given number of iterations or time limit. Once all
threads have finished, they communicate their best found solutions and
the best one is selected. The different threads then each restart their SA
procedure from this best found solution. The temperature is controlled

by the top level and is reduced each time the threads share the best found
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solution (Ferreiro et al., 2013).

Since it is not straightforward how the search space or the cost function
should be divided into disjunct subsets of more or less the same size, we
use the third approach in our implementation. After an initial solution has
been obtained as explained in Section 3.9.1, Nipreads SA procedures are
started from this initial solution. During the search process, the different
threads communicate Ny, times at evenly space intervals. After syn-
chronisation, every thread restarts its SA procedure from the best found

solution over all threads.

3.9.4 Results

The heuristic is programmed in C++ and compiled with Microsoft Visual
Studio 2017. The callable library of ILOG CPLEX 12.6.3 is used as a
MIP solver. The code is executed on a PC with an AMD Ryzen 7 1700X
processor of 3.40 GHz and a RAM of 16 GB. The C++ code can again be
found at the following website: https://github.com/HendrikBV/Model
sPhDThesisChapter3. Since the SA heuristic is stochastic, for every test

five independent algorithm runs are executed.

3.9.4.1 Parameter settings

The parameters for our algorithm are based on results from other authors
(Fonseca et al., 2016a), as well as our own observations. In each itera-
tion, the lecture swap is executed with a probability of 60 percent, the
room swap with a probability of 38 percent and the Kempe chain with
a probability of 2 percent. The reason is that the Kempe chain requires
considerably more computation time than the other two moves. The tem-

perature updating rule is chosen as 7/ = a T. The initial temperature
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Ty is set to 100,000 and o = 0.9, since initial tests revealed that the ob-
jective function contains many steep valleys which makes it difficult to

escape from local optima.

3.9.4.2 Impact of parallelisation

In this section, we compare the impact of parallelisation on the perfor-
mance of the heuristic. We test three configurations: (i) a standard SA
implementation with a single thread (SAgtandard), (il) an asynchronous
parallel SA implementation with 12 threads where each thread runs inde-
pendently and afterwards the best solution is returned (SA,gync), and (iii)
a synchronous parallel SA implementation with 12 threads where threads
exchange best solutions Ngync times during the search process in evenly
spaced intervals (SAgync). We use comp07 in the tests as it is a relatively
difficult instance. We set the time limit at 500 seconds and Ngyn. = 20.

While SA,gync can perform a total of 165,000 iterations compared to
only 20,000 for SAstandard, both implementations achieve nearly the same
results, with median objective values of 187,562 and 182,110, respec-
tively. Compared to SA,sync, SAgyne can execute slightly fewer iterations
(157,000) because of the communications overhead. However, SAgyy finds
solutions with a median objective value of 158,202 in the same time limit
thanks to the sharing of information between threads. We can thus con-
clude that the synchronous parallel SA performs considerably better than
a standard SA implementation or an asynchronous parallel SA implemen-

tation.

3.9.4.3 Comparison with two-stage MIP approach

We compare the performance of the heuristic to the performance of the

two-stage model on the same set of timetable instances and buildings. We
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Table 3.11: The results of the heuristic.

The average evacuation time ( ﬁ D teT Tf"“) is minimised. The results of the heuris-

tic are based on five independent runs with different seeds.

Instance  Building Two-stage Heuristic

model Worst Median Best
FEB2012 B-KUL 5550 1970 1795
compO01 B-8-2 243 214 214 211
comp02 B-16-1 2107 2107 1996 1972
comp03 B-16-1 1618 1493 1477 1399
comp04  B-20 4510 3069 2933 2894
comp05 B-16-1 2773 5146 2478 2447
comp06 B-20 5167 4553 4313 4195
comp07  B-20 7103 5398 5084 4878

focus on evacuations only and minimise the average evacuation time over
all timeslots, i.e. \T}“I > et T§¥2¢. The stopping criterion for each run of

the heuristic is a time limit of 1000 seconds, as in (Fonseca et al., 2016a).

The results are shown in Table 3.11. The results of the two-stage model
are also shown for comparison. First, the heuristic is able to improve sig-
nificantly upon the results obtained by the two-stage model. Apart from
two independent runs of the heuristic, all runs for all instances achieve
better solutions than the two-stage model. Second, in contrast to the
two-stage MIP approach, the heuristic has no difficulties in dealing with
the large timetable instance and network model for the KU Leuven FEB
instance. Third, in general, the variation between different runs of the
heuristic is relatively small, thanks to the synchronous parallel SA imple-
mentation. The only exceptions are one run of the FEB2012 instance and
one run of the comp05 instance (see Figure 3.11). This again shows that
the objective function contains many steep valleys which makes it difficult

to escape from local optima.
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Figure 3.11: Visualisation of the results of the heuristic compared to the results of

the two-stage model.
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3.10 Conclusions

In this chapter, the problem of developing compact university course
timetables with optimised student flows has been studied. The first part
of this chapter has presented a two-stage MIP model for the UCTP with
the aim of minimising the travel times of students between lectures in con-
secutive timeslots. The first stage minimises the violation of the teacher
preferences by assigning lectures to timeslots and rooms. The second
stage reassigns classrooms to lectures of the timetable of the first stage
and minimises the travel times of students who go from their lectures in
one timeslot to their lectures in the next timeslot. Student flows in the
corridors and at the stairwells are modelled using a graph in which the
arcs represent the corridors and stairs in the building. The total travel
time of each series of students to go from their first classroom to their next
classroom is calculated as the sum of the travel times through each arc on
their route, which itself is a function of the total student flow through each

arc. Through extensive computational tests we have shown that, in con-
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trast to a monolithic MIP model, our two-stage MIP approach is capable
of finding quality solutions with significantly reduced travel times for real-
life UCTPs. The approach can find good quality solutions for each of the
first set of seven instances of the Curriculum-Based Course Timetabling
Track of the ITC2007, proving its applicability to a wide range of real-life
problem dimensions. However, the model proved incapable of solving the

complex KU Leuven FEB instance.

Next, the evacuation of the university building in the event of an emer-
gency has been studied. We showed that our two-stage MIP formulation
could easily be extended to include evacuations. Computational tests on
the same set of problem instances show that optimising the assignment of
lectures to rooms can also significantly improve on the egress time if the
university building were to be evacuated in case of an emergency. We have
also showed that there are important trade-offs between the optimisation
of the three different objectives, namely the scheduling preferences, the

travel times, and the evacuation times.

Finally, in the third part of this chapter we developed a heuristic ap-
proach for our problem. The implementation is based on a synchronous
parallel simulated annealing heuristic (Ferreiro et al., 2013) and uses three
neighbourhood moves, namely a lecture swap, a room swap, and a Kempe
chain. Computational tests show that our heuristic implementation is able
to find solutions that are considerably better than the solutions obtained
by the two-stage MIP approach. The reason is that the two-stage MIP ap-
proach can only change the assignment of lectures to rooms to improve the
objective of minimising the travel or evacuation times, while the heuris-
tic can also change the assignment of lectures to timeslots. Moreover,
while the two-stage MIP approach can only find solutions on or close to
one endpoint of the Pareto-optimal frontier, the heuristic can explore the
entire frontier. Finally, in contrast to the two-stage MIP approach, the

heuristic has no problem dealing with the large KU Leuven FEB instance.
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One possible direction for future research is improving the ability of the
heuristic to escape local optima. Another possible direction for future
research is the implementation of dedicated multi-criteria approaches to

solve the problem.






Chapter 4

A surrogate-based tabu
search heuristic to
optimise the people flows

in a timetable

4.1 Introduction

In this chapter, we develop a model that is both a generalisation, as well
as a particularisation, of the model of the Chapter 3. It is a generalisation
because of two reasons. First, instead of focusing on the curriculum-based
university course timetabling problem, we consider a generic timetabling
problem that can be applied to many settings, such as university course
timetabling, conference timetabling, or timetabling for music and sports

events. It is also a particularisation, because we assume that each event

101
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has already been assigned to a certain timeslot and we only take the de-
cision of assigning events to rooms into account. However, this limitation
confers two advantages. First, it allows us to keep the model generic.
Second, it is also useful for implementation in practice, because real-life
timetabling problems are already extremely complex as they need to take
many different objectives and restrictions into account, which makes the
inclusion of additional objectives related to people flows unlikely. Because
the assignment of timeslots to events is considered given, other models
could be used to construct an initial timetable, after which our model can

be used in a second step to optimise the assignments of events to rooms.

In Chapter 3, we have used a network model to describe people flows
because of its computational efficiency. However, a downside of these
types of models is that they are less realistic and cannot describe distinct
groups of pedestrians with different behaviours. Moreover, they cannot
readily be used to visualise the flow of pedestrians. In this chapter, we
will use a microscopic pedestrian simulation model to model the people

flows.

The literature contains many different models that can be used to de-
scribe pedestrian walking behaviour (Vermuyten et al., 2016a). However,
developing a fully functional crowd simulator that implements one of these
pedestrian models is difficult and time consuming. Moreover, without a
common framework, comparing different models is not straightforward.
Indeed, reimplementations of a certain model by other researchers might
differ from the original implementation. The Menge crowd simulation
framework! (Curtis et al., 2016) addresses these issues. It is an open-
source, cross-platform, modular framework that decomposes the problem
of crowd simulation into different components or subproblems. It already
offers implementations of different models for each subproblem. How-

ever, it can also be extended with new functionality through plug-ins. As

Thttp://gamma.cs.unc.edu/Menge/
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a result, researchers can tailor Menge to their specific problem setting.
Moreover, the efficient multi-threaded implementation allows to simulate

thousands of agents at interactive rates.

The remainder of this chapter is structured as follows. Section 4.2 de-
fines the problem and Section 4.3 describes the solution approach. Next,
Section 4.4 provides an introduction to the Menge crowd simulation frame-
work. A discussion of the different pedestrian models available in Menge
is conducted in Section 4.5. Subsequently, Section 4.6 explains how our
problem is translated into Menge. In Section 4.7, we discuss our choice of
pedestrian model, followed by a computational analysis of the simulator
in Section 4.8. Specifically, we look at the distribution of the simulation
results of the Menge simulator and the relationship between the number
of agents in the simulation and the required computation time. Compu-
tational results for two different applications are presented in Section 4.9.
The model is also applied to a real-life case study at KU Leuven Campus
Brussels in Section 4.10. Finally, Section 4.11 concludes the chapter and

lists possible directions for future research.

4.2 Problem statement

Let E be the set of events that need to be planned, T the set of timeslots,
and R the set of rooms. We assume fixed timeslots, i.e. all events assigned
to a given timeslot start and end at the same time. Each event e € E is
already assigned to a timeslot t € T. Let E} C E be the subset of events
that are planned at time ¢ and let R, C R be the subset of rooms that can
be assigned to event e. Furthermore, define G as the set of eventgroups.
Each eventgroup refers to a series of events that are followed by the same
group of people. Events can be part of more than one eventgroup. Let

EgG C FE be the subset of events that are attended by eventgroup g € G
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and let G, C G be the subset of eventgroups that attend event e € F.
The problem is then to assign every event e € F to a room r € R. We
define the following decision variable

1 if event e € E is assigned to room r € R

Ter = (4.1)
0 otherwise.

The problem can then be formulated as follows.

minimise F (4.2)
subject to:
> we =1 Vee E (4.3)
T'ERe
> e <1 VteT,VreR (4.4)
ecET
zer € {0,1} VYee E,Vr e R (4.5)

The objective function (4.2) minimises a general function of the people
flows that occur in the timetable as a result of the scheduling decisions
taken. Constraint set (4.3) ensures that each event is assigned to a room.
Constraint set (4.4) states that at most one event can be assigned to a
given room in each timeslot. Finally, constraints (4.5) are the domain

constraints of the decision variables.

4.3 Solution approach

No analytic expression for the function F is available. Instead, simulation
will be used to evaluate F (x) for a given solution x. More specifically, we
will use the Menge simulator that is explained in the subsequent sections

of this chapter to simulate the people flows. Our problem can thus be
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classified as a simulation optimisation problem (Olafsson and Jumi Kim,
2002).

Introductions to the field of simulation optimisation are given by Fu (2001)
and Olafsson and Jumi Kim (2002). More recent reviews are available in
Hong and Nelson (2009) and Fu et al. (2005). Jalali and Van Nieuwen-
huyse (2015) provide a classification of simulation optimisation models

used in inventory replenishment problems.

The solution techniques can be divided into techniques for problems with
continuous variables and techniques for problems with discrete variables
(Jalali and Van Nieuwenhuyse, 2015). If the decision variables are discrete
and the number of feasible solutions is small, then multiple comparisons
and ranking and selection procedures are two possible approaches (Golds-
man and Nelson, 1998). On the other hand, for problems with discrete
variables and a large number of feasible solutions, metaheuristics are a

popular approach (Olafsson and Jumi Kim, 2002).

A relatively new technique in simulation optimisation is surrogate-based
or metamodel-based optimisation (Queipo et al., 2005). Because sim-
ulations are usually computationally expensive even for small problem
instances, the real objective function values of candidate solutions are ap-
proximated by a surrogate model that is computationally much less costly.
Surrogate models can be built using a variety of statistical techniques
depending on the shape of the (real) objective function, such as polyno-
mial regression models, radial basis functions, and kriging (Forrester and
Keane, 2009). However, surrogate-based optimisation is usually applied
to continuous optimisation problems, due to the nature of the statistical
models used (Yin, 2011).

In our approach, we integrate surrogate-based optimisation into a meta-
heuristic framework. A metaheuristic is used to guide the search and

iteratively find improved solutions, because it is not possible to evaluate
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all feasible solutions due to the size of the solution space. A surrogate
model is used during the search to speed up the evaluation of candidate

solutions.

While the decision variables in our problem are discrete, it is possible to
fit a surrogate model that can predict the value of F at a given solution
x. To this end, we do not use the original decision variables x.,, which
represent the assignments of events to rooms in the different timeslots.
F does not depend on these assignments as such, but on the number of
people going from each origin € R to each destination r € R. We can
thus fit the surrogate model using any of the available techniques in e.g.
Queipo et al. (2005) as a function of the number of people on each route.
Since each solution x of the original decision variables uniquely determines
the number of people on each route, every solution can then be evaluated

by the surrogate model.

For the metaheuristic, we opt for tabu search. Tabu search was developed
by Glover (1986) and is a well-known metaheuristic for combinatorial op-
timisation problems. In each iteration, tabu search evaluates all possible
neighbourhood moves and executes the best one. When no improving
move can be found, it chooses the least bad move. To avoid exploring
the same solutions over and over again, tabu search stores a tabu list of
previous moves which are forbidden. This mechanism allows it to escape
from local optima. We choose tabu search because of two reasons. First,
it employs best-first search in which all candidate solutions in the current
neighbourhood are evaluated before accepting a new solution, in contrast
to a depth-first search in which a candidate solution that is better than
the current solution is immediately accepted. This allows us to use a
preselection strategy (Yin, 2011), in which we first evaluate candidate
solutions by the computationally cheap surrogate model and only then
re-evaluate one or more promising solutions with the expensive simulator

(see below). Second, the tabu list offers a good mechanism to escape local
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minima, which is independent of the simulated objective values.

Before we explain the neighbourhood move used in the tabu search, we
first explain some notation. JF (x) denotes the true objective value of
solution x, which is unknown; F (x) refers to the objective value predicted
by the surrogate model, F (x) stands for the objective value estimated
from nyep, replications of the Menge simulator, and CIT (x) and CI~ (x)
refer to the upper 95 percent and lower 95 percent confidence interval
for the real objective value estimated from n.ep replications of the Menge

simulator.

We use the neighbourhood move shown in Figure 4.1. In each itera-
tion, a random timeslot is selected and then all possible swaps of two
events between rooms are evaluated. Only swaps that are feasible and
not tabu are considered. All candidate solutions are first evaluated with
the surrogate model. Next, the candidate solutions are sorted from most
promising (i.c., lowest F) to least promising (i.e., highest ) and the most
promising candidate solution is re-evaluated with the Menge simulator. If
F (Xeandidate) < F (Xcurrent); We accept the candidate solution and put it
in the tabu list. Otherwise, we go to the next candidate solution. If after
¢ candidate solutions no improving solution has been found, we resort
the first £ candidate solutions based on F and take the best one. This
strategy ensures that the limited computational budget is not wasted on
evaluating many candidate solutions when the current solution is of poor
quality but instead is used to explore the area around a potential local
minimum more thoroughly. Moreover, limiting the maximum number of
candidate solutions that are evaluated to £ can further improve this strat-
egy, since we can be relatively certain that the current solution is a local

minimum because F is worse for the remaining candidate solutions.

During the search, the candidate with the best average evacuation time

as evaluated by the Menge simulator is saved. If the search ends, this
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Figure 4.1: The neighbourhood move used in the surrogate-based tabu search.

room1 | room2 ‘ room3 | room4 room1l | room2 | room3 | room4

timeslot 1| Event1 Event4 timeslot 1| Event1 Event 4

a) |timeslot 2 Event3 | Event6 |:> timeslot 2 Event3 | Event6
timeslot 3| Event2 | Event5 Event 7 timeslot 3| Event5 | Event2 Event 7
room1l | room2 | room3 | room4 room1l | room2 | room3 | room4

timeslot 1| Event1 Event 4 timeslot 1| Event4 Event 1

b) |timeslot 2 Event3 | Event6 |:> timeslot 2 Event3 | Event6
timeslot 3| Event2 | Event5 Event 7 timeslot 3| Event2 Event5 | Event7

solutions is returned. On the flip side, no aspiration criterion is used
during the tabu search, as initial experiments showed that this can lead

to cycling between the same solutions.

4.4 'The Menge crowd simulation framework

4.4.1 Problem decomposition

As is common in the crowd simulation literature (Curtis, 2014), Menge
divides the problem of describing pedestrian walking behaviour into four
subproblems, namely goal selection, plan computation, plan adaptation,

and motion synthesis.

4.4.1.1 Goal selection

The goal selection subproblem consists of determining what each pedes-
trian wants to achieve. This subproblem spans the largest time horizon.
Typically goals are set at the start of the simulation, although in more

complex scenarios they can be updated during the simulation.

Menge uses a behavioural finite state machine (BFSM) to represent agent

behaviours. A goal is the location that an agent wants to reach. Goals
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can be grouped into goalsets. Goalsets are useful when agents need to
select one goal out of a specific set of goals, such as the nearest goal, the

farthest goal, or a random goal.

At each time step, each agent in the simulation exists in a certain state.
A state has a goal selector which determines the current goal of the agent,
and a wvelocity component which determines how the agents tries to reach
the target (see Section 4.4.1.2). States can also have actions associated
with them. Actions are executed when an agent enters a state and allow

the modelling of complex behaviours.

Transitions determine how the current state of an agent is updated to
a new state. Each transition has a condition that determines when the

transition is executed.

Different populations of agents can be described by different agent pro-
files. An agent profile lists the behavioural characteristics of a group of
pedestrians, such as the preferred free walking speed and the maximum
acceptable speed. An agent group describes a number of agents that share
the same agent profile and that have the same starting conditions in the
simulation. The agent group describes the agent profile for the agents,

their initial positions, and their initial state.

4.4.1.2 Plan computation

In this second subproblem, for each agent a static plan is computed to
achieve the goal that was selected in the previous subproblem. This plan
results in an instantaneous preferred velocity. Only static obstacles are
taken into account. The movement of other pedestrians is not taken into
account in this step, which is done during plan adaptation. The time

horizon of this subproblem is the medium term.

Currently, Menge offers three types of approaches for computing paths,
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namely road maps, navigation meshes, and guidance fields. These ap-
proaches are referred to as the velocity component. Road maps are graphs
in which each vertex represents a separate area in the environment and
the edges connect adjacent areas that are not separated by obstacles. For
every possible location, there needs to be a vertex that is visible from that
location (i.e., unobstructed by obstacles) so that agents can find a feasible
route. Navigation meshes extend road maps, since each vertex is replaced
with a convex polygon that represents an area that can be freely traversed
by agents. Agents can use a straight line to travel to their target within
the current polygon since the polygon is convex and free of obstacles. To
travel between polygons agents use the edges in the same way as in the
road map. Finally, a guidance field divides the environment into different
areas and associates a potential field with each area. The potential field
acts as a force that directs the pedestrian towards his or her goals and
away from obstacles. It is possible to extend Menge with other wayfinding

algorithms.

4.4.1.3 Plan adaptation

The third subproblem takes the preferred velocity as input from the pre-
vious subproblem and transforms it into a feasible velocity by taking dy-
namic obstacles and agents into account. This subproblem has the short-
est time horizon. Most pedestrian models in the literature are concerned

with this subproblem.

Menge uses a plug-in architecture that allows different pedestrian models
to be used in conjunction with the simulator. Menge already includes
the implementation of six different models, namely the Optimal Recipro-
cal Collision Avoidance (ORCA) model (van den Berg et al., 2011), the
Pedestrian Velocity Obstacles (PedVO) model (Curtis, 2014), the Social-
Force Model of Helbing et al. (2000), the Generalized Centrifugal Force



Chapter 4. A surrogate-based tabu search heuristic to optimise the
people flows in a timetable

111

Model (Chraibi et al., 2010), the predictive collision avoidance model for
pedestrian simulation of Karamouzas et al. (2009), and the social-force
model with explicit collision prediction of Zanlungo et al. (2011). The
first two models belong to the class of ‘velocity obstacle models’, while
the other four models belong to the class of ‘social-force models’. We give
an overview of these two classes of models in Section 4.5. Researchers can

also extend Menge with new pedestrian models.

4.4.1.4 Motion synthesis

This optional stage translates the movement computed by the previous

stages into physical character motion for visual applications.

4.4.2 Mathematical formulation

In this section, we discuss how Menge translates the different conceptual
problems in describing human walking behaviour into a mathematical
problem. In the subsequent sections, we use welocity to refer to a two-
dimensional vector and speed to refer to a scalar or the norm of a velocity
vector. Suppose there are m agents. The positions and instantaneous
velocities of agents in two-dimensional Euclidean space as a function time,

respectively, are given by

ra(t)  r1y(t)

r2a(t)  T2,(t)

riR—=R™2:t s r(t) = ) (4.6)

Tm,a(t)  Tm,y(t)
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via(t)  v1y(t)

ViR R™2 ¢ o(t) = U“_(t) Uz’?(t) . (4.7)

Um,x (t) Um,y (t)

The problem of computing the trajectories of agents is then given by the

following initial value problem

dr(t) __ o
0 = u(t) = V(S (1) ",
r(0) = 7o,

where S : R — S: ¢t — S(t) gives the simulation state at time ¢, V : S —
R™*2 : S+ V(S) is a function that determines each agent’s instantaneous
velocity as a function of the simulation state, and ro € R™*? represents
the initial positions of agents. The positions of agents over time can then

be determined by solving for r(t).

Each of the subproblems in Section 4.4.1 can be translated to a mathemat-
ical function. The goal selection problem can be described by the function
G : S — R™*2 that maps the simulation state into two-dimensional goal
positions for each agent. The plan computation problem can be repre-
sented by the function P : S x R™*2 — R™*2 that maps the simulation
state and each agent’s position into an instantaneous preferred velocity.
Finally, the plan adaptation problem can be expressed by the function
A: Y CSxR™2 5 R™*2 that maps the local simulation state and
position of each agent into a feasible velocity for each agent. The instan-
taneous preferred velocity can then be computed by the composition of

these functions:

u(t) =V(S() = A(P (G (S(1)))- (4.9)
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4.5 Overview of pedestrian models in Menge

4.5.1 Social-force models

The social force model was developed by Helbing (1991) and Helbing and
Molnar (1995). The movement of a pedestrian is the result of various
forces, based on an analogy with physics: an attractive force in direction
of the pedestrian’s destination, repulsive forces forces from other pedes-
trians or obstacles such as walls, and possibly attractive forces from other
pedestrians (e.g., friends) or objects (e.g., window displays). However,
the latter are usually not included as they are difficult to specify in many

scenarios.
The movement model is described by the following differential equations

I — u(t) = g(wl(t))

dwlt) — protal(n(t), u(t)),

(4.10)

where 7 : R — R™*2 gives the positions the m pedestrians as a function
of time, v : R = R™*2 and w : R — R™*? give, respectively, the ac-
tual and desired velocities of the m pedestrians as a function of time, g :
R™*2 — R™*2 gives the relation between the desired velocity and the ac-
tual velocity and Ftotal : Rm>x4 s R™X2 . (r(t), v(t)) = Ft%(r(t),v(t))
gives the total forces acting on the pedestrians based on their current
locations and actual velocities. The desired velocities are determined by
the forces acting on the pedestrians. Because these forces can grow very
large (e.g., when two pedestrians are going to collide), the resulting de-
sired velocities can grow larger than physically possible. Therefore, the
actual velocities of pedestrians are limited by their maximal acceptable

speed v™a* € R™X1,

The main difference between the different social force models in the liter-

ature lies in how they define the various forces. We first give an overview
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of the foundational model of Helbing and Molnar (1995) and then discuss

some of the extensions that are implemented in Menge.

4.5.1.1 Model of Helbing and Molnar (1995)

Force towards target The force towards the target depends on the
difference between a pedestrian’s desired velocity v? € R and his or her
actual velocity. The change in a pedestrian’s walking velocity happens
with a certain relaxation time 7 € R. Let d; € R? be the destination of
pedestrian ¢. The force towards the target is then given by

Rt = 2 (e (r) — wi(r) (4.11)

3

di —Tq (t)

The term e;(t) = 17 =T

pedestrian 7.

represents the desired direction of motion of

Force from other pedestrians The force experienced by pedestrian i
from other pedestrians j is given by
Fped Z Fped
(2
J#i

_ ped ri(t) —1;(t) ox —bi; (1)
= 2V e O @ p( o )

J#i

where

bij(t) = 0~5\/(||7“z‘j(t)|| + [l (8) — v (£) Ate; (D)) = (v;(H)AL)2, (4.13)
with 7;(t) = ||r;(t) — r;(t)|| and

TR CU RO A0
wis(t) = oo @—real = 08(¢) (4.14)

c otherwise,

with o € R, ¢ € [0,27], and 0 < ¢ < 1 constants.
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The factor M represents the direction of the force, VP*? is a scal-
ing factor, the factor b;;(t) takes into account both the distance between
pedestrians as well as their direction of motion (i.e., pedestrians require
more space in front of them than orthogonal to them), and w;;(¢) takes
the perception of pedestrians into account (i.e., situations behind a pedes-
trian will have less influence than situations right in front of him or her),

with ¢ the angle of sight of a pedestrian.

Force from obstacles The force experienced by pedestrians from ob-

stacles k is given by:

obs __ obs
Fi - E :Fi,k
k

—Z ety T = () =) 19
A PTG R o
with

wir(t) = L i iy 2 cos(9) (4.16)

c otherwise.

The factor mi::]’:” represents the direction of the force, V°P® is a scaling
factor, ||r;(t) — rk|| gives the distance between the pedestrian and the

obstacle, and w; again takes the perception of pedestrians into account.

Total force The total force acting on pedestrian 7 is equal to the sum

of the individual forces acting on that pedestrian, i.e.

FZ'tOtal — Fitarget + Fiped + FZ_ObS. (417)
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Relationship between actual and desired velocity The speed-

cutoff function g is given by

w(t) it [lw(t)]| < vme
9= (4.18)
Toorw () otherwise.

The function g assures that the actual velocity of pedestrians never ex-

ceeds their maximal acceptable velocity v™#?*.

4.5.1.2 Extensions

Helbing et al. (2000) focus on evacuations and adapt the forces exerted by
other pedestrians and obstacles to include additional body compression
and sliding friction forces caused by high densities in overcrowded situa-
tions. Let p;; = p; + p; be the sum of the radii of pedestrians ¢ and j, let
d;j(t) = ||ri(t) —r;(t)|| denote the distance between the centres of mass of
pedestrians ¢ and j, let v;;(t) = % be the normalised vector point-
ing from pedestrian j to pedestrian 7, let 6;;(¢) be the tangential direction
(i.e., perpendicular to v;;(t)), and let Av?i () = (v (t) — v (t))0:;(t) be the
tangential velocity difference. Then the force function between pedestri-

ans ¢ and j is given by:

ped ped
FPt =3 F
J#i

i — dia(t
=D (Voped exp ('OJJ()) + kG (pij — dij(t))) vij(t) (4-19)
i 7
+ £G(pij — dij (1)) AvY;(£)0;; (1),
where the function G(z) is zero if the pedestrians do not touch each other

(i.e. if d;;(t) > r;;(t)) and is otherwise equal to the argument x.

The first term in Eq. (4.19) is the regular force between pedestrian i

and j in the absence of friction. (Note that in contrast to Helbing and
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Molnér (1995), Helbing et al. (2000) do not include the perception term
and assume circular instead of elliptical equipotential lines.) The second
term is a body force counteracting body compression and the third term

is a sliding friction force impeding relative tangential motion.

The force between pedestrians and walls is analogous:

obs __ obs
Fi - E Fi,lc
k

= zk: (voobs exp (’M‘l’f(t)> +kG(pi — dik(t))) vin(t)  (4:20)

g

+ kG (pi — dir(t)) (vi ()i (1)) Oir ().

Chraibi et al. (2010) developed the Generalised Centrifugal Force (GCF)
model, where agents are represented by ellipses that change size based on
the agents’ velocity instead of fixed circles. The reason is that pedestrians
who walk faster take larger steps and thus require more space in front of
them. Secondly, they use the inverse of the relative distance between two
pedestrians in the expression for the force between them, instead of an
exponentially decreasing function of the distance. However, they limit the
magnitude below a certain threshold, to avoid the force going to infinity

as the distance goes to zero.

In the previous models, the repulsive forces between agents are calculated
based on their current positions and velocities. By contrast, Karamouzas
et al. (2009) and Zanlungo et al. (2011) take future expected interactions

into account when calculating these forces.

Finally, most model simply add all forces acting on a pedestrian to arrive
at the resulting force acting on this pedestrian. It is possible, however,
that certain forces neutralise each other. For this reason, Karamouzas

et al. (2009) sequentially take the impact of the various forces into account.
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They first adjust the current velocities based on the force that has the
most immediate expected interaction and then recompute the remaining
forces. They repeat this process until all forces have been taken into
account. However, there is no proof that this approach avoids that forces

neutralise each other.

4.5.2 Velocity obstacle models

In velocity obstacle models, agents predict future positions of obstacles
and other pedestrians and adjust their velocities to avoid potential col-
lisions. However, if only pairwise interactions are taken into account,
predictions of future positions and velocities might be wrong, and colli-
sions might still occur. The ORCA model (van den Berg et al., 2011)
solves these problems by calculating the optimal (changes in) preferred

velocities for all agents simultaneously.

The ORCA model was developed for robots (Curtis, 2014). As a result,
some of the behaviours of agents in the ORCA model are not realistic
representations of human behaviours. A first element is that in the ORCA
model inter-agent relationships are assumed to be perfectly reciprocal.
This means that to avoid a collision, both agents will evenly divide the
burden of changing their preferred velocities. This is realistic for robots, as
the energy cost of adjusting their behaviour is then shared equally between
all robots. However, for pedestrian interactions, it is not really realistic.
The PedVO model of Curtis (2014) proposes two techniques to include
asymmetries, namely proxy agents and right of way. Proxy agents are
agents that are attached to real agents to allow the expression of different
behaviours. For example, the authority proxy can be used to model the
behaviour of a line of policemen who control a large crowd. The concept of
right of way is borrowed from vehicular traffic and allows certain agents

to have priority over other agents. Agents with lower priority face an
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increasing burden to avoid collision.

Secondly, methods for plan computation usually represent immediate goals
as points. This leads to unrealistic behaviours where agents who travel
towards the same destination all try to reach the same intermediate point,
even if enough space is available in the vicinity to simultaneously travel to-
wards their final destination without interference. Therefore, the PedVO
model uses so-called wayportals, which use line segments instead of points
to represent immediate goals of agents. Instead of a single preferred veloc-
ity vector, agents then have a set of velocity vectors, from which the best
alternative is to be determined. As a result, wayportals improve the flow
of agents by allowing them to use all available space instead of artificially
hindering each other when trying to move along a certain line through an

area.

Finally, agents in the ORCA model do not adhere to the fundamental di-
agram that states that walking speed decreases as crowd density increases
(Curtis, 2014). Since the ORCA model is only concerned with collision
avoidance, nothing prohibits agents from moving in dense crowds with
arbitrarily large speeds. This can lead to unrealistically low evacuation
times in scenarios with dense crowds. The PedVO model includes this re-
lationship by explicitly linking the preferred free walking speed of agents

to the crowd density in their surroundings.

4.6 Problem translation in Menge

4.6.1 Building representation

Menge simulates crowd dynamics in the two-dimensional plane. How-
ever, buildings consisting of multiple floors are three dimensional. We

can represent such buildings in Menge by projecting the different floors
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next to each other in the two-dimensional plane. We will represent stairs
by ‘teleporting’ agents who enter the stairwell on the origin floor to the

destination floor.

The walls in the building translate to an obstacles in Menge. Menge
implements obstacles as closed polygons. Each point of the polygon is
represented by a coordinate in two dimensional Euclidean space. Con-
nected walls (e.g., all walls of the same room) are represented by a single

obstacle, allowing Menge’s reasoning to include looking around corners.

4.6.2 Road map

We use road maps to allow Menge to compute feasible paths from an
agent’s current position to his or her destination. We opt for the road
maps since they can be used in combination with our building repre-
sentation to represent paths between the different floors of the building.
Moreover, they are easier to implement than navigation meshes and are

sufficient to describe all possible routes in our building representation.

We place one vertex at the inside of the room for each door of a room of
the building, one vertex in the hallway for each door of each room, one
vertex at the ‘entrance’ of each stairwell, one vertex at the ‘exit’ of each
stairwell, and one outside of each building exit. Vertices on a given floor
of the building are connected by edges if there are no obstacles that stand
between them. Moreover, every vertex at the ‘entrance’ of a stairwell is
connected to the vertex at the ‘exit’ of the stairwell on the floor below or

above, depending on whether the stairwell goes up or down.

Figure 4.2 represents an example of a building with six rooms divided over

three floors and the corresponding road map.
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Figure 4.2: Example building and corresponding road map.

The building consists of six rooms (R11, R12, R21, R22, R31, and R32) divided over
three floors. The read stripes indicate the stairwell that goes upstairs and the blue
stripes indicate the stairwell that goes downstairs. The road map is represented by the

black vertices and edges.

R31 @—@ R1 @—@ R11 @—@

S
bl

R2 @—@ 2 @—@ R @—@




122

4.6. Problem translation in Menge

4.6.3 Goals and goalsets

For each room in the building, there is a corresponding goal. All these
goals are grouped in a first goalset. For every exit in the building, there

is also a corresponding goal, which are grouped in a second goalset.

4.6.4 States and transitions

There are three types of states, as is summarised in Table 4.1. First, there
is a final state named ‘Stop’ that indicates that an agents has reached his
or her goal. If all agents have reached this final state, the simulation
is finished and the elapsed time is recorded. Second, there is a state for
every destination to indicate that an agent wants to reach that destination.
For each room in the building, the state has a goal selector that selects
the corresponding goal and a velocity component that specifies how that
target can be reached. The velocity component we use is the same for
every state and is a road map that represents the feasible paths in the
building, as explained in Section 4.6.2. For exits, the goal selector selects
the nearest goal from all goals in the goalset corresponding to the exits.
At the start of the simulation, each agent starts in one of these states
depending on his or her destination. Third, when a pedestrian reaches a
stairwell, (s)he enters a special state corresponding to that stairwell. This
state does not have a goal selector or velocity component, since the goal
does not change. Instead, this state executes an action, whereby the agent
is teleported to the corresponding stairwell of the floor below or above
depending on his or her destination. Because pedestrian models work
in a two-dimensional plane, this allows us to represent three-dimensional
buildings with multiple floors by projecting the different floors next to

each other in the same plane.
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Table 4.1: States used in our scenario implementation in Menge.

State final goal selector velocity component action
Stop yes - - -
WalkToRoom... no specific room road map -
WalkToExit no nearest exit road map -
Stairs... no - - teleport

Table 4.2: Transitions used in our scenario implementation in Menge.

From state condition to state
WalkToRoom... / WalkToExit goal reached Stop
WalkToRoom... / WalkToExit area reached Stairs...

Stairs... auto WalkToRoom... / WalkToExit

There are three types of transitions between states, as is shown in Table
4.2. First, there is a transition between the initial state of a pedestrian
to the final state. The condition type is ‘goal reached’, i.e. as soon as the
agent reaches his or her goal, the transition is executed. Second, there is a
transition from an agents current state to the special stairs state when the
agent reaches a stairwell. The transition is executed if the agent reaches
a certain area. Finally, the third transition changes a pedestrian’s state
from the special stairs state back to his or her previous state so that (s)he
continues moving towards his or her goal. This transition is automatically

executed immediately after the agent has been teleported.

4.6.5 Agent profile and agent groups

We assume that all people in the simulation share the same characteristics.
Therefore, we generate a single agent profile to represent the characteris-
tics of pedestrians. Following Helbing and Molndr (1995), the preferred

free walking speed of each pedestrian is drawn from a normal distribution
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with mean equal to 1.34 m/s and standard deviation equal to 0.26 m/s

and the maximum free walking speed is set equal to 1.74 m/s.

To simulate the evacuation in timeslot ¢, we generate one agent group for
every event that is planned in that timeslot. The number of agents in
the agent group is set equal to the number of people in the corresponding
event. At the start of the simulation, the agents in this agent group are
randomly positioned in the corresponding room in the building and they
start in the ‘WalkToExit’ state.

To simulate the flows from events in timeslot ¢ to events in timeslot ¢ + 1,
we generate one agent group for every eventgroup that has at least one
event in both timeslots. The number of agents in the agent group is
set equal to the number of people in the corresponding eventgroup. If the
eventgroup has an event at time ¢ and at time t+1, the agents in this agent
group are randomly positioned in their origin room in the building and
they start in the ‘WalkToRoom...” state corresponding to their destination
room. If the eventgroup only has an event at time t, the agents in this
agent group are randomly positioned in their origin room in the building
and they start in the ‘WalkToExit’ state. Finally, if the eventgroup only
has an event at time ¢ + 1, the agents in this agent group are randomly
positioned outside of the building and they start in the ‘WalkToRoom...’

state corresponding to their destination room.

4.6.6 Interface

Currently, the Menge library does not offer the possibility to programmati-
cally construct simulations through the exposure of C++ classes. Instead,
instantiation of a simulation has to be done through an XML-interface.
Menge requires three XML-files, namely a behaviour file, a scene file, and
a view file. The behaviour file lists all goals, states, and transitions. The

scene file specifies the parameters of the pedestrian models, the agent pro-
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files, the agents groups, and the obstacles such as walls. Finally, the view
file details how the simulation should be visualised. For every simulation
scenario, we programmatically generate the required XML-files and then

call the Menge library with these files as arguments.

4.7 Choice of pedestrian model

Curtis (2014) enumerates three properties of an ideal crowd simulator.
First, the simulator should be computationally efficient. This efficiency
depends on the cost of computing a single time step and the stability of
the pedestrian model. The stability of a model indicates the maximum
time step that can be taken so that the accuracy of the results is not
compromised. Some models allow large time steps, while others require
small time steps to produce reliable and consistent behaviour. Second,
the simulator should be robust. This means that the parameters of the
model should not be tailored to each specific simulation scenario, but
instead should only depend on the pedestrian population (e.g., the age of
the pedestrians). Third, the simulator should accurately represent actual

human walking behaviour.

Social-force models score poorly on the first two criteria (Curtis, 2014).
They have a poor stability because of two reasons. First, they are second-
order models. The forces determine the accelerations of pedestrians, which
have to be integrated twice to obtain the positions of pedestrians. Second,
the repulsive forces are stiff when pedestrians are near each other or ob-
stacles, which means that small changes in relative positions have a large
impact on the size of the forces. As a result, social-force models require
a small time step to produce accurate results. Furthermore, the force pa-
rameters often need to be tuned to the simulation scenario (Chraibi et al.,
2010).
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Velocity Obstacles models on the other hand avoid these problems (Curtis,
2014). They have a high stability and thus can be use a large time step,
increasing their efficiency. The reason is that they are first order models.
The velocities are only a function of the simulator state and are thus
independent of the time step. For these reasons, we use the PedVO model

in our simulation runs.

4.8 Analysis of the Menge simulator

In this section, we analyse the distribution of the egress times and travel
times calculated by Menge. We also take a closer look at the computa-
tional efficiency of Menge relative to the number of people in the simula-

tion.

4.8.1 Test sets

We test Menge on two different building configurations. The first building
B-8-2 consists of eight rooms and is shown in Figure B.3. The second

building B-16-1 consists of sixteen rooms and is shown in Figure B.5.

For evacuations, we then generate three test instances for evacuations per
building as follows. The number of people in each room at the start of
the simulation is drawn from a uniform distribution. We use three levels
for the number of people in each room, namely U(0,10), U(10,20), and
U(20,40). We will refer to these instances as Evac-8-L, Evac-8-M, and
Evac-8-H, for building B-8-2 and a low, medium, and high number of peo-
ple, respectively, and Fvac-16-L, Evac-16-M, and Evac-16-H for building

B-16-1 and a low, medium, and high number of people, respectively.

For flows between consecutive events, we also generate three test instances

per building as follows. We randomly select R — 1 room pairs (i.e. one
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Table 4.3: Results of the Menge simulations for the test instances.

The results are based on 100 simulations runs.

Instance # People Comp. time (s) Mean Stddev C.0.V. Skewness
Evac-8-L 53 7.3 89.84  13.96 0.16 1.39
Evac-8-M 112 24.6 126.71  7.99 0.06 1.21
Evac-8-H 240 91.1 225.82 4.62 0.02 1.19
Evac-16-L 86 11.3 107.71  16.19 0.15 1.03
Evac-16-M 234 57.6 150.69  9.51 0.06 0.89
Evac-16-H 526 221.1 240.84  4.29 0.02 0.49
Travels-8-L 56 7.6 80.30 11.06 0.14 1.43
Travels-8-M 135 22.3 137.68 17.75 0.13 3.64
Travels-8-H 252 68.5 216.90 37.92 0.17 1.91
Travels-16-L 95 13.0 116.64 19.25 0.17 0.99
Travels-16-M 267 73.9 219.05 27.79 0.13 1.56
Travels-16-H 462 229.5 343.73 86.34 0.25 4.10

origin and one destination room per pair), 1 incoming flow from outside of
the building to a random room, and 1 flow starting from a random room
and going to the exit. The number of people on each of the chosen paths
is drawn from a uniform distribution. We again use the following three
levels for the number of people per path, namely U(0, 10), U(10, 20), and
U(20,40). We will refer to these instances as Travels-8-L, Travels-8-M,
and Travels-8-H, for building B-8-2 and a low, medium, and high number
of people, respectively, and Travels-16-L, Travels-16-M, and Travels-16-
H for building B-16-1 and a low, medium, and high number of people,

respectively.

4.8.2 Results

We execute 100 simulations for every test instance.

dard deviation, coefficient of variation, and the skewness of the evacuation

times for each instance are reported in Table 4.3.

The mean, stan-
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It is clear that an increase in the number of people in the simulation leads
to an increase in the computation time of the simulation. For the Evac-
8-L and the Travels-8-L instance the computation time per simulation
equals 0.07 and 0.08 seconds, respectively, while for the Fvac-16-H and
the Travels-16-H instance the computation time increases to 2.21 and

2.30 seconds per simulation, respectively.

As the number of people in the building increases, the mean evacuation
time increases as would be expected. However, the standard deviation
decreases. A possible explanation is that in more congested scenarios, in-
dividual differences in behaviour between pedestrians matter less, leading
to less variation in the output. Moreover, the distribution of the results

of the evacuation times is skewed to the right for all instances.

Analogously, as the number of people in the building increases, the mean
travel time between events in consecutive timeslots also increases as would
be expected. In contrast to evacuations, for the travel time between events
in consecutive timeslots the standard deviation increases with the mean
and the coefficient of variation is larger on average. This is because now
people flow in opposite directions and hinder each other much more. The
skewness of the distributions are also noticeably larger for flows between

consecutive timeslots than for evacuations.

4.9 Computational results

In this section, we show how the surrogate-assisted tabu search algorithm
can be used to solve different types of problems related to crowd manage-
ment, where the schedule of events has an impact on the resulting people
flows. Therefore, in Section 4.9.1 and Section 4.9.2, we illustrate the algo-

rithm on two possible applications, where the function F has a different
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form. First, however, we analyse the efficiency of the Menge simulator

and the distribution of the simulation results in Section 4.8.

All tests are executed on a PC with an AMD Ryzen 7 1700X @ 3.40 GHz
processor and 16 GB RAM under the Windows 10 operating system. The
model is coded in Qt Creator 4.5.0 with Qt 5.10. We use the open source
Dlib machine learning library for C++ developed by King (2009) for the
surrogate models. The datasets, the C++/Qt code for the algorithm,
as well as the instance generator can be found at the following website:
https://github.com/HendrikBV/A-surrogate-based-tabu-search-h

euristic-to-optimise-people-flows-in-a-timetable.

4.9.1 Application 1: evacuation problem

A first type of problem where the optimisation of people flows is important
are evacuation problems. At mass crowd events like music festivals, cul-
tural events, or sport events, the schedule of music bands or sport games
has a large impact on the resulting spectator flows during an emergency

evacuation.

If a building (sports stadium, festival area, etc.) were evacuated during
timeslot ¢ € T, then the assignments of the events to rooms (locations)
in that timeslot impact the number of people present in each room of
the building (zone in the sports stadium or festival area) and thus the
resulting evacuation time. Because there are multiple timeslots and a
different set of events that are planned in each timeslot, the evacuation

time between each timeslot differs. We propose as objective function
F=> ET, (4.21)
teT

where ET; is the evacuation time in timeslot ¢. The evacuation time is

defined as the time when the last person exits the building.
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We can use incremental cost recalculation (Ross et al., 1994) when calcu-
lating the real objective value of a candidate solution with Menge during
the tabu search. Because our neighbourhood structure only changes as-
signments in a single timeslot ¢ and all E'T; are independent, we only need

to simulate the evacuation time in timeslot ¢ instead of for all timeslots.

4.9.1.1 Test instances

Four different building layouts are used to analyse the people flows during
an evacuation. Building B-8-1 (Figure B.1) consists of 8 rooms divided
over 2 floors. Building B-8-2 (Figure B.3) also consists of 8 rooms, but
divided over 4 floors. Both buildings only have a single stairwell. Build-
ing B-16-1 (Figure B.5) consists of 16 rooms divided over 4 floors and 2
stairwells. Finally, building B-16-2 (Figure B.7) also consists of 16 rooms

divided over 4 floors, but with 3 stairwells.

We developed an instance generator to generate ten random timetable
instances and corresponding start solutions. Five instances have 8 rooms
and five instances have 16 rooms. Each timetable instance consists of 5
timeslots. First, for each timeslot the number of events is drawn from
a uniform distribution between 3 and the number of rooms in the build-
ing. The number of eventgroups is set equal to the number of rooms. In
a second step, the events in each timeslot are randomly assigned to an
eventgroup. Third, feasiblity for each event-room combination is deter-
mined by a draw from a Bernoulli distribution with p = 0.7. Finally, the
number of people for each eventgroup is drawn from a uniform distribu-
tion between 5 and 25 people. For each event, the number of people is
then set equal to sum of people of all eventgroups to which the event be-
longs. In the start solution, each event is randomly assigned to a feasible

room.
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4.9.1.2 Choice and quality of the surrogate model

We compare two types of machine learning techniques, namely kernel
ridge regression (KRR) and support vector regression (SVR), each time
in combination with one of four kernel types, namely a radial basis kernel
(RBK), a histogram intersection kernel (HIK), a linear kernel (LK), and
a quadratic kernel (QK).

During an evacuation each person walks to one of the exits of the building.
While there can be multiple exits in the building, the Menge simulator
assumes that each person travels to the nearest exit. All people in a given
room thus follow the same path when evacuating the building. As a result,
the input for the surrogate models is simply the number of people in each

room.

We randomly generate 500 configurations (i.e., a random number of people
in each room) and simulate the evacuation time with the Menge simulator.
We set the maximum time limit to train the surrogate models at 1800
seconds. Let z; = (zi1,..., %) be the number of people in each room
and y; the evacuation time in each observation ¢ € I, respectively. This
same set of 500 observations is used to train each of the surrogate models.
We use the built-in optimiser of the Dlib libary to automatically find
the best regularisation parameter for KRR and SVR as well as the best

parameters for each of the kernels.

Let y; be the evacuation time predicted by the surrogate model for ob-
servation ¢ € I, let ¥ = >, v;, and let 7 = > icr Vi- We then test
the quality of each of the surrogate models based on this same set of

observations by computing the mean squared error (MSE)

1 X
MSE = il > (yi— 9:)7, (4.22)
i€l
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the Pearson correlation coefficient (PCC)

Sier Wi —9) (5 — 9)

\/Zie] (yi = \/Zzel |

and the mean average error (MAE)

= 7 2 b il (424

el

PCC =

(4.23)

using 10-fold cross validation. While MAE gives the average prediction
error, MSE gives more weight to large deviations between predicted and

simulated values.

We do this analysis once with building B-8-1 of Figure B.1 and once with
building B-16-1 of Figure B.5 in the simulations. The results are listed in
Table 4.4. Some of the combinations of machine learning technique and
kernel type lead to a prohibitively large computation time needed to train
the surrogate model. The KRR trainer with LK is the fastest, followed
by the KRR trainer with QK. The KRR trainer with QK has the best
MSE on both tests and the best PCC on the second test. It thus provides
a good trade-off between required computation time and accuracy and

therefore we use it in all subsequent tests.

We also test the performance of the surrogate model during the tabu
search. For this purpose, we calculate the MSE, PCC, and MAE between
the predicted and simulated values of all candidate solutions within a
given iteration. The simulated objective value for each solution is the
average of 100 replications of the Menge simulator. We do this analysis
for the 1st, 10th and 100th iteration of for 4 datasets as shown in Table
4.5.
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Table 4.4: The performance of the different surrogate models for the evacuation

times.

MLT refers to the machine learning technique used. SDE is the standard deviation of

the MAE over the different cross validations.

Building MLT Kernel Time (s) MSE PCC MAE SDE
RBK 246 81.1 0.814 6.6 6.2
HIK 366 99.3 0.787 7.5 6.6
KRR
LK 4 81.4 0.814 6.6 6.1
QK 59 79.4 0.819 6.6 6.0
B-8-1
RBK 838 80.2 0.821 6.3 6.3
HIK >1800
SVR
LK >1800
QK >1800
RBK 316 217.6 0.553 11.3 9.5
HIK 1052 238.1 0.563 12.0 9.7
KRR
LK 11 217.6 0556 11.3 9.5
QK 179 214.1 0.564 11.2 9.4
B-16-1
RBK 312 220.7 0.560 10.9 10.1
HIK >1800
SVR
LK >1800
QK >1800
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Table 4.5: The performance of the KRR QK surrogate model during the tabu search

for the evacuation times.

Building Dataset Iteration MSE PCC MAE
1 54.4 0.840 6.8
B-8-1 T-8-1 10 39.6 0.957 6.0
100 489 0928 6.6

1 12.3 0936 3.2
B-8-2 T-8-2 10 86.3 0.922 8.1
100 15.1 0.924 34

1 62.6 0.667 7.4
B-16-1 T-16-1 10 462.7 0.816 20.5
100 66.6 0.857 7.8

1 29.7 0932 4.6
B-16-2 T-16-2 10 10.0 0.949 26
100 216 0.862 4.1

The surrogate model performs well for all four instances and different
phases of the tabu search. The MAE varies between less than 3 seconds
and around 8 seconds, except for one outlier of 20.51 seconds. Moreover,
the PCC lies between 0.67 and 0.96, with an average of 0.88. This means
that the surrogate model succeeds in distinguishing between good and

bad solutions.

4.9.1.3 Parameter setting tabu search

The tabu search implementation itself has two parameters, namely the
length of the tabu list, ¢, and the maximum number of solutions that are
re-evaluated with Menge in a single iteration, £&. We test three values
for ¢ and three values for £, once on building B-8-1 in combination with
instance T-8-1 and once on building B-16-1 in combination with instance
T-16-1. We set the computational budget for the tabu search equal to
10,000 simulations. Also, we set nyep, = 10 (Law and Kelton, 1991).
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Table 4.6: The performance of the tabu search for different parameter settings.

Building Dataset ¢ ¢ F (x%t27%) F (xP°St) Pct. improvement

1 514.4 460.8 10.41
10 10 512.5 451.4 11.93

00 515.5 448.9 12.93

1 515.4 461.9 10.38

B-8-1 T-8-1 40 10 515.7 452.4 12.29
0o 516.0 452.2 12.36

1 515.7 461.8 10.45

70 10 518.2 451.6 12.85

oo 518.3 455.9 12.05

1 618.1 489.7 20.77

10 10 620.9 4777 23.06

0o 624.1 484.3 22.40

1 621.4 490.2 21.13

B-16-1 - T-16-1 40 10 618.6 485.8 21.48
00 619.2 490.1 20.84

1 617.5 496.3 19.62

70 10 621.8 482.8 22.35

0o 618.8 479.8 22.47

The results are shown in Table 4.6. To test which of the parameter settings
achieves the best performance, we first execute an ANOVA test with the
percentage improvement as dependent variable and the problem instance,
£, and £ as independent variables. We include all main and interaction
effects and set the acceptance level at 0.05. Only the main effects of £ and
the problem instance are significantly different from zero. In a second step,
we fit a regression model on these two variables to see how much of the
variance in performance they explain. The p-value of the regression model
is 9.84e-14 and the adjusted R? equals 0.986. The estimated coefficients
are listed in Table 4.7. £ = 10 achieves the best results, but they are not
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Table 4.7: The results of the regression analysis.

The value of ¢ is treated as a categorical variable, since for the case of £ = oo no specific

value exists based on which we can calculate a linear regression coefficient for &.

Factor Estimate Standard error t-statistic p-value
(Intercept) 10.54 0.2911 36.22 0.0000
£E=10 1.86 0.3565 5.23 0.0001
£ =00 1.72 0.3565 4.81 0.0003
Instance = T-16-1 9.83 0.2911 33.78 0.0000

significantly different from x7 = oo. £ does not have a significant impact
on the results. Therefore, we simply choose £ = 10 and ¢ = 40 in all

subsequent tests.

4.9.1.4 Results

We again use the parameter settings of Section 4.9.1.3. For every instance
500 observations are generated to train the surrogate models. The results

are shown in Table 4.8.

The algorithm takes between 1200 and 1800 seconds for the small in-
stances and between 2500 and 4200 seconds for the larger instances. This
difference is due to the fact that a single evaluation with the Menge simu-
lator takes longer for simulations with more people. The time to generate
observations and to train the surrogate model is only a small fraction of
the time spent on the tabu search. It is clear that the algorithm suc-
ceeds in finding solutions that are a significant improvement compared to
the random start solution. Moreover, the results show that not only the
timetable instance, but also the building layout have a significant impact
on the evacuation time and analogously on the possible improvement in

this evacuation time.



Table 4.8: The results of the surrogate-based tabu search for the evacuation problem.

TGO refers to the time required to generate the 500 observations; TTM refers to the time required to train the metamodels, TTS refers to the time spent on
the tabu search. All times are in seconds. Iter. TS refers to the number of iterations performed during the tabu search. Finally, Pct. Improv. refers to the

percentage improvement between the mean value of the start solution and the mean value of the best solution.

Building Dataset TGO TTM TTS Total time (s) Iter. TS Start solution Best solution Pct. Improv.

CI~ mean CIT CIT mean cCIt
B-8-1 T-8-1 71 55 1576 1702 328 511 514 518 451 455 459 11.5
B-8-1 T-8-2 71 50 1374 1495 347 504 507 510 427 433 440 14.6
B-8-1 T-8-3 66 37 1082 1185 340 451 454 457 386 392 398 13.7
B-8-1 T-8-4 80 50 1040 1170 318 431 436 440 381 386 392 11.3
B-8-1 T-8-5 66 52 1369 1487 351 483 486 489 434 440 445 9.6
B-8-2 T-8-1 80 51 1674 1805 341 615 619 624 471 478 485 22.8
B-8-2 T-8-2 80 63 1512 1655 328 544 549 544 446 456 466 17.0
B-8-2 T-8-3 75 46 1145 1266 319 546 550 554 394 402 411 26.8
B-8-2 T-8-4 90 51 1086 1227 338 576 581 587 389 401 412 31.1
B-8-2 T-8-5 74 47 1478 1599 353 583 587 591 460 466 473 20.6
B-16-1 T-16-1 217 201 2994 3502 294 615 621 627 491 504 516 18.9
B-16-1 T-16-2 203 471 3544 4218 339 664 670 676 498 508 517 24.2
B-16-1 T-16-3 213 468 3192 3873 303 619 625 632 483 493 504 21.1
B-16-1 T-16-4 204 268 2242 2714 305 593 599 606 411 423 435 29.4
B-16-1 T-16-5 203 373 2817 3393 290 611 617 623 453 462 471 25.2
B-16-2 T-16-1 195 365 2663 3223 281 526 532 537 431 443 456 16.6
B-16-2 T-16-2 184 365 3247 3796 298 625 630 635 456 466 477 25.9
B-16-2 T-16-3 193 371 2878 3442 289 534 539 544 401 412 422 23.6
B-16-2 T-16-4 185 216 2088 2489 292 545 551 557 370 381 393 30.8
B-16-2 T-16-5 184 410 2509 3103 317 540 545 550 374 383 392 20.7
B-16-2 T-16-5 184 410 2509 3103 317 540 545 550 374 383 392 29.7
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4.9.1.5 Validation of results

In Section 4.9.1.4 it was shown that the tabu search succeeds in find-
ing solutions with significantly improved evacuation times compared to a
random start solution. However, it is not clear how good the solutions
actually are compared to the unknown optimal solution. Therefore, in
this section we use exhaustive search to validate the performance of the

heuristic.

We generate five small instances for which exhaustive search is feasible
and use building B-8-2 in all tests. All instances consist of a single times-
lot. We run an exhaustive search and save all generated solutions to plot
the entire objective function of the solution space. We then run the algo-
rithm and use a replication budget of only 1000 replications, because the

instances are considerably smaller than the instances in Section 4.9.1.4.

The results are listed in Table 4.9. The table lists the objective value
of the worst solution, the third quartile, the median, the first quartile,
and the best solution. The half width of the confidence intervals for the
objective values is also listed, since all values are based on ten replications
of the Menge simulator. In two of the five instances the heuristic finds the
optimal solution, while for the other instances the optimality gaps are less
than 1 percent, 3.5 percent, and 7.1 percent respectively. These results

show that our heuristic is indeed able to find high quality solutions.

4.9.2 Application 2: flows between events in consec-

utive timeslots

A second type of problem is when we want to minimise the people flows

between events in consecutive timeslots. We have already studied this
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Table 4.9: Validation of the heuristic results with exhaustive search.

ES1 ES2 ES3 ES4 ES5
Number of events 4 5 6 7 8

Worst 143 163 150 171 163
Q3 122 138 131 157 142
Median 115 127 124 150 135
Q1 105 119 114 143 129
Best 79 97 92 136 116
Heuristic 79 97 99 141 117
Half width CI 2 2 2 2 2

type of problem in Chapter 3 for university course timetabling. In aca-
demic institutions where the class rooms are concentrated in one or a few
buildings, congestion problems may occur in the halls, at the stairwells
and elevators at time of course changes. These congestion problems are
caused by travelling students that all have to switch rooms at the same
moment. When the class rooms are spread over a city, the impact of the
resulting student flows on traffic congestions can be studied. In both cases
these student flows can be controlled through the course timetable. An-
other example can be conference scheduling, where people attend different
presentations throughout the day. The assignment of talks to rooms has

an impact on the people flows between consecutive talks.

In this case, there is a flow between every pair of timeslots in the timetable,
when people travel from events in timeslot ¢ to events in timeslot ¢ + 1.

We propose as objective function
F= > T, (4.25)
teT\{IT}

where 1T} ;41 is the travel time between timeslot ¢ and timeslot ¢ 4 1.
The travel time is defined as the time when the last person arrives at his

or her destination.

We can again use incremental cost recalculation (Ross et al., 1994) when
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calculating the real objective value of a candidate solution with Menge
during the tabu search. For this problem type, however, 7T} ;1 depends
on assignments in timeslot ¢ as well as timeslot t+1. When the neighbour-
hood move changes assignments in timeslot ¢, we thus need to simulate
both TT;_1; and TT} 441.

We use the same timetable instances and buildings as in Section 4.9.1.1

for all tests.

4.9.2.1 Choice and quality of the surrogate model

We compare the same machine learning techniques as in Section 4.9.1.2.

In this case, every group of people has a different destination. Every
individual travels from the location of the event (s)he attends at timeslot
t to the location of the event (s)he attends at timeslot ¢ + 1. If a person
does not attend an event at time ¢, but does attend an event at timeslot
t+1, (s)he enters the building from outside and travels to the location of
the event. On the other hand, if a person attends an event at timeslot ¢,
but no event at timeslot ¢ + 1, (s)he exits the building. Since the Menge
simulator assumes people take the shortest route between two locations,
there are thus (|R| + 1) |R| possible paths people can travel on. However,
this number quickly grows very large, even for small problem instances.
Therefore, for the larger buildings we group nearby rooms into a single
node to reduce the number of paths. For every instance, we use 8 nodes
corresponding to the rooms. Moreover, we do not distinguish between
paths going from A to B and paths going from B to A. As a result, the

input for the surrogate models is the number of people on each path.

We again randomly generate 500 configurations (i.e., a random number
of people on each path) and simulate the evacuation time with the Menge

simulator. We use the same quality measures as in Section 4.9.1.2 to com-
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Table 4.10: The performance of the different surrogate models for the travel times

between events in consecutive timeslots.

MLT refers to the machine learning technique used. SDE is the standard deviation of
the MAE over the different cross validations.

Building MLT Kernel Time (s) MSE PCC MAE SDE

RBK 454  2892.6 0.761 38.1 38.0
HIK 693  3195.3 0.733 38.1 40.9
KRR
LK 42 3251.0 0.727 40.5 40.2
QK 489 28942 0.774 38.3 37.8
B-8-1
RBK 142 2708.1 0.782 34.7 38.8
HIK 96 3314.8 0.726 39.2 42.2
SVR
LK >1800
QK >1800
RBK 561 934.7 0.640 24.3 18.6
HIK 698 973.4 0.646 245 19.3
KRR
LK 43 957.3 0.632 24.3 19.1
QK 505 939.4 0.641 24.5 184
B-16-1
RBK 29 9134 0.652 238 18.7
HIK 37 881.7 0.665 23.5 18.2
SVR
LK >1800
QK >1800

pare the performance of the different machine learning techniques, namely
MSE, PCC, and MAE in combination with 10-fold cross validation.

We do this analysis once with building B-8-1 of Figure B.1 and once with
building B-16-1 of Figure B.5 in the simulations. The results are listed
in Table 4.10. The required computation time for SVR in combination
with LK or QK again exceeds 1800 seconds. SVR in combination with
RBK achieves the best performance for B-8-1 on all three criteria and the
second best performance for B-16-1. Moreover, the required computation

time is relatively small. Therefore, we use it in all subsequent tests.
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Table 4.11: The performance of the SVR RBK surrogate model during the tabu

search for the travel times between events in consecutive timeslots.

Building Dataset Iteration MSE PCC MAE

1 611.2 0.569 23.6

B-8-1 T-8-1 10 3036.4 0.704 49.2
100 1915.6  0.185 40.1

1 2086.7 0.665  28.3

B-8-2 T-8-2 10 771.1 0.636  26.1
100 50.3 0.952 5.1

1 6926.2  0.320 83.0

B-16-1 T-16-1 10 14,344.4 0.018 119.5

100 41,111.1 -0.118 202.2

1 1637.1  0.296 39.1
B-16-2 T-16-2 10 14,804.2 0.164 121.0
100 6758.3 0.366  81.9

We again test the performance of the surrogate model during the tabu
search. Table 4.11 shows the results. In contrast to the evacuation prob-
lem of Section 4.9.1, the predictions of the surrogate models during the
search are considerably poorer. However, for the two small datasets, the
PCC is still reasonably high, meaning the surrogate model succeeds in
distinguishing between good and bad solutions. By contrast, for the two
large datasets, the PCC is significantly lower, and particularly bad for the
10th and 100th iteration of building B-16-1 with instance T-16-1.

4.9.2.2 Results

We use the same parameter settings as in Section 4.9.1.3. For every in-
stance 500 observations are generated to train the surrogate models. The

results are shown in Table 4.12.
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For this problem, the algorithm takes between 2000 and 2600 seconds for
the small instances and between 5400 and 9600 seconds for the larger
instances. The required computation times are larger than for the evac-
uation time, because for most of the neighbourhood moves two sets of
simulations (for TT;_; ; and TT};+1) need to be executed instead of just
one. While the quality measures for the surrogate model shown in Table
4.11 seem to be quite poor, the algorithm nevertheless succeeds in find-
ing solutions with significantly lower total travel times compared to the
random start solution. Moreover, the number of iterations of the tabu
search lies between 263 and 353, which corresponds to the results for the
evacuation problem of Table 4.8. This means that the surrogate model
does in fact succeed in distinguishing good solutions from bad solutions
and thus considerably reduce the need for expensive simulations. Also,
the average percentage improvement for this problem type is larger than
for the evacuation problem. This can be explained by the fact that plan-
ning consecutive events attended by the same group of people in the same
room cancels that flow of people. By contrast, for the evacuation problem

it is impossible to cancel flows as everyone still has to exit the building.



Table 4.12: The results of the surrogate-based tabu search for the problem where the travel times between events in consecutive
timeslots are minimised.
TGO refers to the time required to generate the 500 observations; TTM refers to the time required to train the metamodels, TTS refers to the time spent on

the tabu search. All times are in seconds. Iter. TS refers to the number of iterations performed during the tabu search. Finally, Pct. Improv. refers to the

percentage improvement between the mean value of the start solution and the mean value of the best solution.

Building Dataset TGO TTM TTS Total time (s) Iter. TS Start solution Best solution Pct. Improv.
CI™ mean CIT CIT mean cCIt
B-8-1 T-8-1 181 117 2191 2489 329 446 453 459 291 303 315 33.0
B-8-1 T-8-2 174 89 1759 2022 329 431 436 441 307 315 323 27.7
B-8-1 T-8-3 157 76 1777 2010 309 406 411 416 308 317 326 22.8
B-8-1 T-8-4 236 79 1979 2204 285 376 381 385 316 325 334 14.6
B-8-1 T-8-5 157 256 1794 2207 312 418 423 429 273 282 292 33.3
B-8-2 T-8-1 169 75 2394 2638 335 563 569 575 311 319 327 44.0
B-8-2 T-8-2 168 113 1917 2198 327 431 437 443 327 337 347 22.9
B-8-2 T-8-3 149 80 1871 2100 353 540 546 551 290 300 311 44.9
B-8-2 T-8-4 207 67 1972 2246 328 574 580 586 328 335 342 42.2
B-8-2 T-8-5 146 134 2107 2387 341 459 469 464 308 317 325 32.5
B-16-1 T-16-1 93 28 6175 6296 263 655 664 674 527 544 561 18.1
B-16-1 T-16-2 98 20 9437 9564 284 771 781 791 587 609 630 22.1
B-16-1 T-16-3 103 32 7923 8058 277 702 710 719 544 564 584 20.6
B-16-1 T-16-4 92 20 5752 5873 288 640 650 661 481 498 515 23.4
B-16-1 T-16-5 89 28 6345 6462 288 766 776 785 522 540 559 30.3
B-16-2 T-16-1 83 28 5331 5442 275 602 611 620 439 460 481 24.7
B-16-2 T-16-2 86 26 7911 8023 277 745 760 774 501 526 550 30.8
B-16-2 T-16-3 89 27 7131 7247 291 696 707 718 496 509 521 28.1
B-16-2 T-16-4 90 28 5443 5561 266 595 605 616 450 465 480 23.2
B-16-2 T-16-5 77 30 6046 6153 286 665 676 686 516 526 537 22.1

¥l
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4.10 Case study at KU Leuven Campus Brus-

sels

In this section, we present a real-life application of the surrogate-based
tabu search heuristic. In Chapter 3, we introduced the timetabling prob-
lem at KU Leuven Campus Brussels. Hundreds of students attend lectures
in a single building and congestion problems occurs in the corridors and at
the stairwells during lecture transitions. We will show that the surrogate-
based tabu search of Chapter 4 can handle the large problem instance at

KU Leuven Campus Brussels without any problem.

Section 4.10.1 discusses the data requirements to apply the heuristic. In,
Section 4.10.2 the implementation of the model in a scheduling tool with
a graphical user interface (GUI) is presented. Section 4.10.3 presents the
results of the algorithm and compares the quality of the generated sched-
ules with the quality of the current schedule proposed by the planning

department.

4.10.1 Required data

We again consider the university course timetable at KU Leuven Campus
Brussels, as was introduced previously in Chapter 3. However, in Chapter
3, we only considered the Faculty of Economics and Business (FEB). Here,
we take the lectures of all faculties (The FEB, The Faculty of Law, and
The Faculty of Arts) into account. Morevoer, in Chapter 3, the data
requirements were more complex as the lectures needed to be assigned
to timeslots and rooms, while in this chapter we only focus on the room
assignments and consider the assignment of lectures to timeslots chosen
by the Planning Department as fixed. Finally, the data in Chapter 3 were
gathered by Mercy (2012) for the academic year 2011-2012. Now, we focus
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on the second semester of academic year 2018-2019.

As explained previously, lectures are planned from Monday till Friday and
every day consists of six timeslots. Different types of rooms are available
for the various lectures, namely regular classrooms, PC rooms, and specific
conversation and interpreter rooms for language classes. The timetable is
built around a basic schedule that is repeated every week of the semester.
However, there can be minor differences between weeks, as some classes
only meet every two weeks. In this case study, we focus on the third week
of the semester because the first and second week are often a bit different

from the rest of the semester.

The surrogate-based tabu search requires as input the set of lectures
(‘events’) that are planned in each timeslot, E] C E, the set of rooms
in which each lecture can be planned, R. C R, and the set of curricula
(‘eventgroups’) that attend a given lecture, G.. Furthermore, we need to
know the number of students in each curriculum 775, and the number of
people in each event 72 = 9eG., W?. Finally, the tabu search requires
an initial solution to start from. This means we need to provide an initial

assignment of lectures to rooms, e,

The course timetable is developed by the Planning Department of KU
Leuven Campus Brussels a few weeks before the start of the academic
year. The current version is available on the university website: https:
//onderwijsaanbod.kuleuven.be/opleidingen/n/. Figure 4.3 shows
as an example the timetable for the first year of the Bachelor of Business
Administration. For every lecture, one can see the day, the start and end
time, and the classroom in which the lecture is planned. The teacher and

the unique course code can also be seen.

We use an online tool that uses the source code of the website containing
the KU Leuven timetable to build a CSV-file containing the required in-

formation on all lectures, i.e. the name, the date, the start and end time,


https://onderwijsaanbod.kuleuven.be/opleidingen/n/
https://onderwijsaanbod.kuleuven.be/opleidingen/n/
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Figure 4.3: The timetable for the first year of the Dutch Bachelor of Business Ad-

ministration.

@ Uurrooster - Google Chrome — O X

& httpsy//webwsp.aps.kuleuven.be/sap(bD1ubCZ

)/public/bsp/sap/z_mijnuurrstrs/uurrooster_sem_lijst.htm?s...

X|Sluiten
ﬂ| Bachelor in de handelswetenschappen (nieuw programma vanaf 2015-2018) (Brussel); 1ste opleidingsfase

@ Uurrc 7(2
@ Afdrukken @ Uurroosier week @ Lijstweergave week
Toon eerste semester Toon rest huidig semesier
Tijdstip Gebouw - Lokaal College Titel Docent{en)
Week 7 a8 g 10 11 12 13 14 15 16 17 18 1z 20 21
Maanda,
* 08:30 tot 10:30 HER1 - 01.1102 HEHS%0e wWiskunde voor bedrijfswetenschappen B De Bock D.
(1102 - (1B HW plustraject/Ap10-12)
Leslokaal)
11.02 18.02 25.02 04.03 11.03 18.03 25.03 01.04 29.04 06.05 13.05 20.05
® 08:30 tot 10:30 HER2 - 06.6219 HBH90e Wiskunde voor bednjfswetenschappen B Gheysen A
(6215 - (1B HW plustraject/Ap7-9)
Leslokaal)
11.02 18.02 25.02 04.03 11.03 18.03 2503 01.04 29.04 06.05 13.05 20.05

® 08:30 tot 10:30 HER1 - 02.2102 HBHB9a Statistiek voor bedrijffswetenschappen 1 Van Gulck S
(2102 - (1B HW standaardtraject/A1-6)
Leslokaal)

11.07 18.07 2507 04.03 11.03 14.03 2503 01.04 29.04 06.05 13.05 20.05

and the room (Verraedt, 2018). With the help of the Planning Depart-
ment, we also compile a file that contains information on the curricula
(i.e., the curriculum name, the number of subgroups, and the number of
students), the available rooms (i.e., the room name, the type of room, and

the capacity), and room requirements for the different lectures.

A C++ program was written that synthesises this information and builds
a problem dataset in the format required by the algorithm. However, it
is not always easy to translate the complex real-world timetable to our
idealised problem setting. Therefore, some choices need to be made, which

are explained below.

First, in our problem setting, each timeslot has a fixed duration of two
hours. However, in the real timetable, a few lectures have a duration of

only one hour and a few others have a duration of four hours. In the first
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case, assume that the lecture either fills the entire timeslot or we combine
two one-hour lectures into a single lecture. In the second case, we split

the lecture into two separate lectures.

Second, curricula are sometimes divided into different subgroups. This can
happen for three different reasons. In the Bachelor of Applied Linguistics,
for example, students choose two main languages from English, French,
German, Spanish, Italian, and Polish. Each combination of languages at-
tends a different set of lectures. A second example is when students can
choose different majors or minors. Students following a different major
attend a different set of lectures. Lastly, in some programmes the number
of students is simply too large for every student to attend the same lec-
ture in the same group. Therefore, the students are split into subgroups
that attend different versions of the same lecture at different times or in
different rooms. The Bachelor of Business Administration is one exam-
ple. In our dataset, we generate a different eventgroup for each subset of

students.

Finally, the algorithm needs information on which lectures can be assigned
to which rooms. Of course, lectures cannot be assigned to rooms with in-
sufficient capacity. Next, the type of room needs to be taken into account.
Regular lectures should be planned in regular rooms, PC classes should be
planned in PC rooms, language classes should be planned in specific lan-
guage rooms. Initially we only took these two constraints into account.
However, when we showed our initial solution to the Planning Depart-
ment, they listed several scheduling preferences that should be taken into
account as much as possible. Some teachers want a specific set of rooms
(e.g., rooms with a blackboard), others ask not to be assigned to certain
rooms. Some rooms should not be used on certain days. Because our
algorithm is not designed to deal with room preferences, we enforce these
preferences through hard constraints. The assignments in the current so-

lution built by the Planning Department, which we use as our starting
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point, are also assumed to be feasible, so these hard constraints do not

lead to infeasibility problems.

The resulting dataset contains 740 lectures followed by 168 different event-

groups.

4.10.2 Graphical user interface

The surrogate-based tabu search heuristic of Chapter 4 has been im-
plemented in a scheduling tool with a graphical user interface (GUI)
to facilitate implementation in practice. The GUI is programmed in
Qt Creator 4.5.0 with Qt 5.10 and compiled with the MSVC2017 com-
piler. The C++/Qt source code can be found at the following website:
https://github.com/HendrikBV/A-surrogate-based-tabu-search-h

euristic-to-optimise-people-flows-in-a-timetable.

Figure 4.6 shows the current timetable (i.e., the initial solution) at KU
Leuven Campus Brussels. The upper and lower left pane show the timetable
and building data in a tree view so that they can be validated by the user.
The upper right pane consists of four tabs. The first two tabs represent
the timetable in two different ways. In the first tab, each row refers to a
room and each column to a timeslot, while in the second tab, each row
refers to an eventgroup and again each column to a timeslot (see Figure
4.7). The user can choose to simulate the evacuation time in each timeslot
and travel time between each pair of consecutive timeslots for the current
solution. Confidence intervals for these evacuation and travel times are
then shown in the third and fourth tabs, respectively. Finally, the compu-
tational results (e.g., computation time and solution quality) are shown

in the lower right pane.

The user can choose the parameters for the tabu search and the surrogate

model using the dialog shown in Figure 4.4. If all input data are read


https://github.com/HendrikBV/A-surrogate-based-tabu-search-heuristic-to-optimise-people-flows-in-a-timetable
https://github.com/HendrikBV/A-surrogate-based-tabu-search-heuristic-to-optimise-people-flows-in-a-timetable
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W7 Settings algorithm ? X

Algorithm
Tabu list length
Number of replications of Menge per analysis during tabu search
Maximum number of candidate solutions evaluated per iteration
Replication budget tabu search

Replication budget identification step

Reset values

Surrogates

Leamning method SVR Radial Basis Kernel <

Mumber of training data

Logger
@) Summary () Detailed
Algorithm Run
@ Standard (O Analyse performance

cancel

Figure 4.4: GUI: dialog to specify the algorithm parameters.

B Run algerithm ? *

Importance evacuations (alpha)

Importance travel time consecutive events (1-alpha)

Figure 4.5: GUI dialog to start the algorithm.
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in and the settings are specified, the surrogate-based tabu search can be
started. The user can divide a unit weight between two optimisation
criteria, namely minimisation of the evacuation times or minimisation of

the travel times between events in consecutive timeslots (see Figure 4.5).

Figure 4.8 shows the GUI during the optimisation process. If a new best
solution is saved, the changes with respect to the previous solution are
shown in green. After the algorithm has finished, the best found solution
can be saved to a file. The user can also manually implement changes to
the best found solution by clicking on timetable cells and swapping two
events or moving an event to an empty cell. The GUI alerts the user

whether the move is feasible or not.

Aside from running the surrogate-based tabu search heuristic, the user
can also analyse the current solution in different ways. A first possibility
is to calculate the egress times and travel times for every timeslot without
visualisation. Before the simulation starts, a dialog appears asking the
user to specify the number of replications. Because the results of the sim-
ulation are stochastic, the user can specify how many replications should
be used to construct confidence intervals for the expected egress or travel
time in each timeslot. The results for the evacuation times are shown in
the third tab in a bar chart (see Figure 4.10). The horizontal axis denotes
the different timeslots. For every timeslot, there are three bars that show
the lower 95% confidence interval, the average, and the upper 95% confi-
dence interval for the evacuation time, respectively. In the same way, the

results for the travel times are shown in the fourth tab (see Figure 4.11).

A second possibility is to simulate either the evacuation process for a
specific timeslot ¢ or the process of travelling from events in timeslot ¢ to
events in timeslot t+ 1. This allows a more in-depth analysis for timeslots
with a high evacuation or travel time. A dialog is shown that asks the

user to specify the timeslot to be analysed. For flows between consecutive
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events, this timeslot refers to the first timeslot ¢ where the people flows
originate. If the configuration has been specified, the simulation starts. A
new screen is shown in which the building is drawn and every pedestrian
is represented by a circle (see Figure 4.12). Users can zoom in or out
using the mouse wheel. Next, at every time step, the positions of the
pedestrians are updated by Menge (see Figure 4.13). Figure 4.14 shows
the end of the simulation. We use building B-16-1 of Figure B.5 instead of
the KU Leuven building so that the simulation can be clearly visualised.
Figure 4.15 shows the building representation and the initial distribution
of pedestrians at the start of the simulation for the evacuation process in
timeslot 1 for the case study at KU Leuven Campus Brussels. Figure 4.16

shows the road map that pedestrians use to navigate towards their goals.

Finally, the user can choose different pedestrian models and parameter
settings of the simulation through the dialog in Figure 4.17. The percent-
age of the number of people that have reached their destination that is
used to define the evacuation or travel time of the simulation can also be

changed.
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Figure 4.7: GUI: alternative visualisation of the timetable at KU Leuven Campus Brussels.

Va1

STessnIg SndUIED U2ATRT NY Je KPHQS sk ‘OT'¥



Data Settings Run Help

) Timetable Analyser and Optimiser

Element
Instance name
v Basic data
Number of events
Number of eventgroups
Number of timeslots
Number of locations
Events
Eventgroups
Locations

<

Value
Timetable_Data_KUL_NoPref.

Element
Instance name
Obstacles
Stairs

Room targets

Bittargets

Teleport targets rooms

Teleport target exit

Road Map

Value
Building KUL

Road_Map_KUL.bxt

-
Timeslot 1 Timeslot 2 Timeslot 3 Timeslot 4 Timeslot 5 Timeslot 6 Timeslot 7 Timeslot 8 Timeslot 9 Timeslot 10 Timeslot 11 Timeslot 12 Timeslot 13 Timeslot 14 1~
2207 Banking_(1M_B.. Banking (IM_B.. Frans3 (38 H.. Frans3_ (3B H.. Duits3 (3B H.. People manag.. Intemational A.. Doing Business.. Nederlands:_pr.. Beurs-_en_effec.. Engels_1_(1B_H..
215 Management P... Ethiek (1B_RE/.. Ethics, Respons... Ethics, Respons... People manag. Management a... International E... International E. Engels_1_(1B H.. Mar
3102 Statistiek voor_... Financiele rapp... Introduction to... Introduction to... Mathematics f. Risicomanage. Public_Law_II. I... French_1_(1B+2. Micro-economi... Lear
; -
New possible best solution found.

25848

Figure 4.8: GUI visualisation during

algorithm run.
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Figure 4.9: GUI: visualisation of the best found solution when optimising the evacuation times without taking the various

scheduling preferences of the Planning Department into account.
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Figure 4.10: GUI: visualisation of the egress times for the initial solution of the KU Leuven instance.
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Figure 4.11: GUI: visualisation of the travel times for the initial solution of the KU Leuven instance.
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7 Pedestrian Simulation - PedVO - X

Figure 4.12: GUI: start of the simulation for flows between consecutive timeslots for a random test instance and building B-16-1
of Figure B.5.
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7 Pedestrian Simulation - PedVO - X

Figure 4.13: GUI: during the simulation for flows between consecutive timeslots for a random test instance and building B-16-1
of Figure B.5.
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Figure 4.14: GUI: end of the simulation for flows between consecutive timeslots for a random test instance and building B-16-1
of Figure B.5.
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7 Pedestrian Simulation - PedVO -

]

Figure 4.15: GUI: start of the simulation for an evacuation in the first timeslot for the KU Leuven timetable.
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Figure 4.16: GUI: road map for the KU Leuven building.
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4.10. Case study at KU Leuven Campus Brussels

G Settings Menge ? X

Pedestrian mode!
Time step (s)
Substeps

Mezn preferred speed pedestrians (m/s)

Standard deviation preferred speed pedestrians (m/s)

Maximum speed pedestrians (m/s) 1,74 z
Maximum acceleration pedestrians (m/s2)
Simulation time percentile people to destination 1,00 =
Reset Values
Cancel

Figure 4.17: GUI dialog to choose the pedestrian model and the simulation param-

eters.

4.10.3 Results

We only report the results for the case where we optimise the evacuation
times. In a first step, we ran the algorithm taking only the room capac-
ities and the room types (i.e., regular room, PC room, language room)
into account. The result of this algorithm run is shown in Figure 4.9.
Compared to the current solution proposed by the Planning Department
that has a total mean evacuation time of 8369 seconds, the solution found
by the tabu search heuristic is a considerable improvement with a total

mean evacuation time of 7707 seconds.

However, as was mentioned in Section 4.10.1, when we showed this solu-
tion to the Planning Department they indicated that it violates various
scheduling preferences. We then adjusted the list of feasible lecture-room

combinations and reran the algorithm. However, in this case the heuris-
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tic did not find a solution that is a significant improvement compared to
the solution proposed by the Planning Department. This can mean that
either our algorithm fails on this instance or that the solution of the Plan-
ning Department is already very good taking into account all the other

scheduling constraints that need to be met.

4.11 Conclusions and future research

This chapter presents a surrogate-based tabu search heuristic to assign
events to rooms in a generic timetabling problem to improve the resulting
people flows. The people flows are simulated using the microscopic Menge
simulator. The tabu search uses a simple neighbourhood move that ran-
domly selects a timeslot and evaluates all feasible swaps of events between
rooms in that timeslot. Instead of evaluating all candidate solutions in
each iteration with the computationally expensive Menge simulator, a sur-
rogate model is used to quickly estimate the objective value of a candidate

solution.

The heuristic is applied two different problem types to show that it can be
used to tackle a wide variety of problems where timetabling decisions have
an impact on people flows. The first example is an evacuation problem,
where all people attending events in timeslot ¢ need to be evacuated to
safety. The second example considers the problem of optimising people

flows between events in consecutive timeslots.

For both problems, eight different combinations of machine learning tech-
nique and kernel type are compared to fit the best surrogate model. The
predictions of the surrogate models are also validated on all candidate so-
lutions in three different iterations for four problem instances. Extensive
computational tests show that the heuristic succeeds in finding solutions

with significantly improved people flows for both problem types.
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4.11. Conclusions and future research

Next, the heuristic is implemented in a scheduling tool with a GUI and
applied to the timetabling problem at KU Leuven Campus Brussels. We
focused on the objective function where we want to minimize the evac-
uation times over all timeslots. When the heuristic only needs to take
the type and capacity of the rooms into account, it succeeds in finding a
solution with a significantly improved evacuation times. However, when
all scheduling preferences listed by the Planning Department are taken
into account as hard constraints, the model does not find a solution that
is better than the current solution proposed by the Planning Department.
Still, these results show that the model can be applied to large problem
instances with many pedestrians without problems. We believe that this
software tool is valuable in illustrating how the algorithm works and in
visualising the proposed solution to the different stakeholders involved in

the project.

A first direction for future research is the extension of the model to in-
clude a constraint requiring one or more events (in different timeslots)
to be planned in the same room. For example, in a conference schedule,
talks on the same topic should be planned sequentially in the same room.
In this case, swapping sessions between rooms is probably more realistic
than swapping individual events. Secondly, the use of a more sophisti-
cated identification criterion might improve the probability of returning

the truly best solution encountered during the search process.

Another valuable future research direction is to validate the model in
practice by performing real-life experiments, as the model remains only
theoretical. Unfortunately, due to the complexity and scale of the prob-
lem, this is not easy to achieve in practice. Additionally, the current
problem has made abstractions of constraints that might be present in
the real-life problem. While the model can accommodate some schedul-
ing constraints by indicating which events can(not) be assigned to which

rooms, this is not possible for all types of scheduling constraints, such as
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requiring that two or more lectures are planned in the same room. To
encourage implementation in practice, the model could be extended to

accommodate these requirements.






Chapter 5

Comparison of the

pedestrian models of
Chapter 3 and Chapter 4

5.1 Introduction

In the previous two chapters we have developed two different scheduling
methods to build timetables to improve travel times between events in
consecutive timeslots or evacuation times in the event of an emergency.
In Chapter 3, we have used a macroscopic network model to describe the
people flows. This macroscopic model treats the crowd as a whole. By way
of contrast, in Chapter 4, we have used the microscopic Menge simulator
to describe the people flows. In this microscopic model, each individual
is represented as a separate entity. Up until now, we have mostly focused

on the computational properties of the different optimisation models, but

169
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5.2. Comparison of both models

we have not compared both pedestrian models in detail.

In this chapter, we compare the results predicted by both pedestrian mod-
els. We also investigate the robustness of both models. The remainder
of this chapter is structured as follows. In Section 5.2, we compare how
both models evaluate different timetable solutions. Then in Section 5.3,
we analyse the robustness of the network model in greater detail, followed
by an analysis of the robustness of the Menge simulator in Section 5.4.
Next, Section 5.5 briefly discusses the modelling power of each of the two

models. Finally, Section 5.6 concludes the chapter.

5.2 Comparison of both models

We compare the results of the Menge simulator of Chapter 4 with the
results of the network model of Chapter 3. We use exhaustive search
on timetable instances ES1, ES2, ES3, ES4, and ES5 and building B-8-2
and minimise the evacuation time. The objective values calculated by the

Menge simulator are based on 10 simulation replications.

Figure 5.1 shows the results for instance ES1. While the correlation be-
tween the objective values calculated by both models for every solution in
the solution space is high (0.92), there is nevertheless considerable varia-
tion in valuations of individual solutions. This is clear from the first graph
of Figure 5.1, where solutions are sorted according to increasing objective
values calculated with the Menge simulator. The objective values calcu-
lated by the network model vary widely between adjacent solutions. This
can also be seen in the the second graph of Figure 5.1, where solutions
that have the same objective value according to one model, can have dif-
ferent valuations according to the other model. The same trends can be

observed for the other instances, as is shown in Figure 5.2.

We can take a closer look at the individual solutions. Table 5.1 compares
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Figure 5.1: Comparison between the network model of Chapter 3 and the Menge

simulator of Chapter 4 for instance ES1.

The tests use exhaustive search on timetable instance ES1 in combination with building
B-8-2. For the Menge simulator, 10 simulation replications were used to calculate
the objective values. The first figure shows the objective values calculated by both
models for every solution in the solution space. The solutions are sorted according
to increasing objective values calculated by the Menge simulator. The second figure

shows the correlations between objective values calculated by both models.
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5.2. Comparison of both models

the best three solutions identified by the network model with the best
three solutions identified by the Menge simulator for instances ES1, ES2,
ES3, ES4, and ES5 in combination with building B-8-2. Let a —b—c—d
denote a solution for instance ES1 where event 1 is assigned to room
a, event 2 to room b, event 3 to room c and event 4 to room d. The
network model ranks solution R12 — R21 —R22 — R11 and solution R12 —
R22 — R21 — R11 as the best solutions with both an evacuation time of
66.8 seconds. This intuitively makes sense as these rooms are closest to
the exit of the building (see Figure B.4). The best solution according to
Menge is solution R12 — R22 — R21 — R11 with an evacuation time of 78.9
seconds, while solution R12 — R21 — R22 — R11 has an evacuation time of
84.5 seconds (the 4th best solution according to Menge). So both models

actually agree on which solution is the best one for instance ES1.

From the results of Table 5.1, three observations can be made. First, in
general, solutions that have a good ranking according to one model also
have a good ranking according to the other model. Second, for every
problem instance, many solutions in the solution space have more or less
the same objective values. This is one explanation for the patterns in
Figures 5.1 and 5.2. Third, the evacuation time predicted by the network
model seems to be determined in large part by the distance of the longest
route used by people evacuating the building. For example, for instance
ES2, the network model predicts that solution R42—R12—R22—R32—R11
has a significantly higher evacuation time than the best solutions, because
one group of people needs to travel from the fourth floor to the exit
of the building. By contrast, the Menge simulator predicts that that
same solution has more or less the same evacuation time as the best
solutions. The results of the Menge simulator clearly depend more on
the interactions of pedestrians and the resulting congestion, than on the

distance of the longest route.
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Figure 5.2: Comparison between the network model of Chapter 3 and the Menge
simulator of Chapter 4 for instances ES2, ES3, ES4, and ES5.
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Table 5.1: Comparison of the best solutions identified by the network model of
Chapter 3 and the Menge simulator of Chapter 4 for different problem instances.

The tests use exhaustive search on timetable instances ES1, ES2, ES3, ES4, and ES5 in
combination with building B-8-2. For the Menge simulator, 10 simulation replications
were used to calculate the objective values. ‘Size’ indicates the number of solutions in
the solution space. The solution representation a — b — ... — n means that event 1 is
assigned to room a, event 2 to room b and event |E| is assigned to room n. For every
instance, the best three solutions according to the network model and the best three
solutions according to the Menge simulator are listed and compared. The solutions are

sorted according to increasing objective values calculated by the network model.

Instance Size Solution Network model Menge
ET Rank ET Rank

ES1 480 R12-R22-R21-R11 66.8 1 78.9 1
R12-R21-R22-R11 66.8 1 84.5 4
R12-R32-R21-R11 72.6 3 81.1 2
R12-R32-R22-R11 72.6 3 85.9 7

Continued on next page



174

5.2. Comparison of both models

Table 5.1 — continued from previous page

Instance Size Solution Network model Menge
ET Rank ET Rank
R12-R41-R22-R11 91.4 6 84.0 3
ES2 1608 R21-R12-R22-R32-R11 103.4 1 96.8 1
R12-R11-R22-R32-R21 105.8 2 98.9 6
R11-R12-R22-R32-R21 105.8 2 101.9 27
R21-R12-R31-R32-R11 140.6 21 97.3
R42-R12-R22-R32-R11 169.4 125 97.2
ES3 1379 R11-R31-R12-R21-R22-R32 120 1 93.2
R11-R31-R12-R22-R21-R32 120 1 95.4 19
R21-R11-R12-R22-R31-R32 121.4 95.0 14
R22-R11-R12-R21-R31-R32 121.4 96.0 24
R22-R11-R12-R21-R42-R31 142.6 23 93.0
R21-R11-R12-R22-R42-R41 153.4 52 93.0
R42-R11-R12-R21-R31-R22 156.2 56 92.1
ES4 1386 R11-R42-R21-R32-R22-R12-R31 230.8 1 138.6 37
R12-R42-R11-R21-R22-R32-R31 232 2 137.8 20
R11-R42-R12-R21-R22-R32-R31 232 2 139.4 69
R21-R42-R11-R32-R22-R12-R31 232 2 140.3 118
R11-R31-R12-R21-R22-R32-R41 245.2 43 135.7
R12-R42-R21-R11-R41-R22-R31 252.6 93 136.4
R22-R42-R21-R11-R41-R12-R32 253.8 103 136.0
ES5 5668 R12-R22-R11-R32-R42-R31-R41-R21 206.2 1 116.8
R12-R22-R11-R31-R42-R32-R41-R21 206.2 1 1185 22
R11-R22-R12-R31-R42-R32-R41-R21 206.2 1 118.7 28
R11-R22-R12-R32-R42-R31-R41-R21 206.2 1 118.9 35
R11-R22-R12-R32-R41-R42-R31-R21 215.2 30 115.7 1
R11-R32-R12-R21-R31-R42-R22-R41 248.8 702 116.1 2
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Figure 5.3: Sensitivity analysis for the network model of Chapter 3.

The tests use exhaustive search on timetable instance ES1 in combination with building
B-8-2. Three parameters are changed, viz. vimgez (the maximum free walking speed),
« (the scaling parameter in equation (3.1) for the relationship between walking speed

and density), and the number of people in each event.
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5.3 Robustness network model Chapter 3

We test the robustness of the network model of Chapter 3 by changing
three parameters of the model. The parameters that are changed are
Vimaz (the maximum free walking speed in zero density), « (the scaling
parameter in equation (3.1) for the relationship between walking speed
and density), and the number of people that attend each event. We use
exhaustive search on timetable instance ES1 in combination with building
B-8-2 and minimise the evacuation time. The results are displayed in

Figure 5.3.

Each of the parameters has an impact on the absolute size of the objective
values for each solution, but the rank order of the solutions remains the

same for virtually all solutions in the solution space for every change in
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parameter values. This implies that the network model is quite robust,
since measurement or estimation errors in the parameters do not have an

impact on the ability of the optimisation model to identify good solutions.

5.4 Robustness Menge simulator Chapter 4

We also test the robustness of the Menge simulator. First, in Section 5.4.1
we investigate the impact of changing the definition of the evacuation
or travel time, based on the number of people that have reached their
destination. Next, in Section 5.4.2 a sensitivity analysis is performed on
the parameters of the Menge simulator and the number of people in the

problem instance.

5.4.1 The impact of the definition of the evacuation

or travel time

In Chapter 4, we always used the time that the last person arrives at
his or her destination as the evacuation or travel time for the simula-
tion. However, because a microscopic simulator represents every person
as a separate entity, we can also define the evacuation or travel time as
the time when a given percentage of the people in the simulation have
reached their destination. Figure 5.4 shows the distribution of the times
when the different agents in the simulation reach the exit of the building
during an evacuation. For instance T-8-1 with building B-8-2, the aver-
age evacuation time for timeslot 1 is 75.9 seconds, while the evacuation
time of the last person is 135 seconds. For instance T-16-1 with building
B-16-1, the average evacuation time for timeslot 1 is 66.7 seconds, while

the evacuation time of the last person is 121 seconds.
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Figure 5.4: The distribution of the times when the different agents in the simulation

reach the exit of the building.
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The coefficients of variation (COV) for the evacuation or travel times as
a function of the percentage of people that have reached their destination
over different simulation runs are shown in Figure 5.5. It is clear that
the COV is much larger if the evacuation or travel time is defined as the
time when the last person has reached his or her destination, compared to
when it is defined as the time when 50 or 95 percent of people have reached
their destination. We could thus reduce noise during the optimisation by
opting to define the evacuation or travel time as the time when e.g. 95

percent of people have reached their destination instead of 100 percent.

We again compare the predicted ranking of all solutions in the solution
space of instance ES1. If we define the evacuation time as the time when
95 percent of people have reached safety, Menge predicts solution R12 —
R21 — R22 — R11 to be the best solution with an evacuation time of
72 seconds, which is also one of the two best solutions according to the
network model. If the evacuation time is defined as the time when 50
percent of people have reached safety, the two best solutions according
to the network model have predicted evacuation times of 49.5 and 49.6
seconds according to Menge, while the best solution has an evacuation

time of 48.1 seconds.

5.4.2 Sensitivity analysis parameters

Next, we analyse the impact of changing three parameters of the model,
namely the mean preferred free walking speed, the standard deviation of
the preferred free walking speed, and the number of people in the prob-
lem instance. We again use exhaustive search on timetable instance ES1
in combination with building B-8-2 and minimise the evacuation time.
Figure 5.6 displays the results for the mean preferred free walking speed,

Figure 5.7 shows the results for the standard deviation of the mean pre-
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Figure 5.5: The coefficients of variation for the evacuation or travel time as a function

of the number of people that have reached their destination.

‘ET’ refers to the evacuation time in a given timeslot. ‘TT’ refers to the travel time

between two consecutive timeslots.
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Figure 5.6: Sensitivity analysis of the Menge simulator for the mean preferred free

walking speed.
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ferred free walking speed, and Figure 5.8 illustrates the results for the

number of people in the instance.

In contrast to the network model of Chapter 3, the Menge simulator of
Chapter 4 is considerably more sensitive to changes in parameters. Not
only the absolute value of the solutions is impacted, but also their relative
ranking. This holds true for changes to each of the three parameters.
Moreover, the sensitivity is much larger for the case where the evacuation
time is defined as the time when the last person reaches safety, than for
the case where the evacuation time is defined as the time when either 50

or 95 percent of people have reached safety.

5.5 Modelling power

The Menge simulator of Chapter 4 can easily be used to analyse more

complex scenarios. We consider the following two scenarios:

1. Include incoming fire-fighters. This can be done by adding
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Figure 5.7: Sensitivity analysis of the Menge simulator for the standard deviation of

the preferred free walking speed.
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Figure 5.8: Sensitivity analysis of the Menge simulator for the number of people in

the problem instance.
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one or more agent groups that have as their goal the area(s) of the

building where there is fire.

2. Inability to use a certain stairwell or hallway of the building
due to fire. This can be achieved by removing one or more arcs
in the road map. The wayfinding algorithm will then calculate a
different route towards the exit for each agent, so that the area of
the building where there is a fire, is avoided. Unfortunately, the
road map implementation in Menge is static, so this can only be
set at the start of the simulation. It is not possible to dynamically
change the road map, based on how the fire is spreading through the
building. It is possible, however, to define a different roadmap for
every (group of) pedestrian(s), so that for every group of pedestrians

different possible route choices are available.

These possibilities are illustrated in Figures 5.9 - 5.14. In the base case
building B-16-1 is evacuated in a standard way where both exits and
stairwells of the building can be used. The initial distribution of people
over the building is shown in Figure 5.9. The evacuation process for the
base case is shown in Figure 5.10. In a second scenario, we assume that the
upper stairwells and exit of the building cannot be used due to a fire. We
also assume that a group of firefighters travels to each floor of the building
to extinguish the fires. Figure 5.11 shows the middle of the evacuation
process. The yellow circles represent people that leave the building, while
the green circles represent firefighters who enter the building. Figure 5.12
shows a later moment when most of the people have reached safety, while
the firefighters have reached their designated area. In a third scenario, we
assume that firefighters cannot use the stairwell where there is fire, but
instead use the other stairwell to travel to each floor. Then the flow of
firefighters crosses the flow of people evacuating the building, as can be
seen in Figure 5.13. In Figure 5.14, we see the same scenario at a later

time, when the firefighters have almost reached their designated areas.
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It is more difficult to include such scenarios into the network model. We
can, however, model the inability to use certain stairwells or hallways in

a building in the same way, by removing certain arcs from the network.
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Figure 5.9: Evacuation base case: start.
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Figure 5.10: Evacuation base case: middle.
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Figure 5.11: Evacuation fire upper stairwell with firefighters (1): middle.

981

Tomod SUI[[epoIN ‘GG



7 Pedestrian Simulation - PedVO

Figure 5.12: Evacuation fire upper stairwell with firefighters (1): end.
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Figure 5.13: Evacuation fire upper stairwell with firefighters (2): middle.
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Figure 5.14: Evacuation fire upper stairwell with firefighters (2): end.
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5.6 Discussion and conclusion

In this chapter we have compared the network model of Chapter 3 and the
microscopic Menge simulator of Chapter 4. To apply the former model to
a problem instance, we need to represent a building as a graph G = (N, A),
where the nodes A represent origins, destinations, and junctions, and the
arcs A represent hallways and stairwells in the building. We need to
enumerate all possible paths in the graph and list the arcs that are on
each of those paths. For every origin-destination pair (i.e., going from
one room to another room or going from one room to one of the exits), we
need to indicate which paths one can take and the percentage of people
that are expected to take each of those paths. We also need to specify the
length and surface area of each arc (i.e., the physical space in the building
that the arc represents) and whether the arc represents stairs or not. To
use the latter model, we need to specify the coordinates of all obstacles
such as walls on their actual scale. We also need to define goals for the
rooms and exits in the building. Finally, we have to define either a road
map, a navigation mesh, or a potential field for pedestrians to find their
way through the building from their origin to their destination. In our
implementation, we have used a road map, which is a graph comparable
to the network model of Chapter 3.

Concerning the calibration of the models, our implementation of the net-
work model requires the specification of three parameters, namely v.naz,
i.e. the maximum free walking speed of pedestrians in zero density, «, i.e.
the scaling factor for the relationship between walking speed and density
(see equation 3.19), and ~, i.e. the correction term for the walking speed
on stairs compared to horizontal surfaces. For the Menge simulator on the
other hand, each of the different pedestrian models has different parame-
ters that need to be specified. However, the most important parameters

that are shared by all models are the mean of the preferred free walking
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speed and the standard deviation of the preferred free walking speed. We
have used data from the literature for these parameter settings (Helbing
and Molndr, 1995). However, it is not clear that the parameter values
obtained from these studies are the values of the population in our prob-
lem. The values for the students at KU Leuven Campus Brussels could be
different from the values in the literature. Indeed, even in the literature
there are large differences between values of different studies (see Section
2.3.1). Ideally, experiments should be conducted to obtain the real-world
values applicable to our problem. However, such a study is outside the

scope of this thesis.

Apart from the choice of parameter values, other assumptions could have
an impact on how closely the results of the models reflect the real world.
The assumption of which routes students use can have a large effect on
the resulting travel or evacuation times. In the network model, we need
to predict the percentage of students that use each of the possible paths
to go from location A to location B. In the Menge simulator, the standard
wayfinding algorithm assumes that people always take the shortest route.
This assumption is clearly not realistic, as observations have shown that
during evacuations people often take the same route they used to enter
the building or follow other people during an emergency, although shorter
or less crowded routes are available (e.g., Helbing et al., 2005). Again,
empirical studies should be conducted to observe the actual behaviour of
the population in our problem setting. Other assumptions that can impact
the results, are the number of people assumed to be in the building at any
given time and whether people all start walking at the same time or at

different times.

The previous sections have shown that both models generally agree on the
quality of the best solutions, but that there is considerable variation in
evaluation for the other solutions. Moreover, the network model is much

less sensitive to parameter settings or assumptions on the number of peo-
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ple in the building than the microscopic simulator. On the other hand, the
microscopic simulator is more flexible and has a greater modelling power.
For every real-world application, one should question whether the increase
in modelling detail offsets the increase in computational complexity and

sensitivity to parameter values and assumptions.
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Conclusion

The study of pedestrian walking behaviour and crowd dynamics is in-
teresting for a variety of reasons. The design of safe and comfortable
infrastructure for pedestrian traffic is increasingly important in modern
cities because of growing traffic congestions and environmental concerns.
Additionally, the importance of crowd management has been revealed by
major accidents in the past, such as the Innovation fire in Brussels on 22
May 1967, where 251 people were killed; the Heysel Stadium disaster on
29 May 1985, where 39 people were killed; and the crowd disaster at the
2010 Love Parade, where 21 people died from suffocation.

In Chapter 2, we have presented a review of the use of optimisation mod-
els for pedestrian evacuation and design problems. The articles are clas-
sified according to the problem type that is studied, the level of model
realism, and the modelling or solution technique. To substantiate the
classification criteria and to provide a background for the reader, relevant
empirical research and descriptive models (e.g., social-force and cellular

automata models) are discussed. We concluded that most of the recent

193
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models explicitly include pedestrian dynamics, specifically congestion, but
more attention should be given to calibration and implementation of the
proposed models. Furthermore, optimisation models could benefit from

including some of the modelling techniques used in descriptive models.

Chapter 2 also showed that most optimisation models have focused on
different types of evacuation problems, such as the evacuation of a room,
a building, or an aircraft. Only a few models consider design problems
(e.g., determining the optimal positions and size of emergency exits, po-
sitioning of obstacles in front of bottlenecks to reduce clogging) or crowd
management under normal conditions. To the best of our knowledge, no
models consider the impact of scheduling decisions in a timetable on peo-
ple flows between consecutive events or on the evacuation process in the
event of an emergency. This thesis has aimed to fill the gap. We have

presented two different models to optimise the people flows in a timetable.

Chapter 3 has presented a two-stage integer programming approach for
building a university course timetable that aims at minimising the travel
times between lectures in consecutive timeslots and the evacuation times
in the event of an emergency. The first stage minimises the violation of the
teacher and educational preferences by assigning lectures to timeslots and
rooms. The second stage reassigns classrooms to lectures of the timetable
of the first stage and minimises the travel or egress times. The student
flows are modelled using a network model, which is a macroscopic model
where the building is represented as a graph and people ‘flow’ through
the arcs from node to node. The network model takes congestion into ac-
count by assuming density-dependent travel times through the arcs, based
on the fundamental diagram of pedestrian walking behaviour. The con-
ceptual model is applied to the dataset of the Faculty of Economics and
Business of the KU Leuven Campus Brussels and is tested and validated
with 7 adapted instances from the literature. In contrast to a monolithic

model, the two-stage model consistently succeeds in finding quality feasi-
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ble solutions with significantly reduced travel and egress times. However,
the two-stage MIP approach is not able to solve the large KU Leuven in-
stance. Moreover, due to its hierarchical nature, the two-stage approach
can only find a single endpoint of the Pareto-front between the optimisa-
tion of the scheduling preferences and the minimisation of the travel or
egress times. To deal with these problems, a metaheuristic approach is
developed based on a synchronous parallel simulated annealing impleme-
nation. Results show that parallelisation improves the efficiency of the
heuristic significantly and that it is able to improve upon the solutions

found by the two-stage MIP approach.

In contrast to Chapter 3 that focuses on the university course timetabling
problem, Chapter 4 focuses on a generic timetabling problem, to arrive
at a generic, flexible model for timetabling problems with people flows.
The microscopic Menge simulator developed by Curtis et al. (2016) is im-
plemented in a surrogate-based tabu search heuristic to iteratively find
solutions with improved people flows. Both the evacuation time in each
timeslot as well as the travel time between events in each pair of con-
secutive timeslots can be included in the objective function. However,
to reduce the complexity and to keep the model generic, only the as-
signment of events to rooms is considered. The assignment of events to
timeslots is considered fixed. Instead of evaluating every candidate so-
lution with the computationally expensive Menge simulator, a surrogate
model is used to filter good candidate solutions from bad candidate solu-
tions. Eight combinations of machine learning technique and kernel type
are tested on a training set as well as during algorithm run. Extensive
computational tests show that the model can find timetables with sig-
nificantly reduced people flows. Finally, we show an application of the
model to the timetabling problem of KU Leuven Campus Brussel for the
second semester of academic year 2018-2019. For this purpose, the model

has been implemented in a scheduling tool with graphical user interface



196

Chapter 6. Conclusion

(GUI). We believe the GUI can help to show people involved in the plan-

ning process how the algorithm works and persuade them of its value.

In Chapter 5, we have compared the results of the two types of pedestrian
models in greater detail. The robustness of the models with respect to
the choice of parameter values is investigated. The results show that the
microscopic model has greater modelling power than the network model,
but is also much more sensitive to changes in parameter values and as-
sumptions. For every specific application of the algorithms to a real-world
problem, the question is whether the increase in modelling realism offsets
the difficulty of calibration and the increase in computational complexity.
If the parameter values and assumptions used in the pedestrian models
do not reflect real-world behaviour then there is no value in using a more
complex microscopic simulator. Ideally, parameter values and behavioural
assumptions used in the model should be based on actual observations re-
lated to the problem at hand. However, such endeavour is outside of the
scope of this thesis. In this thesis, we have focused on the computational
properties of the two types of models and have developed different heuris-
tic optimisation techniques that can be used to build timetables with
improved travel times between events in consecutive timeslots and egress

times in the event of an emergency.

Continuum models (see Section 2.4.1) are a type of models that can pro-
vide a middle ground between network models and microscopic simulation
models. These models offer greater detail than the network model, but
still describe the crowd as a whole using average quantities such as the
speed and density at a given time and location. As such, they are less sen-
sitive to the choice of modelling assumptions and parameter values than
the microscopic models. One example is the model of Hughes (2002).
Many microscopic models usually model the trajectories of N pedestrians
with a system of N ordinary differential equations that link the position

of each pedestrian as a function of time with his or her walking speed as
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a function of time. By contrast, Hughes (2002) models crowds with a sin-
gle partial differential equation based on the conservation of flow, which
states that the decrease in density in a given location over a specific time
should equal the net outflow of people from that location over that spe-
cific time. Continuum and microscopic simulation models both need to
be solved by numerical techniques, such as the well-known Runge-Kutta
method. We could thus replace the Menge simulator in our surrogate-
based tabu search heuristic with a continuum model. A valuable future
research direction can be to compare both pedestrian models used in this

thesis with a continuum model.






Appendix A

The timetable instances

Table A.1: The timetable instances.

|E| refers to the number of events (or lectures) in the instance, |T| the number of

timeslots, and |R| the number of available rooms.

Instance  |E| |T| |R| Details Chapters
FEB2012 396 30 56 Real-world data 3
KUL2018 740 30 52 Real-world data 4
comp01 160 30 7 Real-world data from literature 3
comp02 283 25 16 Real-world data from literature 3
comp03 251 25 16 Real-world data from literature 3
comp04 286 25 18 Real-world data from literature 3
comp05 152 36 9 Real-world data from literature 3
comp06 361 25 18 Real-world data from literature 3
comp07 434 25 20 Real-world data from literature 3
ML 21 3 8 Randomly generated 3
T-8-1 24 5 8 Randomly generated 4
T-8-2 26 5 8 Randomly generated 4
T-8-3 24 5 8 Randomly generated 4
T-8-4 25 5 8 Randomly generated 4

Continued on next page
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Table A.1 — continued from previous page

Instance  |E| |T| |R| Details Chapters
T-8-5 32 5 8 Randomly generated 4
T-16-1 57 5 16 Randomly generated 4
T-16-2 48 5 16 Randomly generated 4
T-16-3 48 5 16 Randomly generated 4
T-16-4 42 5 16 Randomly generated 4
T-16-5 44 5 16 Randomly generated 4
ES1 4 1 8 Randomly generated 4,5
ES2 5 1 8 Randomly generated 4,5
ES3 6 1 8 Randomly generated 4,5
ES4 7 1 8 Randomly generated 4,5
ES5 8 1 8 Randomly generated 4,5




Appendix B

The building layouts

Figure B.1: Building B-8-1.

A building consisting of eight rooms divided over two floors. The blue-striped area

indicates stairs going down and the red-striped area indicates stairs going up.
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Figure B.2: The network model representation for building B-8-1.
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Figure B.3: Building B-8-2.

A building consisting of eight rooms divided over four floors. The blue-striped areas

indicate stairs going down and the red-striped areas indicate stairs going up.
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Figure B.4: The network model representation for building B-8-2.
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B. The building layouts

Figure B.5: Building B-16-1.

A building consisting of sixteen rooms divided over four floors and two stairwells. The

blue-striped areas indicate stairs going down and the red-striped areas indicate stairs

going up.
R41 R31 R21 R11
R42 R32 R22 R12
R43 R33 R23 R13
R44 R34 R24 R14

exit

exit



Appendices

205

Figure B.6: The network model representation for building B-16-1.
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B. The building layouts

Figure B.7: Building B-16-2.

A building consisting of sixteen rooms divided over four floors and three stairwells.

The blue-striped areas indicate stairs going down and the red-striped areas indicate

stairs going up.
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Figure B.8: The network model representation for building B-16-2.
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B. The building layouts

Figure B.9: Building B-20.

A building consisting of eight rooms divided over four floors and three stairwells. The

blue-striped areas indicate stairs going down and the red-striped areas indicate stairs

going up.
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Figure B.10: The network model representation for building B-20.
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B. The building layouts

Figure B.11: The building of KU Leuven Campus Brussels.
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Figure B.12: The network model representation for the building of KU Leuven Cam-

pus Brussels.
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