
Implicit quantification made explicit:
How to interpret blank nodes and universal variables in Notation3 Logic

Dörthe Arndta,∗, Tom Schrijversb, Jos De Rooc, Ruben Verborgha

aGhent University – imec, IDLab, Department of Electronics and Information Systems, Technologiepark-Zwijnaarde 122, 9052 Gent, Belgium
b KU Leuven – Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven, Belgium

c Agfa Healthcare – Moutstraat 100, 9000 Ghent, Belgium

Abstract

Since the invention of Notation3 Logic, several years have passed in which the theory has been refined and applied in
different reasoning engines like Cwm, EYE, and FuXi. But despite these developments, a clear formal definition of
Notation3’s semantics is still missing. This does not only form an obstacle for the formal investigation of that logic
and its relations to other formalisms, it has also practical consequences: in many cases the interpretations of the same
formula differ between reasoning engines. In this paper we tackle one of the main sources of that problem, namely
the uncertainty about implicit quantification. This refers to Notation3’s ability to use bound variables for which the
universal or existential quantifiers are not explicitly stated, but implicitly assumed. We provide a tool for clarification
through the definition of a core logic for Notation3 that only supports explicit quantification. We specify an attribute
grammar which maps Notation3 formulas to that logic according to the different interpretations and thereby define
the semantics of Notation3. This grammar is then implemented and used to test the impact of the differences between
interpretations on practical cases. Our dataset includes Notation3 implementations from former research projects and
test cases developed for the reasoner EYE. We find that 31% of these files are understood differently by different
reasoners. We further analyse these cases and categorize them in different classes of which we consider one most
harmful: if a file is manually written by a user and no specific built-in predicates are used (13% of our critical files),
it is unlikely that this user is aware of possible differences. We therefore argue the need to come to an agreement on
implicit quantification, and discuss the different possibilities.

Keywords: N3, Scoping, RDF, Attribute Grammar, Formal Semantics

1. Introduction

The invention of Notation3 (N3) [1–3] brought two
improvements to the Semantic Web: firstly, it provides
an alternative to the rather verbose RDF/XML syntax
[4] to represent RDF [5]; secondly, it extends the RDF
model [6] with (1) universal variables, (2) the possibil-
ity to cite formulas, and (3) several logical operators,
including in particular the implication operator. To-
gether with these syntactic extensions a new rule-based
logic was proposed, Notation3 Logic (N3Logic). While
the first contribution has already had a big impact sev-
eral years ago – it highly influenced the W3C recom-

∗Corresponding author
Email addresses: doerthe.arndt@ugent.be (Dörthe Arndt),

tom.schrijvers@cs.kuleuven.be (Tom Schrijvers),
jos.deroo@agfa.com (Jos De Roo),
ruben.verborgh@ugent.be (Ruben Verborgh)

mendation Turtle [7] – the acceptance of the logic is
still lagging behind. Even though N3Logic is imple-
mented by several reasoners such as Cwm [8], EYE [9],
and FuXi [10], its semantics has never been fully for-
malised. That not only forms a major obstacle for
N3Logic becoming a standard, it has also practical con-
sequences: the interpretations of certain formulas differ
between the above mentioned engines. Considering the
fact that N3Logic was designed for the Semantic Web,
where interoperability is crucial, this problem deserves
special attention.

In this paper we focus on the formalization of implicit
quantification: N3Logic allows the user to express uni-
versal and existential quantification of variables implic-
itly, but the informal explanation of how this has to be
interpreted [1, 2] is unclear about the scope of such vari-
ables. In our previous work [11] we have illustrated the
differences in the reasoning results of the two reasoners

Preprint submitted to Elsevier April 26, 2019

EYE and Cwm on a number of examples, and proposed
a direct semantics for Cwm’s interpretation of the W3C
team submission [2]. This paper builds on the previous
findings and addresses the following research questions:

(i) How can we formally express the difference be-
tween two interpretations of the same N3 formula?

(ii) How do existing interpretations of N3Logic con-
ceptually differ in their way of handling implicit
quantification?

(iii) How often does this conceptual difference lead
to conflicting interpretations of formulas used in
practical applications?

(iv) Which kinds of constructs cause these conflicting
interpretations in practice and how likely is it that
a file containing these constructs is actually subject
to the problem?

To provide a better picture of the differences in the
interpretations, we provide an elaboration semantics.
We express the different interpretations in a core logic
where only explicit quantification is allowed. We com-
pare these translations for several N3 files, which were
used in practical applications implemented in former re-
search projects and provide an analysis of our findings.
The contributions of this paper are the following:

• We define a core logic for N3 which only features
explicitly quantified variables. The logic supports
all concepts which are crucial for N3 such as the
possibility to cite formulas.

• We clarify the differences in the interpretations of
implicitly scoped formulas by the reasoners Cwm
and EYE in terms of the core logic.

• We implement a translator from N3 into the dif-
ferent interpretations expressed in core logic. This
translator can be used to test for conflicts and to
avoid ambiguities.

• We perform a quantitative and qualitative evalua-
tion of the occurrence of different interpretations
for N3 files which are used in practice to better un-
derstand the practical impact of the problem.

The remainder of the paper is structured as follows:
Section 2 provides an informal introduction to N3Logic
with a special focus on implicit quantification to make
the reader familiar with the related problems. After that,
Section 3 defines the core logic for N3 which we then
use to represent different interpretations of N3Logic. To
obtain these different interpretations we make use of an
attribute grammar which we define in in Section 4. This

attribute grammar is then used to implement a translator
which performs the mapping from N3 into its different
interpretations in our core logic. In Section 5 we explain
this implementation and use it to study the impact of the
differences on files which are used in real applications
and to analyse the cases where the interpretations differ
in further detail. In Section 6 we discuss possible so-
lutions for the problem. Section 7 puts our findings in
context to other related work. Section 8 concludes the
paper and provides an outlook on future work.

2. Background and Motivation

Before providing the formal definition of N3Logic
and its semantics later in this paper, this section in-
troduces the topic by examples. Our aim is to make
the reader familiar with the uncertainties related to im-
plicit quantification. If not indicated differently, the se-
mantics presented here is based on the different official
sources which can be found for N3Logic, in particular
the W3C team submission [2], and the paper introduc-
ing the logic [1].

2.1. Simple triples and conjunctions

N3Logic is an extension of RDF. As in the latter, sim-
ple statements in N3 can be expressed in triples of the
form subject, predicate and object, such as:

:Kurt :knows :Albert. (1)

This triple means “Kurt knows Albert”. Each ground
component in N3 is represented by either an Internation-
alized Resource Identifier (IRI) [12], as done here, or by
a literal. Different from RDF, literals can occur in all
positions of a triple, not only in object position. In the
example the IRI is abbreviated [7] with the empty prefix
which here and in the remainder of this paper refers to
an example namespace:

@prefix : <http://example.org/ex#>.

:Kurt, for instance, stands for the full IRI

<http://example.org/ex#Kurt>

If two triples occur together as in:

:Kurt :knows :Albert. :Albert :knows :Kurt.

This is understood as the conjunction of the formulas:

“Kurt knows Albert and Albert knows Kurt.”

2

2.2. Referring to Formulas
The formulas shown above, but also more complex

formulas, can be cited using curly brackets. The state-
ment

:John :says {:Kurt :knows :Albert.}. (2)

means “John says that Kurt knows Albert.” The same
notation of curly brackets is used, if one formula implies
another, the implication symbol is expressed by “=>”.
The formula

{:Kurt :knows :Albert.} =>

{:Albert :knows :Kurt.}. (3)

represents the rule “If Kurt knows Albert then Albert
knows Kurt.”

2.3. Implicit Quantification
The examples given so far did not contain vari-

ables and their interpretation was rather straightforward
(maybe with the exception of cited formulas which can
lead to discussions [13]). This is different when it comes
to implicit quantification. Just like RDF, N3 allows
the usage of implicitly existentially quantified variables,
called blank nodes. Blank nodes either start with “_:”
or are expressed using square brackets “[]”. The for-
mula

_:x :knows :Albert. (4)

means “There exists someone who knows Albert.” In the
formula

:John :knows [:knows :Albert]. (5)

the bracket stands for a “fresh” existentially quantified
variable. The meaning is “John knows someone who
knows Albert.” In N3, blank nodes can occur in every
position, they can be subject, predicate or object.

Additionally to this kind of variables, N3 allows a
second type of implicitly quantified variables, univer-
sals. These start with a question mark ? and are under-
stood as implicitly universally quantified. The formula

{:Kurt :knows ?x.} =>

{?x :knows :Kurt.}. (6)

means “Everyone Kurt knows also knows Kurt.”
When universals and existentials occur together in the

same formula the scope of the universals is always out-
side the scope of the existentials [2].

_:x :thinks {?y :is :pretty}. (7)

is interpreted as

∀y∃x : thinks(x, is(y, pretty)) (7a)

“For everyone there is someone who thinks that he/she
is pretty”

and not as

∃x∀y : thinks(x, is(y, pretty)) (7b)

“There is someone who thinks that everyone is pretty.”

In the cases above, the interpretation of the implicitly
quantified formulas was rather easy: the variables are
existentially and universally quantified at the top of the
formula; if they co-occur in the same formula, the uni-
versal quantification dominates the existential. When
implicitly quantified variables occur in deeply nested
formulas, their intended meaning becomes less intu-
itive. This is the topic of the following subsections. As
examples for different understandings we take the rea-
soning results of the reasoners Cwm [8] and EYE [14].
The reason for this choice is the coverage of N3 by these
reasoners – in contrast to for example FuXi [10], they
both support rather complex constructs like nested rules
– and the fact that they conceptually differ in their way
to handle implicit universal quantification. Further de-
tails about how differences can be detected can be found
in our previous paper [11].

2.3.1. Existentials
We start by taking a closer look at a formula with

nested implicit existential quantification:

:x :says {:x :knows :Albert.}. (8)

The blank nodes stand for existentially quantified vari-
ables, but there are different ways to interpret these. The
formula could either mean

∃x : says(x, knows(x,Albert)) (8a)

“There exists someone who says about himself that he
knows Albert.”

or

∃x1 : says(x1, (∃x2 : knows(x2,Albert))) (8b)

“There exists someone who says that there exists
someone (possibly someone else) who knows Albert.”

Here, the reasoners Cwm and EYE follow the second
interpretation (8b) – and so does the informal semantics
of N3Logic [2]:

“When formulae are nested, _: blank nodes
syntax [is] used to only identify [a] blank node
in the formula it occurs directly in.”

(I)

3

Reading this last statement, there is still some uncer-
tainty. What exactly is the direct formula? In N3 this
formula is either the next higher formula in curly brack-
ets { } or, if no such formula exists, the current formula
as a whole.

The reason for this design choice is that such direct
formulas in N3 represent graphs, just as RDF graphs
we encounter in different locations in the Web, and the
scoping for blank nodes in such Web graphs is always
local, ie on graph level.

2.3.2. Universals
Similarly to the case of implicit existential quantifi-

cation, the interpretation of universals is not always evi-
dent and even differs between reasoners. To understand
this, consider the following case of nested implications:

{{?x :p :a.} => {?x :q :b.}.} =>

{{?x :r :c.} => {?x :s :d.}.}. (9)

Are all ?x the same? If not, which ones do we have to
understand as equal and where are they quantified? Of
the several options to interpret this formula, two seem
to be most likely:

∀x : ((p(x, a)→ q(x, b))→ (r(x, c)→ s(x, d))) (9a)

or

(∀x1 : p(x1, a)→ q(x1, b))→
(∀x2 : r(x2, c)→ s(x2, d)) (9b)

But which interpretation is correct? To answer this
question we take a look at the W3C team submission
which says:

“There is a also a shorthand syntax ?x which
[...] implies that x is universally quantified not
in the formula but in its parent formula.”

(II)

This raises a new question: Which formula is this
parent formula? Neither the W3C team submission nor
the paper introducing N3 provide an answer. We there-
fore look, how the implementers of EYE and Cwm un-
derstand the term.

For interpretation 9a the formula as a whole is the
parent. All universals, independent of their exact posi-
tion in the formula, are understood as quantified on top
level, ie at the beginning of that parent formula. This
is the interpretation EYE applies. For the remainder of
this paper we refer to this concept of the term by adding

the subscript e, ie parente refers to the parent formula
understood as the top formula.

In interpretation 9b, the universals in the antecedent
and consequent of the main implication reside in two
different scopes. This reflects Cwm’s interpretation.
Here, it is important that Formula 9 is composed of the
subformulas:

{?x :p :a.} => {?x :q :b.}. (10)

and

{?x :r :c.} => {?x :s :d.}. (11)

Syntactically this division is marked by the use of curly
brackets {}. Formula 10 has two direct subformulas
(again marked by brackets), namely:

{?x :p :a.} and {?x :q :b.} (10a,b)

while

{?x :r :c.} and {?x :s :d.} (11a,b)

are subformulas of Formula 11. The term parent for-
mula of a formula f is understood as the next formula
g either occurring in curly brackets {g} or being the top
formula for which { f} is a direct component (this is ex-
plained in detail in [11]). In our example, Formula 10
is the parent formula of Formulas 10a and b, and For-
mula 11 is the parent formula of Formulas 11a and b.
This explains the scoping in interpretation 9b. We refer
to this understanding of the concept parent by using the
subscript c, we write parentc.

The previous example reveals a general problem: We
needed to explain how the W3C team submission is in-
terpreted by the reasoners EYE and Cwm. Of course
the term parent formula could be understood differently
and only specific testing [11] made us come to our con-
clusion that the above are EYE’s and Cwm’s interpreta-
tions. Most users are not even aware of the differences
in interpretations and the lack of a formalism renders it
difficult to discuss or even just express them. To come
to a clear and unambiguous definition of the logic, N3
needs to be formalised and there needs to be a formalism
to express the differences of existing interpretations.

2.4. Explicit Quantification
Apart from implicit quantification as explained

above, N3Logic also provides the possibility to explic-
itly quantify over variables. To do so, the quantifiers
@forSome and @forAll are used. With explicit quan-
tification, Interpretation 7a of Formula 7 can be ex-
pressed as follows:

4

@forAll :y. @forSome :x.

:x :thinks {:y :is :pretty}.

Seeing this example, the reader might think that the
misunderstandings described above could be avoided by
only using explicit quantification and that this notation
could even be used to explain the differences. Unfortu-
nately, that is not the case. Independently of the order
they appear in the formula, universal quantifiers are al-
ways understood to be outside of existential quantifiers
in N3 [2]. The formula

@forSome :x. @forAll :y.

:x :thinks {:y :is :pretty}.

has the exact same meaning as the previous one, namely
Interpretation 7a.1 To express Interpretation 7b, a more
complicated construction is needed, which could then
again lead to different interpretations.

The peculiarity described above leads to open ques-
tions. For example, what does the following valid N3
formula mean?

@forSome :x. :x :knows :y.

@forAll :y. :y :knows :x. (12)

The scope of the @forAll is outside of the scope of
the @forSome, but what about the first occurrence of :y
(underlined in the example)? Is :y a universally quan-
tified variable or a constant? This formula is not sup-
ported by Cwm and its intended meaning is not spec-
ified in any source we are aware of. This and many
similar examples make explicit quantification in N3 a
complex topic on its own, which is outside the scope of
this paper. Here we focus on implicit quantification.

3. Core Logic

The examples in the last section explain how N3 for-
mulas are interpreted differently by different reasoners.
To point out these variations, we used natural language
together with a first-order-logic-like structure which al-
lowed to cite formulas. However, both the natural lan-
guage and logical structure do not have a fixed defini-
tion of their semantics and can thus still be understood
in different ways. In order to dispose of this ambiguity
when comparing interpretations, we now define a new

1We suppose that this has historic reasons: When N3was created,
everything, including quantifiers, was represented in triples. The order
of triples should not matter in any context.

Syntax:

t ::= terms:
v variables
c constants
e expressions
(k) lists
() empty list

k ::= list content:
t
t k

e ::= expressions:
<f> formula expression
<> true
false false

f ::= formulas:
t t t atomic formula
e→ e implication
f f conjunction
∀v.f universal formula
∃v.f existential formula

Figure 1: Syntax of the core language L overV ∪ C.

core logic of N3. This logic supports all important fea-
tures of N3 such as the possibility to refer to formulas
or to use quantified variables in predicate position, but
only allows explicit quantification. This logic can then
be used to make N3’s implicit quantification explicit.

3.1. Syntax
Given disjoint countable sets of variablesV and con-

stants C we define the core language L of N3 over
C ∪ V as displayed in Figure 1. In core logic inter-
pretation 8a is expressed as:

∃x. x says <x knows Albert>

And Interpretation 8b:

∃x1. x1 says <∃x2. x2 knows Albert>

Note that this notation is close to the original N3 nota-
tion. To make a clear distinction between core logic and
N3Logic, we use angle brackets instead of curly brack-
ets and a different kind of arrow. For the same reason,
we do not represent constants and variables using IRIs
(ie we write x instead of :x) in our examples.2 The main

2Note that the representation of the constants and variables only
depends on the choice of C andV.

5

difference between N3Logic and core logic is the sym-
bol used for explicit quantification in the latter, which is
taken from first order logic to emphasize that the quan-
tifiers here are interpreted in the order they occur.

Variables in a formula can either occur free or bound:

Definition 1 (Free variables). The set of free variables
of a language element l ∈ L, written FV(l) is defined
as follows:

FV(v) = {v}

FV(c) = ∅

FV(<f>) = FV(f)
FV(<>) = ∅

FV(false) = ∅

FV((t1 . . . tn)) = FV(t1) ∪ . . . ∪ FV(tn)
FV(()) = ∅

FV(t1t2t3) = FV(t1) ∪ FV(t2) ∪ FV(t3)
FV(e1 → e2) = FV(e1) ∪ FV(e2)

FV(f1f2) = FV(f1) ∪ FV(f2)
FV(∀v.f) = FV(f) \ {v}
FV(∃v.f) = FV(f) \ {v}

We call every language element l ∈ L with FV(l) = ∅

ground. We denote the set of ground language elements
by Lg, for the set T of terms as defined in Figure 1, we
define Tg := Lg ∩ T as the set of ground terms.

For example, in the formula

∀x. x knows y

the variable x occurs bound, while y is free.

3.2. Semantics

To define the semantics of the core language L over
V ∪ C we first introduce the notion of structure.

Definition 2 (Structure). A structure over a language L
is a quadruple A = (D,P, a, p) containing:

• A non empty setD called the domain.

• A non empty setP ⊂ D called the set of properties.

• A mapping a : Tg → D called the object mapping.

• A mapping p : P → 2D×D called the predicate
mapping.

Similarly to a structure in the classical first order
sense, a core logic structure consists of a domain of dis-
course and maps from the terms of the language into
that domain. There are two main differences:

Firstly, the interpretation function for relations does
not directly act on symbols of the language but on a
subset of the domain of discourse. The reason for that is
that RDF and N3 – and thereby also its core logic – do
not distinguish between constants and predicates. One
single symbol can be used as predicate and subject or
object at the same time:

knows a predicate. Albert knows Kurt.

is a formula of the core language. An interpretation
needs to take the connection between the two occur-
rences of the term “knows” into account.

The second difference is that our structure is only de-
fined for ground terms and not, as it is in other logics,
for terms containing variables. To define the semantics
for these we make use of a grounding function:

Definition 3 (Grounding Function). A grounding func-
tion γg over a language L is a mapping from the set of
variablesV into the set of ground terms Tg.

This function can be extended to all elements of the
language:

Definition 4 (Extended Grounding Function). For a lan-
guage L and a grounding function γg : V → Tg we
define its extension γ : L → Lg as follows:

γ(v) = γg(v)
γ(c) = c

γ(<f>) = <γ(f)>
γ(<>) = <>

γ(false) = false

γ((t1 . . . tn)) = (γ(t1) . . . γ(tn))
γ(()) = ()

γ(t1t2t3) = γ(t1)γ(t2)γ(t3)
γ(e1 → e2) = γ(e1)→ γ(e2)

γ(f1f2) = γ(f1)γ(f2)
γ(∀v.f) = ∀v.γ[v 7→ v](f)
γ(∃v.f) = ∃v.γ[v 7→ v](f)

Where γ[x 7→ t] denotes the extended grounding func-
tion which is identical to γ except for x 7→ t.

For the definition of an interpretation and meaning
we now use the grounding function instead of a classical
valuation function which maps the set of variables into
the domain of discourse. We do that to be able to make

6

a distinction between terms occurring in a cited formula
and subjects, predicates and objects of formulas directly
occurring in a graph. The informal specification of N3’s
semantics claims that nested formulas are not “referen-
tially transparent” [1, p.7]. This means that even if two
terms in a cited formula denote the same object in the
domain of discourse two cited formulas which only dif-
fer in the use of the referent should be considered as
different. As a concrete example consider the following
formulas:3

LoisLane believes <Superman can fly.>.

Even if we know that the term “Superman” denotes the
same object as “ClarkKent”, this should not imply the
following formula:

LoisLane believes <ClarkKent can fly.>.

But cited formulas can also occur in combination with
quantifiers which are outside of the quoted formula like
for example:

∃x. LoisLane believes <x can fly.>.

To know whether or not the last statement is true, it
needs to be possible to map an existentially quantified
variable to its representation instead of directly mapping
it to the resource it represents.

An interpretation for core formulas therefore makes
use of a grounding function:

Definition 5 (Core logic interpretation). A core logic in-
terpretation I is a pair (A, γ) consisting of a structure A
and a grounding function γ.

With the present definitions we can now define the
meaning of formulas.

Definition 6 (Meaning of formulas). Let I = (A, γ) be
a core logic interpretation of a language L. Then:

1. I |= t1t2t3 iff (a(γ(t1)), a(γ(t3)) ∈ p(a(γ(t2)))
2. I |= <f1>→ <f2> iff I |= f2 if I |= f1.
3. I |= false→ <f>
4. I |= <f>→ <>
5. I |= <f>→ false iff I 6|= f.
6. I |= <>→ <f> iff I |= f.
7. I |= f1f2 iff I |= f1 and I |= f2.
8. I |= ∀v.f iff (A, γ[v 7→ t]) |= f for all t ∈ Tg.

3This example is often called the “superman problem” and has
been broadly discussed in the context of RDF reification. See
for example: https://www.w3.org/2001/12/attributions/
#superman.

9. I |= ∃v.f iff (A, γ[v 7→ t]) |= f for some t ∈ Tg.

We call a formula f true in I iff I |= f.
Note that in N3 lists are treated as “first-class

citizens”, this means that N3 does not use RDF’s
rdf:first-rdf:rest notation to construct lists but al-
lows the treatment of lists as a proper data type (see also
[1, p.6]). This is reflected in our core logic and its se-
mantics, where we directly map ground lists into the
domain of discourse. We do the same for cited formulas
since such a treatment allows later refinement by speci-
fying the mapping function further.

Another remark we want to make here is that by using
grounding for quantified predicates and mapping them
first to a single element of the domain before assigning
them to the set of pairs of domain elements for which the
relation they denote holds ensures that we stay in first
order logic.4 We do not quantify over 2D×D but over the
countable subset of relations which have a name in L
and can therefore follow the idea of Henkin Semantics
[15] to map core logic to first order logic.

The definition of a model is similar to first order
logic:
Definition 7 (Model). Let Φ be a set of formulas. We
call a core logic interpretation I a model of Φ iff every
formula in Φ is true in I.

We finish this section by defining the classical con-
cepts of logical consequence and equivalence:
Definition 8 (Logical consequence). Let Φ be a set of
ground formulas. A ground formula f is called a logical
consequence of Φ (written: Φ |= f) iff f is true in every
model of Φ.

Instead of {f1} |= f2 we sometimes write f1 |= f2.
Definition 9 (Logical equivalence). Two formulas φ and
ψ are called logically equivalent (φ ≡ ψ) iff φ |= ψ and
ψ |= φ.

4. Interpretations of N3

The core logic enables us to give more formal de-
scriptions of the N3 interpretations explained in Sec-
tion 2. To be able to map an N3 formula to its pos-
sible interpretation we make use of attribute gram-
mars [16, 17]. Below, we explain this concept and spec-
ify the different attributes needed for this mapping.

4.1. N3 Syntax
We start by giving a more accurate definition of N3’s

syntax. An N3 alphabet contains all symbols which can

4Strictly speaking one of the two mechanisms would already be
enough to ensure that we stay in first order logic.

7

s ::= start:
f formula

f ::= formulas:
t t t. atomic formula
e => e. implication
f f conjunction

t ::= terms:
uv universal variables
ex existential variables
c constants
e expressions
(k) lists
() empty list

k ::= list content:
t term
t k term tail

e ::= expressions:
{f} formula expression
{} true
false false

Figure 2: Overview N3 Syntax

appear in the concrete representation of an N3 formula:

Definition 10 (N3 Alphabet). Let C be a set of con-
stants, U a set of universal variables and E a set of exis-
tential variables. Let these sets be mutually disjoint and
disjoint with {{, }, (,), =>, false, .}. Then we call

A := C ∪ U ∪, E ∪ {{, }, (,), =>, false, .}

an N3 alphabet.

In concrete representations constants can either be lit-
eral values or IRIs. Universal variables start with the
symbol ?, existential variables with _:.

Given such an N3 alphabetA, we define an N3 gram-
mar overA as displayed in Figure 2 where the node ex
stands for an existential variable, ie an element of E, uv
for a universal variable, ie an element of U, and c for a
constant, ie an element of C.

It is easy to see that N3 syntax is very similar to the
syntax of the core logic. Some differences only apply
to the choice of symbols: the curly brackets {} can be
translated into angle brackets < > and the N3 arrow =>
into a simple→. The formula

{:s1 :p1 :o1.} => {:s2 :p2 :o2.}. (13)

s

f

e

{ f }

t

c
:c

t

c
:r

t

c
:a

=>e

{ f }

t

c
:b

t

c
:q

t

uv
?x

direct

parentc

1

2

Figure 3: Direct and parentc formula.

can be expressed as

<s1 p1 o1>→ <s2 p2 o2> (13’)

A major difference between core logic and N3 as dis-
played here is the lack of explicit quantification in the
latter5 and the existence of two different kinds of vari-
ables instead. To translate these implicitly quantified
variables of N3 into the explicit ones of the core logic
we use the structure of the syntax tree.

To illustrate the idea behind that, we take a closer
look at one of the concepts used in the informal def-
initions of N3’s quantification: according to the W3C
team submission [2] existential variables are quantified
on their direct formula (Section 2.3.1) and universal
variables are quantified on their parent formula (Sec-
tion 2.3.2). Informally such a direct formula f of a term
t is the next formula surrounded by curly brackets { }
that contains t, or, if such a formula does not exist, the
top formula. In EYE’s interpretation, the parent formula
is now the top formula (concept parente). For Cwm, the
parent formula g of f is the next higher formula sur-
rounded by curly brackets, ie the direct formula of { f }
(parentc). Being the top formula, the parente formula
is easy to find. For the direct formula and the parentc
formula we use the syntax tree: The difference between
a simple formula f and a formula in brackets { f } is in
the grammar point of view the difference between a for-
mula f and a formula expression e. If we want to find
the direct formula of a component and its parentc, we

5As explained in Section 2.4 we exclude the discussion of N3’s
explicit quantification from this paper. It is therefore also not reflected
in the grammar.

8

Grammar Synthesized attribute ds
s ::= n s.ds ← n.ds
n ::= d n.ds ← d

n1n2 ← n1.ds + n2.ds

Figure 4: Context-free grammar producing integers of arbitrary length
(left) and definition of the attribute ds which composes the digit sum
(right).

can go through the syntax tree from the bottom to the
top. The direct formula is then the first formula on that
path which is a direct child of either an expression e or
the start symbol s. The parentc formula is the second
such formula.6 We illustrate this in Figure 3 on the syn-
tax tree of the formula:

{?x :q :b} => {:a :r :c}. (14)

The direct formula of the terminal node ?x is the for-
mula ?x :q :b., the parentc formula is the top for-
mula. This parentc formula carries the universal quan-
tifier for the variable. The formula means according to
Cwm:

∀x. <x q b>→ <a r c>. (14’)

Attribute grammars provide a formalism to describe the
above process of going through the syntax tree in a more
precise way.

4.2. Attribute Grammars
In this section we give an introduction to attribute

grammars [16, 17]. Attribute grammars are defined on
top of context-free grammars like the one given above
and extend this concept by so-called attributes. Such at-
tributes are defined on the nodes of the syntax tree and
can take values. These values can depend on other at-
tribute values of the node itself and either its descen-
dent nodes in the syntax tree – in this case the attribute
is called synthesized – or on the attribute values of the
parent node – in this case it is called inherited. The def-
initions used follow the notation of Paakki [18].

4.2.1. Example
Before providing a formal definition, we illustrate

the idea of attribute grammars on a simpler exam-
ple than the grammar provided above. Consider the
context-free grammar displayed on the left side of Fig-
ure 4. If d can take any value of the alphabet A =

6Note that universals on the top level like for example in the for-
mula “?x :p :o.“ do not have a parentc. We assume here, that these
formulas are also quantified on the top level. This differs from Cwm
which does not support universal quantification on the top level.

s
[
ds : 28

]

n1
[
ds : 13 + 15 = 28

]

n3
[
ds : 8 + 7 = 15

]

n7
[
ds : 7

]

d4

7

n6
[
ds : 8

]

d3

8

n2
[
ds : 9 + 4 = 13

]

n5
[
ds : 4

]

d2

4

n4
[
ds : 9

]

d1

9

Figure 5: Syntax tree for 9487 produced by the grammar in Figure 4
with attribute values for ds (in blue).

{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}, this grammar produces inte-
gers of arbitrary length. A possible7 syntax tree for 9487
is displayed in Figure 5. To ease the following discus-
sion, the tree nodes of the same kind are numbered.

If we now want to get the digit sum of an integer pro-
duced by that grammar, we can go through the syntax
tree from the bottom to the top: from the nodes result-
ing in a digit, we store that digit. For every node higher
in the syntax tree, we take the values of its children and
sum them up to a new value. Then the values of the start
node is the digit sum of the integer.

To formalise this process we define the synthesized
attribute ds. This attribute takes values on each node and
these values depend on the production rules of the gram-
mar. For each production rule, we define an attribute
rule. These rules are displayed at the right side of Fig-
ure 4. We denote the attribute value for a node n by n.ds.
When we use a node resulting in an alphabet symbol of
the grammar (in our example d) in an attribute rule, that
symbol refers its alphabet symbol. Going through the
syntax tree from the bottom to the top, we get for node
n4 by attribute rule n.ds ← d the value n4.ds = 9. The
same rule is used to determine n5.ds to n7.ds whose val-
ues are displayed in Figure 5. On the next higher level,
the attribute value of each node is composed by taking
the sum of the attribute values of the direct descendants.
This is done by the rule n.ds ← n1.ds + n2.ds. We get
n2.ds = 13 and n3.ds = 15. The same rule computes one
level higher for n1 the value n1.ds = 28 which is then
passed to the start node s by the rule s.ds ← n.ds. And
28 is indeed the digit sum of 9487.

7Note that there are several options to form a tree for 9487, at-
tribute ds also computes the digit sum if one of these is chosen.

9

4.2.2. Terminology
After our example, we now provide a more formal

introduction to attribute grammars and fix the terminol-
ogy we use. Attribute grammars are defined on top of
context free grammars G = 〈N,A, P, S 〉, with N the set
of non-terminal symbols, A the alphabet or set of ter-
minal symbols, P the set of production rules and S ∈ N
a start symbol. The set P for the context-free grammar
above is displayed in Figure 4. This figure also contains
all non terminal symbols N. The start symbol is s.

For each non-terminal symbol X ∈ N of the grammar
we now define a set of attributes A(X). Each of these
attributes either belongs to the set of inherited attributes
I(X), or to the set of synthesized attributes S (X). We
assume these two sets of attributes to be disjoint. In our
example above we have for each node X: I(X) = ∅,
S (X) = {ds}, and A(X) = ∅ ∪ {ds} = {ds}.

To take information, the attributes have assigned val-
ues which depend on the production rules they occur in.

Definition 11 (Attribute Occurrence). Let G =

〈N,A, P, S 〉 be a context-free grammar and A :=⋃
X∈N A(X) a set of attributes defined on N. Let p ∈ P

be a production rule of the form

X0 ::= X1 · · · Xn with n ≥ 1,

• We say that p has an attribute occurrence Xi.a for
the attribute a if a ∈ A(Xi) for some i with 0 ≤ i ≤
n.

• We say that p has a left-side occurrence X0.a of the
attribute a, if a ∈ A(X0).

• We say that p has a right-side occurrence Xk.a of
the attribute a, if a ∈ A(Xk) for some k with 1 ≤
k ≤ n.

If we consider another attribute for the grammar in
Figure 4, which is defined only for the node d, the at-
tribute at, then the rule

n ::= d

has a right-side occurrence d.at of the attribute at while
the rule

n ::= n1n2

does not have any occurrence of at.
These occurrences Xi.a now take values, so-called

attribute values, which are defined by attribute rules.
These have the form

Xi.a← f (y1 . . . yn)

where f is a function and y1 . . . yn are other attribute
values. An example from above for such an attribute
rule is

n.ds← n1.ds + n2.ds

which determines the first occurrence n.ds of the at-
tribute ds in the production rule

n ::= n1n2

We denote the set of all attribute rules for a production
rule p ∈ P by R(p). Which exact attribute values can
be taken into account when calculating a new attribute
value depends on the kind of attribute:
Definition 12 (Attribute Grammar). Let G =

〈N,A, P, S 〉 be a context-free grammar. For every
element X ∈ N let A(X) = I(X) ∪ S (X) be a finite set of
attributes with I(X) ∩ S (X) = ∅. Let A =

⋃
X∈A∪N A(X)

be the set of all these attributes. Let R =
⋃

p∈P R(p) be
a finite set of attribute rules. We call

AG = 〈G, A,R〉

an Attribute Grammar if for each production rule p ∈ P
of the form X0 ::= X1 . . . Xn the following holds:

• for each left-side occurrence X0.a of a synthesised
attribute a ∈ S (X0) there exists exactly one at-
tribute rule (X0.a ← f (y1, . . . , yk)) ∈ R(p) where
f is a function and yi ∈ A(X0) ∪ . . . ∪ A(Xn) for all
1 ≤ i ≤ k.

• for each right-side occurrence Xi.a, 1 ≤ i ≤ n, of an
inherited attribute a ∈ I(Xi) there exists exactly one
attribute rule (Xi.a ← f (y1, . . . , yk)) ∈ R(p) where
f is a function and y j ∈ A(X0) ∪ . . . ∪ A(Xn) for all
1 ≤ j ≤ k.

In terms of a syntax tree generated by the grammar
synthesized and inherited attributes have exactly the
properties mentioned above: inherited attributes pass in-
formation down in the syntax tree, synthesized attributes
pass information upwards. We assume the values of
synthesized attributes defined on terminal symbols to be
defined externally. The start symbol cannot take an in-
herited attribute.8

4.3. Definition of an N3 Attribute Grammar
After the definition of attribute grammars in the pre-

vious section, we now apply this concept to formalise

8The attentive reader might have noticed another difference in the
structure of the context-free grammar of the core logic (Figure 1) and
the syntax of N3 (Figure 2): the latter has an extra start symbol. The
reason for this is rather technical: the attribute grammar we define in
the following sections makes use of inherited attributes defined on the
symbol f. Such attributes cannot be defined on a start symbol.

10

name type defined for purpose
eq syn N existentials

v1 syn N universals in Cwm
v2 syn N universals in Cwm
s inh {f, t, e, k} universals in Cwm
q inh {f} universals in Cwm

u syn N universals in EYE

mc syn N translation Cwm
me syn N translation EYE

Table 1: Overview of all attributes defined in the N3-attribute gram-
mar. The type can be syn for synthesized or inh for inherited.

the different interpretations of implicit quantification for
N3Logic. The context-free grammar of N3 is given in
Figure 2 which also contains all symbols of N. The al-
phabet is given in Definition 10. The start symbol is s.

On top of this grammar we now define an attribute
grammar in order to be able to produce the two different
translations of an N3 formula in core logic, one accord-
ing to Cwm and the team submission and the other ac-
cording to EYE. As a first step we provide an overview
of the attributes we define, state whether they are in-
herited or synthesized and list for which nodes X ∈ N
they are defined. This information is displayed in Ta-
ble 1. For each of these attributes we also indicated the
purpose or context they are used for. This context can
be grouped in four parts: the collection of the variables
which are existentially quantified under a (sub-)formula
(1), the collection of the universal variables quantified
under a (sub-)formula – once for Cwm (2) and once for
EYE (3) – and attributes to construct the concrete ex-
pression in core logic which is the translation of the N3
formula dependent on the reasoner (4). In the follow-
ing we will go through these four groups one by one,
explain the need for the different attributes and provide
their definition. We start with attribute eq, which is used
for existential scoping.

4.3.1. Existentials
As we have seen in Section 2.3.1 the scope on an im-

plicitly existentially quantified variable is the direct for-
mula it occurs in. The concept of a direct formula has
been further explained above: the direct formula is ei-
ther the next formula in curly brackets surrounding the
existential variable, or – in case such a formula does not
exist – the formula as a whole. To recall the idea, con-

s [eq : ∅]

f1 [eq : {x}]

t3 [eq : ∅]

e [eq : ∅]

{f2} [eq : {y}]

t6 [eq : ∅]

c3

:a

t5 [eq : ∅]

c2

:k

t4 [eq : {y}]

ex2

_:y

t2 [eq : ∅]

c1

:s

t1 [eq : {x}]

ex1

_:x

Figure 6: Syntax tree for Formula 15 with values for the attribute eq
(in blue).

sider the following formula:9

:x :s {:y :k :a.}. (15)

The direct formula of variable _:y is the sub-formula
_:y :k :a. The direct formula of _:x is the for-
mula as a whole. Translated into core logic the formula
means:

∃x.x s <∃y.y k a>. (15’)

In Section 4.1 we discussed the idea of using the syn-
tax tree to find the direct formula. If we go upwards
in the syntax tree from the occurrence of an existential
variable to the next higher node e or s, the child formula
f of that node is the existential’s direct formula which
thus carries its quantifier. The syntax tree for our exam-
ple, Formula 15, is displayed in Figure 6. Here node f2

is such a node for _:y and node f1 for _:x.
Attribute eq is now used in this context to keep track

of all existential variables which need to be quantified.
If we do a direct translation of the symbols of the al-
phabet as mentioned at the end of Section 4.1 and add
existential quantifiers whenever we encounter a direct
formula, the attribute carries for each node the set of ex-
istential variables which are free (see Definition 1) un-

9Note that structure-wise this formula follows the same pattern
as Formula 8. The names of constants are only shortened to make the
presentation of the formula easier.

11

production rule attribute rule
s ::= f s.eq← ∅

f ::= t1t2t3. f.eq← t1.eq ∪ t2.eq ∪ t3.eq
e1=>e2. f.eq← e1.eq ∪ e2.eq
f1f2 f.eq← f1.eq ∪ f2.eq

t ::= uv t.eq← ∅
ex t.eq← {ex}
c t.eq← ∅
e t.eq← e.eq
(k) t.eq← k.eq
() t.eq← ∅

k ::= t k.eq← t.eq
t k1 k.eq← t.eq ∪ k1.eq

e ::= {f} e.eq← ∅
{} e.eq← ∅
false e.eq← ∅

Figure 7: Attribute rules for the synthesized attribute eq (right) and
their corresponding production rules (left) from the N3 grammar (Fig-
ure 2).

der that node and need to be bound when new existential
quantifiers are added.

Following that idea, we define the attribute rules for
eq. As eq is synthesised we need to state one attribute
rule for each left-side occurrence of an attribute on a
production rule of Figure 2. As the attribute is defined
for all nodes, we need one attribute rule for each pro-
duction rule. These attribute rules are displayed in Fig-
ure 7 (right) next to their corresponding production rules
(left). To illustrate how this attribute works, we added
the attribute values for each node to the syntax tree in
Figure 6. We explain these rules by going through the
tree beginning at the bottom.

The production rule t ::= ex results in an existen-
tial variable and this variable is not quantified under
that node. Therefore, the corresponding attribute rule
t.eq← {ex} collects this variable in a singleton set (val-
ues t1.eq and t4.eq). The attribute rules for other pro-
duction rules directly resulting in only symbols of the
alphabet do not pass any values since there are no free
existential variables occurring under them. For the ap-
plications of t ::= c the attribute rule t ← ∅ assigns
the empty set to the nodes t2, t5 and t6. Most other
rules now pass the variables from the descendant nodes
up to the parents. The attribute value of a formula node
f is the union of its descendants’ values. For f2 that is
the set {_:y}. The only exceptions for this behaviour

of passing the variables upwards can be found on the
attribute rules for the production rules s ::= f and e
::= {f}. As discussed above, the child formulas f of
e or s are direct formulas. All free existential variables
occurring under such direct formulas get bound on these
formulas. The attribute rules for s ::= f and e ::=
{f} thus do not pass any variables upwards. The at-
tribute value for node e in our syntax tree is the empty
set. This value is again passed upwards via the attribute
rule t.eq ← e.eq and can the be used to determine the
attribute value for f1 which is again the union of all its
direct descendants’ values (f2.eq = {_:x}). This node
is again a direct formula, it is the child node of the node
s. All existential variables are thus bound on f2, the at-
tribute rule does not pass existential variables upwards.

The attribute value of eq is always the set of free ex-
istential variables occurring under a node. For the for-
mulas f1 and f2 these are the sets {_:x} and {_:y},
respectively. These are exactly the variables existen-
tially quantified on these formulas as can be seen in For-
mula 15’.

4.3.2. Universals in Cwm
The interpretations of N3’s implicit universal quan-

tification differs between reasoners. With a few excep-
tions,10 which we also discuss in Appendix A, Cwm
implements interpretation parentc of the concept par-
ent formula from the W3C team submission while for
EYE the parent formula is the top formula (parente). In
this section we explain the concept of parentc in more
detail and define attributes to place universal quantifiers
according to this concept. The details on the interpreta-
tion following to EYE are discussed in the next section.

In the previous sections we have seen that in con-
trast to implicitly existentially quantified variables, uni-
versals are – according to the W3C team submission –
not quantified on the direct formula but on the parent.
This concept has (at least) two conflicting interpreta-
tions which have been further explained in Section 4.1.
One of them is parentc: The parentc is the direct formula
of the direct formula or – in terms of the syntax tree –
the second descendant f of a node s or e we find when
going up the syntax tree from the bottom to the top. In
the following formula, for example,

{{?x :q ?y.} => {?x :r :c.}.} =>

{?x :p :a.}. (16)

10The developer of Cwm, Tim Berners-Lee, confirmed that these
exceptions were not intended and rather need to be seen as mistakes
in the implementation.

12

s
[
v1 : ∅
v2 : ∅

]

f1


v1 : ∅
v2 : {x}
s : {x}
q : {x}



e2

v1 : ∅
v2 : {x}
s : {x}


{f3}


v1 : {x}
v2 : ∅
s : {x}
q : ∅



t9

v1 : ∅
v2 : ∅
s : {x}


c5

:a

t8

v1 : ∅
v2 : ∅
s : {x}


c4

:p

t7

v1 : {x}
v2 : ∅
s : {x}


uv4

?x

e1

v1 : ∅
v2 : ∅
s : {x}


{f2}


v1 : ∅

v2 : {x, y}
s : {x, y}
q : {y}



e4

v1 : ∅

v2 : {x}
s : {x, y}


{f5}


v1 : {x}
v2 : ∅

s : {x, y}
q : ∅



t6

v1 : ∅

v2 : ∅

s : {x, y}


c3

:c

t5

v1 : ∅

v2 : ∅

s : {x, y}


c2

:r

t4

v1 : {x}
v2 : ∅

s : {x, y}


uv3

?x

e3

v1 : ∅

v2 : {x, y}
s : {x, y}


{f4}


v1 : {x, y}
v2 : ∅

s : {x, y}
q : ∅



t3

v1 : {y}
v2 : ∅

s : {x, y}


uv2

?y

t2

v1 : ∅

v2 : ∅

s : {x, y}


c1

:q

t1

v1 : {x}
v2 : ∅

s : {x, y}


uv1

?x

=>

=>

Figure 8: Syntax tree of Formula 16 with attribute values for the attributes v1, v2, s and q (in blue).

CFG Synthesized attributes Inherited attributes
production rules rules for v1 rules for v2 rules for s rules for q
s ::= f s.v1 ← ∅ s.v2 ← f.v1 f.s← f.v1 ∪ f.v2 f.q← f.v1 ∪ f.v2

f ::= t1t2t3. f.v1 ← t1.v1 ∪ t2.v1 ∪ t3.v1 f.v2 ← t1.v2 ∪ t2.v2 ∪ t3.v2 ti.s← f.s
e1=>e2. f.v1 ← e1.v1 ∪ e2.v1 f.v2 ← e1.v2 ∪ e2.v2 ei.s← f.s
f1f2 f.v1 ← f1.v1 ∪ f2.v1 f.v2 ← f1.v2 ∪ f2.v2 fi.s← f.s fi.q← ∅

t ::= uv t.v1 ← {uv} t.v2 ← ∅

ex t.v1 ← ∅ t.v2 ← ∅

c t.v1 ← ∅ t.v2 ← ∅

e t.v1 ← e.v1 t.v2 ← e.v2 e.s← t.s
(k) t.v1 ← k.v1 t.v2 ← k.v2 k.s← t.s
() t.v1 ← ∅ t.v2 ← ∅

k ::= t k.v1 ← t.v1 k.v2 ← t.v2 t.s← k.s
t k1 k.v1 ← t.v1 ∪ k1.v1 k.v2 ← t.v2 ∪ k1.v2 t.s← k.s

k1.s← k.s

e ::= {f} e.v1 ← ∅ e.v2 ← f.v1 f.s← e.s ∪ f.v2 f.q← f.v2 \ e.s
{} e.v1 ← ∅ e.v2 ← ∅

false e.v1 ← ∅ e.v2 ← ∅

Figure 9: Attribute rules for universal quantification in Cwm defined on the context-free grammar of N3 (Figure 2).

13

the parentc of the last occurrence of ?x is the formula as
a whole, the parentc of ?y is the subformula

{?x :q ?y.} => {?x :r :c.}.

or, if we take a look into the formula’s syntax tree dis-
played in Figure 8, the parentc of the last ?x (uv4) is
f1 and the parentc of ?y (uv2) is f2. Therefore formula
f1 carries a universal quantifier for ?x and f2 carries a
universal quantifier for ?y. The first universal quanti-
fier also covers the other occurrences of ?x since the
parentc formula of these other occurrences, namely f2,
is already in scope of this quantifier. Formula 16 means:

∀x. <∀y. <x q y>→ <x r c> >

→ <x p a> (16’)

Similarly to the example of existential quantification,
we define attributes which pass universal variables oc-
curring under a parentc formula up to that parentc for-
mula. For this purpose, we use two attributes whose
values are as follows:

v1 the set of universal variables occurring as direct
components under a node.

v2 the set of universal variables occurring as direct
components of direct components (parent level).

The first attribute v1 is used to pass universal attributes
up to their direct formulas, the second attribute v2 is
used to further pass these variables from the direct for-
mulas to the parentc formulas. The attributes are again
synthesized and we have one attribute rule for each pro-
duction rule. These attribute rules are displayed in the
second and third column of the table in Figure 9. The
first column of the table shows the corresponding pro-
duction rules. To better explain the attributes, we apply
them to the syntax tree of Formula 16. The tree and the
corresponding attribute values are displayed in Figure 8.

Passing Variables to their Direct Formula
Attribute v1 works the exact same way as attribute eq

with the only difference that at term level the universals
get captured in a singleton set (t.v1 ← {uv}) instead of
the existentials. These universals are then passed up-
wards to their parentc formulas. In our example, the
formulas f1 and f2 do not have universal variables as
direct components, f3 has ?x, f4 has ?x and ?y, and
formula f5 has ?x.

Passing Variables to their Parent Formula
Attribute v2 now passes the universal variables which

are collected under their direct formula using v1 to their
parentc formula. This attribute works in a similar way as
the previous one: at the level where the universal vari-
ables of a direct formula f under a node e are found
the rule for the synthesized attribute takes these values
gathered by the attribute v1 and passes them upwards till
the next formula being direct descendant of a node s or
e is encountered. This formula is then the parentc.

We display the rules for attribute v2 in the third col-
umn of Figure 9. We again explain the rules by go-
ing through the syntax tree in Figure 8 from the bot-
tom to the top. The rules only resulting in symbols of
the alphabet cannot have direct components. The at-
tribute rule t.v2 ← ∅ for the production rules t ::= uv
and t ::= c assign the empty set to the term nodes
t1 to t9. These values are passed upwards via the at-
tribute rule f ← t1.v2 ∪ t2.v2 ∪ t3.v2 on production
rule f ::= ttt2t3, the attribute values for f3, f4 and f5

are again the empty set. The attribute rule for the next
higher level, the production e ::= {f} is more inter-
esting. The variables which occur as direct components
on the formula node f and are captured by the attribute
v1 are passed as children of the next parentc formula to
the node e via the attribute rule e.v2 ← f.v1. We get:
e2.v2 = {?x}, e3.v2 = {?x, ?y} and e4.v2 = {?x}. For
f2 these values are passed upwards via the attribute rule
f ← e1 ∪ e2. As f2 is a direct descendant of the node
e1, it is the parentc formula of the variables mentioned
above. These variables are not passed further through.
Instead, the attribute value for e1 is again taken from the
attribute v1 (via e.v2 ← f.v1) which in this case is the
empty set. With these values we can determine the at-
tribute value for f1 (via f← e1 ∪ e2) which in this case
is the singleton set only containing the variable ?x. The
attribute value for s is the empty set.

For formulas which are direct descendants of a node
s or e the value is now the set of universal variables for
which the formula is a parentc: for f1 that is {?x}, for
f2 it is {?x, ?y}, and for f3, f4 and f5 the value is the
empty set since these formulas are not parentc formulas.

Passing Scoped Variables to the Descendants
With the result from above that formula f1 is the

parentc of ?x and f2 the parentc of ?x and ?y we take
again a look to interpretation of Formula 16: knowing
that universal variables are quantified on their parentc
formula we could expect one universal quantifier for
x on formula f1 another universal quantifier for x on
formula f2 and a third universal quantifier for y on the
same formula. If we go back to the interpretation given

14

in Formula 16’ we only count two universal quantifiers:
one for x on f1 and one for y on f2. The reason for
that is that, according to Cwm’s interpretation, the first
universal quantifier for x already covers all other occur-
rences of the universal variable ?x in the formula re-
gardless of their level of nesting. As a consequence of
that behaviour, adding another conjunct

:s :p {:a :b ?y.}.

to our formula also changes the meaning of the latter.
The formula

{{?x :q ?y.} => {?x :r :c.}.}=>

{?x :p :a.}.

:s :p {:a :b ?y.}. (17)

means

∀x.∀y. < <x q y>→ <x r c> >→ <x p a>.

s p <a b y>. (17’)

Note that the quantifier for y which is nested in the in-
terpretation of Formula 16 is on top level in the inter-
pretation of Formula 17. This is the case because the
conjunction, ie the formula as a whole, is the parentc
formula of the second occurrence of ?y and thus car-
ries a quantifier which also covers the nested occurrence
of ?y.

Attribute s keeps track of this behaviour. The value
of s is for each node the set of variables which are uni-
versally quantified on the node, either by a quantifier
on the node itself, or by a quantifier on a higher level.
This kind of information needs to be passed downwards
in the syntax tree therefore attribute s is inherited. As
the value of s is only relevant for potential parentc for-
mulas, we only define the attribute for the node f and all
nodes which can occur above f in the syntax tree, These
are the nodes f, t, e and k. As s is inherited, this time
we need to define an attribute rule for each right-side
occurrence of s on a production rule. These rules are
displayed in the fourth column of Figure 9. We explain
them by going through the syntax tree in Figure 8.

For the occurrence of f in the rule s ::= f we take
all the variables of which f is the parentc formula since
these are quantified on that highest level. Via the at-
tribute rule f.c← f.v1 ∪ f.v2

11 we get: f1.s = {?x}. For

11Note that here attribute s does not only collect all universal vari-
ables f is parentc of but also the universals occurring as direct com-
ponents. The reason for that is that these variables cannot be passed

the nodes e1 and e2 this information is passed down-
wards, via e1.s ← f.s and e2.s ← f.s we get the value
{?x} for both nodes. On the production rule e ::= {f}
the nodes e can now again be the direct ancestor of a
parentc formula f. The set of variables f.v2 the formula
f is parentc of are either quantified on that same for-
mula or they are already quantified beforehand in which
case they are already present in e.s. In both cases the
union of these values covers all variables quantified at
that point, we have as attribute rule f.s ← e.s ∪ f.v2.
We get f2.s = {?x, ?y} and f3.s = {?x}. This informa-
tion is passed further downwards via the attribute rules
t1,2,3.s ← e.s. for the production rule f ::= t1t2t3
and via the rules e1,2.s ← f.s for f ::= e1e2, we get
t7,8.s = {?x} and e3,4.s = {?x, ?y}. The descendants of
these last two expressions are not parentc formulas, the
attribute thus simply passes their values down to f4 and
f5 which then get passed further to the nodes t1 to t6.
For all nodes in our syntax tree for which the attribute s
is defined we now capture the set of variables which are
scoped under that node.

Determining the Universally Quantified Variables for a
Formula

In order to use the information captured by the previ-
ous attributes one step is missing: we still need to deter-
mine the exact set of universal variables quantified on a
specific formula. For this we define attribute q: for each
formula node f the value of q is the set of universal vari-
ables for which f carries a quantifier in the translation.
We define q as an inherited attribute on f. The rules for
q are listed in the last column of Figure 9.

If f occurs under the starting node, all variables it is
parentc of are quantified on that formula. For the rule s
::= f the value of the attribute is the same as the value
of v2: f.q = f.v1 ∪ f.v2.12 In our syntax tree in Fig-
ure 8 we get f1.q = {?x}. If a formula is only a conjunct
of a conjunction, it does not carry any universal quan-
tifier (remember for example Formula 17). Therefore
the attribute value assigned to f1 and f2 on the produc-
tion rule f ::= f1f2 is the empty set: f1,2 ← ∅. For the
third rule with a right-side occurrence of f, e ::= {f},
we take the values of the attributes v2 and q into ac-
count: the value of s on the node e contains all the uni-
versal variables which are already quantified on that or a

further upwards. In the original N3 specification, implicitly univer-
sally quantified variables on top level are allowed according to the
grammar, but their meaning is not covered in the semantics Cwm ap-
plies. We handle this problem by adding quantifiers for them to the
top level.

12As above, this attribute does not only carry the universal vari-
ables f is parentc of but also those which occur directly in the formula.

15

higher node. The value of v2 on f contains all variables
which need to be quantified above or at f since f is their
parent node. The set of universal variables for which f
needs to carry a quantifier is the difference of these two
sets: f.q← f.v2 \e.s. For the node f2 in our syntax tree
we get f2.q = {?x, ?y} \ {?x} = {?y}. For the remaining
nodes f3, f4 and f5 the attribute value is the empty set.
And it is indeed the case that the formula f1 carries a
universal quantifier for ?x and formula f3 for ?y. The
only thing which still needs to be done to obtain Cwm’s
interpretation of the formula is to construct the concrete
translation. The attribute to perform this task is defined
below in Section 4.3.4.

4.3.3. Universals in EYE
After having defined several attributes to handle im-

plicit universal quantification according to Cwm in the
previous section, we do the same for the reasoner EYE
in this section. EYE understands the term parent for-
mula from the W3C team submission as the top formula.
Universal variables are thus for EYE always quantified
on the top level. Formula 16 means according to EYE:

∀x.∀y.

< <x q y>→ <x r c> >→ <x p a> (16”)

To deal with universal quantification we therefore only
need one attribute that passes all universal variables oc-
curring in a formula to the top level. We define the syn-
thesized attribute u for all nodes of the grammar. The
value of u for a node is always the set of universal vari-
ables occurring anywhere under that node. The attribute
rules for u are displayed in Figure 10. As the calculation
of u’s attribute values is rather simple, we do not discuss
these rules in detail and only capture for further consid-
erations the value of the top formula f1.u = {?x, ?y}.

4.3.4. Generation of the translation
In order to obtain the different translations from N3 to

core logic, one last step is needed: the core logic formu-
las need to be generated. We use synthesized attributes
to perform this task. To clarify the difference between
the signs used in the core formula produced and the log-
ical symbols we use to describe this production, we un-
derline all terminal symbols belonging to the core logic.

We start by defining the following auxiliary functions
which add quantifiers to any set of symbols of the alpha-
bet:

Let ex : 2A → 2A
∗

be defined as:

ex(V) := {∃v1. . . .∃vn.|vi ∈ V; 1 ≤ i ≤ n = |V |;

production rule attribute rule
s ::= f s.u← f.u

f ::= t1t2t3. f.u← t1.u ∪ t2.u ∪ t3.u
e1=>e2. f.u← e1.u ∪ e2.u
f1f2 f.u← f1.u ∪ f2.u

t ::= uv t.u← {uv}
ex t.u← ∅
c t.u← ∅
e t.u← e.u
(k) t.u← k.u
() t.u← ∅

k ::= t k.u← t.u
t k1 k.u← t.u ∪ k1.u

e ::= {f} e.u← f.u
{} e.u← ∅
false e.u← ∅

Figure 10: Attribute rules for the synthesized attribute u (right) and
their corresponding production rules (left) from the N3 grammar (Fig-
ure 2).

i , j⇒ v1 , v j}.

Let uv : 2A → 2A
∗

be defined as:

uv(V) := {∀v1. . . .∀vn.|vi ∈ V; 1 ≤ i ≤ n = |V |;

i , j⇒ v1 , v j}.

The range of these two functions are sets, for {x, y} we
get for example:

ex({x, y}) = {∃x.∃y.,∃y.∃x.}.

To be able to use the functions to construct from a set
of variables a sequence of quantified variables we thus
need a selection function. Let select : 2T∗ → T ∗ be
such a function which, given a set, chooses one element
of that set. We use the notation ėx and u̇v to denote
select ◦ ex and select ◦ uv, respectively. For the empty
set the selection function returns the empty string.

With the help of these functions we can define at-
tributes which take the signs of the N3 formula, replace
them by the respective sign of the core logic, and add,
where necessary, explicit quantifiers. We use two differ-
ent attributes:

mc The value of mc is the translation of the symbols of
the alphabet occurring under a node according to
Cwm.

16

CFG Cwm EYE
production rules rules for mc rules for me

s ::= f s.mc ← u̇v(f.q) ėx(f.eq) f.mc s.me ← u̇v(f.u) ėx(f.eq) f.me

f ::= t1t2t3. f.mc ← t1.mc t2.mc t3.mc f.me ← t1.me t2.me t3.me

e1=>e2. f.mc ← e1.mc → e2.mc f.me ← e1.me → e2.me

f1f2 f.mc ← f1.mc f2.mc f.me ← f1.me f2.me

t ::= uv t.mc ← uv t.me ← uv
ex t.mc ← ex t.me ← ex
c t.mc ← c t.me ← c
e t.mc ← e.mc t.me ← e.me

(k) t.mc ← (k.mc) t.me ← (k.me)
() t.mc ← <> t.me ← <>

k ::= t k.mc ← t.mc k.me ← t.me

t k1 k.mc ← t.mc k1.mc k.me ← t.me k1.me

e ::= {f} e.mc ← <u̇v(f.q) ėx(f.eq) f.mc> e.me ← <ėx(f.eq) f.me>
{} e.mc ← <> e.me ← <>
false e.mc ← false e.me ← false

Figure 11: Attribute rules for constructing the translation of a formula into core logic according to Cwm (mc) and according to EYE (me).

me The value of me is the translation of the symbols of
the alphabet occurring under a node according to
EYE.

Both attributes are synthesized and defined for all sym-
bols of the grammar. In Figure 11 we display the corre-
sponding attribute rules. In most cases these rules look
very similar: constants, existentials and universals are
concatenated, the symbols { and } are replaced by < and
>, and => by→. A different behaviour of the attributes
can only be observed at the two places where quantifiers
are added, the rules e ::= {f} and s ::= f.

For the first of these production rules, the rule for
the attribute mc adds quantifiers to the translated sub-
formula. To get all universally quantified variables at
that level, the value of the attribute q (universal variables
for a formula according to Cwm) is used. For existen-
tially quantified variables we use the value of eq (exis-
tential variables for a formula). As explained in Sec-
tion 2.3 the translation puts first the universal and then
the existential quantification. In contrast to that, the rule
for the attribute me only adds the existential quantifier
since according to its understanding, universal quanti-
fiers are only set in front of the top formula.

For the second of these production rules, the start-
ing rule, attribute mc behaves as before: universal and
existential quantifiers are set using the values of q and

eq. The rules for attribute me also add universal quanti-
fiers at that highest level: the quantifiers for the univer-
sal variables collected using u, the attribute gathering all
universal variables occurring under a formula.

With these rules the quantifiers for a formula are only
added when it is sure that the formula stands on its
own and is not part of a conjunction. To understand
the reason for that behaviour, recall the example in For-
mula 17: there, the universal quantifier for y caused by
the second conjunct also counted for the first and needed
thus to stand in front of both formulas. In case f is pro-
duced using the last rule s ::= f we know that there
are no more conjuncts for the formula and the quanti-
fiers can be added. For each formula, the translation to
core logic generated using the attributes mc and me is
the attribute value of s.mc, respectively s.me.

We finish this section by an example: we again con-
sider the syntax tree of Formula 16 displayed in Fig-
ure 8, this time to construct the translations using the
attributes mc and me. To improve readability, we omit
the prefixes for the constants (“:”) and the introduc-
ing question-marks (“?”) for universal variables. Going
from the bottom to the top of the tree, the first steps are
the same for mc and me and very easy to understand: the
symbols are just captured, translated where needed and

17

then concatenated. For f4 we get for example:

f4.mc,e ← x q y

On the next higher level, both attributes do not add
quantifiers:

e3.mc ← <u̇v(f4.q)ėx(f4.eq)x q y>

=<u̇v(∅)ėx(∅)x q y> = <x q y>

and

e3.me ← <ėx(f4.eq)x q y> = <x q y>

This is also the case for e2 and e4. As the attributes work
analogously for e1 with the only difference that at that
level the attribute rule for mc adds a universal quantifier
as the value f2.q is not empty, we also omit these values
and take a closer look to the attribute values at s. For f1

we have

f1.mc ← <∀y.<x q y>→ <x r c>>→ <x p a>

And get

s.mc ← u̇v(f1.q)ėx(f1.eq)f1.mc

= u̇v({x})ėx(∅)f1.mc

= ∀x.<∀y.<x q y>→ <x r c>>→ <x p a>

= Formula 16’

And with

f1.me ← <<x q y>→ <x r c>>→ <x p a>

we get:

s.me ← u̇v(f1.u)ėx(f1.eq)f1.me

= u̇v({x, y})ėx(∅)f1.me

= ∀x.∀y.<<x q y>→ <x r c>>→ <x p a>

= Formula 16”

The attributes deliver the expected result.

5. Evaluation

In the previous sections we specified how existing in-
terpretations of formulas in N3Logic differ in their han-
dling of implicit quantification. Here, we take a closer
look at these differences. How do they impact practical
cases? In which kinds of applications are they relevant?
In order to answer these questions, we implemented the
attribute grammar introduced above and tested for sev-
eral formulas whether the two interpretations we for-
malised differ on these examples. An explanation of the
implementation, the datasets used and the results of our
tests – quantitative and qualitative – is given below.

5.1. Implementation
For our evaluation we have implemented the attribute

grammar as specified above. In order to stay close to
our format, we used the Utrecht University Attribute
Grammar (UUAG) and its compiler the Utrecht Univer-
sity Attribute Grammar Compiler (UUAGC) [19]. This
framework enables the user to specify attribute gram-
mars which then get translated to Haskell code and can
be used in all kinds of applications. All additional ap-
plications and functions were written in Haskell.

For every N3 formula, our program produces the syn-
tax tree of the translated core logic formula as well as its
string representation in our two interpretations. We fur-
thermore implemented a function which compares these
translations. Note that in N3, especially in Cwm’s in-
terpretation, every file needs to be treated as one for-
mula. This is because the conjunction is done by putting
triples after each other. It makes a difference whether

{:a :b {:c :d ?x}} => {:e :f :g}.

is followed by

:s :p {?x :p :o}. or :s :p {?y :p :o}.

In the first case Cwm’s interpretation puts the quan-
tifier for the variable ?x on the top formula; in the
second case it is inside the premise of the rule. We
therefore cannot give the meaning of the first implica-
tion without taking its context into account. Our func-
tion thus always compares the meaning of an entire
file and then displays the concrete differences between
interpretations. All code can be accessed at https:
//github.com/IDLabResearch/N3CoreLogic.

5.2. Datasets used
To test whether the differences described above can

be observed in practical applications, we used two kinds
of datasets: a test dataset of the reasoner EYE and sev-
eral datasets used in previous research projects.

The EYE dataset13 is a collection of test cases for the
EYE reasoner. Some of the tests were created to chal-
lenge the reasoner (e.g. parsing of nested expressions,
scoping of blank nodes and universals) and are there-
fore rather artificial, but the majority of test files was
either sent by users of the reasoner to explain problems
they had or are minimal examples of practical use cases
from different parties. In that sense the content of the

13Accessible at https://github.com/josd/eye/tree/
master/reasoning/. Our tests are based on the version of October
15, 2017.

18

dataset reflects a big variety of applications created by
different users. At the moment we tested, the dataset
contained 359 N3 files in 50 folders of which 303 con-
tained implicitly quantified universal variables. As the
latest version of EYE does not support that feature, the
test cases do not include explicit quantification.

The Project datasets contain rules we specified in
previous projects, in particular: the projects ORCA
(Ontology based Reasoning for nurse Call) [20,
21], Facts4Workers (Factories for Workers) [22] and
DiSSeCt (Distributed Semantic software solutions for
complex Service Composition) [23]. The rules of the
ORCA dataset14 are written to perform an optimized
version of OWL-RL reasoning and to follow a com-
plex decision tree which, depending on the set-up and
the current situation of a hospital, assign the best staff

member to answer a patient call. The aim of the rules
from the Facts4Workers use-case15 is to deal with the
diverse infrastructure of modern factories in which dif-
ferent machines are able to perform a huge variety of
tasks. These tasks are described via rules which can be
combined to fulfil a desired goal. The last set of rules16,
used in the project DiSSeCt, is designed to check RDF
datasets for user-specified constraints. We chose these
datasets because they were produced to be used in prac-
tical rather complex applications and not to merely test
the reasoner. To ensure compatibility with EYE the
datasets do not make use of explicit quantification.

For our tests, we selected only the files which contain
universal variables. For the ORCA dataset this selection
contained 130 files, for Facts4Workers 25 files, and for
DiSSeCt 84 files.

5.3. Results

For the datasets introduced above, we tested whether
the reasoners interpret every file in the exact same way,
ie whether the two core logic translations produced by
our software were the same (accepting differences in the
naming of variables and in the order of universal and of
existential quantifiers on the same level of a formula),
or whether we can identify differences. The results are
displayed in Table 2. We see that every dataset con-
tains files for which the interpretation differs between
Cwm and EYE. Nevertheless, the portion of affected
files varies per dataset and depends on the nature of the

14This project was in cooporation with an industry partner and the
results might be used in a product. The rules are therefore not public.

15Available at https://github.com/IDLabResearch/
Facts4Workers/tree/master/n3.

16Available at https://github.com/IDLabResearch/
data-validation.

dataset #files #differences percentage
EYE 303 81 27%
F4W 25 12 48%

ORCA 130 27 21%
DiSSeCt 84 50 60%

Total 542 179 31%

Table 2: Results of tests for differences in the interpretations of N3
files. By #differences we mean the number of files which are inter-
preted differently by the two reasoners.

data. We have identified three kinds of constructs which
can be related with disagreements in the interpretation:

Proofs formulas which represent a proof, a special kind
of N3 formulas explaining the derivation steps of
the reasoner (see also [24]);

Built-ins formulas which contain built-in functions
which have a special meaning for one or both rea-
soners;

Nesting formulas which, without using built-in func-
tions, either act on graph patterns or perform rea-
soning about rules.

Before taking a closer look at the distribution of these
three cases in the different datasets, we explain what we
mean by proofs, built-ins and nesting in more detail.

5.3.1. Proofs
When drawing conclusions from data, both reason-

ers are able to provide an explanation for their deriva-
tions. For that they both use the N3 proof vocabulary17

created in the context of the Semantic Web Application
Platform (SWAP) [25]. The vocabulary makes it pos-
sible to express proof steps performed by the reasoners.
While Cwm proofs only contain explicit universal quan-
tification and are therefore out of scope for our current
evaluation, EYE proofs employ implicit universal quan-
tification. An example proof step is given in Listing 1.

We see the proof step of an r:Extraction. This
corresponds to conjunction elimination from common
first-order calculi: if a bigger conjunction is known to
be correct, so are its conjuncts. Here, this example step
is based on another step, a r:Parsing, ie reading infor-
mation from a file. The proof steps yield the formula

{:s :p ?x1} => {:s :pp ?x1}. (18)

17https://www.w3.org/2000/10/swap/reason#

19

1 @prefix : <http://example.org/ex#>.
2 @prefix r: <http://www.w3.org/2000/10/swap/reason#>.
3
4 <#lemma1 > a r:Extraction;
5 r:gives {
6 {:s :p ?x1} => {:s :pp ?x1}.
7 };
8 r:because [a r:Parsing].

Listing 1: Representation of a proof step.

indicated by the predicate r:gives. Interesting from
a structural point of view is that the formula appears
in a formula expression. For Cwm the variable ?x1 is
therefore universally quantified in this expression. We
get the interpretation:

<L1> gives <∀x. <s p x>→ <s pp x> >.

Since the file from which the formula stems contains
Formula 18 this interpretation is correct in this context.
For EYE all variables are quantified on top level, we get:

∀x. <L1> gives < <s p x>→ <s pp x> >.

Yet, if we consider the meaning of the predicate
r:gives which indicates the consequences we can
draw from the reasoning steps, then this interpretation is
also right: from the fact that Formula 18 appears in our
data we can for every x conclude that < <s p x> →
<s pp x> >. Hence in this case the differences in the
interpretations do not have practical consequences even
if the proofs are used for further reasoning.

N3 reasoning mostly depends on rules containing
universal variables. Like in the example, most proofs
list the parsing and selection of such rules and are there-
fore often subject to the problem described. In our
datasets, this is the case for all proofs.

5.3.2. Built-ins
Another big group of differences in the interpreta-

tions of a formula can be observed in connection with
built-in functions. Both reasoners, Cwm and EYE,
provide a set of predicates with predefined meanings18

which can be used to, for example, deal with lists
(rdf:first), to compare terms (log:equalTo) or to
do calculations (math:product). Some built-in pred-
icates are reasoner-specific. Using these leads to dif-
ferent reasoning results. But even if a predicate is sup-
ported by different reasoners, we often get differences

18Available at https://www.w3.org/2000/10/swap/doc/
CwmBuiltins for Cwm, and http://eulersharp.sourceforge.
net/2003/03swap/eye-builtins.html for EYE.

in connection with their usage. This is because many
built-ins deal with graphs or graph patterns.

As an example consider the built-in predicate
log:includes19 which is supported by both reason-
ers and compares formula expressions. A triple A
log:includes B. is correct iff the terms A and B are
formula expressions and the triples occuring in B also
occur in A. {:a :b :c} log:includes {:a :b
:c}. is correct while {:a :b :c} log:includes
{:a :b :o}. is not. The following rule contains a
triple using log:includes in its antecedent:

{{:a :b :c} log:includes {:a :b ?x}}

=> {:d :e :f}.

The shape of this triple is similar to the examples given
before with the difference that instead of :o or :a, the
object of the triple in the right-hand side formula expres-
sion is the universal ?x. Cwm interprets this formula as

<∀x. <a b c> includes <a b x>>

→ <d e f>.

Since it is not true that for every x the expression
<a b x> is included in <a b c> – think for example in
the case above, x = o – the consequent of the formula is
not derived in Cwm. Opposed to that, EYE understands

∀x. < <a b c> includes <a b x> >

→ <d e f>.

Here, the antecedent of the implication is fulfilled for
x = c. EYE derives the new triple d e f. The different
interpretation of universals changes the reasoning result.

5.3.3. Nesting
Our examples contain a third kind of differences:

rules which either operate on other rules or on graph
structures. Many examples for this can be found in the
ORCA dataset where rule-producing rules are applied
(see [21]) but also in the Facts4Workers dataset, where
formula expressions refer to events. A (shortened) ex-
ample of such a reference in a rule is shown in Listing 2.

In this example we can perform actions on machines.
Such actions can for example be to start or stop the ma-
chine, but also to simply do an observation of a problem.
Each action performed gets an event id. The rule from
the example expresses that, if a problem is observed, the
very next action to be performed is to stop the machine

19Prefix log:<http://www.w3.org/2000/10/swap/log#>.

20

1 @prefix http: <http://www.w3.org/2011/http#>.
2 @prefix math: <http://www.w3.org/2000/10/swap/math#>.
3 @prefix : <http://example.org/ex#>.
4
5 {
6 {? machine :hasProblem ?problem .}
7 :eventId ?eid.
8
9 (?eid 1) math:sum ?nid

10 }
11 =>
12 {
13 _:request http:methodName "POST";
14 http:requestURI
15 "https :// f4w/actions ";
16 http:body ("stop" ?machine).
17
18 {? machine :stoppedBy ?problem .}
19 :eventId ?nid.
20 }.

Listing 2: Example rule using a nested graph (taken from the
project Facts4Workers).

(here via an http-call). Note, that the different actions
or events in this example are expressed by formula ex-
pressions which contain universal variables. While in
EYE the two occurrences of the variable ?problem co-
refer – here, the universal quantification of implicit uni-
versals is always on top level – this is not the case for
Cwm whose interpretation is displayed in Listing 3. We
clearly see that the two occurrences of ?problem are
understood as two different variables. The meaning of
the rule differs between reasoners and the implementa-
tion of this use case does not work with Cwm.

5.3.4. Distribution of Cases
Having seen examples for common cases causing dif-

ferences in the interpretation of N3 formulas, we return
to the numbers of Table 2. These numbers depend on the
nature of the datasets and the constructs they contain: If
a dataset does not contain proofs at all our implemen-
tation will also not find any problems related to proof
constructs there. The same holds for the two other kinds
of potentially problematic constructs we describe above.
We therefore show in Figure 12 how many files contain
proofs, built-ins and nesting of any kind20 (dark blue).
Next to that information, we also display, how many of
these constructs actually lead to conflicting interpreta-
tions (light blue). Note that the cases we consider are

20In that context we define nesting as containing at least one
formula expression occurring in another one as in the example
:a :b {:c :d {:e :f :g.}.}. where {:e :f :g.} is nested.

1 ∀ m. ∀ i. ∀ i2.
2 <
3 ∀ p.
4 <m hasProblem p> hasId i.
5 (i 1) sum i2
6 >
7 →

8 <
9 ∀ p1. ∃ r.

10 r methodBame ’POST ’.
11 r requestURI ’https ://f4w/actions ’.
12 r body (’stop ’ m).
13 <m stoppedBy p1 > eventid i2.
14 >

Listing 3: Interpretation of Listing 2 according to Cwm. The
occurrences of variable ?problem are understood as two differ-
ent variables.

overlapping: proofs can contain built-ins, files can have
deeply nested formula expressions at one place and use
built-ins at other places. Due to the nature of proofs,
every proof file is also subject to nesting.

We already mentioned earlier that proofs containing
universal variables cause conflicting interpretations and
that in our examples all proofs contain such variables.
As a consequence, the dataset containing most proofs,
the DiSSeCt data set, is also the one having the highest
share of diverging interpretations. For the other kinds
of constructs we discussed, built-in functions and nest-
ing, we take a closer look at the numbers appearing in
Figure 12 below where we also explain how the values
were calculated

Disagreements per Formula Type
In order to understand how many of the built-ins

present in our datasets are causing problems, we ex-
tended the attribute grammar by additional attributes.
We give the definition of these attributes in Appendix
B.1. Here, we only want to briefly discuss the idea:
If a triple has a built-in function in predicate position
we test whether subject and object of that triple con-
tains universal variables. If this is the case, we next
need to know where exactly the interpretation accord-
ing to Cwm quantifies these variables. If all these uni-
versal variables are quantified on a higher level than the
parentc level of the built-in then the built-in construct
itself is not causing conflicting interpretations.

In Figure 12 where the numbers calculated by that
method are displayed in the middle we already see that
in many cases the presence of a built-in construct in
a data set does not cause problems. To better under-
stand how likely this presence of a built-in constructs

21

E
Y

E

F
4W

O
rc

a

D
iS

S
eC

t

Proof

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l

E
Y

E

F
4W

O
rc

a

D
iS

S
eC

t

Built−ins

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l

E
Y

E

F
4W

O
rc

a

D
iS

S
eC

t

Nesting

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l

Figure 12: Distributions of proofs, built-ins and nesting in datasets. The share in dark blue always represents the files containing the respective
feature while light blue is used to represent the cases where the feature leads to different interpretations.

causes contradicting interpretations we display the num-
bers from above in another way. Figure 13 shows in how
many of the files containing built-in functions at least
one of the built-in functions occurs in a construct which
causes contradictory interpretations.

We see that for the whole dataset and most sub-
sets approximately a quarter of all files with built-ins
contains at least one critical construct. Only in the
Facts4Workers dataset this share is higher. This has to
do with the fact that in that project one specific built-in
is used very often: The built-in e:whenGround21 tests
whether its subject contains variables or is ground and
calls the object if the latter is true. This built-in is im-
plemented in EYE for a few very specific use cases. We
expect that users employing such special predicates are
aware of the fact that their rules only work with one spe-
cific reasoner. The cases counted here are therefore less
critical for the problem that files written for use cases
of the Semantic Web which rely on interoperability are
interpreted contradictory by different reasoners.

A similar figure as the one above can be produced
for nested formulas. We display the share of formulas
being subject of a nesting problem in all formulas con-
taining nesting in Figure 14. In Figures 12 and 14 we
understand a formula as nested if it contains a graph
construct in a graph construct (ie a formula in nested
brackets {. . .{. . .}. . .}). As a nesting construction lead-

21See http://eulersharp.sourceforge.net/2003/
03swap/log-rules.html#whenGround.

ing to the problems described in this section we under-
stand any nested construct containing a universal vari-
able for which the quantifier according to Cwm is on
any other level than the top level. This rather broad def-
inition qualifies all differences listed in Table 2 as sub-
ject to a nesting problem and these numbers are also
used for the two figures. We observe that, when deep
nesting is already present in a file, we suffer from con-
flicting interpretations in 72% of the cases. This is not
very surprising since most nested graphs occur in rules
which most likely also contain universals, but this figure
shows once again, that when using nested graphs, users
need to be careful with universal variables.

Categorisation of Errors
As a last point in this subsection we display how

the different problem types are distributed over the files
counted in Table 2. The reasons for conflicting interpre-
tations of a formula can be overlapping. To be able to
show a distribution we separate them in disjoint groups
as follows:

Built-in Group Every formula containing a built-in
construct which leads to contradictory interpre-
tations is counted as such even if this construct
occurs in a proof or additionally contains nested
graph constructs without built-ins.

Proof Group Every proof formula for which the rea-
son of the contradictory interpretations is only the
proof structure itself. That means that the formula

22

DiSSeCt

Orca

F4W

EYE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total

Figure 13: Share of files containing built-ins causing conflicting in-
terpretations in files containing built-ins. Only in a quarter of all files
containing built-ins these occur with deeply nested universals.

DiSSeCt

Orca

F4W

EYE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total

Figure 14: Share of files causing conflicting interpretations in files
which have nested expressions. 72% of the files containing nesting
are interpreted differently by both reasoners.

does not belong to the Built-in Group and that the
results of the proof steps – ie the result part in
the triples <#lemma> r:gives { result } – do not
contain any universal variables which Cwm quan-
tifies on a level which is nested inside these results.

Nesting Group Every formula not belonging to the
two groups above is counted as a nested formula.

To test whether conflicting interpretations are caused
by built-ins, we used the attributes introduced above.
The method to determine whether a formula represent-
ing a proof belongs to the Nesting Class or the Proof
Class is discussed in Appendix B.2.

Following this classification, the results of our tests
are displayed in Figure 15. For the overall dataset (last
line) half (51%) of the conflicts between reasoning re-
sults occur only because of the different interpretations
of proofs. As discussed these can be considered as
rather harmless. The next bigger group of differences
occurs in connections with built-in functions (31%).
Here, not all, but some of the conflicts are unavoidable,
since some built-in functions are not supported by all

DiSSeCt

Orca

F4W

EYE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

proof built−ins nesting

Total

Figure 15: Distribution of different cases causing conflicting interpre-
tations by the reasoners Cwm and EYE.

reasoners. The last group of conflicts (13%), caused by
the simple use of nested graphs or rules without direct
involvement of built-in functions or proof predicates,
is the most dangerous: while users employing built-in
functions are often aware that the support of these could
be limited to one reasoner and therefore also check care-
fully when they want to switch to a different one, this
is not the case here. If nested rules and graphs are
used without any special predicates, it is normally ex-
pected that the reasoning results from formulas contain-
ing these constructions do not differ between reasoners.
The user has no reason to do extra compatibility checks.

Whether these cases occur depends on the use case:
In the DiSSeCt dataset, such cases do not occur. This
has to do with the fact that the use case here is the test
for constraints on RDF data, ie data without formula ex-
pressions or rules. The constraints themselves and the
results are plain RDF and there is always only one rea-
soning run applied in order to find constraint violations.
In contrast, the Facts4Workers dataset contains many
constructs similar to the one displayed in Listing 2 and
does therefore have a rather high occurrence of cases
belonging to the last category (33%).

6. Possible solutions

In the previous section we examined the impact of
having different interpretations for nested implicit uni-
versal quantification on practical cases and discovered
that 31% of our test files contained at least one criti-
cal construct. This means that the problem is not only
of theoretical nature and needs to be addressed. In this
section, we discuss possible solutions from two perspec-
tives: First, we take the perspective of a practitioner who
– given the current situation – needs to make sure that
his rules lead to the same result in both reasoners. Sec-

23

ondly, we take a broader perspective and clarify the dif-
ferent positions a standardisation could take.

6.1. Avoiding Conflicts in Practical Cases

Having seen which kinds of constructs lead to con-
flicts between the different interpretations of N3we now
discuss how to deal with those conflicts. One option
is to avoid them from the very beginning by not using
nested formula expressions. The drawback of this so-
lution is that this also means to not use the full power
of N3 since constructs such as rule-producing rules [21]
would not be available any more. If we want to support
N3 as it is, we need a way to translate from one reasoner
to the other.

6.1.1. EYE formulas interpreted by Cwm
In order to make N3 formulas written for the reasoner

EYE be interpreted in the exact same way by Cwm, we
can use a simple trick: Since we know that the inter-
pretation of implicitly universally quantified variables
also depends on their contexts, ie on their occurrence
in the different conjuncts of a formula, we can add a
dummy formula which lifts the scope of deeply nested
variables to the top level without changing EYE’s in-
terpretation of the whole expression. To illustrate that
idea we use an example we have seen earlier: remem-
ber that in Cwm’s interpretation (Interpretation 16’) of
Formula 16 the quantifier for the universal variable ?y
was nested while for EYE it was on top level, ie in
front of the overall formula (Interpretation 16”). If we
now add the implication {?y ?y ?y}=>{?y ?y ?y}.
to the formula this difference disappears. The formula

{?y ?y ?y.}=>{?y ?y ?y.}. (16a)
{{?x :q ?y.} => {?x :r :c.}.}

=>{?x :p :a.}.

has in both reasoners the same interpretation, namely:

∀x.∀y. (16a’)
<y y y>→ <y y y>.

< < x q y>→ < x r c> >→ < x p a>.

Since the antecedent and the consequent of the added
rule are exactly the same, its addition does not change
the meaning of the whole formula according to EYE.
For Cwm, the meaning does change, the quantifier for
?y is lifted to the top level and is no longer nested.

While here, the change of meaning has been per-
formed on purpose – we wanted the formula to have

the same interpretation by both reasoners – phenom-
ena as the one above can also occur rather randomly:
In our datasets there are several rules embedded in a
bigger context which make use of nested universals but
whose interpretation does not differ between Cwm and
EYE.22 The reason is that they make use of rather arbi-
trary variable names such as ?x and ?y which are also
used in other conjuncts of the same very long formu-
las. Having that in mind, users of Cwm who want to
use nested implicit universal quantification need to be
careful with the variable names they are using to avoid
unwanted changes of scope.

6.1.2. Cwm formulas interpreted by EYE
Performing the other direction – making sure that

EYE interprets a formula containing universal variables
in nested graphs the same way Cwm does – is more dif-
ficult: The only way to do so is to use explicit universal
quantification as one can easily see recalling Cwm’s in-
terpretation of Formula 16:

∀x.<∀y.<x q y>→ <x r c>>→ <x p a> (16’)

Here the universal quantifier for y is nested, but EYE
interprets all implicitly universally quantified variables
as quantified on top level.

Due to the open issues mentioned in Section 2.4, the
current version of EYE does not support nested explicit
quantification which makes the desired task impossible.
This was different in earlier versions.23 A possible way
to make sure that formulas written for Cwm are under-
stood equally by EYE could be to use such an older ver-
sion of the reasoner. Then our implementation can be
used to generate the representation of an N3 formula
in core logic according to Cwm’s interpretation which
we could then translate to explicit quantification in N3.
But even when doing that, it cannot be guaranteed that
this explicit quantification in N3works exactly the same
way explicit quantification in core logic does since a for-
mal specification of the former is missing. Without a
clearly defined explicit quantification in EYE, it is not
possible for each nested formula to translate Cwm’s in-
terpretation to an N3 formula EYE interprets equally.

6.2. Definition of a Standard
As discussed above, in the current situation the user

writing rules needs to either know beforehand with

22A concrete example is the file https://github.com/
josd/eye/blob/master/reasoning/n3p/sample.n3 in the eye
dataset.

23In all versions before EYE-2014-12 nested explicit quantifica-
tion is allowed.

24

which reasoning engine he wants to use his rules, or he
needs to apply the strategy discussed above of adding
dummy rules which lift the quantifier of deeply nested
implicitly universally quantified variables to the top
level. Given that N3Logic was created for the Semantic
Web where interoperability is a very crucial feature, this
situation is not acceptable and the community needs to
come to an agreement. For such an agreement, we see
three options which we discuss below.

6.2.1. Semantics with Nested Universal Quantifiers
One possible solution is to follow Cwm. In that case

we could use the specification provided in this paper as
the official semantics of N3.

One problem with that solution is that it is rather diffi-
cult to formalise. We needed to define an attribute gram-
mar with four attributes to be able to handle Cwm’s im-
plicit universal quantification. Following the same ap-
proach, scoping on top level only required the defini-
tion of one attribute. Being a direct realisation of this
grammar our implementation is equally complex and so
far we did not encounter an easier way to implement
the scoping as intended by Cwm. Even the Cwm rea-
soner itself has difficulties with implicit universal quan-
tification in some cases (see Appendix A). To the best
of our knowledge, there is no other logical framework
supporting implicit universal quantification which inter-
prets this feature the way Cwm does (we also discuss
other frameworks supporting implicit quantification in
Section 7.2). We therefore suspect that the users’ in-
tuition about implicit universal quantification could be
opposed to Cwm’s interpretation. We furthermore see
the the difficulties when formalising the semantics and
implementing a parser or reasoner following it as an in-
dication that end users writing N3 rules could also have
problems to understand and apply the formalisation of
implicit universal quantification according to Cwm.

All these reasons make us to rather opt against the
possibility to handle implicit universal quantification
the way Cwm does.

6.2.2. Semantics with Quantification on Top Level
Another possible remedy for the problem at hand

would be to strictly follow the interpretation which un-
derstands implicitly universally quantified variables as
quantified on top level such as the reasoner EYE does.

One argument to do so is, that this is easier to for-
malise and also to implement. The attribute we used
for the quantification of EYE was rather simple and just
passed all implicitly universally quantified variables up-
wards in the syntax tree. A formalisation could also

be made without employing attribute grammars by sim-
ply using a universal closure for all universal variables.
As assuming the universal closure for variables freely
occurring in formulas is common practice and done in
many frameworks like for example Prolog [26] we ex-
pect that users writing N3 rules can easily understand
this behaviour and write their rules accordingly.

We therefore favour the interpretation putting the
quantifier of implicitly universally quantified variables
on the top level.

6.2.3. Exclude Implicit Universal Quantification
The third solution for the problem explained in this

paper would be to either not allow implicit universal
quantification at all or to at least only allow it in non-
nested structures such that the scoping of every im-
plicitly universally quantified variable is clearly defined
in both interpretations. Instead, explicit quantification
could be employed. The problem here is that, as ex-
plained in Section 2.4, the meaning of explicit quantifi-
cation is not clearly defined in the W3C team submis-
sion either. Problems especially arise if explicit univer-
sal quantification is used in combination with explicit
existential quantification – to be consistent with the im-
plicit case universal quantification always dominates ex-
istential quantification if both occur on the same level –
and if constants and quantified variables are not clearly
distinguished. In order at least make this last opportu-
nity an applicable option, these uncertainties need to be
clarified. One possible way to do that would be to ex-
tend the attribute grammar discussed in this paper.

7. Related Work

Our related work section consists of three parts: In
the first part we discuss sources that we used to deter-
mine the semantics of N3 logic and logical frameworks
which are related to N3 in general. Next, we have a
broader look into logics that support implicit quantifi-
cation. The third part discusses our methodology which
is very similar to the techniques employed to define the
semantics of programming languages.

7.1. N3 Semantics

7.1.1. Determining the meaning of N3 formulas
To determine the intended meaning of N3 and for-

malise it in this paper we made use of several sources: In
2008 a paper about Notation3 Logic was published [1].
The paper discusses in an informal way the basic con-
cepts of N3 such as citations of formulas, rules, and the
use of variables. Further informal specifications for N3

25

are given by the W3C team submission [2] and a Web
page to explain design issues of the Web [3]. Both Web
pages provide insight in the semantics of N3 by explain-
ing examples, a formal definition is not given. While the
W3C team submission is consistent with the paper, the
oldest source, the Web page about design issues, some-
times conflicts with the more recent sources.24 There-
fore it has only been taken into account when further ex-
planation was needed. Despite the differences described
above, the implementations of the reasoners Cwm [8]
and EYE [9] give an indication how N3 can be under-
stood. Tests as for example described in our previous
paper [11] were performed on these reasoners. In case
of doubt how an interpretation needs to be or at least
is intended to be in a reasoner, questions were sent to
the Cwm mailing list25 or asked in personal communi-
cation.26,27

7.1.2. RDF
The semantics of the core logic is influenced by the

specification of RDF semantics [6]. As Notation3 is
meant to be an extension of RDF the direct semantics
described in our previous paper [11] as well as the elab-
oration semantics in the present paper are designed to be
compatible with RDF. Similarly to N3, RDF does not
have a strict distinction between resources and proper-
ties. The same URI can be used in subject and in pred-
icate position. To interpret a constant the interpretation
functions (IS and IL) first map the constant to a corre-
sponding element in the domain of discourse, consist-
ing of the non disjoint sets of resources (IR) and prop-
erties (IP). A second mapping (IEXT : IP → 2IR×IR)
from the set of properties to the power-set of pairs of
resources is then used to determine the meaning of the
predicates. This approach is similar to our interpretation
mechanism for core logic presented in Section 3 where
the object mapping a maps constants to the domain of
discourse. For this domain of discourse we defined a
subset of properties to which the predicate function p
assigns the sets of valid interpretations just as the map-
ping IEXT does in RDF semantics. A difference be-
tween both formalisations can be observed in the han-

24As an example take the concept of equality: in the beginning N3
followed the unique name assumption which was later discarded and
only remained in N3’s the built-in log:equalTo. General equality
follows the idea of the OWL-concept owl:sameAs.

25https://lists.w3.org/Archives/Public/
public-cwm-talk/

26The co-author Ruben Verborgh spent the time from July till
September 2017 at the Massachusetts Institute of Technology where
he worked with Tim Berners-Lee who developed the Cwm reasoner.

27Co-author Jos De Roo develops the EYE reasoner.

dling of implicitly quantified variables: In RDF seman-
tics a mapping (A) from the set of blank nodes to the
universe of discourse and not to the set of ground terms
is used to model the implicit existential quantification
expressed by a blank node. Another difference between
the two specifications can be found in the handling of
lists: Lists denoted by the ()-notation are considered
to be first-class citizens of N3 [2]. In RDF this nota-
tion is a short cut of the first-rest notation using blank
nodes. Therefore, our core logic specifically deals with
lists while in RDF the meaning of the first-rest pred-
icates is covered instead. To support the definitions of
RDF semantics in core logic, rules can be used [1, p.6f].
The predicates rdf:first and rdf:rest are handled
as built-in functions in N3.

7.1.3. Rules for RDF
Next to N3Logic there are other proposals to add

rules to RDF. The Rule Interchange Format (RIF) [27]
is a W3C standard which was designed to enable the ex-
change of rules in the Web. Following that purpose, RIF
consists of multiple dialects with sometimes conflict-
ing model-theoretic semantics (eg well-founded vs sta-
ble semantics) or even with no model-theoretic seman-
tics at all: for the RIF Production Rule Dialect (RIF-
PRD) [28] only operational semantics is defined. To put
a logic into the context of RIF and enable exchange, RIF
provides the RIF Framework for Logic Dialects (RIF-
FLD) [29] with some basic semantic definitions which
can be extended to fully define the semantics of a rule-
based logic. The interaction of RIF with RDF is de-
scribed in an extra document [30]. RIF rules act on
top of RDF and incorporate triples by using so-called
frames. These frames only act on the structure of the
triples, the semantics of the existing RIF dialects is sep-
arated from RDF semantics but can be aligned. This
separation between the two semantics is also the reason
why we did not choose RIF as a formalism to define the
semantics of N3Logic. The idea of N3Logic is to nat-
urally extend RDF by rules and citations. A separation
between predicates and constructs of the rule language
on the one hand and the well-defined semantics of RDF
on the other hand contradicts that goal.

Another framework to express rules over RDF triples
is the SPARQL Inference Notation (SPIN) [31]. As the
name indicates, SPIN is defined on top of the Semantic
Web query language SPARQL and uses the SPARQL
query option CONSTRUCT to express rules. The differ-
ence between SPARQL and SPIN is that the latter em-
ploys RDF to express rules. The semantics of SPIN is
inherited from SPARQL and thereby – as in RIF – sep-
arated from the semantics of RDF. In the case of SPIN,

26

this separation is rather problematic: As RDF does not
support the use of SPARQL’s query variables, SPIN em-
ploys blank nodes instead. In RDF these blank nodes
are understood as implicitly existentially quantified on
top level while the query variable of a SPARQL CON-
STRUCT query rather works as a universally quanti-
fied variable with its quantifier on top level. Therefore
the semantics of SPIN and RDF documents is not fully
compatible while both follow the same structure.

The Semantic Web Rule Language (SWRL) [32] was
developed as an extension for the subset OWL DL of
the Web Ontology Language (OWL) [33] and is also
compatible with its successor OWL 2 [34] when follow-
ing its direct semantics [35]. Even though this flavour
of OWL can be expressed using an RDF notation it
is not fully compatible with RDF. The direct seman-
tics of OWL ignores, for example, RDF’s blank nodes
and does not understand them as existentially quanti-
fied. Furthermore, the expressivity of SWRL is limited
to a DL-safe variant of Datalog and does therefore not
support nested rules. For these reasons SWRL was not
taken into account when the semantics of our core logic
was developed.

7.1.4. Grounding function
The idea of grounding quantified variables instead of

directly mapping them to the domain of discourse using
a validation function is inspired by Herbrand seman-
tics [36]. In Herbrand semantics the set of all ground
terms forms the domain of discourse. This is different
to our approach where we still have a separated domain
of discourse. The relation between first order logic with
its classical Tarskian semantics and Herbrand seman-
tics is further discussed in a companion paper to the
source mentioned above [37]. Every entailment under
the classical Tarskian semantics of first order logic is
also true under Herbrand semantics. But there are also
differences: since the existential quantifier only refers
to ground terms of the language and cannot be assigned
to a nameless element of the domain of discourse, it is
easy to use negation to construct a counter example for
the compactness theorem in Herbrand semantics. How
the results of Herbrand semantics can be applied to our
core logic is subject to further research.

7.1.5. Cited formulas
A similar construct as the citation of RDF formulas in

an RDF graph as present in N3Logic has recently been
proposed in another RDF extension, RDF* [38, 39].
RDF* allows users to annotate triples. The symbols
’<<’ and ’>>’ are used to refer to single triples just as
N3 uses ’{’ and ’}’ to refer to graphs. To search for such

patterns the query language SPARQL can be extended
to SPARQL*. The semantics of RDF* and SPARQL*
is not fixed yet. We could therefore not base or align
the semantics of our core logic with RDF* in its cur-
rent form. Nevertheless, we expect that further research
on RDF* will address that problem and enable N3Logic
and RDF* to mutually benefit from each other.

The development of N3Logic has furthermore been
influenced by the Knowledge Interchange Format
(KIF) [40] and the related ISO standard Common Logic
(CL) [41] which are both influenced by McCarthy’s
Logic of context [42]. Both support, such as N3, quan-
tified variables in predicate position and the citation of
formulas. Their mechanisms to handle the former is
similar to RDF: variables get mapped to resources of
the domain of discourse. If resources are used as proper-
ties a second mapping interprets these properties. Both
formalisms support universal and existential quantifica-
tion. A difference between them is that in KIF the set
of variables is disjoint from the set of constants while
CL, similar to N3 for explicit quantification (see Sec-
tion 2.4), does not distinguish between variable names
and constants. As a consequence, variables cannot oc-
cur freely in CL formulas. Free variables in KIF are
universally bound on top level. Similar as it is done in
core logic, cited formulas in KIF and in CL are inter-
preted as single elements of the universe of discourse.
For KIF, this is done by mapping them directly to their
string representation which in KIF needs to be included
in the universe of discourse. In CL, a citation is writ-
ten as a pair of a name and a text (the cited logical for-
mula(s)). This name can then be used in different con-
texts. Both logics also provide a mechanism to relate the
quotation to the actual formula they quote. Being out of
scope for this paper which focusses on implicit quan-
tification, it is also planned to add such a mechanism
to our core logic. KIF, CL, but also their predeceasing
logic of contexts are the most promising sources for this
extension of our formalisation.

7.2. Implicit Quantification
Implicit quantification is widely used in different con-

texts. Most frameworks around RDF support the use of
blank nodes. Hogan et al [43] provide an overview of
their meaning and use in these different contexts. In
RDF and RDFS, blank nodes stand, just as in N3, for
implicitly existentially quantified variables. The quan-
tification is local, ie the same blank nodes cannot be
shared between different documents and the existential
quantification always counts for a graph. Traditionally,
RDF does not support nested graph constructions. This
means that all blank nodes occurring in N3 triples which

27

are also valid in RDF have the same meaning in both
frameworks. In the newer addition TriG [44] differ-
ent graph constructs indicated by the {}-construct can
have common blank nodes.28 Where these blank nodes
are quantified depends on the semantics chosen. Hogan
et al furthermore point out that, despite the clear def-
inition, users do not always understand and use blank
nodes as existentially quantified variables in RDF: of-
ten blank nodes are rather used to refer a concrete ob-
ject whose IRI is unknown. A possible reason for that
is that SPARQL [45] interprets blank nodes occurring
in the queried RDF graph exactly in that manner. Also
in N3 or at least in the N3 implementation provided by
the EYE reasoner we can find some built-in functions
which treat blank nodes that way, an example is the
predicate e:findall29 from EYE. Built-in functions
are excluded from this paper but certainly form a ma-
jor challenge in our future work.

Implicit universal quantification can be found in dif-
ferent programming languages and RDF related frame-
works: in Prolog [26] variables are understood to be
universally quantified. The scope of this quantifica-
tion is the clause in which the variable occurs. This
is similar to the universal quantification on top level
as implemented in EYE. But as Prolog does not al-
low the construction of nested rules, which form the
biggest challenge for the determination of scoping in
N3, Prolog’s quantification is only partly comparable
to N3’s. The RDF-query language SPARQL [45] sup-
ports query variables which, if a query is understood as
some kind of filter rule, can be seen as universally quan-
tified. SPARQL allows nesting of graphs and queries. A
SPARQL query consists of two parts, an outer part start-
ing with one of the keywords SELECT, DESCRIBE,
ASK, or CONSTRUCT which can contain search vari-
ables and a WHERE-part which specifies the search pat-
tern. If a query is nested in another one, ie a new query
occurs in the WHERE-part of another query, only the
universal variables which occur in the SELECT-part of
the sub-query share their variables with the WHERE-
part of the top query.30 The aspect that variables in
nested queries are clearly separated in these cases is
slightly similar to the separation of different deeply
nested graphs in N3. However, when we translate such
nested queries to core logic rules, we only need to re-
name identical variables occurring separately on differ-

28https://www.w3.org/TR/trig/#terms-blanks-nodes
29http://eulersharp.sourceforge.net/2003/03swap/

eye-builtins.html
30https://www.w3.org/TR/2013/

REC-sparql11-query-20130321/#subqueries

ent levels, the universal quantifier for all variables is still
on top level.

7.3. Mappings from Representations to Core Logics

The approach of translating a logical representation
into a well defined core logic to explain its semantics
has been inspired by the formal description of program-
ming languages where this practice is quite common. In
programming languages, normally the lambda calculus
and its extensions are used as a core logic. The general
idea is, for example, explained by Pierce [46] and has
been implemented for several programming languages:
Sulzmann et al [47] define System FC , an extension of
the polymorphic lambda calculus System F, to provide a
way to express even rather complicated constructs con-
tained in Haskell and other functional languages, as for
example generalised algebraic data types (GADTs) and
associated types, in terms of a well defined logic. Next
to the definition and discussion of the basic properties
of that logic, the authors also show how to translate the
above mentioned examples from a source language into
System FC . Igarashi et al [48] follow a similar approach
for the programming language Java. To have a logical
representation of the core features of Java, they define
Featherweight Java. This logic can be used to describe
and prove essential properties of the programming lan-
guage. They furthermore discuss how the formalism can
be extended by adding generic types and methods.

In the Semantic Web context a similar approach to
the one represented in this paper can be found for the
definition of SPARQL’s semantics: instead of defining
the semantics directly on the language itself, expres-
sions of SPARQL are first mapped to the SPARQL alge-
bra for which an evaluation semantics is defined.31 An-
other similar, although slightly different, approach can
be found for RDF. De Bruijn et al [49] embed RDF into
F-Logic and first order logic. The difference to our ap-
proach is that this embedding is not done to define the
semantics of RDF – this is defined directly – but to re-
search its relation to other logics. The authors show that
RDF can be represented in the two frameworks.

8. Conclusion

We conclude this paper in two parts: First, we get
back to the research questions which we raised in the

31https://www.w3.org/TR/2013/
REC-sparql11-query-20130321/#sparqlDefinition

28

introduction and summarize how they have been ad-
dressed in this paper. In a second part we give an out-
look to future work and discuss open challenges for the
formalisation of N3Logic.

8.1. Review of the Research Questions

We discuss each research question separately:

(i) How can we formally express the difference be-
tween two interpretations of the same N3 formula?

To express the interpretations of implicitly quantified
variables in N3Logic, we defined a core logic (Sec-
tion 3). The syntax of this core logic is very close to the
syntax of N3 and – apart from some differences in the
symbols – only differs from it in the fact that it only sup-
ports explicit quantification. That way, it is easy to ex-
press at which position an interpretation sets the quan-
tifier when being faced with implicit quantification and
to compare different interpretations. For the syntax we
also provided a semantics which respects the character-
istics of N3 – like the fact that lists need to be treated
as first-class citizens – and allows for further refinement
of concepts which have not been treated in detail in this
paper like the interpretation of cited formulas and the
definition of N3’s built-in functions.

To connect an N3 formula to its core logic counter-
part, we chose the concept of attribute grammars (Sec-
tion 4.2) and can – using this concept – formally define
how an interpretation maps N3 to core logic.

(ii) How do existing interpretations of N3Logic con-
ceptually differ in their way of handling implicit
quantification?

To answer this research question we first explained that
universal quantification is closely related to the concept
of a parent formula (Section 2.3.2) which is underspeci-
fied in the W3C team submission. We specified attribute
grammars for two different interpretations (Section 4):
one seeing the top formula as the parent formula of all
implicitly universally quantified variables occurring in
it regardless of their level of nesting – this is the in-
terpretation the reasoner EYE applies – one for which
this parent formula of an implicitly universally quanti-
fied variable is not the direct formula either written in
curly brackets {} or being the top formula containing
the variable but the next higher formula fulfilling these
conditions – this approach is implemented in Cwm.

(iii) How often does this conceptual difference lead
to conflicting interpretations of formulas used in
practical applications?

To know whether the conceptual difference in the treat-
ment of implicit universal quantification is not only of
theoretical nature but does have impact on practical
cases we implemented the previously defined attribute
grammars in Haskell (Section 5.1). We applied the im-
plementation to different datasets which were written
for practical applications and discovered that in 31%
of all our investigated files at least one construct which
is understood differently by the different interpretations
can be found (Sections 5.2 and 5.3).

(iv) Which kinds of constructs cause these conflicting
interpretations in practice and how likely is it that
a file containing these constructs is actually sub-
ject to the problem?

For the answer of this last question, we looked deeper
into the datasets and identified three different categories
of constructs which caused conflicting interpretations,
namely proofs, built-ins, and deeply nested formulas
without the occurrence of proof-constructs or built-ins
(Section 5.3). For all these constructs we provided
examples and discussed whether the differences in the
interpretations are problematic which was especially
the case for nested constructs without built-ins which
are not part of a proof. We then tested, given one of
these constructs is present in a file, how likely it is
that this file is treated differently by the two different
interpretations. While this was always the case if proofs
are present, disagreements could also be found for a
quarter of the cases containing built-ins and for 72% of
the files containing nested constructs of any kind. As
a last step, we divided the files showing differences in
the interpretations into disjoint groups depending on
the main reason causing that difference. We identified
that 13% of our disagreements were caused by simple
nesting without built-ins or proof-constructs. These
are the cases we consider as most dangerous since files
are mostly manually written – opposed to computer
generated proofs – by users which do not have a specific
reasoner in mind.

Especially these cases lead us to the conclusion
that the problem of having different interpretations for
deeply nested implicit universal quantification needs to
be addressed by a formalised standard. In our opinion,
this standard should be easy to understand for users and
easy to implement which is why we favour to the in-
terpretation which understands the top formula as the
parent for all universals. By providing a way to explic-
itly express the differences between existing interpreta-
tions as we did by defining the core logic and showing
how attribute grammars can be used to map from N3

29

formulas to that logic, we provided tools which ease the
discussion. Having these tools at hand enables anyone
involved to clearly define how he understands implicit
universal quantification and to test where this interpre-
tation differs from others. We thereby set a step forward
towards the standardisation of N3.

8.2. Open Challenges and Future Directions
While this paper shows how the uncertainties about

implicit quantification in N3 can be clarified there are
further challenges lying ahead which need to be solved
in order to standardise N3Logic.

Next to the clarification of the different ways to inter-
pret implicit quantification in N3 and a study whether
the concrete meaning of existing N3 files changes when
applying a different interpretation, the expressivity of
formulas using implicit quantification is an important
factor when making a choice how this should be han-
dled. Understanding the parent formula as the top for-
mula and not as a nested formula makes N3 with only
implicit quantification less expressive. Whether this
limited expressivity is strong enough to support all the
tasks N3 is meant for and how it compares to other stan-
dards needs to be carefully studied in order to come to
an agreement.

The expressivity of implicit quantification becomes
less crucial if N3, as intended by the W3C team submis-
sion, also supports explicit quantification. Section 2.4
briefly discusses the problems and uncertainties in the
current informal specification. The most important fac-
tors are how the exact position of a quantifier should be
taken into account (ie does it make sense that universal
quantification always dominates existential quantifica-
tion) and whether or not variables should be separated
from constants and have for example a designated name
space. These topics need to be discussed in the commu-
nity. We plan to use our core logic to formalise the dif-
ferent options which then, hopefully, leads to an agree-
ment.

Another important topic we excluded from this pa-
per is the formalisation of built-in functions. The W3C
team submission discusses different predicates which
are considered as part of N3 like the list functions
rdf:first and rdf:last which N3 inherits from
RDF but also, for example, the predicate log:equalTo
to state ground equality. We designed the core logic in
such way that it can be easily extended to support these
and other predicates and plan to provide this formalisa-
tion as future work.

The last, but probably most critical point, which
needs to be tackled in order to standardise N3 is a clear
definition how cited formulas need to be handled. The

need for such constructs but also the difficulties which
come with this kind of standardisation can be observed
in RDF: RDF reification is excluded from the definition
of RDF semantics [6] and for the TriG syntax to express
named graphs, there is a disagreement about its mean-
ing [13]. We plan to base our own proposal for this part
of N3Logic on KIF [40] and ISO Common Logic [41].

With the definition of an extendible core logic we
provided a framework which can and will help us to
clarify all properties of N3Logic and thereby leverage
this logic to become a standard for the Semantic Web.

Acknowledgements

The described research activities were funded by
Ghent University, imec, Flanders Innovation & En-
trepreneurship (VLAIO), the Research Foundation –
Flanders (FWO) and the European Union. Ruben Ver-
borgh is a postdoctoral fellow of the Research Founda-
tion – Flanders (FWO).

Appendix A. Problems in Cwm

In this section we explain where the Cwm’s interpre-
tations of N3 formulas as specified in this paper differ
from the actual implementation. We start with a simple
example. Consider the formula:

{?x :p :o}=>{?x :q :o}.

:a :b {:c :d {:e :f {?x :g :h}}}. (A.1)

According to the formalisation provided in this paper,
the occurrences of the variable ?x in the implication are
universally quantified on its parentc formula which is
the overall formula. This quantification then also counts
for the third occurrence of ?x which is more deeply
nested. In core logic this formula can be represented
as:

∀x. <x p o>→ <x q o>.

<a b <c d <e f <x g h>>>. (A.1’)

In this case this is also the result Cwm gives. In List-
ing 4 we display the reasoning result of Cwm32 when
provided with Formula A.1. The output is produced by
using the option --think which makes the reasoner de-
rive the deductive closure of its input dataset. During
this process Cwm also translates all implicit universal

32Version: v 1.197 2007/12/13 15:38:39 syosi

30

1 @prefix : <http://example.org/ex#>
2 @prefix c: <#>
3
4 @forAll c:x .
5 :a :b {
6 :c :d {:e :f {c:x :g :h.}.}.
7 }.
8 {c:x :p :o.} => {c:x :q :o.}.

Listing 4: Output of Cwm when provided with Formula A.1.

1 @prefix : <http://example.org/ex#>
2 @prefix c: <#>
3
4 @forAll c:x .
5 :a :b {
6 :c :d {
7 @forAll c:x.
8 :e :f {c:x :g :h.}.
9 }.

10 }.
11 {c:x :p :o.} => {c:x :q :o.}.

Listing 5: Output of Cwm when provided with Formula A.2.

quantification into its explicit counterpart. But if we
now change the order of the conjunction to

:a :b {:c :d {:e :f {?x :g :h}}}.

{?x :p :o}=>{?x :q :o}. (A.2)

we get a different result. According to the formalisation
this formula has the same meaning as the previous one
namely Interpretation A.1’. In Listing 5 we display the
reasoning output of Cwm for this formula. We clearly
see that in this interpretation an extra universal quan-
tifier for the deeply nested occurrence of ?x is added
(line 7). For Cwm the interpretation of the conjunction
depends on the order of its conjuncts. Cwm does its
translation from implicit to explicit quantification while
parsing. Whenever a new universal variable is encoun-
tered which is not quantified yet a universal quantifier
is added on its parentc level. This mechanism does not
take the later encounter of universal variables on higher
levels into account. Such a mechanism would have a
negative impact on the performance of Cwm. Similar
examples can be easily constructed.

Appendix B. Attributes and Methods for Evaluation

For the evaluation in Section 5.3.4 we defined several
attributes. In this section, we display the definition of
these attributes and explain how they have been used
for the categorisation of different cases.

Appendix B.1. Critical Built-in Constructs
To identify the built-in constructs in our datasets

which are causing conflicting interpretations we extend
the attribute grammar by the two synthesized attributes
b and bi. We display the rules for these attributes in
Figure B.16.

Attribute b is used to pass the set of universal vari-
ables occurring in the subject or object position of a
built-in predicate upwards in the syntax tree to the
parentc formula of that built-in. Here, it is most in-
teresting how the attribute behaves for the production
rule of a simple triple, ie the rule f := t1t2t3. In
that case we make use of the attributes mc and u which
have been defined in Section 4.3.2 and apply function
f1 : T × 2U × 2U → 2U which is defined as follows:

f1(t, s1, s2) :=

s2 if t is no built-in symbol
s1 else

The first argument of the function is the actual value of
the predicate which can either be a built-in or not. In the
case it is not a built-in, the function simply passes the
information collected by the attribute so far upwards. If
the predicate is a built-in, the values of the attribute u
for subject and object get collected, ie all universal vari-
ables which occur in these two positions. For the other
production rules the attribute value is either the empty
set – in case we have a rule resulting in a terminal node
of the tree – or it gets passed upwards through the tree.
The only exception is the production rule e ::= {f}
for which the attribute value of e is the empty set since f
is a parentc formula. For this formula the attribute value
e.s with s defined as in Section 4.3.2 gives information
which variables are already quantified on a higher level.
This is used in the definition of attribute bi.

Attribute bi carries the information whether or not
a built-in predicate has been found whose subject or
object contains one or more universal variable which
Cwm’s interpretation quantifies either on the same level
the built-in function occurs or any lower level. If this
is the case, the value of the attribute is 1, else it is 0.
If we look at Figure B.16 we see that the rules for this
attribute mostly simply pass information upwards with
one exception: For the production rule e ::= {f} we
apply the function f2 : N × 2U×U → N which is defined
as follows:

f2(n, s) :=

0 if n = 0 and s = ∅

1 else

To better understand this definition, we take a closer
look to the arguments the function is used with in the

31

production rule rules for b rules for bi
s ::= f s.b← ∅ s.bi← f.bi

f ::= t1t2t3. f.b← f1(t2.mc, (t1.u ∪ t3.u), f.bi← max(t1.bi, t2.bi, t3.bi)
(t1.b ∪ t2.b ∪ t3.b))

e1=>e2. f.b← e1.b ∪ e2.b f.bi← max(e1.bi, e2.bi)
f1f2 f.b← f1.b ∪ f2.b f.bi← max(f1.bi, f2.bi)

t ::= uv t.b← ∅ t.bi← 0
ex t.b← ∅ t.bi← 0
c t.b← ∅ t.bi← 0
e t.b← e.b t.bi← e.bi
(k) t.b← k.b t.bi← k.bi
() t.b← ∅ t.bi← 0

k ::= t k.b← t.b k.bi← t.bi
t k1 k.b← t.b ∪ k1.b k.bi← max(t.bi, k1.bi)

e ::= {f} e.b← ∅ e.bi← f2(f.bi, (f.b \ e.s))
{} e.b← ∅ e.bi← 0
false e.b← ∅ e.bi← 0

Figure B.16: Attribute rules for the synthesized attributes b (middle) and bi (right), and their corresponding production rules (left) from the N3
grammar (Figure 2). The attributes test whether a formula contains built-ins whose subject or object has universals which are not quantified on the
parent or any higher level of the built-in.

attribute definition: The first argument is simply used
to pass the information that a problematic built-in con-
struct has been found upwards in the syntax tree. So,
if its value is 1, the application of function f2 should
also result in 1 (second case). As the second argument,
we have the difference of f.b – the variables we col-
lected using attribute b – and e.s – the variables which
are quantified on the parentc level of the formula. If this
difference is not empty, this means that we found a vari-
able which occurs in the subject or object position of a
built-in (collected by b) which Cwm quantifies either on
the same level as the built-in or on a lower level. These
are the constructs which are problematic in our consid-
eration. In these cases function f2 will result in 1, else
its value is 0.

Appendix B.2. Nested Universals

The reasons for conflicting interpretations of a for-
mula can be overlapping. Especially for proofs we want
to know whether conflicts are only caused by the proof
vocabulary which normally uses graphs – these cases
are rather harmless – or if either a built-in construct
in combination with a formula expression quantified
within this expression or another occurrence of such a
formula expressions is involved.

For built-ins we use the attributes defined in Ap-
pendix B.1. To find deeply nested universals we in-
troduce the concept of depth: we measure the depth of
a universal variable as one plus the number of formula
expressions its quantifier is enclosed in when translating
the N3 formula to its core logic translation according to
Cwm. If a variable does not occur in a file at all, it has
depth 0. For example, Formula 16 from Section 4.3.2
the variable ?y has depth 2 while ?x has depth 1.

In order to determine the depth of the deepest nested
variable in a formula we define two attributes: the inher-
ited attribute c and the synthesized attribute d. The first
attribute c simply goes downwards in the syntax tree
and counts every formula expression it encounters on
the way down. To understand attribute d we first take a
closer look to the formula involved, f3 : 2U×U×N×N→
N is defined as follows:

f3(s, n,m) :=

m if s = ∅

max(n,m) else

Attribute d now takes this formula to check for every
formula expression and for the top formula whether ac-
cording to Cwm’s translation there is at least one quan-
tifier for universal variables at that level (remember that
the set of universals quantified at each level is captured

32

production rule rules for d rules for c
s::= f s.d ← f3(f.q, 1, f.d) f.c← 1

f::= t1t2t3. f.d ← maxi ti.d ti.c← f.c
e1=>e2. f.d ← maxi ei.d ei.c← f.c
f1f2 f.d ← maxi fi.d fi.c← f.c

t::= uv t.d ← 0
ex t.d ← 0
c t.d ← 0
e t.d ← e.d e.c← t.c
(k) t.d ← k.d k.c← t.c
() t.d ← 0

k::= t k.d ← t.d t.c← k.c
t k1 k.d ← max(t.d, k1.d) t.c, k.c← k.c

e::= {f} e.d ← f3(f.q, f.c, f.d) f.c← e.c + 1
{} e.d ← 0
false e.d ← 0

Figure B.17: Attribute rules for the synthesized attribute d (middle)
and the inherited c (right), and their corresponding production rules
(left) from the N3 grammar (Figure 2). The attributes keep track of
the deepest nested universal in a formula.

by attribute q). If so, it takes the depth of the current
formula which is captured by attribute c and compares
it with the values for d already found in the depending
nodes. From these two values it takes the maximum. If
there are no universal quantifiers at a node, the attribute
only passes the maximum value for d of the depending
nodes upwards. The value s.d is now the depth of the
deepest nested universal in the formula.

Because of the nature of the proof we know that if
the maximum depth of the universal quantifiers is two
or lower, then the only reason for conflicting interpre-
tations is the use of the predicate r:gives which has a
graph as object. If the maximum depth of universal vari-
ables is bigger than two, we know that the conflict found
in the proof is more serious and caused by a deeper nest-
ing in one of the formulas occurring in the object of
r:gives.

References

[1] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, J. Hendler,
N3Logic: A logical framework for the World Wide Web, The-
ory and Practice of Logic Programming 8 (3) (2008) 249–269.
doi:http://dx.doi.org/10.1017/S1471068407003213.

[2] T. Berners-Lee, D. Connolly, Notation3 (n3): A readable
rdf syntax, w3c Team Submission, http://www.w3.org/
TeamSubmission/n3/ (Mar. 2011).

[3] T. Berners-Lee, Notation 3 logic, http://www.w3.org/
DesignIssues/N3Logic (2005).

[4] F. Gandon, G. Schreiber, RDF 1.1 XML Syntax,
w3c Recommendation, https://www.w3.org/TR/
rdf-syntax-grammar/ (Feb. 2014).

[5] R. Cyganiak, D. Wood, M. Lanthaler, rdf 1.1: Concepts and Ab-
stract Syntax, w3c Recommendation, http://www.w3.org/
TR/2014/REC-rdf11-concepts-20140225/ (Feb. 2014).

[6] P. J. Hayes, P. F. Patel-Schneider, rdf 1.1 Semantics,
w3c Recommendation, http://www.w3.org/TR/2014/
REC-rdf11-mt-20140225/ (Feb. 2014).

[7] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, G. Carothers,
Turtle - Terse RDF Triple Language, w3c Recommendation,
http://www.w3.org/TR/turtle/ (Feb. 2014).

[8] T. Berners-Lee, cwm, http://www.w3.org/2000/10/swap/
doc/cwm.html (2000–2009).

[9] J. De Roo, Euler yet another proof engine, http://
eulersharp.sourceforge.net/ (1999–2019).

[10] FuXi 1.4: A Python-based, bi-directional logical reasoning
system for the semantic web, http://code.google.com/p/
fuxi/.

[11] D. Arndt, R. Verborgh, J. De Roo, H. Sun, E. Mannens,
R. Van de Walle, Semantics of Notation3 logic: A solution
for implicit quantification, in: N. Bassiliades, G. Gottlob,
F. Sadri, A. Paschke, D. Roman (Eds.), Rule Technologies:
Foundations, Tools, and Applications, Vol. 9202 of Lecture
Notes in Computer Science, Springer, 2015, pp. 127–143.
URL http://link.springer.com/chapter/10.1007/
978-3-319-21542-6_9

[12] M. Duerst, M. Suignard, Internationalized Resource Identi-
fiers (IRIs), http://www.ietf.org/rfc/rfc3987.txt (Jan.
2005).

[13] A. Zimmermann, RDF 1.1: On Semantics of RDF Datasets,
w3c Working Group Note, http://www.w3.org/TR/2014/
NOTE-rdf11-datasets-20140225/ (Feb. 2014).

[14] R. Verborgh, J. De Roo, Drawing conclusions from Linked
Data on the Web, IEEE Software 32 (5) (2015) 23–27.
URL http://online.qmags.com/ISW0515?cid=
3244717&eid=19361&pg=25

[15] L. Henkin, Completeness in the theory of types, Journal of Sym-
bolic Logic 15 (2) (1950) 81–91. doi:10.2307/2266967.

[16] D. E. Knuth, Semantics of context-free languages,
Mathematical systems theory 2 (2) (1968) 127–145.
doi:10.1007/BF01692511.
URL http://dx.doi.org/10.1007/BF01692511

[17] D. E. Knuth, Semantics of context-free languages: Cor-
rection, Mathematical systems theory 5 (2) (1971) 95–96.
doi:10.1007/BF01702865.
URL http://dx.doi.org/10.1007/BF01702865

[18] J. Paakki, Attribute grammar paradigms—a high-level method-
ology in language implementation, ACM Comput. Surv. 27 (2)
(1995) 196–255. doi:10.1145/210376.197409.
URL http://doi.acm.org/10.1145/210376.197409

[19] S. D. Swierstra, P. R. A. Alcocer, J. Saraiva, Designing and im-
plementing combinator languages, in: International School on
Advanced Functional Programming, Springer, 1998, pp. 150–
206.

[20] D. Arndt, B. De Meester, P. Bonte, J. Schaballie, J. Bhatti,
W. Dereuddre, R. Verborgh, F. Ongenae, F. De Turck, R. Van de
Walle, E. Mannens, Ontology reasoning using rules in an
eHealth context, in: N. Bassiliades, G. Gottlob, F. Sadri,
A. Paschke, D. Roman (Eds.), Rule Technologies: Foundations,
Tools, and Applications, Vol. 9202 of Lecture Notes in Com-
puter Science, Springer, 2015, pp. 465–472.
URL http://link.springer.com/chapter/10.1007/
978-3-319-21542-6_31

[21] D. Arndt, B. De Meester, P. Bonte, J. Schaballie, J. Bhatti,

33

W. Dereuddre, R. Verborgh, F. Ongenae, F. De Turck, R. Van de
Walle, E. Mannens, Improving OWL RL reasoning in N3 by us-
ing specialized rules, in: V. Tamma, M. Dragoni, R. Gonçalves,
A. Ławrynowicz (Eds.), Ontology Engineering: 12th Interna-
tional Experiences and Directions Workshop on OWL, Vol.
9557 of Lecture Notes in Computer Science, Springer, 2016,
pp. 93–104. doi:10.1007/978-3-319-33245-1_10.
URL http://dx.doi.org/10.1007/
978-3-319-33245-1_10

[22] D. Arndt, J. Van Herwegen, R. Verborgh, E. Mannens, R. Van de
Walle, Using rules to generate and execute workflows in smart
factories, in: Proceedings of the RuleML 2016 Challenge, Doc-
toral Consortium and Industry Track hosted by the 10th Inter-
national Web Rule Symposium, Vol. 1620 of CEUR Workshop
Proceedings, 2016.
URL http://ceur-ws.org/Vol-1620/paper12.pdf

[23] D. Arndt, B. De Meester, A. Dimou, R. Verborgh, E. Mannens,
Using rule-based reasoning for RDF validation, in: S. Costan-
tini, E. Franconi, W. Van Woensel, R. Kontchakov, F. Sadri,
D. Roman (Eds.), Proceedings of the International Joint Con-
ference on Rules and Reasoning, Vol. 10364 of Lecture Notes in
Computer Science, Springer, 2017, pp. 22–36. doi:10.1007/978-
3-319-61252-2_3.

[24] R. Verborgh, D. Arndt, S. Van Hoecke, J. De Roo,
G. Mels, T. Steiner, J. Gabarró Vallés, The pragmatic
proof: Hypermedia API composition and execution, The-
ory and Practice of Logic Programming 17 (1) (2017) 1–48.
doi:10.1017/S1471068416000016.
URL http://arxiv.org/pdf/1512.07780v1.pdf

[25] T. Berners-Lee, Semantic Web Application Platform, http://
www.w3.org/2000/10/swap/ (2000).

[26] W. F. Clocksin, C. S. Mellish, Programming in PROLOG,
Springer, 1994.

[27] A. Kifer, H. Boley, RIF Overview (Second Edition), w3cWork-
ing Group Note, https://www.w3.org/TR/rif-overview/
(Feb. 2013).

[28] C. de Sainte Marie, G. Hallmark, A. Paschke, RIF Production
Rule Dialect (Second Edition), w3c Recommendation, https:
//www.w3.org/TR/rif-prd/ (Feb. 2013).

[29] H. Boley, M. Kifer, RIF Framework for Logic Dialects (Sec-
ond Edition), w3c Recommendation, https://www.w3.org/
TR/rif-fld/ (Feb. 2013).

[30] J. de Bruijn, C. Welty, RIF RDF and OWL Compatibility (Sec-
ond Edition), w3c Recommendation, https://www.w3.org/
TR/rif-rdf-owl/ (Feb. 2013).

[31] H. Knublauch, J. Hendler, K. Idehen, SPIN - Overview and Mo-
tivation, w3c Member Submission, https://www.w3.org/
Submission/spin-overview/ (Feb. 2011).

[32] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
M. Dean, SWRL: A Semantic Web Rule Language Combining
OWL and RuleML, w3c Member Submission, https://www.
w3.org/Submission/SWRL/ (May 2004).

[33] M. D. , G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler,
I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, L. A.
Stein, owl Web Ontology Language, w3c Recommendation,
https://www.w3.org/TR/owl-ref/ (Feb. 2004).

[34] W3C OWL Working Group, owl 2 Web Ontology Lan-
guage, w3c Recommendation, https://www.w3.org/TR/
owl2-overview/ (Dec. 2012).

[35] B. Motik, P. F. Patel-Schneider, B. C. Grau, I. Horrocks, B. Par-
sia, U. Sattler, owl 2 Web Ontology Language Direct Se-
mantics, w3c Recommendation, https://www.w3.org/TR/
owl2-direct-semantics/ (Dec. 2012).

[36] M. Genesereth, E. Kao, The herbrand manifesto, in: N. Bassil-
iades, G. Gottlob, F. Sadri, A. Paschke, D. Roman (Eds.), Rule

Technologies: Foundations, Tools, and Applications, Springer
International Publishing, Cham, 2015, pp. 3–12.

[37] M. Genesereth, E. Kao, Herbrand Semantics, http://logic.
stanford.edu/herbrand/herbrand.html (2015).

[38] O. Hartig, RDF* and SPARQL*: An alternative approach to an-
notate statements in RDF, in: Proceedings of the ISWC 2017
Posters & Demonstrations and Industry Tracks co-located with
16th International Semantic Web Conference (ISWC 2017), Vi-
enna, Austria, October 23rd - to - 25th, 2017., 2017.
URL http://ceur-ws.org/Vol-1963/paper593.pdf

[39] O. Hartig, B. Thompson, Foundations of an alternative approach
to reification in RDF, CoRR abs/1406.3399. arXiv:1406.3399.
URL http://arxiv.org/abs/1406.3399

[40] M. R. Genesereth, R. E. Fikes, et al., Knowledge interchange
format-version 3.0: reference manual (1992) 1–68.

[41] ISO/IEC 24707:2007 Information technology – Com-
mon Logic (CL), standards.iso.org/ittf/
PubliclyAvailableStandards/c039175_ISO_IEC_
24707_2007%28E%29.zip (2007).

[42] J. McCarthy, Notes on formalizing context, in: Proceedings of
the 13th International Joint Conference on Artifical Intelligence
- Volume 1, IJCAI’93, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993, pp. 555–560.
URL http://dl.acm.org/citation.cfm?id=1624025.
1624103

[43] A. Hogan, M. Arenas, A. Mallea, A. Polleres, Everything you
always wanted to know about blank nodes, Web Semantics: Sci-
ence, Services and Agents on the World Wide Web 27 (2014)
42–69.

[44] C. Bizer, R. Cygniak, RDF 1.1 TriG, w3c Recommendation,
http://www.w3.org/TR/trig/ (Feb. 2014).

[45] S. Harris, A. Seaborne, SPARQL 1.1 Query Lan-
guage, w3c Recommendation, http://www.w3.org/TR/
sparql11-query/ (Mar. 2013).

[46] B. C. Pierce, Types and Programming Languages, 1st Edition,
The MIT Press, 2002.

[47] M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, K. Don-
nelly, System f with type equality coercions, in: Pro-
ceedings of the 2007 ACM SIGPLAN International Work-
shop on Types in Languages Design and Implementation,
TLDI ’07, ACM, New York, NY, USA, 2007, pp. 53–66.
doi:10.1145/1190315.1190324.
URL http://doi.acm.org/10.1145/1190315.1190324

[48] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight java: A min-
imal core calculus for java and gj, ACM Trans. Program. Lang.
Syst. 23 (3) (2001) 396–450. doi:10.1145/503502.503505.
URL http://doi.acm.org/10.1145/503502.503505

[49] J. de Bruijn, S. Heymans, Logical foundations of (e)rdf(s):
Complexity and reasoning, in: K. Aberer, K.-S. Choi, N. Noy,
D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. May-
nard, R. Mizoguchi, G. Schreiber, P. Cudré-Mauroux (Eds.),
The Semantic Web: 6th International Semantic Web Confer-
ence, 2nd Asian Semantic Web Conference, ISWC 2007 +

ASWC 2007, Busan, Korea, November 11-15, 2007. Proceed-
ings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp.
86–99. doi:10.1007/978-3-540-76298-0_7.
URL https://doi.org/10.1007/978-3-540-76298-0_7

34

