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Abstract: When using computer-aided translation systems in a typical, professional translation1

workflow, there are several stages at which there is room for improvement. The SCATE (Smart2

Computer-Aided Translation Environment) project investigated several of these aspects, both from3

a human-computer interaction point of view, as well as from a purely technological side. This4

paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks,5

the integration of translation memories with machine translation, quality estimation, terminology6

extraction from comparable texts, the use of speech recognition in the translation process, and human7

computer interaction and interface design for the professional translation environment. For each of8

these topics, we describe the experiments we performed and the conclusions drawn, providing an9

overview of the highlights of the entire SCATE project.10

Keywords: computer-aided translation; machine translation; speech translation; translation11

memory-machine translation integration; user interface; domain-adaptation; human-computer12

interface13

1. Introduction14

The SCATE project (Smart Computer Aided Translation Environment) was a four year research15

project that ran from March 2014 till February 2018, in which a consortium of three Flemish16

universities investigated several aspects and stages in the professional translation workflow, aiming at17

improvements in each of them. This paper describes the highlights of our research. Section 2 presents18

related work, whereas the remainder of the paper describes the work done within the SCATE project.19

Figure 1 provides an overview of most parts of the project, through a prototype user interface20

(which is described in detail in section 7) of the Smart Computer-Aided Translation Environment.1 A21

professional translates a sentence under translation A using a large text entry box centrally on22

the screen B . The central placement provides space for context; G preceding and H subsequent23

sentences, overall translation progress ( I ) and configuration options in the top bar. Autocomplete F24

assists translators during their task. Suggestions come from multiple sources, all related to technologies25

1 A demo version of the prototype is available at http://scate.edm.uhasselt.be/.
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developed or improved within the project. A translator can accept the default suggestion, choose an26

alternative term from the presented options D or start typing a different translation.27

When starting the translation of a sentence, the default translation comes from hybrid machine28

translation. The complete translated sentence is presented immediately below the text box C and29

can be copied using a single shortcut. The hybrid machine translation builds on the research on both30

machine translation and fuzzy matching, discussed in section 3. As other results from fuzzy matching31

can help during translation, the top results are also presented to the translator in E . At the right-hand32

side of both the hybrid machine translation C and fuzzy matches E quality estimations are presented.33

Research on quality estimation is described in section 4. The relevant terms of these fuzzy matches are34

also presented in the list of alternative D , just as results from an automatically extracted term list, for35

which frequency information in the source is also presented. Results on the topic of term extraction are36

discussed in section 5. The integration of speech recognition in the translation process is described in37

section 6.38

Figure 1. An overview of the SCATE interface. A The sentence to translate, B the editing field, C
the hybrid MT that also includes pretranslations, D a list of translation alternatives coming from the
term base, TM and MT, E fuzzy matches, F suggestion from autocomplete, G previous source

sentences, H upcoming source sentences and I a progress bar.

2. Related Work39

As translators rely on their computer-aided translation tools (CAT tools) to increase their40

productivity, end user satisfaction has become essential when developing new tools. Previous studies41

have shown that these aspects have been rather neglected in the past and the user interface design has42

been driven by the needs of the translation clients and not by the needs of the translator. [1,2]43

Various surveys and field studies [3,4] investigating human-computer interaction, show that44

translators value improved translation memory (TM) - machine translation (MT) integration methods45

(e.g. copy/paste, drag-and-drop within editor). [5–7] show that reuse of sub-segments is possible46

through interactive translation prediction (ITP), a method in which users are presented, as they type,47

with translation suggestions from all available resources.48

Suggestions are displayed either in a drop-down list or directly under the target segment.49

Translators seem to prefer ITP to classical post-editing because it minimises the number of keystrokes50

and thus increases productivity [8,9]. Commercial translation software developers have implemented51
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this technology in different ways and use different terminology to refer to it, such as predictive typing,52

AutoSuggest, Autocomplete, or Autowrite.53

[10] shows that metadata can help translators make well-informed decisions. He concludes that54

metadata ”helps translators adapt their translation strategies more easily according to the suggestion55

type”. [4] indicates that translators like information about the provenance of the MT suggestions and56

estimation of their quality. In the context of post-editing, [11] argues that translators value on-the-fly57

highlighting of word alignment in order to keep the connection between source and target text. In58

other words, it appears useful to explicitly link parts of a source sentence with parts of the translation59

suggestion.60

In SCATE we developed visual aids that explain the origin of the translation suggestions and61

their link with the source text.62

3. Translation Technologies63

Amongst the main translation technologies, besides a term-base (TB), that are accessible to most64

translators in their professional CAT environment are a TM system and an MT engine. Section 3.165

describes how a TM system can improve the matching of existing translations with the segment to66

translate. Section 3.2 investigates integrating TM and MT technologies. Section 3.3 describes our efforts67

in the creation and accessibility of parallel treebanks (i.e. syntactically annotated parallel sentences)68

for syntax-based MT.69

3.1. Improved Fuzzy Matching70

CAT tools have become indispensable in the environment of the modern translator. They help71

increase consistency, productivity and quality. One of the core components of a CAT tool is the TM72

system, which contains a database of already translated fragments, the TM. Given a sentence to be73

translated, the traditional TM system looks for source language sentences in a TM which are identical74

(exact matches) or highly similar (fuzzy matches), and, upon success, suggests the translation of the75

matching sentence to the translator.76

Similarity calculation can be done in many ways. In current TM systems, fuzzy matching77

techniques mainly consider sentences as simple sequences of words and contain very limited linguistic78

knowledge, such as stop word lists. Few tools use more elaborate linguistic knowledge. We include79

syntactic information for detecting TM sentences which are not only similar when comparing words,80

but also when comparing the syntactic information associated with the sentences. Such information81

can consist of lemmas, part-of speech tags or syntax parse trees. We investigate whether such abstract,82

syntax-based matching is able to assess the usefulness of matches in a better way than methods purely83

based on sequences of words.84

We designed a flexible and time-efficient framework which applies and combines different metrics85

in the source and target language. We measure the correlation of fuzzy matching metrics scores with86

the evaluation score of the suggested translation to find out how well the usefulness of a suggestion87

can be predicted, and we measure the difference in recall between fuzzy matching metrics by looking88

at the improvements in mean Translation Edit Rate (TER) [12] as the match score decreases.89

Our comparison of the baseline matching metric, Levenshtein distance [13], with linguistically90

aware and unaware matching metrics, has shown that the use of linguistic knowledge in the matching91

process provides clear added value, especially when several metrics are combined into a new metric92

using a regression tree. The correlation of combined metrics with the evaluation score is much stronger93

than the correlation of the baseline. Moreover, there is significant improvement in mean evaluation94

score, and the difference in recall with the baseline increases as match scores decrease. Full details of95

this study can be found in [14].96

The improved fuzzy matching system is implemented as a web service available through an97

application programming interface (API) and is used in the SCATE interface prototype, as shown in98

Figure 2. This prototype is discussed in more detail in Section 7.99
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Figure 2. Fuzzy matches (bottom right) and integrated TM-MT suggestion (middle) in the prototype.

3.2. Integration of Translation Memory with Machine Translation100

We test the integration of MT and TM, in order to increase the quality of and potentially the101

confidence in MT output. The TM-MT system consists of two main components: (1) fuzzy match102

repair, i.e. the automatic editing of close matches found in the TM, and (2) span pretranslation, in103

the context of which MT output is constrained by including certain consistently aligned subsegments104

coming from one or more TM matches. Both components use a TM with fuzzy matching techniques105

and a statistical MT (SMT) system with related alignment information. Different metrics are used for106

the retrieval and scoring of fuzzy matches, including the syntactic fuzzy matching metric described in107

section 3.1. We performed experiments on ten language pairs (English↔ German, French, Hungarian,108

Dutch and Polish) which involve multiple language families, using the DGT dataset [15]. We applied109

phrase-based SMT without span pretranslation [16], pure TM and a recurrent neural network (RNN)110

encoder-decoder neural MT (NMT) system [17] as baselines, and evaluated the translations using111

several metrics. The tests show that this approach has potential. As shown in Figure 3, significantly112

higher BLEU scores [18] for nine of the ten language combinations were reported, and also METEOR113

[19] and TER [12] scores show comparable patterns. More details are available in [20]. The system114

is, as shown in Figure 2, also integrated in the SCATE prototype, which provides translators with115

informed MT output and which is described in section 7.116

Figure 3. Overview BLEU scores TM-MT integration and baselines [20]

3.3. Parallel Treebanks117

Parallel treebanks [21] are syntactically annotated versions of parallel corpora. While the latter118

are traditionally used in data-driven MT systems, such as phrase-based SMT or NMT [22], parallel119
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treebanks can be used to improve syntax-based statistical MT ([23], [24]) by taking advantage of120

linguistic information, allowing higher levels of abstraction than in phrase-based SMT.121

Work on parallel treebanks also has potential to improve tree-based NMT, which is a very recent122

research topic. Tree-to-string approaches are, amongst others, described in [25], [26] and string-to-tree123

approaches in, amongst others [27] and [28]. While we are not aware of any tree-to-tree approaches in124

NMT (yet), we consider it only a matter of time before such approaches appear, as such techniques are125

already being used for e.g. computer program translation between different programming languages126

[29].127

Below, we explain the concept of alignment (Section 3.3.1), leading to results like parallel treebanks,128

and the creation of MT rules from alignments (Section 3.3.2). We explain the SCATE work on enriching129

parallel treebanks with semantic information in order to bridge syntactic divergences and to facilitate130

MT rule creation (Section 3.3.3), and the work on allowing to search parallel treebanks (Section 3.3.4).131

3.3.1. Sub-sentential Alignment132

Alignment consists of linking segments of a source text with translation-equivalent segments of133

the target text, i.e. the translation of the source text. Starting at the document level, alignment is usually134

performed using an iterative refinement strategy. Alignment proceeds at the sentence level, and may135

continue at the sub-sentential level and the word level.136

Sentence alignment is more or less considered a solved problem, at least for parallel documents.2137

Sub-sentential alignment consists of aligning elements below the sentence level, such as words, chunks138

or constituents at deeper levels of syntactic hierarchy. Word alignment deals with issues such as NULL139

links (untranslated words, or words added during translation), crossing links (changes of order of140

words during translation), and fuzzy links (e.g. translation of groups of words as a whole rather than141

as individual words). Word alignment in sentence pairs is typically produced using statistical tools142

such as GIZA++ [30], which also create a set of lexical probabilities based on the word alignments of a143

large set of sentence pairs. These probabilities indicate the likelihood a source word is translated by a144

target word or vice versa. The word alignment and lexical probabilities allow for the alignment of word145

groups, aligned groups being integrated into a so-called phrase table for SMT systems. Sub-sentential146

alignment may apply linguistic information by aligning chunks [31], which result from a superficial147

syntactic analysis of a sentence (detection of the boundaries of noun phrases and verb phrases), or by148

aligning nodes in parse trees, which provide a deep syntactic hierarchy of a sentence.149

We focus on the alignment of nodes in syntactic parse trees (a.k.a. tree alignment), as this allows150

more flexible translation patterns for MT engines than mere word alignment. Several tree aligners151

exist ([32–34]) taking syntactic parse trees as input, using word alignments and lexical probabilities as152

input. Tree alignment leads to parallel treebanks. In other words, such treebanks [21] are syntactically153

annotated versions of parallel corpora.154

3.3.2. Machine Translation rules155

Based on alignment results, translation rules can be created. Data-driven MT systems such as156

phrase-based SMT [16] and NMT [17], at least in its standard form, use parallel corpora without157

annotations. Parallel treebanks, on the other hand, can be used to create syntax-based MT rules, and158

hence to develop syntax-based statistical MT systems ([23,24]). The linguistic information incorporated159

in their rules allows for higher levels of abstraction and more flexible patterns than the rules derived160

from non-annotated corpora. Figure 4 shows a sub-sententially aligned pair of parallel trees.161

2 http://www.statmt.org/survey/Topic/SentenceAlignment for an overview.
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S

VP

NP

the show

VB

watch

NP

the men
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pp

np

het optreden
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naar

verb

kijken

np

de mannen

Figure 4. An example node-aligned parallel tree.3

The translation-equivalent sentences in parallel corpora may show syntactic divergences, i.e. use162

different syntactic means to convey the same meaning as a result of linguistic necessities or translators’163

choices. This makes alignment based on syntactic structure complex.164

3.3.3. Semantic information165

While the syntactic structure of sentences often changes during translation, semantic information166

tends to remain constant. Therefore, we investigated whether aligning parse trees based on such167

information facilitates alignment and leads to higher quality MT rules with respect to alignment purely168

based on syntactic information. We focus on shallow semantics, in the form of predicates and roles.169

We apply a five-step approach in order to obtain semantically motivated MT rules:170

Step 1: Creation of a semantic role labeler. As tools for automatically assigning semantic predicates171

and roles are scarce resources, we apply a crosslingual projection approach and train a semantic role172

labeler from the projected information. We annotate syntactic parse trees in the resource-rich language173

(English) with a semantic role labeler and project the predicate and role labels to the syntactic parse174

trees in the target language (Dutch) through a non-linguistic tree aligner, LENG (Lexically Equivalent175

Node Grouping) [35], which we developed in SCATE. Details of this aligner can be found below.176

Step 2: From the projected labels, we train a semantic role labeler, requiring a minimum of manual177

intervention. The labeler contains a model with mappings between syntax and semantics.178

Step 3: We align parse trees via semantic labels, word alignment and lexical probabilities.179

Step 4: We derive translation rules based on the aligned parse trees.180

Step 5: We extend a phrase-based SMT system with the translation rules.181

Evaluation results for step 3 and 5 indicate that enriching parse trees with semantic predicate182

and role labels leads to more precise tree alignment results, and that combining a phrase table with183

semantic translation rules helps in improving translation quality. While we performed tests on the184

language pair English-to-Dutch, our approach is sufficiently generic for tests on other language pairs.185

More details can be found in [35].186

The LENG tree aligner, being non-linguistic, may also be applied in a broader context, beyond187

semantically motivated MT. It combines the language pair and parser independence of [34] with the188

higher performance of [33]. It looks for pairs of isomorphic source and target subtrees in which pairs189

of nodes show a strong lexical equivalence. The tree alignment consists of linked subtree pairs that do190

not overlap with each other. As opposed to [34], LENG does not only use lexical probabilities, but also191

the word alignment of the sentence pair (similarly to [33]), imposes less well-formedness constraints,192

and only links nodes to each other if there is strong evidence for doing so.193

We compared LENG with [34] and [33] on the last 35 sentences in the 125-sentence Lingua-Align194

gold standard, using the lexical probabilities and word alignment included with the gold standard.195

Evaluation statistics are shown in Table 1. It shows that we clearly perform better than [34] on precision,196

recall and F-score, and also outperform [33].197

3 Gloss of the Dutch sentence is “the men look at the show”
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System Precision Recall F-score
SubTree Aligner [34] 69.30 71.55 70.40
Lingua-Align [33] 79.29 88.78 83.77
LENG 83.48 89.96 86.60

Table 1. Subtree alignment accuracy on English-Dutch gold standard

3.3.4. Searching Parallel Treebanks198

Parallel treebanks can not only be used for creating MT rules, but also as a resource for studying199

translation phenomena. We built an updated version (with improved parses and improved alignment)200

of the parallel Europarl treebank for Dutch and English [21]. This treebank is tree aligned (see also201

section 3.3.1) and can be queried with Poly-GrETEL [36].202

Poly-GrETEL is an online tool4 which enables example-based syntactic querying in parallel203

treebanks, and which is based on the monolingual GrETEL (Greedy Extraction of Trees for Empirical204

Linguistics) environment [37]. The tool provides online access to the Europarl parallel treebank205

for Dutch and English, allowing users to query the treebank using either an XPath expression or206

an example sentence in order to look for similar constructions.5 The treebank contains automatic207

alignments between the nodes. By combining example-based query functionality with node alignments,208

we limit the need for users to be familiar with the query language and the structure of the trees in the209

source and target language, thus facilitating the use of parallel corpora for comparative linguistics210

and translation studies. Poly-GrETEL will become part of the CLARIN6 linguistic infrastructure for211

researchers.212

4. Quality Estimation of Computer-Aided Translation213

Quality Estimation (QE) is defined as the task of providing a quality indicator for214

machine-translated text without relying on reference translations. The aim of QE is to predict a215

quality score at sentence and/or document level or more fine-grained error labels at word level that216

indicate the need for post-editing. The general approach to QE consists of feature engineering, which217

is the task of finding informative predictors (or features) of MT quality, and applying various Machine218

Learning (ML) algorithms to build prediction models, which associate features with quality labels.219

Today, despite their widespread adoption, ML models of QE remain mostly black boxes, where no220

explanation for the predicted quality is provided [40–42]. In order to gain wide-spread acceptance,221

besides building more accurate systems, one of the main challenges of QE can be considered to build222

white box systems whose predictions can be justified. Based on the definition of the post-editing task,223

one way of doing this would be to take a two-step approach, by detecting different types of MT errors224

in the first step, which are then used in a second step to estimate a global score at sentence level. Such225

systems would not only be beneficial for MT developers and end users to make a meaningful analysis226

about the translation errors a certain MT system makes, but they can also yield higher productivity227

gains in CAT workflows that utilise MT and can improve the acceptability of MT by post-editors, by228

filtering out the sentences with the more challenging error types and by highlighting errors. In the229

SCATE project, we use automatic error detection as a basis to two-step, informative quality estimation230

systems for MT, which are able to justify the reasons for estimated quality.231

In Section 4.1, we first describe a new taxonomy and annotated data set of MT errors. Section 4.2232

describes our approach to building informative quality estimation systems.233

4 http://gretel.ccl.kuleuven.be/poly-gretel/
5 Currently, this is limited to the years 2000 and 2001. After we speed up the process using [38] and [39], we expect to expand

this to the entire Europarl corpus, version 7.
6 Common Language Resources for Research Infrastructure, http://www.clarin.eu
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4.1. Taxonomy and Annotated Data Set of Machine Translation Errors234

Despite the link between MT errors and post-editing effort, most QE systems predict overall235

post-editing effort, without making a distinction between error types. Automatic error detection is236

essential to build informative QE systems that are specialised in localizing different types of errors. To237

this end, in Figure 5, we present the SCATE MT error taxonomy, a fine-grained, hierarchical taxonomy,238

in which errors are classified according to the type of information that is needed to detect them. We239

refer to any error that can be detected in the target text alone as a fluency error. Fluency errors are240

concerned with the well-formedness of the target language, regardless of the content and meaning241

transfer from the source language. There are five main error subcategories under fluency errors:242

grammar, lexicon, orthography, multiple errors and other fluency errors. Accuracy errors, on the other hand,243

are concerned with the extent to which the source content and the meaning is represented in the target244

text and can only be detected when both source and target sentences are analyzed together. Accuracy245

errors are split into the following main subcategories: addition, omission, untranslated, Do-Not-Translate246

(DNT), mistranslation, mechanical, bilingual terminology, source errors and other accuracy errors.247

Figure 5. The SCATE MT error taxonomy

Certain similarities can be observed between some of the accuracy and fluency error categories248

in the error taxonomy, such as extra words vs. addition, missing words vs. omissions or orthography -249

capitalisation vs. mechanical - capitalisation. As the main distinction between accuracy and fluency errors250

in the taxonomy is based on the type of information that is needed to be able to detect them, accuracy251

errors do not necessarily imply fluency errors, or vice versa for that matter [43].252

Using the SCATE MT error taxonomy, for the English-Dutch language pair, we built corpora of253

MT errors consisting of output from three MT systems that are based on different MT paradigms:254

SMT, Rule-Based MT (RBMT) and NMT. In these corpora of MT errors, we obtained error annotations255

provided by multiple annotators, yielding high Inter-Annotator Agreement (IAA). We used Google256

Translate (2014) as SMT system, Systran Enterprise Edition, version 7.5 as RBMT system and Google257

Translate (2017) as NMT system to obtain MT output for all source sentences. The source sentences in258

the corpus of SMT errors are extracted from the Dutch Parallel Corpus [44] and consist of an equal259

number of sentences from three different text types: external communication, non-fiction literature and260

journalistic texts (698 sentences in total). Furthermore, we extended the corpus of SMT errors (2,963261

sentences in total) to analyze the relationship between MT error types and post-editing effort, and to262
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build automatic error detection systems, which are further explained in the next section. The details of263

the MT error taxonomy, the corpora of MT errors and the IAA analysis can be found in [43].264

4.2. Quality Estimation265

We first discuss the predictive power of SMT errors in section 4.2.1, before discussing automatic266

error detection in section 4.2.2 and informative quality estimation in section 4.2.3.267

4.2.1. The predictive power of MT errors on temporal post-editing effort268

From a post-editor’s perspective, MT quality can be considered of the highest level when the MT269

system makes no serious translation errors, in other words when the effort required to post-edit is270

minimal. Despite the obvious relationship between the cognitive effort involved in post-editing and271

the translation errors made by the MT system, the impact and the predictive power of different types272

of MT errors on post-editing effort are yet to be fully understood.273

With the hypothesis that the different error types an MT system makes can explain the cognitive274

effort involved in correcting them, we investigate whether ML techniques can be used to estimate275

Post-Editing Time (PET), an indirect measure of cognitive effort, by using gold-standard MT errors as276

features. We analyzed the SCATE corpus of SMT errors in combination with post-edits obtained for277

each MT output by two post-editors and the average PET calculated per sentence.278

By using the gold-standard error annotations, we showed that PET can be estimated with high279

accuracy, provided that the types of errors in the MT output are known. We obtained these results by280

applying different ML techniques to the largest data set ever used in similar studies [45].281

While these findings suggest that building two-step, informative quality estimation systems is282

possible in theory, accurate detection of all MT error types can be considered to be a challenging283

task, considering the different linguistic properties they represent. On the task of predicting PET, we284

applied various feature selection methods not only to seek a minimal subset of MT error types without285

reducing QE performance but also to reveal the predictive power of different error types on PET. Our286

results show that high QE performance can be achieved by using only eight error types (compared287

to all 33 error types) in the SCATE error taxonomy, corresponding to 31% of all gold-standard error288

annotations in the corpus. We observed the Accuracy - Mistranslation and Fluency - Grammar errors as289

two main error categories, whose sub-categories correspond to error types with high predictive power.290

Our findings suggest that we do not need to detect all error types to estimate PET successfully and291

error detection systems that focus only on error types with high predictive power on PET can lead to292

high quality sentence-level QE performances. For the details of our findings, we refer to [45].293

4.2.2. Automatic error detection294

Considering the informativeness of the different types of MT errors on PET, we propose novel295

RNN architectures for word-level automatic error detection for Fluency and Accuracy errors as bases to296

building informative QE systems for predicting PET on sentence level.297

In order to train Neural Networks (NNs) on the task of detecting fluency errors, which are298

concerned with the well-formedness of the target text alone, we propose a new word representation299

method, in which we transform each word in a given MT output into a feature vector using multi-hot300

encoding, which consists of three types of information: Part-of-Speech (PoS), morphology and301

dependency relation, which we extract by using the Alpino dependency parser for the Dutch language302

[46]. In each word vector, all elements are assigned the value of 0, except the elements representing the303

linguistic features of each word, which are assigned 1. Unlike word embeddings, the morpho-syntactic304

representation strips out semantic features from words. One difficulty of using dependency parsing305

on MT output is that the generated parse trees can be unreliable when the MT output itself contains306

errors. On the other hand, multiple studies demonstrated that parse trees obtained on MT output307

nevertheless provide useful information in terms of MT quality [47,48].308
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Figure 6 shows an example source sentence (EN), its machine-translated version (NL) and the309

morpho-syntactic representation for the word zijn (are). The MT output in this figure contains a Fluency310

- Grammar error in the form of subject-verb agreement in number between the words zijn (are) (plural)311

and kans (chance) (singular).312

Figure 6. Binary vector for zijn (are) consisting of 1s for its PoS, morphology and dependency features
and 0s for the remaining items in the vocabulary.

Besides surface context windows (n-grams), we utilised syntactic context windows for each given313

target word, which we extracted from the dependency parse tree for each given MT output. Syntactic314

n-grams enable us to capture long-distance dependencies in MT output, which can be considered315

as an important piece of information especially for detecting Fluency - Grammar errors. Combining316

morpho-syntactic features with surface and syntactic n-grams, we propose an RNN architecture, which317

is illustrated in Figure 7.318

Figure 7. The proposed neural network architecture for detecting fluency errors. While n represents
a surface n-gram, snp, sns and snc represent syntactic n-grams obtained around the target word by
considering its parents, siblings and children as context in a given dependency tree.

In the proposed RNN architecture, we provide morpho-syntactic feature vectors and319

word-embedding vectors of a target word in the form of surface and syntactic n-grams into eight320

parallel Gated Recurrent Unit (GRU) layers, whose output is concatenated before they are connected321

to the output layer. This network, as a result, predicts if a given word contributes to a grammatical322

error or not as a binary classification task.323

Our findings showed that the combination of the two types of information achieved better QE324

performance on the task of detecting all fluency errors, than using either type of information as325

input in isolation. Moreover, on the task of detecting Fluency - Grammar errors in SMT output, we326

achieved a marked improvement in performance by using accurate morpho-syntactic features over327

word-embeddings.328
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To detect accuracy errors, we modify the proposed RNN architecture and instead of using329

morpho-syntactic features of the target text, we use word-embedding information obtained on the330

source and target texts as input. Our approach additionally incorporates automatic word alignment331

techniques to extract relevant information from the source text. We show that the proposed method332

achieves the best results compared to other NN configurations that utilise morpho-syntactic features333

as additional input. For the details of our experiments on automatic error detection, we refer to [49].334

4.2.3. Informative quality estimation335

Automatic error detection of fine-grained error categories remains a highly challenging task.336

However, the predictions obtained from the error detection systems on more coarse-grained error337

categories, such as dedicated systems for all accuracy and all fluency errors perform relatively well and338

serve as valuable features for building informative QE systems to predict PET. Furthermore, additional339

experiments show that the predictive power of such informative sentence level QE systems could340

be maximised with additional sentence-level features obtained on a given source/MT output pair,341

yielding 96% of the Pearson’s correlation score of the upper boundary we observed on this task by342

using gold-standard error annotations as features [49].343

Figure 8. Quality estimation output in the SCATE user interface.

One of the aims for building informative QE systems is to inform the users about the reasons344

for the estimated quality. Figure 8 shows how informative QE is presented to the user on the345

SCATE platform. Words that are underlined in red are the words that correspond to fluency errors,346

which are detected automatically. The score to the right of the MT output (0.56) corresponds to the347

predicted sentence-level quality, which is based on the output of word-level error detection systems348

and additional sentence-level features, calculated as 1− TER.7 As illustrated in this figure, the SCATE349

platform not only highlights the type and location of errors in a given MT output but also uses this350

information to predict its sentence-level quality.351

Even though predicting the exact location of MT errors remains a challenging task, we observe352

that the proposed systems approximate the location of errors with greater success. Moreover, despite353

the given challenges, our findings confirm that using automatic error detection systems as a basis for354

sentence-level QE is a promising approach to build informative QE systems. We demonstrate that the355

proposed methods deliver QE systems that perform well on estimating temporal post-editing effort,356

while providing meaningful predictions about the type and location of the translations made by a357

given MT system. For further details, see [49].358

5. Terminology Extraction359

We first describe our observations of translator’s methods for acquiring terminology (Section 5.1),360

before we describe our approach to automatic term extraction from comparable text (Section 5.2).361

7 In this example, sentence-level quality is measured in terms of technical post-editing effort as we did not have PET
information on this data set.
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5.1. Studying translator’s methods of acquiring domain-specific terminology362

To identify translators’ terminology strategies of acquiring new domain knowledge, we launched363

an online questionnaire and visited language professionals at their workplaces. The questionnaire364

contained a total of 46 questions out of which 13 concerned demographics and professional experience,365

9 concerned the translation work environment, and 9 concerned terminology activities. The366

questionnaire was answered by 187 language professionals worldwide, out of which more than 70%367

were freelance translators and the rest were in-house translators/revisers, terminologists, interpreters,368

post-editors, and project managers. The questionnaire was online between December 2014 and369

February 2015.370

In the field, we observed 13 translators and 3 terminologists in their authentic professional work371

environment (freelance, commercial and institutional settings) by applying the Contextual Inquiry [50],372

and Think Aloud Protocol (TAP) [51] research methods. The workplace visits took place in Belgium,373

the Netherlands and Luxembourg and were spread over a period of 6 months between November374

2014 and June 2015. For more details we refer to [3].375

The study reveals information about translators / terminologists’ terminology acquisition and376

management practices, web search behaviour and usage of online linguistic resources to solve377

terminological problems. Out of 187 survey respondents, about 139 indicated performing terminology378

activities. About 88% collected terms manually, while 22% used semi-automatic term extraction379

programs. More then half (about 52%) stored their terms in their CAT termbase, while 43% in380

a spreadsheet. The rest preferred a text processor (27%) and standalone translation management381

systems (15%). More than half stored only the language equivalents in their termbases. As for term382

research activities, the online resources were most exploited, followed by personal resources and383

client’s resources. Finally, the survey helped us identify needs and shortcomings of the terminology384

management component integrated in CAT tools, related to the integration with online databases and385

exchange of terminological data. For more information see [52].386

During the contextual inquiries at translators’ workplaces we noticed the following types of387

terminology problems that occurred during translation:388

(1) Related to specialised terminology: the translator does not know the meaning of the source389

term; the translator does understand the source term but does not know how to translate it in the390

target language; the translator does not know which target language equivalent to select from several391

translation alternatives coming from a large database.392

(2) Related to general language.393

(3) Related to the translation of named entities, acronyms, ambiguity, low quality of the source394

text, and punctuation.395

To find a solution, translators used various tools, search and retrieval strategies both from local396

and online resources. We summarise the main findings below:397

Both the survey and the field observations revealed that translators rely more on their TMs than398

on termbases to retrieve translation solutions. When no matches are found, the translator can perform a399

bilingual concordance search, in which the source term is highlighted and a target sentence is shown as400

such, with no highlight of the translation equivalents. The translators has to copy/paste the preferred401

translation from the concordance result window into the target sentence. We saw that the concordance402

feature was the second preferred CAT tool feature, after the TM match retrieval functionality. The403

over-reliance on TMs is signalled and discussed in early studies as well, e.g. [53,54]. While parallel404

corpora can be very useful to analyse translation equivalents in their context, [55] warns that they can405

have a major drawback in the fact that “they require the existence of a translation history” and they are406

not “faithful to linguistic uses in the target language.” She further emphasises that comparable corpora407

(collections of original texts in two or more languages assembled on the basis of similarity) can also be408

a good alternative to acquire specialised knowledge and terminology for under-resourced languages409

and emerging fields. Despite its proven usefulness [56] the SCATE survey shows that comparable410

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2019                   doi:10.20944/preprints201904.0274.v1

https://doi.org/10.20944/preprints201904.0274.v1


13 of 35

corpora are hardly exploited for terminology and knowledge acquisition, the only resource mentioned411

being Wikipedia. SketchEngine that contains the TenTen Corpus Family8 was mentioned only by one412

participant out of 139 who indicated performing terminology activities.413

Besides the concordance feature, the translator can also use the term extraction feature414

incorporated in their CAT tool to quickly retrieve term candidates from their TMs and reference415

corpora, validate the term and add them to their termbase for future use. Most tools incorporate a416

monolingual term extraction component, whereas our research shows that there is also a need for417

bilingual and multilingual automatic term extractors. In addition, the survey showed that only 19418

of a total of 187 used the term extraction feature in their CAT tool. Some reasons for the low usage,419

revealed during the observations: the users did not know how to configure the extraction parameters420

and the validation of the term candidates was time-consuming due to the amount of noise.421

Besides TM, the institutional translators also had access to a custom MT system that they could422

used to retrieve possible translation suggestions for terms, phrases or entire segments when there were423

no matches coming from the TMs. None of the commercial translators we observed used MT via the424

plugins integrated in their CAT tools.425

Another method to search for terminological information or translation equivalents is to look426

up terms and phrases in external databases directly from the CAT tool’s translation editing interface.427

Although most translation environments offer look-up functionality in external terminology databases428

(e.g. IATE, UnTerm, EuroTerm) and parallel corpora (e.g. MyMemory), our research shows that the429

integration with CAT tools is not optimal. Both commercial and institutional translators indicated430

that more advanced filtering techniques are required in order to query the IATE database directly431

from the CAT tool’s interface. In addition, online databases are not always up to date, may contain432

outdated references, or may reflect the terminology used by a specific organisation. Nevertheless,433

things have changed since the study finished.The IATE team has launched a new version of IATE that434

is user-friendlier. Recently, in a JIAMCATT local meeting,9 it was announced that SDL was developing435

a plugin for IATE to allow translators search the database directly from the interface of SDL Trados436

Studio.437

When the local resources did not return any useful results for terminology and translation438

problems, the translators switched to the Web to look for a solution by consulting various websites,439

online dictionaries and platforms. Similarly to the results of the TTC survey [57], both our survey and440

field research revealed that online resources are the most popular linguistic resource for researching441

terminology. Figure 9 shows the most used resources from each category.442

8 https://www.sketchengine.eu/documentation/tenten-corpora/
9 JIAMCATT is the International Annual Meeting on Computer-Assisted Translation and Terminology. JIAMCATT

membership includes most international organizations, as well as various national institutions and academic bodies,
active in the field of terminology and translation.
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Figure 9. Most used online terminological resources

During the observations, we noticed lots of back and forth switching between several types of443

online resources before taking a final decision.The web research path was often decided by the number444

of hits Google gave with the web searches resulting in desktop clutter as the user did not know how445

to manage the search results. For this purpose, one of our subjects developed a strategy not to keep446

more than three tabs open on his desktop. He also used the Ditto clipboard manager to record his447

searches, which saved time. Though the Google search engine was often used, out of the 16 translators448

we observed only 2 used some advanced search operators in Google. When a translation solution was449

found, it was copied/pasted in the translation grid and confirmed in the Translation Memory. Useful450

websites were added to the Favourites toolbar. At the European Parliament, for example, the web451

links were usually centralised and shared via the internal portals of the terminology and translation452

units. Out of 16 observations, we noticed only one instance when the translator actually stored the453

information about the researched term in their term base. These findings correlate with the results of454

the survey that revealed the reasons why translators do not perform proper terminology management:455

lack of knowledge about terminology management, someone else’s responsibility, no added-value,456

time consuming, termbases are complex.457

Another method of acquiring domain-specific terminology is manual compilation of small458

thematic corpora with materials collected from the Web, which can be followed by manual term459

extraction of a list of term candidates, validation, and import of the final terms into the terminology460

database. The source term entries are then researched and completed with target-language equivalents.461

This practice was observed during the observations of the 3 institutional staff terminologists. While the462

manual collection of the corpora and extraction of terms are reliable methods of harvesting terminology,463

the participants indicated that it was time-consuming. Ideally, the users should be able to collect464

corpora automatically and query directly from their translation environment tool. Although there are465

standalone corpus compilation and query tools, such as Sketch Engine, BootCat, AntCont, the SCATE466

survey shows that they are hardly known and used by translators. This might be due to the fact that467

such tools are not supported in the CAT tool. In 2016, Sketch Engine developed a plugin for SDL468

Trados Studio to enable translators and terminologists to perform searches in their large collections of469

corpora (e.g. EurLex) directly from the Translation Editing interface. The pilot showed that the plugin470

was hardly used by translators and, therefore, further development stopped.471

Overall, the field research confirms the finding of previous studies that terminology management472

is mainly done on an ad hoc basis due to time pressure, lack of resources, limited knowledge of how to473

manage terminology properly, and lack of immediate financial compensation. A systematic approach474

was observed only at the European Institutions and large commercial organizations which had a475

dedicated terminologist in each translation unit. Translators seem to rely heavily on their specialised476

TMs rather than on termbases and/or comparable corpora. Semi-automatic term extraction, though477

an integrated component in the commercial CAT tools, has not yet become a standard practice in478
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the preparation stage of a translation project. The Web represents a rich resource for knowledge and479

terminology acquisition but very few adopted the automatic tools for corpora compilation and query.480

Finally, more efficient web search strategies are needed in order to avoid desktop clutter and save481

and store the relevant information in an efficient way. The findings have implications for translators482

educators and software developers alike.483

One way of optimizing the exploitation of external linguistic resources for the purpose of484

terminology acquisition is a seamless integration of more sophisticated terminology extraction methods485

from comparable corpora.486

5.2. Terminology extraction from comparable text487

We experimented with three types of comparable corpora. The first type are corpora compiled488

from Wikipedia articles, which are a valuable resource for compiling comparable corpora. Wikipedia489

articles have the benefit that they are annotated with the categories they belong to as well as with490

interwiki links, which link an article to its counterparts in other languages. Both types of annotations491

allow easy compilation of a comparable corpus that is both domain-specific (using the category492

labels) and strongly comparable across languages (using the interwiki links). For our experiments,493

we constructed an English-Dutch comparable corpus in the medical domain, containing about 1000494

document pairs. Datasets with aligned Wikipedia articles can be found online for many language pairs495

on the website of linguatools.10
496

The second type are corpora compiled from Reuters news articles. News articles are another497

resource to create comparable corpora. We experimented with the Reuters news dataset,11 a498

multilingual collection of news articles published within the same time span. From this collection,499

we created a weakly-comparable corpus by comparing the topic labels (e.g., global, economy, etc.) that500

are annotated on the Reuters documents, for example: when an English document and a Spanish501

document are both annotated with the same global label they are considered to have comparable502

content and are added as a document pair to the comparable corpus. We analysed the resulting dataset503

with multilingual probabilistic topic models: Bilingual Latent Dirichlet Allocation (BiLDA) [58] and504

Comparable Bilingual Latent Dirichlet Allocation (C-BiLDA) [59]. We found that, although the C-BiLDA505

model could uncover some interesting cross-lingual topics (clusters of related words), the dataset was506

not well-suited for inducing translations as the domain was too broad and the comparability across507

languages too low. We therefore conclude that to construct comparable corpora from news articles508

merely relying on high-level topic labels is insufficient. Other clues like named entities (persons,509

locations) and publication dates should be taken into account.510

The third type are existing comparable corpora. Several automatically crawled and cleaned511

comparable corpora have been made freely available online in the context of the TTC project.12 These512

are all specialised corpora in specific domains, such as wind energy and mobile technology. They are513

available in different formats and in seven languages: English, French, German, Spanish, Russian,514

Latvian and Chinese. These characteristics make the corpora especially suited for experiments with515

automatic term extraction from comparable corpora. An additional advantage is that there are also516

(very) limited, manually validated reference term lists available for the evaluation of monolingual517

automatic term extraction. A final advantage is that the corpora have been used in previous518

experiments with automatic term extraction from comparable corpora, so any new results can easily519

be benchmarked against the state of the art.520

We split cross-lingual terminology extraction into two subproblems: (1) term extraction, the521

identification of which words and phrases are (in-domain) terms ; and (2) term linking, where the522

10 https://linguatools.org/tools/corpora/wikipedia-comparable-corpora/
11 http://trec.nist.gov/data/reuters/reuters.html
12 http://www.lina.univ-nantes.fr/?Linguistic-Resources-from-the.html
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aim is to link terms to their correct translation. We focus mainly on term linking. We investigatie523

word-level methods for bilingual lexicon induction (BLI), the task of finding translations for words524

and phrases from non-parallel texts; we propose a novel BLI model that integrates character-level and525

word-level representations; and we implement a hybrid compound splitter for Dutch that combines526

corpus frequency information with linguistic knowledge.527

5.2.1. Comparison of weakly-supervised word-level BLI models528

During the course of the project, we saw the rise of word embeddings in natural language529

processing. These vector representations have shown to encode useful syntactic and semantic530

properties of words and have also been used to build cross-lingual spaces where translations are531

mapped to similar representations. Most techniques that build such cross-lingual representations532

require parallel corpora or bilingual dictionaries, however. We study approaches that can learn533

cross-lingual representations without the need for an initial seed dictionary.534

In particular, we compare two bilingual topic models, BiLDA and C-BiLDA, with a bilingual535

extension of the continuous skip-gram model called Bilingual Word Embedding Skip Gram (BWESG) [60].536

All three models learn bilingual word representations from subject-aligned document pairs only.537

Multilingual topic modeling has shown to be a robust framework for learning bilingual representations538

from such non-parallel data: BiLDA has been successfully applied to BLI [61] and C-BiLDA is a more539

recent extension to BiLDA that learns higher-quality representations when the aligned document pairs540

exhibit a lower degree of parallelism [59]. BWESG is a simple but effective extension to continuous541

skip-gram. It merges each aligned-document pair in a single bilingual document and then runs542

monolingual skip-gram with negative sampling [62] on the resulting document collection. To evaluate543

the models, we use a corpus of subject-aligned Wikipedia documents (English-Dutch) in the medical544

domain. From the English side of the corpus we selected 500 words, which were translated into Dutch545

to form the ground truth. We found that BWESG yields the best performance which indicates that also546

in a weakly-supervised settings, without parallel data, word embeddings are important BLI features.547

5.2.2. Combining word-level and character-level representations548

From our word-level experiments, we observe that for our dataset (consisting of Wikipedia articles549

in the medical domain) morphology is an important clue for identifying translations. Most recent550

work in BLI focuses solely on word-level features, however. For this reason, we design a model that551

seamlessly integrates word-level features (e.g., continuous skip-gram embeddings) and character-level552

features. Most related work in bilingual lexicon induction manually defines a cross-lingual similarity553

metric between word feature vectors. For instance, many methods use cosine distance to measure the554

similarity between embeddings. It is not trivial to define a similarity metric that incorporates both555

word- and character-level information, however. Therefore, we frame bilingual lexicon induction as a556

classification problem. We train a binary classifier that predicts whether two given words are each557

other’s translation. The classifier’s parameters are learned from a seed lexicon of known translations.558

We identify two key advantages of a classification framework for BLI. Firstly, it does not rely on559

an ad hoc combination of features, but learns the patterns over different features from the bilingual seed560

lexicon. Secondly, the classification framework enables learning useful character-level features from561

the seed lexicon. This in contrast to using handcrafted features like normalised edit distance. In our562

model, we obtain a character-level representation by feeding the concatenation of source and target563

characters to an LSTM network (see Figure 10). As word-level representations, we used continuous564

skip-gram word embeddings. The concatenation of word and character features serves as the input to565

a feed-forward neural network that outputs a score between 0 and 1. The higher the score, the more566

confident the model is that the two given words are each other’s translations.567
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Figure 10. Character-level representation in an LSTM framework

Our experiments show that the LSTM representation outperforms handcrafted morphology568

features like normalised edit distance. Furthermore, the model that combines character-level569

information and word-level information outperforms other baselines (including BWESG, the strongest570

word-level model) by a margin. For more details, see [63].571

In follow-up work [64], we verify that we can extend the BLI system, which could only find572

translations for single words, to deal with phrases. Specifically, we find that, after extracting phrases573

using a simple data-driven heuristic, we can treat phrases as if they were a single word: To learn574

character-level representations, we treat whitespace as any other character, and to learn word-level575

representations, phrases are tokenised as a single token.576

5.2.3. Datasets and Gold Standards for Future Research577

Finding comparable corpora for bilingual term extraction is not easy. Wikipedia is a useful578

resource, but for very specialised subjects or smaller languages, coverage is not always optimal.579

Moreover, while the strong comparability per document is useful, it is rare in other resources.580

Compiling comparable corpora ad hoc, such as the one from Reuters new articles, is convenient,581

but still requires identification of the terminology. Finally, a few comparable corpora are available with582

manual term annotations, such as the one used from the TTC project. However, these are very rare583

and often contain only monolingual annotations or a very limited list of cross-lingual links. This lack584

of good resources means that evaluation can be challenging, and it is an important obstacle for the585

development of supervised ML approaches for both monolingual and multilingual term extraction586

from comparable corpora.587

To address this, we started building a dataset for term extraction, which can be used both as588

a gold standard and as training data for a supervised ML approach. To ensure re-usability of the589

data, we collect corpora in three different languages (English, French, and Dutch) and four domains590

(corruption, dressage, heart failure, and wind energy). These corpora are partly based on previous591

research (e.g. the wind energy corpus uses the French and English parts of the TTC corpus). In each592

corpus, around 50,000 tokens are manually annotated, using an annotation scheme with three different593

term labels and elaborate guidelines. The guidelines, including information about the term labels, are594

freely available online.13 This results in a total of over 100,000 manual annotations in all corpora. We595

are currently experimenting with an ML approach to term extraction based on these data.596

While this is already a useful resource, as explained in the previous sections, multilingual term597

extraction from comparable corpora involves two tasks: identifying terms and linking equivalent598

terms across languages. Since the described data only addresses the former, more annotation work599

was required to provide data for the latter. Therefore, the trilingual corpus about heart failure was600

selected and both inter- and intralingual links between terms were manually identified: equivalents601

across languages, synonyms, abbreviations, alternative spellings, hypernyms, hyponyms etc. In total,602

7,385 unique terms and named entities in three languages were annotated this way. This dataset603

is particularly suited as a gold standard for multilingual term extraction from comparable corpora604

13 http://hdl.handle.net/1854/LU-8503113
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for two reasons. First, the inclusion of information about related terms means that a more nuanced605

evaluation can be made in cases when the automatically suggested target language term is not exactly606

an equivalent of the source term, but is still strongly related. Second, the fact that all terms have607

been annotated in this corpus means that the origin of wrongly suggested equivalents can be traced:608

either the system could not find the equivalent, or it was not present in the corpus. After all, since609

comparable corpora are not aligned, it is not unusual for a term to exist in one language of the corpora610

and not the other.611

While these datasets could not yet be used to evaluate the systems presented in the previous612

section, they have already proven to be valuable sources of information about both terminology and613

comparable corpora [65]. For instance, the lack a of restriction about length or part-of-speech of the614

terms revealed that, as expected, nouns and noun phrases are most common, but that, somewhat615

surprisingly, other part-of-speech patterns were often identified as well, e.g. adjectives and even616

verbs. Single-word and two-word terms appeared most often, but longer terms, up to around five617

tokens, were no exceptions. Ongoing research will have to confirm the further use of the data for the618

development of new tools. The dataset will be made available through a shared task on supervised619

machine learning approaches for automatic term extraction in 2020.620

6. Speech Recognition621

In the context of post-editing, using speech instead of typing can speed up the work of the622

translator. The accuracy of automatic speech recognition (ASR) can be improved by making use of the623

extra information present in the translation model (Section 6.1) and by adapting the language model624

to the current domain or topic (Section 6.2). Additionally, we explore the challenging task of speech625

translation in Section 6.3.626

6.1. Adaptation of the Speech Recognition Language Model by Machine Translation627

The aim of this research is to employ improved language models (LMs) and achieve higher628

recognition accuracy for spoken translations. We investigate two ways of improving the LMs: (1) using629

word translations to cluster similar words, which improves the reliability of word frequency statistics;630

(2) using the source language text and MT probabilities to steer the recognition in the right direction.631

The first approach assumes that two words are similar, both semantically and syntactically, if they632

share the same translation in multiple languages. Similar words can then be clustered, which enables633

context sharing within each cluster and hence more reliable statistics for n-gram LMs containing these634

words. By filtering out translation errors based on part-of-speech, context and morphology, we are635

able to derive meaningful synonym clusters, but this does not result in improved recognition, mostly636

due to context insensitivity, i.e. words may be synonymous in certain contexts, but not in others.637

The second approach investigates how to improve speech recognition, based on the source638

language text and MT probabilities. Research in the past largely focused on rescoring either ASR n-best639

lists or word lattices, using the MT probabilities of the source language text. This has the disadvantage640

that it requires two steps, which slows down recognition and requires intermediate storage. Moreover,641

such multi-pass approaches are often inferior to integrated approaches because information that is lost642

during the first step can never be recovered in the second step. Therefore we focus on integrating the643

source language text and MT probabilities into the LM directly. By weighing the n-gram probabilities644

with the translation probabilities of the source language text, a new LM can be created for each645

sentence/paragraph which can directly be used by an ASR decoder. This implementation allows to646

reduce recognition errors by ca. 5% absolute and 20% relative on spoken Dutch translations from647

English, while having little to no negative effect on recognition time. Moreover, compared to an648

existing model [66], our model takes up only 2.8% of disk space compared to a normalized model and649

dramatically reduces the execution time. More information can be found in [67].650

Although the above implementation drastically improves the efficiency of MT-based LM651

adaptation, it assumes that translation consists solely of one-to-one alignments i.e. each word in652
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the source language text can only correspond to one word in the target language text. This is a strong653

assumption that does not hold in reality: every language has its own way of verbalizing concepts with654

some using a single word and others using multiple words for the same concept. In MT this issue is655

addressed by phrase-based translation models.656

We integrate phrase-based models into our implementation, without compromising the657

recognition time. We also extend the recognizer with named entity models. These models attempt658

to improve recognition for proper nouns by estimating their pronunciation and language behavior.659

We exploit the fact that many named entities remain unchanged during English-to-Dutch translation660

implying that we can make reliable estimates for relevant named entities based on the source language661

text. Experiments show that the combination of phrase-based translation models and named entity662

models further reduces the recognition error to ca. 6.5% absolute and 25% relative on the same spoken663

Dutch translations from English. Moreover, the extensions come with the same efficiency benefits as664

the word-based model which allows their use in a real-time CAT environment. To our knowledge this665

is the first MT-based language model adaptation technique using a phrase-based translation model.666

More information can be found in [68].667

6.2. Automatic Domain Adaptation668

We also investigate the effect of automatic domain adaptation for speech recognition. We study669

both cross-domain adaptation and within-domain adaptation: the first approach adapts a model670

trained on a specific domain to other domains, while the second approach adapts to the current topic671

of the text.672

For cross-domain adaptation, we chose to create a new data set. Previous recognition experiments673

were always performed on spoken translations of literature for which the domain is not always very674

confined. For this task we instead chose to work with 14 documentaries provided by VRT,14 all of675

which have a specific domain i.e. mostly fauna and flora. For these data we have the following parallel676

data streams: (1) audio in English (original), (2) script in English (original), (3) audio in Dutch (voice677

over), (4) script in Dutch (as input for audio in Dutch), and (5) subtitles for the deaf in Dutch.678

The audio is converted to the correct format and background noise is filtered out as much as679

possible. Subtitles are normalized to generate a ground truth transcription which is aligned with the680

audio to produce the necessary timing information. Baseline experiments with models that do not681

employ any domain adaptation yield acceptable word error rates, ranging from 9% to 33%.682

In a first attempt we investigate two methods of exploiting domain knowledge: (1) fully683

automatic terminology extraction; (2) user-guided terminology extraction. The first method uses684

BiLDA to automatically extract relevant Dutch terminology based on the English translation. In the685

second approach, we develop semi-automatic methods in which the user/translator enters a Dutch686

query/description of the translation task. This query is then used to retrieve relevant terminology,687

using one of the following methods:688

1. Word-to-word similarity based on a Latent Semantic Analysis (LSA) model [69]689

2. Word-to-word similarity based on a continuous skip-gram model [70]690

3. Document-to-document similarity based on LSA, followed by extraction of the most relevant691

words from the best matching document.692

These methods are incorporated into the SCALE toolkit, which is described in [71]. Each of the693

investigated methods is first evaluated on text: for each documentary, the extracted terminology is694

compared to out-of-vocabulary (OOV) words: the most promising method is the one that is able to695

retrieve the most OOV words. In a next step, this terminology is added to the pronunciation lexicon696

and language model of the speech recognizer, and the word error rate of the domain-adapted speech697

14 VRT is the Flemish public broadcaster, cf. https://www.vrt.be/en/.
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recognizer is measured. None of the proposed methods is able to extract enough relevant terminology698

consistently. Hence, we focus on other adaptation techniques. Moreover, we move from n-gram699

language models to the state-of-the-art RNNS LMs, more specifically long short-term memory (LSTM)700

[72].701

A new topic of investigation for cross-domain adaptation is improving the modelling of OOV702

words. These are words that are not part of the speech recognizer’s vocabulary and therefore cannot703

be recognized. OOV words are a known issue in cross-domain settings as the change of domain often704

introduces many domain-specific words. We work on combining word and character information in705

the LM, rather than only using word information. By using character information, the LM should be706

better able to see similarities between formally/morphologically similar words. This improves the707

quality of the model and reduces the number of parameters to train, because the vocabulary size when708

using characters is very small compared to words. Moreover, the model is better able to predict words709

following out-of-vocabulary words, because it can make use of the characters in the OOV word. Not710

only does our model improve on the existing language model, it also reduces its size. These findings711

are reported in [73]. The code for both baseline LSTM LMs and the word-character LSTM LMs is712

described in [74].713

With respect to within-domain adaptation, we investigate three approaches. The first approach714

exploits the history, by combining the baseline LM with a continuous bag-of-words (CBOW) [70]715

representation of the previous words. We investigate how word embeddings are optimally combined716

into a history representation (e.g. mean, weighted mean or filtered mean) and how the resulting717

CBOW should be combined with the baseline RNN (at the input layer or the output layer of the RNN).718

Unfortunately, the improvements for small LMs did not extrapolate to larger LMs.719

The second approach is similar to the CBOW model in that it builds a continuous representation720

of the history. However, rather than using word embeddings, the model uses an RNN to learn the721

weights of a fixed set of topics which were pretrained using Latent Dirichlet Allocation [75]. Using722

the weighted sum of these topics, the model should be able to predict topical words which can be723

combined with the baseline RNN LM. The results for this model are similar to the previous one: only724

improvements for smaller LMs are found. These findings are reported in [76].725

The third model is a neural cache LM [77]. A cache model [78] is inspired by the fact that726

people tend to talk about the same topic for a while, such that words that have been used before in a727

conversation have a higher probability of being used again. In a neural cache LM, the previous words728

and their hidden representations are stored in a cache. A probability for the next word is calculated729

based on the similarity between the hidden representation of the current word and the representations730

stored in the cache. That cache probability is combined with the standard LM probability. We extend731

the neural cache model by starting from the intuition that a cache makes more sense for content words732

(e.g. bilingual, backhand) than for function words (e.g. the, on). We observe perplexity improvements733

by using the information weight of a word, which is large for content words and small for function734

words. We use the information weights to combine the cache and LM probability and to select which735

words should be added to the cache. Additionally, we compare the regular cache [78] and the neural736

cache [77] for speech recognition, and we find that, contrary to the results for perplexity, the regular737

cache performs better. The results of this research can be found in [79].738

6.3. Translation of spoken data739

In this section we focus on punctuation and segmentation insertion, since this is an important740

task for speech translation. Most ASR systems generate an output stream of words, which does not741

contain punctuation nor segmentation, apart from some form of acoustic segmentation which splits a742

transcript into so called utterances [80]. As these utterances may be very long and can contain several743

sentences, they are very hard to translate using MT engines. We tackle this issue in two steps: firstly,744

punctuation prediction and secondly, segmentation prediction.745
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Most MT engines are trained on data that contain punctuation marks. As the output of a speech746

recognition system usually contains no punctuation information, a solution needs to be found for this747

mismatch. We investigate several approaches.748

LM/LSTM based approaches – One of the commonly used methods for inserting punctuation749

marks into ASR output is using a language model. Using an n-gram LM for punctuation insertion,750

without acoustic cues, can be considered to be the baseline of baselines. We also investigate the use of751

state-of-art LSTM LMs and additionally, LSTMs that are trained for sequence labeling. This means that752

we do not predict the next token at every time step as LMs do, but we predict whether the current753

word should be followed by a punctuation symbol or not. The last method is specifically trained for754

punctuation prediction and greatly reduces the number of possible output classes - from the whole755

vocabulary to the set of punctuation symbols and a symbol indicating ‘no punctuation’.756

Monolingual translation – Peitz et al. [81] show improvements in BLEU score when using a757

monolingual translation system to translate from unpunctuated to punctuated text instead of an758

LM-based punctuation prediction method. They also do a system combination of hypotheses from759

different approaches, and get an additional improvement in BLEU score. They assume correct sentence760

segmentation.761

We train different configurations of monolingual MT systems from non-punctuated Dutch to762

punctuated Dutch (to be used before the regular Dutch to English MT system), from non-punctuated763

Dutch to punctuated English, from non-punctuated Dutch to non-punctuated English, from punctuated764

Dutch to punctuated English, and from non-punctuated English to punctuated English. When we take765

the best configurations of each of these systems, we can measure total MT quality from unpunctuated766

Dutch to punctuated English in different conditions, as shown in Figure 11.767

Figure 11. The different punctuation prediction strategies in a translation context.

In the Baseline we translate unpunctuated Dutch with the regular (punctuated) Dutch-English768

MT engine. In Preprocessing, we translate unpunctuated Dutch to punctuated Dutch, and take769

that output and translate it to English using the regular Dutch-English MT engine. In Implicit770

Punctuation, we translate unpunctuated Dutch to punctuated English using an MT system trained771

on unpunctuated Dutch as source and normal, puncuated English as target. In Postprocessing , we772

translate unpunctuated Dutch to unpunctuated English using an MT system trained on unpunctuated773

data for both languages. We take the output (unpunctuated English) and translate it to punctuated774

English using an MT engine trained on unpunctuated English to normal English775

Besides these different configurations, we also use different MT models: phrase-based and776

hierarchical SMT and neural MT. These MT paradigms are tested both for the monolingual systems777

and the bilingual systems. In total, by combining the n-gram LMs, LSTM LMs, LSTM sequence778

labeling, phrase-based SMT, hierarchical SMT and NMT as punctuation prediction models with the779

different configurations to insert the punctuation (pre-MT, during-MT or post-MT) and the three MT780

models for the actual translation, we tested 145 different experimental conditions. Since all setups are781
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trained and tested on the same data, this provides us a thorough comparison of punctuation prediction782

methods.783

While there is a clear deterioration of MT quality when working with unpunctuated input, this784

gap can be closed for 66% in the case of our best MT system (NMT) by applying monolingual MT as785

punctuation insertion, or by using a dedicated implicit insertion MT system. Whether we use pre-786

or post-processing did not result in a significant difference, in most cases indicating that the general787

punctuation prediction quality for Dutch is similar to that of English. Full details are available in [82].788

We also made some initial steps towards segmentation insertion. As MT systems work per789

segment (usually a sentence), the audio transcript is best divided into segments. This can be done790

based on auditory (length of pauses) or linguistic cues (lexical). Experimentation with different variants791

of these approaches will determine which is the most promising / best functioning approach.792

7. The SCATE Interface793

We use the studies of the translator’s methods (section 5.1) to also investigate improvements794

to the translation environment’s interface.The survey shows that ease of use is the most important795

motivation for choosing a translation environment, closely followed by speed of performance and796

features such as management of TMs and term bases. Contextual inquiries and interviews refine797

and enrich the insights on how translators work [3]. These studies form the start of a user-centered798

iterative research and development approach [83] resulting in a prototype translation environment.15
799

To help translators understand how to use the rich set of translation suggestions that are offered in800

a translation environment, we paid specific attention to the intelligibility of these suggestions. The801

impact of intelligibility is explored in a comparative study with twenty-six professional translators.802

In a second round of evaluation, we invite four professional translators to compare our translation803

environment to Lilt [84].804

7.1. Intelligible Translation Suggestions805

The interface visualizes four established translation features: a term base that contains terms and806

their possible translation (in this case an automatically extracted term base, details of the extraction807

process are discussed by Coppers et al. [83]), fuzzy matches from a TM (Section 3.1), output of an808

MT system (Section 3.2), and auto-completion to predict a word or even a word group. In existing809

translation environments, such features often act like black boxes and provide only limited justification810

for their suggestions [85]. In order to improve trust [86], our interface explains where translation811

suggestions come from, in what context(s) they have been used before and how often they have been812

used by other translators (Figure 12). As a result, translators can make quick and well-informed813

decisions on the suitability of multiple alternatives in a particular translation context.814

15 A version with only cached results from the translation features is available at http://scate.edm.uhasselt.be/
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Figure 12. All translation suggestions are closely related to each other. When a translator types a
character, A) the auto-completion algorithm generates a suggestion. B) The translator compares this
prediction to other alternatives. C) Interesting alternatives can be inspected in the context in which
they have been used by other translators. D) When a translator decides which alternative to use, it can
be added to the translation by pressing ENTER.

In order to efficiently combine sub-segments from various sources such as MT, TM and TB, the815

SCATE interface contains an auto-completion feature that uses these sources to suggest (the remainder816

of) a word or word group (Figure 12.A). By pressing ENTER, the translator can add this suggestion to817

the translation. The algorithm justifies its prediction by selecting the suggestion in the sorted list of818

alternatives (Figure 12.B), which shows several icons and metrics to explain where each alternative819

comes from (e.g. MT, TM and TB) and how often it has been used before by other translators. The820

occurrences themselves are highlighted in blue in the automatic translation and in the fuzzy matches821

(Figure 12.C) to allow quick inspection of similar use cases. The automatic translation is shown very822

close to the sentence to translate and stays directly available to the translator at any time (Figure 12).823

As described in Section 3.2, parts in the automatic translations can be pretranslated by parts from the824

fuzzy matches. This behavior is made clear to the translator by printing these parts in bold in the825

automatic translation and in the matches they originate from.826

Similar to other translation environments, the SCATE interface presents a similarity metric along827

the fuzzy match to make clear how similar the sentence is. In contrast with existing environments, parts828

that are similar according to the matching algorithm used are highlighted, rather than the differences.829

Furthermore, the quality of each suggestion is determined by estimating the number of post-edits that830

are still needed, using the technique described in Section 4.2.3. This estimate is normalized to a value831

between 0 and 1, with 1 representing a score for a sentence that would not need post-editing. Parts of832

the suggestion that probably require post-editing, are underlined in red. These visualisations help the833

translator to quickly understand why a match was similar and how its translation might be useful.834

As a result of the tight integration of suggestions from various sources, a translator can explore835

up to four different relationships between suggestions at once: (1) the relationship between words836

and word groups in the input sentence, (2) synonym recommendations, (3) source and destination837

sentence in match recommendations and (4) the recommended automatic translation. As an additional838

advantage, all translation aids require only limited space and can be combined into a compact839

recommendation overview.840

Keeping in mind the diversity in requirements during the study of translators’ methods [3], the841

interface allows translators to disable the additional metrics and highlighting according to their own842

preferences. Figure 13b shows the interface with all explanations enabled whereas Figure 13a has843

explanations disabled without compromising the functionality.844

The prototype features end-user control over the workflow (Figure 14). A user can control whether845

a segment requires a review, can be rejected by a reviewer, or can still be edited after confirmation.846
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(a) The interface with all explanations disabled (b) The interface with all explanations enabled
Figure 13. Two configurations of the SCATE interface with the same functionality.

Furthermore, it can be configured whether these transitions should be automated between phases,847

and each segment can be assigned to a translator and reviser. By default, no such constraints are848

enforced.849

Figure 14. Each transition in the workflow is optional and can be enforced by the translation
environment.

7.2. Evaluation850

Section 7.2.1 describes an experiment measuring the effect of visualisations and intelligibility851

features. Section 7.2.2 describes a user evaluation in which we compare the Lilt16 and SCATE interfaces.852

7.2.1. Influence of visualisation on experience and preference853

To investigate the impact of intelligible translation aids on the translation process, we perform a854

within subject user study with 26 professional translators. All participants translate two pieces of a855

text of comparable difficulty using the two configurations of the SCATE interface shown in Figure 13.856

The order in which they use each version of the interface is counterbalanced. After each condition857

participants fill out a survey about the interface, with an additional comparative survey at the end.858

The subjects are positive to very positive about both versions of the interface in the survey859

questions. Analysis of the results shows that the visualisations help professional translators to assess860

the quality of the generated suggestions and help to understand how these suggestions can be used861

in translation, without distracting or negatively impacting efficiency. Intelligible visualisations do862

not affect the quality of translation suggestions themselves, but instead inform translators about their863

quality and context to support better decision making. Translators only prefer intelligible translation864

aids when the additional information benefits the translation process, and when this information is865

not yet part of the translator’s readily available knowledge. Coppers et al. [83] provide more details866

about the study.867

7.2.2. Comparison with Lilt868

In the second round of evaluation, we carry out a user study with four professional translators869

and compare the SCATE prototype to Lilt, a commercial translation environment that stems from870

16 http://www.lilt.com/
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research aiming to optimally combine human translation with MT [87]. The two systems under study871

can be considered as examples of a new generation of translation environment tools in the sense872

that they differ from the mainstream and most frequently used systems among translators such as873

SDL Trados Studio, Wordfast and memoQ in the following respects: (1) Both systems offer a tighter874

integration of MT and TM suggestions than the mainstream systems, giving MT a more prominent875

place. However, both systems adopt a fundamentally different approach to reach this goal. (2) Both876

systems present the active segment more centrally on the screen and the source and target text are877

presented vertically instead of horizontally in the standard view. Apart from that, they offer advanced878

user interaction features such as autocompletion and a variety of shortcuts to copy the different types879

of suggestions (TM, MT, alternative translations for words or fragments).880

The interfaces of both translation environments share several aspects, such as the central881

placement of the active segment and the order in which source, target, automatic translation and882

alternatives are presented. When the experiment was carried out, the underlying MT architecture in883

both systems was SMT.17 The main differences can be summarised as follows: (1) SCATE always shows884

suggestions from multiple sources, whereas Lilt offers these suggestions on demand. (2) Additional885

information about alternatives is displayed on the right-hand side of the user interface (memory search)886

in Lilt and is initially hidden, whereas this information is always present in the SCATE interface. (3)887

Lilt shows only one suggestion for the whole segment, while in SCATE the list of fuzzy matches is not888

limited to one. (4) Lilt uses adaptive MT while SCATE uses non-adaptive hybrid MT. (5) In SCATE,889

parts of suggestions, such as MT and fuzzy matches, can be used by double clicking individual words,890

which will add them to the translation.18 (6) In SCATE, information is given about the source of the891

translation suggestions (hybrid MT, TM or term list) and additional scores are given (frequency, fuzzy892

match scores and a quality estimation score) whereas in the Lilt interface the source of the suggestion893

(TM or MT) can only be derived from the presence or absence of the fuzzy match percentage.894

Four professional translators were paid for their participation (50 Euros per hour, 150 Euros in895

total) and signed an informed consent form. Prior to the experiment the participants were asked about896

their previous experience with translation and the use of translation environments. Next, they worked897

through a tutorial to become familiar with the user interface of either Lilt or SCATE, after which they898

translated a text ‘for real’ using the same interface. This first part was completed by a survey that899

asked about their experiences with the first environment. After that, they similarly worked through900

a tutorial, a translation session and a survey of the other interface. The experiment ended with a901

post-experiment survey reporting on their experience with the two interfaces.902

As the SCATE prototype’s MT component has exclusively been trained on English and Dutch903

medical texts, text selection for the experiment was also limited to medical material for this language904

combination. As none of the participants were experienced medical translators, text fragments905

were chosen from package leaflets intended for patients, on the assumption that these would be906

more manageable for the test subjects than highly technical texts. SCATE’s corpus material is the907

English-and-Dutch EMEA TM as available through OPUS [88]. Although this is based on so-called908

EPARs (European Public Assessment Reports) rather than patient leaflets, both text types originate909

from the European Medicines Agency and share many features.910

Care was taken to select texts on relatively new medicines that did not already feature in the911

EMEA TM. Two text fragments of equal size (175 words each) were prepared for the tutorials and912

two further fragments (225 and 232 words, 20 segments) were used for the actual translation. The913

test subjects’ activities during translation were monitored using Inputlog [89] for keylogging and914

Camtasia19 for screen recording. The order of texts and environments tested was balanced across915

participants. Although we could not fully control the Lilt environment, care was taken to create916

17 At the moment of writing, Lilt has replaced the SMT by NMT engines.
18 Clicking once on any word will search for new alternative translations for that word.
19 https://www.techsmith.com/video-editor.html
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translation conditions that were as similar as possible. The same TM was used in both systems (198K917

segments, 5.3 million words in total), and a manually created term list of 360 medical term pairs was918

uploaded in both systems. To keep conditions stable across participants, we also hid SCATE’s button919

that enabled users to customise the interface (to turn features on/off).920

Table 2 gives an overview of the experiments that were carried out. The order of the two921

environments and the two texts were balanced across participants. As the texts were of similar nature922

and length, it was potentially interesting to check whether working in one interface rather than another923

was faster or slower. A comparison of the total number of minutes spent per text per participant,924

however, suggests that the difference seems to be more related to individual speed rather than to the925

interface used, with P2 and P3 being faster in Lilt than P1 and P4, and P1, P3 and P4 having a similar926

speed in SCATE.927

Participant Environment Text Total time
P1 Exp1 Lilt Text1 23

Exp2 SCATE Text2 19
P2 Exp1 Lilt Text2 17

Exp2 SCATE Text1 14
P3 Exp1 SCATE Text1 19

Exp2 Lilt Text2 15
P4 Exp1 SCATE Text2 19

Exp2 Lilt Text1 27

Table 2. Per participant, the order of the experiments, the environment used, the text that was
translated and the total time expressed in minutes.

The study provides us with useful insights. Two translators (P2 and P3) started working on a928

segment immediately after opening and combined different strategies: typing, inserting suggested929

words as well as starting from the complete translation suggestion which they then revise or accept. The930

two other translators (P1 in SCATE and P4 in both interfaces) preferred copying a complete translation931

suggestion, (which could be either an MT or a TM suggestion) to the edit box to start from. One932

translator (P4) pauses for a long time before she takes action. This finding is in line with [90], in which933

two production styles were distinguished: translators either translate a segment mentally and then934

type it (Prospective Thinking), or they translate as they were reading the text (Translating On-screen).935

In all screen recordings we noticed that, despite the training phase, the individual strategies evolved936

over time, a finding that was also reported by Koehn [91], in which a learning effect is described.937

Figure 15 shows the percentage of time devoted to keystrokes versus mouse actions in both938

translation environments. Again, individual differences can be observed. P1 has a noticeably higher939

number of mouse actions than keystrokes, which is not surprising as she does not use any shortcuts in940

either environment. P2 has a remarkably higher number of keystrokes in SCATE compared to Lilt,941

which can be explained by his own comment in the survey that “in SCATE there was more typing942

work when diverting from the original suggestion.”943
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Figure 15. Percentage of time devoted to keystrokes vs. mouse actions per translation environment per
participant.

Figure 16 presents the total number of characters typed versus the number of keys pressed to944

delete text (delete, backspace). No distinction has been made between the typing activity in- or outside945

the Lilt or SCATE environment. This figure demonstrates the benefits of using interactive translation946

environments. Even P1, who produced most characters, only types around 700-800 characters to947

translate a source document of 1300-1450 characters. A more drastic decrease can even be seen in P2948

and P3 in Lilt and P3 and P4 in SCATE, with fewer than 400 characters typed.949

Figure 16. Total number of characters typed versus text deleted per translation environment per
participant.

To exemplify the minimal typing effort, figure 17 shows how P2 produced the translation ‘Licht950

uw arts in als u maag-of darmproblemen hebt (gehad)’20 in the SCATE environment. The letters in dark951

blue are the characters that were actually typed; [RETURN] is used to insert/accept the suggested952

word; [BACK] to delete characters and [CTRL+RETURN] to confirm the translation.953

20 Inform your doctor if you (have) had stomach or bowel problems.
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Figure 17. Example of how a translation is produced in SCATE.

Features of the new translation environment tools that were valued most by the participants954

are the clean and calm design of the user interface of both systems, the interactive and adaptive MT955

of Lilt and the frequency information of translation alternatives of SCATE. Translators find quality956

estimation scores only useful when they are interpretable (the range of the scores should be clear) and957

when they are in line with the more traditional fuzzy match scores that translators are acquainted with.958

Translators would also like to know the origin of the suggestions (the difference between a TM or MT959

suggestion was not clear in Lilt), and they find a concordance search indispensable. An ‘undo’-button960

would also be appreciated. The translators also raised concerns about the new interactive way of961

translating as translators might be more inclined to produce translations word by word. Starting from962

MT suggestions might have a negative impact on the overall readability of the text produced and963

translators might become less focused when they are presented with good translations automatically.964

Perhaps the most important conclusion of this study is that translators differ from each other in the965

way they work. We observe individual preferences to interact with the system (shortcuts versus mouse)966

and different ways of using the suggestions (copying the complete suggestion followed by revision or967

gradually building up a translation by accepting appropriate suggestions) and it is important for CAT968

tools to support these different styles of working.969

Customisability of the user interface (a feature that we disabled to keep experimental conditions970

stable) seems extremely important. This was also at the top wish list of the respondents in [4] to assess971

the user interface needs of post-editors of MT.972

8. Conclusion973

We present an overview of the research that is performed in the SCATE project. We show the974

coherence between several different aspects of our research, and how they all relate to the translator’s975

professional workflow. Although several aspects have been published before in isolation, this paper976

provides the broader context, and presents additional research.977

We describe how several aspects of the translation technologies can be improved, such as fuzzy978

matching, integrating TM and MT technologies, and parallel treebanks for syntax-based MT. We are979

convinced that acceptance of MT by the translator’s community can grow through such an integration980

of TM and MT.981

We delve into quality estimation research on the word and sentence level, and as byproducts, we982

built a taxonomy of MT errors and a corpus of manual post-editing and annotation of the MT errors983

according to this taxonomy. These data allow to build informative quality estimation systems, not only984

indicating what goes wrong, but also providing information on why this is the case.985

We study translator’s methods towards terminology extraction from comparable text and try out986

different approaches to this problem, depending on the domain. We show that it is possible to do this987

with only small supervision data sets.988

We investigate several aspects of speech recognition in the context of translation, such as989

post-editing through speech and automatic domain adaptation, where we show that speech recognition990

can be improved by using information from within the translation engine, and by working on the991

character level to solve the unknown word problem. We also performed an experiment to find out the992

best approach towards punctuation insertion in speech translation.993
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Last but not least we present a user interface, based on user observation in practice, which994

provides a proper integration of many of the above described aspects into a convenient working995

environment using intelligible translation suggestions coming from several different sources. We set996

up an experiment evaluating this user interface, comparing it to an existing commercial interface.997

All these research aspects show potential in improving the translator’s daily workflow, not998

only implying an improved productivity, but also a customizable, more pleasant and calm, working999

environment.1000
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