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A B S T R A C T

Eribulin mesylate (eribulin) is a synthetic analogue of the marine-sponge natural product halichondrin B.
Eribulin exhibits potent antiproliferative activities against a variety of human cancer cell types in vitro and in
vivo, and is used for the treatment of certain patients with advanced breast cancer or liposarcoma who are
refractory to other treatments. The antiproliferative effects of eribulin have long been attributed to its anti-
mitotic activities. Unlike other microtubule-targeting agents, eribulin inhibits microtubule polymerization
through specific plus end binding, thus interfering with microtubule dynamic instability. Non-mitotic effects of
eribulin on tumor biology have also been established in laboratory settings including: tumor vasculature re-
modeling, increased vascular perfusion, reduced hypoxia, and phenotypic changes involving reversal of epi-
thelial-to-mesenchymal transition (EMT), resulting in reduced capacities for migration, invasion, and seeding
lung metastases in experimental models. Preclinical data suggest that increased perfusion following eribulin
treatment improves delivery of subsequent drugs. Supporting evidence for eribulin’s non-mitotic effects in the
clinical setting include increased tumor oxygen saturation, reduced hypoxia, phenotype changes consistent with
EMT reversal, and genotype changes consistent with shifts from nonendocrine-responsive, luminal B, to endo-
crine-responsive, luminal A, breast cancer subtypes. Finally, potential biomarkers for eribulin response have
been established based on tumor-phenotype and gene-expression profiles. Overall, preclinical and clinical data
support both antimitotic and non-mitotic mechanisms of eribulin that may underlie the survival benefit observed
in various clinical trials.

Introduction

Eribulin mesylate (eribulin) is an anticancer agent used in patients
with advanced or metastatic breast cancer previously treated with an
anthracycline and a taxane, where it has demonstrated a significant
overall survival (OS) advantage [1]. Similarly, in a phase 3 trial, eribulin
improved OS in patients with advanced liposarcoma (dedifferentiated,
myxoid/round cell, or pleomorphic) previously treated with an anthra-
cycline [2]. Although eribulin’s current clinical approvals in the United
States and Europe are in advanced breast cancer and liposarcoma [3,4],
it has shown antitumor activity against a wide range of other tumor types
in preclinical cancer models. For instance, in human tumor xenograft
models, eribulin has shown antitumor activity against colon cancer,
Ewing’s sarcoma, fibrosarcoma, glioblastoma, head and neck cancer,

leiomyosarcoma, melanoma, non-small cell lung cancer, ovarian cancer,
pancreatic cancer, and small cell lung cancer [5–7]. Eribulin has also
shown activity in a variety of preclinical pediatric tumor models, in-
cluding several B- and T-cell leukemias and lymphomas, ependymoma,
malignant rhabdoid and Wilms’ tumors, medulloblastoma, neuro-
blastoma, osteosarcoma, and rhabdomyosarcoma [8].

Chemically, eribulin is a pharmaceutically optimized, fully synthetic
macrocyclic ketone analogue of the macrocyclic lactone portion of
halichondrin B, a marine sponge natural product [7,9]. Biochemical
investigations into the mechanism of action of halichondrin B by the US
National Cancer Institute and other investigators in the early 1990s
revealed that its tubulin-based antimitotic activities were mechan-
istically unique compared with other microtubule-targeting agents
(MTAs), including taxanes and vinca alkaloids [10,11]. Following
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eribulin’s first synthesis in the late 1990’s, initial studies showed that it
retained mechanistic similarity with halichondrin B [7], with sub-
sequent work extending these observations to include mechanistically
unique aspects of microtubule dynamics inhibition via binding to
exposed β-tubulin subunits at microtubule plus ends [12,13].

In addition to tubulin-based mechanistic differences between
eribulin and other MTAs, eribulin exhibits different clinical profiles
compared with these drugs, likely due to more recently defined non-
antimitotic effects of eribulin on tumor biology and the tumor micro-
environment. For instance, preclinical work has shown that eribulin
induces tumor vasculature remodeling leading to mitigation of hypoxia,
phenotypic shifts toward epithelial phenotypes, diminished migration
and invasiveness, and decreased capacity to seed metastases in pre-
clinical models [14,15]. Eribulin has been shown to significantly im-
prove OS in certain patients with breast cancer or liposarcoma who had
previously progressed on other therapies [1,2], highlighting the po-
tential utility of a compound that has effects on tumor biology in ad-
dition to its antimitotic mechanisms. The purpose of this review is to
summarize eribulin’s antimitotic and non-antimitotic mechanisms of
action, first established in the laboratory and more recently supported
by clinical observations. The review will further evaluate the implica-
tions of these mechanisms for clinical practice, including the possibility
of identifying biomarkers predictive of eribulin response.

Eribulin: Modes of action

Tubulin-based antimitotic mechanism of action

Eribulin was initially established as having tubulin-based anti-
mitotic activities that potently suppressed proliferation. In an early
preclinical study performed by Towle and colleagues [7], eribulin
(known at the time as ER-086526) exhibited antiproliferative activity
against 8 different human cancer cell lines but, importantly, showed
little or no activity against quiescent human fibroblasts. Like other
MTAs, eribulin diminished both the rate and extent of tubulin poly-
merization in vitro. Due to disruption of the mitotic spindle by eribulin,
cells were blocked in the prometaphase stage of mitosis and accumu-
lated in the G2–M cell cycle phase together with progressive depletion
of G1 and S phases. Eribulin-induced accumulation of cells in G2–M was
confirmed in another study with lymphoma and pancreatic cancer cells,
which also established that sustained mitotic blockade led to initiation
of apoptosis within 8–10 h after eribulin exposure [16].

Other studies have investigated the binding sites and mechanisms of
tubulin polymerization inhibition. Unlike other MTAs, which inhibit
both the growth and shortening phases of microtubule dynamics,
eribulin inhibits only the growth phase, which prevents normal mitotic
spindle assembly during prometaphase [12]. Treatment of the human
osteosarcoma cell line U-2OS with eribulin at concentrations that in-
hibited mitosis, decreased the centromere relaxation rate by 21% and
increased the time microtubules were in stasis by 67%, which reduced
microtubule-dependent spindle tension at the kinetochores [17]. These
data demonstrated that the inhibitory effects of eribulin on microtubule
dynamics, first defined in interphase cells [12], also occurred during
mitosis and were thus the driving force behind prevention of normal
mitotic spindle formation [17].

Eribulin displays complex binding characteristics, with a high affi-
nity for microtubule plus ends and a lower affinity for soluble tubulin
[18]. Recent X-ray crystallographic studies and other biophysical ex-
periments demonstrated that eribulin binds to the β-tubulin subunit,
which functions in protofilament plus-end elongation [13]. Further-
more, single eribulin molecules are sufficient to induce erratic micro-
tubule growth and sudden catastrophic depolymerization [13,18].
Overall, the complex binding characteristics of eribulin appear to upset
the normal equilibrium between dynamic microtubules and soluble
tubulin, resulting in a net depolymerization of microtubules despite the
evidence that these effects are rooted in eribulin’s inhibition of

microtubule growth [13,18].
Microtubule plus ends become extensively splayed when bound to

vinblastine, indicating its preference for binding to β-tubulin at inter-
faces between α/β-tubulin heterodimers, thus deforming individual
protofilaments from linearity [12,18]. In contrast, eribulin prefers
binding to open β-tubulin at microtubule plus ends, thus blocking mi-
crotubule polymerization with little or no effect on shortening, proto-
filament linearity, or end splaying [13,18]. Finally, the antimitotic ef-
fects of eribulin are functionally irreversible at the cellular level, unlike
those of paclitaxel, vinblastine, colcemid, and nocodazole [19]. Even
with short-term or intermittent exposure to eribulin, long-lasting effects
on cell viability are seen, which have been associated with long-term
cellular retention of the compound. Such irreversibility is thought
to contribute to eribulin’s effectiveness under intermittent dosing
conditions [19].

Non-mitotic mechanism of action

In more recent studies, eribulin has been shown to exert non-mitotic
mechanisms that fall into 3 categories: effects on tumor vascular re-
modeling and perfusion, reversal of epithelial-to-mesenchymal transi-
tion (EMT), and decreased capacity for migration and invasion. In terms
of activity, these non-mitotic effects occur in the surviving residual
tumor, including its component tumor cells, following eribulin’s anti-
mitotic, cytotoxic activity. Preclinical and clinical evidence of these
non-mitotic mechanisms are described below.

Effects on tumor vascular remodeling and perfusion
Effects of eribulin on vascular remodeling and tumor perfusion were

reported by Funahashi and colleagues in 2014 [14]. Using human
triple-negative breast cancer xenograft models, they showed that a
single dose of eribulin improved perfusion of tumor cores within 5 days.
This effect was independent of suppressed tumor growth, as inhibition
of tumor growth by capecitabine in the same study did not increase
perfusion. The authors then showed that the increased perfusion ob-
served following eribulin treatment was related to alterations in tumor
vasculature: both microvessel density and the proportion of small ves-
sels were increased [14]. More recent studies have similarly shown that
eribulin increases tumor perfusion in xenograft models of soft tissue
sarcoma (STS), including both leiomyosarcoma and liposarcoma [6,20].

Eribulin-induced changes in tumor vasculature in both breast cancer
and STS are likely beneficial in several ways. These changes are asso-
ciated with reduced hypoxia, a known driver of both drug resistance
and metastasis [6,14]. In tumor xenograft models, eribulin treatment
led to suppression of genes that are known to be involved in hypoxic
signaling cascades, including vascular endothelial growth factor
(VEGF), fibroblast growth factor (FGF), Notch, Eph, and Wnt pathways
[14]. Importantly, expression of VEGF was not significantly decreased
in an in vitro model of angiogenesis. In contrast, the reduced in vivo
expression of VEGF, which is upregulated by the hypoxic tumor mi-
croenvironment, supports the concept that eribulin-induced reversal of
hypoxia via vascular remodeling drives, at least partially, the observed
changes in gene regulation. In support of this concept, the hypoxia
marker carbonic anhydrase 9 (CA9) is also decreased in eribulin-treated
xenograft models [14]. Another potential benefit of eribulin-induced
vascular remodeling and increased perfusion may be improved tumor
delivery, and thus efficacy, of subsequently administered drugs. This
could be particularly beneficial in the case of residual tumor remaining
after treatment with other therapies. Indeed, preclinical studies in
human breast cancer xenograft models support eribulin’s ability to
improve delivery of subsequently administered drugs. For example,
prior treatment with eribulin improved the antitumor activity of ca-
pecitabine (Fig. 1) [14]. Additionally, in a preclinical sequencing study,
giving a single dose of eribulin followed one week later by a single dose
of paclitaxel was more effective than the reverse sequence of paclitaxel
before eribulin [21]. Taken together, these data support the concept
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that eribulin’s effects on tumor vascular remodeling result in improved
perfusion, mitigation of hypoxia via modulation of gene expression, and
improved drug delivery.

The effects of eribulin on tumor vasculature stand in direct contrast
with the established effects of other MTAs, which are typically categor-
ized as either antiangiogenic or vascular-disrupting [22–24]. These dif-
ferences are likely due to differences between the molecular mechanisms
of eribulin and other MTAs. For example, although paclitaxel and eri-
bulin have similar effects on gene expression in endothelial cells, the two
drugs have markedly different effects on vascular pericytes, with only a
12% overlap in affected genes in this cell type [25]. Such differential
effects on pericyte gene expression may explain the observation that
eribulin impaired the interactions between pericytes and endothelial
cells more than paclitaxel, resulting in greater anti-vascular effects [25].

Effects on epithelial-to-mesenchymal transition
EMT is the process by which cells of epithelial origin acquire

mesenchymal phenotypes through epigenetically driven changes in gene
and protein expression, transforming largely stationary cells with epi-
thelial characteristics to more migratory and invasive cells with me-
senchymal characteristics [26]. EMT underlies the metastatic spread of
tumor cells and can also contribute to chemo- and radio-resistance, stem
cell self-renewal [27], and immunosuppression [28]. Many signals from
the tumor microenvironment induce EMT, including hypoxia, certain
proinflammatory cytokines, some extracellular matrix components, and
mechanical properties of the local tumor environment [29]. EMT is a
dynamic state and is reversible through a process termed the mesench-
ymal-to-epithelial transition (Fig. 2) [26]. Preclinical studies have shown
that eribulin reverses EMT in cultured human triple-negative breast
cancer cells [15]. In a gene expression profiling study, eribulin down-
regulated 13 genes related to EMT in breast cancer cell lines [30]. Fur-
thermore, regulation of EMT pathway genes may serve as a biomarker
for response to eribulin because breast cancer models that overexpress
these genes were sensitive to eribulin, but not paclitaxel [30]. Indeed,
paclitaxel resistance has been associated with EMT [31] in breast cancer
cells, the opposite of the reported effects of eribulin. Finally, Dezsö and
colleagues suggest that these findings potentially point to an EMT/me-
senchymal-to-epithelial transition gene expression profile that might
identify sub-populations of patients who may derive greater benefit from
eribulin versus paclitaxel treatment [30].

Substantial preclinical evidence exists supporting the idea that
eribulin can reverse EMT. In breast cancer cell lines in vitro, treatment
with eribulin increased gene expression of epithelial markers (i.e.,
CDH1 and KRT18), while downregulating levels of mesenchymal mar-
kers (i.e., CDH2, VIM, TWIST1, SNAI2, ZEB1, and ZEB2), leading to
reversal of EMT after 7 days of eribulin exposure [15]. Corresponding
eribulin-induced shifts in EMT/mesenchymal-to-epithelial transition
protein expression-level profiles were observed in a breast cancer tumor
xenograft model in vivo [15]. Using protein analysis in a non-cancer
EMT model, eribulin reversed EMT at least partially through down-
regulation of the transforming growth factor (TGF)-β/Smad signaling
pathway [15], processes that may be related to altered interactions
between Smad proteins and microtubules following eribulin binding
[15,32]. Recent work by Dybdal-Hargreaves and colleagues
additionally suggests that eribulin’s effects on E-cadherin expression
during EMT reversal are driven by disrupted interactions between
microtubules and signaling scaffold complexes consisting of p130Cas
and phosphorylated Src, leading to release of tonic inhibition of cell
surface E-cadherin expression [33].

Eribulin-induced reversal of EMT has also been established in other
cancer models. When assessed against three oral squamous cell carci-
noma (OSCC) cell lines, eribulin showed approximately 100-fold more
activity against the cell line with mesenchymal phenotype, compared
with two other cell lines with epithelial phenotypes [34]. Along with
growth inhibition, eribulin also reversed EMT in the mesenchymal
OSCC line as assessed by characteristic changes in expression of
epithelial and mesenchymal markers. Remarkably, epidermal growth
factor receptor (EGFR) was upregulated in these same cells after eri-
bulin treatment, leading to de novo sensitivity to growth inhibitory
effects of the anti-EGFR monoclonal antibody cetuximab. Eribulin also
blocked TGF-β-induced EMT in one of the OSCC lines with epithelial
phenotype [34]. Taken together, these observations point to eribulin’s
ability to induce cellular differentiation responses in OSCC cells invol-
ving reversal of EMT (or blocking its induction by TGF-β) and inducing
EGFR-signaling pathways that can be newly accessed by anti-EGFR
drugs. This suggests the intriguing possibility that combinations of
eribulin and cetuximab might be particularly effective in anti-EGFR–-
refractory cancers due to synergistic interactions between the two drugs
[34]. A recent preclinical study by Asano et al. showed combinatorial
antitumor effects of eribulin plus the EGFR kinase inhibitor erlotinib in

A B Fig. 1. Effects of prior treatment with
eribulin on antitumor activity of capecita-
bine (A) and paclitaxel (B) in the MDA-MB-
231 human breast cancer xenograft model.
A. Effects of prior treatment with eribulin
on antitumor activity of capecitabine in the
MDA-MB-231 human breast cancer xeno-
graft model in nude mice. When the mean
MDA-MB-231 xenograft tumor volumes in
24 mice reached approximately 200mg,
nude mice were randomly divided into
control (non-treatment, 6 mice), capecita-
bine (540mg/kg, QD8, p.o., 6 mice) and
eribulin (1.0mg/kg, QD1, i.v., 12 mice)
groups. Following treatment in the eribulin
group, when tumor volumes had recovered
to approximately the initial tumor size 12
days later (i.e. approximately 200mg),
eribulin-treated mice were then randomly
divided into new eribulin-pretreated con-

trol (no further treatment, 6 mice) and eribulin-pretreated capecitabine (540mg/kg, QD8, p.o., 6 mice) groups. The days of randomization of both the initial
treatment-naive group (24 mice) and eribulin-pretreated group (12 mice) were both considered to be day 1 for purposes of the visual comparison shown here. Data
are means +/− SEM. **P < 0.05 versus after eribulin treatment by Student’s t-test. i.v., intravenously; NS, not significant; p.o., per os; QD1, single dose; QD8, daily
for 8 days; SEM, standard error of the mean. B. Antitumor effect of paclitaxel following eribulin was significantly superior to that of eribulin following paclitaxel.
Eribulin was given once at 1mg/kg on either day 0 or 7, with paclitaxel given once at 40mg/kg on either day 7 or 0, respectively. Fig. 1A adapted with permission
from Funahashi et al. [14]; Fig. 1B adapted with permission from Ozawa et al. [21].
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a non-small cell lung cancer xenograft model [35], which further sup-
ports the potential clinical use of eribulin in combination with anti-
EGFR therapies.

In an STS preclinical setting, eribulin also induced differentiation
responses, albeit in ways distinct from those seen in breast cancer
models [6]. Based only on the breast cancer results, one might have
expected to see induction of epithelial markers and reductions of me-
senchymal markers in liposarcoma and leiomyosarcoma cell lines, yet
this was not observed. Instead, eribulin treatment of these cell types led
to differentiation responses associated with increased expression of
adipocyte and smooth muscle differentiation markers in the lipo-
sarcoma and leiomyosarcoma cell lines, respectively [6]. Thus, a pic-
ture emerges of eribulin as an inducer of cellular differentiation, with
the phenotypic ‘direction’ of such effects being dependent on the cell
type of origin: eribulin induces a more differentiated epithelial phe-
notype in breast cancer (cell type of origin: epithelium) yet a more
differentiated mesenchymal phenotype in liposarcoma and leiomyo-
sarcoma (cell type of origin: mesenchyme).

Effects on migration, invasion, and metastasis

The concept that epithelial cancers with mesenchymal phenotypes
are more prone to invade and metastasize is well established [36].
Correspondingly, preclinical studies have shown that in breast cancer
cell lines in which eribulin reverses EMT, the drug also reduces the
capacity of tumor cells to migrate and invade in vitro [15]. Another
study showed that eribulin pretreatment of cells dramatically reduced
their capacity to seed lung metastases in an in vivo lung experimental
metastasis model, an observation that was also associated with a
marked increase in survival [15]. In both studies, the effects of eribulin
were greater than those observed with 5-fluorouracil (5-FU), an active
metabolite of capecitabine [15]. Notably, in the in vivo experimental
metastasis model, 100% mortality was seen by days 15 and 21 in the
control and 5-FU groups, respectively; in contrast, 60% of the animals
in the eribulin group were still alive on day 80 at the conclusion of the
study [15]. Although further studies are needed to fully understand the
relationships between eribulin’s effects on migration and invasion and
its reversal of EMT, the crucial role of EMT as a central mechanism that
induces invasion and metastasis [37,38] suggests a causative relation-
ship between these biological processes [15].

Additional corroborating evidence for potential anti-invasive effects
of eribulin arises from studies in preclinical models of small-bowel

adenocarcinoma (SBA) [39]. At relevant in vitro concentrations,
eribulin significantly inhibited the growth of SIAC1 SBA cells and
depressed tumor growth in an in vivo SIAC1 SBA xenograft model.
Furthermore, eribulin decreased Wnt/β-catenin signaling, leading to
reduced β-catenin levels. The downregulation of both wild-type and
mutant β–catenin suggests that eribulin may have antitumor activity in
SBA and may act through mechanisms affecting the stability of β-
catenin [39]. Because Wnt/β-catenin signaling is related to invasive
tumor formation [40], these studies suggest a route by which eribulin
may modify tumor behavior and microenvironment, resulting in a less
aggressive, less invasive tumor phenotype.

Other non-mitotic effects observed with eribulin
In addition to the non-mitotic effects of eribulin on tumor vascu-

lature, EMT, and migration and invasion, eribulin has also been re-
ported to exhibit other activities in preclinical cancer models. For ex-
ample, in a study of breast cancer cell lines, eribulin significantly
reduced the proportion of cancer stem cells (CSCs) in both estrogen-
receptor (ER)-positive and ER-negative cell lines [41], suggesting the
possibility that anti-CSC activities of eribulin might contribute to the
clinically observed increase in OS observed in patients with metastatic
breast cancer.

Intriguingly, the microtubule-binding properties of eribulin may
actually contribute to the non-mitotic mechanisms of action of the
compound. In addition to their function in mitotic spindle assembly,
microtubules play crucial roles in interphase (non-mitotic) cells to help
regulate signal transduction and intracellular trafficking. For example,
eribulin’s inhibition of TGF-β/Smad signaling results in decreased
nuclear localization of Smad2/3 [32], an effect likely mediated by
eribulin's inhibition of microtubule dynamics, based on the known
binding of Smad proteins to microtubules [42,43]. The inhibition of
TGF-β/Smad signaling by eribulin ultimately suppresses the transcrip-
tion and protein expression of Snail [32], a key transcription factor that
drives EMT [44]. In addition, studies of the mechanisms by which
eribulin increases cell surface E-cadherin expression showed that
eribulin-induced microtubule depolymerization inhibits interactions
between Src and the signaling scaffold p130Cas, leading to reduced
phospho-Src at the cell cortex, thus facilitating rapid deployment of
intracellular E-cadherin to the cell surface [33].

Importantly, microtubules are also essential for intracellular trans-
port in neuronal cells, which depends on microtubules for trafficking
along the elongated axons and dendrites [45]. In this regard, the nature

Fig. 2. Cancer cells can reversibly change phenotype via epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition processes. Black ovals
connecting the epithelial cells on the left represent adhesion molecules such as E-cadherin.
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of interactions between eribulin and microtubules may underlie some
of the clinical benefits seen with eribulin relative to other MTAs. In
mouse models of peripheral neuropathy, a 2-week regimen of eribulin
at its maximum tolerated dose (MTD) did not affect caudal or digital
nerve conduction velocity or amplitude, and caused milder, less-fre-
quent, morphological effects on dorsal root ganglia and sciatic nerve
compared with maxiumum tolerated dosing of paclitaxel and ix-
abepilone [46]. In follow-up studies by the same group, pre-existing
neuropathy induced by paclitaxel in the mouse models was exacerbated
less severely by subsequent treatment with eribulin compared with
paclitaxel [47]. This could be explained, at least in part, by the ob-
servation that microtubule-dependent axonal transport in an in vitro
vesicle motility assay was less inhibited by eribulin than by paclitaxel,
ixabepilone, or vincristine [48]. In aggregate, these preclinical studies
of neuropathy are consistent with clinical observations suggesting that
eribulin provokes or exacerbates lower levels of neurotoxicity, myalgia/
arthralgia or fatigue in patients compared with other microtubule-tar-
geting chemotherapeutic agents [49,50].

Overall, given the potential therapeutic relevance of the multi-
farious non-mitotic processes that eribulin affects, it seems likely that
such effects contribute to eribulin’s unique patterns of clinical activity.
In randomized, phase 3 trials of eribulin, patients with metastatic breast
cancer and advanced STS showed statistically significant improvements
in OS, with negligible or no effect on progression-free survival [1,2].
Conceptually, this implies that residual tumors after progression have
been altered in ways that ultimately lead to prolonged survival. For
example, eribulin-induced tumor vascular remodeling with increased
perfusion may increase the delivery and, thus, the effectiveness of
subsequently administered drugs [14]. Likewise, eribulin-induced re-
versal of EMT may decrease CSC self-renewal as well as the tendency of
cancer cells to invade and metastasize, both effects supporting pro-
longed survival even after progression [15].

Clinical support for eribulin’s non-mitotic mechanisms of action

Emerging clinical evidence corroborates eribulin’s non-mitotic me-
chanisms of action that were originally defined in the preclinical set-
ting. Indeed, such mechanisms may help to explain the unique ther-
apeutic activities reported with eribulin in large-scale, randomized,
clinical trials. A summary of preclinical and clinical evidence sup-
porting eribulin’s various mechanisms of action is presented in Table 1.

Clinical evidence for eribulin’s tumor vascular remodeling effects is
supported by studies employing a variety of techniques. For example,
Ueda and colleagues [51] used diffuse optical spectroscopic imaging
(DOSI), a noninvasive infrared imaging technique, to assess the oxyge-
nation status of breast tumors in patients before and 7 days after a single
dose of eribulin. Guided by ultrasound mapping to define tumor
boundaries, the authors measure tumor concentrations of oxygenated
and deoxygenated hemoglobin, which then allowed derivation of overall
oxygen saturation within the tumor. Their results showed statistically
significant decreases in deoxygenated hemoglobin, with corresponding
increases in oxygen saturation, in patients’ breast tumors 7 days after a
single administration of eribulin. In another arm of the same study, the
only statistically significant effect of a single dose of the anti-VEGF
monoclonal antibody bevacizumab was a decrease in oxygenated he-
moglobin, conceptually opposite to that of eribulin and thus highlighting
differences between the vascular effects of the two agents [51].

To conclusively demonstrate that increased oxygenation of the
tumor as a whole was associated with decreased intracellular hypoxia,
Ueda and colleagues [52] used 18F-fluoromisonidazole-positron emis-
sion tomography/computed tomography (FMISO-PET/CT) as well as
DOSI to measure both intracellular hypoxia and overall tumor oxygen
saturation, respectively, after three cycles of eribulin treatment of a
patient with breast cancer. The DOSI results confirmed that, similar to
their earlier findings after a single eribulin dose [51], eribulin treat-
ment for three cycles (6 doses) also resulted in increased overall tumor

oxygen saturation. Importantly, the FMISO-PET/CT results confirmed
corresponding reductions in intracellular hypoxia. Together, these two
reports [51,52] showed that, in breast cancer patients, eribulin treat-
ment is associated with increased tumor oxygenation and decreased
intracellular hypoxia. That such effects in breast cancer patients are
driven by the increased tumor microvessel density seen in preclinical
models [14] is suggested by the results of Yardley and colleagues [53],
who showed statistically significant increases in anti-CD31 staining for
endothelial cells in patient tumor biopsies taken after eribulin-cyclo-
phosphamide neoadjuvant treatment relative to pretreatment biopsies.
Although numerical increases in anti-CD31 staining were also seen in
the docetaxel-cyclophosphamide neoadjuvant comparator arm, such
increases were not statistically significant, arguing against any role of
cyclophosphamide in the eribulin-cyclophosphamide arm, and sup-
porting the concept that eribulin’s effects on vascular remodeling are
not simply driven by general class effects shared by all MTAs.

Emerging clinical evidence also supports eribulin’s non-mitotic
mechanisms that involve phenotypic changes associated with EMT
reversal in breast cancer. In a study of patients with locally advanced or
metastatic breast cancer, Goto and colleagues [54], obtained paired
tumor biopsies from 10 patients receiving eribulin treatment, 5 of
whom showed clinical responses (partial response). Among the
responders, 5 of 5 patients showed statistically significant increases in
tumor expression of the epithelial marker E-cadherin, with 4 of the 5
responders also showing significant decreases in expression of the
hypoxia marker CA9 [54,55]. These results are consistent not only with
the preclinically defined mechanisms of eribulin-induced reversal of
EMT and hypoxia mitigation, but also with the notion that such
non-mitotic effects of eribulin may contribute to its therapeutic bene-
fits. In the same study, the authors also examined expression of various
immune markers before and after eribulin treatment, including CD8,
programmed death 1 (PD-1), programmed death-ligand 1 (PD-L1), PD-
L2, and the regulatory T cell (Treg) marker FOXP3 [54]. Remarkably, in
the same 5 of 5 responding patients, eribulin treatment was associated
with statistically significant reductions in expression of the
immunosuppressive drivers PD-L1 and FOXP3 [54]. Given the well-
established link between EMT and immunosuppression [56,57], it is
tempting to speculate that eribulin’s apparent reversal of EMT and
mitigation of hypoxia in these patients’ tumors might have also led to a
reduced immunosuppressive tumor microenvironment.

The induced morphological changes and upregulation of differ-
entiation markers observed in preclinical studies may be particularly
relevant to certain types of STS, for example dedifferentiated lipo-
sarcoma. In the phase 3 study in patients with advanced leiomyo-
sarcoma and liposarcoma, eribulin had impressive activity in patients
with dedifferentiated liposarcoma, showing approximately a 10-month
gain in median OS compared with dacarbazine (18.0 vs. 8.1months;
HR=0.43; 95% CI, 0.23–0.79) [58], which may be indicative of
eribulin-induced differentiation of cancer cells. Eribulin also exhibited
unprecedented activity in pleomorphic liposarcoma, an aggressive and
highly resistant malignancy (median OS, 22.2 vs. 6.7months;
HR=0.18; 95% CI, 0.04–0.85), albeit in a small number of patients
(n= 23) [58]. Evidence indicates that other types of STS, including
leiomyosarcoma, may also benefit from the non-mitotic mechanisms of
eribulin. In a study of patients with leiomyosarcoma, proteomics and
genomics analyses revealed elevated levels of the epithelial marker
E-cadherin in a subset of leiomyosarcoma, which was associated with
better survival [59]. This led the study authors to conclude that
mesenchymal-to-epithelial transition mediated by the E-cadherin
repressor Slug is a clinically beneficial process [59], consistent with the
observed antiproliferative and differentiation-inducing activities of
eribulin in leiomyosarcoma preclinical models [6]. In the phase 3 trial
of eribulin in sarcoma, an OS benefit was not observed in the subgroup
of patients with LMS [2]. Nevertheless, objective responses in patients
with leiomyosarcoma were observed [2]. For vascular sarcomas (e.g.,
angiosarcomas or solitary fibrous tumors), there is currently also
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interest in the use of therapies with novel anti-angiogenic and vascular
remodeling properties [60].

Another clinical example of eribulin inducing changes toward less
aggressive tumor phenotypes comes from analysis of the SOLTI1007
phase 2 neoadjuvant study [61]. In this study, Prediction Analysis of
Microarray 50-gene classifier (PAM50) gene-expression profiling [62]
of breast cancers was performed to categorize tumors into 1 of 5 in-
trinsic subtypes at baseline and after 1 and 4 cycles of neoadjuvant
eribulin treatment [61]. Of 83 patients at baseline, 38.6% and 39.8%
were categorized as having luminal A and luminal B tumor subtypes,
respectively. After one cycle of eribulin treatment (82 patients), the
proportion of luminal B tumors decreased to 31.7%, with luminal A
tumors increasing to 41.5%. Remarkably, after 4 cycles of eribulin
treatment (73 patients), the proportion of luminal B tumors had de-
creased by half relative to baseline: 19.2%; while the proportion of
luminal A tumors had increased to 57.5%. Percentages of tumors re-
presented by the non-luminal subtypes (HER2 enriched, normal-like,
and basal-like) remained relatively constant at 21.6%, 26.8%, and
23.3% for baseline, 1 cycle, and 4 cycles, respectively, indicating that
most of the eribulin-induced phenotypic shifts could be accounted for
by shifts from luminal B to luminal A subtypes. While both luminal A
and luminal B tumors are frequently ER positive, luminal A tumors are
typically less aggressive and more hormonally responsive, which
translates into a better long-term prognosis [63]. In contrast, the lu-
minal B subtype is typically more aggressive and associated with hor-
monal insensitivity. The trial found that a pathological complete re-
sponse with eribulin treatment was more likely in patients with a

luminal B phenotype compared with a luminal A phenotype. Thus, an
intriguing implication of the SOLTI1007 results is that eribulin treat-
ment may trigger increased hormonal sensitivity in luminal B patients,
providing a rationale for combining eribulin with hormone therapies in
patients who present with the luminal B tumor subtype at baseline [61].

In a recent report, Kobayashi and colleagues [64] investigated the
time-to-treatment-failure (TTF) of endocrine therapies among 25 post-
menopausal patients with luminal metastatic breast cancers who had
received at least two endocrine therapies prior to eribulin and at least
one endocrine therapy after eribulin. Not surprisingly, in 76% of pa-
tients, TTF was shorter for the second endocrine therapy compared with
the first (mean, −8.6 months), consistent with an expected reduction in
efficacy of sequential endocrine-based therapies. However, in 64% of
patients, TTF was longer for the endocrine therapy immediately fol-
lowing eribulin compared with the endocrine therapy immediately
preceding eribulin (mean, +1.4 months), indicating improved efficacy
of endocrine-based therapies after eribulin treatment. Among patients
who experienced an increase in the length of TTF for the second en-
docrine therapy, the length of the increase was similar between patients
regardless of whether the endocrine therapy was pre- or post-eribulin
(mean, 2.8 months and 3.4months, respectively). However, the per-
centage of patients who experienced a longer TTF was significantly
larger (64% vs 24%; p= 0.018) for patients who received eribulin
preceding their second endocrine therapy compared with after. Overall,
these data are consistent with predictions from the SOLTI1007 results,
and support the concept that eribulin treatment of luminal breast
cancers may increase hormonal responsiveness as a result of eribulin-

Table 1
Summary of preclinical and clinical evidence supporting eribulin’s non-mitotic mechanisms of action.

Non-mitotic mechanism Preclinical evidence Clinical evidence

Vascular remodeling • Increased perfusion and microvessel density in breast cancer
xenografts [14]

• Increased perfusion in STS xenograft models [6,20]

• Reduced expression of genes regulating hypoxia [14]

• Improved antitumor activity for subsequent treatments [14,21]

• Significant decreases in deoxygenated hemoglobin with
corresponding increases in oxygen saturation in breast
tumors after eribulin treatment [51]

• Decreased intracellular hypoxia in a breast tumor after eribulin
treatment (case study) [52]

• Significant increases in endothelial cell staining in tumor
biopsies after eribulin/cyclophosphamide neoadjuvant
treatment [53]

Reversal of EMT (breast cancer, OSCC) • Increased expression of epithelial genes and protein markers and
decreased expression of mesenchymal genes and protein markers
in breast cancer cell lines and tumor xenograft models [15]

• Rapid deployment of epithelial marker E-cadherin to cell surface
following eribulin treatment of TN breast cancer cells [33]

• Upregulation of EMT/mesenchymal-to-epithelial transition-
related gene pathways was predictive of eribulin sensitivity in
breast cancer model [30]

• Upregulation of E-cadherin and downregulation of N-cadherin,
vimentin and Snail in an OSCC cell line with initial mesenchymal
phenotype [34]

• Statistically significant increases in tumor expression of E-
cadherin and significant decreases in expression of the
hypoxia marker CA9 [54,55]

Increased differentiation (STS, OSCC) • Increased expression of adipocyte and smooth muscle
differentiation markers in LPS and LMS cell lines, respectively [6]

• Upregulation of EGFR with consequent acquisition of sensitivity
to anti-EGFR monoclonal antibody cetuximab in an OSCC cell line
with initial mesenchymal phenotype [34]

• Not yet available

Decreased capacity for migration,
invasion, and metastasis

• Reduced the capacity of TN breast cancer cells to migrate and
invade in vitro [15]

• Reduced capacity of TN breast cancer cells to seed lung
metastases in an in vivo lung experimental metastasis model [15]

• Inhibited the growth of SIAC1 cells and depressed tumor growth
in a xenograft mouse model of SBA [39]

• Decreased the expression of molecules involved in the Wnt/β-
catenin pathway, leading to a reduction in β-catenin levels [39]

• Not yet available

Decreased immunosuppressive
environment

• Not yet available • Statistically significant reductions in expression of the
immunosuppressive markers PD-L1 and FOXP3 [54]

CA9, carbonic anhydrase 9; EMT, epithelial-to-mesenchymal transition; FOXP3, forkhead box P3; LMS, leiomyosarcoma; LPS, liposarcoma; OSCC, oral squamous cell
carcinoma; PD-L1, programmed death-receptor ligand 1; SBA, small bowel adenocarcinoma; SIAC1, small intestinal adenocarcinoma 1; STS, soft tissue sarcoma;
TN, triple-negative.
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induced phenotypic shifts from luminal B to luminal A subtypes.
Moreover, these results support the notion that eribulin improves re-
sponse to subsequent lines of therapy, including endocrine-based.

Implications for clinical practice

In the pivotal phase 3 study of eribulin in patients with recurrent or
metastatic breast cancer, patients receiving eribulin had significantly
improved OS compared with those receiving treatment of physician’s
choice (13.1 vs. 10.6 months; hazard ratio [HR] = 0.81; 95% con-
fidence interval [CI], 0.66–0.99) [1]. Furthermore, patients receiving
eribulin had a significantly higher objective response rate by in-
dependent review (12% vs. 5%; P=0.002). The discovery of eribulin’s
non-mitotic modes of action raises interesting questions about its use in
the clinic. Many cancers are known to be strongly dependent on the
biological processes now known to be affected by eribulin. These cancer
types include not only the current indications for eribulin, advanced
breast cancer and advanced liposarcoma in patients who are refractory
to other treatments, but also other cancers thus highlighting the need
for further clinical evaluation of eribulin in cancer types that depend on
such processes [29]. Overall, eribulin’s non-mitotic mechanisms appear
to play a role in the potential efficacy of the drug, by increasing tumor
perfusion, reducing metastatic potential, and changing cancer
morphologies and phenotypes. For example, the reversal of EMT ob-
served in preclinical and clinical studies may be particularly relevant to
the survival advantages conferred by eribulin in metastatic breast
cancer, in which phenotypic conversion is tightly linked to cell migra-
tion and invasion of primary tumors [65].

The possibility for utilization of combination therapies, including
pairing of eribulin with immunotherapies, is of emerging clinical in-
terest. For example, in a recently published phase 1 trial of patients
with HER2-negative metastatic breast cancer, the combination of eri-
bulin plus balixafortide (a CXCR4 antagonist) resulted in a 30% ob-
jective response rate (n= 54) [66]. The most common TEAEs were
fatigue, neutropenia, infusion-related reactions, alopecia, constipation
and nausea. Of note, based on these results, in April 2018, the FDA
granted a fast-track designation to the combination of balixafortide and
eribulin for the treatment of patients with HER2-negative MBC who
regressed after treatment with ≥2 chemotherapies in the metastatic
setting [67]. Looking toward the future, as of June 2018 there were
over 20 active studies listed on ClinicalTrials.gov exploring the use of
eribulin in combination with other agents [68].

A more in-depth understanding of the full spectrum of the anti-tumor
activity of eribulin may help improve the selection of patients who are
most likely to benefit from this therapy. Recently, a microRNA biomarker
signature for eribulin response was identified in a group of patients with
advanced STS [69]. In this exploratory substudy of patients from a phase
2 sarcoma trial with eribulin (EORTC trial 62052 [70]), the pattern of
microRNA expression was significantly different between patients who
responded to eribulin (defined as absence of progression at week 12) and
nonresponders. Preliminary analysis of the microRNA targets supports
the multiple modes of action of eribulin summarized in this review.
Among responding patients, the microRNA signature reflected down-
regulation of genes involved in the cell cycle, cell survival and apoptosis,
as well as upregulation of genes involved in growth arrest, suppression of
cancer stemness and metastasis, and modulation of chemoresistance
[69]. Confirmation of these findings using tissue samples from the phase
3 trial in sarcoma is ongoing (NCT01327885).

Because eribulin is now believed to directly impact the tumor mi-
croenvironment, research into prognostic markers related to these
mechanisms of action has been initiated. Tumor-infiltrating lympho-
cytes (TILs) are markers of immune response, and have been shown to
predict therapeutic efficacy in some cancer models [71]. In a recent
study, the prevalence of TILs was analyzed in patients with metastatic
breast cancer who received eribulin [72]. Among the patients with

triple-negative breast cancer, patients with high levels of TILs had
significantly improved disease-free survival and OS compared with
patients with low levels of TILs (P=0.033 and P=0.042, respec-
tively). However, in non-triple-negative breast cancer patients, no sig-
nificant difference in disease-free survival or OS was observed between
patients with high or low levels of TILs (P=0.878 and P=0.535, re-
spectively) [72]. These data indicate that the presence of TILs may be a
method of predicting the potential efficacy of eribulin therapy in pa-
tients with triple-negative breast cancer.

Overall, the emerging evidence surrounding the mechanisms of
action of eribulin paints a picture of a potent molecule with a unique
spectrum of mechanisms and pleiotropic antitumor effects. By affecting
both mitotic and non-mitotic cancer-relevant mechanisms through
novel pathways, eribulin may be a promising drug in a variety of
cancers, particularly advanced, refractory breast cancer and STS.
Further elucidation of the non-mitotic activities of eribulin may im-
prove our understanding of the best ways to use this compound—-
whether alone or in combination—to ultimately improve patient out-
comes in diseases that have remained refractory to current treatments.
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