


KU Leuven 
Biomedical Sciences Group 
Faculty of Medicine 
Rega Institute for Medical Research 
Department of Microbiology and Immunology 
Laboratory for Clinical and Evolutionary Virology 
 

QUANTIFYING CHRONIC 
INFLAMMATORY BURDEN FROM 
TRANSCRIPTOMES IN VIRAL AND 
IMMUNE-MEDIATED PATHOLOGIES 
 

Dissertation presented in partial fulfilment of the requirements for 
the degree of Doctor in Biomedical Sciences 

Jury members: 
 
Promotor:  Prof. Dr. Anne-Mieke Vandamme 
Co-promotor: Dr. Johan Van Weyenbergh 
Co-promotor: Dr. Bram Vrancken 
Chair: Prof. Dr. Kathleen Freson 
Secretary: Prof. Dr. Johan Neyts 
Jury members: Prof. Dr. Johan Neyts 
 Prof. Dr. Hendrik Blockeel 
 Dr. Anne Van den Broeke 
 Dr. Heli Salmela 

Tim Dierckx 

May 2019 



 

 



 

 

Table of Contents 

CHAPTER 1: Introduction ................................................................................................................... 2 

1.1 Inflammation................................................................................................................................. 4 
1.1.1 Cell populations contributing to inflammation .................................................................... 5 
1.1.2 Inflammation-related Molecules ............................................................................................. 7 
1.1.3 Biomarkers for inflammation .................................................................................................. 9 
1.1.3.1 C-Reactive Protein ................................................................................................................. 9 
1.1.3.2 Glycoprotein Acetylation: description .............................................................................. 11 
1.1.3.3 Glycoprotein Acetylation: published associations .......................................................... 13 
1.2 Examined pathologies ............................................................................................................... 15 
1.2.1 Human T-Cell Leukemia Virus Type 1 ............................................................................... 15 
1.2.1.1 Adult T-cell leukemia/lymphoma ..................................................................................... 18 
1.2.1.2 HTLV-1 Associated Myelopathy ....................................................................................... 19 
1.2.2 Inflammatory Bowel Disease ................................................................................................ 19 
1.2.3 Systemic Lupus Erythematosus ............................................................................................ 20 
1.3 Transcriptomic analysis ............................................................................................................. 21 
1.3.1 Modular Analysis of Transcriptomic Data .......................................................................... 22 
1.4 Predictive Models ....................................................................................................................... 23 

CHAPTER 2: IFN-β induces greater antiproliferative and proapoptotic effects and increased 
p53 signaling compared with IFN-α in PBMCs of Adult T-cell Leukemia/Lymphoma patients
 .................................................................................................................................................................. 26 

CHAPTER 3: Decreased RORC expression and downstream signaling in HTLV-1-associated 
adult T-cell lymphoma/leukemia uncovers an antiproliferative IL17 link: A potential target for 
immunotherapy? .................................................................................................................................... 40 

Abstract .............................................................................................................................................. 41 
Introduction ....................................................................................................................................... 42 
Results ................................................................................................................................................. 43 
Discussion .......................................................................................................................................... 53 
Supplementary Material ................................................................................................................... 56 
Methods .............................................................................................................................................. 56 
Supplementary Figures ..................................................................................................................... 59 

CHAPTER 4: Quantifying chronic inflammatory burden as Glycoprotein Acetylation from 
gene expression data ............................................................................................................................. 64 

Introduction ....................................................................................................................................... 65 
Methods .............................................................................................................................................. 67 
Results ................................................................................................................................................. 77 
Discussion .......................................................................................................................................... 83 

CHAPTER 5: GlycA, a nuclear magnetic resonance spectroscopy measure for protein 
glycosylation, is a viable biomarker for disease activity in IBD ..................................................... 86 

Abstract .............................................................................................................................................. 87 
Introduction ....................................................................................................................................... 88 
Materials and methods ..................................................................................................................... 89 
Results ................................................................................................................................................. 90 



 

 

Discussion .......................................................................................................................................... 95 
Tables .................................................................................................................................................. 97 
Supplements ...................................................................................................................................... 98 

CHAPTER 6: Serum GlycA level is a candidate biomarker for disease activity in systemic 
lupus erythematosus and for proliferative status of lupus nephritis, independent of renal 
function impairment ........................................................................................................................... 100 

Abstract ............................................................................................................................................ 101 
Introduction ..................................................................................................................................... 102 
Materials and Methods ................................................................................................................... 103 
Results ............................................................................................................................................... 105 
Discussion ........................................................................................................................................ 110 
Supplementary Material ................................................................................................................. 113 

CHAPTER 7: Discussion and Future Perspectives ...................................................................... 116 

7.1 How transcriptomic analyses in ATL revealed the importance of inflammation and how 
GlycA quantification from gene expression led to discovery of novel applications for GlycA
 ........................................................................................................................................................... 117 
7.2 What causes Glycoprotein Acetylation? ............................................................................... 121 
7.2.1 Neutrophilic involvement, observations in SLE .............................................................. 121 
7.2.2 T cell involvement, observations in UC ............................................................................ 122 
7.2.3 Gut microbiota and GlycA .................................................................................................. 122 
7.2.4 So what is GlycA, really? ...................................................................................................... 123 
7.3 Clinical Value of serum NMR analysis ................................................................................. 124 
7.4 Future Perspectives .................................................................................................................. 125 

Acknowledgements, personal contribution, conflicts of interest ................................................ 127 
Summary ............................................................................................................................................... 128 
Samenvatting ........................................................................................................................................ 130 
Appendices ........................................................................................................................................... 132 

Bibliography ......................................................................................................................................... 138 

Curriculum Vitae ................................................................................................................................. 155 

  



 

 

Table of Figures 

Figure 1: GlycA NMR signal and its glycoprotein glycan origins.................................................. 11 
Figure 2: World map with indicated prevalence of HTLV-1 infection. ....................................... 16 
Figure 3: Boxplots of the effects of IFN-α and IFN-β on measured proliferation, apoptosis 
and viral protein p19 production in ex vivo PBMCs of ATL patients. ........................................ 30 
Figure 4: Selected Gene Set Enrichment Analysis results. ............................................................. 32 
Figure 5: Normalized RORC expression levels for four independent cohorts consisting of 
ATL patients and healthy uninfected (HC) and/or HTLV-1 infected healthy controls. .......... 44 
Figure 6: HTLV-1-infected Individuals from UK and ATL patients from Brazilian Cohort .. 46 
Figure 7: RORC expression levels of ATL patients from Japanese Cohort ................................ 47 
Figure 8: RORC consensus pathway members ................................................................................ 48 
Figure 9: Modular transcriptomic analysis of the RORC/IL17 pathway ..................................... 50 
Figure 10: Validation of IL17C as a potential ‘antileukemic’ target in independent ATL, 
T-ALL and B-ALL cohorts. ................................................................................................................ 52 
Figure 11: Illustrative Boruta Feature Selection example. .............................................................. 70 
Figure 12: GlycA and Age density plots in D07, D14 and YFS datasets. .................................... 72 
Figure 13: mRMR score of each feature in progressively more complex linear models. .......... 73 
Figure 14: Hyperparameter tuning. .................................................................................................... 75 
Figure 15: Boruta feature selection results stability. ........................................................................ 77 
Figure 16 : GSEA results of four selected gene-sets in ranked Boruta feature selection. ......... 78 
Figure 17: Performance measures of predictive models in YFS training data. ........................... 80 
Figure 18: Model performance in unseen test data.  ........................................................................ 81 
Figure 19: GlycA, CRP and fCal measurements. ............................................................................. 93 
Figure 20: GlycA levels of CRP negative patients. .......................................................................... 94 
Figure 21: GlycA, CRP and fCal correlations. .................................................................................. 94 
Figure 22: Overview of samples used in this study ........................................................................ 104 
Figure 23: GlycA is Lupus subgroups. ............................................................................................. 106 
Figure 24: GlycA levels measured in longitudinal samples of flaring LN patients ................... 107 
Figure 25: GlycA comparison in LN at flare. ................................................................................. 108 
Figure 26: Receiver operating characteristic curve of logistic regression models. .................... 110 



 

 

Abbreviations 

AA Ascorbic Acid 

AAT alpha-1-antitrypsin 

AC Asymptomatic Carrier, Asymptomatic Control 

ADM Adalimumab 

AGP alpha-1-acid glycoprotein  

AIDS Acquired Immonodeficiency Syndrome 

ALL Acute Lymphoid Leukemia 

ANN Artificial Neural Networks 

ANOVA ANalysis Of VAriance 

ATL Adult T-cell leukemia/lymphoma 

AUC Area Under the Curve 

AZT zidovudine 

CD Crohn's Disease 

CRP C-reactive Protein 

CVD Cardiovascular Disease 

DC Dendritic Cell 

DILGOM DIetary, Lifestyle and Genetic determinants of Obesity and 

Metabolic syndrome 

DNA Deoxyribonucleic Acid 

eGFR estimated Glomerular Filtration Rate 

ES Enrichment Score 

ESR Erythrocyte Sedimentation Rate 

fCal fecal calprotectin 

FCS Fetal Calf Serum 

FPR False Positive Ratio 

GEO Gene Expression Omnibus 

GlcNAc N-Acetylglucosamine 

GlycA Glycoprotein Acetylation 

GO Gene Ontology 

GSA Gene Set Analysis 

GSEA Gene Set Enrichment Analysis 

HAM/TSP HTLV-1 Associated Myelopathy 

HBI Harvey-Bradshaw Index 

HBZ HTLV-1 bZIP factor 

HC Healthy Control 

HCV Hepatitis C Virus 

HIV Human Immunodeficiency Virus  

HP Haptoglobin 

hsCRP high sensitivity CRP 

HTLV Human T-Cell Leukemia Virus 



 

 

IBD Inflammatory Bowel Disease 

IDH Infective Dermatitis associated with HTLV-1 

IFN Interferon 

IFX Infliximab 

Ig Immunoglobulin 

IKKB IkB kinase 

IL Interleukin 

IQR Inter-quartile Range 

IU International Unit 

KD Kawasaki Disease 

kNN k-Nearest Neighbors 

LASSO Least Aboslute Shrinkage and Selection Operator 

LM Linear Model 

LN Lupus Nephritis 

mRMR minimum Redundancy Maximum Relevance 

MS Multiple Sclerosis 

NET Neutrophil Extracellular Trap 

NMR Nulcear Magnetic Resonance spectroscopy 

ORA Overrepresentation Analysis 

PBMC Peripheral Blood Mononuclear Cell 

PCA Principal Component Analysis 

PCNA Proliferating Cell Nuclear Antigen 

PD-L1 Programmed death Ligand 1 

PI para-inflammation 

PRO2 Patient Reported Outcome 

QD Quantile Discretization 

RA Rheumatoid Arthritis 

RAR Retinoid Acid Receptor 

rbf radial basis function 

RBV ribavirin 

RFE Recursive Feature Elimination 

RMSE Root Mean Square Error 

RNA Ribonucleic Acid 

ROC Receiver Operating Characteristic 

ROR RAR-like Orphan Receptor 

ROS Reactive Oxygen Species 

SD Standard Deviation 

SLE Systemic Lupus Erythematosus 

SLEDAI SLE Disease Activity Index 

STAT Signal Transducer and Activator of Transcription 

SVM Support Vector Machine 

Tc cytotoxic T cells 



 

 

Th T helper 

TLR Toll-like Receptor 

TNF Tumor Necrosis Factor 

TPM Transcripts per Million 

TPR True Positive Ratio 

Treg Regulatory T cell 

UC Ulcerative Colitis 

UPCR Urinary Protein / Creatinine Ratio 

UST Ustekinumab 

VDM Vedolizumab 

VSV Vesicular Stomatitis Virus 

WGCNA Weighted Gene correlation Network Analysis 

YFS Young Finns Study 



2 

 
CHAPTER 1 

Introduction 

 
 
 
 
 

  



3 

This PhD thesis is a result of research efforts grounded in a greater project which is based on 

the premise that the success of immunomodulatory treatment in viral infections depends on 

the state of the host immune system. More explicitly, does the immune system being ‘primed’, 

‘activated’ or ‘exhausted’ play a role in determining the treatment outcome when treating a 

viral infection with a biological such as interferon (IFN). Characterizing the state of the 

immune system is not a straightforward task as it is the result of many different interlocking 

biological pathways. For the viral infections that are investigated by myself and my colleagues 

in my research group, namely Human T-cell Lymphotropic Virus 1 (HTLV-1), Human 

Immunodeficiency Virus (HIV), and Hepatitis C Virus (HCV), three aspects of the immune 

system are considered to be of particular interest: the antiviral effector pathways, the IFN 

related cellular machinery, and the inflammatory burden.  

While the relevance of the host’s antiviral effector molecules to antiviral treatment success is 

held as self-evident, the hypothesized importance of the IFN related cellular machinery stems 

from the so called ‘IFN paradox’ observed in HIV and HCV. While IFN is a major line of 

defense in the host’s arsenal against viral infection and IFN-based therapies have been used in 

the treatment of HCV and HIV, it can also play a deleterious role, suppressing the immune 

system in ways that promote viral persistence [1]. A role for a third aspect, the inflammatory 

burden, was observed in the experiments comparing the effects of two types of IFN in ex vivo 

samples of HTLV-1 infected Adult T-cell Leukemia/Lymphoma (ATL) patients and in the 

analysis of publicly available gene expression data of ATL patients (reported in Chapters 2 

and 3, respectively). Furthermore, the other HTLV-1 related pathology, HTLV 1 Associated 

Myelopathy or Tropical Spastic Paraparesis (HAM/TSP), is a chronic inflammatory disease of 

the central nervous system; providing further incentive to consider the inflammatory burden 

in this viral infection context. The characterization of the inflammatory burden is the central 

topic in this thesis. More specifically, as the enormous potential of accurately quantifying the 

chronic inflammatory burden from gene expression profiles burden became evident, it 

became my main research objective.  

Considering the large range of pathologies explored in this thesis, and the myriad different 

techniques that has been used throughout it, this introduction must by necessity function as a 

primer on a multitude of different topics. As such, the rest of this introduction is laid out as 

follows: first, I provide an overview of what constitutes inflammation, how it can be 

quantified, and what methodology was used to characterize the chronic inflammatory burden 
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in Chapters 4 – 6. Second, I provide an introduction into the pathologies investigated 

explicitly in this thesis i.e. HTLV-1 and its related pathology Adult T-cell 

Leukemia/Lymphoma (ATL), followed by primers on two other inflammatory pathologies: 

inflammatory bowel disease (IBD) and Systemic Lupus Erythematosus (SLE). The final 

section of this introduction consists of a brief overview of the employed transcriptomic 

analysis strategies throughout these works (Chapters 2 – 4). The statistical and machine 

learning methods used to construct mathematical predictive models from these transcriptomic 

experiments is introduced and detailed in Chapter 4. 

1.1 Inflammation 

Inflammation is a complex biological process that is integral to our bodies’ protective 

response to harmful stimuli. The term ‘inflammation’ is a blanket term that covers a variety of 

different responses that can result from a wide range of immune cells and molecular 

interactions. The cause, duration and intensity of the inflammation affect the underlying 

molecular interaction cascades, adding to the complexity of the process. 

The typical physiological presentation of inflammation as heat, pain, redness and swelling is 

what is known as acute inflammation, which is a generic response to cellular damage, cellular 

detection of pathogens or irritants and is part of our innate immune system. This process is 

protective and critical to survival: its goal is to remove both the inflammatory trigger and 

damaged tissue, so that repair processes can commence. To prevent the harmful stimulus 

from compromising the survival of the host, the capacity of the acute inflammatory response 

needs to be high. On the other hand, continuous activation of the inflammatory processes is 

implicated in a number of diseases like hay fever [2], arthritis [3], cardiovascular disease (CVD) 

[4] or even cancer where it can initiate tumor formation or metastasis [5]. It is then 

unsurprising that the inflammatory response is extensively regulated in the body. 

It is possible to classify inflammation by its severity and duration: where acute inflammation is 

the body’s initial response to the detection of a harmful stimulus by increased recruitment of 

blood plasma and leukocytes (predominantly neutrophils) from the blood to the affected site, 

chronic inflammation is characterized by increased recruitment of mononuclear cells caused 

by prolonged acute inflammation. Recent research has recognized a chronic, subclinical 

inflammatory state which occurs with aging as a manifestation of immuno-senescence, termed 

‘inflammaging’ [6], [7]. This inflammaging is believed to be caused by the accumulation of an 
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antigenic load of persistent infection throughout an individual’s lifespan and the resulting 

chronic stimulation of macrophages [7]. Evidence exists that long-lived people, i.e. 

centenarians, better cope with the effects of inflammaging through an anti-inflammatory 

response termed “anti-inflammaging” [6], [8], [9]. These low-grade inflammatory processes are 

coming under greater scrutiny. Recently, an ongoing inflammatory response of a very low 

magnitude in the epithelium, barely distinct from tissue homeostasis, has been defined as 

‘para-inflammation’ (PI) [5]. PI differs from canonical inflammatory processes by its lack of 

tumor necrosis factor (TNF) and NF-ΚB pathway activation in spite of interferon (IFN) 

activation, and has been observed in a multitude of different cancers [5].  

Inflammation types can not only be identified by their duration, but also by their cause: sterile 

inflammation due to trauma or confirmed sterile systemic inflammatory response syndrome 

can be differentiated from systemic infectious inflammation (i.e. sepsis) using differences in 

gene transcription [10]. In what follows, I provide an overview of the principal processes and 

molecules in the inflammatory response. 

1.1.1 Cell populations contributing to inflammation 

Neutrophils 

The recruitment of leukocytes from blood is considered the primary and integral hallmark of 

the acute-phase response. Even though this rapid response is facilitated through sentinel mast 

cells and macrophages stationed throughout all tissues [11], the attraction of leukocytes may 

still be considered as the initial effect of inflammation. Neutrophils are the most abundant 

leukocytes in human blood. These short-lived polymorphonuclear cells are the first leukocytes 

to be recruited to a site of inflammation, where they perform their function by engulfing 

microbes (phagocytosis) and secreting anti-microbials (reactive oxygen species, ROS, and 

granules of microbicidal molecules). However, these are not the only means by which 

neutrophils attack bacteria.  

First reported in 2004, the process of neutrophil extracellular trap (NET) formation showed 

neutrophils using chromatin fiber, enzymes and granule-derived antimicrobial peptides to 

ensnare and immobilize microbes [12]. This prevents the physical spread of microbes and 

creates an environment thought to limit host damaging molecules secreted as part of the 

inflammatory process from escaping to, and unnecessarily damaging, nearby healthy tissue 
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[13]. However, exaggerated NET formation and inefficient NET clearing has also been linked 

to autoreactivity to the NET components [14], which causes inflammation. 

Monocytes and Macrophages 

Monocytes and macrophages are a diverse and plastic set of leukocytes which can be activated 

in different ways. Broadly, activated macrophages present either a M1 or M2 phenotype, 

although these are better thought of extremes in a spectrum rather than discrete states [15]. 

M1 macrophages are highly pro-inflammatory and secrete IL-1β, IL-6 and reactive oxygen and 

nitrogen intermediates, whereas M2 macrophages have a more anti-inflammatory role and 

perform regulatory functions, tissue repair and immunosuppression [16]. The induction of 

macrophages to the M1 state is achieved by IFN-γ, pathogen-derived molecules through 

Toll-like receptors and granulocyte-macrophage colony-stimulating factor, whereas M2 

differentiation is promoted by IL-4, IL-13, IL-10 and steroids [15], [16]. 

T cells 

T cells circulate through the secondary lymphoid organs and are important components of the 

adaptive immune response, with a small fraction of the total T cells taking part in the innate 

T cell response. They have pro-inflammatory properties, activate macrophages and other T 

cells and perform a broad range of regulatory activities. Their properties and function depend 

on their subtype: T cells can be classified as helpers, cytotoxic, regulatory or memory T cells, 

with smaller subsets of natural killer T cells, γδ T cells and mucosal associated invariant T 

cells. A variety of T helper (TH) subtypes exist, but their overarching function is the 

maturation of other immune cells (e.g. B cells) and the activation of cytotoxic T cells and 

macrophages. Once activated, cytotoxic T cells (TC) destroy virus-infected and tumor cells. 

Memory T cells are a long-lived subtype which occurs when T cells are presented with an 

appropriate antigen by a professional antigen presenting cell. Like TH cells, different memory 

T cell subtypes can be identified: of particular note is the T memory stem cell [17]. These cells 

are at the hierarchical apex of the memory T lymphocytes and recent reports suggest that they 

are crucial to the maintenance of immune homeostasis [18]. At current, little is known about 

their precise relation to auto-immune disease, but early reports suggest that long-lasting 

autoreactive or abnormally activated TSCM trigger an inflammatory response that is 

self-renewing, thereby contributing to the persistence of these diseases [19]. Their importance 

in retroviral infections targeting CD4+ T cells (i.e. HIV-1 and HTLV-1) has already been 

investigated: in HIV, TSCM cells can support both productive and transcriptionally silent 
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infection [20] and due to their long lifespan (a half-life estimated at 227 months in 

antiretroviral-treated HIV patients [21]) they represent an extremely durable and self-renewing 

viral reservoir [22]. In HTLV-1 infection, the TSCM cells have been proven to be the 

progenitors of dominant circulating ATL clones [23]. 

1.1.2 Inflammation-related Molecules 

As the term inflammation covers a broad variety of cellular responses, mediated by a host of 

different cell types, regulated by dozens of cytokines and chemokines, it is impossible to 

provide a comprehensive overview of all molecules involved in these processes. Below, I 

highlight several key proteins relevant to the research topic.  

Interleukin 1β 

IL-1β is a fever-inducing, pro-inflammatory cytokine, mainly produced by monocytes and 

macrophages as a result of Toll-like receptor (TLR) activation. IL-1β acts as a chemokine, 

recruiting inflammatory cells and induces gene expression of several enzymes leading to 

production of inflammatory mediators prostaglandin E2 and nitric oxide. It also has several 

systemic effects, increasing platelet and neutrophil and the production of other acute-phase 

proteins. It induces T helper (Th) 17 cell differentiation and IL-17 production.  

Interleukin 17  

The IL-17 cytokine is secreted by Th17 cells, CD8 T cells and NK cells and upregulates IL-1β, 

IL-6 and TNF-α production, in addition to the NF-ΚB pathway [24]. The cytokine induced 

the activation and mobilization of neutrophils to sites of inflammation and it’s a key mediator 

of protection against extracellular microbes, with an outspoken protective role against the 

Candida albicans commensal fungus [25], though its effects are not exclusively protective: it 

drives pathology in various autoimmune diseases [26], one of the functional differences 

between MS patients and healthy subjects is increased T cell IL-17 production [27], and in 

CVD with high plasma CRP concentrations, IL-17 has proven to be an actionable clinical 

target [28]. 

Interleukin 6  

The IL-6 cytokine activates and promotes the expansion of T cells and the differentiation of 

B cells, as part of its pleiotropic effects. Not only does it regulate the acute-phase response, 

but it exhibits hormone-like attributes that affect the vascular system, lipid metabolism and 
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insulin resistance, the neuroendocrine system and neuropsychological behavior [29]. It is 

produced by stromal cells, as well as the cells of the immune system in response to IL-1β or 

TNF-α stimulation. IL-6 has both pro- and anti-inflammatory properties depending on the 

immunological context [30] and is investigated as a target for clinical intervention. While IL-6 

plays a protective role in many infections, it also contributes to the maintenance of chronic 

inflammation in several models of auto-inflammation [31], [32]. The importance of this 

cytokine is further underscored by the observation that several microorganisms have evolved 

ways to disrupt or even mimic this immunological pathway: human cytomegalovirus can 

antagonize IL-6 expression [33], and human herpesvirus 8 expresses a form of IL-6 which can 

block the recruitment of neutrophils and inhibition of type I interferons owing to a 60% 

similarity with the human cytokine [34]. 

Interleukin 10 

IL-10 is likely the most well-known anti-inflammatory cytokine. Its anti-inflammatory 

activities include the downregulation of antigen presentation and T cell activation and the 

inhibition of pro-inflammatory cytokine production. The mode of action for these 

anti-inflammatory effects is an intricate cascade which involves its receptor IL-10R and the 

activation of members of the Janus kinase family which, in turn, activate the transcription 

factor signal inducer and activator of transcription (STAT) 3. STAT3’s binding of a set of 

target genes across all cell-types (e.g. the Bcl3 gene which impairs NF-ΚB DNA binding and 

suppresses TNF-α production), in addition to a wide range of cell-type-specific targets, 

facilitates IL-10’s anti-inflammatory response [35].  IL-10 is produced by a wide variety of 

immune cells, including T cells, monocytes, macrophages, neutrophils and dendritic cells, 

though macrophages are considered to be its main target cells [36], [37]. 

Tumor Necrosis Factor α  

TNF-α is an acute-phase, pro-inflammatory cytokine which is produced by monocytes, 

macrophages and activated T cells. The mode of action of TNF-α consists of the release of 

the inhibitory silencer of death domain protein from its receptor to enable the binding of the 

tumor necrosis factor receptor type 1-associated DEATH domain adaptor protein, which 

results in the activation of three pathways: activation of NF-ΚB, activation of mitogen-

activated protein kinase pathways and apoptotic pathways, though this latter function is 

usually counteracted by strong anti-apoptotic effects of NF-ΚB [38], [39]. Targeting TNF-α 
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has shown to be a viable strategy in the treatment of a variety of auto-immune diseases [40], 

[41], and can even complement highly active anti-retroviral treatment of HIV [42]. 

Interferon 

Identified in 1957 as a substance which ‘interfered’ with, and thus protected cells from, viral 

infection [43], interferon (IFN) is now known to constitute an integral part of the host 

immune response to viral infections. The IFN cytokines consist of three families (Type I, II 

and III), totaling nine different classes [44], [45]. Though they are central to our anti-viral 

defense, IFN molecules have pleiotropic effects [46] on many different immune cells, 

including but not limited to: antiproliferative effects, activation of pro-apoptotic genes and 

proteins, differentiation modulation, antiangiogenic activity (reviewed in [44]). It is therefore 

unsurprising that IFNs were, and still are, considered a promising option for the treatment of 

a variety of diseases. 

IFN-γ, as the only type II IFN, stands apart from type I IFN-α and -β because its 

immunomodulatory activity is much greater relative to its antiviral activities [47]. While it is 

considered a pro-inflammatory cytokine owing to its activation of macrophages and innate 

immune pathways, it also exerts regulatory activities like the modulation of regulatory and 

helper T cell differentiation and the limitation of inflammation-associated tissue damage [48], 

[49]. 

IFN is used as a biological in several pathologies: arguably the best-known application is the 

use of IFN-β in multiple sclerosis (MS) treatment. But a number of other important 

applications can be noted: IFN-α is used in the treatment of leukemia and, in combination 

therapy with ribavirin (RBV), of hepatitis C virus (HCV) infection. IFN-γ is occasionally 

employed in the treatment of rare immunodeficiencies [50] and IFN-λ has only recently 

undergone its first phase 1 clinical trials [51]. The downside of their potent and pleiotropic 

effects is the significant side-effects of a treatment course [52], [53]. 

1.1.3 Biomarkers for inflammation 

1.1.3.1 C-Reactive Protein 

Clinical assessment of the severity of inflammation is routinely performed through 

quantification of CRP circulating in the blood. The protein takes its name from its ability to 
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precipitate Streptococcus pneumoniae C-polysaccharide and is found in blood plasma [54], [55]. It 

was the first so-called ‘acute-phase’ protein to be described, with ‘acute phase’ referring to the 

rapid increase from a baseline concentration between 0 and 3 mg/L in healthy individuals 

following IL-6 secretion of macrophages and T-cells. As such, it can be a highly sensitive 

marker of inflammation and tissue damage [54], [55]. CRP is produced in the liver, following 

signals produced by macrophages and adipocytes. 

Multiple tests can be used to quantify CRP and overall, they are highly sensitive, cheap, and 

easy to perform. However, the term ‘inflammation’ covers a wide range of heterogeneous 

physiological and biochemical conditions; not all of which are associated with CRP 

concentration. A clear example of this is found in two chronic inflammatory bowel diseases: 

in over 25% of Crohn’s disease patients, no significant elevation of CRP is observed and in 

ulcerative colitis patients the CRP response is generally modest or even absent [56]. In 

addition, CRP is a highly variable biomarker: the determination of the true homeostatic 

setpoint of a patient can require up to 33 concurrent measurements [57]. Furthermore, the 

biochemical properties of CRP limit its usefulness in the characterization of an 

anti-inflammatory state as CRP is supposed to be absent in healthy individuals. 
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Figure 1: GlycA NMR signal and its glycoprotein glycan origins. (A) A representative plasma NMR spectrum 

showing the GlycA signal and deconvolution model used by Labcorp (NC, USA) for its quantification. The red line 

is the measured plasma signal envelope, and the virtually superimposed black line is the calculated sum of the 

deconvolution-derived amplitudes of the lipoprotein and protein (purple) and N-acetyl methyl (blue) reference 

signals. GlycA measurements by Nightingale Health (Helsinki, Finland) do not make use of this deconvolution. (B) 

Locations of the N-acetylglucosamine moieties in major forms of the branched glycans of acute-phase 

glycoproteins that contribute to the GlycA signal. Figure from [58], reused with permission. 

1.1.3.2 Glycoprotein Acetylation: description 

The quantification of Glycoprotein Acetylation (GlycA) through NMR spectroscopy was first 

achieved in 1987 [59]. The amount of GlycA summarizes the NMR signal located between 

2.04 and 2.08 ppm on serum NMR spectrum (Figure 1). It is a non-specific, composite signal 

which measures the concentration of mobile N-acetyl methyl groups on N-Acetylglucosamine 

residues of antennary branches of glycoproteins in circulation, i.e. proteins with carbohydrate 
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sugar groups covalently linked to their amino-acid protein structure in blood plasma [59]. The 

first reports showed that the signal arose from four main glycoproteins: alpha-1-acid 

glycoprotein (AGP), alpha-1-antitrypsin (AAT), haptoglobin (HP) and transferrin [59]. Recent, 

more comprehensive reports also showed Alpha 1-antichymotrypsin as a possible source of 

the signal [58]. These glycoproteins are acute-phase reactants (like CRP), meaning their glycan 

structures and their concentrations change during the acute-phase response of inflammation 

[60]. Though the magnitude of the change in concentration, as well as its kinetics, are different 

for each of the contributing proteins [61], their combined NMR signal, in the form of GlycA, 

not only exhibits acute-phase reactant characteristics but has also shown to more robustly 

associate to inflammatory conditions than traditional inflammatory biomarkers such as CRP 

concentration. Though GlycA was first described in 1987, the advances in technology that 

have made it possible to quantify the biomarker in a high throughput fashion are quite recent 

[58], [62]. 

Investigations into the molecular underpinnings of GlycA’s association to long-term risk of 

disease and mortality have tried to determine which of GlycA’s constitutive glycoproteins best 

explain the observed associations, and what their the relative contributions to the signal are 

[63]. These efforts have made use of large scale imputation of the glycoprotein levels using 

machine learning methods on a set of 626 paired NMR and immunoassay experiments and 

suggest that while alpha-1-acid glycoprotein correlates best with GlycA levels, 

alpha-1-antitrypsin (AAT) is more predictive of morbidity and mortality in these population 

based cohorts [63]. As the literature describes AAT as an inflammation suppressant [64], these 

results are significant in that they suggest that increased AAT levels should not be interpreted 

as evidence of anti-inflammatory conditions within the host, but rather that they are actually 

compensating for the presence of low-grade chronic infection. However, these conclusions 

are based on imputed concentrations of the constitutive proteins, and studies which 

simultaneously quantify GlycA and the concentrations of the constitutive proteins are rare. 

Similarly, though HP is an acute-phase protein, it has also been described as having anti-

inflammatory effects (e.g. the reduction of IFN-γ) [65] making its apparent importance to the 

GlycA signal surprising. However, reports in rheumatoid arthritis (RA) [66], and ovarian [67] 

and colon [68] cancer have shown that the glycosylation profiles of HP are affected in these 

pathologies, which can explain the importance of its contribution to the GlycA signal. 
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1.1.3.3 Glycoprotein Acetylation: published associations 

Increases in the GlycA biomarker have been linked to a great number of adverse outcomes. 

For example, serum NMR profiling of population biobanks have shown associations with 

fatal and non-fatal cardiovascular disease (CVD) events [69]–[71], type II diabetes [72], 

mortality from chronic inflammation-related causes [71], non-alcoholic fatty liver disease [73] 

and all-cause mortality [70], [71]. In datasets generated from cohorts with pre-existing CVD, 

increased GlycA concentrations associated robustly with greater long-term risk of fatal CVD 

events [74] and all-cause mortality [75]. Throughout these studies, GlycA is shown to be a 

better indicator than, and independent of, standard risk factors associated with the considered 

outcomes like sex, BMI, smoking and activity levels.  

Of the associations noted in population-based research, the two most well-researched 

associations are those with CVD and obesity. In CVD, the GlycA association to CVD and 

all-cause mortality persists after adjusting for high sensitivity CRP (hsCRP), which can be 

interpreted as GlycA better capturing the heterogeneous nature of inflammation [69], [76], 

[77]. In fact, in patients undergoing coronary angiography, GlycA and hsCRP are independent 

and additive markers for CV event risk [74], [77]. 

GlycA also seems to be an ideal biomarker for inflammation in the obesity context, where it 

outperforms other acute-phase proteins hsCRP and IL-1RA as a predictor for type 2 diabetes 

and CVD event incidence [78]. Curiously, while GlycA has been repeatedly shown to be 

associated to BMI [79], [80] and bariatric surgery normalizes the elevated GlycA in obese 

subjects, this normalization occurs even in those patients which remain overweight and obese 

post-surgery [81].  Multivariate analysis showed that the changes in GlycA following bariatric 

surgery could be explained by an increase in HDL particle size [81]. The impact of regular 

exercise on GlycA has been examined in several different cohorts [82]. Not only does regular 

exercise significantly lower GlycA, this reduction remains significant following adjustment for 

age, sex, race, baseline BMI and baseline GlycA [82]. 

While the majority of GlycA studies have been demographic, population-based analyses, the 

GlycA biomarker has also been investigated in several disease contexts. Rheumatoid 

Arthritis (RA), as an inflammatory pathology, was an attractive context for initial GlycA 

quantification studies. Consistently, these studies have found GlycA to be elevated in RA 

when compared to healthy controls and to be associated to disease activity [83]–[85]. The 
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association to CVD biomarkers like coronary artery atherosclerosis is evident in RA patients 

as it is in healthy controls [84]. 

In Systemic Lupus Erythematosus (SLE), another major inflammatory auto-immune disease, 

early reports about GlycA appeared to contradict each other: Chung et al. reported increased 

GlycA levels in SLE patients and noted an absence of correlation with disease activity scores 

and coronary artery calcification [86], while Durcan et al. observed similar increased GlycA 

levels which, contrary to the findings of Chung et al, did correlate with disease activity and 

atherosclerosis markers [87].  I provide a hypothesis to explain this apparent discrepancy in 

Chapter 6: it is likely that Chung et al.’s choice of SLE patients, i.e. a cohort with low disease 

activity scores and no nephritic involvement [86], was too homogeneous to identify an 

association with disease activity and coronary artery calcification. 

This view is supported by reports on GlycA in relation to kidney function: in the Brazilian 

Longitudinal Study of Adult Health, GlycA was found to be related to albuminuria and 

inversely related to estimated glomerular filtration rate (eGFR) [88]. These observations are 

echoed in the Dutch PREVEND study cohort [89]. It is worth noting that despite GlycA’s 

association with these renal health biomarkers, the association of GlycA with incident CVD is 

not attenuated after adjustment for eGFR and albuminuria [89]. 

Similar observations were made in the chronic inflammatory skin disease psoriasis, where 

GlycA, in a cohort of 122 patients, shows an increase over healthy controls, and associates 

with disease severity [90]. Owing to the increased vascular inflammation of this disease, 

psoriasis patients show increased risk of CV events and mortality and biomarkers for this 

increased risk are highly valuable. GlycA’s association with CVD in healthy controls persists in 

the psoriasis patients, in contrast to hsCRP and traditional CVD risk factors [90]. GlycA’s 

relevance in this context goes beyond tracking CVD risk, as the authors show that GlycA can 

be used to accurately track anti-TNF treatment response in psoriasis. 

GlycA’s ability to characterize CVD incidence and risk is further illustrated in Kawasaki 

disease (KD). This acute auto-immune disease predominantly affecting young children is 

characterized by vascular inflammation and presents with fever and mucocutaneous changes 

[91]. Though diagnosis is very difficult, it is exceedingly important to diagnose the syndrome 

in a timely fashion because, even though a very effective therapy exists, there is a high chance 

of serious CV damage if the treatment is not administered early in the disease [92]. This makes 

the lack of a diagnostic laboratory test a serious issue and explains the importance of GlycA’s 
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ability to differentiate between KD and febrile infections. Again, GlycA outperforms 

traditional inflammatory biomarkers CRP and erythrocyte sedimentation rate (ESR) (especially 

in combination with the other lipoprotein biomarkers measured simultaneously in GlycA’s 

NMR spectrum) [57].  

There are also settings in which GlycA is not a relevant biomarker: experiments in Sickle Cell 

Disease (SCD) have shown that the biomarker is not a good fit for that particular pathology, 

despite SCD being a pathology that is driven by recurrent vascular inflammation [93]. 

Considering GlycA’s robust and extensively proven association to CVD, this is somewhat 

surprising. The GlycA decrease in SCD patients when compared to healthy controls, in 

addition to the observed (statistically non-significant) decrease of GlycA in acute SCD cases 

compared to steady state observations in the same patient, suggest that HP (an important 

contributor to the GlycA signal) depletion due to hemolysis prevents GlycA from acting as a 

suitable biomarker for inflammation in this disease context [93]. 

Finally, a single study has been reported in which GlycA has been investigated in the context 

of a viral infection. In a cross-sectional study of 935 subjects, of which 63% were 

HIV-infected, GlycA levels were significantly higher in the HIV-infected individuals [94]. 

Controlling for HIV serostatus, demographic and CVD risk factors in this cohort preserved 

GlycA’s association to the presence of coronary plaque [94]. 

While a mechanistic explanation for GlycA’s associations has not been determined yet, 

correlation network analysis in transcriptomic experiments has indicated a neutrophil 

transcriptional signature that is associated with GlycA levels [76]. 

1.2 Examined pathologies 

1.2.1 Human T-Cell Leukemia Virus Type 1 

HTLV-1 is the first discovered human pathogenic retrovirus, and was first isolated from a 

patient with T-cell malignancy in 1980 [95]. A second strain of the virus was identified in 1982 

and dubbed HTLV-2 [96]. The addition of the viral causative agent of acquired 

immunodeficiency syndrome (AIDS) as HTLV-3 to the same group warranted a name change 

from Leukemia to Lymphotrophic virus. However, the official nomenclature of the AIDS 

virus changed from HTLV-3 to human immunodeficiency virus (HIV) the ‘lymphotropic’ 

term in the name was deemed inappropriate for the remaining viruses in the HTLV group, 
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and its nomenclature has been restored to its original identity of the original ‘leukemia’ virus, 

emphasizing its extremely pronounced oncogenic properties [97]. 

Recent estimates about the global burden of HTLV-1 range between 5-10 million infected 

individuals [98], mostly limited to certain endemic regions. However, as systematic population 

screening is lacking, true infectious burden could be manifolds greater [99]. High prevalences 

have been identified in Southwest Japan, sub-Saharan Africa [100], Iran [101], Central 

Australia [102], the Melanesian islands and South America [103]. Endemic hotspots like the 

city of Salvador, Brazil and Tsushima Island, Japan have a prevalence of 1.8% and 36.4% 

respectively [99], [104] and are visualized in Figure 2. Note that for China and India, which 

together make up about a third of the world’s population (United Nations Department of 

Economic and Social Affairs, 2018), no information is available. 

 

Figure 2: World map with indicated prevalence of HTLV-1 infection. Depicted are estimates of the number of 

HTLV-1 infected carriers, based on approximately 1.5 billion individuals from endemic regions. (Image from [105], 

reused with permission.) 

Transmission of HTLV-1 primarily occurs via sexual contact [106], mother-to-child 

transmission through breastfeeding [107], [108] and blood-to-blood contact e.g. by using 

contaminated needles [109], transfusion of cellular blood products [110] and organ 

transplantation [111]. When receiving HTLV-1 infected blood by transfusion, the risk of 

seroconversion is between 40% and 60% with the risk of infection being higher when 
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transfusing fresh whole blood or platelets (plasma is not infectious) [112]. Some endemic 

countries screen blood and tissue donors, as well as pregnant women, for HTLV-1 infection 

but globally, HTLV-1 screening is largely absent [110]. 

In total, seven genetic subtypes (named ‘a’ through ‘g’) are recognized, with different 

geographic spreads. The cosmopolitan subtype is HTLV-1a, whereas HTLV-1b, -d, -e, -f and 

-g are African subtypes which have been identified predominantly in Gabon, Congo, and 

Cameroon, while subtype -c is the Australo-Melanesia subtype [113]–[116]. The within-

subtype diversity of HTLV-1 is low when compared to what is observed in HIV-1 and 

HTLV-1 transmitted within families is highly conserved [105], [117], [118]. 

HTLV-1 is classified as a group VI virus, meaning its genome is a single + strand of RNA. All 

retroviral genomes consist of at least 4 genes: gag, pro, pol and env. These genes encode proteins 

related to the assembly of viral-like particles, the maturation of the viral particles, proteins 

related to viral DNA synthesis and integration in host DNA, and the structural and surface 

proteins of the viral envelope, respectively. Aside from these typical retroviral genes, the pX 

region of the HTLV-1 genome encodes regulatory proteins Tax, Rex, p12, p13 and p30 plus 

the HTLV-1 basic leucine zipper factor (HBZ) as a minus strand protein. Of these, Tax and 

HBZ have particularly important, but opposite, roles in the pathogenesis and persistence of 

the virus [105], [119]. Tax is capable of activating transcription of the provirus and many host 

genes, chiefly CD25, IFN-γ and intercellular adhesion molecule 1. Together, these functions 

allow the virus to influence cellular activation, proliferation and cell cycle checkpoints, while 

also inhibiting DNA repair [120]–[122]. Furthermore, Tax persistently activates nuclear factor 

kappa B (NF-ΚB) canonical and non-canonical pathways which results in deregulated 

expression of a large array of genes [123]. In contrast, HBZ limits the effects of the Tax 

protein, but still drives proliferation of HTLV-1 infected cells [119], [124]. 

The in vivo reservoir for HTLV-1 is CD4+ T-cells, harboring ~95% of the pro-viral load, 

though the virus is capable of infecting most nucleated cell types (e.g. B cells, NK cells, 

dendritic cells, monocytes/macrophages, endothelial cells and hematopoietic stem cells [125], 

[126]). It is then unsurprising that HTLV-1 is the causative agent for a wide range of 

pathologies, though the reason why most HTLV-1 infected individuals remain asymptomatic 

throughout their life is poorly understood. Those HTLV-1 infected individuals that progress 

to a severe disease state mainly develop the blood cancer adult T-cell leukemia/lymphoma 

(ATL) and the neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic 
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paraparesis (HAM/TSP). Other related pathologies include an intraocular inflammatory 

disorder termed HTLV-1 uveitis and the severe, exudative, infective dermatitis associated with 

HTLV-1 (IDH) [118]. However, a myriad of other inflammatory conditions that have been 

linked to HTLV-1 including pulmonary disease, polymyositis, arthritis, inflammatory 

myopathy, polyneuropathy, motor neuron disease, dysautonomia and non-neurological 

manifestations Sjögren’s syndrome, pulmonary alveolitis, conjunctivitis, sicca syndrome and 

interstitial keratitis, Hashimoto’s thyroiditis, and Graves’ disease [118], [127], [128]. Thus far, 

clinical manifestations of disease have not been successfully linked to particular genotypes of 

the virus [129], [130]. This suggests that the varied disease manifestations could be attributed 

to variations in host genetics [105] or to variations in host immunological condition [131]–

[135]. 

1.2.1.1 Adult T-cell leukemia/lymphoma 

ATL is an aggressive T-cell leukemia, predominantly of CD4+CD25+ T cells. The disease 

develops after a long latency period post HTLV-1 infection, with typical diagnoses occurring 

between the age of 40 to 60 years. ATL can be classified into four subtypes based on their 

symptoms and prognosis: acute, lymphoma, chronic and smoldering subtypes making up 60%, 

20%, 15% and 5% of ATL cases, respectively. The two most aggressive subtypes, i.e. acute 

and lymphoma, are characterized by their heavy tumor burden with lymphadenopathy, 

hepatosplenomegaly, as well as skin and visceral lesions in addition to opportunistic infections 

due to immunodeficiency. The difference between acute and lymphoma subtypes is found in 

the degree of infiltration of leukemic cells into peripheral blood and hypercalcemia: lymphoma 

patients have less than 1% of leukemic infiltrates in the blood and are usually less burdened 

with hypercalcemia. Chronic and smoldering subtypes are typified by 1-5% of peripheral 

leukemic blood lymphocytes but with an absence of both visceral involvement and 

hypercalcemia [136], [137]. 

While confirmation of a diagnosis has been simplified since the discovery of CADM1/TSLC1 

as a bona fide cell surface marker for ATL cells [138], [139], prognosis remains poor: the 

cancer is incurable, with acute ATL patients having a mean survival time of <6 months, and is 

refractory to current combination chemotherapy. Reported viable treatment options are 

subtype-specific and include allogeneic hematopoietic stem cell transplantation and 

monoclonal antibodies to CC chemokine receptor 4 [140]. However, aggressive leukemic ATL 
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is, according to international consensus following meta-analysis, best treated with IFN-α and 

zidovudine [140]–[142]. This combination of an immunomodulatory biologic and 

antiretroviral medication has shown some effectiveness in multiple uncontrolled studies, 

extending patients’ lifespans by 3 to 11 months [143]. In addition to the cancer, patients often 

suffer from and die of opportunistic infections due to a severe immuno-depressed state. 

1.2.1.2 HTLV-1 Associated Myelopathy 

HTLV-1 Associated Myelopathy / Tropical Spastic Paraparesis was first described in the 

nineteenth century [105], though its etiology was unknown until the 1985 when HTLV-1 

infection was identified as the cause [144], [145]. In an early inflammatory phase of the 

disease, CD4+ and CD8+ T cells (some carrying the HTLV-1 infection) invade the spinal cord 

and produce inflammatory factors and cytokines. The resulting chronic inflammation leads to 

atrophy of the spinal cord, though precise mechanisms have not yet been elucidated. The 

neuroinflammatory disease leads to urinary symptoms, back pain and paralysis of the legs. No 

curative treatment is available for HAM/TSP, and clinical care is focused on symptomatic 

treatment. Several drugs, like corticosteroids, IFN and antiretrovirals have been tested and 

have shown some beneficial symptomatic effects and decreased viral loads (reviewed in [105]). 

Immunomodulatory drugs in particular seem effective in early disease, but their usefulness 

tapers off in later stages when the neurodegeneration predominates. 

1.2.2 Inflammatory Bowel Disease 

Inflammatory Bowel Disease (IBD) is a term used to describe chronic inflammatory disorders 

of the gastrointestinal tract. The two primary types of IBD are Crohn’s Disease (CD) and 

Ulcerative Colitis (UC). Though many clinical symptoms of IBD are common to both diseases 

(e.g. diarrhea, cramps, abdominal pain, rectal bleeding and weight loss), CD and UC are 

distinct pathologies. CD affects both small and large intestine, as well as other parts of the 

gastrointestinal tract like the esophagus and stomach, whereas UC primarily affects the colon 

and rectum. The intestinal mucosa are continuously subjected to external stresses originating 

from microbial antigens and dietary metabolites. As such, defects in this innate immune 

system can lead to persistent immune activation, a key characteristic of IBD [146]. These 

diseases are characterized by periods of disease activity and remission with pathogenesis 

ascribed to a combination of host genetics, immune dysregulation and gut microbiota [147].  
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Biomarkers allowing for differential diagnosis, assessment of disease activity and severity and 

tracking of therapy outcome are an active research field, and currently no single gold standard 

exists [56], [148]. It is worth noting that C-reactive protein (CRP), the most commonly used 

biomarker for acute inflammation, is poorly suited to these tasks in IBD: the variability of 

CRP in CD patients is considerable and UC patients are often noted to have only a modest or 

even absent CRP response [56], [149]. This heterogeneity is peculiar considering 

concentrations of e.g. interleukin (IL)-6, IL-1β and TNF-α (inflammatory proteins discussed 

in Section 1.1.2) are detected in UC even when CRP is not. Genetic studies on CRP 

polymorphisms have thus far failed to explain this heterogeneity [150].  

Treatment options include dietary interventions [151], corticosteroid usage and the sectioning 

of the GI tract, though TNF-α blockade by neutralizing antibodies, like the biological 

infliximab, has shown to be an effective strategy in some subgroups of patients, paving the 

path for trials with many other biologicals targeting different cytokines, with varying degrees 

of success [152]. 

1.2.3 Systemic Lupus Erythematosus 

Systemic lupus erythematosus (SLE) is a relatively rare chronic autoimmune disease observed 

mostly in young women. The disease is characterized by repeated disease activity flares of 

varying severity: 80% of patients with active disease show either persistent disease activation 

or frequent disease flares [153]. These disease flare-ups can cause severe visceral damage. For 

example: while renal impairment is observed in approximately 15% of patients at SLE 

diagnosis in Europe, over 40% of SLE patients experience kidney damage over the course of 

their disease  and the risk of end-stage renal failure after 10 years in patients with severe renal 

involvement is estimated at 10-30% [154]. Moreover, the 10-year mortality attributed directly 

to SLE is estimated at less than 10% [155]. Nonetheless, the treatment of SLE is based on the 

use of immunosuppressive therapies with significant long-term side effects (infections, 

cardiovascular pathologies, cancers, osteoporosis) [156] that remain a relevant concern even 

for novel biologicals as recently shown by my collaborators [157].  

The clinical presentation of SLE is polymorphic and includes heterogeneous manifestations 

ranging from renal and neurological damage to anemia, polyarthritis and thrombosis. 

Biologically, manifestations of SLE are characterized by the presence of 

hypocomplementemia, anti-nuclear factors, anti-double-stranded DNA antibodies and/or 



21 

anti-nucleosome antibodies. In the lapses between active disease, i.e. when the disease is 

quiescent, biological surveillance involves regular screening for urinary abnormalities which 

may indicate a recurrence of kidney disease and repeated quantification of the complement 

and anti-DNA antibodies. However, to date, there are no biomarkers to assess/predict lupus 

disease activity and thus personalize the level and duration of immunosuppression. This lack 

of biomarkers means treatment is often continued in clinically quiescent patients for fear of a 

new outbreak of the disease for extended or even indefinite duration. The resulting iatrogenic 

effects are justified by the fact that once treatment is stopped or reduced, the diagnosis of a 

relapse of SLE often comes too late; when the organs have already sustained significant 

damage. Indeed, the biomarkers in current clinical use, i.e. clinical-biological activity scores, 

determination of complement fractions, native anti-DNA antibody titer and renal puncture 

biopsy, have essentially been validated only for the diagnosis of confirmed disease flare and to 

determine their severity. The need for predictive biomarkers of SLE flares is dire and has been 

internationally highlighted [158]. 

1.3 Transcriptomic analysis 

Transcriptomics is the term describing the examination of the expression levels of a 

comprehensive set of genes in a sample. This data is typically generated by fluorescent 

microarrays or by RNA-sequencing (RNA-seq). While extensive repositories for microarray 

studies exist (like the Gene Expression Omnibus, GEO [159]), RNA-seq is now 

commonplace and is typically performed for new differential expression studies [160]. 

Microarrays were developed in the mid-1990s and were the first high-throughput technology 

that enabled quantification of gene expression levels [161]. Microarray chips contain 

oligonucleotide probes which are specifically designed to target known gene sequences. These 

probes are then laid out in specific grid-positions on a chip so that the fluorescent light 

resulting from the hybridization between the sample’s complementary RNA (created by 

transcription from complementary DNA which was generated in turn by reverse transcribing 

the sample RNA) and the probes can be attributed to the correct gene of origin. 

RNA-seq is replacing traditional microarray technologies, owing to technological advances 

and concurrent decreases in the costs of sequencing technologies. RNA-seq has many 

advantages: the technology measures all RNA in a sample, not just those belonging to known 

gene sequences, and alternative splicing events (where exons of a gene are combined to 
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generate alternative versions of a protein) can also be identified [162]. The core goal of 

expression quantification also benefits from RNA-seq’s greater dynamic range: the technology 

better captures changes in transcripts with very low expression without giving up accuracy in 

highly expressed genes [162]. Analysis of RNA-seq data is not without its challenges as many 

different analysis pipelines for the raw data can be employed, each with its own advantages 

and disadvantages.  

Traditional analysis of the sequence reads generated in a transcriptomic experiment generally 

starts with a pre-processing where low quality reads and adapters are removed from the data 

[163], [164]. The high-quality reads are then aligned to a reference genome by a splice-aware 

aligner before the reads covering each gene are quantified [165]. The latest generation of 

RNA-seq analysis software employs a different strategy for quantification: pseudoalignment. 

Traditional alignment strategies try to find the position where a given read originated from, 

pseudoalignment instead generates a list of all possible transcripts which could have generated 

the read without caring exactly where within the transcript the read originated [166]. These 

techniques are orders of magnitude faster than traditional alignment based methods without 

sacrificing quantification accuracy [166]. 

1.3.1 Modular Analysis of Transcriptomic Data 

Transcriptomic analysis frequently takes the form of associative studies between traits of 

interest and the expression of specific genes. However, correlation networks are increasingly 

used to describe the complex correlational patterns observed across the expression of genes 

measured in transcriptomic experiments. Weighted Gene Correlation Network Analysis 

(WGCNA) is a widely used R software package which identifies clusters or ‘modules’ of highly 

correlated genes and summarizes the expression of such modules using their eigengene or 

intramodular hub genes [167]. 

Briefly, WGCNA starts by generating an adjacency matrix, using robust 

biweight-midcorrelation to calculate correlation between expression of all genes which are 

then subjected to a soft-thresholding procedure so that the resulting correlational network 

approximates the scale-free network criterion. This criterion states that the majority of genes 

within a network correlate to very few other genes, while a small subset is highly 

interconnected. From this adjacency matrix, the topological overlap measure for each gene 

pair is calculated, which quantifies how many gene-correlates are common to both members 
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of each gene pair. Advanced dynamic tree cut algorithms are then used to identify coherent 

clusters or ‘modules’ of genes. Each resulting module can then be summarized by the 

expression value of its virtual ‘eigengene’, i.e. its first principal component, which can be 

interpreted as a weighted average expression value, so named because of an algebraic 

eigenvector’s ability to essentially summarize a matrix. Alternatively, if virtual gene expression 

is undesirable, a module’s hub genes can be identified: these are genes whose intramodular 

connectivity is highest (and are therefore highly correlated to the module’s eigengene 

expression) [167]. The gene modules identified by WGCNA can then be annotated manually 

or by using standard Gene Ontology (GO) approaches using either Fischer overrepresentation 

analysis (ORA), or gene set enrichment analysis (GSEA) methodologies [168]. 

1.4 Predictive Models 

The centerpiece of this thesis is the construction of a model which estimates chronic 

inflammatory burden from gene expression. The methodology used in this process is 

introduced and detailed in Chapter 4. However, these modelling approaches can also be used 

to assess the value of new biomarkers, as I did for the GlycA biomarker in the IBD and SLE 

disease contexts (Chapters 5 and 6). 

Assessing the performance of a biomarker in a binary classification model is routinely done 

using receiver operating characteristic (ROC) curves which shows the model’s relation 

between its sensitivity or true positive ratio (TPR) and its false positive ratio (FPR) or 1 minus 

its specificity. Though the area under the ROC curve (AUC or c-statistic) is often used as a 

performance metric in the literature, this measure has important limitations: models with high 

baseline accuracy are hard to improve upon and meaningful improvements to model accuracy 

may have comparatively small impacts on the c-statistic [169], [170]. Furthermore, in real 

applications a classification model with high false positive rates might be unacceptable, but the 

c-statistic summarizes performance across all false positive rates. One alternative to the c-

statistic is to report a model’s performance as its leave-one-out cross-validation accuracy and 

Cohen’s Kappa value for relative improvement between models (either over an existing model 

or one based on random chance). This method is to be preferred, provided the considered 

sample accurately reflects the population it’s drawn from [171], [172], although it is not 

without its own limitations and other alternatives have been suggested [172], [173].
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CHAPTER 2 

IFN-β induces greater antiproliferative and 
proapoptotic effects and increased p53 signaling 

compared with IFN-α in PBMCs of Adult T-cell 
Leukemia/Lymphoma patients. 
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Abstract 

Current first-line treatment for Adult T-cell leukemia (ATL) includes combination therapy 

with interferon alpha (IFN-α) and zidovudine (AZT). The use of IFN-α in this treatment is 

mostly empirical in origin, whereas the therapeutic potential of interferon beta (IFN-β), has 

not yet been thoroughly explored in this context. Here we compare the effects of IFN-α and 

IFN-β treatment in short term ex vivo peripheral blood mononuclear cell (PBMC) cultures 

from 22 ATL patients. Using proliferation, apoptosis and antiviral bioassays, complemented 

with microarray and gene set analysis, we demonstrate that in this setting IFN-β has superior 

antiproliferative and pro apoptotic effects than IFN-α. Increased p53 signaling is observed 

under the IFN-β treatment, while the antiviral effects are equivalent to those of IFN-α 

treatment. Notably, the genes in a published in vivo AZT/IFN-α response profile are affected 

more strongly by IFN-β than by IFN-α stimulus in these ex vivo PBMCs. In conclusion, this 

first comprehensive analysis comparing the effects of IFN-α and IFN-β on ex vivo primary 

cells from ATL patients demonstrates that IFN-β has a greater impact than IFN-α on 

biological processes which have been shown to be crucial in the treatment of ATL, making 

IFN-β an intriguing candidate for further in vivo testing.  
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Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell malignancy with a poorly 

understood pathology that manifests from human T-lymphotropic virus type I (HTLV-1) 

infected T-cells, typically after long latency periods (>30 years). Current treatment regimens 

for ATLL, reviewed in [174], include zidovudine (AZT) and interferon alpha (IFN-α) 

combination therapy. The established usage of IFN-α in the treatment of ATLL is largely 

empirical in origin. The effects of the other widely used IFN subtype, IFN-β, have not been 

thoroughly examined in this setting, even though IFN-β’s more potent induction of 

antiproliferative and apoptotic pathways has been described in solid cancers [175]. Few studies 

have compared the effects of IFN-α versus those of IFN-β in ATLL and these were generally 

performed in cell lines, rather than primary patient cells [176], [177]. In vitro experiments with 

IFN-α using cell lines report minimal effects of IFN-α on the viability of HTLV-1 infected T-

cells and viral replication, in contrast to the high in vivo response rates obtained by this therapy 

[178], [179]. Reports regarding in vitro and in vivo activity of IFN-β in this context also seem 

contradictory: in vitro experiments showed no antiproliferative action of IFN-β [180] while a 

single early in vivo trial using IFN-β reported promising results, with 50% of 6 treated patients 

achieving partial response to treatment using IFN-β monotherapy [181]. The reported success 

rate of this IFN-β monotherapy was comparable to early AZT/IFN-α combination therapy 

trials where 67% of 24 treated patients achieved partial response [182]. 

We performed the first direct comparison between the response to IFN-α and IFN-β in ex vivo 

ATLL patient PBMCs. We analyzed samples obtained between 2001 and 2007 from 9 men 

and 13 women aged 21-78 years (median 47.5), diagnosed as HIV negative and definite ATLL 

with serology, inverted PCR and/or flow cytometry, at the “Hospital Universitário Professor 

Edgar Santos” (HUPES) in Salvador, Bahia, Brazil. Seven of these patients were classified as 

acute, ten as smoldering, three as chronic and two as lymphoma according to Shimoyama 

criteria [136]. This study was approved by the Ethics Review Board of HUPES 

(number 32050106). Data handling and processing was additionally approved by the Medical 

Ethics Commission of the UZ Leuven hospital, Belgium (number s57931). 

Proliferation, antiviral activity and apoptosis were all measured in three distinct treatment 

conditions: cultures were either left untreated or stimulated with either IFN-α (1000 U/ml) or 

IFN-β (1000 U/ml) at the start of the experiment. Bioactivity of IFN-α and IFN-β was 

determined using a VSV/Wish bioassay in order to preclude any bias owing to different 

antiviral effects of the interferon subtypes. Neither IL-2 nor PHA were added to the ex vivo 
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cultures in order to approximate in vivo conditions as closely as possible. Proliferation was 

measured by [3H] thymidine incorporation assay in the cultures of ex vivo PBMCs of 19 

patients. Active caspase-3 was then measured by flow cytometry (FACSort, BD Biosciences, 

Franklin Lakes, NJ) using a CBA apoptosis kit (BD Biosciences). HTLV p19 protein levels in 

PBMC 48-hour culture supernatants were measured using the HTLV-I/II p19 antigen ELISA 

(ZeptoMetrix, Buffalo, NY), according to the manufacturer’s instructions. Detailed methods 

are provided as supplementary materials. 

Unless otherwise noted, Bonferroni corrected, nonparametric Friedman rank sum tests were 

used to test for statistically significant differences between the three experimental conditions. 

The results of these tests are summarized in Figure 3. IFN-α caused a small but significant 

24±36% decrease in proliferation in the nineteen examined samples, whereas IFN-β treatment 

decreased proliferation significantly by 47±58%. Direct comparison of IFN-α vs IFN-β 

treatment conditions shows that IFN-β exerted superior antiproliferative activity. Caspase 3 

activation, measured in six samples, showed an increase in apoptosis for both IFN subtypes, 

but IFN-β showed a significantly higher increase in apoptosis than IFN-α (12.8±7.2 and 

4.9±7.1 pg/ml, mean±sd, respectively). Fourteen out of 16 tested samples had detectable 

virus production in the supernatants of 48-hour cultures. Viral p19 levels varied strongly 

between patient samples, ranging from 4.8 to 10792.7 pg/ml (mean±sd, 2131.3±3796.9) in 

the control condition. Both IFN-α and IFN-β treatments resulted in comparable reductions in 

viral p19 levels when contrasted with the untreated control condition (a mean±sd decrease of 

49±32% versus 69±70%), suggesting that the observed differential effects of the two IFN 

types on proliferation and apoptosis do not stem from a differential impact on viral 

replication. 
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Figure 3: Boxplots of the effects of IFN-α and IFN-β on measured proliferation, apoptosis and viral protein p19 
production in ex vivo PBMCs of ATL patients. Viral protein was quantified using ELISA, proliferation by [3H] 
incorporation and apoptosis through Flow cytometry of active caspase-3. Each sample was treated in parallel in 
three different conditions: either left untreated, stimulated with 1000 IU of IFN-α or IFN-β (red and blue, 
respectively). Data is depicted here as the percentage of the value measured in the corresponding untreated control 

condition of the sample. Statistical significance of the Friedman rank sum test (✱ = p<0.05, ✱✱= p<0.01, 

✱✱✱= p<0.001) and number of samples used in the comparison of each condition versus its control (CTR) is 
indicated underneath the graph. Statistical significance of the difference between IFN-α and IFN-β is depicted 
above the boxplots. All datapoints are shown in the graph, excepting two samples that had no measurable 
apoptosis in the untreated control condition. These could not be included in this graph, but have been used in the 

statistical comparison of significance versus control. 

Sample quantities did not allow for the purification of leukemic cells, so their relative 

contribution to the composition of the examined PBMCs could not be determined. 

Additionally, at the time of patient recruitment and sample processing for ex vivo experiments, 

TSLC1/CADM1 had not yet been described as a reliable flow cytometry marker for HTLV-1 

infected and ATLL leukemic cells [138], [183]. As such, we could not determine whether the 

observed differential effects of IFN-α and IFN-β take place in leukemic, HTLV-1 infected 

non-leukemic or HTLV-1 negative cells. However, in a re-analysis of the data comparing the 

effects of IFN-α and IFN-β on proliferation in ATLL subtypes with high percentages of 

circulating ATLL cells (i.e. acute and chronic subtypes, n=8), the differences remained 

significant (p=0.004). In contrast, patients with low percentages of circulating ATLL cells (i.e. 

lymphoma and smouldering subtypes, n=11) did not show these significant differences 
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(p=0.36), suggesting that the differential effects occur in the leukemic cells. Viral p19 protein 

measurements show no significant differences between IFN-α and IFN-β treatments in these 

subgroups (p=0.32 and p=0.71 for high and low ATLL cell percentage subgroups, 

respectively). 

These findings were complemented with microarray analysis. Both preprocessed and raw data 

from the microarray experiments are available at the National Center for Biotechnology 

Information Gene Expression Omnibus under accession number GSE85487. Paired 

differential expression analysis comparing control, IFN-α and IFN-β treated samples of six 

patients shows that the IFN-β response can be regarded as both broader and stronger than 

the IFN-α response: all but two of the significantly IFN-α regulated genes were regulated 

more strongly by IFN-β (one-sided, paired t-test, p<0.005). 

Although the mechanism behind the AZT/IFN-α treatment in ATLL has not been fully 

elucidated [179], [184], recent research pointed to the protein kinase R (PKR or EIF2AK2) 

gene as a critical gene in the antiviral response and the activation of the p53 pathway and the 

induction of apoptosis as key components in its mechanism [185]. We report a superior effect 

of IFN-β on all of these processes. First, our microarray results show that IFN-β affects PKR 

gene transcription more strongly than IFN-α (21% vs 15% increase, p=0.04). Second, Gene 

Set Analysis (GSA) shows that the enrichment of the canonical apoptosis pathway that is 

prominent in the IFN-β condition is absent in the IFN-α condition (Figure 4). Third, while 

p53 gene expression (TP53) is not significantly affected by either IFN-α or IFN-β treatment, 

in agreement with the post-transcriptional stabilization of p53 by AZT [186], GSA shows that 

the p53 pathway is more strongly activated by IFN-β than by IFN-α (Figure 4). Finally, in 

agreement with the results of Kinpara et al. [185], GSA of the IFN-α treatment microarray 

results revealed a modest downregulation of the NF-κB pathway, which has been identified as 

integral to the ATLL transcriptome in a recent integrated omics analysis in a large number of 

patients [187]. In contrast to the IFN-α effects, IFN-β treatment upregulated NF-κB pathway 

activation. Combined, these results suggest that IFN-β has a greater impact on the crucial 

elements of the AZT/IFN-α treatment mechanism than IFN-α, already making a strong case 

for possible clinical trials using IFN-β or AZT/IFN-β. But perhaps the clearest argument in 

favor of clinical trials using IFN-β in ATLL is that most of the genes in the in vivo 

AZT/IFN-α response gene set reported by Alizadeh et al. [184] respond more strongly to 

IFN-β mono-stimulus than to IFN-α mono-stimulus in these ex vivo PBMCs. 
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Figure 4: Selected Gene Set Enrichment Analysis results. The impact of IFN-α treatment (A) and IFN-β treatment 
(B) on four selected gene sets relevant to ATL associated with interferon signaling (red), apoptosis (yellow), p53 
signaling (green) and NF-κB signaling (blue). The top graph depicts the running Enrichment Score (ES) graphed 
versus the rank of the gene when ordered by the t-statistic of their differential expression (Untreated vs IFN 
treatment) result, which is depicted at the bottom. 

Other preclinical cancer models have previously shown superior antiproliferative and pro-

apoptotic effects of IFN-β when compared to IFN-α [175], [188] but to our knowledge this is 

the first time that these differential effects have been reported in ex vivo PBMCs of 

leukemia/lymphoma patients. Due to three strong similarities with observations made by 

Sancéau et al. in a preclinical Ewing Sarcoma model [188], we hypothesize that other 

leukemias with a functional or wild-type p53 could also be more sensitive to the pro-apoptotic 

effects of IFN-β as compared to IFN-α. First, the four cell lines examined in their study 

proved to be more susceptible to the antiproliferative effects of IFN-β than to those of IFN-

α, similar to the PBMCs of ATLL patients used in the present report. Second, IFN-β, but not 

IFN-α, induced apoptosis in the two cell lines with wild-type p53 but not in those with mutant 

p53 [188] which is in line with p53’s mutant status as a predictor of poor response to 

AZT/IFN-α treatment [186] and the p53-dependence AZT/IFN-α-induced apoptosis [185]. 

Third, Sancéau et al. showed that IFN-β-induced apoptosis was mediated by IRF1 [188], 

which is also associated with AZT/IFN-α treatment response in ATLL [184]. 
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In conclusion, we performed the first comprehensive analysis comparing the effects of IFN-α 

and IFN-β on ex vivo PBMCs of ATLL patients. Our observations suggest that IFN-β is a 

worthwhile candidate for clinical trials in ATLL and is also worth investigating in other 

leukemic contexts where IFN-α has shown modest success. 
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Supplementary Materials and Methods 

Ethics 

This study was approved by the Ethics Review Board of “Hospital Universitário Professor 

Edgar Santos” (registration number 32050106), according to the principles of the Declaration 

of Helsinki, and all individuals included in this report signed an informed consent form before 

enrolment. Data handling and processing was additionally approved by the Medical Ethics 

Commission of the UZ Leuven hospital, Belgium, under registration number s57931. 

Patient recruitment, diagnosis and treatment 

Between 2001 and 2007, a total of 30 leukemia patients were recruited from the “Hospital 

Universitário Professor Edgar Santos” (HUPES, Federal University of Bahia), inclusion and 

exclusion criteria have been previously described [189]. All cases were confirmed as HIV 

negative and 26 were diagnosed as clinically definite ATLL according to [136], with serology, 

inverted PCR and/or flow cytometry carried out as previously described [190]. Blood samples 

were obtained from 22 individuals. Of the examined 22 patients, 7 were classified as acute, 10 

as smoldering, 3 as chronic and 2 as lymphoma. The male:female ratio was 1:1.44. The median 

age was 47,5 years, with a range of 21 to 78 years. Samples were obtained before treatment, 

survival at five year follow-up data was available for 21 patients, with one lost to follow-up. 

Patient treatment was in agreement with published international consensus [137] with 

“watchful waiting” for smoldering forms followed by treatment upon disease progression, 

IFN+AZT combination therapy for chronic/acute forms and chemotherapy for lymphoma 

patients. Demographical and clinical details for all patients as well as full experimental assay 

details can be found in Supplementary Table S1. The clinical details of one patient in this data 

set have previously been described in a case report [191]. 

IFN-α and -β bioactivity determination 

A single batch of clinical grade IFN-α2A (3x106 IU/ml, a gift from Blausiegel Farmacêutica, 

São Paulo, Brazil) and clinical grade IFN-β1a (1x106 IU/ml, Biogen, Cambridge, 

Massachusetts, U.S., a gift from Dr. D. Brassat, Toulouse, France) was used throughout the 

study to eliminate any possible variation in bioactivity during the study period. Stock solutions 

were prepared in sterile saline and working solutions in RPMI 1640 medium, supplemented 

with 10% heat inactivated fetal calf serum, 20 μg/ml gentamicin (GIBCO® Invitrogen, 

Belgium). Bioactivity of IFN-α and IFN-β was determined according to WHO guidelines in 
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order to preclude any potential bias owing to the different antiviral effects of the two 

interferon types. The antiviral activity of both IFNs was measured against Vesicular Stomatitis 

Virus (VSV) in Wish cells and showed no statistically significant differences, in agreement with 

the reports of Sancéau et al. [188]. 

Treatment conditions 

Antiviral activity, proliferation and apoptosis were measured as described below in three 

distinct treatment conditions: either left untreated or stimulated at the start of the experiment 

with either IFN-α (1000 U/ml) or IFN-β (1000 U/ml), as in [192]–[194]. Neither IL-2 nor 

PHA was added to the ex vivo cultures so that in vivo conditions are approximated as closely as 

possible.  

Proliferation assay 

Peripheral blood mononuclear cells (PBMCs, 1 x 106 cells/ml) were plated in 96-well U 

bottom plates in RPMI + 10% fetal calf serum (FCS), 200 μl/well in the three conditions and 

left for 5 days at 37°C and 5% CO2 as in [195]. Lymphoproliferation was quantified by [3H] 

thymidine incorporation after a 12-16h pulse with [3H] thymidine (1 μCi/well). Incorporation 

of radioactive label was measured by gas phase scintillation (Direct Beta Counter Matrix 9600, 

PerkinElmer Life Sciences, MA). Results are expressed as the mean counts per minute in 

triplicate cultures. 

Apoptosis assays 

PBMCs (1-2 × 106 cells/ml) were plated in 24-well plates in RPMI + 10% FCS, 1 ml/well in 

the three treatment conditions, for 48h at 37°C and 5% CO2 as in [192], [196]. Apoptosis 

resistance of the samples was tested through etoposide and serum starvation (1% FCS) 

treatment. Active caspase-3 was measured by flow cytometry (FACSort, BD Biosciences, 

Franklin Lakes, NJ) using a CBA apoptosis kit (BD Biosciences). 

Quantification of HTLV-1 p19 expression 

HTLV p19 protein levels in PBMC 48h culture supernatants were measured in the three 

treatment conditions, using the HTLV-I/II p19 antigen ELISA (ZeptoMetrix, Buffalo, NY), 

according to the manufacturer’s instructions. 
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Statistical analysis 

Comparison of proliferation, apoptosis and viral protein expression assay results between the 

different treatment conditions was performed using the nonparametric Friedman rank sum 

test. Unless otherwise noted, reported p-values for these tests were corrected for multiple 

testing using the Bonferroni method. 

Microarray analysis 

Total RNA was extracted according to manufacturer’s protocol (QIAgen, Benelux B.V. 

Venlo, Netherlands) from a total of 20 samples: six patients’ parallel 48h cell cultures in the 

three treatment conditions plus two additional patients’ untreated control samples. Whole 

genome microarray was performed at the VIB Nucleomics Facility (Leuven, Belgium) using 

the GeneChip Human Gene 1.0 ST Array with the WT PLUS reagent kit (Affymetrix, Santa 

Clara, CA), according to manufacturer’s instructions. Data were RMA preprocessed in R using 

the Bioconductor oligo package [197]. Differential expression analysis was then performed 

using the Bioconductor limma package [198]. A moderated, paired t-test was used to 

determine differential transcript expression between the three conditions. Genes were 

accepted as differentially expressed in a condition if their Benjamini-Hochberg corrected p-

value was lower than 0.05. Both the preprocessed and raw data from the microarray 

experiments is available at the National Center for Biotechnology Information Gene 

Expression Omnibus under accession number GSE85487. 

Gene Set Analysis (GSA) 

GSA was performed in R using the platform for integrative analysis of omics data (piano) 

package [199]. This package implements a range of GSA methods, including Gene Set 

Enrichment Analysis (GSEA) [168], and provides a consensus score of the GSA results. The 

C2 canonical pathways and the C5 Gene Ontology Biological Processes gene sets were 

collected from the Molecular Signatures Database (MSigDB) and tested for enrichment.
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Abstract 

Retinoic acid-related drugs have shown promising pre-clinical activity in Adult T-cell 

Leukemia/Lymphoma, but RORC signaling has not been explored. Therefore, we investigated 

transcriptome-wide interactions of the RORC pathway in HTLV-1 and ATL, using our own 

and publicly available gene expression data for ATL and other leukemias. Gene expression 

data from ATL patients were analyzed using WGCNA to determine gene modules and their 

correlation to clinical and molecular data. Both PBMCs and CD4+ T-cells showed decreased 

RORC expression in four different ATL cohorts. A small subset of RORChi ATL patients was 

identified with significantly lower pathognomonic CADM1 and HBZ levels but similar levels 

of other ATL markers (CD4/CD25/CCR4), hinting at a less aggressive ATL subtype. An 

age-dependent decrease in RORC expression was found in HTLV-1-infected individuals, but 

not in healthy controls, suggesting an early molecular event predisposing to leukemogenesis. 

Genes upstream of RORC signaling were members of a proliferative gene module (containing 

proliferation markers PCNA/Ki67), whereas downstream members clustered in an 

anti-proliferative gene module. IL17C transcripts showed the strongest negative correlation to 

PCNA in both ATL cohorts, which was replicated in two large cohorts of T- and B-cell acute 

lymphoid leukemia (ALL). Finally, IL17C expression in purified CD4+CCR4+CD26-CD7- 

‘ATL-like’ cells from HTLV-1-infected individuals and ATL patients was negatively correlated 

with clonality, underscoring a possible antileukemic/antiproliferative role. In conclusion, 

decreased RORC expression and downstream signaling might represent an early event in ATL 

pathogenesis. An antiproliferative IL17C/PCNA link is shared between ATL, T-ALL and 

B-ALL, suggesting (immuno)therapeutic benefit of boosting RORC/IL17 signaling.   
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Introduction 

Human T-Lymphotropic Virus -1 (HTLV-1) is a retrovirus with an estimated prevalence of 

10-20 million worldwide [109]. A recent return to the original name of Human T-cell 

Leukemia Virus-1 [97] is in agreement with its exceptional oncogenicity [200]. Although most 

HTLV-1 infections are asymptomatic, 2-6% of HTLV-1 infected individuals develop a 

CD4+CD25+ chemotherapy-resistant and aggressive leukemia known as Adult T-cell 

Lymphoma/Leukemia (ATL) [183], [201], [202]. ATL presents after a long latency period of 

the virus, commonly several decades [203]. Patients therefore tend to be older individuals with 

an average age at diagnosis of 40 years in Central and South America and 60 years in Japan. 

Depending on the subtype (acute, lymphomatous, chronic, and smoldering), survival ranges 

from 4 months to over 5 years [189].  

HTLV-1 has two viral oncoproteins: Tax and HBZ. Tax benefits cell survival in HTLV-1 

infected T-cells by interacting with NFκB [204], a key player in immune regulation. However, 

Tax levels are undetectable in most ATL patients, either due to gene deletion or altered DNA 

methylation levels, whereas HBZ is expressed consistently in ATL [204]. HBZ modulates Tax 

expression and induces CD4+ T-cell proliferation [183]. CADM1/TSLC1 is also consistently 

expressed in ATL cells, such that CADM1 staining overlaps with the CD4+CD25+ T-cells in 

ATL and proviral sequences from these leukemic CD4+CADM1+ cells were consistently 

positive for the HBZ region [183]. Thus, CADM1 is a sensitive biomarker for ATL and might 

be used to determine treatment efficacy [183], [204]. 

ATL patients display an increased incidence of opportunistic infections [205], which could be 

attributed to a deregulation of the Th17 axis, as an intact Th17 response is necessary for the 

clearance of opportunistic infections [206]–[209]. IL-17 and its upstream regulator IL-6 were 

increased in long-term cultured Tax+CD4+ T-cell supernatant [210]. IL-17 mRNA was also 

found to be highly expressed in HTLV-1 infected T-cells and Tax-expressing Jurkat cells 

[211]. Therefore, we hypothesize Tax-negative ATL cells are unlikely to express IL-17. 

Induction of the Th17 axis via retinoic acid receptors (RARs) and RAR-like orphan receptors 

(RORs) could potentially alleviate the increased opportunistic infection frequency caused by 

Th17 deregulation.  

Retinoic acid blocks Th17 differentiation and stimulates regulatory T-cell (Treg) 

production [212]. Although HTLV-1 proviral integration in the host genome showed greater 
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enrichment of promotor sequence motifs binding p53 and STAT1 instead of the RORC 

locus [213], downstream effects of p53 and STAT1 downregulate RORC expression by 

suppressing the transcription factor STAT3 [214]. The relevance of RORC in leukemogenesis 

is further supported by the observed increased proliferation and apoptosis rates in mice 

deficient in the protein product of the RORC gene ROR𝛾, leading to the development of T-

cell lymphoma [215] and lymphoblastic lymphoma [216].  

Taken together, deregulation of the RORC/Th17 axis can provide an explanation to both the 

oncogenic persistence of ATL and to patient susceptibility to opportunistic infections. In this 

study, we generate a representative consensus gene set for the RORC pathway of the Th17 

axis and proceed to a multi-cohort analysis of novel and existing data to test the biological 

significance of this pathway in ATL. 

Results 

Transcriptomic analysis of four independent cohorts reveals a RORClo ex vivo phenotype in ATL  

Gene expression profiling of ex vivo primary cells from ATL patients showed decreased RORC 

normalized expression in all four independent cohorts, revealing a common RORClo 

phenotype (Figure 5A-B-C-D). Japanese Cohort #3 (n=73) and Caribbean Cohort (n=38) had 

significant decreases in RORC expression of ATL patients (p<0.0001 and p=0.016 

respectively). Japanese Cohorts #1 (n=18) and #2 (n=50) had borderline significant decreases 

in RORC expression of ATL patients (p=0.083 and p=0.10). HAM patients in the Caribbean 

Cohort did not have a significant change in RORC expression (p=0.54), however 

asymptomatic HTLV-1 infected individuals (AC) did display a significant decrease in RORC 

expression (p=0.016) when compared to healthy controls. ACs in other cohorts were not 

found to have a significant change in RORC expression, relative to healthy controls. Thus, 

RORC expression, measured as normalized expression (Figure 5) and percentile rank 

(Supplementary Figure S1), is consistently lower in ATL than in HC, but varies among cohorts 

for AC.  
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Figure 5: Normalized RORC expression levels for four independent cohorts consisting of ATL patients and 
healthy uninfected (HC) and/or HTLV-1 infected healthy controls (AC) showed a consistent decreased expression 
in ATL (A-D). (E) Meta-analysis of RORC normalized expression fold-change by disease status shows a significant 
decrease in ATL patients but not ACs. (F) Meta-analysis of RORC percentile rank fold-change by disease status 
shows a significant two-step decrease for ACs and ATL. HCs = Healthy Controls, ACs = Asymptomatic Controls, 
ATL = Adult T-cell Lymphoma/Leukemia Patients, HAM = HTLV-1-Associated Myelopathy patients. *p<0.05, 
**p<0.01, ****p<0.0001. 

Since RORC gene expression had been previously shown to decrease in AC [217], we 

performed a meta-analysis of the fold changes in RORC expression in all four cohorts, using 
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both normalized expression and percentile ranks. Normalized gene expression allows for a 

comparison of the fold change in absolute RORC levels across cohorts but does not consider 

the profound perturbation of the cellular transcriptome between healthy vs. leukemic CD4+ 

cells in AC and ATL patients, respectively. In contrast, percentile ranks are a measure of 

RORC expression relative to the overall transcriptome for each individual, which is more 

suitable for a comparison between divergent disease states. This was confirmed by two-way 

ANOVA, analyzing cohorts and disease status (HC-AC-ATL) as separate variables. For 

fold-change RORC normalized expression, cohort differences accounted for 21.2% of 

variation (p=0.34) and disease status for 47.2% of variation (p=0.06). For fold-change RORC 

percentile ranks, only 1.3% of variation (p=0.48) was explained by cohorts and 95.8% of 

variation (p<0.0001) was explained by disease status. As shown in Figure 5E, RORC 

normalized expression was significantly (p<0.01) decreased in ATL patients, but not AC. 

Figure 5F displays the median RORC percentile rank fold-change, showing a significant 30% 

decrease in asymptomatic HTLV-1-infected individuals (p<0.0001, vs. HC) and an even 

further (43%) decrease in ATL patients (p<0.0001, vs. HC; p=0.006 vs. AC). This two-step 

decrease in RORC gene expression in ATL pathogenesis, first upon HTLV-1 infection and 

next upon progression to malignant disease, prompted us to investigate the possible influence 

of age upon RORC expression. 

RORC Expression is not influenced by Age in Healthy Controls but decreases with Age in HTLV-1 

Infected individuals 

Since ATL usually occurs after several decades of HTLV-1 infection5 and ROR𝛾t Tregs were 

shown to increase with age in mice [218], we investigated the effect of age upon RORC gene 

expression in healthy controls and HTLV-1-infected individuals from several cohorts. We 

found that RORC expression significantly decreased with age in HTLV-1 infected individuals 

without ATL, either AC and HAM/TSP patients (r=-0.57, p=0.0002, n=30 from UK Cohort, 

Figure 6A). We observed a similar tendency of decreased RORC expression with age in our 

Brazilian cohort (r=-0.62), but this observation did not reach statistical significance levels 

(p=0.10), most probably due to the small size of this ATL cohort (n=8) (Figure 6B). 

Unfortunately, the age of ATL patients was not available for the larger Japanese cohort. Next, 

we examined paired CD4+ T-cells (n=293), CD8+ T-cells (n=283), and PBMC (n=77) 

microarray results from a cohort of healthy controls with sufficient power to study the effects 

of age (Healthy Estonian Cohort, Table 1 in supplementary methods). We found that RORC 
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expression levels did not significantly change with age in CD4+ T-cells (r= 0.002, p= 0.45, 

Figure 6C), CD8+ T-cells (r=0.0001, p= 0.86, Figure 6D) or PBMC (r=0.0001, p=0.93), nor 

with gender (data not shown).  

 

Figure 6: HTLV-1-infected Individuals from UK Cohort (A, top left) and ATL patients from Brazilian Cohort 
(B, top right) showed a decrease in RORC expression as age increased. This decrease was absent in healthy 
controls, in either CD4+ cells (C, bottom left), CD8+ cells (D, bottom right) or PBMCs (not shown). 

A minor RORChi subgroup of ATL patients displays a unique CADM1loHBZlo phenotype 

RORChi outliers (Rout Method [219], Q=0.1%) were observed in the three Japanese cohorts, 

accounting for a total of 13 out of 108 ATL patients (12.04%), Therefore, we examined this 

phenotype more closely in the largest examined cohort (Japanese Cohort #2), where 7 outliers 

with a higher normalized RORC expression were identified (Figure 5B). The patients from 

this cohort were then split into two groups, according to their RORC levels, as shown in 

Figure 7. Interestingly, we noted that RORC expression was inversely associated with 

expression levels of pathognomonic, or unique disease identifying, ATL biomarkers CADM1 

and HBZ. Thus, RORChi patients displayed significantly lower HBZ (p=0.0061) and CADM1 
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(p=0.045) levels, but similar expression levels of other ATL surface marker genes (CD4, 

CD25/IL2RA, CCR4) suggesting the RORChi subgroup might represent a distinct, possibly 

clinically relevant, molecular subgroup of ATL. The lower CADM1 and HBZ expression 

levels in RORChi patients may represent the decreased proliferation rate of chronic or less 

aggressive ATL subtypes. As shown in Supplementary Figure S2, RORChi patients showed 

similar expression levels of other ATL driver genes (STAT3, PLCG1, NFκB1, RELA, FAS) 

[187], [190], highlighting the specificity of the RORChiCADM1loHBZlo phenotype. Positive 

expression of IRF4 and c-REL has been associated with resistance to IFN-α+AZT therapy in 

ATL patients [190], [220]. Interestingly, IRF4 and c-REL expression did not differ between 

RORChi and RORClo patients (Supplementary Figure S2). This finding suggests RORC 

expression is independent of IFN-α+AZT therapeutic resistance and offers an additional 

molecular target for patients failing this therapy. 

 

Figure 7: RORC expression levels of ATL patients from Japanese Cohort #2 separated into two groups: RORChi 
(Green) and RORClo (Red) show RORChi levels were associated with lower HBZ and CADM1 expression levels. 
RORChi (7 outliers) and RORClo groups were compared with expression levels for ATL driver/mutated genes. 
*p<0.05 **p<0.01 ****p<0.0001 

Definition of a consensus RORC pathway and gene set and its relevance to ATL oncogenesis 

To facilitate the molecular exploration of the RORChi phenotype, a RORC gene set was 

determined based on published literature findings, integrating the intrinsic oncogenic pathway 

for STAT3 activation, as defined by Yu et al. [221], and RARA/RORC signaling summarized 

by Muranski and Restifo (2013) [222]. The consensus RORC pathway included IL6, IL23, 

IL21, IRF4, BATF, STAT1, STAT5, RARα, TGFβ, NFκB, SLC2A1 (GLUT1), BCL6, 

STAT3, FOXP3, SOCS1, RORC, and IL17A/F. Figure 8A illustrates the interplay between 
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these genes, as detailed in the legend. RNX1, T-bet, RORA, and TGFB1R were not measured 

by the microarray used for the initial WGCNA analysis on the Brazilian cohort (pilot cohort) 

and therefore excluded from the gene set. To validate the biological significance of this 

manually compiled pathway, we applied STRING protein-protein interaction enrichment 

analysis, which confirmed highly significant interaction for the RORC consensus pathway 

(expected number of edges: 11, observed number of edges: 83, enrichment p<10-16). As 

displayed in Figure 8B, our compiled RORC pathway was significantly enriched for “Positive 

regulation of cytokine production” (p=7.9x10-12), “Regulation of T-helper cell 

differentiation” (p=2.2x10-10), “Th17 immune response” (p=1.9x10-9), “Jak-STAT signaling 

pathway” (p=5.1x10-9), “Pathways in cancer” (p=1.2x10-8), “HTLV-1 infection” (4.4x10-5) and 

“Viral carcinogenesis” (p=0.0047), thus validating our approach. 

 

Figure 8: A) Simplified figure depicting the roles of RORC consensus pathway members, adapted from Yu et al. 
(2009) [221] and Muranski and Restifo (2013) [222]. The figure was produced using Servier Medical Art 
(http://www.servier.com) and edited using Inkscape software. B) The RORC consensus pathway was validated 
using STRING protein-protein interaction, GO biological process and KEGG pathway enrichment analysis. 
Significant enrichment (genome-wide FDR<0.05) is shown for “Positive regulation of cytokine production” (red), 
“Regulation of T-helper cell differentiation” (purple), “Th17 immune response” (green), “Jak-STAT signaling 
pathway” (yellow), “Pathways in cancer” (magenta), “HTLV-1 infection” (dark green) and “Viral carcinogenesis” 
(turquoise). 

A modular approach reveals a link between the RORC consensus pathway, proliferation and leukemogenesis 

Transcriptomic expression levels of RORC pathway members extracted from a UK 

HTLV-1-infected asymptomatic control dataset (UK Cohort; GSE29312) and ATL cohort 

(Japanese Cohort #2; EGAD1001411) showed that the majority were expressed at highly 
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variable levels (Supplementary Figure S3). First, prominent STAT1 expression is in line with 

published findings in AC [217], [222] and ATL [190], [223], [224]. On the other hand, 

downstream members of the RORC pathway and particularly, IL17 family genes were either 

undetectable or poorly expressed.  

WGCNA analysis of PBMCs from our pilot ATL cohort (n=8, Brazil, Figure 9A) showed 

overlap of the RORC pathway with a gene module correlated to proliferation, containing bona 

fide proliferation markers PCNA (Proliferating Cell Nuclear Antigen) and MKI67 (the gene 

coding for Ki67 antigen, routinely used in flow cytometric quantification of proliferation). As 

shown in Figure 9B, downstream pathway members RORC and the IL17 family, 

under-expressed in ATL, were negatively correlated with the proliferative module and 

positively correlated with the anti-proliferative module. Likewise, upstream and overexpressed 

gene members of the RORC pathway displayed the reverse trend. This resulted in a significant 

bifurcation in the RORC pathway, as shown by linear regression of correlation coefficients of 

member genes with proliferative and antiproliferative modules, respectively (Supplementary 

Figure S4, r=-0.97, p<0.0001). Overall, WGCNA analysis suggested that inducing RORC and 

its downstream signaling, as well as blocking upstream pathway members may decrease the 

cell proliferation rate in ATL.  

To confirm and extend these findings on proliferation, we repeated the WGCNA in the larger 

cohort of ATL patients (n=44, Japanese cohort #2). We additionally obtained in silico 

estimates of the relative size of 22 immune cell type populations using the CIBERSORT 

software [225]. As shown in Figure 9B, RORC was the only pathway member which was 

significantly and positively correlated (r=0.42) with the presence of resting memory CD4+ 

T-cells (p=0.0041). Downstream pathway members IL17B (r=0.62, p= 0.0000054) and IL17C 

(r=0.42, p=0.04) were positively correlated with the presence of naïve CD4+ T-cells. STAT3 

inducer NFκB subunits 1 and 2 were negatively correlated with naïve CD4+ T-cells (p=0.02 

and p=0.052 respectively) and resting memory CD4+ T-cells (p-0.000073 and p=0.00084 

respectively). Similar to the observations in the WGCNA of the pilot cohort, a reverse trend 

was also seen in the CIBERSORT analysis between upstream and downstream members of 

the RORC pathway and their correlation with naïve and activated memory CD4+ T-cell 

fractions (Figure 9B). Together, the two WGCNA analyses, combined with CIBERSORT 

CD4+ subtype quantification, suggest a distinct change in proliferative pathways between 

upstream and downstream members of the RORC/IL17 pathway with opposite effects in 
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activated memory vs. naïve and resting memory CD4+ T-cells. Among downstream pathway 

members, IL17C showed the strongest antiproliferative gene module membership in both 

cohorts and was also more frequently detected than other IL17 family members 

(IL17A/B/D/F). Therefore, we classified ATL patients from the largest cohort (Japanese 

cohort #2) into IL17C expressing, (IL17Cpos, n=17) and IL17C negative (IL17Cneg, n=28). As 

shown in Figure 9C, IL17C-positive patients had significantly lower gene expression levels of 

proliferative marker PCNA (Mann-Whitney p=0.022) and in those patients, IL17C was 

positively correlated to RORC gene expression (r=0.54, p=0.026), confirming the findings of 

our modular analysis.  

 

Figure 9: Modular transcriptomic analysis of primary ATL cells reveals a strong association of the RORC/IL17 
pathway with proliferation. A) WGCNA findings for the Turquoise and Blue modules are shown for selected 
molecular and clinical correlations. R-value and p-values (in parenthesis) are shown *p<0.05 **p<0.01. B) Most 
RORC pathway members were positively correlated with the turquoise (‘antiproliferative’) gene module in primary 
ATL cells and negatively correlated with the blue (‘proliferative’) modules, such that most downstream members 
were found to be associated with the antiproliferative module (Brazilian cohort, n=8, left panel). WGCNA of 
Japanese Cohort #2 (right panel, n=44) shows RORC has a positive correlation with CD4+ resting memory T-cells 
(Royal Blue module, r=0.47, p=0.001). Yellow module is positively correlated with CD4+ memory active T-cells 
(r=0.39, p=0.007), as well proliferation markers PCNA (r=0.92, p=10-15) and MKI67 (r=0.87, p=10-12). Brown 
module is positively correlated with CD4+ naïve T-cells (r=0.49, p=0.0006). Genes which were validated in both 
ATL cohorts for proliferative modules are colored according to their R-values. C) ATL patients expressing IL17C 
(IL17pos, n=17, Japanese Cohort #2) showed decreased PCNA expression as compared to patients with 
undetectable IL17C (IL17neg, n=28), and IL17C levels were positively correlated with RORC levels. 

  



51 

Validation of IL17C as a potential ‘antileukemic’ target in multiple ATL, T-ALL and B-ALL cohorts 

First, we analyzed IL17C expression in an independent UK cohort for which clonality analysis 

as well as clinical data (including therapeutic response) were available. RNAseq analysis of 

purified ‘ATL-like’ cells with a CD4+CCR4+CD26-CD7- immunophenotype demonstrated 

that IL17C transcripts were detectable in all ATL patients, but at significantly lower levels, as 

compared to AC. As shown in Figure 10A, IL17C transcripts were significantly decreased in 

both indolent and aggressive ATL (One-way ANOVA, Bonferroni’s post-test p<0.05). No 

difference in IL17C levels was observed between ATL clinical forms or with regard to 

therapeutic response (chemotherapy and IFN+AZT resistance, not shown). However, IL17C 

expression was negatively correlated to clonality (r=-0.72, p=0.0086, n=12) in AC (fraction of 

largest clone 0.02-0.34) and patients with ATL (fraction of largest clone 0.68-0.99) (Figure 

10B), in support of our hypothesized antiproliferative/antileukemic role for IL17C. Of note, 

IL17A and IL17F transcripts were not expressed (data not shown) in ‘ATL-like’ cells, in 

agreement with Kagdi et al. (2018) [226], who demonstrated compartmentalized expression of 

most cytokines in non-leukemic cells. 

Second, to explore if the antiproliferative IL17C/PCNA link might be specific to ATL or 

shared with other leukemias, we analyzed two large cohorts of acute T- and B-cell leukemia 

(T-ALL, n=138; B-ALL, n=300). Similar to ATL, we found a significant negative correlation 

between IL17C and PCNA expression levels in both T-ALL (r=-0.24, p=0.007) and B-ALL 

(r=-0.28, p<0.0001), as shown in Figure 10C and Figure 10D. Unfortunately, no clinical 

follow-up data (survival or therapeutic response) are available for the T-ALL and B-ALL 

cohorts. 
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Figure 10: Validation of IL17C as a potential ‘antileukemic’ target in independent ATL, T-ALL and B-ALL 
cohorts. A) In an independent UK cohort of HTLV-1-infected individuals, IL17C transcripts were significantly 
decreased in purified CD4+CCR4+CD26-CD7- cells from both indolent and aggressive ATL patients, as compared 
to AC (One-way ANOVA, Bonferroni’s post-test p<0.05), with no difference in IL17C levels between ATL 
clinical forms. B) IL17C expression was negatively correlated to clonality in AC and ATL patients (fraction of 
largest clone 0.02-0.34 and 0.68-0.99, respectively). A negative correlation between IL17C and PCNA transcript 

levels was replicated in C) T-cell Acute Lymphoid Leukemia (ALL) (n=138) and B-cell ALL cohorts (n=300). 

IFN-α, IFN-β and Ascorbic Acid in vitro treatment differentially regulates RORC pathway members in 

primary ATL cells and HTLV-1 transformed cell lines. 

We previously tested the effects of IFN-α and Ascorbic Acid (AA) on HTLV-1-infected 

transformed cell lines (MT2, MT4, C8166) [192], [227], [228]. Although both drugs have 

shown moderate success in decreasing HTLV-1-induced proliferation [178], [192], [227], 

[228], only the high-dose AA affected the retinoic acid pathway, specifically the shared 

RORC/Th17 pathway. Reanalysis of our transcriptomic data showed that neither IFN-α nor 

high-dose AA altered RORC expression levels (log fold-change=0.042, p=0.59 and log fold-
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change=0.069, p=0.39, respectively). AA stimulated an increase in expression of a key gene in 

Th17 differentiation, IL23R (log fold-change=0.81, p=0.000024), in support of its possible 

use in (combination) therapy for ATL. RARα expression was unchanged by IFN-α (log fold 

change = 0.003, p=0.98) but decreased by AA (log fold change=-0.28, p=0.064). Interestingly, 

our in vitro data (Brazilian cohort) demonstrated that RARα levels are upregulated upon in vitro 

treatment of ATL PBMCs with IFN-β (log fold-change=0.31, p=0.017), but not IFN-α. IFN-

β also significantly modulated the expression levels of STAT1, IRF4, TGFB1R, IL23R, 

FOXP3, and IL6, while IFN-α significantly altered BCL6 only, as shown in Supplementary 

Figure S5. This is in accord with our recently demonstrated differential anti-proliferative and 

pro-apoptotic effect of both IFN subtypes [229].  

Discussion 

Upon transcriptomic meta-analysis of four different cohorts, we found a specific and 

consistent RORClo phenotype in primary ATL cells and to a lesser extent in HTLV-1-infected 

individuals, in contrast to healthy controls. In addition, HTLV-1-infected individuals displayed 

an age-dependent decrease in RORC expression. The observed two-step decrease of RORC in 

ACs and ATL patients might thus represent an early event in HTLV-1-driven leukemogenesis. 

We also identified a small subset (12.0%) of RORChi ATL patients with significantly lower 

pathognomonic CADM1 and HBZ levels but similar levels of other ATL markers (CD4, 

CD25 and CCR4), hinting at a less aggressive ATL subtype.  

ATL pathogenesis develops over decades as is seen by patients presenting at least 20 years 

after HTLV-1 infection; yet not all infected patients develop ATL. Observational studies 

suggest that ATL, at least in the Caribbean and Brazil, can be triggered by the pediatric 

cutaneous manifestation known as Infectious Dermatitis [230]–[233]. ID is a chronic, 

eczematous condition with scaly, crusted lesions often superimposed by Staphylococcus 

aureus or Streptococcus pyogenes infections [230], [231]. Defects in the Th17 axis increase 

vulnerability to S. aureus and C. albicans infections, whereas in vivo S. aureus primed memory 

Th17 cells inhibited IL-17 production and increased IL-10 production [232], [234]. Of interest, 

two recent papers have demonstrated a role for IL-10 as an unexpected proliferative trigger of 

infected CD4+ T-cell clones and, possibly, leukemogenesis [235], [236]. Corroborating these 

findings, IL-10 was found to be a significant (r=0.36, p= 0.013) member of the proliferative 

gene module, together with PCNA and MKI67, in our WGCNA analysis. In addition, 
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RNAseq analysis of purified cells with a CD4+CCR4+CD26-CD7- leukemic phenotype from 

an independent UK cohort revealed IL17C is expressed in ‘ATL-like’ cells. In agreement with 

our proposed protective role, IL17C was significantly and negatively correlated with clonality 

(Figure 10B). Therefore, our findings underscore an IL-10 vs. RORC/IL-17 antagonism in 

HTLV-1-associated pathologies and provide a possible molecular basis for the epidemiological 

link between ID and ATL, alteration of the RORC/Th17 axis, and subsequent progression to 

leukemogenesis.  

Modular transcriptomic analysis in ATL shows a strong correlation of the RORC pathway 

with cell proliferation and possibly oncogenesis, which supports its therapeutic potential. 

WGCNA analysis combined with CIBERSORT suggested the involvement of RORC 

pathway members in the homeostasis of resting memory and naïve CD4+ T-cells. Combining 

the RORClo observation in ATL cohorts with our WGCNA analysis, we find that decreased 

RORC expression is correlated with proliferation and ATL driver genes (STAT3, NF-κB). 

Thus, inducing RORC and switching to a RORChi phenotype may convert ATL cells to a less 

aggressive subtype, suggested by the lower CADM1 and HBZ levels seen in the RORChi 

subset (Figure 7). However, no overlap was found between the module memberships of 

RORC, HBZ, and Tax in the WGCNA of Japanese Cohort #2 (data not shown). In addition, 

no RORC gene module members were significantly correlated to HBZ or Tax transcript 

levels, suggesting decreased RORC levels and signaling in ATL are not a direct consequence 

of retroviral transcription. Therefore, we hypothesized the RORC/IL17 axis might be linked 

to proliferation in other (lymphoid) leukemias. Indeed, the strongest negative correlation 

observed in both ATL cohorts, between IL17C and proliferation marker PCNA, was 

replicated in two large cohorts of other acute lymphoid leukemias, namely T-ALL and B-ALL 

(Figure 10C-D).  

Thus, our data reveal a widely prevalent antagonistic regulation between Th17 cells, usually 

considered as pro-inflammatory, and leukemic cell proliferation. Regarding the clinical 

translation of these results, antitumor immunotherapy using Th17 cells has recently shown 

promising results in animal models. Adoptive cell therapy using ex vivo Th17 cell selection 

enhanced antitumor activity [235], [237], to a greater extent than Th1 cells and other CD4+ 

T-cells [235], [237]. In addition, inducing IL17 expression via RORC stimulation would also 

subsequently alter the host immune response to reduce the risk of opportunistic infections by 

increasing Th17 cell count [205]–[209]. 
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Although most often believed to antagonize IL17 production, IFN-β can trigger and even 

exacerbate IL17 production, especially in Th17-mediated inflammatory diseases [236], [238]. 

This becomes problematic in cases of multiple sclerosis, where 30-50% of patients are 

resistant to IFN-β therapy [236]. However, this same exacerbation could be useful in ATL as a 

means of increasing Th17 cell production and decreasing proliferation of leukemic clones. 

IFN-β significantly alters the expression of more RORC pathway members than IFN-α 

(Supplementary Figure S5), a common therapeutic adjuvant to zidovudine in ATL treatment. 

This finding, along with the observation that IFN-β has superior anti-proliferative and pro-

apoptotic properties compared to IFN-α [229], makes IFN-β a novel, valuable option for 

combination therapy in ATL.  

Recently, immune checkpoint inhibitors have come to the forefront of anticancer 

immunotherapy [237], [238]. Immunotherapeutic targeting of Programmed death ligand -1 

(PD-L1) can increase Th17 cell count, restoring IL-17A protein levels in naïve T-cells of 

patients with a loss-of-function STAT3 mutation [237]–[239]. Conversely, inducing Th17 cell 

differentiation by RORy agonist LYC-54143 simultaneously reduced PD-1+ cell numbers and 

PD-1 expression in vitro, and resulted in tumor growth inhibition in vivo in two murine models 

[240]. In ATL, PDL1 gene amplifications have been associated with worse prognosis, 

especially in aggressive subtypes [241]. For PDL1 transcript levels, we observed a trend for 

positive correlation to CD4+ cells (r=0.66, p=0.091) as well as proliferation (r=0.66, p=0.075) 

in our Brazilian ATL cohort (Subramanian et al. unpublished), in agreement with a deleterious 

role for PD-L1. Again, combination immunotherapy by RORy agonists and PD-L1 blockade 

might be a more effective option in ATL, similar to the superior response rate to dual therapy 

with PD-1 and CTLA-4 blocking antibodies in advanced melanoma, as compared to 

monotherapy [242]. 

In conclusion, we describe a predominant RORClo phenotype observed in four cohorts of 

ATL patients and a minor RORChi molecular subgroup with significantly lower mRNA levels 

of pathognomonic ATL biomarkers CADM1 and HBZ mRNA levels. An age-dependent 

decline in RORC level indicates a possible early event in HTLV-1-driven leukemogenesis, 

supported by modular transcriptomic analysis of ATL patients, revealing a strong negative 

correlation of the RORC/IL17 pathway with proliferation, which was shared with T-ALL and 

B-ALL patients. Thus, inducing RORC levels and/or downstream signaling might represent 
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(immuno)therapeutic benefit in ATL and possibly other acute lymphoid leukemias, which 

awaits further testing in clinical settings.  

Supplementary Material 

Methods 

In silico analysis 

RORC expression levels were examined in publicly available transcriptomic data sets from 

patients with ATL, HTLV-1 infected asymptomatic controls, and healthy controls. A total of 

135 untreated ATL patients, 12 HAM patients, 40 asymptomatic controls (AC), and 242 

healthy controls (HC) from the Gene Expression Omnibus datasets GSE55851, GSE33615, 

GSE19080, GSE85487, and the European Genome-phenome archive EGAD1001411 dataset 

were used in this study (Table 1). EGAD1001411 initially contained 45 ATL patients, but one 

outlier with an overall strongly divergent transcriptome was removed. The effect of age on 

RORC expression was investigated in the Healthy Estonian Cohort for healthy controls 

(n=293) and the UK Cohort for HTLV-1 infected individuals (n=30). 

The Japanese Cohort #2 (EGAD1001411) RNA-Seq data was quality- and adapter-cleaned 

using trimmomatic [163] and cutadapt [164] and quantified with kallisto [166] using an index 

built on the transcriptome obtained from the Genome Reference Consortium GRCh38, rel79. 

CIBERSORT was used to generate an in silico approximation of the relative composition of 22 

immune cell types in the samples [225]. 

To facilitate consistent analysis of both the microarray and RNA-Seq data, the ensemble 

and/or Agilent IDs of the datasets were matched with corresponding Entrez IDs using the 

biomaRt package [243], [244] in R. The Entrez IDs were verified with the associated GPL files 

on GEO where available. Considering transcriptomic analysis of the Caribbean Cohort was 

performed on a limited (non-genome-wide) microarray platform, 2134 Entrez IDs were 

common to all examined microarrays and comprised the list of genes examined in this study. 

To address the bias in the measurements inherent to each platform, we adapted the quantile 

discretization method proposed by Warnat et al. [245] and transformed gene expression levels 

into percentile ranks among the surveyed 2134 genes for the meta-analysis. To further exclude 

the possibility of biasing our results, we refrain from making direct statistical comparisons of 

gene expression levels between datasets.  
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Published literature on RORC and ROR𝛾, as cited and detailed in the results section, was used 

to develop a consensus molecular pathway, which was validated using STRING (version 10.5) 

protein-protein interaction enrichment analysis (www.string-db.org) using the whole genome 

as background.  

Weighted Gene Correlation Network Analysis (WGCNA) [167] clusters genes into modules 

according to their topological overlap measure which quantifies how many gene-correlates 

were common to both members of each gene pair. To determine coherent gene modules and 

their correlation to clinical and molecular data, we performed WGCNA on each of the 

transcriptomic datasets from two independent ATL cohorts recently published by our group: 

in vitro gene expression data from short-term cultured ATL patient PBMCs (n=8, Brazilian 

Cohort) performed in parallel with lymphoproliferation, and ex vivo expression data from ATL 

patient PBMCs (n=44) of Japanese Cohort #225. Module membership of the RORC gene set 

and the ATL signature genes were determined and correlated to demographic, clinical, and in 

vitro data. 

In vitro analysis 

Spontaneous lymphoproliferation of primary cells (PBMC) from ATL patients (n=8, Brazilian 

Cohort) was measured by [3H]-thymidine incorporation, as described previously [229]. 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism 7.0. Differences in RORC gene 

expression were analyzed by Kruskall-Wallis test for Japanese Cohorts #1 and #2, and the 

Caribbean Cohort. For Japanese Cohort #3, where ACs were not included, Mann-Whitney 

was used to compare HC and ATL patients. The false discovery rate two-stage method of 

Benjamini, Krieger, and Yekutieli was used to correct for multiple comparisons. Spearman’s 

Rho was used to correlate gene expression (either per gene or per WGCNA module using 

their eigengene expression) to demographic (age), clinical data (patient survival) and in vitro 

data (proliferation and apoptosis). 
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Table 1. Transcriptomic (microarray and RNAseq) datasets used in RORC expression analyses 

Data set Source Cell Type 
Disease 

Status 
Sample Size 

GSE55851 

Japanese Cohort #1 

Kobayashi et al. 

(2014)  
CD4+ T-cells 

HC 3 

AC 6 

ATL 12 

EGAD1001411 

Japanese Cohort #2 
Kataoka et al. (2015)  

CD4+ T-cells HC 3 

PBMCs 
AC 3 

ATL 44 

GSE33615 

Japanese Cohort #3 
Yamagishi et al. (2012)  

CD4+ T-cells HC 21 

PBMCs ATL 52 

GSE19080 

Caribbean Cohort 
Oliere et al. (2010)  

CD4+ T-cells 

(Immunoarray) 

HC 8 

AC 11 

ATL 7 

HAM 12 

GSE85487 

Brazilian Cohort 
Dierckx et al. (2017)  PBMCs* 

HC 5 

ATL – Untreated 8 

ATL - IFN-α 6 

ATL - IFN-β 6 

GSE29312 

UK Cohort 

Tattermusch et al. 

(2012)  
Whole Blood 

HC 9 

AC 20 

HAM 10 

GSE78840 

Healthy Estonian 

Cohort 

Kasela et al. (2017)  

CD4+ T-cells HC 293 

CD8+ T-cells HC 283 

PBMCs HC 77 

ImmuCo Wang et al. (2015)  

CD4+ T-cells HC 551 

CD8+ T-cells HC 149 

Bone marrow 

Mononuclear Cells 
AML 814 

Acute T-cell Leukemia T-ALL 138 

Acute B-cell Leukemia B-ALL 300 

HC = Healthy Control.  AC = Asymptomatic HTLV-1 Infected Control.  ATL = Adult T-cell 

Lymphoma/Leukemia patients.  HAM = HTLV-1 Associated Myopathy.  AML = Acute Myeloid Leukemia. ALL 

= Acute Lymphoblastic Leukemia. 
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Supplementary Figures 

 

 

Supplementary Figure S1: RORC percentile ranks for four independent cohorts consisting of ATL patients and 
healthy uninfected (HC) and/or HTLV-1 infected healthy controls (AC) showed a consistent decrease in 
expression in ATL (A-D). HCs = Healthy Controls, ACs = Asymptomatic Controls, ATL = Adult T-cell 
Lymphoma/Leukemia Patients, HAM = HTLV-1-Associated Myelopathy patients. *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
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Supplementary Figure S2: Differential RORC expression of ATL patients from Japanese Cohort #2 is 

independent of ATL driver genes and genes involved in IFN/AZT response.  

 

Supplementary Figure S3: RORC and downstream IL17 family genes are poorly expressed in both asymptomatic 
HTLV-1 infected individuals (top) and ATL patients (bottom).  
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Supplementary Figure S4: RORC and downstream IL17 family genes cluster in an antiproliferative gene module. 
Using WGCNA analysis, a significant bifurcation in the RORC pathway is observed when correlation coefficients 
of member genes from the antiproliferative module (Turquoise) were regressed with the correlation coefficients 
from the proliferative (Blue) module (r=-0.97, p<0.0001) in primary cells from ATL patients (Brazilian cohort).  

 

Supplementary Figure S5: Differential effects of IFN-β vs. IFN-α upon RORC pathway members in primary 

ATL cells. Blue represents genes which had significantly (p<0.05) altered expression levels with IFN-β 

treatment. BCL6 (Red) was the only gene member which was significantly altered by IFN-α treatment.
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CHAPTER 4 
Quantifying chronic inflammatory burden as 

Glycoprotein Acetylation from  
gene expression data. 
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Introduction 

Whenever a new technology proves to be capable of measuring a promising biomarker, 

finding out in which other contexts the biomarker is relevant becomes an important 

consideration. Generally, answering this question requires the initiation of a new 

project, with sample collection and the empirical testing of the new biomarker to test 

its viability in each setting of interest. If the biomarker measurements could be 

estimated (or imputed) from other available data then this process becomes far 

cheaper, as costs inherent to the measurements and the sample collection can be 

avoided. To facilitate this imputation, sufficient measurements of associated variables 

must be available. Publicly available transcriptomic data represents an attractive source 

of data for this purpose: generation of gene expression profiles is steadily becoming 

more affordable, and the amount of available transcriptomic data is ever-increasing. If 

a predictive model for some novel biomarker could be generated from a dataset of 

transcriptomic experiments for which paired biomarker data are available, then this 

model can be used to predict biomarker measurements in all other publicly available 

transcriptomic datasets. Thus, the model leverages existing gene expression profile data 

to quickly screen potential contexts in which the new biomarker could be relevant, and 

to estimate an effect size that can be used in power analysis to calculate minimum 

sample sizes required to show the existence of the effect with statistical significance. 

A host of limitations applies to this relatively straightforward concept of data re-use, 

which does limit its applicability. First, a sufficiently large dataset of experiments is 

required where paired measurements of both the novel biomarker of interest and 

transcriptomic experiments are available. Second, transcriptomic experiments are 

sensitive to bias introduced throughout the transcriptomic pipeline: from sample 

selection, to sample handling and the transcriptomic platform used to generate the 

expression profile, to the bio-informatic data processing methods used to quantify 

gene expression. Each of these aspects can have a substantial effect on the 

‘virtual’ biomarker measurement and needs to be accounted for. Third, the resulting 

model is only applicable to transcriptomic experiments performed on similar tissues 

used to generate the transcriptomic training data. 



66 

Applying machine learning methods to gene expression data is not a novel concept. 

However, the bulk of the literature available in this context does not aim to quantify a 

metric, but rather aims to classify samples into several groups, e.g.: bacterial versus viral 

infection [246], [247], presence versus absence of specific pathogens [248], presence 

versus absence of growth hormone deficiency [249], response versus non-response to 

treatment [250], evidence of sterile inflammation versus inflammation of infectious 

origin [10]. Furthermore, most research in this context limits itself to datasets 

generated explicitly for their own project. This is unsurprising, as the potential sources 

of bias in transcriptome quantification are legion and the state of the art technology, 

RNA-Seq, is based on vastly different principles than the ubiquitous microarray 

transcriptomic experiment data, to the point that they essentially measure very different 

things [251]. An entire field of research exists aimed eliminating platform bias from 

microarray measurements to make sample comparison across different microarray 

platforms feasible [252]–[256], with some brave souls even attempting to make 

microarray and RNA-Seq data comparable [257]–[259]. 

The situation described above is what we set out to achieve for the Glycoprotein 

Acetylation (GlycA) biomarker. This novel biomarker is measured using Nuclear 

Magnetic Resonance (NMR) spectroscopy in blood serum or plasma. First discovered 

in 1987 [59], high throughput measurement techniques have only recently been 

developed [58], [260], [261], and while the biomarker has been robustly examined in 

large demographic studies where it was found to be associated to chronic inflammatory 

burden [58], [69], [76], [77], the number of reports about disease contexts where the 

biomarker has been explored stands in stark contrast to the range of morbidity and 

mortality associations observed in cross-sectional studies [262]. Here, we aim to 

contribute to the discovery of useful contexts for this biomarker by levering the 

existence of three datasets for which both crucial components are present. In the 

DIetary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome 

(DILGOM) and Cardiovascular Risk in Young Finns Study (YFS) datasets, whole 

blood transcriptomic experiments are available in conjunction with serum GlycA 

measurements [263]–[265]. This data can be used to generate a predictive model for 

GlycA, with the ambitious aim to then apply it to all publicly available transcriptomic 
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datasets generated from blood in order to identify disease contexts where it is 

worthwhile to investigate the usefulness of the GlycA biomarker. 

Methods 

Ethics 

Secondary use of samples for the quantification of inflammatory burden through NMR 

and the secondary data analysis performed in this study was approved by the ethics 

commission of University Hospitals Leuven (MEC UZ Leuven, #s57931). Validation 

samples submitted for metabolic NMR analysis originate from multiple studies 

conducted in accordance with the principles of the declaration of Helsinki. Patients 

supplied written consent before sampling procedures were performed. 

Model Generation Data Overview 

For model construction and testing, we rely on the 2007 and 2014 DILGOM 

transcriptomic datasets (D07 and D14, respectively), in addition to the YFS dataset. 

D07 and D14 are subsets of the FINRISK study and are cross-sectional sample 

collections from FINRISK participants aged 25-74 years and 32-81 years, respectively. 

YFS is an ongoing population-based cohort study, designed to study the emergence 

and progression of cardiovascular risk factors from childhood onwards. The baseline 

study started in 1980 and recruited participants in six age groups (ages 3, 6, 9, 12, 15 

and 18), in 2011, when participants were between ages 34 and 49, transcriptomic 

experiments were performed. The D07 (n=518), D14 (n=331) and YFS (n=1651) gene 

expression profiles are generated using the Illumina Human HT12 microarray platform 

(with D07 generated using v3, whereas D14 and YFS were generated using D14). 

Distinct data processing has been used to quantify expression for each of these 

datasets: for the YFS study, the raw data obtained from Illumina Beadstudio 

underwent nonparametric background correction, followed by quantile normalization 

with control and expression probes, by the neqc function of the limma R package 

[198], prior to log2 normalization. D07 data processing has been described in [76] and 

differs from YFS data processing in its use of the normalise.quantiles function of the 

preprocessCore R package, instead of the neqc function, after log2 transformation and 
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in its removal of probes mapping to erythrocyte globin components (i.e. HBA1, HBA2 

and HBB). D14 data processing is similar to D07 with one key difference: the 

exclusion of 507 probes which hybridize to multiple genomic positions more than 

10000 bases apart, prior to normalization. Expression of genes for which multiple 

probes are measured, is calculated using the collapseRows function of the WGCNA R 

package with default settings [167], [266]. This results in 28142 quantified genes for the 

YFS dataset and 17012 and 18612 genes for the D07 and D14 datasets, respectively. 

Comparability 

To achieve the ambitious goal of making the predictive models applicable to 

microarray and RNA-Seq datasets, regardless of the platform used to generate them, 

the data needs additional pre-processing to ensure that at least the range of the inputs 

is the same across datasets. Microarray probe binding intensity is usually reported as a 

unitless variable in a range between 3-12, representing gene expression abundance in 

terms of the observed intensity in comparison to reference probes, whereas RNA-Seq 

data is commonly presented as RPKM or FPKM, that is, Reads Per Kilobase of 

Transcript per Million mapped reads, though recently Transcripts Per Million (TPM) 

has become the preferred unit. While the body of literature about microarray 

comparability is extensive, approaches aimed at making microarray and RNA-Seq data 

comparable are much less common. In addition, many published methods apply a 

normalization or standardization across genes in the combined dataset. This would 

mean that a new normalization is required across the full range of available samples 

every time new samples are added, or an additional dataset is considered. Furthermore, 

we do not always have access to the raw data of published datasets, which is a 

requirement for many of the more sophisticated published solutions to the 

comparability problem. Here, we implement a method which accommodates both 

these issues: we adapt the Quantile Discretization (QD) method originally proposed in 

[245] so that each gene within a sample is discretized into a predetermined number of 

bins (here, b = 10), with a value of 10 and 1 indicating the gene ranks in the top 10% 

and the bottom 10% of expressed genes within the sample, respectively. 
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Dimensionality Reduction 

While the availability of 2500 paired GlycA measurements and gene expression profiles 

represents the largest dataset to date, the number of available variables (i.e. gene 

expression levels) for each experiment is considerably larger than the available number 

of samples, with up to 28142 genes quantified in the YFS dataset, meaning our datasets 

operate under the curse of dimensionality [267]. Therefore, prior to model generation a 

dimensionality reduction step is required, to ensure meaningful results from the 

machine learning algorithms. Two types of strategies can be employed to reduce the 

dimensionality of a dataset: feature extraction and feature selection [268]. The key 

difference between these two strategies lies in how the original data is preserved. 

Feature extraction reduces the dimensionality by creating new variables as 

combinations of the existing variables, in a linear, e.g. the well-known principal 

component analysis (PCA), or non-linear fashion. On the other hand, feature selection 

identifies a subset of the original data which is deemed to carry the most relevant or 

least redundant information. In this work, we opt to use a feature selection method for 

two reasons: first, the predictive models created on these features are more easily 

interpreted, as each single variable represents the expression of a gene instead of some 

combination of genes. Second, predictive models should be applicable to publicly 

available transcriptomic data which frequently lack quantification data on specific 

genes. If one of the features used in the predictive models is absent in the data, a 

different model needs to be constructed which accommodates the absence of this 

variable. When extracted features are used, not only is the likelihood that this happens 

much greater than would be the case when using selected features, but the feature 

extraction would need to be performed again prior to each new predictive model 

generation. 

Feature selection can be performed in a variety of ways, here we make use of the 

Random Forest based method Boruta [269]. Briefly, the Boruta algorithm is a Random 

Forest based feature selection algorithm that determines the importance of variables by 

quantifying the loss of predictive accuracy of Random Forest models when they are 

denied access to the variable. To enable an absolute decision about a variable’s 

relevance, the first step in the algorithm is the duplication of each variable in the 
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dataset, followed by the random permutation of these duplicated entries. These so-

called ‘shadow attributes’ introduce known random variables in the model, which can 

be used as a cut-off in the subsequent determination of each variable’s relevance to the 

response variable, illustrated in Figure 11. The importance of each variable in each of 

the RF runs is compared in a two-sided test for equality to the highest importance seen 

for any shadow variable, thereby enabling the calculation of a test statistic and 

corresponding p-value for true association to the response variable. 

 

Figure 11: Illustrative Boruta Feature Selection example. A Boruta run was performed on 20 selected 
genes. Importance, calculated as loss of accuracy upon omission of the variable in a RF model, is depicted 
on the y-axis for each gene (identified by their entrezgene ID). Maximum, mean and minimum importance 
of known random shadow variables are depicted in blue. Color of the boxplot indicates outcome of the 
Boruta algorithm, where red indicate rejected variables, yellow tentatively relevant variables and green 

confirmed relevant variables.  

The stability of feature selection algorithms is frequently overlooked [270]. Here, we 

report the Jaccard index of the selection over 200 runs, and generate two gene-sets: 

genes selected as related to GlycA in each of the 200 runs make up the core gene-set, 

where the related gene-set consists of all genes selected in at least 1 Boruta run. 

This Boruta selection makes up the initial screening and is an example of a so-called 

‘wrapper’ technique which uses a learning technique to evaluate which features are 

useful. Subsequent model generation techniques can incorporate additional feature 
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selection techniques like ‘filter’ and ‘embedded’ algorithms, to come to an optimal best-

smallest subset of features to make their predictions. Filter techniques determine the 

relevance of variables without the use of learning techniques by e.g. determining which 

features best correlate with the response variable, whereas in embedded algorithms the 

feature selection is inherent to the model construction as is the case in Least Absolute 

Shrinkage and Selection Operator (LASSO) regression. 

Response variable 

GlycA levels measured in the three datasets are expected to be roughly similar, as each 

of these datasets was generated in general population samples. However, empirical 

observations show the GlycA levels for the YFS to be higher than those of the D07 

and D14 studies. The only inherent difference between the two datasets is the ages of 

the sampled subjects, which could have an impact on the GlycA measurements as a 

positive association between age and GlycA has previously been reported [89]. 

However, the median age for the YFS dataset, which has a higher GlycA, is the lowest 

of the three examined datasets. Furthermore, even though the median age of the 

subjects in the D14 datasets is higher than those in the D07 dataset their GlycA levels 

are highly comparable, suggesting that the observed differences in the YFS datasets are 

due to differences in GlycA quantification methods rather than true biological 

differences (Figure 12). To allow comparison of predicted and observed GlycA levels 

across these three datasets, GlycA is standardized across each of the three datasets and 

the resulting z-score of the GlycA concentration is used as the response variable in 

subsequent model construction. Predicted values are therefore expressed as fractions 

of the standard deviation (SD) observed in these population cohorts.  
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Figure 12: GlycA and Age density plots in D07, D14 and YFS datasets illustrate the differences in study 
design of the YFS and DILGOM studies and highlight the aberrant GlycA profile measured in the YFS 

study, necessitating the normalization of the GlycA response variable. 

Model Generation 

Predictive model construction and model performance assessment is achieved using 

the caret R package [271]. We compare the performance of linear models (LMs), on all 

available features (naïve LM) as well as constructed with recursive feature elimination 

(RFE) or minimum redundancy maximum relevance (mRMR, [272]) feature selection 

methods, ridge and LASSO regression, non-linear k-nearest neighbor methods (kNN), 

artificial neural networks (ANN), support vector machines (SVM) with linear or radial 

basis function (rbf) kernels and recursive regression trees. Detailed below are the 

chosen values for these models’ hyperparameters and how they were determined. 

Optimal number of features in RFE was chosen where the average R² was highest 

across 20 repeats of a 10-fold cross-validation, which selected 31 variables. The 

number of features selected in mRMR regression is chosen based on the information 

they contribute to the system. Visual inspection of Figure 13 identifies 4, 15 and 32 

features as relevant points: the first 4 features contribute to the mutual information in 

the system far more than subsequent adds, at 15 features a first minimum of the 

mRMR score is obtained, at 32 features the mRMR score is zero. A second selection 
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strategy performs 20 repeats of 10-fold cross-validation and selects the optimal number 

of features where the resulting root mean square error (RMSE) is lowest, at 55 features. 

 

Figure 13: mRMR score of each feature in progressively more complex linear models. The mRMR score 
represents additional non-redundant information contributed by each additional feature included in a 
linear model. Salient points are identified at k=4, 15 and 32. 

The selection of hyperparameters for other functions is presented in Figure 14. The 

elastic-net mixing parameter is set to 0 or 1 for ridge and LASSO regression, 

respectively, and optimal lambda is identified using a grid search between 0 and 0.5 

using and selecting the lowest average RMSE in 20 repeats of 10-fold cross-validation 

(0.4324 for ridge regression, 0.0205 for LASSO). Optimal k for kNN is selected where 

average RMSE is lowest across 20 repeats of 10-fold cross-validation, k=28, though 

RMSE difference with k=10 is minimal, so both models are tested. The number of 

nodes and the weight decay of training hyperparameters for the ANN using a single 

hidden layer is selected through grid search and lowest RMSE is found using one 

hidden node and a weight decay of 0.2. Cost parameter for SVM using a linear and 

RBF kernel is identified through grid search and optimal RMSE is identified at 

C=0.0025 and 1 for linear and RBF kernel, respectively, with the optimal σ=0.0032, 

with γ=1/(2σ²) or γ=1003.65. The complexity parameter for the recursive regression 

tree (at minimum 20 observations in a node required for a split, at minimum 7 
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observations in a terminal node and a maximum depth of the tree capped at 30) 

identified through grid search and optimal cross-validated RMSE is found at cp=0.007. 

Model Selection 

To estimate performance on publicly available data with strong inherent biases, model 

construction is performed in the largest dataset (YFS, n=1651) and the most robust 

model is selected based on correlation between predicted and observed GlycA levels in 

the data of the (differently pre-processed) D07 and D14 datasets. We report model 

performance as cross-validated RMSE and explained variance (R²) in the YFS training 

dataset. Performance on D07 and D14 test data is reported as Pearson correlation 

between predicted and observed GlycA levels and RMSE. 

Model Validation 

Once constructed, the first step in validating the model is verifying whether it can 

replicate known GlycA associations from third-party datasets. An overview of all 

datasets used for model validation can be found in Table 1, full bibliographic details 

for both the GlycA studies and datasets are listed in Appendix A. These datasets were 

gathered using Gene Expression Omnibus (GEO) query, using search terms ‘PBMC’ 

and ‘Whole Blood’. Searches for datasets were performed with great scrutiny in settings 

where reports on GlycA measurements are available (i.e. SLE, RA, KD, bacterial 

infection, obesity and psoriasis). 

Model Testing 

The true test for the model consists using publicly available transcriptomic datasets 

from settings in which GlycA has not yet been examined, making predictions, and 

subsequently verifying the predictions using new NMR measurements of GlycA on 

sample collections in the appropriate settings. NMR measurements are performed by 

Nightingale Health (Helsinki, Finland) 
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Figure 14: Hyperparameter tuning. Hyperparameters for the different modelling strategies are selected 
where mean RMSE is lowest across 20 runs of 10-fold cross-validation. Presented from left to right, top to 
bottom: the regularization parameters for ridge and LASSO regression, the number of neighbours for 
kNN regression, the weight decay parameter for a single hidden layer ANN, the misclassification cost for a 
SVM with linear kernel, the complexity (pruning) parameter for the regression tree, and finally the 
misclassification cost and sigma parameters for a radial basis function kernel SVM. 
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Table 1: Model validation dataset overview. Dataset identifiers are Gene Expression Omnibus identifiers, 
full bibliographic details for both the GlycA studies and the publications associated with these datasets are 
listed in Appendix A. Most of the existing knowledge about GlycA can be replicated using the predictive 
model in third party data. For some observations, i.e. GlycA’s correlation to SLE disease activity, 
conflicting reports exist in the literature. Not all reported GlycA observations can be tested: for some, 
appropriate transcriptomic experiments are unavailable (i.e. pre- and post-antiTNF-treatment gene 

expression profiles of psoriasis patients).  

Disease 

Context
GlycA Observation

Transcriptomic

Dataset
Observed Model Prediction

Replicates 

known 

observation?

Diabetes Increase over HC GSE46097 Diabetes patient GlycA is 0.276 

SD higher than HC

Yes

CVD Increase over HC GSE46097 CAD patient GlycA is 0.264 SD 

higher than HC

Yes

Obesity Increase over HC GSE55205 Obese subjects predicted GlycA is 

0.263 SD higher than normal 

weight

Yes

GSE41505 Pearson correlation between BMI 

and GlycA = 0.65

Yes

SLE Increase over HC GSE50772 SLE patient GlycA is 0.489 SD 

higher than HC

Yes

GSE17755 SLE patient GlycA is 1.038 SD 

higher than HC

Yes

Correlation with SLEDAI GSE50772 Pearson correlation between 

SLEDAI and GlycA = 0.47

Conflicting

GSE72754 Pearson correlation between 

SLEDAI and GlycA = 0.28

Conflicting

RA Increase over HC GSE17755 RA patient GlycA is 0.489 SD 

higher than HC

Yes

GES15573 RA patient GlycA is 0.769 SD 

higher than HC

Yes

Correlated with DAS28 GSE15258 Pearson correlation between 

DAS28 and GlycA = 0.20

Yes

Psoriasis Increase over HC GSE61281 Psoriasis patient GlycA is 0.432 

SD higher than HC

Yes

GSE61281 Arthritic psoriasis patient GlycA is 

0.20 SD higher than non-arthritic 

cutaneous psoriasis

NA

GSE55201 Psoriasis patient GlycA is 0.265 

SD higher than HC

Yes

Decrease after antiTNF 

treatment 

GSE55201 Anti-IL17A monoclonal antibody 

lowers GlycA by 0.148 SD

NA

KD Increase over HC GSE68004 Acute KD patients have GlycA 

levels 1.07 SD higher than HC

Yes

GSE57183 KD patients have GlycA levels 

1.08 SD higher than HC

Yes

Increase over OFI GSE68004 KD patients have GlycA levels 

0.145 SD higher than OFI patients

Yes

GSE63881 Severe Acute KD patients have 

GlycA levels 0.134 SD higher than 

OFI patients

Yes

Acute > Convalescent GSE63881 Acute KD patients have GlycA 

levels 0.968 SD higher than 

convalescent patients

Yes
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Results 

Boruta Feature Selection 

For each of 200 Boruta runs in the YFS dataset, each variable is either confirmed to be 

associated with GlycA or rejected. Over these 200 runs, 1288 different genes are 

confirmed as relevant to GlycA at least once, while 232 genes are consistently 

confirmed as relevant across all 200 runs. The mean Jaccard index of similarity 

between each run is 0.75, and selection frequencies are visualized in Figure 15. 

 

Figure 15: Boruta feature selection results stability. In total, 1288 genes are confirmed as relevant to the 
response variable at least once. A core set of 232 genes is consistently reported to be relevant in each of 
these 200 runs. 

An overview of all genes in the core set can be found in Appendix B. Functional 

annotation of the core gene list through overrepresentation analysis using the 

WebGestalt platform [273] reveals four Gene Ontology (GO) Biological Process gene-

sets are statistically enriched with a false discovery rate smaller than 0.05 (Table 2). In 

addition, specific Gene Set Enrichment Analysis (GSEA) [168] investigation of GO 

chronic inflammatory response, regulation of acute inflammatory response and 

granulocyte activation gene sets, as well as the genes of the WGCNA module related to 
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neutrophil gene expression reported in [76], confirms known GlycA associations 

(Figure 16). 

 

Table 2: Fisher ORA results for GO biological processes, statistically significant after multiple testing 
correction. 

 

 

Figure 16 : GSEA results of four selected gene-sets in ranked Boruta feature selection results. Gene 
Ontology chronic inflammatory response, regulation of acute inflammatory response, granulocyte 
activation, and the genes from the neutrophil associated WGCNA module reported in [76] are colored 
green, red, orange and blue, respectively. 

Gene Set Description Size Expect Ratio P Value FDR

GO:0036230

granulocyte 

activation 498 5.9237 5.2332 2.7534E-14 2.3404E-11

GO:0009620

response to 

fungus 48 0.57096 10.509 2.1073E-05 0.0059708

GO:0006959

humoral immune 

response 237 2.8191 3.9019 0.00012675 0.019693

GO:0050900

leukocyte 

migration 417 4.9602 3.0241 0.00013901 0.019693
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Model construction 

Cross-validated performance in the YFS training data of the constructed models is 

presented is Figure 17. To establish a baseline for performance, linear models 

constructed using a random selection of 4, 15, 32 and 55 variables were constructed 

and tested. In the training data, the RFE linear model achieves the best accuracy in 

terms of RMSE and explained variance. It is worth noting that absolute errors of these 

models are relatively large and that a linear model with four variables boasts a 

performance which is almost on par with more elaborate models and more 

sophisticated modelling techniques. 

While cross-validated performance in the training data is informative, the application 

of these models will use third party data with considerable inherent biases owing to the 

transcriptomic platform and preprocessing steps employed in their generation. 

Therefore, performance is better judged in the D07 and D14 datasets, each of which 

was quantified using a distinct processing pipeline. Performance in these test datasets is 

summarized in Figure 8. 
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Figure 17: Performance measures of predictive models in YFS training data. On top, 10-fold 
cross-validated RMSE is compared across all considered models. On the bottom, their explained variance 
(R²). The best-performing model in the YFS training data is the RFE linear model. 
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Figure 18: Model performance in unseen test data. Top: RMSE between predicted and observed 
normalized GlycA levels. Bottom: Pearson correlation coefficient between predicted and observed 
normalized GlycA levels. Bars are colored according to their dataset: training data, YFS, red, and unseen 

test data, D07 and D14 datasets, green and blue, respectively. 
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Unsurprisingly, the overall performance in the unseen test data of the D07 and D14 

datasets is considerably lower than the performance in the training YFS dataset. The 

inherent bias on specific genes is laid bare in the RMSE performance of the 15 feature 

mRMR model, which is higher than both the 4 feature and 32 feature mRMR models. 

Inclusion of problematic genes, which are consistently quantified as considerably more 

or less abundant in the test data then in the training data, has a large impact on a 

model’s performance, in terms of the absolute error. However, correlation between 

predicted and observed GlycA levels fares better than the RMSE. Comparison between 

predicted GlycA levels from different datasets using the presented models should be 

avoided, however within a single dataset the absolute error on the GlycA level is less 

important than the correlation between observed and predicted outcomes. Therefore, 

we select our preferred model using the correlation between predicted and observed 

variables observed in the unseen D07 and D14 data. The best performing models on 

this metric are the mRMR models using 15 and 32 features, with the latter 

outperforming the former by the slightest of margins. Predictions made in the 

following paragraphs were made using the 15 feature mRMR linear model. 

Model validation 

The first validation of our chosen model is its ability to replicate known GlycA 

associations. Demographics studies have robustly shown the association between 

obesity, cardiovascular disease and increased GlycA levels. In addition, there have been 

disease-specific studies in SLE, RA, KD and psoriasis. Table 1 summarizes known 

GlycA associations, which publicly available datasets were used to test the model and 

the outcome of the predictions. Though the effect sizes predicted by the model can 

differ between multiple datasets obtained from a single setting, overall the model 

replicates published knowledge about GlycA remarkably well. Reports on GlycA’s 

correlation with disease activity scores in SLE are conflicting [86], [87], though the 

predictions made by the models are uniformly in favor of SLEDAI correlation. 

Novel predictions 

Having confirmed our model correctly replicates known associations for GlycA, we 

generate novel predictions in settings which have not yet been explored and 
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subsequently perform NMR measurements in appropriate sample collections to test 

these predictions. Predictions are made in inflammatory bowel disease (IBD) and SLE 

datasets. In IBD, GlycA prediction in the ArrayExpress dataset MTAB331 suggests a 

strong correlation between GlycA and Crohn’s Disease (CD) activity, measured by the 

Harvey Bradshaw Severity Index. GEO dataset GSE42296 predicts GlycA of CD 

responders to infliximab drops twice as much as the GlycA levels of non-responders 

(0.32 SD, compared to 0.17 SD). In SLE, dataset GE49454 predicts that GlycA levels 

of proliferative cases of SLE are 0.472 SD higher than non-proliferative SLE cases. In 

addition, SLE cases with renal involvement are predicted to have 0.355 SD higher 

GlycA concentrations than those without renal involvement. GlycA measurements by 

NMR confirm these predictions and are explored in detail in Chapters 5 and 6 for IBD 

and SLE, respectively. 

Discussion 

Though many aspects of the work reported in the preceding results section can be 

improved and expanded upon, it shows conclusively that platform independent 

imputation of serum GlycA levels from blood gene expression profiles is possible. The 

methods described here do not yet sufficiently address the biases inherent to each of 

the transcriptomic platforms and therefore do not allow for comparison of predicted 

GlycA levels between different transcriptomic datasets. However, within-dataset 

performance suffices for the recapitulation of published GlycA associations and even 

for the identification of potential novel GlycA associations. In what follows, I highlight 

several areas in which further work is necessary to improve the predictive models. 

First, our chosen data pre-processing, Quantile Discretization, succeeds in making the 

range of input data uniform across the different transcriptomic datasets, but does little 

to address their inherent biases. Quantile Discretized data of the D07, D14 and YFS 

studies is still separable with a high degree of accuracy using a handful of randomly 

selected features (data not shown). Furthermore, the arbitrary choice of deciles for the 

QD method should be expanded upon: though decile discretization was equally 

effective as percentile discretization of the data (data not shown), a robust assessment 

of the optimal choice for the number of quantiles has yet to be performed. 
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Second, it should be possible to refine the feature selection method by performing the 

Boruta algorithm in all three datasets separately, and creating a core set of related genes 

that is confirmed across all validation runs in each of the three datasets. The resulting 

core gene-set should be more robustly informative to the GlycA levels in the 

third-party datasets. Comprehensive research of these predictive models should also 

trial multiple strategies for feature selection. Indeed, a comparison of multiple feature 

selection methods and their stability would be inherently valuable information [270], 

and will be included when the manuscript of these results is submitted for publication. 

Third, it can be argued that hyperparameter tuning by RMSE minimization in the YFS 

training data is suboptimal if eventual selection of the ideal model is based on 

correlation between prediction and observed values in unseen data. The performance 

of some models, e.g. the kNN models, declines sharply when data from a different 

platform is used as input. If a robust model is preferable, then hyperparameters should 

be optimized to maximize this robustness. In the results reported here, the models 

with the highest performance in the training data explain roughly 40% of the variance, 

even though they have a RMSE error only 25% lower than completely random models 

(Figure 17), further illustrating optimization to RMSE might be a suboptimal choice. 

RMSE optimization was a natural choice if the smallest possible error between 

prediction and reality was the objective, but our results show that our normalization 

strategy does not eliminate the strong inherent biases in the transcriptomic datasets to 

make absolute GlycA quantification a tractable goal. Focusing on relative estimates and 

limiting predictions to within-dataset comparisons and associations is a more realistic 

application, the potential of which is already evident from the identification of two 

novel potential contexts where GlycA can be useful (IBD and Lupus Nephritis, 

explored thoroughly in Chapters 5 and 6, respectively). 

Fourth, more methods for generating the predictive models can still be tested. Random 

Forest (RF) models in particular are an interesting option which has not yet been 

investigated: considering the feature selection method that was used to generate these 

results (i.e. Boruta) estimates feature importance through the loss of accuracy by 

omission in RF regression, it would be worthwhile to test if this favors the subsequent 

performance of RF models over that of other approaches. In addition, 
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implementations of state-of-the-art gradient boosting methods have recently become 

available (e.g. catboost, xgboost [274], lightboost) and should be tested. The results 

generated thus far do suggest that the relation between GlycA and the blood gene 

expression profile is linear in nature and the high performance of the linear models in 

the unseen test data suggests that simpler models are more robust to input data that 

suffers from large inherent biases than more sophisticated models. 

Finally, creating a regression model for a continuous inflammatory biomarker is 

inherently more challenging than creating a classification model for an active 

inflammatory state. However, GlycA apparently summarizes such a broad and 

heterogenous range of inflammatory pathways that quantification is to be preferred 

over classification: GlycA is a read-out that incorporates the effects of many 

‘confounding’, read: ‘contributing’, factors. This layered increase of GlycA in the 

presence of more inflammatory symptoms is neatly illustrated in the higher predicted 

GlycA levels of arthritic psoriasis compared to the predicted values of cutaneous 

psoriasis without arthritis (Table 1) and is also observed in our experiments in SLE 

(Chapter 6). Furthermore, association of gene signatures to binary outcomes are 

frequently spurious: one study showed that the majority of published gene signatures 

related to breast cancer outcome do not significantly outperform random signatures 

[275]. A continuous response variable is inherently less likely to facilitate this 

problematic behavior, though vigilance is warranted and comparisons to models 

generated on randomly selected features should always be included (Figure 17). 

In conclusion, I have shown that the re-use of transcriptomic data to construct 

platform independent predictive models for novel biomarkers is feasible, though not 

without its challenges. Additional tests are required to round out the work reported in 

this chapter, in order to present a comprehensive study into this topic. Two novel 

contexts where GlycA may prove useful, i.e. IBD and Lupus Nephritis, are examined 

in detail in Chapters 5 and 6, respectively. 
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CHAPTER 5 

GlycA, a nuclear magnetic resonance 
spectroscopy measure for protein 

glycosylation, is a viable biomarker for  
disease activity in IBD. 

 
Research Article 

 
 
 
 

 
Published in Journal of Crohn’s and Colitis (epub ahead of print) 
Dierckx T.*, Verstockt B.*, Vermeire S., Van Weyenbergh J. (2018). GlycA, a nuclear 
magnetic resonance spectroscopy measure for protein glycosylation, is a viable 
biomarker for disease activity in IBD.  
 
doi: 10.1093/ecco-jcc/jjy162. 
PMID: 30312386 
 
* Both authors contributed equally to this work 

  



87 

Abstract 

Background and aims  

Glycoprotein acetylation (GlycA) is a novel nuclear magnetic resonance (NMR) 

biomarker measured in serum or plasma, which summarizes signal originating from 

glycan groups of certain acute phase glycoproteins. This biomarker has been shown to 

be robustly associated to cardiovascular and short-term all-cause mortality, and to 

disease severity in several inflammatory conditions. We investigated GlycA levels in a 

cohort of healthy individuals (HC), Crohn’s disease (CD) and ulcerative colitis (UC) 

patients prior to and after therapeutic control of inflammation. 

Methods  

Serum samples of 10 HC, 37 CD patients and 21 UC patients before and after 

biological therapy were subjected to high throughput NMR analysis by Nightingale 

Health Ltd. Paired C-reactive protein (CRP) and fecal calprotectin (fCal) measurements 

were used to characterize baseline differences, treatment effects and post-treatment 

association to endoscopic response (50% SES-CD decrease at week 24) and mucosal 

healing (SES-CD≤2 for CD, Mayo endoscopic score ≤1 for UC). 

Results  

GlycA levels were significantly higher in patients with active IBD compared to healthy 

controls, and accurately reflected the mucosal recovery to a ‘healthy’ state in both CD 

and UC patients achieving mucosal healing. In CD patients who experienced an 

endoscopic response without achieving full mucosal healing, GlycA levels also 

decreased but did not normalize to HC levels. Overall, GlycA correlated well with CRP 

and fCal, and accurately tracked disease activity in CRP negative patients (<5 mg/dL). 

Conclusion  

GlycA holds promise as a viable serological biomarker for disease activity in IBD, even 

in patients without elevated CRP, and should therefore be tested in large prospective 

cohorts. 
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Introduction 

Glycans are complex oligosaccharides that play a fundamental role in human health 

and contribute to the development of many complex inflammatory diseases [276]. 

Glycoprotein acetylation (GlycA) is a novel nuclear magnetic resonance (NMR) 

biomarker measured in blood serum or plasma, which summarizes the NMR signal 

originating from glycan groups of certain acute phase glycoproteins (mainly α-1-acid 

glycoprotein, haptoglobin, α-1-antichymotrypsin and transferrin) [62], [261]. GlycA has 

been extensively investigated in cardiovascular disease (CVD), where it was found to 

be robustly associated to atherosclerosis and risk of future CVD [62], [277]. Large 

demographic studies have also shown an association to cardiovascular and short-term 

all-cause mortality [70]. Robust associations to both CVD and diabetes in large cohorts 

have prompted the conclusion that GlycA summarizes the summative risk resulting 

from multiple inflammatory pathways [76], [277], [278]. In several inflammatory 

conditions such as rheumatoid arthritis [83], [84], Kawasaki disease [57] and psoriasis 

[90], GlycA has been shown to be associated with disease severity even after 

adjustment for traditional acute inflammation metrics such as C-Reactive Protein 

(CRP). Furthermore, GlycA levels decrease during successful treatment of psoriatic 

skin inflammation with anti-TNF therapy [90], suggesting it could be a clinically 

relevant biomarker for monitoring disease severity. 

Despite growing evidence on the role of glycosylation in other immune-mediated 

entities, including inflammatory bowel disease (IBD) [276], [279], [280], GlycA has not 

yet been studied in this context. Current IBD treatment algorithms are not solely 

symptom driven, but additionally guided by biomarkers, an approach which has been 

shown to improve endoscopic outcomes [281]. However, CRP has little discriminatory 

power in IBD: many, but not all, patients with Crohn’s disease (CD) show a strong 

CRP response, whereas patients with ulcerative colitis (UC) generally only have a 

modest or absent CRP response [56]. A better alternative biomarker has been found in 

fecal calprotectin (fCal), which correlates well with mucosal inflammation and can be 

used as a surrogate marker for mucosal healing in both UC and CD [282]. However, in 
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many countries serial fCal measurements are not reimbursed, and patients generally do 

not prefer (regular) fecal sampling [283].  

We therefore investigated GlycA in a cohort of healthy individuals, CD and UC 

patients. We not only studied differences between healthy and affected individuals, but 

also collected post-treatment samples allowing associations with mucosal healing 

relative to established inflammatory biomarkers such as CRP and fCal. 

Materials and methods 

Study design and patients 

We conducted this prospective study at the tertiary IBD referral center of the 

University Hospitals Leuven (Leuven, Belgium). All patients included in the analysis 

had given written consent to participate in the Institutional Review Board approved 

IBD Biobank (B322201213950/S53684), collecting serum and clinical (baseline 

features, patient reported outcomes (PRO2), Harvey-Bradshaw Index (HBI)) 

characteristics among other items.  

We randomly selected samples from patients with active endoscopic disease initiating 

biological therapy. Patients with an ostomy were excluded. All patients were 

prospectively monitored, including clinical and endoscopic assessment, CRP and fCal 

measurements at predefined outcomes (baseline and 6 months for CD patients, 

baseline and week 8 (adalimumab, ADM) or week 14 (infliximab, IFX, and 

vedolizumab, VDM) for UC patients). In addition, serum of 10 gender- and age-

matched healthy controls (HC) was collected. 

Outcomes 

Endoscopic outcomes were assessed 6 months after treatment initiation in CD 

patients[284], whereas in UC patients timing depended on the national reimbursement 

criteria of the individual drug (8 weeks for ADM, 14 weeks for IFX and VDM). In UC 

patients, mucosal healing was defined as a Mayo endoscopic subscore ≤ 1, whereas in 

CD patients mucosal healing was defined as Simple Endoscopic Score for Crohn’s 
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disease (SES-CD) ≤ 2. Because of the low MH rates in ustekinumab treated patients 

[285], only endoscopic response (minimal 50% decrease in SES-CD) was evaluated.  

Samples 

Serum samples were collected at baseline prior to the first administration of the drug, 

and during maintenance. Samples were centrifuged and stored aliquoted at -20°C. Fecal 

samples were collected at home, stored at 4°C in the home fridge and transported 

cooled within 24 hours to the hospital. fCal measurements were performed for all 

patients with the fCAL ELISA kit (Bühlmann, Schönenbuch, Switzerland). CRP was 

determined by the routine laboratory of the University Hospitals Leuven. GlycA 

concentration was quantified using the Nightingale Health Ltd. high-throughput 

metabolomics platform (Helsinki, Finland) [62], [261].  

Statistical analysis 

Continuous variables are expressed as median and interquartile range (IQR). The 

Wilcoxon rank-sum test was used to compare GlycA levels of HC samples to baseline 

CD and UC samples, and to compare patients showing MH to those without signs of 

healing in these conditions. All statistical analyses were performed in R, version 3.4.3 

(R Development Core Team, Vienna, Austria) [286] using the base stats package. 

Graphics were generated using the ggplot2 R package [287]. 

Results 

Patient characteristics  

Fifty-eight IBD patients (37 CD, 21 UC) were included in this prospective, 

observational study prior to the initiation of biological therapy (9 ADM, 13 IFX, 24 

VDM and 12 UST). Of the examined patients, 34.5% (n=20) did not have an elevated 

CRP at baseline. In this cohort of patients with a median disease duration of 4.8 (2.4-

14.9) years, mucosal healing was obtained in 39.7% (n=23) after a median of 23.7 

(22.4-24.7, CD) and 13.7 (11.0-14.3, UC) weeks respectively (Table 1).  
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GlycA accurately reflects disease activity 

GlycA concentrations were significantly increased in both CD and UC patients 

compared to HCs (p<10-4 and p<10-3). Variability of GlycA was likewise higher in CD 

and UC patients than what is observed in HC (coefficient of variation of 14.8%, 15.5% 

and 8.0%, respectively). At baseline, no significant difference between GlycA levels of 

CD and UC patients (p=0.92) was observed, and GlycA concentration in both CD and 

UC patients achieving mucosal healing dropped back to HC levels (p=0.90, p=0.91) 

(Figure 19A and 19C). While CD patients responding well to UST treatment (without 

achieving mucosal healing) showed a significant decrease of GlycA concentration in 

comparison to their baseline measurements (p=0.03), their post-treatment GlycA levels 

remained elevated in comparison to HC levels (one sided wilcox p=0.006) 

(Figure 19B). The observed drop in GlycA levels during maintenance therapy was 

consistent regardless of treatment used (supplementary figure S6). Analysis of variance 

across the different treatments found no significant differences between the baseline 

GlycA, post-treatment GlycA and the difference between these two timepoints of the 

different treatments. 

In patients without elevated CRP (< 5mg/dL) at baseline (n=20, 11 CD, 9 UC), GlycA 

levels were significantly higher than those observed in healthy controls (p<0.01) 

(Figure 20). In healers, GlycA levels dropped to levels similar to HC, while in non-

healers GlycA levels remained elevated compared to HC (p=0.07). 

GlycA correlated well with both fCal and CRP (spearman ρ=0.39, p=0.02 and ρ=0.65, 

p<10-8, respectively) (Figure 21). Across the three considered settings (IFX, ADM or 

VDZ treated CD, UST treated CD and IFX, ADM or VDZ treated UC), of these three 

biomarkers, only GlycA post-treatment levels consistently showed a significant 

difference between responder and non-responder levels (Figure 19). Endoscopic 

activity, quantified by the Mayo endoscopic subscore in UC, correlated well with 

GlycA (ρ=0.51, p=0.0016) but not with the Simple Endoscopic Score for CD (SES-

CD), though this latter measure was only available for 15 of 37 CD patients. Disease 

location was associated to GlycA levels, with a Wilcoxon test showing a borderline 

significant (p=0.06) difference between GlycA levels of L1 and L3 CD patients and 
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UC patients with E1 disease showing significantly lower GlycA levels than those of 

E2/E3 afflicted patients (wilcoxon p=0.04). CD patients with prior enterectemy 

showed similar baseline GlycA levels as patients without occurrence of any resection of 

a part of the gut, or stricturoplasty for stenosing complications. The greater GlycA 

decrease observed in treatment responders compared to non-responders was observed 

in resectioned patients and non-resectioned patients alike, indicating prior enterectemy 

does not impact GlycA’s association to disease activity. Finally, the expected 

association of GlycA to BMI, robustly shown in large demographic studies [71], [88], 

was absent in this IBD cohort, analogous to observations in rheumatoid arthritis [84]. 
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Figure 20: GlycA levels of CRP negative patients. Patients with healthy CRP levels (< 5 mg/dL), (n=20, 
11 CD, 9 UC) have significantly increased GlycA levels over healthy controls (p<0.01). After treatment 
(T1), patients that responded to treatment return to GlycA levels observed in HC, while non-responder 
GlycA levels remain elevated over HC levels (p=0.07). 

 

Figure 21: GlycA, CRP and fCal correlations. Correlation between GlycA and CRP (spearman ρ=0.40, 
p=0.02, top) and fCal (spearman ρ=0.61, p<10-8, bottom) is illustrated in all available data. Data near the 
lower detection limit for CRP (<5 mg / L) or the upper detection limit for fCAL (>1800 µg / g) are 
depicted as boxplots alongside the scatterplot. 
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Discussion 

In this prospective pilot project, we provide the first evidence that GlycA can be a 

relevant biomarker in the context of IBD. GlycA levels were found to be significantly 

higher in patients with active IBD, compared to healthy controls. As elevated GlycA 

levels have previously been associated with atherosclerosis and cardiovascular disease 

[62], [277], our observations support previous findings regarding increased 

cardiovascular risk reported in IBD due to the persistence of chronic inflammation 

[288]. While pre-treatment GlycA levels showed no association to eventual treatment 

outcome, a treatment-induced decrease in GlycA was strongly associated with 

successful treatment response and mucosal healing, and associated to treatment 

response at least as well as traditional inflammatory biomarkers such as CRP or fCal. 

GlycA accurately reflected the mucosal recovery to a healthy state, as evidenced by the 

return to healthy GlycA levels in healers, but not in non-healers or partial responders.  

The discovery of GlycA as a relevant biomarker for IBD disease activity makes 

pathophysiological sense, as glycans are important in fine tuning immune responses 

[280]. Furthermore, recent  mass spectrometry data demonstrated that plasma N-

glycomes show distinct glycosylation patterns differentiating CD and UC patients, and 

that these patterns can be associated with disease progression and the need for more 

potent medication and surgery [289]. The method used in our report summarizes NMR 

signal originating from acetyl groups of specific glycosylated proteins present in these 

patterns (specifically haptoglobin and α1-acid-glycoprotein) [289].  

Our results suggest that GlycA is a viable serological biomarker to monitor disease 

activity and treatment response in CRP-negative IBD patients. The advantage of 

GlycA over CRP likely stems from its greater stability, owing to its composite nature as 

a summary measure of glycan signal originating from several acute-phase proteins. It 

has been shown that calculating the true set point for biological homeostasis of CRP 

requires 33 concurrent measurements while for GlycA only a single measurement is 

required [57]. Contrary to CRP, GlycA has been shown to be a stable and sensitive 

marker for chronic inflammation in rheumatoid arthritis[84]. Additionally, replacing 

CRP by another serological biomarker in patients who cannot be biochemically 



96 

monitored using CRP might be a better alternative than a fecal biomarker, as patients 

prefer regular blood instead of regular stool sampling [283]. The cost of GlycA 

determination is comparable to that of fCal measurement (20-50 euro, depending on 

sample size, and approximately 25 euro, respectively). Though both biomarkers are 

considerably more expensive than a CRP measurement (approximately 5 euro), the 

NMR spectrum used to quantify GlycA additionally quantifies several metabolic 

biomarkers such as amino acid levels, glycolysis and fatty acid metabolites and an 

extensive lipoprotein profile. 

We recognize that our study has both strengths and weaknesses. To our knowledge, 

this is the first study which assesses glycosylation levels of plasma proteins through 

NMR in IBD patients. The study had access to both baseline pre-treatment samples 

and post-treatment samples of CD and UC patients, which facilitated characterization 

of baseline differences, treatment effects and post-treatment association to mucosal 

healing and treatment response. However, sample size was limited, necessitating the 

grouping of samples from several treatment regimens for meaningful statistical 

analysis, and would need to be increased to assess the effects of, and biomarkers for 

successful treatment with, specific drug regimens. Likewise, our sample numbers 

necessitated the grouping of CD and UC samples to assess GlycA’s potential as a 

biomarker in pre-treatment CRP negative patients. The limited availability of certain 

clinical metadata in this pilot study, specifically fCal and SES-CD, presents a strong 

incentive for a more extensive follow-up study. Finally, the GlycA biomarker 

summarizes the degree of acetylation of specific acute-phase glycoproteins and, to our 

knowledge, it is currently not known whether the principal contribution underlying the 

associations with GlycA can be ascribed to the concentrations of these proteins, their 

glycosylation or their acetylation profiles. 

In conclusion, we identified GlycA as a promising candidate biomarker for monitoring 

disease activity in IBD patients, even in patients without elevated CRP. Additional 

experiments in larger cohorts are necessary to confirm our findings, and to elucidate 

whether measuring the GlycA component glycoproteins directly is a low-cost proxy 

which can track successful treatment response as accurately as the GlycA measurement 

by NMR.  
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Tables 

Table 1 Baseline disease characteristics 

 Crohn’s disease 

(n=37) 

Ulcerative Colitis 

(n=21) 

Sex, women, n (%) 15 (40.5) 9 

Disease duration, y, median (IQR) 4.6 (2.6 – 16.3) 5.0 (1.8 – 9.6) 

Age at inclusion, y, median (IQR) 30.2 (22.9 – 41.6) 37.5 (26.2 – 47.2) 

Disease location, n (%) 

L1 Ileal disease  
10 (27) 

L2 Colonic disease 
9 (24.3) 

L3 Ileocolonic disease 
18 (48.6) 

E1 Proctitis  
3 (14.3) 

E2 Left sided  
8 (38.1) 

E3 Pancolitis  
10 (47.6) 

Disease behavior, n (%) 

- Inflammatory (B1) 

- Stricturing (B2) 

- Penetrating (B3) 

- Perianal disease (p) 

 

22 (59.5) 
5 (13.5) 
10 (27.0) 
12 (32.4) 

NA 

Smoking status, n (%) 

- Active smoking 

- Previously smoking 

- Never smoked 

 
7 (18.9) 

10 (27.0) 

20 (54.1) 

 
0 (0.0) 

6 (28.6) 

15 (71.4) 

Body Mass Index, kg/m², median (IQR) 21.6 (19.8 – 25.3) 22.9 (22.0 – 26.4) 

C-reactive protein, mg/L, median (IQR) 12.5 (3.5 – 22.1) 5.9 (1.5 – 20.7) 

Fecal calprotectin, µg/g, median (IQR) 
1800.0  

(1554.2 – 1800.0) 
1800.0  

(924.8 – 1800.0) 

PRO2, median (IQR) 15.0 (7.0 – 21.0) 4.0 (4.0 – 5.0) 

Initiated biological therapy, n (%) 

- Adalimumab  

- Infliximab  

- Vedolizumab 

- Ustekinumab 

 
5 (13.5) 

8 (21.6) 

12 (32.4) 

12 (32.4) 

 
4 (19.0) 

5 (23.8) 

12 (57.1) 

NA 

Timing of endoscopic assessment, weeks, 
median (IQR) 

23.7 (22.4 – 24.7) 13.7 (11.0-14.3) 

IQR = interquartile range; n = number of patients; PRO2 CD = patient reported outcome for Crohn’s 
disease = 5x abdominal pain score + 2x liquid stool frequency; PRO2 UC = patient reported outcome for 
ulcerative colitis = stool frequency + rectal bleeding  
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Supplements 

 

Figure S6: GlycA levels of all patients, prior to (T0) and post treatment (T1), separated by treatment. A 
consistent decrease in GlycA concentration is observed, regardless of treatment type. ADM, adalimumab, 
IFX, infliximab, Vedo, vedolizumab. 
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CHAPTER 6 

Serum GlycA level is a candidate biomarker for 
disease activity in systemic lupus erythematosus 

and for proliferative status of lupus nephritis, 
independent of renal function impairment. 
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Abstract 

Objective 

Glycoprotein acetylation (GlycA) is a novel biomarker for chronic inflammation, associated to 

cardiovascular risk. Serum GlycA levels are increased in several inflammatory diseases, 

including systemic lupus erythematosus (SLE). We investigated the relevance of serum GlycA 

measurement in SLE and lupus nephritis (LN). 

Methods 

GlycA was measured by NMR in 194 serum samples from patients and controls. Comparisons 

were performed between groups. Clinical and biological parameters were tested for correlation 

with GlycA levels. The predictive value of GlycA to differentiate proliferative from 

non-proliferative LN was determined using logistic regression models.  

Results 

GlycA was correlated to C-reactive protein (CRP), neutrophil count, proteinuria and the SLE 

disease activity index (SLEDAI), and inversely with serum albumin. GlycA was higher in 

active (n=105) than in quiescent (n=39) SLE patients, in healthy controls (n=29), and in 

patients with non-lupus nephritis (n=21), despite a more altered renal function in the latter. In 

patients with biopsy-proven active LN, GlycA was higher in proliferative (n=32) than non-

proliferative (n=11) LN, independent of renal function and proteinuria level. Logistic 

regression models showed that, in univariate models, GlycA outperforms traditional 

biomarkers. A bivariate model using GlycA and BMI better predicted the proliferative status 

of LN than a model comprising CRP, renal function (eGFR), serum albumin, proteinuria, C3 

consumption and the presence of anti-dsDNA antibodies. 

Conclusion 

Serum GlycA is elevated in SLE, and correlates with disease activity and LN. Serum GlycA, 

which summarizes different inflammatory processes, could be a valuable biomarker to 

discriminate proliferative from non-proliferative LN and should be tested in large, prospective 

cohorts.  
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Introduction 

Systemic inflammation is implicated in a wide range of auto-immune diseases such as systemic 

lupus erythematosus (SLE) [290]. In SLE, a multitude of different inflammatory cytokines and 

pathways can be activated [291] and these are not always reflected by elevated C-reactive 

protein (CRP). Lupus nephritis (LN) is one of the most severe complications of SLE which 

occurs in 20-70% of patients and its occurrence is not reliably predicted by classical 

inflammatory markers [290]. The occurrence and severity of LN has been associated with the 

dysregulation of neutrophil extra-cellular traps (NETs) [292] and a blood transcriptional 

neutrophil signature [293]. Non-invasive biomarkers are needed in SLE to predict the risk of 

LN in SLE patients, and to determine the severity of LN by differentiating between the 

proliferative and non-proliferative forms of LN, which determines whether 

immunosuppressive therapy will be needed to achieve renal remission [294]. 

Glycoprotein Acetylation (GlycA) is a new nuclear magnetic resonance (NMR) spectroscopy-

derived biomarker of systemic inflammation that reflects protein glycosylation which could 

prove to be promising biomarker in the LN context. GlycA signal, measured in the blood 

serum or plasma, reflects mainly the glycosylation of acute-phase proteins α1-acid 

glycoprotein, haptoglobin, α1antitrypsin, α1antichymotrypsin and transferrin [62], [261], as a 

consequence of inflammatory stimuli. The GlycA signal is thus evaluated as a biomarker of 

systemic inflammation and cardiovascular risk [295], summarizing the activation of multiple 

inflammatory pathways [278]. GlycA has been shown to be associated with the risk of cardio-

vascular events and mortality in the general population, independently of CRP [71], [89]. In a 

large Brazilian cohort, GlycA was associated with CRP, age, female gender, tobacco and 

alcohol consumption, obesity, diabetes, hypertension and dyslipidemia and associated 

independently with lower estimated glomerular filtration rate (eGFR) and albuminuria [88]. 

We recently showed that GlycA could be a marker of disease activity in inflammatory bowel 

disease, even in patients without CRP elevation [296]. Of particular interest to the LN context, 

large scale gene correlation network analysis has shown that GlycA can also be associated to 

NET formation [76]. Furthermore, concentrations of GlycA were noted to be higher in SLE 

patients than in healthy controls, but findings with regards to GlycA’s association to disease 

activity vary between studies [86], [87]. The value of GlycA as a biomarker of LN has not been 

evaluated yet. 
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In this work, we investigated if GlycA could be associated with LN severity. We compared 

patients with proliferative and non-proliferative forms of biopsy-proven LN, and included a 

control group of patients with non-lupus renal diseases to account for the possible 

confounding factors of altered eGFR and albuminuria. 

Materials and Methods 

Patient demographics and Ethics 

This study was conducted in accordance with the principles of the declaration of Helsinki. 

Patients with biopsy-proven LN, and patients with other renal diseases, were included in the 

biobank DC-2012-1704, approved by the French Ministry of Health, in the Hôpital de la 

Conception, Marseille, France. All patients gave written informed consent before any 

procedure. Other samples from patients with SLE were obtained from patients recruited in 

the LOUvain Lupus Nephritis InCeption (LOULUNIC) cohort, and patients followed-up at 

the Lupus Clinic of the Université Catholique de Louvain (UCL), Brussels, Belgium, as were 

samples from age- and sex-matched healthy controls. All patients and controls gave written 

informed consent before serum samplings. All patients with SLE responded to the SLICC 

2012 classification criteria [297]. 

Clinical metrics 

For this study, a total of n=194 samples were analyzed. A graphical overview of assayed 

samples can be found in Figure 22. We grouped the samples as either originating from 

healthy controls, from patients with biopsy-proven non-lupus renal diseases (“non-lupus 

nephritic controls”, comprising patients with membranous nephropathy, IgA nephropathy, 

diabetic kidney disease or hypertensive nephropathy) and from SLE patients. SLE patients 

were further identified as clinically quiescent SLE patients (SLEDAI =< 4 without clinical 

activity, with or without maintenance therapy, immunological activity authorized), or active 

SLE patients. Active SLE patients were either SLE patients with an extra-renal flare without 

nephritic involvement, or patients with active LN (whether there is extra-renal activity or not). 

For differential analysis between proliferative (class III or IV +/- V, with active lesions, of the 

ISN/RPS 2003 classification) and non-proliferative (class I, II or isolated class V) flaring LN 

cases, a subset of samples was used, which originates from patients who were sampled at the 

time of the biopsy-proven LN. Patient numbers for this cohort, as well as full demographical 
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and clinical details, can be found in Supplementary Tables 1 & 2. For 28 SLE patients, 

longitudinal samples were available.  

 

Figure 22: Overview of samples used in this study 

Age, Gender, ethnicity, BMI, smoking status, extra-renal lupus activity (ongoing arthritic flare 

in particular), and diabetic status, were collected and tested for confounding effects on GlycA. 

Serum CRP level, serum albumin and creatinine levels, estimated glomerular filtration rate 

(eGFR, calculated with the MDRD equation [298], C3 and C4 concentration, urinary 

protein/creatinine ratio (UPCR), presence of anti-dsDNA antibodies as a binary variable 

(above 16 IU/mL by ELIATM, ThermoFisher, MA, USA, or above 10 IU/mL using the Farr 

assay from Trinity Biotech, Bray, Ireland), daily glucocorticoid dosage, and 

hydroxychloroquine usage were tested for association to GlycA on all available SLE samples. 

GlycA concentration was quantified using the Nightingale Health Ltd. high-throughput 

metabolomics platform (Helsinki, Finland) [62], [261]. Laboratory and NMR measurements of 

creatinine and albumin concentrations were found to be highly correlated (ρ=0.94 and ρ=0.74, 

respectively, with p-values<10-8) (Supplementary Figure 7). 
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Statistical analysis 

Univariate comparison between the different conditions was performed using unpaired, two-

sided Wilcoxon rank sum test. Association between GlycA and all available clinical and 

demographic data was tested using Spearman’s ρ for continuous variables and Mann-Whitney-

Wilcoxon’s U for categorical variables, p values were corrected for multiple testing using the 

Benjamini-Hochberg procedure and resulting q values are accepted as significant when smaller 

than 0.05. Identification of all confounding factors on the relationship between GlycA and 

proliferative status was achieved with analysis of covariance methods calculating the Type III 

Sums of Squares in a stepwise forward selection. Starting from the model including only the 

GlycA response variable and proliferative status, in each step the variable with the most 

significant contribution (with maximum p-value 0.1), as determined in a comparison with an 

F-test, was included in the model. Discriminatory power of clinical and demographical 

parameters was assessed in logit-link logistic regression models of LN patients with 

proliferative status of the patient as the response variable. In addition to univariate and 

selected multivariate models, a statistically ideal logistic regression model was constructed 

using an exhaustive best subset algorithm using Aikake’s Information Criterion [299]. All 

statistical analyses were performed in R [286]. C statistics for logistic regression models were 

calculated using the Epi R package [300]. Leave-one-out cross-validated accuracy measures 

were calculated using the caret R package [271].  Figures were generated using the ggplot2 R 

package [287]. 

Results 

GlycA levels in SLE patients and controls 

Patients with active SLE showed significantly higher GlycA concentration than healthy 

controls (p=0.009), non-lupus nephritic controls (p=0.04) and quiescent SLE patients 

(p<10-6) (Figure 23). Quiescent SLE patients also displayed lower CRP levels than patients 

with active SLE (p<10-3). However, in contrast to GlycA levels, CRP concentrations of non-

lupus nephritic controls were not significantly different from those of active SLE patients 

(p=0.86). eGFR was significantly lower in non-lupus nephritic controls than in active SLE 

patients (p<10-3), indicating that the increased GlycA levels observed in active SLE can’t be 

solely attributed to a decrease in renal function (Figure 23). 
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Figure 23: GlycA is elevated in active SLE, compared to healthy controls, non-lupus nephritic controls, and 
quiescent SLE. C-reactive protein (CRP) level is lower in quiescent SLE than in active SLE and non-lupus nephritis 
but does not differ between active SLE and non-lupus nephritis. Estimated glomerular filtration rate (eGFR) is 
lower in patients with non-lupus nephritis than in patients with quiescent or active SLE, excluding the fact that the 
elevation of GlycA in active SLE may be explained solely by decreased renal function. Significance of a Wilcoxon 
test comparing the groups to active SLE are indicated (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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GlycA association to clinical measurements 

GlycA correlated well with CRP in all samples (ρ=0.49, q<10-8).  Significant correlations to 

GlycA were observed for neutrophil counts (ρ=0.32, q=0.04), serum albumin (ρ=-0.37, 

q<10-4), and UPCR (ρ=0.38, q<10-4), and trends for correlation were observed for serum 

creatinine (ρ=0.17, q=0.06) and C3 (ρ=-0.18, q=0.06). GlycA showed no correlation to anti-

dsDNA levels measured by ELIATM or Farr, and no significant difference was found between 

GlycA concentrations of dsDNA positive SLE patients, when compared to dsDNA negative 

SLE patients. GlycA levels showed a trend for inverse correlation with eGFR in quiescent 

SLE patients (ρ=-0.37, q=0.07) and in non-lupus nephritic controls with a wide range of 

eGFR and proteinuria levels (ρ=-0.46, q=0.06). In SLE samples, GlycA showed a significant 

correlation to the SLEDAI score (ρ=0.36, q<10-4). This correlation between the SLEDAI 

score and GlycA was absent if only quiescent SLE samples were considered. The full results 

of correlational analysis with GlycA can be found in Supplementary Table 3. Figure 24 

shows GlycA levels of available longitudinal samples of LN patients with a flare event. While 

insufficient observations are available to perform robust longitudinal analysis, we note that 

GlycA level is variable over time in a single patient, and that patients show increased GlycA at 

or directly following the flare presentation. Most patients show a return to pre-flare GlycA 

levels following the flare resolution. 

 

Figure 24: GlycA levels measured in longitudinal samples of flaring LN patients, up to a year prior and after flare 
event. Patients show increased GlycA levels at or directly following flare presentation. Post flare, most patients 
show a return to maintenance GlycA levels. 
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GlycA association to proliferative status in flaring LN 

GlycA concentrations in serum samples taken at time of a flare of patients with biopsy-proven 

active LN were higher in proliferative cases than in non-proliferative cases (p=0.04). Although 

flaring proliferative LN cases had lower eGFR than non-proliferative cases, this difference 

was not statistically significant (p=0.28) and non-lupus nephritic controls with considerably 

lower eGFR than the proliferative LN patients (p<0.01) had GlycA levels comparable to 

those of healthy controls and non-proliferative flaring LN (Figure 25). 

 

Figure 25: Comparison between LN samples taken at flare with biopsy-proven proliferative (or non-proliferative) 
status within 30 days of sampling shows significantly increased GlycA in proliferative LN. In addition, CRP and 
eGFR, as well as identified confounding factors BMI, daily corticosteroid dosage and neutrophil count are 
visualized in the flaring samples as well as in non-lupus nephritic control samples. 
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We sought to identify possible confounding factors interfering with GlycA levels’ association 

to proliferative status of patients with flaring LN, such as BMI, which is known to be 

associated to GlycA, and was significantly higher in patients with non-proliferative than 

proliferative LN in this cohort (p=0.04). Analysis of variance identified confounding effects of 

BMI, daily corticosteroid dosage and neutrophil count as having independent and significant 

impacts on proliferative status’ association to GlycA levels. After controlling for BMI, daily 

corticosteroid dosage and neutrophil concentration, proliferative status retained its association 

to GlycA.  

Logistic regression models of proliferative status 

We assessed the discriminatory power of GlycA in logistic regression models built to 

differentiate between proliferative and non-proliferative LN. Supplementary Table 4 

summarizes the predictive power of all univariate and specific extended logistic models, and 

the performance of select models is visualized in Figure 26. We point out that CRP has little 

to no discriminatory power in this setting (c statistic 0.56) and that the best univariate models 

are those constructed using GlycA or BMI (c statistic 0.72 and 0.75, respectively). A bivariate 

model using only GlycA and BMI (c statistic 0.91) outperforms a model constructed of six 

measures used in current clinical practice (i.e. CRP, serum albumin concentration, eGFR, 

proteinuria, C3 levels and evidence of anti-dsDNA, c statistic 0.90). We emphasize that GlycA 

and BMI independently contribute information about the inflammatory burden, evidenced by 

their independent significance in the multivariate model. Algorithmic construction of a logistic 

regression model using the exhaustive best subset approach results in a model using BMI, 

GlycA, presence of anti-dsDNA and daily corticosteroid dosage, capable of perfectly 

separating all non-proliferative from the proliferative cases.  
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Figure 26: Receiver operating characteristic curve of selected logistic regression models predicting the proliferative 
nature of LN cases, using the variables indicated in the legend. 

Discussion 

The results of the present study confirm that GlycA is elevated in SLE patients compared to 

healthy controls. We extend previous findings and show that GlycA level is correlated with 

SLEDAI and is higher in active SLE than in quiescent SLE. Moreover, in patients sampled at 

the time of a biopsy-proven LN flare, we show that GlycA level is higher in patients with 

proliferative LN than in patients with non-proliferative LN. Interestingly, although we 

confirm the inverse correlation between GlycA and eGFR (GlycA increasing as renal function 

declines), we show that the elevation of GlycA in active SLE or in proliferative LN is not 

solely due to an altered renal function, since non-lupus nephritic controls, who displayed 

lower eGFR than SLE patients, had lower GlycA levels. Moreover, the association between 

GlycA level and the proliferative status of LN persisted after correction for eGFR. 

Interestingly, after correction for other confounding factors, whether they were previously 

described (BMI [69], [78], [278], [301] and daily corticosteroid dosage [87]) or observed in this 

work (neutrophil count), GlycA concentration remains significantly associated with the 

proliferative status of flaring LN patients. The increased GlycA concentration of proliferative 

LN is not explained by massive proteinuria, as proteinuria levels were comparable between 

patients with proliferative and non-proliferative LN.  
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We constructed logistic regression models to determine if the GlycA marker could be of use 

in the prediction of the proliferative status of LN. We show that GlycA, as a robust biomarker 

summarizing chronic inflammatory burden from multiple sources, has high predictive value in 

this context. A bivariate logistic model using GlycA and BMI to predict proliferative status 

outperforms a model using CRP, eGFR, proteinuria, C3 levels, serum albumin concentration 

and the presence of anti-dsDNA.  

The association between BMI and the non-proliferative status of LN in this cohort is 

interesting. Although obesity is not a risk factor for the development of SLE [302], the 

prevalence of obesity in patients with SLE is high, and higher BMI has been associated with 

disease activity [303], in addition to chronic inflammation and cardiovascular burden [304]. 

Higher BMI has also been associated with an increased risk of proteinuria in SLE patients 

[305], but this may either reflect active LN, or be the consequence of glomerular 

hyperfiltration and glomerulosclerosis induced by obesity itself [306]. Indeed, the detection of 

a significant proteinuria in a patient with SLE implies that a renal biopsy should be performed 

to differentiate a severe (proliferative) LN from a less severe (non-proliferative) form or from 

another kidney disease. The higher BMI observed in the group of patients with non-

proliferative LN could be partly explained by the earlier development of proteinuria in obese 

patients, even in patients without severe active LN. The correlation of GlycA with BMI is well 

established [69], [78], [278], [301], but we emphasize that GlycA carries additional information 

relevant to the discrimination between proliferative and non-proliferative LN. This is 

demonstrated by the fact that both terms make a significant contribution to our logistic 

regression model and the high performance of the bivariate BMI and GlycA model. 

The link between GlycA and LN severity is not altogether unexpected. We have previously 

shown the involvement of a set of neutrophil activation related genes with disease severity in 

LN [293], indicating the possible involvement of Neutrophil Extracellular Trap (NET) 

formation. Large scale gene correlation network analysis has shown that GlycA can also be 

associated to NET formation [76] and our data shows neutrophil count correlates to GlycA 

levels. Thus, the independent contribution of both neutrophil concentration and GlycA to the 

predictive logistic regression model for proliferative status is of particular interest and 

warrants further research into a mechanistic explanation of this phenomenon. 

We point out specific limitations and strengths of this study. The limited sample sizes and 

unbalanced study design inherent to convenience sampling restrict the hypotheses which can 
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be statistically tested in this dataset. Specifically, while our observations show evidence that 

GlycA could be an excellent candidate biomarker for treatment follow-up, the lack of rigorous 

periodic follow-up sampling leading up to and following the flare event obfuscate the 

dynamics of the GlycA marker in this period. The strengths of this study lie in the robust 

phenotypical characterization of patients, the completeness of clinical data recorded, and the 

availability of samples drawn at the time of a biopsy-proven LN flare.  

The GlycA biomarker quantifies the degree to which specific acute-phase glycoproteins are 

acetylated. Further research is required to elucidate whether the observed GlycA associations 

can be ascribed to either the concentrations of these proteins, their glycosylation or their 

acetylation profiles. Recent evidence in cardiovascular disease (CVD) research suggests that 

immunoglobulin G glycosylation traits can be both positively and negatively associated to 

CVD risk [307], illustrating our understanding of these processes is still incomplete and 

inviting further study of these topics. 

Our study also provides a plausible explanation of why previous studies have reported 

conflicting information with regards to the association between GlycA and SLE disease 

severity. The population studied by Chung et al [86], which reported no association to disease 

activity, consisted of patients with relatively low disease activity and without nephritis, while 

the population of Durcan et al [87], where an association to disease activity was reported, was 

more heterogeneous and included SLE patients with renal involvement.  

Taken together, our results indicate that serum GlycA concentration, as a summary measure 

for multiple inflammatory processes, could be a valuable biomarker to discriminate 

proliferative from non-proliferative forms of lupus nephritis in flaring patients and could be 

used to follow-up treatment response. We believe this biomarker should be more extensively 

tested in large, prospective cohorts of patients with SLE. Our data suggests that GlycA could 

possibly be used as a globally predictive biomarker and we advocate testing its capacity to 

identify patients with increased risk of mortality, morbidity and disease flares over longer 

periods of time. 
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Supplementary Material 

Tables 

Supplementary Table 1: Clinical and Demographic overview 

 

Supplementary Table 2: SLE patient clinical and demographical overview 

 

  

 

Healthy Controls

(n = 29)

Non-Lupus Nephritis

(n =21)

Quiescent SLE

(n = 39)

All Active SLE

(n =105)

48, 35-56 35, 27.5-47 32, 26-42

38 95 94

67 82

23, 20.75-27.25 21.45, 20.06-22.77 23.42, 20.96-26.58

19 5 16

0 0 25

NA 4, 2-4 8, 6-12

0, 0-0 6, 4-8 6, 4-10

0 95 84

2.2, 1.0-5.7 1, 0.775-1.25 2.5, 1-6.3

38, 32-41 41.17, 39.96-43.23 36.10, 33-38.12

172, 97-303 64.55, 56.15-83.12 68.04, 54.82-88.20

34.3, 18-111 87, 64-115 98, 63.25-120.25

NA 0.86, 0.78-0.91 0.72, 0.54-0.96

NA 0.15, 0.13-0.17 0.11, 0.06-0.19

  2, 0.465-5.9 0.303, 0.080-0.555 1.225, 0.635-2.900

0.086, 0.083-0.090 0.079, 0.074-0.082 0.086, 0.083-0.088 0.078, 0.070-0.081

0.051, 0.041-0.059 0.126, 0.074-0.218 0.057, 0.048-0.068 0.057, 0.047-0.074

1.322, 1.147-1.449 1.287, 1.151-1.506 1.184, 1.13-1.311 1.423, 1.287-1.621

NMR measurements

serum albumin (median, IQR signal area)

serum creatinin (median, IQR mmol/L)

GlycA (median, IQR mmol/L)

Clinical 

characteristics

SLEDAI (median, IQR)

Corticosteroid daily dose, mg (median, IQR mg)

Hydroxychloroquine (%)

Lab values

CRP (median, IQR mg/L)

Serum albumin (median, IQR g/L)

Serum creatinin (median, IQR µmol/L)

Glomerular Filtration Rate (median, IQR mL/min 1.73m²)

C3 (median, IQR g/L)

C4 (median, IQR g/L)

UPCR (median, IQR g/g)

  Characteristics

Demographic 

charactericstics

Age (median, IQR)

Gender female (%)

Ethnicity caucasian (%)

BMI (median, IQR)

Current smoking (%)

Arthritis (%)

 

Active SLE

(n = 37)

Active LN

(n = 25)

Biopsy proven

Flaring

Non-Proliferative LN

(n = 11)

Biopsy proven

Flaring

Proliferative LN

(n = 32)

31.5, 26-44 32, 26-42 35, 27-38.5 32.5, 26.75-41.5

95 100 91 91

68 92 82 90

24.39, 21.45-27.21 23.46, 20.51-26.37 29, 25-29.7 23, 20.325-25.175

3 12 36 26

24 0 64 31

8, 6-12 8, 8-12 8, 5-13 12, 7-15

6, 4-8 6, 6-10 5, 0-13.75 8, 5-19

84 96 18 34

1, 1-7 3, 1-8 3.5, 2.5-6.2 2.7, 1-5.7

38.24, 35.26-42.56 36.67, 35.91-37.55 34.17, 30-37 32, 27.85-36.00

61.89, 53.94-78.25 68.08, 54.82-91.96 58, 53-66.5 74, 57.50-101.49

100, 64-123 83, 57-116 114, 100-126.5 84, 62.5-116.5

0.84, 0.58-1.02 0.67, 0.52-0.98 0.81, 0.56-1.22 0.66, 0.54-0.89

0.11, 0.07-0.14 0.08, 0.05-0.18 0.16, 0.07-0.25 0.11, 0.06-0.19

0.618, 0.402-1.066 1.5, 0.677-2.042 2.1, 0.790-9.925 2.075, 0.99-5.717

0.081, 0.076-0.086 0.077, 0.074-0.08 0.07, 0.062-0.075 0.071, 0.067-0.08

0.054, 0.046-0.071 0.059, 0.052-0.076 0.051, 0.041-0.055 0.062, 0.052-0.08

1.357, 1.267-1.537 1.474, 1.306-1.753 1.371, 1.289-1.488 1.540, 1.326-1.674

NMR measurements

NMR serum albumin (median, IQR signal area)

NMR serum creatinin (median, IQR mmol/L)

GlycA (median, IQR mmol/L)

Clinical 

characteristics

SLEDAI (median, IQR)

Corticosteroid daily dose, mg (median, IQR mg)

Hydroxychloroquine (%)

Lab values

CRP (median, IQR mg/L)

Serum albumin (median, IQR g/L)

Serum creatinin (median, IQR µmol/L)

Glomerular Filtration Rate (median, IQR mL/min 1.73m²)

C3 (median, IQR g/L)

C4 (median, IQR g/L)

UPCR (median, IQR g/g)

  Characteristics

Demographic 

charactericstics

Age (median, IQR)

Gender female (%)

Ethnicity caucasian (%)

BMI (median, IQR)

Current smoking (%)

Arthritis (%)
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Supplementary Table 3: spearman correlation of GlycA to measured clinical variables. Significant adjusted 

p values (p<0.05 after Benjamini Hochberg multiple testing correction) are bolded.  

 

Supplementary Table 4:  c-statistics of all univariate and selected multivariate logistic regression models.  

 

Included variables C-statistic N=36

protU 0.53 35

CRP 0.56 32

Albumin 0.57 36

C4 0.58 29

Neutrophil 0.61 29

Corticosteroid Dosage 0.62 36

eGFR 0.62 36

Creatinine 0.64 36

Arthritis 0.66 36

dsDNA 0.66 33

C3 0.67 29

GlycA 0.72 36

BMI 0.75 30

CRP + Albumin + eGFR + protU + C3 0.72 26

CRP + Albumin + eGFR + protU + C3 + C4 0.76 26

GlycA + Albumin + eGFR + protU + C3 0.76 29

GlycA + Albumin + eGFR + protU + C3 + C4 0.80 29

GlycA + eGFR 0.73 36

GlycA + dsDNA 0.83 33

GlycA + BMI 0.92 30

GlycA + Arthritis + BMI 0.92 30

GlycA + dsDNA + BMI 0.98 28

CRP + Albumin + eGFR + protU + C3 + dsDNA 0.90 25

GlycA + Albumin + eGFR + protU + C3 + dsDNA 0.90 26

CRP + Albumin + eGFR + protU + C3 + dsDNA + BMI 1.00 20

GlycA + BMI + dsDNA + Corticosteroid Dosage 1.00 26

 Spearman ρ p adjusted p  Spearman ρ p adjusted p  Spearman ρ p adjusted p  Spearman ρ p adjusted p  Spearman ρ p adjusted p

Albumin -0.38 5.36E-06 1.96E-05 -0.41 4.90E-06 1.80E-05 -0.22 2.37E-01 5.92E-01 -0.26 1.58E-02 6.99E-02 0.05 7.63E-01 7.63E-01

BMI 0.01 9.50E-01 9.50E-01 0.07 4.14E-01 4.45E-01 0.07 6.58E-01 7.18E-01 -0.12 2.49E-01 3.42E-01 0.07 6.73E-01 7.63E-01

C3 -0.18 3.73E-02 5.85E-02 -0.18 3.73E-02 8.20E-02 -0.06 7.18E-01 7.18E-01 -0.13 2.13E-01 3.34E-01 -0.15 3.93E-01 7.63E-01

C4 -0.10 2.53E-01 2.79E-01 -0.10 2.53E-01 3.10E-01 -0.08 6.11E-01 7.18E-01 0.04 7.01E-01 7.71E-01 0.06 7.49E-01 7.63E-01

CRP 0.49 5.31E-10 5.84E-09 0.49 8.91E-09 9.80E-08 0.57 6.06E-04 6.06E-03 0.36 4.38E-04 4.82E-03 0.06 7.32E-01 7.63E-01

CorticoDosage 0.11 1.88E-01 2.30E-01 0.07 4.45E-01 4.45E-01 0.12 5.56E-01 7.18E-01 0.02 8.51E-01 8.51E-01 -0.22 1.71E-01 4.71E-01

Creatinine 0.17 3.68E-02 5.85E-02 0.16 5.47E-02 9.83E-02 0.41 1.22E-02 6.09E-02 0.13 1.78E-01 3.26E-01 0.34 2.93E-02 1.61E-01

GFR -0.13 9.12E-02 1.25E-01 -0.13 1.40E-01 1.93E-01 -0.37 2.32E-02 7.74E-02 -0.14 1.71E-01 3.26E-01 -0.34 2.75E-02 1.61E-01

Neutrophil 0.34 1.67E-02 3.68E-02 0.35 6.25E-02 9.83E-02 NA NA NA 0.35 6.25E-02 1.72E-01 0.35 6.25E-02 2.29E-01

SLEDAI 0.36 1.20E-05 3.31E-05 0.36 1.20E-05 3.31E-05 0.15 3.53E-01 7.06E-01 0.10 3.38E-01 4.13E-01 -0.09 5.65E-01 7.63E-01

UPCR 0.38 4.84E-06 1.96E-05 0.40 4.76E-06 1.80E-05 -0.12 5.68E-01 7.18E-01 0.24 1.91E-02 6.99E-02 0.08 6.03E-01 7.63E-01

Biopsy-proven Flaring LN

N=43  Characteristics
All Samples 

N=194

All SLE Patient

N=144

Quiescent SLE

N=39

Active SLE

N=105
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Figures 

 

Supplementary Figure 7: Measurements of serum creatinine and albumin levels correlate very well between NMR 
and standard laboratory tests (ρ=0.74 and ρ=0.94, respectively, with p-values<10-8). 
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CHAPTER 7 

Discussion and Future Perspectives 
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7.1 How transcriptomic analyses in ATL revealed the 

importance of inflammation and how GlycA quantification 

from gene expression led to discovery of novel applications 

for GlycA 

International meta-analysis has shown IFN-α and AZT combination therapy is 

associated with improved ATL disease outcomes, and can be considered the standard 

treatment for leukemic ATL in most of the world [140], [142], [174], though this 

consensus is not 100% unanimous [308]. In Chapter 2, we showed that IFN-β, in 

ex vivo ATL cell cultures, has greater anti-proliferative and pro-apoptotic effects than 

IFN-α. Of note, the NF-κB pathway was shown to be differentially regulated by these 

IFN subtypes: the IFN-α treated cultures showed a modest down-regulation of the 

NF-κB related gene-set, in accordance with in vitro reports [185], while, in contrast, a 

significant upregulation of this pathway was evident following IFN-β treatment. 

Considering that persistent NF-κB activation is a hallmark of viral protein Tax’s effects 

[123] and considering NF-κB’s strong anti-apoptotic effects [38], [39], it is somewhat 

surprising that the stronger anti-leukemic effects of IFN-β (that is, greater evidence of 

anti-proliferative and pro-apoptotic gene transcription) are accompanied by an increase 

in ‘anti-apoptotic’ NF-κB activation. Doubly so, considering IFN-α combination 

therapy is provably effective in treating ATL and causes NF-κB downregulation [185]. 

While it is possible that the apoptotic effects of IFN-β simply outclass the 

anti-apoptotic effects of NF-κB, an alternative hypothesis explaining these 

observations draws similarities to the IFN paradox observed in lymphocytic 

choriomeningitis virus infection, where IFN has strong antiviral activity early during 

the early stages of acute viral infection, but knockdown of the viral protection enables 

a resurgence of the virus and allows the host to clear its chronic infection [309]–[311]. 

The upregulation of NF-κB activity caused by IFN-β could disturb the proliferative 

environment established by the virus sufficiently to enable the host immune system to 

effectively combat the cancer cells. 



118 

Further complicating matters, recent reports show that NF-κB’s activities are more 

heterogenous than was originally thought. NF-κB is known for its anti-apoptotic 

effects [38], [39], and it is firmly established as a pro-inflammatory signaling pathway 

due to a) its ability to induce transcription of pro-inflammatory genes like IL-1 and 

TNFα and b) its implication in many inflammatory diseases including RA, MS and IBD 

[312]. However, like many cytokines, the transcription factor NF-κB seems to have 

anti-inflammatory properties in addition to its pro-inflammatory function: first, 

inhibition of NF-κB during the resolution of inflammation prolonged the 

inflammatory response and inhibited apoptosis in an animal model [313]. Second, 

mouse studies have shown IkB kinase (IKKβ) (a major component of the NF-κB 

pathway) has cell-type specific pro- and anti-inflammatory effects: it can have a 

proapoptotic role in neutrophils, which translates into an anti-inflammatory effect 

[314], and is an important factor in the development of anti-inflammatory M2 

macrophages [315]. A full review of the complexity of NF-κB’s activity can be found in 

[316]. That said, if we do read the NF-κB upregulation by IFN-β as a pro-inflammatory 

effect, the results generated in cell cultures reported in Chapter 2 suggest that 

inflammation is beneficial in promoting apoptosis and decreasing proliferation in ATL. 

The hypothesis suggesting inflammation plays a protective role in ATL also fits the 

results generated in Chapter 3, where network analysis linked IL-17 genes (i.e. 

pro-inflammatory cytokines) to genes with anti-proliferative characteristics. A robust 

negative correlation between IL-17C and PCNA expression, i.e. a biomarker for 

proliferation, is not only observed in several ATL gene expression datasets, but also in 

data generated in other Acute Lymphoblastic Leukemias.  

This apparent protective role of IL-17 associated inflammation in ATL might seem 

surprising considering the deleterious effects ascribed to IL-17 in neuro-inflammatory 

pathologies like Multiple Sclerosis [317]. In MS, IL-17 is increased over levels observed 

in healthy controls [27], and IFN-β, which is a well-established first-line therapy for 

MS, exhibits therapeutic anti-inflammatory effects through the inhibition of IL-17 

production [318], [319]. However, reports have shown that IFN-β can also exacerbate 

some subtypes of MS [320] and investigation into IFN-β’s effects in other autoimmune 

and inflammatory conditions has revealed that IFN-β can indeed exert both 
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detrimental and beneficial influences depending on whether the considered disease is 

driven by Th1 (where IFN-β is protective) or Th17 cell activity (where IFN-β 

exacerbates disease) [236]. This is one example of contradictory evidence in MS: IFN-β 

is an effective anti-inflammatory treatment option which inhibits IL-17 production, but 

also exacerbates disease in settings with high Th17 cell activity. Our own observations 

(Chapter 3) have illustrated IL-17 gene expression is very low in ATL, in agreement 

with other reports, but also in the neuro-inflammatory disease HAM/TSP. Our group 

has recently demonstrated that IFN-β’s more pronounced anti-proliferative effect 

when compared to IFN-α is evident in HAM/TSP [321], just like it is in the ATL 

patient cell cultures examined in Chapter 2. It is worth noting that IL-17 represents a 

gene-family which includes several forms. The protective role of IL-17C reported in 

Chapter 3 is not yet been examined in MS and HAM/TSP, where reports on IL-17 

have primarily examined IL-17A and IL-17F forms [236], [322]. 

The results in Chapters 2 and 3 rely on the interpretation of gene signatures, and 

inflammation was not comprehensively characterized at the protein level in these 

studies. Theoretically, it is possible that the observed upregulation of NF-KB pathway 

related genes in ATL in response to IFN-β, which coincides with its anti-leukemic 

effects, is actually anti-inflammatory in nature [313]–[316], though the evidence in 

Chapter 3 challenges that hypothesis. Clearly, elucidating the role inflammation plays in 

the HTLV-1 associated pathologies is important, but studies have found no association 

between CRP levels and disease severity in HAM/TSP [323] and no difference in CRP 

levels of uninfected and asymptomatic HTLV-1 infected carriers [324].  In ATL, IL-6 

and CRP levels have been shown to be elevated in patients, compared to healthy 

controls, and significantly higher in acute-subtype than in chronic-subtype patients 

[325]. 

In several contexts, GlycA has proven to be a more robust measure of inflammation 

than CRP [57], [84], [89]. To test GlycA’s relevance in the HTLV-1 pathologies, NMR 

spectroscopy in collection of serum or plasma samples is required. However, not only 

are HTLV-1 sample collections relatively rare, but sample collection and biomarker 

measurements represent a significant cost. Meanwhile, transcriptomic data from the 

HTLV-1 setting is already available.  If this transcriptomic data could be repurposed to 
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obtain an estimate of GlycA levels, then its potential relevance could be explored prior 

to committing to a thorough study. The predictive model described in Chapter 4 is 

designed specifically for that purpose. It uses GlycA as a response variable to enable 

the summarization of the chronic inflammatory burden caused by a broad range of 

inflammatory processes. Preliminary results generated with the model (data not shown) 

suggest that inflammatory burden in ATL is increased over that of healthy controls but 

no clinical ATL subtype and disease severity metadata is available for the dataset used 

to generate these predictions, meaning the protective inflammation hypothesis could 

not be tested. For HTLV-1’s other major associated pathology, HAM/TSP, 

preliminary data generated by our predictive model suggests a correlation of GlycA 

with pro-viral load, which measures how prevalent the incorporation of the retrovirus 

is in the host’s DNA and which is considered a biomarker for disease severity. The 

predictive model also suggests a stepwise increase from healthy controls to 

asymptomatic carriers and HAM/TSP cases. NMR experiments on HAM/TSP 

samples to test these hypotheses are planned. Considering HAM/TSP’s similarities to 

MS, the GlycA biomarker should also be more closely examined in this better 

characterized neuroinflammatory pathology. 

The GlycA predictive model was designed to be applicable to any transcriptomic 

dataset. Re-use of publicly available gene expression data allowed us to correctly 

identify two novel contexts where GlycA could have clinical usefulness: the 

inflammatory bowel disease (IBD) context, where GlycA can be used to track 

treatment response even if patients are CRP negative at baseline (Chapter 5), and SLE, 

where GlycA is associated to disease activity and can be used to differentiate between 

proliferative and non-proliferative cases of flaring LN (Chapter 6). While these results 

show great promise for the applicability of the GlycA biomarker, they do not provide a 

mechanistic explanation for the observed associations. In what follows, I explore a 

number of hypotheses and discuss analysis techniques which could help elucidate how 

and why high GlycA concentrations are so detrimental to human health. The 

discussion concludes with a brief highlight of the clinical value of the GlycA biomarker 

before summarizing the experiments planned in future work.  
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7.2 What causes Glycoprotein Acetylation? 

7.2.1 Neutrophilic involvement, observations in SLE 

Recent evidence from our collaborators suggests that an IFN and neutrophilic gene 

expression signature is associated with renal involvement and disease severity in SLE 

and could possibly be used to predict disease flares [293]. Considering the results from 

a landmark network analysis in more than 2500 transcriptomes general population 

blood samples revealed an association between neutrophil gene expression and GlycA 

[76] and our own data (Chapter 6) confirms that GlycA is associated to SLE disease 

activity, neutrophilic activity is strongly implicated as a contributor to serum GlycA 

concentration. 

Observations made in a Lupus mouse model with regards to the beneficial effect of 

AAT protein and gene treatment (with AAT being the protein component of GlycA 

which best explains its associations to morbidity, according to [63]), suggest GlycA 

could be associated to B cells: dendritic cell (DC) activation plays a crucial role in SLE 

pathogenesis [326], and AAT treatment inhibited activation of DCs while also 

inhibiting the production of pro-inflammatory cytokines, DC-aided B cell proliferation 

and IgM production [327]. In this sense, one could argue that GlycA is a read-out for 

DC and B cell activity, though the correlation network analysis into gene expression 

associations with GlycA levels supports the role of neutrophils to a greater extent than 

that of DC and B cell gene expression [76]. Considering that the two primary gene 

expression profiles associated with SLE disease activity are neutrophil and IFN related 

[293], and a subset of DCs has been identified as major producers of IFN-α in SLE 

[328], all signs indicate that GlycA is a good biomarker in the SLE disease context. 

SLE is likely not to be the only interferonopathy in which the GlycA biomarker could 

be relevant, considering reports that show neutrophils are sources of IFN-α in some 

circumstances [329] and IFN-β in others [330] (the relevance to SLE of which is 

explored in [331]). 
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7.2.2 T cell involvement, observations in UC 

Recent reports on glycosylation profiles and the expression level of branched 

N-glycans on intestinal T cells in UC colonic biopsies have shown a correlation to 

disease severity [279] and an association to the failure of standard therapy [332]. 

Furthermore, these biomarkers show promise as clinical targets, as recent reports show 

that the deficiency in branched N-glycans can be ameliorated through metabolic 

supplementation with N-Acetylglucosamine (GlcNAc) in mice [280] and in human 

ex vivo CD3+ T cells [333]. Our own results in IBD (Chapter 5) show that disease 

severity is associated with increased systemic levels of acute phase proteins or their 

altered glycosylation profile. While these glycosylation profiles at the site of 

inflammation prove to be accurate biomarkers, their link to the systemic GlycA marker 

has not been explored. Whether this systemic evidence correlates with the altered 

glycosylation profile of T cell surface molecules at the site of inflammation is an 

important question which could help elucidate its root cause.  

Recent reports show that T cell development, transformation and can be regulated 

through enzymatic protein glycosylation, which requires the cellular availability of 

specific metabolites [334]. It should be noted that these reports quantified total 

O-linked GlcNAcylation content of purified T cells (in contrast to GlycA 

measurements which quantify N-linked GlcNAcylation in complete serum or plasma). 

Still, the link between metabolic pathways and T cell activity [335] suggests that the 

NMR analysis technique used to quantify GlycA could prove useful in these research 

settings, as the technique simultaneously quantifies amino acid and glycolysis related 

metabolites without additional cost. 

7.2.3 Gut microbiota and GlycA  

When searching for mechanistic explanations for GlycA’s effects, the potential 

involvement of gut microbiota should not be ignored. In a Finnish study of pregnant 

overweight and obese women, fecal microbiota richness (determined using 16S rRNA 

sequencing) was associated to decreased levels of GlycA and fiber intake levels above 

the recommended daily minimum [336]. This association between healthy microbial 
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diversity and decreased low-grade inflammation was not evident in other inflammatory 

markers (i.e. hsCRP), though in this study hsCRP showed no correlation to any other 

quantified metric, illustrating again the high variability inherent in CRP measurements. 

We can find further circumstantial evidence supporting the gut microbiome link to 

serum GlycA levels in the scientific literature. First, the observation that bariatric 

surgery normalizes GlycA levels of obese patients even if they remain overweight or 

obese post-surgery [81], can be explained by the impact of the surgery on the gut 

microbiome [337], [338]. Second, meta-analysis shows that while the effects of regular 

exercise on traditional inflammatory markers such as CRP are not uniform [339], the 

observed effects on GlycA across a variety of studies show a clear-cut beneficial effect 

[82] and it is possible that this protective effect of exercise on GlycA levels is achieved 

through the microbiome, as aerobic exercise has likewise been shown to positively 

affect the microbiome [340], [341]. 

7.2.4 So what is GlycA, really? 

Retaking the introduction, we know that the GlycA signal originates from the 

acetylation of glycan groups of 5 main proteins and that, of these five, AAT best 

explains the GlycA’s associations with morbidity and mortality [63]. While this 

observation is largely based on imputed results and care should be taken in its 

interpretation, it is surprising that an inflammation suppressant like AAT [64] carries 

the bulk of the relevant information for GlycA’s associations with morbidity and 

mortality.  Parallels between GlycA and cytokines are hard to ignore: both are soluble 

serum biomarkers and the presence of anti-inflammatory markers can be considered as 

evidence of inflammation. Going forward, protein levels should be measured 

concurrently with GlycA levels to elucidate which contributions to the GlycA signal 

hold the most explanatory power: the concentrations of the proteins, their degree of 

glycosylation or precisely which sugar groups are attached to them? Furthermore, it 

remains to be seen whether increased protein glycosylation causes an inflammatory 

process or if the glycosylation occurs in response to inflammatory processes: i.e. we 

can wonder if GlycA represents a druggable target. In mouse models for arthritis [342], 

lupus [327] and type I diabetes [343], therapies increasing the prevalence of AAT, a 
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prominent contributor to the GlycA signal, have yielded promising results on both 

protein and gene therapy levels. Whether the other factors contributing to GlycA 

signal, i.e. the degree and type of glycosylation, can be targeted remains to be seen. 

These seemingly straightforward questions belie the complexity the glycome 

represents. Just like the genome gives rise to the transcriptome, which in turn gives rise 

to the proteome, the glycome represents an additional layer of complexity in the 

regulation of biological processes through protein interaction. The glycome contains 

information on which proteins are glycosylated, on which positions, and with which 

sugars. This combinatorial complexity is the reason why the glycome is orders of 

magnitude more vast than even the proteome. Considering the far reaching effects of 

glycosylation even on single therapeutic molecules (like high mannose glycans 

increasing IgG clearance from human serum [344], reviewed in [345]), it is unsurprising 

that investigating the complete host protein glycome is staggeringly difficult. 

Fortunately, even limited information in this context can prove relevant to human 

disease. Examples include the fucosylation of β-haptoglobin as a biomarker for colon 

cancer [68], the altered glycosylation profiles of transferrin (which coincidentally also 

contributes to the GlycA signal) in Alzheimer’s disease (with an increase in sialylation 

in blood [346], and a decrease in sialylation in cerebral spinal fluid [347], reviewed in 

[348]), and the heterogeneous effects of glycosylation on the biological function of 

immunoglobin (Ig) [349]. In this context, GlycA can be considered a summative 

measure of a specific set of glycosylations on a specific set of (acute-phase) proteins, 

which is far easier and cheaper to determine than a detailed glycosylation profile and 

represents an attractive avenue to fast-track glycoscience into the clinic.  

7.3 Clinical Value of serum NMR analysis 

While the GlycA NMR measurement is a more expensive way of quantifying 

inflammation (between 25 and 50 €) than CRP quantification (approx. 5 €), its greater 

stability and broader applicability make it an attractive option for clinical 

implementation. In addition, the NMR spectrum used to quantify GlycA concentration 

simultaneously quantifies 228 metabolites, ranging from a detailed cholesterol and 

(apo-)lipoprotein profile to phospholipids, fatty acids, amino acids and glycolysis 
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related metabolites. Several of these metabolites have already been shown to be useful 

biomarkers for e.g. vascular disease in diabetes [72] or risk for dementia and 

Alzheimer’s disease [350]. Other examples include the recently reported vascular 

anti-aging effects of β-hydroxybutyrate [351] or the protective anti-inflammatory 

effects of pyruvate (through inhibition of NF-ΚB activation) [352]. Combined, this 

means that clinical implementation of serum analysis using NMR would not only give 

clinicians access to a superior inflammatory biomarker but also to several other 

lipidomic and metabolomic markers (each with their own added value), while 

simultaneously eliminating the need for cholesterol profiling using different tests.  In 

this thesis I have shown that it is possible to screen publicly available transcriptomic 

data for settings in which the GlycA marker could be relevant (Chapter 4), and I have 

provided evidence of GlycA’s clinical relevance in IBD and SLE disease contexts 

(Chapters 5 and 6, respectively).  

7.4 Future Perspectives 

Future research efforts focus on two different aspects: first, more work is needed to 

further refine the predictive models and to robustly prove their performance. This 

includes testing the model’s ability to identify an anti-inflammatory state, which 

preliminary GlycA predictions, somewhat surprisingly, suggest exists in cutaneous 

parasitic leishmaniasis infection.  

The second avenue of research is focused on proving the clinical usefulness of GlycA. 

As a summary measure of chronic inflammation, GlycA a priori seems like a biomarker 

worth investigating in neuroinflammatory pathologies like HAM/TSP and MS. The 

tentative results generated by the predictive model do seem to support this hypothesis 

in HAM/TSP, where predicted GlycA is associated to pro-viral load (a biomarker for 

HAM/TSP severity) and the model suggests the existence of a stepwise increase in 

GlycA concentration between healthy controls, asymptomatic infection and active 

HAM/TSP. For HTLV-1’s other major pathology, ATL, the predictive model suggests 

patients with active disease have increased GlycA levels compared to healthy controls, 

but additional clinical metadata is required to test whether the hypothesis of protective 

inflammation, following the observations reported in Chapters 2 and 3, bears true. 
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Outside of the HTLV-1 context, plans exist to test GlycA’s clinical usefulness to detect 

imminent disease flares in SLE. If the neutrophilic gene expression which is associated 

to disease activity can predict the occurrence of SLE disease flares [293] then it is 

possible that GlycA concentration, which is also associated with disease activity 

(Chapter 6) and with neutrophil gene expression [76], could also be used to predict 

SLE disease flares. A project has been submitted to the Research Foundation Flanders 

(FWO) to investigate this hypothesis in the LUMIER² study (LUpus Molecular 

Immuno-monitoring to Evaluate the Risk of Relapse, ClinicalTrials.gov Identifier 

NCT02811094). In that study, clinically quiescent adult patients with SLE that had no 

change in treatment in the past 3 months are followed for a period of 12 months. In 

the absence of flare, blood samples are drawn every 3 months. Patients presenting a 

flare, are sampled at the time of the flare and again 1 month post-flare. The LUMIER² 

study was designed to test the flare-predictive value of neutrophil- and IFN-related 

genes using RNA-Seq experiments. Adding metabolomic measurements to this study 

not only addresses the hypothesis about GlycA’s ability to predict SLE disease flare, 

but incidentally also provides valuable data currently missing from the literature, 

namely the short-term stability of the metabolic markers and GlycA in patients with 

stable and managed disease. 
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Summary 

Human T-Cell Leukemia Virus Type 1, HTLV-1, is a pathogenic retrovirus infecting 

approximately 10 million individuals worldwide. The virus causes two distinct pathologies: 

Adult T-cell leukemia/lymphoma (ATL) and HTLV-1 Associated Myelopathy / Tropical 

Spastic Paraparesis (HAM/TSP). The common treatment of ATL currently consists of 

combination therapy with interferon (IFN) α and zidovudine. However, early reports showed 

IFN-β was also an effective treatment strategy, though IFN-α treatment became the standard 

based on empirical results. To explore the potential viability of IFN-β treatment in ATL, we 

tested the differential effects of IFN-α and -β on short term PBMC cultures of ATL patients 

and concluded that IFN-β has superior anti-proliferative and pro-apoptotic effects. Additional 

meta-analysis in four ATL gene expression datasets revealed a consistent decrease in RORC 

transcript abundance. In addition, a robust negative correlation exists between IL17C gene 

expression and proliferative gene expression in ATL and in other lymphoid leukemias. The 

transcriptomic experiments used in these studies also showed that inflammation could serve a 

protective role in ATL. As HTLV-1’s other major pathology, HAM/TSP, is a 

neuroinflammatory disorder, we aimed to find a robust way of quantifying the inflammatory 

burden in transcriptomic experiments. Glycoprotein Acetylation (GlycA) is a novel biomarker 

for inflammation quantified in blood serum or plasma using Nuclear Magnetic Resonance 

(NMR) spectroscopy. This marker is a summary measure associated with a broad range of 

inflammatory processes and can be interpreted as a patient’s chronic inflammatory burden. 

Using various machine learning algorithms on a large collection of paired NMR measurements 

and blood gene expression profiles, we constructed a predictive model which quantifies 

relative GlycA concentration from the gene transcript abundance in a patient’s blood. This 

predictive model was first shown to replicate published GlycA associations. Then, novel 

predictions were made using publicly available third-party data, which were tested, and 

confirmed to be accurate, using new NMR experiments. The GlycA measurements in 

Inflammatory Bowel Disease (IBD) and Systemic Lupus Erythematosus (SLE) were studied in 

greater detail. In IBD, GlycA concentration in patient serum samples was found to be higher 

than what was measured in healthy controls. In patients that responded to treatment and 

achieved mucosal healing, GlycA fell back down to the levels observed in healthy controls. 

Patients that showed an endoscopic treatment response but did not achieve full mucosal 

healing showed a GlycA decrease but fell short of returning to the healthy control GlycA 
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levels. Considering our data shows that GlycA tracks disease activity even in patients without 

elevated C-reactive protein, our results demonstrate that GlycA holds great promise as a 

serological biomarker for disease activity in IBD. In SLE, our results show that GlycA levels 

are higher in SLE patients than those observed in healthy controls and even in nephritic 

controls without lupus, despite the altered renal function of the latter. We find that GlycA is 

associated to the SLE disease activity index and that proliferative lupus nephritis patients have 

higher GlycA concentrations than non-proliferative patients at time of renal biopsy. When 

comparing performance of GlycA to traditional biomarkers, we show that GlycA is the more 

informative biomarker. 
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Samenvatting 

Human T-Cell Leukemia Virus Type 1 (HTLV-1) is een pathogeen retrovirus waar wereldwijd 

ongeveer 10 miljoen mensen mee geïnfecteerd zijn. Infectie met het virus kan twee 

verschillende ziekten veroorzaken: Adult T-cell leukemia/lymphoma (ATL) en HTLV-1 

Associated Myelopathy of Tropical Spastic Paraparesis (HAM/TSP). De behandeling van 

ATL bestaat uit combinatietherapie met interferon (IFN) α en zidovudine. IFN-α is de 

internationaal aanvaarde behandeling geworden op basis van empirisch behaalde resultaten, 

ondanks dat gerapporteerde testen met IFN-β aantoonden dat dit ook een potentiële 

behandelingsoptie was. Om na te gaan of IFN-β een beter alternatief zou kunnen zijn, hebben 

we de effecten van IFN-α en -β behandeling getest in PBMC celculturen van ATL patiënten. 

De resultaten tonen aan dat IFN-β sterkere anti-proliferatieve en pro-apoptotische 

eigenschappen heeft dan IFN-α. Meta-analyse in vier genexpressie datasets van ATL-patiënten 

toonde een consistente daling van de hoeveelheid RORC-transcript. Daarnaast observeerden 

we ook een robuuste negatieve correlatie tussen IL17C genexpressie en proliferatieve 

genexpressie in ATL én in andere lymfatische leukemieën. Uit de transcriptoomanalyse 

waarop deze besluiten gebaseerd zijn, bleek daarnaast ook aan dat ontsteking een 

beschermende rol kan spelen in ATL. Gezien de andere belangrijke pathologie veroorzaakt 

door HTLV-1, HAM/TSP, een neuro-inflammatoire aandoening is, hebben we een manier 

uitgewerkt om onstekingslast te kwantificeren in transcriptomen. Glycoproteïne Acetylatie 

(GlycA) is een nieuwe biomerker voor inflammatie die gemeten wordt in serum of plasma met 

behulp van Nucleaire Magnetische Resonantie (NMR) spectroscopie. Deze merker is 

geassocieerd met een brede waaier inflammatoire processen en wordt geïnterpreteerd als de 

chronische ontstekingslast van een patiënt. Met behulp van ‘machine learning’ algoritmes 

hebben we uit een grote collectie gepaarde NMR en genexpressie experimenten een wiskundig 

model opgesteld dat GlycA kan afschatten op basis van de gemeten gen transcriptie in 

bloedstalen. Dit model slaagt erin om gekende associaties met GlycA te repliceren in publiek 

beschikbare data en nieuwe voorspellingen te maken die ook bevestigd werden via NMR-

metingen. De GlycA metingen in chronische darmonstekingsziekten (IBD) en Systemische 

Lupus Erythematodes (SLE) werden nader onderzocht. In IBD tonen we aan dat GlycA 

concentraties van IBD-patiënten met actieve ziekte, groter zijn dan deze van gezonde 

personen. Bij patiënten die goed reageerden op hun behandeling en waarvan genezing van de 

mucosa kon vastgesteld worden, valt de GlycA concentratie terug naar het niveau dat gemeten 
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wordt bij gezonde personen. Als patiënten goed reageren op behandeling, maar geen volledige 

genezing van de slijmvliezen vertoonden dan daalt de GlycA concentratie, maar bereikt deze 

niet hetzelfde niveau als dat van een gezond persoon. Onze data toont aan dat GlycA in IBD 

een zeer beloftevolle serologische biomerker is, gezien zelfs in patiënten waar de traditionele 

ontstekingsmerker C-reactief proteïne niet verhoogd is GlycA toch geassocieerd is met 

ziekteactiviteit. In SLE tonen we aan dat GlycA concentratie hoger is patiënten dan in 

gezonde personen én dan in nierontstekingspatiënten zonder lupus, ondanks de verminderde 

nierfunctie in deze laatste groep. GlycA is hier gerelateerd met ziekteactiviteit en patiënten met 

proliferatieve nierontsteking hebben bij hun nier biopsie een hogere GlycA concentratie in 

hun serum dan patiënten wiens nierontsteking niet proliferatief is. Als we GlycA vergelijken 

met traditionele biomerkers voor de proliferatieve status van de nierontsteking, dan zien we 

dat GlycA veel informatiever is dan de merkers die momenteel gebruikt worden.
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Appendix A 

Disease 
Context 

Study 
GlycA 

Observation 
Transcriptomic 

Dataset 
PMID 

Observed Model 
Prediction 

Replicates 
known 

observation? 

Diabetes [72] Increase over HC GSE46097 24563419 
Diabetes patient GlycA is 
0.276 SD higher than HC 

Yes 

CVD 
[69]–
[71] 

Increase over HC GSE46097 24563419 
CAD patient GlycA is 0.264 
SD higher than HC 

Yes 

Obesity 
[79], 
[80] 

Increase over HC 

GSE55205 27501771 
Obese subjects predicted 
GlycA is 0.263 SD higher 
than normal weight 

Yes 

GSE41505 25471305 
Pearson correlation between 
BMI and GlycA = 0.65 

Yes 

SLE 
[86], 
[87] 

Increase over HC 

GSE50772 25861459 
SLE patient GlycA is 0.489 
SD higher than HC 

Yes 

GSE17755 21496236 
SLE patient GlycA is 1.038 
SD higher than HC 

Yes 

Correlation with 
SLEDAI 

GSE50772 25861459 
Pearson correlation between 
SLEDAI and GlycA = 0.47 

Conflicting 

GSE72754 27354683 
Pearson correlation between 
SLEDAI and GlycA = 0.28 

Conflicting 

RA 
[83], 
[84] 

Increase over HC 

GSE17755 21496236 
RA patient GlycA is 0.489 
SD higher than HC 

Yes 

GES15573 19710928 
RA patient GlycA is 0.769 
SD higher than HC 

Yes 

Correlated with 
DAS28 

GSE15258 19699293 
Pearson correlation between 
DAS28 and GlycA = 0.20 

Yes 

Psoriasis [90] 

Increase over HC 

GSE61281 25243786 
Psoriasis patient GlycA is 
0.432 SD higher than HC 

Yes 

GSE61281 25243786 

Arthritic psoriasis patient 
GlycA is 0.20 SD higher than 
non-arthritic cutaneous 
psoriasis 

NA 

GSE55201 24999591 
Psoriasis patient GlycA is 
0.265 SD higher than HC 

Yes 

Decrease after 
antiTNF treatment  

GSE55201 24999591 
Anti-IL17A monoclonal 
antibody lowers GlycA by 
0.148 SD 

NA 

KD [57] 

Increase over HC 

GSE68004 29813106 
Acute KD patients have 
GlycA levels 1.07 SD higher 
than HC 

Yes 

GSE57183 26267155 
KD patients have GlycA 
levels 1.08 SD higher than 
HC 

Yes 

Increase over OFI 

GSE68004 29813106 
KD patients have GlycA 
levels 0.145 SD higher than 
OFI patients 

Yes 

GSE63881 25614765 
Severe Acute KD patients 
have GlycA levels 0.134 SD 
higher than OFI patients 

Yes 

Acute > Convalescent GSE63881 25614765 
Acute KD patients have 
GlycA levels 0.968 SD higher 
than convalescent patients 

Yes 
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Appendix B 

Entrez 

Gene ID
Gene Symbol Gene Description

GlycA 

Pearson.r

GlycA 

Pearson.p

GlycA 

Spearman.r

GlycA 

Spearman.p

Boruta 

Importance

1359 CPA3 carboxypeptidase A3 (mast cell) (CPA3), mRNA. -0.51 0.00 -0.37 0.00 43.98

3067 HDC histidine decarboxylase (HDC), mRNA. -0.49 0.00 -0.32 0.00 42.18

85414 SLC45A3 solute carrier family 45, member 3 (SLC45A3), mRNA. -0.41 0.00 -0.37 0.00 39.41

2206 MS4A2 membrane-spanning 4-domains, subfamily A, member 2 (Fc fragment 

of IgE, high affinity I, receptor for; beta polypeptide) (MS4A2), mRNA.

-0.40 0.00 -0.30 0.00 36.16

2624 GATA2 GATA binding protein 2 (GATA2), mRNA. -0.39 0.00 -0.33 0.00 35.22

84767 SPRYD5 SPRY domain containing 5 (SPRYD5), mRNA. -0.37 0.00 -0.29 0.00 29.50

440712 C1ORF186 chromosome 1 open reading frame 186 (C1orf186), mRNA. -0.38 0.00 -0.31 0.00 27.37

399940 LOC399940 PREDICTED: similar to tripartite motif-containing 51 (LOC399940), 

mRNA.

-0.31 0.00 -0.25 0.00 20.71

1088 CEACAM8 carcinoembryonic antigen-related cell adhesion molecule 8 

(CEACAM8), mRNA.

0.25 0.00 0.28 0.00 20.55

4973 OLR1 oxidized low density lipoprotein (lectin-like) receptor 1 (OLR1), 

mRNA.

0.25 0.00 0.21 0.00 18.87

22915 MMRN1 multimerin 1 (MMRN1), mRNA. 0.14 0.00 0.13 0.00 18.74

729645 LOC729645 PREDICTED: similar to C-type lectin domain family 4, member g 

(LOC729645), mRNA.

-0.27 0.00 -0.23 0.00 17.51

4057 LTF lactotransferrin (LTF), mRNA. 0.27 0.00 0.27 0.00 16.20

339324 ZNF260 zinc finger protein 260 (ZNF260), mRNA. 0.02 0.46 0.01 0.71 15.38

5176 SERPINF1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment 

epithelium derived factor), member 1 (SERPINF1), mRNA.

-0.13 0.00 -0.18 0.00 15.17

65008 MRPL1 mitochondrial ribosomal protein L1 (MRPL1), nuclear gene encoding 

mitochondrial protein, mRNA.

0.05 0.03 0.01 0.58 15.08

7979 SHFM1 split hand/foot malformation (ectrodactyly) type 1 (SHFM1), mRNA. 0.29 0.00 0.21 0.00 14.86

339512 C1ORF110 chromosome 1 open reading frame 110 (C1orf110), mRNA. 0.16 0.00 0.02 0.33 14.76

389517 LOC389517 similar to Williams Beuren syndrome chromosome region 19 

(LOC389517), mRNA.

0.08 0.00 0.04 0.08 14.58

1669 DEFA4 defensin, alpha 4, corticostatin (DEFA4), mRNA. 0.20 0.00 0.24 0.00 14.54

2994 GYPB glycophorin B (MNS blood group) (GYPB), mRNA. 0.19 0.00 0.23 0.00 14.50

28998 MRPL13 mitochondrial ribosomal protein L13 (MRPL13), nuclear gene 

encoding mitochondrial protein, mRNA.

0.13 0.00 0.14 0.00 14.15

932 MS4A3 membrane-spanning 4-domains, subfamily A, member 3 

(hematopoietic cell-specific) (MS4A3), transcript variant 3, mRNA.

-0.14 0.00 -0.09 0.00 14.08

26122 EPC2 enhancer of polycomb homolog 2 (Drosophila) (EPC2), mRNA. 0.03 0.29 -0.01 0.64 13.91

757 TMEM50B transmembrane protein 50B (TMEM50B), mRNA. 0.15 0.00 0.10 0.00 13.84

4680 CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 (non-

specific cross reacting antigen) (CEACAM6), mRNA.

0.23 0.00 0.26 0.00 13.81

100507547 NA NA 0.16 0.00 0.13 0.00 13.58

780853 SNORD3C small nucleolar RNA, C/D box 3C (SNORD3C), small nucleolar RNA. 0.18 0.00 0.13 0.00 13.48

199675 C19ORF59 chromosome 19 open reading frame 59 (C19orf59), mRNA. 0.21 0.00 0.22 0.00 13.47

9962 SLC23A2 solute carrier family 23 (nucleobase transporters), member 2 

(SLC23A2), transcript variant 2, mRNA.

-0.18 0.00 -0.23 0.00 13.19

131118 DNAJC19 DnaJ (Hsp40) homolog, subfamily C, member 19 (DNAJC19), mRNA. 0.03 0.31 -0.02 0.52 13.17

669 BPGM 2,3-bisphosphoglycerate mutase (BPGM), transcript variant 2, mRNA. 0.21 0.00 0.25 0.00 13.14

5169 ENPP3 ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3), 

mRNA.

-0.21 0.00 -0.22 0.00 13.12

7503 XIST X (inactive)-specific transcript (non-protein coding) (XIST), non-

coding RNA.

-0.19 0.00 -0.21 0.00 13.11

5008 OSM oncostatin M (OSM), mRNA. 0.08 0.00 0.13 0.00 13.05

3934 LCN2 lipocalin 2 (LCN2), mRNA. 0.27 0.00 0.29 0.00 12.94

57605 PITPNM2 phosphatidylinositol transfer protein, membrane-associated 2 

(PITPNM2), mRNA.

0.02 0.40 0.01 0.64 12.89

160622 GRASP GRP1 (general receptor for phosphoinositides 1)-associated scaffold 

protein (GRASP), mRNA.

0.04 0.11 0.05 0.04 12.87

9846 GAB2 GRB2-associated binding protein 2 (GAB2), transcript variant 1, mRNA. -0.25 0.00 -0.11 0.00 12.74

654101 LOC654101 PREDICTED: similar to tripartite motif-containing 51 (LOC654101), 

mRNA.

-0.27 0.00 -0.25 0.00 12.67

84243 ZDHHC18 zinc finger, DHHC-type containing 18 (ZDHHC18), mRNA. -0.21 0.00 -0.06 0.02 12.62

8079 MLF2 myeloid leukemia factor 2 (MLF2), mRNA. -0.23 0.00 -0.17 0.00 12.61

642569 TRIM53 PREDICTED: misc_RNA (TRIM53), miscRNA. -0.04 0.13 -0.11 0.00 12.36

54762 GRAMD1C GRAM domain containing 1C (GRAMD1C), mRNA. -0.13 0.00 -0.15 0.00 12.23

1195 CLK1 CDC-like kinase 1 (CLK1), mRNA. -0.14 0.00 -0.15 0.00 12.16

4317 MMP8 matrix metallopeptidase 8 (neutrophil collagenase) (MMP8), mRNA. 0.26 0.00 0.21 0.00 12.12

51690 LSM7 LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae) (LSM7), 

mRNA.

0.19 0.00 0.10 0.00 11.98

1308 COL17A1 collagen, type XVII, alpha 1 (COL17A1), mRNA. 0.21 0.00 0.23 0.00 11.97

2996 GYPE glycophorin E (GYPE), transcript variant 1, mRNA. 0.18 0.00 0.23 0.00 11.93

154664 ABCA13 ATP-binding cassette, sub-family A (ABC1), member 13 (ABCA13), 

mRNA.

0.19 0.00 0.15 0.00 11.92

8693 GALNT4 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 4 (GalNAc-T4) (GALNT4), mRNA.

0.11 0.00 0.19 0.00 11.85

653600 LOC653600 PREDICTED: similar to Neutrophil defensin 1 precursor (HNP-1) (HP-

1) (HP1) (Defensin, alpha 1) (LOC653600), mRNA.

0.19 0.00 0.25 0.00 11.83

376267 RAB15 RAB15, member RAS onocogene family (RAB15), mRNA. -0.10 0.00 -0.13 0.00 11.80

160365 CLECL1 C-type lectin-like 1 (CLECL1), mRNA. 0.10 0.00 0.02 0.40 11.74

5140 PDE3B phosphodiesterase 3B, cGMP-inhibited (PDE3B), mRNA. -0.11 0.00 -0.16 0.00 11.72  
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1511 CTSG cathepsin G (CTSG), mRNA. 0.16 0.00 0.18 0.00 11.66

340146 SLC35D3 solute carrier family 35, member D3 (SLC35D3), mRNA. 0.06 0.01 0.05 0.03 11.65

55924 C1ORF183 chromosome 1 open reading frame 183 (C1orf183), transcript variant 1, 

mRNA.

-0.22 0.00 -0.09 0.00 11.52

55889 GOLGA6 golgi autoantigen, golgin subfamily a, 6 (GOLGA6), mRNA. -0.13 0.00 -0.16 0.00 11.48

2235 FECH ferrochelatase (protoporphyria) (FECH), nuclear gene encoding 

mitochondrial protein, transcript variant 2, mRNA.

0.22 0.00 0.25 0.00 11.47

5376 PMP22 peripheral myelin protein 22 (PMP22), transcript variant 2, mRNA. -0.13 0.00 -0.15 0.00 11.45

2913 GRM3 glutamate receptor, metabotropic 3 (GRM3), mRNA. 0.11 0.00 0.09 0.00 11.45

65124 ANKRD57 ankyrin repeat domain 57 (ANKRD57), mRNA. 0.03 0.28 0.02 0.33 11.39

493856 CISD2 CDGSH iron sulfur domain 2 (CISD2), mRNA. 0.13 0.00 0.19 0.00 11.32

8347 HIST1H2BC histone cluster 1, H2bc (HIST1H2BC), mRNA. -0.21 0.00 -0.12 0.00 11.14

732393 LOC732393 PREDICTED: similar to tripartite motif protein 27 (LOC732393), 

mRNA.

-0.25 0.00 -0.22 0.00 11.10

286 ANK1 ankyrin 1, erythrocytic (ANK1), transcript variant 4, mRNA. 0.11 0.00 0.11 0.00 11.02

2353 FOS v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), 

mRNA.

-0.22 0.00 -0.14 0.00 10.95

60592 SCOC short coiled-coil protein (SCOC), mRNA. 0.06 0.02 0.00 0.91 10.90

85019 C18ORF45 chromosome 18 open reading frame 45 (C18orf45), mRNA. 0.06 0.02 0.04 0.11 10.83

10562 OLFM4 olfactomedin 4 (OLFM4), mRNA. 0.20 0.00 0.22 0.00 10.77

3887 KRT81 keratin 81 (KRT81), mRNA. -0.22 0.00 -0.23 0.00 10.74

51499 TRIAP1 TP53 regulated inhibitor of apoptosis 1 (TRIAP1), mRNA. 0.14 0.00 0.11 0.00 10.74

9474 ATG5 ATG5 autophagy related 5 homolog (S. cerevisiae) (ATG5), mRNA. -0.01 0.62 -0.01 0.67 10.74

58476 TP53INP2 tumor protein p53 inducible nuclear protein 2 (TP53INP2), mRNA. -0.22 0.00 -0.16 0.00 10.72

2205 FCER1A Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide 

(FCER1A), mRNA.

-0.23 0.00 -0.22 0.00 10.59

8842 PROM1 prominin 1 (PROM1), mRNA. 0.14 0.00 0.10 0.00 10.57

23365 ARHGEF12 Rho guanine nucleotide exchange factor (GEF) 12 (ARHGEF12), 

mRNA.

0.22 0.00 0.24 0.00 10.55

84557 MAP1LC3A microtubule-associated protein 1 light chain 3 alpha (MAP1LC3A), 

transcript variant 2, mRNA.

-0.28 0.00 -0.16 0.00 10.51

56954 NIT2 nitrilase family, member 2 (NIT2), mRNA. 0.03 0.29 0.04 0.11 10.42

51065 RPS27L ribosomal protein S27-like (RPS27L), mRNA. 0.27 0.00 0.17 0.00 10.41

653641 LOC653641 PREDICTED: similar to Golgin subfamily A member 6 (Golgin linked 

to PML) (Golgin-like protein), transcript variant 1 (LOC653641), mRNA.

0.09 0.00 0.06 0.02 10.34

55081 IFT57 intraflagellar transport 57 homolog (Chlamydomonas) (IFT57), mRNA. 0.01 0.62 -0.01 0.65 10.31

4547 MTTP microsomal triglyceride transfer protein (MTTP), mRNA. 0.14 0.00 0.03 0.17 10.23

199713 NLRP7 NLR family, pyrin domain containing 7 (NLRP7), transcript variant 2, 

mRNA.

-0.16 0.00 -0.18 0.00 10.22

90871 C9ORF123 chromosome 9 open reading frame 123 (C9orf123), mRNA. 0.04 0.12 0.03 0.16 10.11

101 ADAM8 ADAM metallopeptidase domain 8 (ADAM8), mRNA. -0.21 0.00 -0.10 0.00 10.11

10745 PHTF1 putative homeodomain transcription factor 1 (PHTF1), mRNA. 0.05 0.03 0.05 0.04 10.09

1991 ELANE elastase, neutrophil expressed (ELANE), mRNA. 0.18 0.00 0.23 0.00 9.96

434 ASIP agouti signaling protein, nonagouti homolog (mouse) (ASIP), mRNA. -0.15 0.00 -0.15 0.00 9.93

522 ATP5J ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F6 

(ATP5J), nuclear gene encoding mitochondrial protein, transcript 

variant 1, mRNA.

0.22 0.00 0.18 0.00 9.89

820 CAMP cathelicidin antimicrobial peptide (CAMP), mRNA. 0.28 0.00 0.30 0.00 9.87

5671 PSG3 pregnancy specific beta-1-glycoprotein 3 (PSG3), mRNA. -0.13 0.00 -0.01 0.70 9.83

55714 ODZ3 odz, odd Oz/ten-m homolog 3 (Drosophila) (ODZ3), mRNA. 0.15 0.00 0.11 0.00 9.82

9521 EEF1E1 eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1), mRNA. 0.10 0.00 0.01 0.58 9.76

56666 PANX2 pannexin 2 (PANX2), mRNA. -0.23 0.00 -0.16 0.00 9.70

23318 ZCCHC11 zinc finger, CCHC domain containing 11 (ZCCHC11), transcript variant 

3, mRNA.

-0.17 0.00 -0.25 0.00 9.68

54665 RSBN1 round spermatid basic protein 1 (RSBN1), mRNA. 0.11 0.00 0.07 0.00 9.67

645052 LOC645052 PREDICTED: similar to poly (ADP-ribose) polymerase family, member 

8 (LOC645052), mRNA.

-0.19 0.00 -0.18 0.00 9.66

27253 PCDH17 protocadherin 17 (PCDH17), mRNA. 0.07 0.01 0.05 0.06 9.63

55704 CCDC88A coiled-coil domain containing 88A (CCDC88A), mRNA. -0.02 0.45 -0.06 0.02 9.59

7504 XK X-linked Kx blood group (McLeod syndrome) (XK), mRNA. 0.18 0.00 0.23 0.00 9.58

149420 PDIK1L PDLIM1 interacting kinase 1 like (PDIK1L), mRNA. 0.01 0.66 0.00 0.88 9.56

57484 RNF150 ring finger protein 150 (RNF150), mRNA. 0.11 0.00 0.05 0.04 9.55

23607 CD2AP CD2-associated protein (CD2AP), mRNA. 0.02 0.38 0.00 0.96 9.54

148534 TMEM56 transmembrane protein 56 (TMEM56), mRNA. 0.17 0.00 0.15 0.00 9.46

55769 ZNF83 zinc finger protein 83 (ZNF83), mRNA. -0.08 0.00 -0.14 0.00 9.45

767 CA8 carbonic anhydrase VIII (CA8), mRNA. -0.20 0.00 -0.23 0.00 9.45

140032 RPS4Y2 ribosomal protein S4, Y-linked 2 (RPS4Y2), mRNA. 0.18 0.00 0.18 0.00 9.40

8654 PDE5A phosphodiesterase 5A, cGMP-specific (PDE5A), transcript variant 1, 

mRNA.

0.11 0.00 0.18 0.00 9.33

6037 RNASE3 ribonuclease, RNase A family, 3 (eosinophil cationic protein) 

(RNASE3), mRNA.

0.18 0.00 0.19 0.00 9.31

79886 C9ORF82 chromosome 9 open reading frame 82 (C9orf82), mRNA. 0.01 0.67 -0.03 0.20 9.29

729417 LOC729417 PREDICTED: hypothetical LOC729417 (LOC729417), mRNA. 0.04 0.09 0.05 0.04 9.25

5657 PRTN3 proteinase 3 (PRTN3), mRNA. 0.08 0.00 0.07 0.00 9.24

117247 SLC16A10 solute carrier family 16, member 10 (aromatic amino acid transporter) 

(SLC16A10), mRNA.

-0.10 0.00 -0.15 0.00 9.11
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80173 IFT74 intraflagellar transport 74 homolog (Chlamydomonas) (IFT74), 

transcript variant 2, mRNA.

0.04 0.11 0.03 0.16 9.10

2867 FFAR2 free fatty acid receptor 2 (FFAR2), mRNA. -0.15 0.00 0.01 0.60 9.09

2034 EPAS1 endothelial PAS domain protein 1 (EPAS1), mRNA. -0.16 0.00 -0.17 0.00 9.07

51668 C1ORF41 chromosome 1 open reading frame 41 (C1orf41), mRNA. 0.07 0.01 0.07 0.00 9.05

56959 C9ORF102 chromosome 9 open reading frame 102 (C9orf102), mRNA. 0.02 0.32 0.01 0.59 9.00

6164 RPL34 ribosomal protein L34 (RPL34), transcript variant 2, mRNA. 0.17 0.00 0.11 0.00 9.00

3240 HP haptoglobin (HP), mRNA. 0.22 0.00 0.24 0.00 8.97

56729 RETN resistin (RETN), mRNA. 0.18 0.00 0.21 0.00 8.92

200942 KLHDC8B kelch domain containing 8B (KLHDC8B), mRNA. -0.21 0.00 -0.15 0.00 8.91

1349 COX7B cytochrome c oxidase subunit VIIb (COX7B), nuclear gene encoding 

mitochondrial protein, mRNA.

0.24 0.00 0.16 0.00 8.90

10559 SLC35A1 solute carrier family 35 (CMP-sialic acid transporter), member A1 

(SLC35A1), mRNA.

0.09 0.00 0.00 0.98 8.88

51534 VTA1 Vps20-associated 1 homolog (S. cerevisiae) (VTA1), mRNA. -0.01 0.82 -0.02 0.50 8.87

22838 RNF44 ring finger protein 44 (RNF44), mRNA. -0.24 0.00 -0.21 0.00 8.86

192683 SCAMP5 secretory carrier membrane protein 5 (SCAMP5), mRNA. -0.15 0.00 -0.16 0.00 8.81

10321 CRISP3 cysteine-rich secretory protein 3 (CRISP3), mRNA. 0.21 0.00 0.18 0.00 8.71

653061 LOC653061 PREDICTED: similar to golgi autoantigen, golgin subfamily a, 8A 

(LOC653061), mRNA.

0.19 0.00 0.18 0.00 8.63

671 BPI bactericidal/permeability-increasing protein (BPI), mRNA. 0.20 0.00 0.19 0.00 8.63

3577 CXCR1 chemokine (C-X-C motif) receptor 1 (CXCR1), mRNA. -0.22 0.00 -0.05 0.06 8.62

693192 MIR607 microRNA 607 (MIR607), microRNA. 0.13 0.00 0.09 0.00 8.57

246126 CYORF15A chromosome Y open reading frame 15A (CYorf15A), mRNA. 0.14 0.00 0.13 0.00 8.55

54682 MANSC1 MANSC domain containing 1 (MANSC1), mRNA. -0.14 0.00 -0.03 0.23 8.54

27258 LSM3 LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae) (LSM3), 

mRNA.

0.22 0.00 0.15 0.00 8.51

4128 MAOA monoamine oxidase A (MAOA), nuclear gene encoding mitochondrial 

protein, mRNA.

0.16 0.00 0.14 0.00 8.43

100132774 LOC100132774 PREDICTED: hypothetical protein LOC100132774, transcript variant 2 

(LOC100132774), mRNA.

0.07 0.01 0.05 0.06 8.40

119710 C11ORF74 chromosome 11 open reading frame 74 (C11orf74), mRNA. 0.15 0.00 0.06 0.01 8.31

4856 NOV nephroblastoma overexpressed gene (NOV), mRNA. -0.27 0.00 -0.22 0.00 8.26

59285 CACNG6 calcium channel, voltage-dependent, gamma subunit 6 (CACNG6), 

transcript variant 1, mRNA.

-0.24 0.00 -0.22 0.00 8.23

8464 SUPT3H suppressor of Ty 3 homolog (S. cerevisiae) (SUPT3H), transcript variant 

2, mRNA.

0.09 0.00 0.09 0.00 8.20

5678 PSG9 pregnancy specific beta-1-glycoprotein 9 (PSG9), mRNA. -0.14 0.00 -0.05 0.07 8.17

55432 YOD1 YOD1 OTU deubiquinating enzyme 1 homolog (S. cerevisiae) (YOD1), 

mRNA.

0.22 0.00 0.23 0.00 8.16

306 ANXA3 annexin A3 (ANXA3), mRNA. 0.12 0.00 0.16 0.00 8.15

5616 PRKY protein kinase, Y-linked (PRKY), mRNA. 0.18 0.00 0.16 0.00 8.07

892 CCNC cyclin C (CCNC), transcript variant 2, mRNA. 0.01 0.65 0.00 0.97 8.06

162466 PHOSPHO1 phosphatase, orphan 1 (PHOSPHO1), mRNA. -0.11 0.00 -0.02 0.51 7.99

8178 ELL elongation factor RNA polymerase II (ELL), mRNA. -0.17 0.00 -0.09 0.00 7.95

26577 PCOLCE2 procollagen C-endopeptidase enhancer 2 (PCOLCE2), mRNA. 0.14 0.00 0.09 0.00 7.90

8334 HIST1H2AC histone cluster 1, H2ac (HIST1H2AC), mRNA. -0.13 0.00 -0.07 0.00 7.89

100129034 LOC100129034 PREDICTED: hypothetical protein LOC100129034 (LOC100129034), 

mRNA.

-0.11 0.00 -0.03 0.18 7.89

2358 FPR2 formyl peptide receptor 2 (FPR2), transcript variant 1, mRNA. -0.20 0.00 -0.09 0.00 7.82

439996 IFIT1L interferon-induced protein with tetratricopeptide repeats 1-like 

(IFIT1L), mRNA.

0.16 0.00 0.20 0.00 7.80

58526 MID1IP1 MID1 interacting protein 1 (gastrulation specific G12 homolog 

(zebrafish)) (MID1IP1), mRNA.

-0.29 0.00 -0.22 0.00 7.73

23645 PPP1R15A protein phosphatase 1, regulatory (inhibitor) subunit 15A (PPP1R15A), 

mRNA.

-0.19 0.00 -0.09 0.00 7.64

126308 MOBKL2A MOB1, Mps One Binder kinase activator-like 2A (yeast) (MOBKL2A), 

mRNA.

-0.20 0.00 -0.08 0.00 7.61

100131546 LOC100131546 PREDICTED: misc_RNA (LOC100131546), miscRNA. 0.05 0.05 0.01 0.59 7.57

84520 C14ORF142 chromosome 14 open reading frame 142 (C14orf142), mRNA. 0.03 0.29 0.01 0.55 7.56

133 ADM adrenomedullin (ADM), mRNA. -0.11 0.00 0.01 0.60 7.54

9086 EIF1AY eukaryotic translation initiation factor 1A, Y-linked (EIF1AY), mRNA. 0.18 0.00 0.20 0.00 7.51

6518 SLC2A5 solute carrier family 2 (facilitated glucose/fructose transporter), 

member 5 (SLC2A5), mRNA.

0.16 0.00 0.19 0.00 7.47

80127 C14ORF45 chromosome 14 open reading frame 45 (C14orf45), mRNA. 0.18 0.00 0.21 0.00 7.42

595097 SNORD16 small nucleolar RNA, C/D box 16 (SNORD16), small nucleolar RNA. 0.17 0.00 0.17 0.00 7.42

9185 REPS2 RALBP1 associated Eps domain containing 2 (REPS2), transcript variant 

2, mRNA.

-0.17 0.00 -0.03 0.22 7.40

66035 SLC2A11 solute carrier family 2 (facilitated glucose transporter), member 11 

(SLC2A11), transcript variant 3, mRNA.

-0.15 0.00 -0.07 0.00 7.37

79009 DDX50 DEAD (Asp-Glu-Ala-Asp) box polypeptide 50 (DDX50), mRNA. 0.04 0.13 0.01 0.61 7.34

2791 GNG11 guanine nucleotide binding protein (G protein), gamma 11 (GNG11), 

mRNA.

0.17 0.00 0.18 0.00 7.31

818 CAMK2G calcium/calmodulin-dependent protein kinase (CaM kinase) II gamma 

(CAMK2G), transcript variant 5, mRNA.

-0.20 0.00 -0.15 0.00 7.29

5411 PNN pinin, desmosome associated protein (PNN), mRNA. -0.16 0.00 -0.20 0.00 7.29

83639 TEX101 testis expressed 101 (TEX101), mRNA. -0.21 0.00 -0.22 0.00 7.28

5724 PTAFR platelet-activating factor receptor (PTAFR), mRNA. -0.25 0.00 -0.14 0.00 7.28

84844 PHF5A PHD finger protein 5A (PHF5A), mRNA. 0.26 0.00 0.19 0.00 7.27

84316 LSMD1 LSM domain containing 1 (LSMD1), mRNA. 0.18 0.00 0.16 0.00 7.26

64864 RFX7 regulatory factor X, 7 (RFX7), mRNA. 0.11 0.00 0.06 0.01 7.24  
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56945 MRPS22 mitochondrial ribosomal protein S22 (MRPS22), nuclear gene encoding 

mitochondrial protein, mRNA.

0.17 0.00 0.10 0.00 7.17

100133058 LOC100133058 PREDICTED: misc_RNA (LOC100133058), miscRNA. 0.08 0.00 0.04 0.10 7.16

55281 TMEM140 transmembrane protein 140 (TMEM140), mRNA. -0.19 0.00 -0.07 0.01 7.14

23421 ITGB3BP integrin beta 3 binding protein (beta3-endonexin) (ITGB3BP), mRNA. 0.06 0.01 0.00 0.92 7.12

11057 ABHD2 abhydrolase domain containing 2 (ABHD2), transcript variant 2, mRNA. -0.04 0.13 0.04 0.07 7.11

84437 KIAA1826 KIAA1826 (KIAA1826), mRNA. 0.00 0.97 0.00 0.98 7.10

26135 SERBP1 SERPINE1 mRNA binding protein 1 (SERBP1), transcript variant 3, 

mRNA.

0.15 0.00 0.07 0.01 7.09

55711 FAR2 fatty acyl CoA reductase 2 (FAR2), mRNA. -0.17 0.00 -0.07 0.00 7.01

401466 C8ORF59 chromosome 8 open reading frame 59 (C8orf59), transcript variant 3, 

mRNA.

0.14 0.00 0.04 0.08 6.99

26095 PTPN20B protein tyrosine phosphatase, non-receptor type 20B (PTPN20B), 

transcript variant 8, mRNA.

0.16 0.00 0.17 0.00 6.98

157567 ANKRD46 ankyrin repeat domain 46 (ANKRD46), mRNA. -0.01 0.57 -0.02 0.32 6.95

650155 LOC650155 PREDICTED: similar to hCG1812818 (LOC650155), mRNA. -0.19 0.00 -0.16 0.00 6.95

84329 HVCN1 hydrogen voltage-gated channel 1 (HVCN1), transcript variant 2, mRNA. -0.25 0.00 -0.23 0.00 6.94

51307 FAM53C family with sequence similarity 53, member C (FAM53C), mRNA. -0.13 0.00 0.00 0.85 6.93

170622 COMMD6 COMM domain containing 6 (COMMD6), transcript variant 1, mRNA. 0.20 0.00 0.11 0.00 6.93

8344 HIST1H2BE histone cluster 1, H2be (HIST1H2BE), mRNA. -0.20 0.00 -0.13 0.00 6.90

6119 RPA3 replication protein A3, 14kDa (RPA3), mRNA. 0.19 0.00 0.13 0.00 6.83

29992 PILRA paired immunoglobin-like type 2 receptor alpha (PILRA), transcript 

variant 1, mRNA.

-0.23 0.00 -0.13 0.00 6.77

4353 MPO myeloperoxidase (MPO), nuclear gene encoding mitochondrial 

protein, mRNA.

0.15 0.00 0.16 0.00 6.73

134430 WDR36 WD repeat domain 36 (WDR36), mRNA. 0.12 0.00 0.10 0.00 6.71

4724 NDUFS4 NADH dehydrogenase (ubiquinone) Fe-S protein 4, 18kDa (NADH-

coenzyme Q reductase) (NDUFS4), mRNA.

0.17 0.00 0.08 0.00 6.66

285955 WBSCR19 PREDICTED: Williams Beuren syndrome chromosome region 19, 

transcript variant 4 (WBSCR19), mRNA.

0.12 0.00 0.13 0.00 6.66

9497 SLC4A7 solute carrier family 4, sodium bicarbonate cotransporter, member 7 

(SLC4A7), mRNA.

0.04 0.11 -0.02 0.54 6.64

7411 VBP1 von Hippel-Lindau binding protein 1 (VBP1), mRNA. 0.09 0.00 0.01 0.61 6.57

100132199 LOC100132199 PREDICTED: misc_RNA (LOC100132199), miscRNA. 0.11 0.00 0.05 0.03 6.56

768211 RELL1 RELT-like 1 (RELL1), transcript variant 1, mRNA. -0.24 0.00 -0.22 0.00 6.55

100505659 NA NA 0.05 0.05 0.03 0.18 6.52

91272 FAM44B family with sequence similarity 44, member B (FAM44B), mRNA. 0.02 0.42 -0.01 0.74 6.52

514 ATP5E ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon 

subunit (ATP5E), nuclear gene encoding mitochondrial protein, 

mRNA.

0.25 0.00 0.22 0.00 6.52

22889 KIAA0907 KIAA0907 (KIAA0907), mRNA. -0.15 0.00 -0.19 0.00 6.51

51362 CDC40 cell division cycle 40 homolog (S. cerevisiae) (CDC40), mRNA. 0.11 0.00 0.08 0.00 6.51

566 AZU1 azurocidin 1 (AZU1), mRNA. 0.12 0.00 0.15 0.00 6.48

51187 RSL24D1 ribosomal L24 domain containing 1 (RSL24D1), mRNA. 0.14 0.00 0.09 0.00 6.47

154467 C6ORF129 chromosome 6 open reading frame 129 (C6orf129), mRNA. 0.17 0.00 0.14 0.00 6.43

128338 TMEM77 transmembrane protein 77 (TMEM77), mRNA. -0.01 0.59 -0.04 0.09 6.41

9556 C14ORF2 chromosome 14 open reading frame 2 (C14orf2), mRNA. 0.26 0.00 0.22 0.00 6.40

51115 FAM82B PREDICTED: family with sequence similarity 82, member B 

(FAM82B), mRNA.

0.12 0.00 0.11 0.00 6.34

8284 JARID1D jumonji, AT rich interactive domain 1D (JARID1D), mRNA. 0.16 0.00 0.13 0.00 6.31

100302207 MIR1974 microRNA 1974 (MIR1974), microRNA. 0.20 0.00 0.20 0.00 6.28

6227 RPS21 ribosomal protein S21 (RPS21), mRNA. 0.19 0.00 0.18 0.00 6.15

4116 MAGOH mago-nashi homolog, proliferation-associated (Drosophila) (MAGOH), 

mRNA.

0.09 0.00 0.10 0.00 6.13

7337 UBE3A ubiquitin protein ligase E3A (UBE3A), transcript variant 3, mRNA. 0.07 0.00 0.02 0.38 6.10

8648 NCOA1 nuclear receptor coactivator 1 (NCOA1), transcript variant 3, mRNA. -0.15 0.00 -0.04 0.15 6.10

57210 SLC45A4 solute carrier family 45, member 4 (SLC45A4), mRNA. -0.15 0.00 -0.05 0.04 6.09

9874 TLK1 tousled-like kinase 1 (TLK1), mRNA. 0.00 0.88 0.03 0.30 6.07

723790 HIST2H2AA4 histone cluster 2, H2aa4 (HIST2H2AA4), mRNA. -0.13 0.00 0.00 0.94 6.05

8539 API5 apoptosis inhibitor 5 (API5), mRNA. 0.08 0.00 0.00 0.89 6.02

780854 SNORD3D small nucleolar RNA, C/D box 3D (SNORD3D), small nucleolar RNA. 0.19 0.00 0.17 0.00 5.94

25843 MOBKL3 MOB1, Mps One Binder kinase activator-like 3 (yeast) (MOBKL3), 

transcript variant 2, mRNA.

0.11 0.00 0.08 0.00 5.90

642909 LOC642909 PREDICTED: misc_RNA (LOC642909), miscRNA. 0.11 0.00 0.07 0.00 5.83

56548 CHST7 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 (CHST7), 

mRNA.

-0.24 0.00 -0.18 0.00 5.78

54529 ASNSD1 asparagine synthetase domain containing 1 (ASNSD1), mRNA. 0.06 0.02 0.02 0.51 5.72

64801 ARV1 ARV1 homolog (S. cerevisiae) (ARV1), mRNA. 0.02 0.48 0.02 0.32 5.65

81542 TMX1 thioredoxin-related transmembrane protein 1 (TMX1), mRNA. 0.14 0.00 0.09 0.00 5.62

9807 IP6K1 inositol hexakisphosphate kinase 1 (IP6K1), transcript variant 1, mRNA. -0.19 0.00 -0.07 0.00 5.60

4851 NOTCH1 Notch homolog 1, translocation-associated (Drosophila) (NOTCH1), 

mRNA.

-0.12 0.00 -0.04 0.14 5.55
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