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Abstract
The most preferred approach in the literature on service-level ob-
jectives for multi-tenant databases is to group tenants according
to their SLA class in separate database processes and find optimal
co-placement of tenants across a cluster of nodes. To implement per-
formance isolation between co-located database processes, request
scheduling is preferred over hypervisor-based virtualization that
introduces a significant performance overhead. A relevant question
is whether the more light-weight container technology such as
Docker is a viable alternative for running high-end performance
database workloads. Moreover, the recent uprise and industry adop-
tion of container orchestration (CO) frameworks for the purpose of
automated placement of cloud-based applications raises the ques-
tion what is the additional performance overhead of CO frame-
works in this context. In this paper, we evaluate the performance
overhead introduced by Docker engine and two representative CO
frameworks, Docker Swarm and Kubernetes, when running and
managing a CPU-bound Cassandra workload in OpenStack. Firstly,
we have found that Docker engine deployments that run in host
mode exhibit negligible performance overhead in comparison to
native OpenStack deployments. Secondly, we have found that vir-
tual IP networking introduces a substantial overhead in Docker
Swarm and Kubernetes due to virtual network bridges when com-
pared to Docker engine deployments. This demands for service
networking approaches that run in true host mode but offer sup-
port for network isolation between containers. Thirdly, volume
plugins for persistent storage have a large impact on the overall
resource model of a database workload; more specifically, we show
that a CPU-bound Cassandra workload changes into an I/O-bound
workload in both Docker Swarm and Kubernetes because their
local volume plugins introduce a disk I/O performance bottleneck
that does not appear in Docker engine deployments. These findings
imply that solved placement decisions for native or Docker engine
deployments cannot be reused for Docker Swarm and Kubernetes.
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1 Introduction
Multi-tenancy is an architectural design principle for Database-as-a-
Service (DaaS) providers to enable the hosting of tenants by a single
database instance in order to reduce development and operational
costs [9]. In particular, data of tenants is stored in the same database
process or even database entity (e.g., table, document, collection).

Tenants and DaaS provider operate according to a service level
agreement (SLA), which defines among others a contract with spe-
cific service level objectives (SLOs) about performance and avail-
ability. A performance SLO is typically expressed as a contract
with mutual rights and obligations: if the tenant keeps below a
maximum allowed request rate, the DaaS provider is able to guar-
antee a minimum response latency and/or throughput expressed in
terms of percentiles across the 95th-99th range. To enforce an SLO,
admission control of aggressive tenants is required. Moreover to
offer different custom SLOs to tenants, QoS differentiation between
tenants must be implemented.

The most common and preferred approach in the literature for
SLO management of multi-tenant databases consists of a two-fold
approach [15, 18]: (i) to group tenants according to their SLA class
(e.g. golden and bronze SLAs) in separate database processes and
to find optimal placements of golden and bronze tenants across
a cluster of nodes so that SLOs are met and node resources are
maximally utilized; (ii) to implement admission control and QoS
differentiation between database processes, a request scheduler
approach [12] is preferred over hypervisor-based virtualization
that is not performant enough for high-end SLOs such as 1000
transactions per second [15, 19].

Recently, there has been a strong industry adoption of Docker
containers due to their lower memory footprint and more adaptive
resource allocation among different co-located containers, leading
to improved resource utilization in comparison to hypervisor-based
virtualization [25]. This raises a first relevant question whether
container technology such as Docker is a viable alternative for
running high-end performance database workloads.

Container orchestration (CO) frameworks, such as Kubernetes [13]
and Docker Swarm [4] provide support for automated container
placement, scaling and management [10]. These frameworks in-
clude by default three kinds of automated management function-
alities: (i) optimal yet highly customizable placement of different
types of workloads, (ii) inter-container networking, service load
balancing and service discovery and (iii) QoS assurance and adap-
tive resource allocation [20]. This raises a second relevant question
about the performance overhead of using CO frameworks for auto-
mated management of database clusters.

The remainder of this paper is structured as follows. First, Section
2 presents related work. Then, Section 3 evaluates the performance
overhead of Docker engine and two representative CO frameworks,
Docker Swarm and Kubernetes, by means of the YCSB benchmark



SAC ’19, April 8–12, 2019, Limassol, Cyprus E. Truyen et al.

for Cassandra. Finally, Section 3 discusses the findings of the per-
formance evaluation. The scripts for reproducing the experiments
and our experimental results are available on GitHub [5].

2 Related work
Existing research [6, 7, 17] has focused most attention on compar-
ing the performance of a single container against a single virtual
machine, both running directly in Linux on top of a bare-metal ma-
chine. Sharma et al. [17] also evaluate the so-called hybrid model
where a containerized Redis database, inside a VM, is compared to
Redis natively installed in the OS of the VM. Their results show
that the hybrid model performs slightly better. As will be shown
below, we observe similar findings when comparing a Docker+VM
deployment of Cassandra in comparison to a VM-only deployment.

Containers do not provide the same level of performance isola-
tion as virtual machines however [6, 16, 22]. Therefore, it is still
preferred to implement admission control by means of a request
scheduler that is placed before or within the load-balancing tier
of the DaaS provider [12]. QoS differentiation between golden and
bronze tenants can then be realized by allocating more resources
to the database containers of the golden tenants [21].

Literature on design and evaluation of CO frameworks origi-
nates mostly from Google [22] and also Kubernetes has originally
been created by Google [1]. The Borg system, a predecessor of
Kubernetes, is currently the main platform for orchestrating and
managing various Google services. For example, the Google Cloud
Engine IaaS relies on Borg for scheduling VMs inside containers.
Verma et al. [22] shows that the Borg system supports improved
resource utilization in terms of number of machines needed for
fitting a certain workload on.

Themost popular open-source CO frameworks, includingDocker
Swarm, Kubernetes and Mesos, support multiple approaches to ser-
vices networking, i.e support for exposing the service of a container
via a network [20]. In this paper we evaluate the use of a virtual
IP network between containers where the service of a container
is identified by means of a stable cluster IP address. All CO frame-
works also support service load balancing via a built-in replication
controller and L4 load balancer and service discovery via an in-
ternal DNS service. For deploying stateful applications such as a
database cluster where the different database instance interact in a
peer-to-peer fashion, each database instance requires a unique sta-
ble DNS name or stable Service IP. Persistent volumes are another
required CO feature for database containerization [20].

Kratzke et al. [11] has already studied the overhead of virtual net-
works between containers in public cloud providers and concludes
that operating container clusters with highly similar core machine
types is the best strategy in public cloud provider platforms to
minimize the data-transfer rate-reducing effects of containers. As
such, we have taken the findings of this work as premise for our
experiments.

Gehberger et al [8] evaluates the performance of a specific net-
work plugin for Kubernetes that exploits hardware-supported fea-
tures such as SRV-IO, in the context of low-latency robot-to-robot
communication. Their results show that there is still an overhead
of more than 30% in comparison to native deployments that don’t
use Kubernetes.

Truyen et al. [20] presents an extensive evaluation of Docker
Swarm and Kubernetes for deploying and managing a MongoDB
database cluster. Similar to our work, they use the YCSB benchmark

for various workload types. Their results show similar response
latency overheads as we have measured for Cassandra. Our work
differs in that we have also analyzed resource usage metrics, hereby
revealing that storage plugins can have a negative impact on the
overall resource model of CPU-intensive database workloads. As
such we identify the causes of the observed performance overhead.

3 Performance overhead of CO frameworks
In this section we will measure what is the performance overhead
of using CO frameworks for running a CPU-bound Cassandra work-
load on top of an OpenStack private cloud in a closed research lab.
We compare the performance overhead with a native VM deploy-
ment and a Docker+VM deployment of Cassandra.

3.1 Selected database workload
We have selected a Cassandra write-only workload that is known
to be highly performing because Cassandra uses an in-memory
write-back cache technology, called Memtables [2]. A Cassandra
cluster comprises a masterless ring of nodes to replicate data. To
process a write request, Cassandra first determines which nodes
should process the request and sends messages to those nodes.
Those nodes then store the data of the write request in a Memtable
and eventually flush this data to persistent storage. Such flushes
occur periodically or when the Memtable’s memory limit has been
reached. Before a Memtable is flushed, a new one is created. Before
storing the data in a Memtable, Cassandra will first persist the
write request into a highly performing commit log on disk that
is continuously appended so that no additional disk seek time is
incurred. This design choice makes that write-heavy Cassandra
workloads are CPU-bound unless the commit log has performance
issues. As such, Cassandra is well fit for measuring the impact of
container technology when high-end database performance is a
requirement.

3.2 Overview of compared deployments
We compare 4 deployments of a Cassandra cluster with three nodes:
(i) a native deployment where Cassandra v2.0.17 is directly installed
in an Ubuntu VM, (ii) a Docker engine deployment where data-
base containers are started from the official cassandra:2.0 Docker
image in similarly sized Ubuntu VMs, (iii) a Docker Swarm deploy-
ment where database containers are inter-connected by means of
a stable Service IP address, (iv) a Kubernetes deployment where
database containers discover each other via a DNS name (this is the
recommended endpoint configuration for databases in Kubernetes).

We have excluded Mesos-based CO frameworks from the exper-
iments because at the time of experiments the virtual networking
solution of Mesos has not yet been used in any Mesos-based CO
framework. We have installed Kubernetes v1.7.2 using the kubeadm
v1.7.2 tool [14]. We installed Docker Swarm integrated mode as
part of Docker engine 17.04.0 ce-0 ubuntu-xenial.

All database instances store their state in the local file system
of the VM. Swarm and Kubernetes deployments respectively use
a local Docker volume and a hostPath volume, while the Docker
engine deployment also directly writes to a path in the host’s file
system. Moreover, the Cassandra cluster is configured with a repli-
cation level of 2 nodes and a write consistency level of ONE, i.e., a
write operation will be acknowledged after a write request has been
written to the commit log and Memtable of at least one Cassandra
node.
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Docker Swarm and Kubernetes deployments are configured with
the Weave NET network plugin [23] for setting up a virtual net-
work between containers. Weave NET installs a virtual bridge to
isolate network traffic between containers. The Docker engine de-
ployment runs in host mode which means that it has direct access
to the networking stack of the host OS. The advantage is a higher
networking performance [7], but there is no security isolation of
network traffic.

3.3 Benchmark and testbed
We have used as benchmark the well-known YCSB benchmark [3]
for evaluating the performance of databases. More specifically, we
have run the load phase of the YCSB workload A for measuring
the performance of the above four deployments. To measure the
performance, a scalability test is performed by means of 15 runs of
105 write requests where the number of client threads is increased
with 5 additional threads per consecutive run. We also measure
resource utilization at the database nodes by means of the dstat
tool [24].

The testbed for running all the experiments of this paper is an
isolated part of a private OpenStack cloud, version Mikata. The
OpenStack cloud consists of a master-slave architecture with two
controller machines and 5 droplets, on which VMs can be scheduled.
The droplets have Intel(R) Xeon(R) CPU E5-2650 2.00GHz proces-
sors and 64GB DIMM DDR3 memory with Ubuntu xenial, while
the master controller is an Intel(R) Xeon(R) CPU E5-2430 2.20GHz
machine with Ubuntu xenial. Each droplet has two 10Gbit network
interfaces. The three database instances of each deployment are
installed in 3 VMs with 2 vCPUs and 4 GB of RAM and an Ubuntu
xenial 4.4.0-112-generic OS. The two CPU cores are exclusively
reserved for the VM. Swapping is turned off. Each of these VMs
runs on a separate droplet. The YCSB VM is also deployed on a
separate droplet with a c4m8-sized VM.

Figure 1.Memory usage

3.4 Results
First, we inspect memory usage (see Figure 1). This shows that the
official Docker image of Cassandra 2.0 consumes less memory than
the natively installed deployment. Presumably, this is because the
particular Docker image has been configured for memory-efficiency.
Moreover, Kubernetes consumes more memory than Docker Swarm
because Kubernetes is a larger system with more features than
Docker Swarm.

The performance of the deployments is evaluated by how quickly
they can reach 100% CPU utilization and by average response la-
tency. The Docker engine deployment reaches full CPU utilization

(a)

(b)

(c)

Figure 2. Performance overhead of Kubernetes and Docker Swarm
in comparison to VM+Docker and VM-based deployments

quite faster than the container orchestrated deployments (see right
graph of Figure 2(a)). Correspondingly, Docker engine’s perfor-
mance with respect to response latency is also much better (see
left graph of Figure 2(a)). We also observe that for the container
orchestrated deployments a substantial percentage of CPU time is
spent at soft interrupts (see left graph of Figure 2(b)), which in turn
can be explained by the usage of a virtual network between con-
tainers. Indeed, total network usage shows an increased network
usage for Docker Swarm and Kubernetes (see right graph of Figure
2(b)). It is also shown that although Kubernetes consumes more
CPU time at soft interrupts than Docker Swarm, it still has a better
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overall performance in terms of response latency. This better per-
formance can be explained by inspecting the disk I/O rate at which
Cassandra is able to persist write requests to its commit log (see
right graph of Figure 2(c)). The disk I/O rate of the Docker Swarm
deployment (that uses the local volume driver) is in comparison
with the Docker engine deployment much lower, while the disk
I/O rate of the Kubernetes deployment (that directly writes to a
directory on the host’s file system using a hostPath volume) is a bit
lower.

In summary, the Docker engine deployment of Cassandra that
runs in host mode behaves in par with the nativeVM deployment.
Moreover, volume and network plugins of container orchestration
frameworks have an effect on the resource usage profile of the
Cassandra workload: (i) due to the use of volume plugins, a CPU-
bound workload in the Docker engine and nativeVM deployments
becomes in Docker Swarm and Kubernetes I/O-bound; (ii) network
plugins, which install a virtual bridge for isolating network traffic
between containers, require a substantial part of the CPU time.

The performance overhead of using CO frameworks for man-
agement of database clusters seems thus substantial. Moreover, the
impact on the overall resource model of an application with respect
to what resources are the primary and secondary performance bot-
tlenecks implies that optimal placement decisions for multi-tenant
databases using Docker Engine or native VM deployments cannot
be reused when using CO frameworks.

4 Conclusion
We have evaluated in an OpenStack private cloud the performance
overhead of container orchestration frameworks for running and
managing database clusters in comparison to native and Docker en-
gine deployments in OpenStack VMs. The performance overhead of
Docker engine deployments with host mode networking is very low
in comparison to native deployments. However, service networking
solutions of CO frameworks introduce a substantial overhead be-
cause of additional CPU consumption for virtual network bridges.
Moreover volume plugins change a CPU-bound database workload
into an I/O-bound. This is undesirable because solved placement
decisions for a native or Docker engine deployment need to be
recomputed when using a CO framework.

We conclude that CO frameworks entail various benefits for
automating SLO-aware placement of multi-tenant applications, but
in order to truly reap these benefits for multi-tenant database de-
ployments, CO frameworks should further develop the isolation
of container networking approaches that rely on host mode net-
working and improve the performance of volume plugins for local
persistent storage.
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