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Abstract

The constrained mixture theory is an elegant way to incorporate the phe-

nomenon of residual stresses in patient-specific finite element models of arteries.

This theory assumes an in vivo reference geometry, obtained from medical imag-

ing, and constituent-specific deposition stretches in the assumed reference state.

It allows to model residual stresses and prestretches in arteries without the need

for a stress-free reference configuration, most often unknown in patient-specific

modeling.

A finite element (FE) model requires material parameters, which are clas-

sically obtained by fitting the constitutive model to experimental data. The

characterization of arterial tissue is often based on planar biaxial test data, to

which nonlinear elastic fiber-reinforced material parameters are fitted. However,

the introduction of the constrained mixture theory requires an adapted approach

to parameter fitting. Therefore, we introduce an iterative fitting method, al-

ternating between nonlinear least squares parameter optimization and an FE

prestressing algorithm to obtain the correct constrained mixture material state

during the mechanical test.

We verify the method based on numerically constructed planar biaxial test

data sets, containing ground truth sets of material parameters. The results show
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that the method converges to the correct parameter sets in just a few iterations.

Next, the iterative fitting approach is applied to planar biaxial test data of

ovine pulmonary artery tissue. The obtained results demonstrate a convergence

towards constrained mixture compatible parameters, which differ significantly

from classically obtained parameters.

We show that this new modeling approach yields in vivo wall stresses similar

to when using classically obtained parameters. However, due to the numerous

advantages of constrained mixture modeling, our fitting method is relevant to

obtain compatible material parameters, that may not be confused with param-

eters obtained in a classical way.

Key words: constrained mixture, deposition stretches, arterial tissue,

constitutive modeling, parameter estimation

1. Introduction

1.1. Presence of residual stresses

In its in vivo state, an arterial segment is subjected to two kinds of external

loading. The inner blood pressure, fluctuating between diastole and systole,

causes a load in the radial direction. Secondly, axial stretching during growth5

causes axial loading. Therefore, a shortening of the segment can be observed

during excision, revealing the presence of axial prestretch [1]. This excised,

cylindrical configuration is freed from both types of external loads and is further

referred to as the load-free configuration.

Bergel [2] discovered an uncoiling of the cylindrical configuration of an ar-10

terial segment after a radial cut. This suggested that residual circumferential

stresses reside inside the load-free configuration [3, 4].

Chuong and Fung [5] found that the residual stresses homogenize the cir-

cumferential stress across the wall in its physiological condition. Rachev and

Greenwald [6] hypothesized that residual stresses lead to an optimal load bearing15

performance, enabling to comply with blood pressure alterations. This shows
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the importance of understanding and incorporating the phenomenon of residual

stresses in computational models.

1.2. Measuring residual stresses

The radially cut configuration is most often considered to be stress-free [7].20

After making a radial cut, an opening angle can be observed. In many cases, this

angle is used as a measure for circumferential residual stresses as done by, e.g.

Vaishnav and Vossoughi [8], Liu and Fung [7], Hong et al. [9] and Matsumoto

et al. [10]. However, Vossoughi et al. [11] gave evidence that a single radial

cut cannot relieve the material from all stresses. Their studies show that the25

different layers in the arterial wall have different opening angles, such that more

cuts are needed to further release the stresses. Therefore, the assumption of

a radially cut stress-free state is inaccurate. Moreover, obtaining the opening

angle as a measure for residual stresses is tedious work, requiring the excision

of a segment of the artery of interest.30

1.3. Classical modeling of residual stresses

Classical modeling frameworks and numerical simulations with arterial tissue

require the knowledge of a stress-free reference state, to which all other config-

urations can be related with a deformation gradient. Multiple research groups

have used the concept of the opening angle to define this stress-free reference35

state. Analytical solutions that relate the intact load-free state to the opened

stress-free state have been derived by Chuong and Fung [4] by assuming plane

strain deformation. Taber and Eggers [12] considered a deformation where the

wall thickness is constant and the neutral line is located at the middle. Holzapfel

et al. [13] and Rachev and Greenwald [6] considered a hyperelastic, incompress-40

ible material, deforming by pure bending. An extension of this opening angle

method for multiple layers was developed by Taber and Humphrey [14]. Us-

ing the same assumption of a stress-free reference state, a number of numerical

simulations were carried out, starting from the opened geometry. The load-free,
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intact geometry is then obtained by nodal displacement, as e.g. done by Gasser45

et al. [15], Raghavan et al. [16], Balzani et al. [17] and Famaey et al. [18].

There are a number of problems associated with this approach in the case

of patient-specific modeling. The opening angle of an artery cannot be ob-

tained nondestructively. Moreover, only cylindrical geometries can be consid-

ered, whereas true arteries may deviate strongly from this regular shape, espe-50

cially when one is interested in diseased vessels or aneurysms.

1.4. Inverse methods

As a solution, a number of groups have developed prestressing algorithms,

designed to obtain a realistic stress-state. These algorithms are based on a

known physiologically relevant internal pressure and pressurized geometry, that55

can be obtained noninvasively through medical imaging. De Putter et al. [19]

and Weisbecker et al. [20] computed the prestressing deformation gradient, i.e.

the deformation gradient relating the known in vivo geometry to the load-free

geometry, with a backwards incremental method. At each iteration, the re-

quired pressure incrementation is mapped to the deformation needed to relate60

the known in vivo geometry to the current estimate of the load-free geome-

try, leading to an equilibrium between the in vivo geometry and pressure after

convergence in the last increment.

An alternative approach was developed by Bols et al. [21], who proposed a

backwards displacement method. At each iteration, the in vivo pressure is ap-65

plied to the approximated load-free configuration. Subsequently, the resulting

nodal displacement is subtracted from the known in vivo geometry. After con-

vergence, a solution for a stress-free state is obtained, which can be pressurized

to determine any physiological configuration of the artery.

Other prestressing algorithms were described by Raghavan et al. [22] and70

Gee et al. [23, 24]. These algorithms allow the integration of prestress at diastole

in finite element (FE) models, greatly enhancing the reliability of simulations of

patient-specific cases. However, all previously mentioned algorithms are unable

to reliably represent circumferential residual stresses in arterial tissue, because
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the application to cylindrical geometries yields a stress-free zero-pressure con-75

figuration [19, 20].

1.5. Constrained mixture modeling

The aforementioned algorithms assume that, while deforming together in the

arterial wall, the different material constituents experience the same stretch lev-

els. However, residual stresses likely originate from the fact that the constituents80

are deposited at different time points and experience different levels of stretch

during multiple events of growth and remodeling [25, 26, 27]. Therefore, a new

theoretical framework was proposed by Bellini et al. [28], based on the con-

strained mixture theory, first described by Humphrey and Rajagopal [29]. This

framework accounts for the natural stress state of the individual constituents85

with constituent-specific deposition stretches, relating an in vivo reference con-

figuration to the individual rest lengths of the constituents. Results show a

reliable prediction of the zero-pressure configuration and the residual stresses,

without the need of an opening angle or a stress-free reference configuration.

Moreover, the constrained mixture theory is increasingly used in the mod-90

eling of growth and remodeling in soft tissues, as done by [30, 31, 32, 33, 34,

35, 36, 37]. In vivo, these remodeling processes occur through mass turnover of

the different constituents [29]. Due to the microstructurally motivated nature

of the constrained mixture theory, it offers a relevant framework for growth and

remodeling algorithms.95

The above modeling approach implies knowledge of the material parameters.

This can be obtained, e.g. from planar biaxial tests, or from extension-inflation

tests. However, the classical approaches to the parameter fitting of planar biax-

ial test data does not take the concept of residual stresses into account. They

assume a stress-free configuration at the start of the test and a homogeneous100

stretch state of the material. On the other hand, the constrained mixture ap-

proach assumes a relevant in vivo reference state. We hypothesize that this as-

sumption has an important influence on the resulting material parameters and

propose an original solution to incorporate the constrained mixture modeling
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approach and accompanying deposition stretches into the parameter estimation105

process.

Therefore, we introduce an iterative parameter fitting approach, alternating

between a nonlinear least squares optimization and a prestressing FE simulation.

This new approach allows to determine material parameters compatible with the

constrained mixture theory, enabling a more biologically relevant approach for110

the modeling of healthy, matured arteries. In the present work, this framework

is verified against numerically constructed planar biaxial data sets and tested

on real experimental data, as explained in the following sections.

2. Material and Methods

The description of the method starts with a depiction of the considered115

material model. Subsequently, we explain how deposition stretches for the con-

strained mixture model are obtained and how they are integrated in the parame-

ter fitting on planar biaxial test data. Finally, an explanation of the verification

and testing approach is given.

2.1. Material description120

An anisotropic, hyperelastic description of the artery’s mechanical behavior

can be made through an additive decomposition of a strain energy density func-

tion Ψ, with a contribution of the isotropic extracellular matrix material, mainly

elastin, and the embedded collagen fibers, which are assumed to run along two

preferred directions. This leads to the classic Gasser-Ogden-Holzapfel (GOH)

formulation [38]

Ψ = C10(I1,e−3)+
k1

2k2

∑
i=4,6

{
exp

{
k2[(κI1,c+(1−3κ)Ii,c)−1]2

}
−1
}
, i = 4, 6,

(1)

with C10, k1, k2 and κ material constants. I1,e and I1,c are the first invariants

of the right Cauchy-Green stretch tensors Ce and Cc, applied to the elastin

and the collagen constituents, respectively. Ii,c is a pseudo-invariant of Cc, and
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represents the stretch along each preferred fiber direction as

Ii,c = M i · (CcM i), i = 4, 6, (2)

with M i = [0 cosαi sinαi] the undeformed fiber orientation vector, where the

order of the axes is given as r (radial), θ (circumferential) and z (axial). αi is

the mean angle of the fibers with respect to the circumferential direction of the

artery in the θ, z-plane.

Note that in a classical modeling approach,

Ce = Cc = C = F TF , (3)

where F is the total deformation gradient with respect to a stress-free reference

geometry. Contrarily, in the constrained mixture theory,

Cj = F Tj F j j = e, c, (4)

where

F j = FGj j = e, c, (5)

with F the total deformation gradient of the mixture with respect to an in125

vivo, diastolic reference state and Gj the deposition stretch tensor of elastin

or collagen, respectively. Note also that all considered deformations are fully

isochoric, such that no volumetric energy contribution is considered.

Two layers through the thickness of the arterial wall are considered with

different material properties, corresponding to the media and the adventitia130

respectively. Bellini et al. [28] considered that most arterial elastin is located

in the media. Therefore, the assumption is made that C10 is ten times higher

in the media. The stiffness k1 and strain-stiffening k2 of the collagen fibers

are considered equal in both layers. These fibers are more aligned with the

circumferential direction in the media than in the adventitia [39], such that α135

is assumed to be zero for both fiber families in the media. The fiber dispersion,

represented by κ is assumed to be the same in both layers of the arterial wall.

In total, there are five independent parameters, the medial C10,M , the fiber
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parameters k1, k2 and κ and the adventitial fiber angle αA with respect to the

circumferential direction. The used parameters are summarized in table 1.140

Media (M) Adventitia (A)

C10,M C10,A = 0.1 · C10,M

k1,M = k1 k1,A = k1

k2,M = k2 k2,A = k2

κM = κ κA = κ

αM = 0 αA

Table 1: Adventitial and medial material parameters.

2.2. An algorithm to find deposition stretches

According to Bellini et al. [28], the constituents in the diastolic reference

configuration of the artery experience different prestretches. These stretches

are introduced through deposition stretch tensors Ge and Gc for elastin and

collagen respectively. These deformation gradients are defined in accordance

with [30] and as described below. Collagen fibers may have a fast turnover

rate and are deposited at a preferred stretch state [29]. Therefore, we assume a

constant and known deposition stretch gc for collagen along the fiber direction

[28, 30, 40], justified by the fact that we focus on healthy matured arteries. An

approximate value of collagen prestretch of 1.1 was found by Bellini et al. [28]

and used in the methods explained further on. For a certain fiber family with

orientation vector M , Gc may then be written as [32]

Gc = gcM ⊗M +
1
√
gc

(I −M ⊗M), (6)

where I is the identity tensor.

On the other hand, elastin is deposited at an early stage of development and

is very stable. As a consequence, it is stretched during growth. Ge therefore

varies from material point to material point and balances out the reference145

diastolic configuration and corresponding pressure. Considering a known and

constant axial deposition stretch ge,ax and an isochoric deformation, the solution

is unique.
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The unknown deposition stretch values are determined iteratively, similarly

to [30] and [40]. A finite element (FE) method, schematically represented in

figure 1, is implemented by initially considering a load- and stress-free diastolic

configuration. In a first step, the diastolic pressure is applied to the geometry,

while Gc and an initial elastin deposition stretch tensor

Ge =


1√
ge,ax

0 0

0 1√
ge,ax

0

0 0 ge,ax

 (7)

are applied to the material, where ge,ax represents the axial deposition stretch

of elastin.150

In all following simulation steps, the resulting deformation gradient with

respect to the diastolic reference state in each material point is multiplied to

the existing Ge, from which the shear terms are removed, to cause an apparent

stiffening and recoiling towards the reference configuration. This is repeated

until the current configuration matches the initial configuration, i.e. when the155

average absolute nodal displacement is below a threshold defined as 1% of the

diastolic wall thickness [40]. In practice, the algorithm is run using a user mate-

rial subroutine (UMAT) in Abaqus/Standard 2017 (Dassault Systèmes Simulia

Corp., Providence Rhode Island, USA). See the appendix for further details on

the implementation. This algorithm is further referred to as the ‘prestressing160

algorithm’.
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Figure 1: Schematic representation of the prestressing algorithm to obtain the elastin depo-

sition stretches. Ge is the deformation gradient accounting for the elastin deposition stretch

and F is the deformation of the artery with respect to its diastolic reference configuration.

Adapted from [30].

2.3. Parameter fitting of planar biaxial tests

2.3.1. Classical approach

During a planar biaxial test, a flat squared sample of material is attached at

its four sides to the actuators of the testing machine. This way, the displacement165

in two perpendicular directions can be applied independently. The normal forces

applied by the actuators can be measured directly and are further referred to as

the experimental forces, fexpii , with i indicating one of the two test directions.

The deformation of the sample is usually obtained through image processing,

where four markers or a speckle pattern in the central region of the sample are170

tracked, from which the in-plane deformation gradient can be derived.

The obtained deformation gradient F at each sampling time point of the

experiment is used to estimate the required first Piola-Kirchhoff stress as

Pmod = JσmodF T , (8)

with σmod the Cauchy stress calculated as

σmod =
1

J

∂Ψ

∂F
F T − pI. (9)
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Here, F pertains to the total deformation during the biaxial test and J =

det (F ). Ψ is the strain energy density function of the material as described in

equation 1, with a currently unknown set of material parameters p = [C10,M , k1, k2, κ, αA].

The hydrostatic pressure p multiplied with the identity tensor I arises from a

constraint of incompressibility and is calculated by assuming a zero out-of-plane

stress. The first Piola-Kirchhoff stress is then transformed to the model force

by multiplication with a reference surface as

fmodij = PijAj i, j = 1, 3, (10)

where fij is the force along the i-th direction, acting on the j-th surface, and

Aj the undeformed surface upon which the force is acting.

To obtain the unknown material parameters, the following objective function

is minimized:

min
p

n∑
j=1

[
(fmod11 (tj)− fexp11 (tj))

2 + (fmod22 (tj)− fexp22 (tj))
2
]
, (11)

with tj the sampling time points of the experiment and fexpii (tj) the experimen-

tally measured force. In the experiments that follow, we used a nonlinear least175

squares optimization routine lsqnonlin in Matlab 2017a (The Mathworks Inc.,

Natick, Massachusetts, USA), along with the multistart function with 10 initial

parameter sets in order to obtain the global minimun.

In the classical biaxial fitting approach, no deposition stretches are modeled,

and all constituents of the mixture are assumed to feel the same deformation180

gradient F = F biax. As such, the configuration at the beginning of the biaxial

test is assumed to be the stress-free reference configuration.

2.3.2. Constrained mixture-compatible fitting

Considering diastole to be the reference configuration, a testing sample pre-

pared for a biaxial test has undergone depressurization, release of axial pre-185

stretch F release, opening to release circumferential stresses and further flatten-

ing to a square patch F flatten. Considering also the deposition stretches of

collagen and elastin that were present at diastole, it is highly unlikely that the
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constituents are stress-free at the start of the biaxial test. Rather, during the

biaxial test, they will have the following deformation:190

F j = F biaxF flattenF releaseGj , j = e, c. (12)

Hence, when calculating the Cauchy stresses to obtain the model forces in

the objective function of equation 11, this total deformation for each of the

constituents should be taken into account, i.e.

σmod =
1

J

∂Ψ

∂F
F T − pI =

1

J

(
∂Ψ

∂F e
:
∂F e
∂F

+
∂Ψ

∂F c
:
∂F c
∂F

)
F T − pI. (13)

Note however, that the deposition stretch tensors as well as the deforma-

tions due to depressurization, release of axial prestretch, opening and flattening

depend on the geometry and material properties of the tested sample, the lat-

ter being exactly what we are trying to optimize. Hence, an iterative scheme

is proposed to obtain these constrained mixture-compatible (CMC) material195

parameters, as shown in figure 2 and described below.

Figure 2: Schematic representation of the iterative parameter fitting approach, compatible

with the constrained mixture theory.

12



In the initialization step, a classical parameter fitting scheme as described

in section 2.3.1 is applied, yielding a set of material parameters. These param-

eters are then used in the prestressing algorithm, described in section 2.2, to

obtain accompanying deposition stretches. At the end of the algorithm, the200

resulting pressurized artery is depressurized and axial stresses are released. The

resulting deformation gradient is stored as F release. Next, a radial cut is made

through the mesh to release the residual circumferential stresses. The resulting

deformation in this last step is assigned to F flatten, assuming that the circum-

ferential stretches from this nearly stress-free configuration to a flat unloaded205

configuration are negligible.

Now that estimates of F flatten,F release, Ge and Gc are available, a new

parameter fitting procedure is performed, where this time the model stresses are

calculated as in equation 13. It is important to note that F flatten,F release and

Ge are not constant through the thickness of the artery. Therefore, the stress

field of the biaxial sample is not homogeneous through the thickness and multiple

material layers must be considered during the parameter fitting. One average

deposition stretch tensor Ge per layer of finite elements is extracted from the

simulation. The combined deformation gradient F flattenF release is determined

at the end of the mentioned simulations with respect to the initial diastolic

configuration. The axial shortening is extracted and an average circumferential

stretch per layer is determined from the total change in length of these element

edges. This results in an overall axial stretch λz and one circumferential stretch

λθ per element layer. Considering an isochoric deformation, F flattenF release is

then written as

F flattenF release =


1

λθλz
0 0

0 λθ 0

0 0 λz

 . (14)

The model force is calculated at each layer as explained above and these are

summed to obtain an overall model force to be matched to the experimentally

measured forces. With the newly obtained material parameters, the prestressing

algorithm is rerun, followed by the calculation of F release and F flatten. This210
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loop is repeated until convergence of the material parameters, i.e. until the

relative difference between subsequent parameters is smaller than 1% for each

of the five independent fitted parameters.

2.4. Verification study

The constrained mixture-compatible (CMC) parameter fitting approach de-215

scribed above is verified against numerically constructed biaxial test data. This

verification study is based on six sets of ground truth parameters, given in table

2. The five independent parameters are given. The elastin stiffness in the media

C10,M is considered ten times higher than the elastin stiffness in the adventitia

and the fibers are considered to run approximately in the circumferential direc-220

tion in the media, whereas the fiber angle in the adventitia αA can be different

from zero.

set C10,M [MPa] k1 [MPa] k2 [-] κ [-] αA [rad] ge,ax [-] gc [-]

1 0.5 0.1 10.0 0.2 0.7 1.1 1.05

2 0.2 0.5 2.0 0.2 0.7 1.1 1.05

3 0.5 0.1 10.0 0.0 1.2 1.1 1.05

4 0.5 0.1 10.0 0.2 0.7 1.3 1.1

5 0.2 0.05 10.0 0.2 0.7 1.3 1.1

6 0.2 0.05 10.0 0.0 1.2 1.1 1.05

Table 2: The six sets of material parameters used in the verification study for the CMC param-

eter fitting, with corresponding axial elastin deposition stretch ge,ax and collagen deposition

stretch gc.

These parameter sets are used in FE simulations in Abaqus. The diastolic

geometry of a human thoracic aorta is modeled as a cylinder with an inner

radius of 15.0 mm. The media and adventitia thicknesses are 1.18 mm and225

0.93 mm respectively [39]. Due to symmetry of the problem, only half of the

cylinder is modeled in Abaqus and symmetry boundary conditions are assigned

at the appropriate symmetry plane. The mesh contains 12096 hexahedral, fully

integrated, hybrid elements (C3D8H). The total of four medial and four adven-
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titial element layers ensures mesh convergence. The axial planes are fixed and230

a diastolic pressure of 10 kPa is applied to the inner surface of the cylinder. All

deposition stretches are determined as explained in section 2.2. F release and

F flatten are obtained as in section 2.3.2.

A second simulation starts from a cuboid geometry, composed out of 512

C3D8H elements with a total of eight element layers, representing the arterial235

test sample at the beginning of a biaxial test. The thickness is set according to

the resulting thickness after the simulation of the radial cut. The same material

properties are assigned to this mesh, taking into account the difference between

the media and adventitia. In addition, all obtained layer-specific deposition

stretches and deformation gradients are assigned to the material, i.e. F release,240

F flatten and Ge.

An ideal biaxial test is then simulated by assigning displacement increments

in the circumferential and axial direction in three different ratios of maximal

displacement causing up to approximately 25% stretch in the two test directions,

i.e. 1:1, 0.5:1 and 1:0.5. Subsequently, the resulting reaction forces at the245

displacement sites and the nodal coordinates of the marker nodes are extracted

at each increment, resulting in numerically constructed biaxial test data sets.

Figure 3 represents the workflow followed to obtain these data sets. Next, both

parameter fitting approaches described in section 2.3 are applied to the obtained

data sets. Classical material parameters are obtained in the first iteration of250

the fitting approach and CMC parameters are obtained after convergence.
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Figure 3: Schematic representation of the followed steps in the verification approach to obtain

numerically constructed biaxial test data sets.

2.5. Application to experimental data

2.5.1. Parameter fitting

After verification, the CMC parameter fitting approach was applied to actual

test data, obtained from Vastmans et al. [41]. A tissue sample of a pulmonary255

artery was subjected to a planar biaxial tensile test, where the circumferential

and axial direction were aligned according to the two test directions. The sample

was loaded up to 1.2 N in three different load ratios between the circumferential

load and the axial load, i.e. 1:1, 0.5:1 and 1:0.5. More information on the

harvesting and preparation of this arterial tissue sample and about the applied260

testing protocol can be found in [41] (sheep 1983, pulmonary sample 2, P1).

During the same biaxial test, four markers were manually attached to the tissue

and tracked, from which F biax is obtained at each loading point as explained in

section 2.3.1.
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For the CMC parameter fitting approach, an FE model of a half cylinder is265

built, corresponding to the geometry of the considered sheep pulmonary artery.

The diameter of the artery at diastole is set to 19.4 mm, i.e. the diameter

measured in vivo in [41]. The ex situ sample thickness is reported to be 3.20 mm

[41]. Based on trial-and-error, the in vivo thickness of the artery is estimated at

2.50 mm. The adventitia-to-media thickness ratio is roughly estimated at one,270

based on findings by [42], such that each layer thickness is set to 1.25 mm in

the diastolic configuration. The length of the cylinder is set to 2.0 mm.

The mesh is built out of 5136 C3D8H elements. Both the media and the

adventitia contain four element layers, such that eight material layers with dif-

ferent deposition stretches can be identified. The total of eight layers ensure275

mesh convergence. The same boundary conditions as in section 2.4 are applied

to the model in order to obtain Ge, F release and F flatten at each iteration of

the fitting. The diastolic pulmonary blood pressure is estimated at 2 kPa [30].

The axial elastin deposition stretch ge,ax is set to 1.16, i.e. an approximate

axial prestretch obtained from unpublished results related to [41]. The colla-280

gen deposition stretch gc is set to 1.1, a value found by [28] for mouse carotid

arteries.

2.5.2. Comparison of the classical and constrained mixture modeling approach

A comparison of the wall stresses obtained with the constrained mixture

modeling approach and the classical approach for the modeling of the sheep285

pulmonary artery can be made after material parameters for both are obtained.

The classical material parameters are obtained in the first iteration of the devel-

oped fitting approach, whereas the CMC parameters are obtained after conver-

gence of the entire procedure. In the case of the constrained mixture approach,

this final parameter set is used in combination with the same FE model as290

in the previous section, to obtain the assumed diastolic reference state of the

sheep artery according to section 2.2. In a next simulation step, the deposition

stretches are kept constant and the pressure is increased to a pulmonary systolic

pressure level of 3 kPa.
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The classical modeling approach considers the radially cut configuration as295

a stress-free reference state. Therefore, another FE model of the physiologically

loaded artery is built, starting from this geometry, obtained by removing the

appropriate boundary conditions after the final iteration of the CMC parameter

fitting to simulate the excision and radial cut of the artery. This ex vivo geom-

etry was approximated by a cylindrical section with a radius of 11.93 mm and300

an opening angle Θ of approximately 54◦, as defined in figure 4. The material

is defined by the same UMAT in Abaqus, where Ge = Gc = I, in combination

with the material parameters obtained at the first iteration of the fitting proce-

dure. The initial material orientations are determined by fitting a circle through

the nodes of the new reference geometry in a plane perpendicular to the axial305

direction, following the approach by Pratt [43]. The fibers are assumed to run

in a plane perpendicular to the radial direction obtained from the fitting of the

circle. In a first simulation step, the opening angle is closed. Subsequently, an

axial displacement of the top of the cylinder is imposed, while the bottom is

fixed in the axial direction, in order to restore the axial prestretch. The level of310

displacement is determined based on the axial recoil that was observed earlier.

In a next step, the diastolic blood pressure is applied to the inner surface, and

is then increased to the systolic level. A schematic overview of the simulation

steps for both approaches is shown in figure 4.

From both simulation approaches, the Cauchy stresses in all directions at315

diastole and systole are extracted. The obtained values are compared and shown

in section 3.2.2 in order to assess the similarity. Finally, both FE models are

discussed in section 4.3.

18



Figure 4: Schematic representation of the constrained mixture modeling approach and the

classical modeling approach.

3. Results

3.1. Verification study320

Table 3 gives an overview of the results of the verification study for the CMC

parameter fitting method accounting for residual stresses. The fitted parameter

sets are shown and compared to the true parameters from table 2 via the mean

absolute percentage error (MAPE), computed as

100%

5

5∑
i=1

∣∣∣∣pi,true − pipi,true

∣∣∣∣ (15)

for all estimated parameters pi and corresponding ground truth parameters

pi,true. The ‘classical’ parameters are obtained by considering a fully stress-free
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test sample at the beginning of the biaxial test. These parameters are also the

results of the first iteration of the CMC fitting procedure. After convergence

of this procedure, the CMC parameters are obtained, after a certain required325

number of iterations (nb. it.). Remember that the value of C10,A in the adven-

titia is dependent on the value in the media and ten times smaller. Therefore

it is not shown in the table. The fiber angle in the media is always considered

zero and hence not fitted nor shown.

set nb. it. C10,M [MPa] k1 [MPa] k2 [-] κ [-] αA [rad] MAPE [%]

1 true 0.5000 0.1000 10.0000 0.2000 0.7000

classical 0.4999 0.0732 8.2860 0.1216 0.5949 19.6

CMC 4 0.5000 0.1001 9.9969 0.2000 0.6999 0.03

2 true 0.2000 0.5000 2.0000 0.2000 0.7000

classical 0.1787 0.3323 1.7366 0.1394 0.7373 18.6

CMC 4 0.2001 0.5003 2.0031 0.2001 0.6997 0.07

3 true 0.5000 0.1000 10.0000 0.0000 1.2000

classical 0.7375 0.3349 13.9997 0.0000 0.0000 84.5

CMC 9 0.4998 0.1001 9.9994 0.0000 1.2003 0.03

4 true 0.5000 0.1000 10.0000 0.2000 0.7000

classical 0.5366 0.1601 10.0751 0.0590 0.0000 47.7

CMC 8 0.4997 0.1003 9.9910 0.1998 0.6997 0.12

5 true 0.2000 0.0500 10.0000 0.2000 0.7000

classical 0.2092 0.0323 7.2787 0.0515 0.0000 48.3

CMC 9 0.2000 0.0500 9.9840 0.1998 0.6997 0.06

6 true 0.2000 0.0500 10.0000 0.0000 1.2000

classical 0.2325 0.0110 17.6526 0.0000 0.9336 38.6

CMC 5 0.2000 0.0500 10.0012 0.0000 1.2000 ∼ 0

Table 3: The results of the validation study: the true parameters, the fitted parameters with

the classical approach and the CMC parameters obtained iteratively by taking into account

residual stresses. The number of iterations is indicated (nb. it.) and the mean absolute

average error (MAPE) of the fitted parameters, as compared to the true values.
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Figure 5 shows how the material parameters evolve through the iterations330

for parameter set number 6. The full line represents the obtained parameters

at each iteration step, which are compared to the dashed line, representing the

‘true’ parameters. The evolution of κ is not shown since it was zero at each

iteration for this parameter set. The figure reveals a clear convergence towards

the ‘true’ parameters after 5 iterations.335
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Figure 5: Evolution of the fitted material parameters during the iterative fitting approach

(full line) of set number 6. Convergence towards the ‘true’ parameters (dashed line) can be

observed after 5 iterations.

3.2. Application to experimental data

3.2.1. Parameter fitting

The iterative parameter fitting approach was tested on actual planar biaxial

test data obtained on sheep pulmonary artery tissue. The results are given in

table 4. The medial stiffness parameter C10,M is given, as well as the fiber340
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parameters k1 and k2, the fiber dispersion parameter κ and the adventitial fiber

orientation parameter αA, for two cases. First, these parameters are obtained

after a classical fitting, based on the two-layered constitutive model, and second,

after convergence of the iterative CMC fitting approach.

Figure 6 shows the evolution of the material parameters in function of the345

iteration number. Iteration number one corresponds to the initial fitting, ac-

cording to the classical approach of obtaining material parameters. The fit of

the model data to the experimental data at the first and last iteration is shown

in figure 7. The initial fit is slightly better with a normalized root-mean-square

error (NRMSE), a measure for the objective function of the optimization, of350

0.1165 versus 0.1177 at the final fit.

nb. it. C10,M [MPa] k1 [MPa] k2 [-] κ [-] αA [rad] NRMSE [-]

classical 0.0115 0.0027 11.81 0.0949 0.7112 0.1165

CMC 7 0.0099 0.0126 21.31 0.2034 0.6329 0.1177

Table 4: The results of the fitting to the actual planar biaxial data from sheep pulmonary

artery tissue. The classical set of parameters is obtained by assuming a stress-free reference

state at the beginning of the test. The CMC set of parameters is obtained by taking into

account residual stresses and an in vivo reference state. The required number of iterations is

given, as well as the obtained parameters and the NRMSE for both fits.
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Figure 6: Evolution of the fitted material parameters during the iterative CMC approach

applied to planar biaxial test data from sheep pulmonary artery tissue.
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f22
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Figure 7: Comparison of the fit of the model forces to the experimental reaction force in cir-

cumferential and axial direction (f11 and f22 respectively) and the last iteration (constrained

mixture, CM fit). The grey dots represent the experimental data obtained from a planar

biaxial test on ovine pulmonary artery tissue, the dashed red line is the classical model data

and the full blue line is the constrained mixture model data. The forces are given in function

of the measured circumferential and axial stretches during the test (λ11 and λ22) for three

loading ratios between both directions.

3.2.2. Comparison of the classical and constrained mixture modeling approach

Figure 8 gives an overview of the Cauchy stresses across the thickness of the

arterial wall of the considered sheep pulmonary artery. These stresses are ob-

tained from two different modeling approaches, as explained in section 2.5.2: the355

constrained mixture approach and the classical, stress-free reference approach.

24



In both cases, the stresses are given at diastolic state as well as at systolic state.

0

0.025

Inner to outer
0

0.025

σrr
[MPa]

Media Adventitia

0
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Inner to outer

σzz
[MPa]

Inner to outer
0

0.025

σθθ
[MPa]

CM, systole

Classical, systole

CM, diastole
Classical, diastole

Figure 8: Comparison of the constrained mixture and classical modeling approach. The full

lines represent the Cauchy stresses across the thickness of the wall for the constrained mixture

approach. The dashed lines represent the same stresses obtained with the classical modeling

approach. Stresses are shown at diastole and systole, i.e. an inner pressure of 2 kPa and 3 kPa

respectively. σθθ, σzz and σrr represent the circumferential, axial and radial Cauchy stresses.

4. Discussion

The objective of this study was to investigate how material parameters for

arterial tissue are affected by the introduction of the constrained mixture mod-360

eling approach. An efficient method able to provide these parameters based on

planar biaxial test data was introduced, addressing the need for reliable mate-

rial parameters to be used in e.g. growth and remodeling algorithms based on

the constrained mixture theory. This method was verified and applied to ac-

tual mechanical test data. Subsequently, the classical way of modeling residual365
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stresses and axial prestress in the arterial wall is compared to the constrained

mixture modeling approach.

4.1. Verification study

Table 3 demonstrates the general performance of the CMC fitting approach

and how the obtained material parameters relate to the classical parameters.370

The method converged in less than ten iterations for the six tested cases. The

error of the final parameters with respect to the ground truth parameters is an

order of magnitude smaller than 1% and negligible. Therefore, the method to

obtain material parameters for constrained mixture modeling performs well as

expected in a reasonable number of iterations for all test cases.375

When comparing the ground truth and CMC material parameters to the

classical parameters obtained in the first iteration step, a clear difference can

be observed, although the order of magnitude for all parameters stays similar.

No clear trend in the evolution from the classical set to the final set can be

noted. In four of six tested cases, the initial matrix stiffness C10,M is bigger380

at the first iteration than at the final one. In the two other cases, the value

of this stiffness parameter increases. Figure 5 shows that the evolution of the

material parameters over the iterations is not necessarily steady. For example,

for parameter set number six, an overshoot can be observed at the second it-

eration for parameters k1, k2 and αA, whereafter the parameters evolve in the385

direction of their ground truth values. No general conclusion can be observed

about the evolution of material parameters in function of the iteration number

of the CMC fitting approach, although it is important to note that material

parameters for the constrained mixture theory cannot simply be replaced by

classically obtained parameters.390

4.2. Application to experimental data

After verifying the iterative CMC parameter fitting approach with numer-

ically constructed test data, the approach was also tested with actual planar

biaxial test data. A diastolic geometry was build in Abaqus, where the in vivo
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thickness was determined based on trial-and-error. Better measurements of in395

vivo wall thicknesses should provide a solution.

The observed results of the CMC parameter fitting are in line with the

previous results. The relative difference between initial and final parameters sets

is comparable, such that the datasets used for verification seem representative

for real test data. The required number of iterations is similar as well.400

From figure 6, it can be seen that parameter C10,M decreases, while k1

increases. This shift of parameters most likely is a direct consequence of the

shift in stretch state of both constituents due to the application of deposition

stretches. It can be observed that after four iterations, the parameters no longer

change significantly. Therefore, the advantage of going through the last three405

iterations might not outweigh the higher computational cost, such that the

convergence criterion may be made less strict, depending on the accuracy sought

for.

4.3. Comparison of the classical and constrained mixture modeling approach

Figure 7 shows the model and experimental data. An offset from the zero410

force at stretch 1 can be observed. This is caused by a preload applied during the

biaxial test to avoid sagging of the sample at the start, leading to a deviation to

the model at low stresses. However, this artefact does not affect the aim of the

present study to compare the classical parameter fitting approach with the new

CMC method. Nonetheless, further research, beyond the scope of the present415

study, is necessary to correct for it in an accurate and straightforward manner.

The model data obtained from the classical approach matches the experimen-

tal data slightly better than at the final fit, although the difference is minimal.

It was observed that the final fit was sensitive to the value for ge,ax and that a

good choice is crucial to obtain a material model that matches the experiments.420

It was set to a realistic value of axial prestretch. However, no exact value for

the specific sample was available. Also gc affects the results. It was estimated

at 1.1, corresponding to an approximate value found in mouse carotid arter-

ies [28], which is possibly inaccurate for sheep pulmonary arteries. Performing
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experimental tests on the stretch state of collagen would be beneficial for the425

reliability.

Figure 8 shows the resulting stress states. Note that the sudden drop of stress

between media and adventitia arises from the difference in stiffness. It can be

observed that both models show very similar wall stresses. The circumferential

Cauchy stress in the medial layer is almost constant through the thickness. The430

homogenization of the wall stress is even clearer in the results of the constrained

mixture model, showing its strength in representing residual stresses. Three

possible reasons for the small difference between both models are listed. Firstly,

this is partly due to a different fit of both models to the experimental data,

such that the stress-stretch response is not the same. A second reason is the435

assumption of a stress-free radially cut state in the classical approach. From

the results of the FE model following the constrained mixture approach, it

can be seen that the stresses in the radially cut state are not exactly zero but

approximately two orders of magnitude smaller than at diastole. Thirdly, the

deformations from the diastolic state to the radially cut state, i.e. F release and440

F open are approximated and averaged over the element layers when integrated in

the constrained mixture parameter fitting. On the other hand, no approximation

was needed going from the stress-free state to the diastolic state in the classical

FE model. A similarity between both modeling approaches is the fact that the

radially cut state is considered to match the planar state at the beginning of445

the tensile test. In neither of the cases, a flattening deformation is considered.

Both modeling approaches yield similar results. Neither approach can be

easily validated due to the apparent lack of a ground truth material state. How-

ever, the constrained mixture approach offers the advantage that no stress-free

reference geometry is required. Therefore, it is preferred over the classical mod-450

eling method.

4.4. Implications of results

Bellini et al. [28] developed an improved mechanical model for arterial tis-

sue based on histological and clinical data. It enables to capture the effects of
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the residual stresses while considering a known in vivo reference state. Sev-455

eral studies have suggested, both experimentally and computationally, that this

constrained mixture modeling approach reliably predicts residual stresses and

the mechanical behavior of arterial tissue [28, 36, 40, 44]. Moreover, it provides

an elegant framework for the growth and remodeling algorithms in soft tissues

that are microstructurally relevant. However, to our best knowledge, no such460

material parameters from planar biaxial tests have been obtained before.

The aim of the present study was to provide an alternative planar biaxial

tensile parameter fitting method, hypothesizing that the constrained mixture

approach requires an alternative set of material parameters because of a shift in

energy contribution of the different constituents due to their different deforma-465

tion states. The results of the verification study show a clear difference between

classical and CMC parameter sets, while figure 7 shows a similar fit of the ex-

perimental data. These findings are in agreement with those of Mousavi and

Avril [40]. However, they found an increase in elastin stiffness and decrease in

collagen stiffness for the constrained mixture model. This cannot be generally470

concluded from the present results, presumably due to the following differences

in research approach. First, they use a slightly different constitutive model,

with four fiber families, where no fiber distribution is considered. Second, the

present study uses biaxial tensile test data, as opposed to uniaxial test data in

multiple directions, possibly yielding a different constitutive behavior. In any475

case, given the clear difference, but unclear relation between the classical and

CMC material parameter sets, the use of this developed iterative parameter fit-

ting approach is of great importance to define a reliable constitutive model for

arterial tissue based on the constrained mixture theory.

4.5. Limitations and future work480

A number of limitations can be attributed to the presently defined parameter

fitting approach. First, the constrained mixture model considers an in vivo

reference state, such that all deformations with respect to that state need to be

considered. However, one of these, i.e. between the radially cut configuration
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and the flattened out test sample, is currently ignored, since its determination485

from FE simulations is not straightforward. We assume this to be reasonable due

to small flattening stretches and negligible stresses that are often counteracted

by gravity in practice. A second limitation is related to gc and ge,ax. These

deposition stretches are assumed to be fixed and known. Unreported tests show

the sensitivity of the method to variations in these parameters, which is why490

reliable deposition stretch values are deemed important. However, experimental

methods to determine them are scarce. To our knowledge, only Bellini et al. [28]

have reported a value for gc. They refer to Ferruzzi et al. [45], who were able

to experimentally distinguish the stress-free state of collagen from the unloaded

arterial configuration. Bellini et al. fine-tuned these approximate values by495

optimizing the fit of model data to experimental data. The parameter gax is

closely related to the overall axial prestretch that can be measured upon excision

of an artery. If necessary, gc and ge,ax can be considered as extra parameters to

be fitted. In that case, overparameterization may be avoided by obtaining the

fiber angles and dispersion from histological data, such that no more than five500

parameters need to be fitted.

The method was verified by the numerical construction of mechanical test

data, obtained from the FE simulation of an ideal planar biaxial test. It must

be noted that this approach is only valid if the chosen constitutive behavior is

a good description of the behavior of arterial tissue. The transverse behavior505

of the GOH model has been found to be unrealistic [46, 47]. Moreover, the

implemented tension-compression switch has been criticised earlier [48], such

that improved material models must be considered. Also the choice of param-

eter dependence between the medial and adventitial layer might be unrealistic.

Nevertheless, we hypothesize that the proposed parameter fitting method is510

independent of the chosen material model. The parameter dependencies were

chosen based on approximate elastic versus fiber content in both layers and help

to reduce the number of parameters to be fitted.

The constrained mixture model is microstructurally motivated [28] and a

good prediction of the mechanical behavior of arterial tissue has been shown515
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[40], such that it is assumed to be valid in the present study. However, an

idealized planar biaxial test yields a uniform stress state per material layer,

unattainable during an actual test. Inhomogeneities arise from nonideal bound-

ary conditions. This impedes the obtention of the correct material parameters

as compared to the ideal situation. Fehervary et al. [49] proposed an alternative520

parameter fitting approach to handle these inhomogeneities. Future work should

be directed at integrating this approach with the currently proposed approach.

The current approach assumes an ideal cylindrical geometry and a resulting

homogeneous stress state per element layer. No regional diameter, thickness,

or material variations are taken into account. Future work will be directed525

towards nonideal geometries, where a patch of material will be virtually cut out

of a patient-specific geometry.

5. Conclusion

The constrained mixture theory for the modeling of the arterial wall consid-

ers constituent-specific deformations and an in vivo reference state. We assume530

that this approach requires different material parameters. A framework for an

iterative method to obtain these parameters based on planar biaxial test data

was introduced, verified and tested. This study showed that the iterative fitting

approach reliably converges towards the desired CMC material parameters. It

can also be seen that, for specific test data sets, these parameters must be dis-535

tinguished from classically obtained material parameters. Indeed, both fitting

approaches yield different material parameters, such that FE models following

the classical or the constrained mixture modeling theory require an adequate

set of material parameters. In a first application of the iterative fitting method

to actual experimental data, clear convergence occurs towards a set of CMC540

material parameters. These parameters, used in a FE model based on the

constrained mixture approach are an important step towards patient-specific

modeling of arteries, as well as reliable growth and remodeling algorithms.
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Appendix A: Implementation of the algorithm to find elastin deposi-

tion stretches

The iterative finite element method, described in section 2.2 of the manuscript,

is constructed as follows. In a first step, an arterial geometry is pressurized. In555

all following steps, the applied pressure is kept constant, while the stretch state

of the material is updated until the geometry has returned to its original shape.

At each simulation step, a UMAT subroutine is called in which the elastin de-

position stretch tensor is updated. This tensor Ge is stored in state dependent

variables (STATEV). This subroutine provides the current deformation gradi-560

ent and requires a resulting Cauchy stress (STRESS) and a Jacobian Matrix

(DDSDDE).

At the end of each step, a URDFIL subroutine is called. Within URDFIL,

the utility routine POSFIL is called to read from the results file with DBFILE.

This allows to store the present deformation gradient in a global variable F dep565

and to stop the simulation when convergence has been reached.

call user subroutine UMAT:

if STEP==1

STATEV = Ge,initial (see equation 7)570

endif
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Ge = STATEV

if STEP > 1575

Ge = F depGe

STATEV = Ge

endif

Gc = Gc (gc,M) (see equation 6)580

σij = 1
J

∂Ψ(F ,Ge,Gc)
∂Fia

Fja (see equation 13)

Cijkl = σijδkl + 1
2

(
∂σij
∂Fka

Fla +
∂σij
∂Fla

Fka

)
(see Nolan et al. [50], where C represents the Consistent Tangent Matrix and

δkl is the Kronecker delta)

585

STRESS = σ (convert 3x3 tensor to 6x1)

DDSDDE = C (convert 3x3x3x3 tensor to 6x6)

call user subroutine URDFIL:

call POSFIL:590

call DBFILE:

read F from results file (deformation gradient)

F dep = F

595

read U11, U22, U33 from results file (nodal displacement)

Uav =
∑
n

√
U11,n + U22,n + U33,n (average nodal displacement over all nodes n)

if Uav < Tol (Tol set to 1% of the wall thickness)

STOP simulation600

endif
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