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A B S T R A C T

An important knowledge gap in current urban hydrological models are reliable, generic data about interception
storage capacities of small urban plant species. These data are crucial to calculate interception losses and
learning their effect on the urban hydrological cycle. This study addresses this knowledge gap through simu-
lating rainfall events in an ex-situ, controlled environment on several urban plant species. Four plant species,
Lonicera nitida, Lavandula angustifolia, Pennisetum alopecuroides and a grass mix were selected based on their
abundance in urban environments and their morphological differences. Several vegetation characteristics such
as height and diameter were altered to create as much variation as possible in the dataset to determine the
underlying characteristics influencing the interception storage capacity. Estimating the interception storage
capacity of each plant (SP) using multiple linear regression models, biomass (BP) was found to be the most
important predictor variable for all species. Therefore predictive models to estimate the biomass of an individual
plant were developed, using some easy to measure vegetation characteristics. When using the results of these
biomass models as input in the storage capacity models, reasonable estimations of interception storage capacity
were achieved with mean absolute errors between 17.7 and 40.8%, depending on the model. Extrapolating SP to
a reference area of one m2 showed that L. angustifolia had the highest interception storage capacity due to its
high biomass density, followed by P. alopecuroides, L. nitida and finally the grass mix. As a proof of concept, a
mixed modelling approach was proposed to include species not covered in this research in the analysis. The
findings in this research can be used to create a firm basis for calculations of intra- and interspecies interception
storage capacities, essential for improving current urban hydrological models.

1. Introduction

1.1. Context

Regulating ecosystem services provided by urban green are diverse:
ranging from carbon and fine particle sequestration to urban heat
regulation (Cameron and Blanuša, 2016; Livesley et al., 2016). One of
the more prominent services is the ability of vegetation to regulate
water flows (e.g. Martin-Ortega et al., 2015). The natural water flow or
hydrological cycle of urban areas is altered due to increased im-
perviousness in the urban environment which results in more frequent
flooding and other water related problems such as reduced infiltration
and groundwater recharge (Haase, 2009; Jacobson, 2011; Paul and
Meyer, 2001). Most cities are built with the idea that incoming rain-
water should be guided to the sewer system as quickly as possible after

which it will be diverted away from the city. In recent decades how-
ever, the idea has been growing that rainwater is a utility rather than an
inconvenience and efforts have been made to develop systems that keep
rainwater within the city as a temporal storage or to supply the blue-
green network (Demuzere et al., 2014; FAWB, 2009). The idea of using
rainwater in our cities to regulate the hydrological balance is known
under different names such as ‘Water sensitive urban design (WSUD)’
(Coutts et al., 2012; Wong et al., 2013), ‘Low Impact Development
(LID)’ (Dietz, 2007) or ‘Sustainable Drainage Systems (SuDS)’ (Ciria,
2013). Because of its high surface area to volume ratio and relatively
low-cost implementation, vegetation has a great potential in acting as a
temporal water storage buffer. Additionally the IPCC states that vege-
tation can make our cities more resilient against negative impacts of
climate change such as an increased flood risk and mitigating the urban
heat island effect (Revi et al., 2014).
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Plants alter the urban hydrological balance by intercepting rain-
water. Interception is defined as the process of precipitation falling on
vegetation surfaces where it is temporally stored. This water is then
either evaporated into the atmosphere, absorbed by leaf surfaces or falls
through to the ground surface (Xiao et al., 2000a). The rainwater in-
terception potential of vegetation has been extensively studied and
modelled in the past for forest canopies by the Rutter and Gash models
(Gash, 1979; Rutter et al., 1971). These models served as foundation on
which several authors continued making progress in forest interception
modelling (e.g. Muzylo et al., 2009). In more recent decades a shift
occurred towards smaller scale crown interception in solitary trees to
determine the influence of street trees on the urban water balance (Xiao
et al., 2000a; Xiao and McPherson, 2011). The urban vegetation spec-
trum however does not only consists of trees but also has an abundance
of other types of smaller plants such as shrubs and grasses. In terms of
water balance studies, these plant types have largely been ignored by
the scientific community. Dunkerley (2000), in his review of intercep-
tion methods, related that to the need to refine measurement techni-
ques for these smaller plant types and he goes even further and im-
plicated that most published estimates of interception loss are probably
based on inadequate data and methods. Small plants and their vege-
tation nevertheless, are an integral part of urban vegetation and, due to
their abundance in parks and private gardens, contribute to the water
storage potential of urban green (Dewaelheyns et al., 2014; Verbeeck
et al., 2013). From a management perspective, they are easier to install
and sustain than trees and can be implemented in more diverse loca-
tions.

1.2. Storage capacity: definition and confusion

The most important plant characteristic influencing the rainwater
interception process is the interception storage capacity. There has been
some confusion in literature regarding the definition of this term.

The core of this confusion lies in distinguishing the difference be-
tween the temporal maximum storage that can be reached during a
rainfall event and the ‘real’ storage capacity. Meteorological variables
such as rain intensity and droplet size can influence the amount of
water retained on a canopy to an extent that it temporarily exceeds the
‘real’ storage capacity. This is demonstrated in the experiments of Keim
et al. (2006). They found, while simulating rainfall of different in-
tensities to determine interception storage capacities of small vegeta-
tion, a drop in actual water storage immediately after stopping the
rainfall simulation. This drop, they reasoned, is a result of dripping and
evaporation, with the evaporation process becoming more dominant as
time increases. The amount of water stored during the rainfall event
that is lost immediately after the rain stops hence is not a part of the
real storage capacity. Keim et al. (2006) concluded from their experi-
ments that there are two types of storage capacity: first there is the
static storage capacity which is the result of an equilibrium of static
forces at the contact between water, vegetation and the atmosphere.
This storage capacity is largely independent from meteorological vari-
ables and evaporation losses from vegetation canopies depend mostly
on this storage capacity. It can best be measured after rainfall when
canopy drip has ceased.

The temporal maximum storage reached during a rainfall event is
defined by Keim et al. (2006) as a second type of storage, the dynamic
storage capacity. This storage capacity is the result of dynamic forces
generated on the vegetation surfaces through meteorological variables
such as rainfall intensity and droplet size. The excess water will be
removed mainly through drip during the first few minutes after rain has
stopped.

More recently, Xiao and McPherson (2016) tackled this confusion in
a similar way: they called the static storage capacity the surface sa-
turation- or minimum storage capacity and the dynamic storage capa-
city the detention- or maximum storage capacity.

This study focuses on the static storage – (Keim et al., 2006) or Ta
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surface saturation- or minimum storage capacity (Xiao and McPherson,
2016) because this variable determines the quantity of rainwater that
never reaches the ground surface and does not contribute to run-off. It
is a vegetation characteristic largely independent from meteorological
variables and is of great value for modelers to predict run-off volumes
and rates during and after rain events. For simplicity, in what follows
the static storage – or surface storage capacity will be referred to as the
interception storage capacity.

Most authors that derived storage capacities tried to link those to
certain vegetation characteristics. They then expressed this storage
capacity as a function of the characteristic they thought of as most in-
fluential for storage capacity: The four main expressions of storage
capacity are as a function of canopy projection area (SCPA, mm) (e.g.
Domingo et al., 1998; Garcia-Estringana et al., 2010; Wang et al.,
2012), actual canopy area (SA, mm), which also includes the stem and
branch surfaces (e.g. Holder and Gibbes, 2017; Xiao and McPherson,
2016), leaf area (SL, mm) (e.g. Keim et al., 2006; Wohlfahrt et al., 2006)
and unit dry- or fresh biomass (SB, ml/g or g/g) (e.g. Garcia-Estringana
et al., 2010; Wang et al., 2012). Note that the interception storage ca-
pacities in mm are expressed on a reference area basis of one m2.
Table 1 gives a literature overview of studies done on storage capacity.

Several other vegetation characteristics have been found to influ-
ence storage capacity besides the ones described above. These char-
acteristics are mainly depending on canopy architecture or growth form
(Pérez-Harguindeguy et al., 2013). The woody branch architecture of
shrubs, having a canopy typically consisting of several diverging stems
with secondary branches and leaves inserted in a certain angle results in
densely covered ground area patches. This configuration giving rise to a
large potential interception storage capacity. In a study featuring nine
Mediterranean shrub species, Garcia-Estringana et al. (2010) found that
the interception storage capacity of shrubs was largely determined by
their morphology, particularly the branch- and leaf density were sig-
nificant variables. He also found other morphological characteristics
such as leaf hydrophobicity and pubescence, roughness of plant tissue
and orientation of leaves and branches playing a role in water retention.
Other green types such as common lawn and perennial grasses are
herbaceous plants. Displaying no or very limited secondary growth and
consisting primarily of soft tissue compared to woody plants, branch-
and leaf angles are not commonly measured for these vegetation types.
A typical characteristic measured for grasses, known to influence in-
terception storage capacity, is the percentage of vegetation cover over
bare soil (e.g. Concilio et al., 2015). We hypothesize that the inter-
ception potential of small plant species is comparable or in some cases
even higher than the one of solitary trees. The lack of standardization in
expressing storage capacity values, together with the unclear definition
of storage capacity itself which often has to be deduced from the con-
text, makes comparing literature values challenging and should be done
with caution. Moreover, most studies on small urban green plants were
done on xerophytic species in a Mediterranean climate (Garcia-
Estringana et al., 2010; Wang et al., 2012), limiting applicability of

their results in regions with a more temperate climate.
This study tries to generate reliable interception storage capacity

data for several smaller urban plant species, common in temperate
climate regions, by simulating rain events in a controlled environment
and modelling interception storage capacity based on easy to measure
vegetative characteristics. Generic models for predicting interception
storage capacity within a species, as well as between species and be-
tween urban green types will be developed. Additionally, because
biomass is an important vegetative characteristic and no standardized
measuring procedure yet exists, models that estimate an individual
plants’ biomass are developed. These models can subsequently be used
as input for the storage capacity models. Having models that accurately
predict biomass and interception storage capacities of small urban plant
species can greatly improve current urban hydrological models and
help urban planners to make strategic decisions on where and what
type of green to use.

The objectives of this study are threefold:

1) Measuring interception storage capacities of several small urban
plant species by simulating rainfall events in controlled conditions
and assessing their inter- and intra-species variability.

2) Construction of interception storage capacity models with data de-
rived from objective 1 to determine vegetation characteristics
within- and between species that significantly influence interception
storage capacity.

3) Construction of biomass models, using vegetation characteristics
easily measured in the field, to use as input for the interception
storage capacity models.

2. Material and methods

2.1. Species selection

Four temperate climate species, of which two ground covering
shrubs, a perennial grass and a grass mix commonly used for lawns
were selected based on their different morphological characteristics, as
well as their abundance in cities. The selected shrub species were
Lonicera nitida ‘Elegant’ and Lavandula angustifolia ‘Munstead’. The two
grass species were the perennial grass Pennisetum alopecuroides ‘Hameln’
and a common grass mix used for lawn. Twelve individuals of each
species, uniform in dimensions, were bought in a plant nursery. The
species were planted in flower pots and were grown to cover most of
their respective pot volumes. A polystyrene cover was made around the
stem of L. nitida, L. angustifolia and P. alopecuroides to seal the substrate
surface to prevent water infiltration during rainfall simulation. This
cover was thoroughly waterproofed by applying epoxy resin where
water could penetrate the substrate. The grass plots were bought in the
form of pre-sowed mats with a substrate depth of 1.5–2 cm and cut into
12 identical pieces of 20 × 35 cm (see Fig. 1).

L. nitida ‘Elegant’ (family: Caprifoliaceae) is a commonly used

Fig. 1. Example of the polystyrene sheet covering the substrate (left) and the pre-sowed grass mats used (right).
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ground covering evergreen shrub typically reaching heights of
70–100 cm. The species produces pairs of tabular, small creamy white
flowers to 1 cm long from leaf axils from May until June and thrives in a
wide range of climatological conditions, ranging from dry to wet areas
and grows in both full sun and partial-shade. It originates from S.W.
China. Partly due its good resistance to pollution, L. nitida is often
planted in urban areas where it densely covers a ground surface con-
sisting usually of several m2. Individual plants typically consist of one
main stem, quickly diverging in multiple head branches. Its shiny,
leathery ovate leaves are around 1.2 cm in length.

L. angustifolia ‘Munstead’ (family: Lamiaceae) is a common small,
bushy evergreen shrub typically between 20 and 50 cm height. Its thin,
linear, grey leaves range between 2 and 6 cm. L. angustifolia produces
unbranched stalks of fragrant, pale to deep purple flowers in dense
spikes from June until August, which makes it an extremely popular
plant in both public green and private gardens. It originates from the W.
Mediterranean where it grows up to 1500 m a.s.L. The species is typi-
cally planted in dense patches covering the ground surface. It thrives in
sunny conditions and in a well-drained dry to moist soil.

P. alopecuroides ‘Hameln’ (family: Poaceae) is a widely used orna-
mental compact clump-forming, wintergreen grass with arching, linear
leaves, to about 20 cm long and plant size typically reach a height of
50–80 cm. It’s a dwarf cultivar of Chinese fountain grass that unlike the

original species re-seed itself. The light brown to greenish white flowers
occur in a spike like inflorescence of about 12 cm long. P. alopecuroides
originates from E. Asia to W. Australia and is widely naturalized in
Europe and N. America. The species thrives in full sun to partial shade.
It prefers a well-drained moist soil and is often planted in groups with
individuals close to each other.

Common grass mixtures used for lawn vary in species composition.
The mixture used in this research consists of three species: 45% Festuca
rubra, 35% Poa pratensis and 20% Lolium perenne. Its height varies de-
pending on when the lawn is mown. The maximum height of the grass
used in this experiment was 9 cm. Illustrative pictures of the species can
be seen in Fig. 2.

2.2. Statistical- and experimental design

The workflow and experimental design of this study is depicted in
Fig. 3:

At the start of the experiment all twelve plants of each species were
of similar size and shape and showed little intra-species variation. This
imposes problems for estimations of the parameters in the statistical
models that will be developed to predict interception storage capacity
and biomass. To be able to estimate all parameters accurately, larger
differences in the vegetation characteristics influencing interception

Fig. 2. Illustrative picture of species a) L. nitida, b) L. angustifolia, c) P. alopecuroides and d) grass mix.
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storage capacity were needed. Therefore a statistical method is pre-
sented to create maximal variation in a dataset of plant characteristics.
These characteristics will then be used to construct multiple linear re-
gression models that can be used to predict the interception storage
capacity of each plant (Sp, ml) and the fresh biomass of each plant (Bp,
g). These two variables can then easily be converted to one of the
common storage capacity measures in Table 1. The procedure to do this
can be consulted in Section 2.5.

Variation was introduced by means of pruning. To reduce the
aliasing, this is the correlation between the characteristics due to the
experimental design, as much as possible, a specific methodology was
used. Traditionally, design of experiments was limited to choosing an
appropriate design from a catalogue. The resulting designs were very
inflexible regarding the number of runs and parameters to estimate.
Because of the small number of observations and large number of
characteristics, a more flexible approach of algorithmic experimental
design or optimal experimental design was adopted. This design gives
high flexibility regarding the number of runs and characteristics that
can be of interest (Goos and Jones, 2011). In this case, a D-optimal
design was constructed for each vegetation type. The D-optimality
criterion minimizes the confidence ellipsoid on the parameter estimates
by minimizing the determinant of the Fisher information matrix. As a
result, parameters are estimated as precise as possible and aliasing is
reduced to a maximum (Atkinson et al., 2007).

However, because several vegetation characteristics are inter-
dependent, it was impossible to imply this design very strict. To over-
come this, the following strategy was adopted. Firstly, one vegetation
characteristic was selected. For this characteristic the plants were al-
tered following the experimental design. Consequently, altering the
plants impacted other vegetation characteristics. Secondly, another
vegetation characteristic was selected and the plants were altered fol-
lowing the design. After all chosen characteristics were altered, a large
variability was achieved, making it possible to estimate all parameters
with as little aliasing as possible. The increased variation in the dataset
is reflected as a higher coefficient of variation (CV). The CV is obtained
by dividing the standard deviation by the absolute value of the mean
and is used as a measure to show the extent of variability around the
mean.

The altered characteristics were height, diameter and number of
branches for both shrub species. For P. alopecuroides, the number of
leaves and number of inflorescences were modified and for the grass
mix the altered vegetation characteristics were height and cover. All
these characteristics showed relatively high degrees of correlation,
meaning that modifying one characteristic also influenced the other
characteristics.

2.3. Measured plant characteristics

Most plant characteristics were measured according to the methods
described in Pérez-Harguindeguy et al. (2013). For shrubs, the plant
characteristics measured were: canopy projection area (CPA, m2), dia-
meter (d, cm), average leaf inclination angle (aL, °), average branch
inclination angle (aB, °), height (h, cm), leaf area index (LAI, −) and Bp

(g). The measured vegetation characteristics of the perennial grass, P.
alopecuroides were CPA (m2), h (cm), Bp (g) and number of brown in-
florescences (f, −). The characteristics measured of the grass mix were
h (cm), BP (g) and cover (c, %).

To calculate the CPA, a methodology similar to the one used by
Garcia-Estringana et al. (2010) has been applied. A top down picture,
consistently on the same height, was taken of each individual plant
together with a 2 × 2 cm reference surface. Digital image analysis
software, SigmaScan Pro 5, was used to calculate the number of pixels
of the reference surface (Fig. 4). Then the number of pixels containing
green leaves was calculated by applying a color detection algorithm on
the image. Because of the subtle differences in green between plant
species, the hue and saturation values on which the color-algorithm
depends had to be obtained through trial and error. Dividing the
number of pixels recognized as leaves by the number of pixels of the
reference surface and multiplying this number by the reference surface
(4 cm2), resulted in the CPA of the plant.

To determine aL, 20 randomly chosen leaves of each individual
distributed over the whole plant were measured. Only leaves positioned
perpendicular to the camera were used. A horizontal picture was taken
and the angles were measured with the program MB-ruler (http://
www.markus-bader.de/MB-Ruler/index.php). The same procedure was
applied to measure aB. All main branch angles perpendicular to the
photograph of each individual were measured. Using a tape, h was
obtained by measuring from the polystyrene base covering the substrate
to the top of the plant. To determine the LAI of shrubs, a new, fast and
accurate procedure was developed. Sixty random branches of each
species were measured and divided in three length classes: short,
middle and long. Next, five branches of each class were dissected and
the average leaf area (cm2) of each branch length-class was calculated
with SigmaScan Pro 5, using the pixel-color identification algorithm
discussed before. On each plant, the number of short, middle and long
branches were manually counted and multiplied by the average leaf
area of each class, resulting in the approximated total leaf area (cm2) of
the plant. This value was then divided by its CPA, which resulted in the
LAI. The plants’ biomass (BP) was measured with a scale (Sartorius
L2200P, precision 0.01 g for L. nitida and L. angustifolia and Mettler
PJ6000, precision 0.1 g for P. alopecuroides and the grass mix) after

Fig. 3. Workflow and experimental design. The SP value (ml) is derived directly from the experiments.
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cutting the plant at its base when the rainfall simulator experiments had
finished. P. alopecuroides and the grass mix required a different scale
with a higher measurement range (0.1–6000 g in comparison to
0.01–2220 g for L. nitida and L. angustifolia) because of their higher
weight. The number of inflorescences (f) was manually counted for
each individual of P. alopecuroides. The cover (c) of each grass mix plot
was found by applying the same color detection algorithm used to de-
termine the CPA of the shrubs. In this case the algorithm differentiated
between grass – and bare soil pixels. The grass mix leaves’ bend over
sideways, hanging over the edges of the plots which sometimes resulted
in cover percentage over 100%.

2.4. Rainfall simulation

After modifying the vegetation characteristics as described in the
statistical- and experimental design section, each plant was weighed
and placed in a random design on a tray table in a climate controlled
greenhouse. Air temperature and air humidity ranges in the greenhouse
were kept steady during and after rain events between 23.9 and 25.7 °C
and 50–71.5% respectively.

Once all plants were placed on the tray table, a rainfall event using
the greenhouse’s sprinkler system was simulated. This system consisted
of polyamide arc sprinklers with a nozzle diameter of 2.25 mm. At a
pressure of 2 bar, these sprinklers generate a flow rate of 2.75 L/min in
a radius of 1.6 m. This equates to an average rain intensity of 20.5 mm/
h. The expected median diameter of the drop size was between 0.68 and
1.09 mm, based on Kincaid et al. (1996) in which a similar sprinkler
system was applied with the same nozzle diameter and water pressure
as in this study. After 15–20 min, once the vegetation was fully satu-
rated, the sprinkler system was turned off and the plants were left to
drip for two minutes, after which they were weighed again. The long
simulation time made sure that the vegetation was fully saturated and
the amount of water retained corresponded to the full interception
storage capacity of the plant, as previously demonstrated by Keim et al.
(2006) who found that water stored on branches came to equilibrium
within 5–10 min at a rainfall intensity of 20 mm/h. By then subtracting
the plant’s dry weight from the weight of the wet plants, the inter-
ception storage capacity was determined. This method was previously
used by Garcia-Estringana et al. (2010) and Wang et al. (2012).

The procedure used for the grass mix plots was slightly different
because they were bought in the form of pre-sown mats with a substrate
depth of 1.5–2 cm. The substrate was saturated first by submersion in a
water basin with a water level just high enough to submerge the sub-
strate, but not the vegetation. After the substrate was fully saturated the
grass mix plots were taken out the basin and placed on a tray table in
the greenhouse and rainfall simulation commenced. The storage capa-
city was then calculated by subtracting the weight of the fully saturated
grass plots from the plots where only the substrate was saturated.

2.5. Storage capacity measures

The storage capacity of each plant (Sp), as directly measured in the
rainfall simulation experiments, was converted into two additional
measures of storage capacity. Firstly a conversion was made to SB by
dividing by the plants’ biomass (SB = Sp/Bp). Secondly, by multiplying
SB with the biomass present in one m2 (BCPA, kg/m2) , SCPA was found
(SCPA = SB*BCPA). To calculate the biomass present in one m2 (BCPA),
the plant density (no. plants/m2) was estimated using the CPA (m2) of
each individual (no. plants/m2 = 1/CPA and BCPA = no. plants/m2 *
Bp). This method of upscaling was used by Garcia-Estringana et al.
(2010) and Wang et al. (2012) among others. The reason why was
opted for SCPA, and not for the SL or SA is that all in-situ studies make
use of SCPA (Table 1). By using the same method of expressing inter-
ception storage capacity as the experiments done in field conditions, the
results obtained are more comparable and transferable to outdoor si-
tuations.

To summarize, three different interception storage capacity mea-
sures are used: 1) storage capacity of each plant (Sp, ml), 2) storage
capacity per unit biomass (SB, ml/g) and 3) storage capacity based on
canopy projection area (SCPA, mm).

After all interception storage capacities were calculated, an initial
outlier detection was done using Tukey boxplots (McGill et al., 1978).
This method makes no assumptions about data distribution and is ap-
plicable to both normal- and skewed distributed data. After detection,
the extreme values were interpreted and a decision was made whether
to remove them. Next, model construction commenced.

2.6. Model construction

Predictive models were developed for Sp and Bp. The model con-
struction workflow chart is depicted in Fig. 5:

To assess the level of correlation between the vegetation char-
acteristics, a Principal Component Analysis (PCA) was performed. Next
to that, the Spearman correlation between all pairs of characteristics
was calculated. This correlation is the sum of multicollinearity or in-
terdependence of the characteristics on the one hand, and the aliasing
or correlation introduced by the experimental design on the other hand.
When high correlations are present, model selection becomes increas-
ingly difficult and calculated p-values for each estimated parameters
become ambiguous. As a rule of thumb, a Spearman correlation > 0.80
is regarded as troublesome (Neter et al., 2004). When two character-
istics were deemed too correlated, practical considerations such as ea-
siness to measure, decided which characteristic was kept in the mod-
elling procedure.

Subsequently, the same paradigm was used for the Sp and Bp models
to perform the statistical analysis. After the first outlier detection using
Tuckey boxplots, the dependent variables were Log-transformed and

Fig. 4. Example of the color detection algorithm before (left) and after (right) application, used in Sigmascan Pro 5 to calculate canopy projection area (m2).
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based on Multiple Linear Regression, all possible models were fitted.
For these models, the vegetation characteristics and all second-order
interactions and quadratic effects of these characteristics are used as
independent variables. To reduce present multicollinearity as much as
possible and remove any scale effects in the estimates, all vegetation
characteristics were coded to fall in the range [−1,1]. The first model
selection was based on the goodness-of-fit statistics R2, adjusted R2, the
Root Mean Squared Error (RMSE) and the corrected Akaike’s
Information Criterion (AICc). The Akaike’s information criterion gives a
score to a model based on its goodness of fit and complexity, it is a
comparative criterion and its value is only meaningful relative to other
values. The corrected version of the criterion takes into account finite
sample sizes and is especially useful for smaller sample sizes such as in
this research. When several models performed equally good, the sim-
plest model with the least variables and interactions was chosen.

During the first model selection, normality of the residuals was
checked qualitatively by means of a quantile plot (QQ-plot) and more
formally with a Shapiro-Wilk test. To test homoscedasity or constant
variance of the residuals, the studentized residuals, which is the ratio of a
residual over its standard deviation, are plotted in function of the pre-
dicted values. The same plot was used to make sure that the residuals are
randomly distributed and no outliers are present in the model. As a final
outlier detection method, Cook’s D values are calculated for all ob-
servations to assess the influence or leverage of each observation. If an
observation had a Cook’s D value > 4/n, and a studentized residual
value > 2 (Neter et al., 2004), it was flagged as outlier and excluded
from further analysis. When all assumptions are met and there no more
outliers were present, the chosen model was refitted and discussed.

For the models encompassing more than one species, an extra spe-
cies variable ‘i’ was introduced. This qualitative variable assigns a dif-
ferent value to each species in the model and accounts for the variance
in storage capacity attributable to a specific species. In other words, the
species variable accounts for variance that is not found by measuring
the plant characteristics, as described in Section 2.3, but is still present.
For the models where the species variable ‘i’ turned out to be a sig-
nificant addition, a conversion was done to a mixed model. In this type
of model, the plant species was regarded as being a random pick from a
population of possible plant species. As such there is a variance com-
ponent estimated for the entire species population. The larger the
species effect, the more difficult it will be to do accurate interception
storage capacity predictions for other plant species. This way the spe-
cies effect is an indicator of the generic applicability of the model.

Doing this conversion increases the scope of the model from only the
species in the experiment to all possible species of that vegetation type.

To validate the final model, the predicted residual error sum of
squares (PRESS) was chosen. This often used leave-one-out cross vali-
dation statistic refits the model several times, leaving out one ob-
servation and refitting the model with the remaining observations. The
resulting model is then used to estimate the excluded observation and
the prediction error is determined. After all prediction errors are de-
termined, the PRESS is calculated as the sum of squares of all these
errors (Neter et al., 2004). A lower PRESS indicates a better model. Like
the Akaike’s information criterion, the resulting PRESS value is only
meaningful when comparing different models among each other and its
value has no inherent meaning on its own.

Finally, when all BP and SP models were constructed, a reverse SP

estimation was done by using the output of BP models as input for the SP

models. This allowed for a comparison between the measured results in
the rainfall experiments and the estimated results obtained through the
modelling procedure. The average-, average absolute-, median abso-
lute-, minimum- and maximum error between the measured and pre-
dicted SP values was calculated.

3. Results

3.1. Vegetation characteristics

The original- and modified mean values of the plant characteristics
of every species can be found in Table 2 together with their coefficient
of variation (CV).

As can be seen in Table 2 the CV of all modified vegetation char-
acteristics increased, indicating that through the statistical design pre-
sented in this study a larger variation has been created in the dataset.

The mean of the measured vegetation characteristics per species,
after modification of the above described variables, are presented with
their standard deviation in Table 3.

The differences in CPA and Bp are mainly attributable to the dif-
ferent dimensions of the urban plant species. Remarkable differences
were found in aL between the two shrub species. L. nitida has nearly
horizontal leaves (4 ± 6.7°), while L. angustifolia has its leaves oriented
in a much steeper, upright angle (45.7 ± 14.8°). Besides the steeper
average leaf angle, L. angustifolia has an LAI > 4 times as large as L.
nitida and its branches are oriented in a steeper angle at an orientation
of 70.6 ± 7° in comparison with L. nitida that has an aB of 46.5 + -8.3°.

Fig. 5. Workflow and statistical methods used to construct multiple linear regression models to predict SP (ml) and BP (g).
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3.2. Storage capacities

A visual representation of the three storage capacity measures can
be seen in the Tukey boxplots in Fig. 6.

As can be seen in Fig. 6, outliers are present in each method of
expressing storage capacity. L. nitida has the same outlier present in all
three types of storage capacity. L. angustifolia has the same outlier in SB

and in SCPA. The grass mix has one outlier in the SB approach. Because

these values are deemed unrealistically high in comparison to the other
values of these species, they are assumed to be measurement errors and
are excluded from the modelling part.

Table 4 shows the mean storage capacities per species.
The relatively large standard deviations of average storage capacity

values reflect the variation imposed on the dataset in the experimental
design. This created variation will be used to construct multiple linear
regression models with SP (ml) as dependent variable. Some noticeable

Table 2
Original- and modified vegetation characteristics with their mean values, standard deviation (SD) and coefficient of variation (CV). h: height; d: diameter; f: no. of
inflorescences; c: cover.

Species n Characteristic Original mean + SD Modified mean + SD Original CV Modified CV

L. nitida 12 h (cm) 30.3 ± 4.8 24 ± 5.9 15.8% 24.6%
12 d (cm) 46.9 ± 4 30.3 ± 14.4 8.5% 47.5%
12 branches (#) 14.4 ± 5.8 11 ± 5 40.3% 45.5%

L. angustifolia 12 h (cm) 18.5 ± 5.1 11.6 ± 4 27.6% 34.5%
12 d (cm) 15 ± 1.9 11.3 ± 2 12.7% 17.7%
12 branches(#) 12.8 ± 2 8 ± 4 15.6% 50.0%

P. alopecuroides 12 leaves (#) 43.4 ± 9 32 ± 10 20.7% 31.3%
12 f (#) 17.7 ± 9 15 ± 8 50.9% 53.3%

Grass mix 12 h (cm) 8.6 ± 1.16 6.2 ± 2.6 13.5% 41.9%
12 c (%) 107.9 ± 8.2* 102.1 + -10.6 7.6% 10.4%

* : value based on 5 grass plots.

Table 3
Averages of the measured vegetation characteristics with their standard deviations (SD) of all four urban plant species. CPA: canopy projection area; Bp: biomass of
each plant; BCPA: biomass per m2; h: height; aL: average leaf angle; LAI: leaf area index; aB: average branch angle; f: no. of inflorescences; c: cover.

characteristic L. nitida (n = 12) L. angustifolia (n = 12) P. alopecuroides (n = 12) Grass mix (n = 12)

CPA (cm2) 562 ± 141 57 ± 25 330 ± 85 715 ± 74
Bp (g) 45.93 ± 11.3 13.57 ± 3.96 123.1 ± 21.69 78.9 ± 15.47
BCPA (kg) 0.824 ± 0.126 2.525 ± 0.639 4.04 ± 1.58 1.10 ± 0.17
h (cm) 24 ± 5.9 11.6 + -4 59.2 ± 3.9 6.2 ± 2.6
aL (°) 4 ± 6.7 45.7 + -14.8 – –
LAI (-) 1 ± 0.04 4.32 ± 0.52 – –
aB (°) 46.5 ± 8.3 70.6 ± 7 – –
f (-) – – 15 ± 8 –
c (%) – – – 102.1 ± 10.6

Fig. 6. Boxplots showing outliers for each storage capacity measure. a) SP (ml), b) SB (ml/g) and c) SCPA (mm).

Table 4
Means storage capacities with their standard deviations (SD). n is the number of individuals, outliers excluded. SP: storage capacity for each plant (ml); SB: storage
capacity per unit biomass (ml/g); SCPA: storage capacity based on canopy projection area (mm).

Species n SP (ml) SD n SB (ml/g) SD n SCPA (mm) SD

L. nitida 11 64.93 ± 20.77 11 1.46 ± 0.35 11 1.21 ± 0.39
L. angustifolia 12 24.89 ± 10.31 11 1.64 ± 0.41 11 4.22 ± 1.83
P. alopecuroides 12 98.71 ± 51.17 12 0.75 ± 0.41 12 2.97 ± 1.89
Grass mix 12 48.88 ± 22.08 11 0.57 ± 0.19 12 0.67 ± 0.26

V. Smets, et al. Journal of Hydrology 572 (2019) 869–883

876



differences can be found between the three measures of storage capa-
city: the lowest mean SP can be found for L. angustifolia. When com-
pensated for biomass, L. angustifolia has the highest storage capacity
(SB). Due to its dense vegetation structure L. angustifolia holds more
water per gram biomass than L. nitida. Another noticeable difference is
that both grass species, in terms of SB, have smaller storage capacities
than the shrub species. Both grasses have average storage capa-
cities < 1 ml/g while the storage capacities of L. nitida and L. angusti-
folia are 1.46 ± 0.35 ml/g and 1.64 ± 0.41 ml/g respectively.

Comparing the values of SCPA, L. angustifolia has a very large in-
terception storage capacity with an average value of 4.22 ± 1.83 mm.
The second highest interception storage capacity is found in P. alope-
curoides with 2.97 ± 1.89 mm , followed by L. nitida and the grass mix
with interception storage capacity values of 1.21 ± 0.39 and
0.67 ± 0.26 mm respectively.

3.3. Modelling

This section presents different fixed multiple linear regression
models for SP (ml) and Bp (g), constructed with the vegetation char-
acteristics as independent variables.

3.3.1. Storage capacity models SP (ml)
Table 5 and Fig. 7 show the models made with Sp (ml) as dependent

variable. Table 6 shows models 5 and 6 after conversion to a mixed
model, using the same variables but assigning a random effect to the

variable ‘i’. The prediction equations can be consulted in the attach-
ments.

Models 1–4 are one-species models constructed for each species
seperately. The shrub model is a two- species model construced with L.
nitida and L. angustifolia and the all species model is a model were a
regression is made using the four species used in this research. Both
multiple species models have an qualitative species variable ‘i’, which
assigns a number (1–4) to each species, taking in to account the species
effect on the interception storage capacity. When two variables have a
significant interaction effect, this is represented as a ‘+’ in the table.
When the interaction between two variables is significant, this means
that their product makes a significant contribution to the model. When
this effect is significant and added to the model, the separate variables
of which the interaction is composed, need also to be kept in the model,
even if they are not significant. This is known as the heredity principle.

One outlier was found for the L. angustifolia model with a Cook’s
D > 4/n and a studentized residual > 2. This value was excluded
from further modelling and is depicted by the symbol ‘x’ in the actual-
by predicted plot 2 of Fig. 7 The reason for this exceptional value is
considered to be a measurement inaccuracy during the weighing after
the rainfall simulation experiments. This data point was subsequently
excluded from the other models including this point, namely the shrub-
and all species models. As can be seen from Table 5, the species effect
(i) is significant in both the shrub- and all species models. This means SP

(ml) is significantly influenced by the plant species for both models.
Biomass is the most important predictor variable determining SP for

Table 5
Multiple linear regression models for each species separately (model 1–4), both shrubs – L. nitida and L. angustifolia (model 5) and all species together (model 6) with
SP (ml) as dependent variable.

Number Model n Variables R2 R2adj RMSE ANOVA PRESS

1 L. nitida 11 BP**,aB*,BP + aB* 0.61 0.44 0.22 < 0.1 0.74
2 L. angustifolia 11 BP*** 0.59 0.55 0.28 < 0.1 1.76
3 P. alopecuroides 12 BP**,CPA**,h**,CPA + h** 0.63 0.42 0.5 < 0.1 7.94
4 Grass mix 12 BP** 0.34 0.27 0.37 < 0.05 2.29
5 Shrub model 22 BP***, i***, BP + i*** 0.85 0.82 0.27 < 0.001 2.64
6 All species 46 BP***, i*** 0.62 0.58 0.43 < 0.001 9.78

Variables: BP = biomass (g), aB = average branch angle (°), CPA = Canopy projection area (m2), h = height (cm), i = species variable
* = p < 0.10, ** = p < 0.05, *** = p < 0.01, n.s. = not significant, + = interaction between variables.

Fig. 7. Actual versus predicted plots of SP (ml). The numbers on the upper left corner of each plot refer to the model number in Table 5.
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all models. Branch angle (aB) has an important influence in the L. nitida
model but not in the L. angustifolia model, where BP is the only sig-
nificant predictor variable. A steeper aB in the L. nitida model increases
interception storage capacity. The P. alopecuroides model has, besides
BP, h and CPA as determining factors. Aside from the grass mix model
that has a low fit with an R2 and R2 adj of 0.34 and 0.27 respectively, all
other models demonstrate moderate to good fits with R2 and R2 adj
ranging from 0.59 to 0.85 and 0.42–0.82. The low predictive power of
the grass mix model indicates that probably not enough variation was
introduced to make a good model. PRESS values are low for the L. ni-
tida, L. angustifolia, grass mix- and shrubs models compared to the
PRESS values of the P. alopecuroides and all species model, indicating
good model stability of the former models in comparison to the latter.

When converting the multiple species models (models 5 and 6) to
mixed models (Table 6), the species effect accounts for 15.8% and

41.7% of the shrub model and all species model variance respectively.
This indicates that in the shrub model, 15.8% of the measured variance
cannot be explained by the residuals of the fixed variables, in this case
BP, but is due to the species variable. The biomass variable in the shrubs
model however, becomes insignificant when converting to a mixed
model, limiting the model’s validity. When converting the all species
model to a mixed model, BP remains a significant predictor variable.

3.3.2. Biomass models BP (g)
Table 7 and Fig. 8 show the models made with the BP (g) as de-

pendent variable. The prediction equations can be consulted in the at-
tachments.

Models 1–3 show moderate to good fits with an R2 and R2adj ran-
ging from 0.59 to 0.82 and 0.55–0.75 respectively. No suitable model
could be found for the grass mix. In the L. nitida model, both d and h are

Table 7
Multiple linear regression models for each species separately (model 1–4), both shrubs – L. nitida and L. angustifolia (model 5) and all species together (model 6) with
BP (g) as dependent variable.

Number Model n Variables R2 R2adj RMSE ANOVA PRESS

1 L. nitida 12 d(n.s),h(n.s),d + h** 0.82 0.75 0.12 < 0,01 0.22
2 L. angustifolia 12 aL*,CPA** 0.74 0.69 0.16 < 0,01 0.41
3 P. alopecuroides 12 f*** 0.59 0.55 0.12 < 0,01 0.20
4 Grass mix 11 – – – – – –
5 Shrub model 24 i*** 0.86 0.85 0.26 < 0,001 1.81
6 All species 48 i*** 0.94 0.93 0.23 < 0,001 2,65

d = diameter (cm), h = height (cm, aL = average leaf angle (°), f = no. of inflorescences, CPA = Canopy projection area (m2), i = species variable
n.s. = not significant, * = p < 0.10, ** = p < 0.05, *** = p < 0.01, + = interaction between variables.

Table 6
Mixed model conversions of models 5 and 6 with the species variable 'i' as random effect.

Number Model Model type n Variables R2 R2adj RMSE Species effect

5 Shrub model Mixed 22 BP (n.s) 0.77 0.76 0.32 15.8%
6 All species Mixed 46 BP** 0.62 0.61 0.43 41.7%

Variables: BP = biomass (g).

Fig. 8. Actual versus predicted plots of BP (g). The numbers on the upper left corner of each plot refer to the model number in Table 7.
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not significant, but they are retained because of their interaction effect
(heredity principle). The L. angustifolia model has aL and CPA as pre-
dictor variables while the P. alopecuroides model displays a reasonable
fit with only f as predictor variable.

The shrub- and all species model show very good model fits with an
R2 and R2adj of 0.86 – 0.94 and 0.85–0.93 respectively. The only
variable in the models is the species variable ‘i’. This means that only
one biomass value is given for each species as output and that con-
verting models 5 and 6 to a mixed model is impossible as there would
be no fixed variables in the model.

3.3.3. Reverse estimation SP
In this section SP will be reverse estimated by using the output of the

BP models (Table 7) as input for the SP models (Table 5). Doing this
gives an indication of the applicability of the whole modelling

procedure. The results of the reverse SP estimation are presented in
Fig. 9 and Table 8. The actual SP, as measured in the rainfall simulator
experiments, is compared with the SP that is predicted by using the
output of the biomass models. A reverse estimation of the grass mix
model was not possible because no BP model of the grass mix could be
made.

The average error for all models lies around 0%, indicating a well-
balanced model output. The average absolute error values give a better
representation on how much each model over- or underestimates SP.
The L. nitida model performs best with the lowest average absolute
error, the lowest median absolute error and the lowest maximum error.
Models 2–4 perform similar in all aspects with average absolute error
values 10–15% higher than the L. nitida model. The all species model
has the largest errors with an average absolute error of 40.8% and a
maximum error of 189.7%. Note that the predicted output of Sp models

Fig. 9. Bar chart comparing the actual SP values, as measured in the experiments (blue) with the predicted SP values that use the output of the BP models as input
(grey). 1: L. nitida model; 2: L. angustifolia model; 3: P. alopecuroides model; 4: Shrubs model; 5: All species model. The yellow dots shows the difference (%) between
the actual- and predicted SP values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4 and 5 is constant for each species (Fig. 9), which is a direct result of
the discrete output of Bp models 5 and 6 (Table 7).

4. Discussion

4.1. Ex-situ experiments

Comparing the interception storage capacities found with our ex-
periments to values of previous studies done on similar plants, the re-
sults found in this research are of similar magnitude. Garcia-Estringana
et al. (2010) found an SB for L. latifolia, a plant of the same genus as L.
angustifolia, of 2.26 ml/g while this study found a value of
1.64 ± 0.41 ml/g for L. angustifolia. Upscaling their results, they found
an SCPA of 3.24 ± 1.17 mm while this study found 4.22 ± 1.83 mm.
Domingo et al. (1998) empirically derived interception storage capa-
cities for Stipa tenacissima L. tussock, a perennial grass with similar
morphology to P. alopecuroides and found an SCPA of 2.44 ± 0.27 mm.
The results in this study are slightly higher with 2.97 ± 1.89 mm.

Shrubs had considerably higher SB than grasses (Table 4). This
difference might be explained by the woody branch architecture of
shrubs, as described by Pérez-Harguindeguy et al. (2013). Shrub ca-
nopies, consisting of diverging primary and secondary branches, are
well suited to hold water droplets because the woody tissue acts as an
additional water storage reservoir. Xiao and McPherson (2016) found
that water stored on stem surfaces of tree branches could amount up to
0.16 mm per unit stem surface area. Herbaceous plants such as grasses
on the other hand consist entirely of green tissue, making them less
suitable for temporal water storage.

4.2. Modelling

The storage capacity models (Table 5) show that BP is the most
important predictor variable. These findings are in accordance with
Wang et al. (2012), who acknowledges the importance of BP: they found
BP and leaf area to be the best predictors for canopy storage capacity for
three xerophytic shrub types. Keim et al. (2006) on the other hand,
found that BP did not correlate well to storage capacity.

Variables such as aB for the L. nitida model and CPA and h for the P.
alopecuroides model are additional factors improving model fit. These
findings are in accordance to Garcia-Estringana et al. (2010), who
found BP and dendrometric characteristics to be significantly correlated
to SP. The positive coefficient of aB in the L. nitida model (see appendix)
indicates that a higher aB is beneficial for water storage. In literature, an
aB above 45° is usually associated with greater stemflow yields (Levia
and Frost, 2003; Martinez-Meza and Whitford, 1996). With an aB of
46.3 + 8.3°, the branches of L. nitida are around this threshold value of
favoring water storage or stemflow, but the limited variation in aB does
not allow to determine this exact value.

For the storage capacity models encompassing more than one spe-
cies, the species effect significantly improved both the shrub- and all
species model. This means that there are other specific characteristics,
not covered in this research, that influence SP. What these character-
istics are remains an open topic to debate. Characteristics such as stem
pubescence or epidermal rugosity could influence SP (Garcia-Estringana
et al., 2010) and the effect of leaf hydrophobicity and water droplet

retention were also not accounted for in this study (Holder, 2013).
Pérez-Harguindeguy et al. (2013) states that the hydrophobicity or
wettability of a leaf surface is mainly determined by the leaves’ cuti-
cular wax and trichomes. Taking these characteristics into account is
advised for possible follow up studies. When converting these models to
a mixed model (Table 6), the magnitude of the species effect is eval-
uated. The species effect is small (15.8%) for the shrub model, but after
conversion Bp becomes insignificant as a predictor variable, severely
limiting the applicability of this model. The all species model has a
larger (47.7%) species effect, meaning a larger uncertainty when using
other species than the ones included in the model. The variable BP

however remains significant, meaning the model can be used to predict
SP of other plant species. This larger uncertainty was expected because
of the higher number of species in the model with a widely different
morphology such as the differences between grasses and shrubs.

The BP models (Table 7) show good fits for L. nitida, L. angustifolia
and P. alopecuroides, using some easy to measure variables. For the grass
mix no BP model could be found which reflects the lesser results of the
SP model. The most probable cause for this is that not enough variation
was introduced by adjusting the vegetation characteristics of the grass
(Table 2). Follow up studies should make sure to introduce more var-
iation. The shrub- and all species models show very high fits but this is
as a result of the species variable, which is the only significant predictor
in these models, all other variables are negligible. This results in a
discrete model output of only one BP value for each species, limiting
these models’ applicability.

4.3. Applicability

The BP models 1–3 provided in Table 7 can be used to estimate BP of
an individual plant using some easy to measure vegetation character-
istics. These model outputs can then be used as input for the models in
Table 5, giving an estimation of SP. The reverse estimation of SP, using
the output values of the BP models as input, is a valuable test of the
general applicability of the whole modelling procedure. All models
perform similar with slightly larger error values for the shrubs- and all
species model, which is expected because of the discrete output of the
biomass models that is used as input. Especially the Bp and SP models
1–3 are applicable for intra-species estimation of biomass and storage
capacity, given their good model fits and reasonable average absolute
errors in the reverse SP estimation procedure. The shrubs- and all spe-
cies models are useful when the modeler’s interest lies in distinguishing
BP and SP between species. Because of their species-specific discrete
output, these models are not suited for intra-species BP and SP estima-
tion. Although reasonable results are achieved in the reverse SP esti-
mation, we advise to use the output values of the biomass models with
caution and to compare them with alternative biomass estimation
methods before using them as input in the SP models.

These results can then be extrapolated to SCPA using the CPA
(Section 2.5). The results of the grass mix SP model are less suited for
application. The SP values found in the rain experiments nevertheless
can be used as an average for common lawn because the average
mowing height of urban lawn (Day, 2017) is within the range used in
our experiments (Table 3).

The mixed models (Table 6) give a proof of concept on how to

Table 8
Error values of reverse Sp estimation model output, all values are in %.

Number Model n Average error Average abs. Error Median abs. error Min error Max error

1 L. nitida 11 −0.7 17.7 15.4 3.6 45.2
2 L. angustifolia 11 −4.4 28.9 24.7 3.8 78.4
3 P. alopecuroides 12 −5.7 31.3 34.8 5.6 56.9
4 Shrub model 22 2.6 30.5 28.2 1.8 79.9
5 All species 46 −9.4 40.8 32.7 0.9 189.7
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incorporate more species in the regression models. To make these
models more applicable, experiments should be done with more plant
species with a wider range of morphological characteristics to decrease
the species effect.

Comparing the interception storage potential of urban trees and
smaller urban vegetation types, certain advantages are seen when using
the latter. Indeed, this study found that, on average, the storage capa-
city of small green is comparable and in some cases higher than that of
urban trees. In this study, SCPA values of 4.22 ± 1.83 mm (L. angusti-
folia), 2.97 ± 1.89 mm (P. alopecuroides), 1.21 ± 0.39 mm (L. nitida)
and 0.67 ± 0.26 mm (grass mix) were found. In comparison Aston
(1979) found SCPA between 0.2 and 1.04 mm in his rainfall simulation
experiments on eight small trees. More recently Xiao et al. (2000b)
found SCPA values of 1 and 2 mm for a Pyrus calleryana ‘Bradford’ and
Quercus suber respectively, while Véliz-chávez et al. (2014) found an
average SCPA of 1.5 mm for a Ficus benjamina tree. Interestingly, Iida
et al. (2017) recently found SCPA values of 5.9–7.2 mm for Japanese
cedar trees. They explained these high water storage values are a result
of high bark and branch storage, which constitutes 70–90% of total
water storage. It seems that small green elements are a comparable or
sometimes even more efficient rainfall storage container than most
trees. This study recommends performing more research in both con-
trolled- and in situ conditions to improve the models presented in this
study and enhance our understanding of the interception storage ca-
pacity potential of small green species.

5. Conclusions

This study looked at the interception storage capacity potential of

four urban plants species with different morphological characteristics.
Rainfall simulations in controlled conditions allowed to determine SP of
the common green species L. nitida, L. angustifolia, P. alopecuroides and a
grass mix. Using multiple linear regression models, BP was found to be
the most important predictor variable for all species. Therefore BP

prediction models were constructed, with vegetation characteristics
that are easily measured in the field, to serve as input for the SP models.
The results of these SP models using BP as input were reasonable with
relatively low absolute errors between predicted- and actual SP, de-
monstrating their practical applicability. A mixed modelling approach
was proposed to obtain SP for species not included in this research. The
results obtained with this approach give support for further studies,
incorporating more species, with more individuals, to improve model
prediction accuracy and determine the overall effect of biomass on
interception storage capacity.
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Appendix

Model prediction equations:
Each variable X is recoded to a variable X (c) to reduce multicollinearity and scale effects. The coded variable is dimensionless and has values

between [−1,1].
The coding is done by the formula: =X c( ) X M

D where:
M is the arithmetic mean of variable X which is found by the formula: = +M X Xmax( ) min( )

2
D is the range of variable X divided by two: D= X Xmax( ) min( )

2
Coded variable:

= ( )Bp c( ) Bp g( ) 502.29
493.58

= °( )a c( )B aB (Â ) 56.14
24.32

=CPA c( ) CPA m( 2) 0.12
0.12

= ( )h c( ) h cm( ) 33.84
32.66

= °a c( )L aL (Â ) 31.22
38.48

= ( )f c( ) f (#) 15
8

(c) stands for ‘coded’

A) Fixed storage capacity models (ml) – Table 5.

1→ L. nitida; 2.→ L. angustifolia; 3→ P. alopecuroides; 4→ Grass mix
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B) Mixed storage capacity models (ml) – Table 6.

C) Fixed biomass models (g) – Table 7.

1→ L. nitida; 2.→ L. angustifolia; 3→ P. alopecuroides; 4→ Grass mix
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