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INFERENCE FOR COVARIATE-ADJUSTED SEMIPARAMETRIC
GAUSSIAN COPULA MODEL USING RESIDUAL RANKS∗

By Irène Gijbels†, Ingrid Van Keilegom† and Yue Zhao†

KU Leuven†

We investigate the inference of the copula parameter in the semi-
parametric Gaussian copula model when the copula component, sub-
ject to the influence of a covariate, is only indirectly observed as the
response in a linear regression model. We consider estimators based
on residual ranks instead of the usual but unobservable oracle ranks.
We first study two such estimators for the copula correlation ma-
trix, one via inversion of Spearman’s rho and the other via normal
scores rank correlation coefficient. We show that these estimators
are asymptotically equivalent to their counterparts based on the ora-
cle ranks. Then, for the copula correlation matrix under constrained
parametrizations, we show that the classical one-step estimator in
conjunction with the residual ranks remains semiparametrically effi-
cient for estimating the copula parameter. The accuracy of the esti-
mators based on residual ranks is confirmed by simulation studies.

1. Introduction.

1.1. Background. Let E = (E1, . . . , Ep)
> ∈ Rp be a random vector; we assume through-

out that Ek, k ∈ {1, . . . , p} has absolutely continuous marginal distribution function Fk,
and E has joint distribution function F . Sklar’s theorem (e.g., Theorem 2.10.9 in [33])
states that the dependence structure of E can be uniquely described by its associated
copula C, via

F (x) = C(F1(x1), . . . , Fp(xp)), x = (x1, . . . , xp)
> ∈ Rp

where R denotes the extended real line. By the “inverse” Sklar’s theorem (e.g., Corol-
lary 2.10.10 in [33]),

C(u) = F (F←1 (u1), . . . , F
←
p (up)), u = (u1, . . . , up)

> ∈ [0, 1]p,(1.1)

where for k ∈ {1, . . . , p},

F←k (t) = inf{x : Fk(x) ≥ t}, t ∈ [0, 1](1.2)

denotes the left-continuous inverse of Fk. The copula C is equivalently the joint distri-
bution function of the transformed random vector (F1(E1), . . . , Fp(Ep))

>, and it remains
unchanged if (univariate) strictly increasing transformations are applied to the individual
components of E (see, e.g., Theorem 2.4.3 in [33]). Copulas provide a modular approach
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to multivariate modeling, in that the dependence structure of a multivariate distribution
can be summarized by a copula, irrespective of the behaviors of its marginals. A collection
of multivariate distributions in Rp is called a semiparametric copula model if they share a
copula parametrized by a finite-dimensional Euclidean parameter θ while their marginals
range over all p-tuples of absolutely continuous univariate distribution functions.

This paper focuses specifically on the semiparametric Gaussian copula model (or simply
Gaussian copula model), where the copula in the semiparametric copula model is restricted
to be a Gaussian copula. We say that the random vector E ∈ Rp has a Gaussian copula if
for a copula correlation matrix R ∈ Rp×p that uniquely characterizes the copula of E,

(Φ←(F1(E1)), . . . ,Φ
←(Fp(Ep)))

> ∼ Np(0,R);(1.3)

throughout the paper the symbol “∼” denotes equality in distribution and Φ← denotes the
standard normal quantile function. By (1.3), the Gaussian copula model obviously con-
tains all multivariate normal distributions, and hence further encompasses all distributions
that can be obtained from multivariate normal distributions through strictly increasing
transformations of the marginals. Combining (1.1) and (1.3), simple algebra yields that
the copula CR associated with E is

CR(u) = ΦR(Φ←(u1), . . . ,Φ
←(up)), u ∈ [0, 1]p.(1.4)

Here the function ΦR is the distribution function of the Np(0,R) distribution.
To discuss semiparametric efficiency we will further treat the copula correlation matrix

as being parametrized through R = R(θ) for the copula parameter θ ∈ Θ where Θ ⊂ Rd
is some parameter space, and d is regarded as the intrinsic dimension of R. For brevity,
we will often suppress the dependence of R on θ. An important special case is when
each element of the upper-triangular portion of R is a free parameter, so d = p(p− 1)/2;
R is then said to obey an unrestricted model. In contrast to the unrestricted model,
by a constrained parametrization we mean R(·) is (usually) a continuously differentiable
Rp×p-valued function and Θ is (usually) within a lower-dimensional Euclidean space (so
d < p(p−1)/2). Even under a constrained parametrization R(θ), in practice one often first
assumes a working unrestricted model for R, and constructs a preliminary estimator R̃
of R; then, one can estimate the copula parameter θ through, e.g., the pseudo-likelihood
estimation or the one-step method to be discussed later, based on the parametrization
R(θ) with the preliminary estimator R̃ as input.

The study of the Gaussian copula model has enjoyed continued interest in the last couple
of decades. In the classical fixed-dimensional setting, a major research focus has been the
(asymptotically) semiparametrically efficient estimation of R or of the copula parameter
θ when the marginal distribution functions Fk are left unspecified as infinite dimensional
nuisance parameters, that is, when the problem is fully semiparametric. Progressively
along the work of, e.g., [3, 27, 23, 37], we have now a fairly complete understanding of the
tight semiparametric lower bound for R or θ. Typically, the semiparametric lower bound
is larger than its counterpart within a corresponding parametric problem with known
margins, due to the loss of information through the unknown margins. [37] also studied an
estimator that achieves the semiparametric lower bound by adapting the one-step method
(see, e.g., Section 25.8 in [41]).

More recently, the Gaussian copula model has also received much attention in a graphical
model setting. Recall that the locations of the zeros of the precision matrix S (which is the
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inverse of the covariance matrix) of a Gaussian random vector G encode the conditional
independence structure of the Gaussian graphical model associated with G [29]. Through
(1.3), it is readily seen that such an encoding of the Gaussian graphical model via the
precision matrix naturally extends to the Gaussian copula model [31, 43]. More precisely,
for a random vector E that has a Gaussian copula with (copula) precision matrix S = R−1,
its two components Ek and E` are conditionally independent given all the other coordinates
if and only if the (k, `)th element of S is zero. Thus, inferring the graphical model associated
with E is intrinsically tied to the problem of finding an accurate estimator of S. In high
dimensions, it is typically assumed that (the parametrization of) R corresponds to a sparse
inverse but is otherwise unrestricted. Finding an accurate estimator of R in this context
is important because in order to estimate S, an estimator of R almost always serves as
the input to sparsity-inducing optimization programs.

1.2. Research objective: Covariate-adjusted semiparametric Gaussian copula model. Sup-
pose that a p × 1 random vector E = (E1, . . . , Ep)

> has a Gaussian copula with copula
correlation matrix R. We will refer to the case when the sample of E is directly observable
as the ordinary (semiparametric) Gaussian copula model. Now, let a p×1 response vector
Y = (Y1, . . . , Yp)

> and a q×1 covariate vector X = (X1, . . . , Xq)
> be linked to E through

the linear regression model

Y = B>X + E,(1.5)

where B is a q×p unknown coefficient matrix. In contrast to the ordinary Gaussian copula
model, assume that we do not directly observe the sample of E. What is at our disposal
instead is a sample of (Y,X). As before, we will focus on the statistical inference problem
for R. Recall that the p components of E have univariate distribution functions F1, . . . , Fp
respectively. Moreover, let the covariate X have distribution function FX. Then, the finite-
dimensional parameter B, the infinite-dimensional distribution functions F1, . . . , Fp and
FX are all nuisance parameters. We call this model the covariate-adjusted (semiparametric)
Gaussian copula model ; later for brevity we will often refer to this model simply as the
“regression setting.”

To motivate this study, let us assume for the moment a simpler model where under (1.5),
E is just Gaussian (instead of having a Gaussian copula), and we again observe a sample of
(Y,X). (Then, of course, E still has a Gaussian copula; however, its marginals are all fixed
to be univariate Gaussian.) This model is often called a covariate-adjusted/conditional
Gaussian graphical model in the literature. The graphical interpretation here comes from
the Gaussian vector E. As the sample of E is never observed, however, one can only infer
the associated Gaussian graphical model through the response Y. The qualifier “covariate-
adjusted” reflects the fact that the Gaussian graphical model underlying Y is obtained
after removing the influence of the covariate X. The covariate-adjusted Gaussian graphical
model has recently been studied by [5, 10] among others. These authors have shown that
removing the external effects associated with X can significantly improve the detection of
the intrinsic connections associated with E.

Given the extension of Gaussian distributions in one direction to the Gaussian copula
model, and in the other direction to accommodate a covariate in the covariate-adjusted
Gaussian graphical model, it is clear that the covariate-adjusted Gaussian copula model is
a natural but difficult next step that combines both of the previous extensions. Moreover,
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our study will show that to a large extent the complication introduced by the additional
regression structure in fact does not affect the (semiparametrically efficient) estimation
of R or of the copula parameter θ; this theme will be repeated throughout this paper.
To achieve this goal, we will rely on the ranks of the residuals in a preliminary linear
regression step, or simply residual ranks, from which we construct rank-based estimators
of the copula correlation matrix.

1.3. Relation to existing studies. Gaussian copulas have been extended in a number of
ways to incorporate a covariate, sometimes in a regression structure, and we briefly review
some representative work in this area. In what follows, again Y = (Y1, . . . , Yp)

> denotes a
p × 1 response vector and X = (X1, . . . , Xq)

> denotes a q × 1 covariate vector, although
not necessarily in a linear regression setting.

First, a parametrically specified Gaussian copula can be used to create a dependence
structure for the different components of Y, and the marginal distributions of Y can
also be specified to have a parametric form. For each marginal distribution, its associated
parameters may depend on the covariate X, and may also be of interest. This is the
approach taken in, e.g., [32, 38]. Because this approach requires parametrically specified
marginals, it differs significantly from our approach where the marginals are unspecified.

More recently, [6, 14] also treated the linear regression model (1.5) but they restricted
(Y,X,E) to be jointly multivariate normal. (To be precise, [6] considered the case p = 1,
while [14] considered a reparametrization of (1.5), presented in their Eq. (1), in terms of
the covariance matrix of (Y,X).) It is further assumed that none of the sample of Y,X,E
is available. Instead, [6, 14] considered a sample of (Ỹ, X̃) linked to the (unavailable)
sample of (Y,X) through strictly increasing transformations of their components. To be
precise, for arbitrary integer r ≥ 1, let Gr be the collection of functions g : Rr → Rr such
that, for each g ∈ Gr, there exist strictly increasing univariate functions g1, . . . , gr so that
for all x1, . . . , xr ∈ R, one has g(x1, . . . , xr) = (g1(x1), . . . , gr(xr))

>. Then [6, 14] studied
the estimation of B in (1.5) from a sample of (Ỹ, X̃), where Ỹ = g(Y) and X̃ = h(X)
for fixed but unknown marginal transformation functions g ∈ Gp and h ∈ Gq. In turn,

the estimator of B is used to predict Ỹ from a realization of X̃, and this is done without
assuming a linear relationship between Ỹ and X̃. [6] called this model the Gaussian copula
regression model, because the joint distribution of the observable (Ỹ, X̃) has a Gaussian
copula.

Note that our approach and that of [6, 14] extend the linear regression model (1.5)
in quite distinct ways: we impose a copula structure on E while the latter imposes a
copula structure on (Y,X). This distinction reflects the different motivations of the two
approaches: in our covariate-adjusted Gaussian copula model, the copula component E is
the object of interest and it is the object of interest that has been perturbed, just as in
the covariate-adjusted Gaussian graphical model. In contrast, in the approach of [6, 14],
the (Gaussian) E is largely a nuisance parameter in the prediction task. Technically, our
approach is arguably more challenging because we never observe a sample of the Gaussian
copula component E directly (whereas [6, 14] do observe a sample of the Gaussian copula
component (Ỹ, X̃)), but only a sample that has been perturbed by the covariate. Showing
that we can still obtain meaningful estimators of R despite such perturbations is at the
core of our analysis.

Beyond the Gaussian copula model, there are a number of papers dealing with copula
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inference, not necessarily in a linear regression setting, based on some form of ranks of
residuals adjusted for a covariate. We briefly address the representative papers [7, 19, 20]
here. [7] studied asymptotic distribution of copula parameters via pseudo-likelihood esti-
mators in their so-called semiparametric copula-based multivariate GARCH models, Here,
univariate GARCH models describe marginal risk series and a parametric copula creates
a dependence structure for the different marginal risks; the residual marginal risks are
obtained from the observed responses after adjusting for the estimated marginal standard
deviations. Note that to the best of our knowledge detailed treatment of semiparametric
efficiency (including the semiparametric lower bound and the efficient one-step method)
in copula models appears to be rather restricted to Gaussian copulas, and the pseudo-
likelihood estimators typically do not achieve semiparametric efficiency (even within Gaus-
sian copulas); see, e.g., [18, 23]. Thus, apart from a model setup that is different from ours,
naturally [7] does not address semiparametric efficiency, which is among our research ob-
jectives. [19, 20] are set in the conditional copula framework; they assumed that a scalar
covariate X affects only the marginal distributions but not the dependence structure of a
bivariate response Y, and the copula of Y when conditioning on X is a totally unspecified
(i.e., nonparametric) copula. [19, 20] studied the asymptotics of the resulting empirical
copula process based on the estimated conditional distribution of Y given X. Conditional
copulas certainly encompass our linear regression model (1.5) as a special case. Note that
an estimator of (an element of) R is often obtained through a multivariate rank order
statistics which, after centering at R and scaling by

√
n, is then equivalent to the integral

of a particular score function (specified in Section 2.2.1) against a bivariate empirical cop-
ula process. However, when the score function is unbounded (as in the case for the normal
scores rank correlation coefficient), the weak convergence of the empirical copula process
alone is not even sufficient to establish the asymptotic normality of the resulting integral
(see, e.g., Section 3.1 in [2]).

Having discussed related literature beyond the Gaussian copula model (not necessarily
in a linear regression setting), we would like to point out that our technical analysis can
easily accommodate different choices of score functions, and so only partially relies on
the Gaussian copula assumption. However, we believe that the prevalence of Gaussian
copulas (because of the possibility to achieve semiparametric efficiency and its connection
to graphical models) warrants a dedicated treatment, and the specific linear regression
form also allows for a more refined analysis, as well as potential generalization to high-
dimensional settings, as we briefly discuss in Section 6.

1.4. Organization of the paper. Section 2 formally introduces our model and estimation
procedures. Section 3 presents the asymptotic normality of two estimators of the copula
correlation matrix R based on the residual ranks, one via inversion of Spearman’s rho in
Section 3.2, and another via normal scores rank correlation coefficient in Section 3.3. As
has already been mentioned in Section 1.1, and as we will elaborate in Section 3.4, these
estimators are stepping stones to obtain estimators of the copula parameter θ.

Next, Section 4 derives the semiparametric lower bound for estimating the copula pa-
rameter θ, and then shows that the one-step method in conjunction with the residual
ranks yields an estimator that achieves this lower bound. Section 5 presents the results of
a simulation study comparing the estimators based on the residual ranks and the oracle
estimators (to be introduced in Section 2.2.1). Section 6 concludes and also provides a
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short discussion on the high-dimensional extension of the current project. Due to space
constraint most technical analysis and some supporting materials are deferred to a sup-
plement, as will be explained throughout the main text. Sections in the supplement are
labeled by Roman alphabet.

1.5. Notations. We will always use . to denote inequality that holds with an absolute
constant (that is, independent of sample sizes, dimensions, and any parameter we consider)
as the factor. For any positive integer a, we use [a] to denote the set {1, . . . , a}.

For a matrix A ∈ Rp×p, we use (A)kk′ to denote its (k, k′)th element. For a two-
dimensional array of numbers akk′ , k, k

′ ∈ [p], we use [akk′ ]k,k′∈[p] to denote a matrix
A ∈ Rp×p with (A)kk′ = akk′ . When acting on vectors and matrices, ‖ · ‖ denotes the
Euclidean norm, and when acting on functions, ‖ ·‖L∞ denotes the supremum norm of the
argument.

We let L2[0, 1] be the Hilbert space of functions on the interval [0, 1] that are square-
integrable with respect to the Lebesgue measure. We let L0

2[0, 1] be the closed (linear)
subspace of L2[0, 1] resulting from the restriction that if h ∈ L0

2[0, 1], then
∫
[0,1] h(u)du = 0,

and let Ld
2 [0, 1] be the dense subspace of L2[0, 1] consisting of continuously differentiable

functions (e.g., Proposition 8.17 in [15]). It is easy to show that L0,d
2 ≡ L0

2[0, 1]∩Ld
2 [0, 1] is

dense in L0
2[0, 1]. Analogously, we let L2(FX) be the Hilbert space of functions h : Rq → R

that are square-integrable with respect to the measure FX (i.e.,
∫
Rq h

2dFX < ∞ iff h ∈
L2(FX)). We let L0

2(FX) be the closed subspace of L2(FX) resulting from the restriction
that if h ∈ L0

2(FX), then
∫
Rq hdFX = 0.

2. Model setup and (residual) rank-based estimation.

2.1. Formal model setup. Recall that the copula correlation matrix is parametrized as
Θ → Rp×p : θ → R(θ) for some parameter space Θ ∈ Rd. We say that (Y,X,E) has a
joint law Pθ,B,F1,...,Fp,FX

if the following conditions hold:

(i) E has a Gaussian copula Cθ ≡ CR(θ), where CR(θ) is given in (1.4) with copula
correlation matrix R = R(θ); the inverse S(θ) of R(θ) exists.

(ii) For each k ∈ [p], the kth component Ek of E has absolutely continuous marginal
distribution function Fk that corresponds to a marginal density function fk.

(iii) X and E are independent.
(iv) The covariate X has an absolutely continuous joint distribution function FX in Rq,

corresponding to a density fX.
(v) Equation (1.5) holds (with B ∈ Rq×p).

Throughout the paper we assume that both p and q are fixed; the only exception occurs
in Section 6 where we discuss high-dimensional generalization. Note also that with con-
dition (iv) above, the covariate X cannot contain an intercept term. Consequently, no
location constraint is placed on F1, . . . , Fp.

For brevity henceforth we abbreviate Pθ,B,F1,...,Fp,FX
simply as P.

2.2. Rank-based estimation procedures. Because copulas are invariant to strictly in-
creasing marginal transformations, it is desirable for an estimator of R to maintain such
invariance. Therefore we concentrate on rank-based methods. (For non-rank-based ap-
proaches, see, e.g., [11] for a method based on parametric sieves that also achieves semi-
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parametric efficiency.) In Section 2.2.1 we review some rank-based estimators of R in the
ordinary Gaussian copula model, and in Section 2.2.2 we develop their counterparts in the
covariate-adjusted Gaussian copula model. We let (Yi,Xi,Ei), i ≥ 1 be independent copies
of (Y,X,E), with Ei = (Ei,1, . . . , Ei,p)

>, Yi = (Yi,1, . . . , Yi,p)
> and Xi = (Xi,1, . . . , Xi,q)

>.

2.2.1. Procedures for the ordinary Gaussian copula model. If the sample Ei, i ∈ [n]
of the copula component E were directly observable, a

√
n-consistent and asymptotically

normal estimator of R can be derived in a number of classical ways. For each k ∈ [p], we
define the empirical marginal distribution function for the kth coordinate of E as

Fn,k(t) =
1

n

∑
i∈[n]

1{Ei,k ≤ t},

and its rescaled version as

F r
n,k(t) =

1

n+ 1

∑
i∈[n]

1{Ei,k ≤ t}.

We need the above rescaled empirical marginal distribution function so that applying Φ←

to it later will result in finite values. We will refer to Fn,k(Ei,k) and F r
n,k(Ei,k) as the

(normalized) oracle ranks. Henceforth the qualifier “oracle” denotes quantities that could
be computed in the ordinary Gaussian copula model, and the qualifier “normalized,” which
we will omit almost throughout, refers to the multiplication by the factor 1/n or 1/(n+1).

The first estimator of R ≡ [rkk′ ]k,k′∈[p] we consider is the (oracle) normal scores rank
correlation coefficient estimator Rn = [rn,kk′ ]k,k′∈[p], defined as

rn,kk′ =
φn
n

∑
i∈[n]

Φ←(F r
n,k(Ei,k))Φ

←(F r
n,k′(Ei,k′)), ∀k, k′ ∈ [p];(2.1)

see, e.g., Eq. (7) on p. 113 in [22]. Here φn is a deterministic correction factor given by

φn =

 1

n

∑
i∈[n]

{
Φ←

(
i

n+ 1

)}2
−1 = 1 +O(n−1 log(n)).(2.2)

Using the Gaussianized observations Z
(n)
i ≡ (Φ←(F r

n,1(Ei,1)), . . . ,Φ
←(F r

n,p(Ei,p)))
>, we

can write Rn explicitly in matrix form as

Rn =
φn
n

∑
i∈[n]

Z
(n)
i Z

(n)>
i .(2.3)

The correction φn is asymptotically insignificant, but with it the diagonal elements of
Rn, and analogously of R̂n given later in (2.6), all equal to one, and so Rn and R̂n

become genuine correlation matrices. The elements of Rn belong to multivariate rank
order statistics (in this case, with score function Φ←) that are common in the literature;
see [22, 36] for some early references. The asymptotic distribution of

√
n(Rn−R) is a zero

mean (matrix) Gaussian; see the discussion following Theorem 3.4. In the unrestricted
model for R, the estimator Rn coincides with the pseudo-likelihood estimator, and it is
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semiparametrically efficient (in the ordinary Gaussian copula model); see Section 3.4 for
more details.

Alternatively, we can estimate R by inversion of Spearman’s rho. As described, e.g., in
[25, 28], the population version of Spearman’s rho between the kth and k′th coordinates
of E, for any k, k′ ∈ [p], is defined as

ρkk′ = 3
{
P((E1,k − E2,k)(E1,k′ − E3,k′) > 0)− P((E1,k − E2,k)(E1,k′ − E3,k′) < 0)

}
.

Then, let the (oracle) estimator of ρkk′ be

ρn,kk′ =
12n

n2 − 1

∑
i∈[n]

{
Fn,k(Ei,k)−

n+ 1

2n

}{
Fn,k′(Ei,k′)−

n+ 1

2n

}
= 1− 6

n

n2 − 1

∑
i∈[n]

{
Fn,k(Ei,k)− Fn,k′(Ei,k′)

}2
;(2.4)

see, e.g., Eqs. (11) and (12) on p. 113 to 114 in [22]. The elements ρn,kk′ , k, k
′ ∈ [p] again

belong to multivariate rank order statistics (in this case, with score function
√

12(u−1/2)).
The asymptotic distribution of

√
n[ρn,kk′ − ρkk′ ]k,k′∈[p] is a zero mean (matrix) Gaussian,

and will be hinted at following Theorem 3.3.
Furthermore, the following well-known equality holds between the elements of the

copula correlation matrix R = [rkk′ ]k,k′∈[p] and the elements of Spearman’s rho matrix
[ρkk′ ]k,k′∈[p]:

rkk′ = 2 sin
(π

6
ρkk′

)
, ∀k, k′ ∈ [p];

see, e.g., Corollary 4.1 in [24]. A plug-in estimator of R via inversion of Spearman’s rho
is then given by Rρ

n = [rρn,kk′ ]k,k′∈[p] with

rρn,kk′ = 2 sin
(π

6
ρn,kk′

)
, ∀k, k′ ∈ [p].

By the Delta method, the asymptotic distribution of
√
n(Rρ

n − R) is also a zero mean
(matrix) Gaussian.

2.2.2. Procedures for the covariate-adjusted Gaussian copula model. In the covariate-
adjusted Gaussian copula model, the sample of the copula component E, and therefore the
oracle ranks, are not directly observable. Instead our sample consists of (Yi,Xi), i ∈ [n].
Therefore, we rely on this sample to estimate the sample of E and the oracle ranks. We
denote the kth column of B by Bk. Then the kth component of (1.5) reads

Yk = B>k X + Ek.

We let B̂ = B̂(n) be an estimator (sequence) of B, and denote the kth column of B̂ by B̂k.

For sample size n ∈ {1, 2, . . . } and i ∈ [n], let Êi = Ê
(n)
i = (Êi,1, . . . , Êi,q)

> be the
residual of the ith sample, which we also regard as an estimator of Ei, defined as

Êi,k = Yi,k − B̂>k Xi = Ei,k − (B̂k −Bk)
>Xi, ∀k ∈ [p].(2.5)
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For brevity we will suppress the dependence of Êi on n (which it inherits from B̂). Then,
for each k ∈ [p], let F̂n,k be the (empirical marginal) residual distribution function for the
kth coordinate of E, which we regard as an estimator of Fn,k, defined as

F̂n,k(t) =
1

n

∑
i∈[n]

1{Êi,k ≤ t}, t ∈ R,

and let F̂ r
n,k be the estimator of F r

n,k defined as

F̂ r
n,k(t) =

1

n+ 1

∑
i∈[n]

1{Êi,k ≤ t}, t ∈ R.

We will refer to F̂n,k(Êi,k) and F̂ r
n,k(Êi,k) as the (normalized) residual ranks.

Now, we let R̂n = [r̂n,kk′ ]k,k′∈[p] be the normal scores rank correlation coefficient esti-
mator of R based on the residual ranks given by

r̂n,kk′ =
φn
n

∑
i∈[n]

Φ←(F̂ r
n,k(Êi,k))Φ

←(F̂ r
n,k′(Êi,k′)), ∀k, k′ ∈ [p],(2.6)

where we recall the correction factor φn from (2.2). Using the Gaussianized observations

Ẑ
(n)
i = Ẑi ≡ (Φ←(F̂ r

n,1(Êi,1)), . . . ,Φ
←(F̂ r

n,p(Êi,p)))
>,(2.7)

we can write R̂n explicitly in matrix form as

R̂n =
φn
n

∑
i∈[n]

ẐiẐ
>
i .(2.8)

Note that R̂n is obtained from (2.1), or in matrix form from (2.3), through substitution
of the oracle ranks by the residual ranks.

Next, let the estimator of Spearman’s rho ρkk′ based on the residual ranks be

ρ̂n,kk′ = 1− 6
n

n2 − 1

∑
i∈[n]

{
F̂n,k(Êi,k)− F̂n,k′(Êi,k′)

}2
.(2.9)

Similar to (2.6), ρ̂n,kk′ is obtained from (2.4) through substitution by the residual ranks.
Then, a plug-in estimator of R via inversion of Spearman’s rho, now based on the residual
ranks, is given by R̂ρ

n = [r̂ρn,kk′ ]k,k′∈[p] with

r̂ρn,kk′ = 2 sin
(π

6
ρ̂n,kk′

)
, ∀k, k′ ∈ [p].(2.10)

The perturbation term (B̂k − Bk)
>Xi in (2.5) will likely cause the residual ranks to

deviate from the oracle ranks. However, as we will demonstrate in Section 3.1, the difference
between the residual ranks and the oracle ranks is uniformly small. Consequently, the
differences between the estimators based on the residual ranks and their counterparts
based on the oracle ranks should be small as well, allowing us to conclude that these
estimators have the same asymptotic distribution. Rigorously demonstrating this fact will
be a major focus for the remainder of this paper.
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3. Asymptotic normality of estimators of copula correlation matrix based on
residual ranks. In Section 2 we have introduced two estimators of the copula correlation
matrix R based on the residual ranks. In this section we present asymptotic normality
results for these estimators. Some preliminary results regarding the residual ranks are
presented in Section 3.1. These results concern the individual coordinates of E and in fact
do not rely on the Gaussian copula dependence structure (i.e., condition (i) under the law
P described at the beginning of Section 2). The most important results of Section 3 are
presented in Sections 3.2 and 3.3. First, Section 3.2 treats the estimator R̂ρ

n in (2.10) via
inversion of Spearman’s rho. Then, Section 3.3 treats the normal scores rank correlation
coefficient estimator R̂n in (2.6). Finally, Section 3.4 provides a short discussion, including
on how, from the estimators of R, we could obtain estimators of the copula parameter θ
under constrained parametrizations R(θ). As we will see, the estimator R̂ρ

n is easier to
analyze, but the estimator R̂n is more closely related to the pseudo-likelihood method in
Section 3.4 and to the one-step method in Section 4.2.

We do not require a specific form of the estimator B̂ of B, but in order for our estimators
of R to be consistent, naturally we require B̂ to be consistent for B. Even though in
a linear regression model a n−1/2 convergence rate for B̂ is the most common one, a
different convergence rate is possible. For instance, Rousseeuw’s robust least median of
squares regression introduced in [35] yields a slower, n−1/3 convergence rate for B̂ (see,
e.g., Example 6.3 in [26]). As another example, if we consider a case where the law P may
change with the sample size n, then δB,n could reflect the “effective” convergence rate of

B̂ in terms of n; in Section 6, this topic is treated in more details when specifically the
ambient dimensions p and q vary with n. To demonstrate the flexibility of our estimators,
we simply set the convergence rate of B̂ as in Assumption 3.1. This assumption and some
other general assumptions for this section are collected together below. We let Xn denote
the σ-field generated by the collection of random vectors {(Yi,Xi)}i∈[n]. All probabilities
are stated under the (arbitrary but fixed) law P unless stated otherwise.

Assumption 3.1. B̂ is Xn-measurable, and under the law P is a δ−1B,n-consistent esti-

mator of B, that is, ‖B̂−B‖ = Op(δB,n). Here, δB,n, n ≥ 1 is a sequence of deterministic
constants that is required to satisfy log(n)/n ≤ δB,n = o(1).

The sole purpose for placing a lower bound on δB,n in Assumption 3.1 is to simplify certain
expressions later.

Assumption 3.2. For each k ∈ [p], the marginal density function fk satisfies ‖fk‖L∞ <
∞, and is Lipschitz continuous with Lipschitz constant Lk on R.

Assumption 3.3. Under the law P,

(i) the covariate X satisfies E[‖X‖2] ≤ ∞, i.e., the second moment of ‖X‖ is finite.
(ii) If n−1/2 = o(δB,n) in Assumption 3.1, i.e., if B̂ is not

√
n-consistent, then addition-

ally maxi∈[n] ‖Xi‖δB,n = op(1).

3.1. Results on the residual ranks. Proposition 3.1 presents a uniform bound for the
difference between the empirical process based on the residual Êi,k’s, or simply the resid-
ual empirical process, and the empirical process based on the unobserved Ei,k’s. Based
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on Proposition 3.1, Proposition 3.2 further establishes a uniform bound for the differ-
ence between the residual ranks F̂n,k(Êi,k) and the corresponding unobserved oracle ranks
Fn,k(Ei,k).

We first introduce some quantities that will appear in these propositions. For k ∈ [p], let

Êk = Ek−(B̂k−Bk)
>X, and write E

[
1

{
Ek ≤ ·+ (B̂k −Bk)

>X
}
|Xn
]

= E
[
1

{
Êk ≤ ·

}
|Xn
]

which equals the conditional probability P(Êk ≤ ·|Xn) . Then, let the “oscillation-like” re-
mainder term (e.g., p. 243 in [30] or Lemma 1 in [1]) common in the analysis of residual
empirical processes be, for t ∈ R,

r1n,k(t) = F̂n,k(t)− Fn,k(t)− P(Êk ≤ t|Xn) + Fk(t)

=
1

n

∑
i∈[n]

{
1{Êi,k ≤ t} − 1 {Ei,k ≤ t} − P(Êk ≤ t|Xn) + P(Ek ≤ t)

}
.(3.1)

Analogous to above, for analyzing normal scores rank correlation coefficients, let

rr1n,k(t) = F̂ r
n,k(t)− Fn,k(t)− P(Êk ≤ t|Xn) + Fk(t)

=
1

n

∑
i∈[n]

{
n

n+ 1
1{Êi,k ≤ t} − 1 {Ei,k ≤ t} − P(Êk ≤ t|Xn) + P(Ek ≤ t)

}
.(3.2)

Next, let the additional remainder terms be

r2n,k(t) = P(Êk ≤ t|Xn)− Fk(t)− fk(t)(B̂k −Bk)
>E[X], t ∈ R,(3.3)

r3n,k,i = Fn,k(Êi,k)− Fk(Êi,k)− Fn,k(Ei,k) + Fk(Ei,k),(3.4)

r4n,k,i = Fk(Êi,k)− Fk(Ei,k) + fk(Ei,k)(B̂k −Bk)
>(Xi − E[X])

+ fk(Êi,k)(B̂k −Bk)
>E[X].(3.5)

Proposition 3.1. Under the law P, for all n ≥ 1, k ∈ [p] and t ∈ R the equalities

F̂n,k(t)− Fk(t) = Fn,k(t)− Fk(t) + fk(t)(B̂k −Bk)
>E[X] + r1n,k(t) + r2n,k(t),(3.6)

F̂ r
n,k(t)− Fk(t) = Fn,k(t)− Fk(t) + fk(t)(B̂k −Bk)

>E[X] + rr1n,k(t) + r2n,k(t)(3.7)

hold. If in addition Assumptions 3.1 and 3.2 and 3.3(i) hold, then for all k ∈ [p],

(3.8)

sup
t∈R

|r1n,k(t)|

log1/2
(
δ−1B,n

)
n−1/2

{
f
1/2
k (t)δ

1/2
B,n + δB,n

}
+ log(n)n−1

= Op(1),

sup
t∈R

|rr1n,k(t)|

log1/2
(
δ−1B,n

)
n−1/2

{
f
1/2
k (t)δ

1/2
B,n + δB,n

}
+ log(n)n−1

= Op(1);

furthermore,

sup
t∈R
|r2n,k(t)| = Op

(
δ2B,n

)
.(3.9)

Proof. First, (3.6) follows because

F̂n,k(t)− Fk(t) =
1

n

∑
i∈[n]

1{Ei,k ≤ t} − Fk(t) +
1

n

∑
i∈[n]

(
1{Êi,k ≤ t} − 1{Ei,k ≤ t}

)
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= Fn,k(t)− Fk(t) +
1

n

∑
i∈[n]

(
1{Êi,k ≤ t} − 1{Ei,k ≤ t} − P(Êk ≤ t|Xn) + Fk(t)

)
+ P(Êk ≤ t|Xn)− Fk(t)

= Fn,k(t)− Fk(t) + fk(t)(B̂k −Bk)
>E[X] + r1n,k(t) + r2n,k(t).

The derivation of (3.7) is completely analogous. The proofs for the bounds in (3.8) and
(3.9) are deferred to Proposition A.1 and Lemma A.4 in the supplement respectively.

We provide a few technical remarks about Proposition 3.1; readers more interested in our
development of residual rank-based techniques are encouraged to jump to the paragraph
just above Proposition 3.2.

• First, the decomposition (3.6) consists of the leading terms that are the first three terms
on the right hand side, and the remainder terms r1n,k +r2n,k. Decompositions similar to
this are common in the literature on residual empirical processes; see, e.g., Theorem 1 in
[1] or Theorem 1 in [9]. (Even in a linear regression setting, as is the case in [9], sometimes
the term n1/2fk(t)(B̂k−Bk)

>E[X] is replaced by the asymptotically equivalent quantity
n−1/2fk(t)(B̂k−Bk)

>∑
i∈[n] Xi. We point out that [9] in fact studied fixed design, with

fixed X>1 , . . . ,X
>
n being the rows of a n×q design matrix, so additional care is necessary

for a truly precise comparison.)
• Next, we can obtain the following weakened, but simpler form of (3.8), simply by re-

placing fk(t) with ‖fk‖L∞ <∞:

sup
t∈R
|r1n,k(t)| = Op

(
log1/2(δ−1B,n)n−1/2δ

1/2
B,n

)
.(3.10)

In particular, when δB,n = O(n−1/2), (3.10) implies supt∈R |r1n,k(t)| = Op

(
log1/2(n)n−3/4

)
.

In this case, supt∈R |r2n,k(t)| = Op

(
n−1

)
. Such rates on the remainder terms are strictly

faster than op(n−1/2), and improve upon existing results in the literature. For instance,
Theorem 1 in [1] and Theorem 1 in [9], when taken at face value, simply state the
remainder terms as being op(n−1/2).

• Finally, for t such that the term
{

log(δ−1B,n)nfk(t)δB,n

}1/2
in the denominator on the left

hand side of (3.8) dominates (i.e., when fk(t) ≥ δB,n∨(log2(n) log−1(δ−1B,n)n−1δ−1B,n)), the
bound in (3.8) on r1n,k(t) and rr1n,k(t) is additionally weighted by an approximate stan-

dard deviation factor f
1/2
k (t). (For t such that the aforementioned term no longer dom-

inates, the bound on r1n,k(t) and rr1n,k(t) is Op

(
log1/2(δ−1B,n)n−1/2δB,n + log(n)n−1

)
,

which when δB,n = O(n−1/2) is very fast at Op(log(n)n−1).) This idea of weighing
further sharpens the bound (3.8) compared to the simplified version (3.10), and is a
prominent feature of our result that differs from the literature. It is also quite similar to
how the convergence of the standard empirical process

√
n(Fn,k−Fk) is often measured

under a stronger, weighted metric ‖ · /w‖L∞ where the weight function w can almost be
as small as the standard deviation factor (Fk ∧ (1− Fk))1/2 of

√
n(Fn,k − Fk); see, e.g.,

Lemma C.4 in the supplement. When integrating over a score function that becomes
unbounded toward the boundary (such as the function Φ← in the normal scores rank
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correlation coefficient estimator R̂n), the weighted version (3.8) tames the unbounded-
ness of the score function and so allows for establishing a faster convergence rate for
the resulting integral. Again, this is similar to how the convergence of the standard
empirical process

√
n(Fn,k − Fk) under a weighted metric can be helpful in analyzing

the classical multivariate rank order statistics with unbounded score functions (see, e.g.,
how [36] relies on its Lemma 4.2).

The leading term in (3.6) that reflects the uncertainty B̂−B in estimating B, namely
the term fk(t)(B̂k−Bk)

>E[X], is proportional to E[X]. Interestingly, in the corresponding
terms in (3.11) and (3.12) in Proposition 3.2 below, E[X] is replaced by Xi−E[X]. Thus for
the residual ranks these terms will behave as if the covariate X were centered. (Intuitively,
a common average relating to all the residuals should not affect the ranks of the residuals
to first order.) This centering effect will negate the leading contribution of B̂ − B to
the asymptotics of our estimators of R based on the residual ranks, and will allow us to
conclude that the asymptotics of our estimators of R do not depend on the estimation of
B, as long as the rate of B̂−B is not much slower than n−1/2.

Proposition 3.2. Under the law P, for each n ≥ 1, k ∈ [p] and i ∈ [n] the equalities

F̂n,k(Êi,k)− Fn,k(Ei,k) = −fk(Ei,k)(B̂k −Bk)
>(Xi − E[X])

+ r1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i,(3.11)

F̂ r
n,k(Êi,k)− Fn,k(Ei,k) = −fk(Ei,k)(B̂k −Bk)

>(Xi − E[X])

+ rr1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i(3.12)

hold. If in addition Assumptions 3.1, 3.2 and 3.3 hold, then for all k ∈ [p],

max
i∈[n]

∣∣∣∣∣∣ r3n,k,i

log1/2(n)n−1/2
{
f
1/2
k (Ei,k)‖Xi‖1/2δ1/2B,n + ‖Xi‖δB,n

}
+ log(n)n−1

∣∣∣∣∣∣ = Op(1),

(3.13)

max
i∈[n]

∣∣∣∣∣ r4n,k,i
‖Xi‖(‖Xi‖+ ‖E[X]‖)δ2B,n

∣∣∣∣∣ = Op (1) .(3.14)

Proof. We fix arbitrary k ∈ [p], and first prove (3.11). First, (3.6) with t = Êi,k gives

F̂n,k(Êi,k) = Fn,k(Êi,k) + r1n,k(Êi,k) + r2n,k(Êi,k) + fk(Êi,k)(B̂k −Bk)
>E[X].(3.15)

For the first term Fn,k(Êi,k) on the right hand side of (3.15), sequentially substituting in
r3n,k,i (see (3.4)) and r4n,k,i (see (3.5)) gives

Fn,k(Êi,k) = Fk(Êi,k)− Fk(Ei,k) + Fn,k(Ei,k) + r3n,k,i

= Fn,k(Ei,k) + r3n,k,i + r4n,k,i − fk(Ei,k)(B̂k −Bk)
>(Xi − E[X])

− fk(Êi,k)(B̂k −Bk)
>E[X].(3.16)

Combining (3.15) and (3.16) yields (3.11). The proof for (3.12) is completely analogous to
the one for (3.11), except that we now start from (3.7) with t = Êi,k.

The proofs for (3.13) and (3.14) are deferred to Lemma A.2 and Lemma A.4 in the
supplement respectively.
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3.2. Inversion of Spearman’s rho.

Theorem 3.3. Assume the law P, and that Assumptions 3.1, 3.2 and 3.3 hold. Then,

√
n
(
ρ̂n,kk′ − ρn,kk′

)
= Op

(
log1/2(n)δ

1/2
B,n + n1/2δ2B,n

)
, ∀k, k′ ∈ [p].(3.17)

Thus, if furthermore

δB,n = o(n−1/4),(3.18)

then
√
n
(
ρ̂n,kk′ − ρn,kk′

)
= op(1) , ∀k, k′ ∈ [p].

Proof. The proof is deferred to Section A.2 in the supplement.

Theorem 3.3 immediately yields that when the conditions of the theorem hold and when
the uncertainty B̂ −B is not too large (precisely, when (3.18) holds, which in particular
allows a rate slower than n−1/2), the matrix

√
n[ρ̂n,kk′−ρkk′ ]k,k′∈[p] relating to Spearman’s

rho is at most op(1) away from its oracle counterpart
√
n[ρn,kk′ − ρkk′ ]k,k′∈[p]. Thus in

particular the asymptotic distributions of the two matrices coincide. As is well-known,
the asymptotic distribution of the latter matrix is a zero mean (matrix) Gaussian with
a correlation structure given by, e.g., Theorem 2.2 in [12]. (To be precise, [12] gives the
asymptotic distribution of (in their notation) Sn which is a (matrix) U-statistic of degree
three. The difference between Sn and our matrix [ρn,kk′ ]k,k′∈[p] (which is Dn in [12]) is only
Op(1/n) though; see, e.g., the second equation display on p. 118 in [12].)

Finally, the asymptotically normal distribution of
√
n(R̂ρ

n−R), where R̂ρ
n is the plug-in

estimator given by (2.10) via inversion of Spearman’s rho, will follow by the Delta method.
This asymptotic distribution will coincide with that of

√
n(Rρ

n − R), where Rρ
n is the

oracle counterpart of R̂ρ
n in the ordinary Gaussian copula model, due to the asymptotic

equivalence of the matrices
√
n[ρ̂n,kk′ − ρkk′ ]k,k′∈[p] and

√
n[ρn,kk′ − ρkk′ ]k,k′∈[p]. This is

our first concrete instance where the complication introduced by the addition regression
structure does not affect the estimation of R, a theme already mentioned as early as the
end of Section 1.2.

3.3. Normal scores rank correlation coefficient. The analysis of the normal scores rank
correlation coefficient estimator R̂n in (2.6) will involve two additional constants τ and
γ. Their particular values are irrelevant for the construction of R̂n, but they relate to
Assumptions 3.4 and 3.5, the quantity δn in (3.24), and the rate in Theorem 3.4 below.
We recall δB,n from Assumption 3.1.

Assumption 3.4. Under the law P, the covariate X satisfies E[‖X‖2] <∞. Moreover,
maxi∈[n] ‖Xi‖δB,n = Op(n−τ ) for some constant τ satisfying

τ > 1/4.(3.19)

Assumption 3.4 is stronger than its counterpart Assumption 3.3 for analyzing the estimator
R̂ρ
n via inversion of Spearman’s rho, and it necessitates

δB,n = O(n−τ ).(3.20)
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In the canonical case, δB,n = O(n−1/2); then, by reasoning similar to the proof of Lemma A.3

in the supplement, for any τ ≤ 1/2, Assumption 3.4 is implied by the condition E
[
‖X‖

1
1/2−τ

]
<

∞. Thus if we would further like τ = 1/4 + ε for some small ε > 0, then Assumption 3.4
is implied by a condition slightly stronger than the finite fourth moment of ‖X‖.

Assumption 3.5. There exists a constant γ satisfying

1

2
< γ < min {2τ, 1}(3.21)

(note that for τ satisfying (3.19), the range in (3.21) is not empty) such that, for each
k ∈ [p],

sup
u∈(δ,1−δ)

fk ◦ F←k (u)

u ∧ (1− u)
= o

(
δ
− 1
γ
τ
)

(3.22)

as δ ↓ 0.

If Assumption 3.5 is satisfied for some γ, we define a partition of the interval (0, 1) into

A1 = A
(n)
1 = (0, n−γ ] ∪ [1− n−γ , 1), A2 = A

(n)
2 = (n−γ , 1− n−γ).(3.23)

Then, we introduce the non-decreasing sequence δn, n ≥ 1 as

δn = max
k∈[p]

∫
A2

{
fk ◦ F←k (u)

u ∧ (1− u)

}2

{|Φ←(u)| ∨ 1}2 du.(3.24)

We elaborate on Assumption 3.5 and the quantity δn in (3.24). Assumption 3.5 requires
that at any quantile u ∈ (0, 1), the marginal density fk cannot be too large compared to
the value u ∧ (1 − u) which measures how close the quantile level u is to the boundary
of the distribution of Ek. This assumption excludes certain distributions. For instance,
if we can take τ = 1/2 (as can be done if B̂ is

√
n-consistent and the support of X is

bounded), then for Ek following the uniform distribution, the left hand side of (3.22)
is of the order 1/δ, while if we take γ according to (3.21), then for the right hand side
1/δτ/γ = 1/δ1/(2γ) which is of a smaller order because γ > 1/2, violating Assumption 3.5.
Why is the uniform marginal distribution problematic? Recall the decomposition (3.12) of
the distance between the residual ranks and the oracle ranks; the first term on the right
hand side of (3.12) tells us that a part of this distance is weighted by the marginal density
fk. The density of a uniform distribution does not decay toward the boundary; this, when
coupled with an unbounded score function Φ←, leads to too large a distance between the
residual ranks and the oracle ranks for our current techniques to handle.

On the other hand, Assumption 3.5 should hold for any distribution whose density
decays reasonably fast toward the boundary. For instance, it is easy to check that As-
sumption 3.5 holds for the normal density and for densities with polynomial decay of the
form

fk(t) =
a− 1

2

1

(1 + |t|)a
(3.25)
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with a > 1. Moreover, in these two cases, the integral on the right hand side of (3.24) over
the entire interval (0, 1) evaluates to a finite constant that then upper bounds all of δn,
n ≥ 1. In fact, it is not too strong to make δn = O(1) a requirement, because as we will
also discuss later in Remark 2, δn is quite similar to the left hand side of (4.9), and the
latter quantity should be finite for us to carry out the lower bound analysis in Section 4.

We introduce

∆n = log(n)n1/2−γ + n1/4δB,nδ
1/2
n + log3/2(n) δ

1/2
B,n + log1/2(n)n1/2δ2B,nδn.(3.26)

Theorem 3.4. Assume the law P, and that Assumptions 3.1, 3.2, 3.4 and 3.5 hold
(with Assumption 3.4 implying (3.20) with τ satisfying (3.19)). Then,

√
n(r̂n,kk′ − rn,kk′) = Op(∆n), ∀k, k′ ∈ [p].(3.27)

Thus, if furthermore

δn = o(n2τ−1/2 log−1/2(n)),(3.28)

then ∆n = o(1) and (component-wise)

√
n(R̂n −Rn) = op(1).(3.29)

Proof. At a high level, the proof is similar to that of Theorem 3.3. However, the present
proof is much longer due to the technicalities encountered when treating the unbounded-
ness of Φ← in (2.6). The detailed proof is deferred to Section A.3 in the supplement.

Similar to the discussion following Theorem 3.3 on the estimator R̂ρ
n, Theorem 3.4

immediately yields that, when the conditions of the theorem and (3.28) hold — with
Assumption 3.4 necessitating that the uncertainty B̂ − B is not too large, but again
allowing a rate slower than n−1/2 — the matrix

√
n(R̂n − R) =

√
n[r̂n,kk′ − rkk′ ]k,k′∈[p]

is at most op(1) away from its oracle counterpart
√
n(Rn −R) =

√
n[rn,kk′ − rkk′ ]k,k′∈[p].

This is our second concrete instance where the additional regression structure does not
affect the estimation of R.

It is straightforward to derive the asymptotic distributions of
√
n(Rn −R), and hence

of
√
n(R̂n −R). Theorem 3.1 in [27], relying on an earlier result in [36], establishes that

√
n(rn,kk′ − rkk′) =

1√
n

∑
i∈[n]

[
Φ←(Fk(Ei,k))Φ

←(Fk′(Ei,k′))

− rkk′

2

{
Φ←(Fk(Ei,k))

2 + Φ←(Fk′(Ei,k′))
2
} ]

+ op(1).

From this and (1.3), the asymptotic distributions of
√
n(Rn−R), and hence of

√
n(R̂n−R),

are a zero mean (matrix) Gaussian with a correlation structure given in, e.g., [17].
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3.4. Discussion. Both R̂n and R̂ρ
n are natural estimators of the parametrization R(θ)

in the unrestricted model (defined in Section 1.1) where the copula parameter θ simply
corresponds to the elements in the upper-triangular portion of R: we can just estimate θ
by the corresponding elements in R̂n or R̂ρ

n. (In the case of R̂n, this intuitive conclusion is
more formally justified by the pseudo-likelihood method described below.) Both R̂n and
R̂ρ
n can also serve as the starting point to estimate θ under constrained parametrizations

R(θ); we refer to p. 2 in [37] for a brief summary of existing methods.
Of these, the pseudo-likelihood estimation (PLE) method (see [16] for an early ref-

erence) is particularly interesting. Here, as in a parametric case, we estimate θ by the
maximizer of the likelihood function corresponding to the density cθ of the copula dis-
tribution CR = CR(θ) in (1.4). However, because the sample (F1(Ei,1), . . . , Fp(Ei,p))

>,
i ∈ [n] from the distribution CR(θ) is unobservable, we replace it by the residual ranks

(F̂ r
n,1(Êi,1), . . . , F̂

r
n,p(Êi,p))

>. Formally, given “sample covariance matrix” R̂ ∈ Rp×p, let

the function M(·; R̂) : Rp×p → R be

M(R′; R̂) = −p log(2π)

2
− 1

2
log(det R′)− 1

2
tr
(
R
′−1R̂

)
.(3.30)

Using log cθ given later in (B.1) in the supplement, and the aforementioned substitutions
by the residual ranks, the likelihood function at parameter value θ′ becomes

1

n

∑
i∈[n]

log cθ′(F̂n,1(Êi,1), . . . , F̂n,p(Êi,p)) = M(R(θ′);φ−1n R̂n).

Then, the pseudo-likelihood estimator is defined as the M-estimator

θ̂PLE
n = argmax

θ′∈Θ
M(R(θ′); R̂n).(3.31)

(In (3.31), we have intentionally left out one factor of φn so only R̂n remains.) Consider
a p-variate normal distribution with fixed zero mean and with unknown covariance as the
parameter. Then the quantity M(R′; R̂) in (3.30) is precisely the value of the likelihood
function of this distribution evaluated at the parameter value R′ against the “sample
covariance matrix” R̂. As a remark, the maximizer of M(R′; R̂n) over all positive definite
R′ ∈ Rp×p (instead of over R(θ′) for θ′ ∈ Θ as in (3.31)) is R̂n itself (with ones on the
diagonal). Thus, in the unrestricted model, the maximizer θ̂PLE

n of (3.31) is given by the
corresponding off-diagonal elements in R̂n, and R(θ̂PLE

n ) equals R̂n.
To discuss the asymptotic distribution of θ̂PLE

n , we first introduce the oracle pseudo-
likelihood estimator θPLE

n in the ordinary Gaussian copula model. The oracle estimator
θPLE
n is obtained analogously to θ̂PLE

n by replacing R̂n with the oracle rank-based Rn in
(3.31). In the unrestricted model, by an argument identical to the above, θPLE

n is given by
the corresponding off-diagonal elements in Rn. Then, obviously, when (3.29) holds (i.e.,
when

√
n(R̂n −Rn) = op(1)),

√
n(θ̂PLE

n − θPLE
n ) = op(1).(3.32)

What happens when the parametrization R(θ) is constrained? Even though θPLE
n and θ̂PLE

n

are solutions to two different M-estimation problems, we expect that they are close if the
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“inputs” Rn and R̂n to (3.31) are close. Indeed, under (3.29), classical M-estimation theory
(e.g., Theorem 3.2.16 in [42]) again yields (3.32). The asymptotic normality of the (oracle)
pseudo-likelihood estimator (in general copula models) was established in [16]; this, under
(3.32), then implies the asymptotic normality of

√
n(θ̂PLE

n − θ) . Furthermore, in the
ordinary Gaussian copula model, the conditions for the semiparametric efficiency of θPLE

n

were established in [27, 23, 37] and this will also have consequences for the semiparametric
efficiency of θ̂PLE

n ; we will come back to this point in Section 4.1, below Proposition 4.1.
More generally, our result on R̂n will be potentially useful when analyzing any quantity

involving the summation over i ∈ [n] of quadratic forms of the Gaussianized observa-
tions (2.7), because the resulting sum will involve components of R̂n. In addition to the
pseudo-likelihood example shown here, this will also apply to the one-step estimator (see
Remark 3).

From Section 3 alone, it appears that the estimator R̂ρ
n via inversion of Spearman’s rho

requires weaker conditions than the normal scores rank correlation coefficient estimator
R̂n, cf. Assumption 3.3 for the former and Assumptions 3.4 and 3.5 for the latter. On the
other hand, as we have already mentioned above, the one-step estimator will involve the
estimator R̂n.

4. Semiparametrically efficient estimation. Recall that the copula parameter is
θ = (θ1, . . . , θd)

> and θ belongs to some parameter space Θ ⊂ Rd. Our treatment of
the (asymptotically) semiparametrically efficient estimation of θ is rooted in the classical
Hàjek-Le Cam theory of asymptotics of statistical experiments as adapted to the semi-
parametric setting. For textbook treatment of this subject, see, e.g., Chapter 3 in [3] or
Chapter 25 in [41]. Section 4.1 is concerned with the semiparametric lower bound for esti-
mating θ in the presence of the nuisance parameters B, F1, . . . , Fp and FX. In Section 4.2,
relying on Theorem 3.4 developed earlier, we show that the one-step estimator in conjunc-
tion with the residual ranks remains semiparametrically efficient for estimating θ in the
regression setting. Both by space constraint and by technical reasons outlined below Theo-
rem 4.2, and because the semiparametric lower bound in the regression setting was briefly
addressed in Section 6.2 in [37], we limit our presentation on this subject in Section 4.1
to some key results and we defer a full treatment to Section B in the supplement. Again
all probabilities are stated under the (arbitrary but fixed) law P unless stated otherwise.

4.1. Semiparametric lower bound. We call an estimator (sequence) regular if it has
the same asymptotic distribution under any sequence of local alternatives (e.g., p. 365 in
[41]). Following Definition 2.8 and Lemma 2.9 in [40], under suitable regularity conditions
(differentiability in quadratic mean of suitable local parametric submodels passing through
P suffices), an estimator (sequence) θ̂n is (asymptotically) semiparametrically efficient at
the law P (which has the built-in requirement that the sequence is regular at this law) for
estimating θ if and only if it is asymptotically linear in the efficient influence function.
Following Lemma 25.25 in [41], we denote the efficient score (function) for θ evaluated
at P by l̇∗θ(·1, ·2; P) : Rp × Rq → Rd; then the efficient influence function is given by
I∗−1(θ)l̇∗θ(·1, ·2; P), where I∗(θ) is the efficient information matrix :

I∗(θ) = E[(l̇∗θ l̇∗>θ )(Y,X; P)].(4.1)
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Then, semiparametric efficiency of θ̂n is equivalent to

√
n
(
θ̂n − θ

)
=

1√
n

∑
i∈[n]

I∗−1(θ)l̇∗θ(Yi,Xi; P) + op(1).(4.2)

By the Hàjek-Le Cam convolution theorem (e.g., Theorem 25.20 in [41]), the asymptotic
distribution of every regular estimator of θ (after centering at θ and scaling by

√
n) is the

convolution of Nd(0, I∗−1(θ)) and another estimator-specific probability distribution M .
If an estimator θ̂n satisfies (4.2), then

√
n(θ̂n − θ) Nd(0, I∗−1(θ))(4.3)

where  denotes weak convergence; thus, M is degenerate at 0. Therefore θ̂n is optimal
among regular estimators.

Denote by l̇∗oθ (·;θ) = (l̇∗oθ,m(·;θ))dm=1 : [0, 1]p → Rd the efficient score in the ordinary
Gaussian copula model when all margins are Unif(0, 1) distributions (but when this infor-
mation is not known). This function, which determines the semiparametric lower bound in
the ordinary Gaussian copula model, is derived in Section 2.4 in [37]. Define the matrices
of partial derivatives Ṙ1(θ), . . . , Ṙd(θ) of R(θ), and the matrices of partial derivatives
Ṡ1(θ), . . . , Ṡd(θ) of S(θ) = R(θ)−1 by

(Ṙm(θ))kk′ =
∂

∂θm
(R(θ))kk′ , (Ṡm(θ))kk′ =

∂

∂θm
(S(θ))kk′ , k, k′ ∈ [p], m ∈ [d]

when they exist. Further define Φ←• : [0, 1]p → Rp as

Φ←• (u) = (Φ←(u1), . . . ,Φ
←(up))

>, u = (u1, . . . , up)
> ∈ [0, 1]p.(4.4)

Then specifically

l̇∗oθ,m(u;θ) =
1

2
Φ←• (u)>

{
Dθ(gm(θ))− Ṡm(θ)

}
Φ←• (u), u ∈ [0, 1]p,m ∈ [d].(4.5)

In (4.5), the vector gm(θ) = (g1,m(θ), . . . , gp,m(θ))> is given by

gm(θ) = −{Ip + R(θ) ◦ S(θ)}−1
{

Ṙm(θ) ◦ S(θ)
}
ιp(4.6)

(in (4.6), ιp denotes a p-dimensional vector of all ones, and ◦ denotes the Hadamard
product), and with diag(b) denoting the diagonal matrix with the elements of b ∈ Rp
arranged on the diagonal, the matrix Dθ(b) ∈ Rp×p is given by

Dθ(b) = S(θ)diag(b) + diag(b)S(θ).(4.7)

As Proposition 4.1 below shows, under regularity conditions stated in Assumption 4.1,
the efficient scores in our regression setting and in the ordinary Gaussian copula model
are related in a simple way, and the efficient information matrices in the two cases are
identical. In Assumption 4.1, conditions (i) to (iv) are identical to those in Assumption 2.1
in [37], and under which the parametric Gaussian copula model for E with known, uniform
margins is regular (Lemma 2.2 in [37]). On the other hand, we need the additional condi-
tions (v) and (vi) to ensure differentiability in quadratic mean of suitable local parametric
submodels passing through P in our regression setting.
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Assumption 4.1. For the mapping θ → R(θ) : Θ ⊂ Rd → Rp×p, suppose that

(i) Θ is open, and θ → R(θ) is one-to-one.
(ii) For all θ ∈ Θ, the inverse S(θ) of R(θ) exists.

(iii) For all θ ∈ Θ, the matrices Ṙ1(θ), . . . , Ṙd(θ) exist and are continuous in θ.
(iv) For all θ ∈ Θ, the matrices Ṙ1(θ), . . . , Ṙd(θ) are linearly independent.

Furthermore, the law P holds, and

(v) The covariate X satisfies E
[
‖X‖2

]
≤ ∞.

(vi) For each k ∈ [p], fk is continuous, is supported on an interval (ak, bk) where −∞ ≤
ak < bk ≤ ∞, and on this interval fk is strictly positive and differentiable with
derivative ḟk. In addition, fk has finite information for location, that is,∫

[ak,bk]

ḟ2k
fk

(t)dt <∞.(4.8)

Moreover,

lim sup
ε→0

{∫
(0,1/2]

1

φ2(Φ←(u))
sup
δ:|δ|≤ε

{fk ◦ F←k ((1 + δ)u)}2 du

+

∫
(1/2,1)

1

φ2(Φ←(u))
sup
δ:|δ|≤ε

{fk ◦ F←k (1− (1 + δ)(1− u))}2 du

}
<∞.(4.9)

Remark 1. Under Assumption 4.1(iii), the matrices Ṡ1(θ), . . . , Ṡd(θ) also exist and
are continuous in θ (e.g., the remark below Assumption 2.1 in [37]).

Remark 2. Using the first part of Lemma C.3 involving Inequality (C.2) in the sup-
plement to bound the factor 1/φ2(Φ←(u)) in (4.9), it can be seen that the left hand side of
(4.9) is quite similar to δn, introduced in (3.24), in our analysis of the asymptotics of the
normal scores rank correlation coefficient estimator R̂n. It is also straightforward to check
that condition (4.9) is satisfied by the normal density and the densities with polynomial
decay of the form (3.25) that were discussed following (3.24). The perturbation by δ in
condition (4.9) is the price we pay by jointly perturbing the coefficient matrix B and the
marginals Fk, k ∈ [p] when constructing local parametric submodels passing through P; see
Section B.2 in the supplement.

Introduce F• : Rp → Rp as

F•(z) = (F1(z1), . . . , Fp(zp))
>, z = (z1, . . . , zp)

> ∈ Rp.

Proposition 4.1. Under Assumption 4.1, the efficient score l̇∗θ(·1, ·2; P) is given by

l̇∗θ(y,x; P) = l̇∗oθ (F•(y −B>x);θ), ∀(y,x) ∈ Rp × Rq,(4.10)

for l̇∗oθ (·;θ) = (l̇∗oθ,m(·;θ))dm=1 given in (4.5). Hence the efficient information matrix I∗(θ)
in (4.1) coincides with the the efficient information matrix in the ordinary Gaussian copula
model, and has the explicit representation

(I∗(θ))mm′ =
1

2
tr[{Dθ(gm(θ))− Ṡm(θ)}R(θ)

× {Dθ(gm′(θ))− Ṡm′(θ)}R(θ)], m,m′ ∈ [d].(4.11)
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Proof. The proof is deferred to Section B.4 in the supplement.

The simple relationship (4.10) has practical consequence for characterizing the semi-
parametric efficiency of an estimator of θ in our regression setting. We will take the
pseudo-likelihood estimator θ̂PLE

n from Section 3.4 as an example. Suppose that under the
ordinary Gaussian copula model the oracle pseudo-likelihood estimator θPLE

n is semipara-
metrically efficient. Then θPLE

n is asymptotically linear in its efficient influence function,
which by isometry (e.g., Eq. (55) in Section 4.7 in [3]) is given by I∗−1(θ)l̇∗oθ (F•(·);θ).
Thus

√
n
(
θPLE
n − θ

)
=

1√
n

∑
i∈[n]

I∗−1(θ)l̇∗oθ (F•(Ei));θ) + op(1).

(That is, (4.12) given later holds with θ̂n replaced by θPLE
n .) Now we impose the regression

structure. If in addition (3.32) holds (which is in turn implied by (3.29) as discussed in
Section 3.4), then by (1.5) and (4.10), Equation (4.2) with θ̂n replaced by θ̂PLE

n holds as
well, implying the semiparametric efficiency of θ̂PLE

n in the regression setting. Therefore,
we have essentially reduced the characterization of the semiparametric efficiency of θ̂PLE

n to
that of θPLE

n , and the latter has been extensively studied in, e.g., [27, 23, 37]. In particular,
in the ordinary Gaussian copula model, [27, 23] established that θPLE

n is semiparametrically
efficient in the unrestricted model for R (see the discussion of Example 5.3 in [39]), and
more recently Section 4 in [37] established conditions for semiparametric efficiency of θPLE

n

under general constrained parametrizations R(θ).

4.2. Semiparametrically efficient estimator. We first recall from Section 4.1 that an
estimator (sequence) θ̂n is semiparametrically efficient at the law P for estimating θ if and
only if it satisfies (4.2). Using Proposition 4.1, this is equivalent to, under P,

√
n
(
θ̂n − θ

)
=

1√
n

∑
i∈[n]

I∗−1(θ)l̇∗oθ (F•(Yi −B>Xi);θ) + op(1)

=
1√
n

∑
i∈[n]

I∗−1(θ)l̇∗oθ (F•(Ei);θ) + op(1).(4.12)

The one-step method that updates an initial
√
n-consistent estimator θ∗n to produce an

efficient estimator has a long history; see, e.g., Section 25.8 in [41] for a textbook treatment.
In the ordinary Gaussian copula model, [37] constructed and established the semiparamet-
ric efficiency of an one-step estimator. [39] studied a different update technique; they start
from an already semiparametrically efficient estimator in an unrestricted model (e.g., the
oracle pseudo-likelihood estimator θPLE

n for Gaussian copulas) to produce an efficient es-
timator in a constrained parametrization. We will adopt the approach of [37]. Because we
would like the one-step estimator to be based on the residual ranks, we require the initial
estimator θ∗n to be constructed from the residual ranks as well. These requirements are
formally summarized in Assumption 4.2. Section 3.4 discusses some natural candidates for
the initial estimator θ∗n; the pseudo-likelihood estimator is one such example.

Assumption 4.2. The initial estimator θ∗n is constructed from the residual ranks
F̂n,k(Êi,k) or the rescaled residual ranks F̂ r

n,k(Êi,k), i ∈ [n], k ∈ [p]. Moreover,
√
n(θ∗n−θ) =

Op(1) under P.
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For an estimator θ∗n of θ, let θ̃n be a discretized version of θ∗n obtained by rounding θ∗n
to the nearest n−1/2Zd grid. The one-step estimator is defined as

θ̂OSE
n = θ̃n + I∗−1(θ̃n)

φnn ∑
i∈[n]

l̇∗oθ (F̂ r
n,1(Êi,1), . . . , F̂

r
n,p(Êi,p); θ̃n)

 ,(4.13)

where the second term on the right is the update term. The one-step estimator above
is essentially obtained from (3.3) in [37] via substitution of the (for us, unobservable)
oracle ranks F r

n,k(Ei,k) by the (rescaled) residual ranks F̂ r
n,k(Êi,k). Just as in the ordi-

nary Gaussian copula model, by Proposition 4.2 below the one-step estimator above is
semiparametrically efficient for θ in the regression setting.

Remark 3. The update term in (4.13) is given in terms of the efficient score l̇∗oθ as in
a usual representation of the one-step method, but can also be rewritten to make the con-
nection with the normal scores rank correlation coefficient estimator R̂n more transparent.
The efficient score l̇∗oθ , given in (4.5), is quadratic in its argument which further leads to
quadratic forms of the Gaussianized observations (2.7); specifically the mth component,
m ∈ [d], of the term in the curly bracket in (4.13) can be written alternatively as

1

2
tr
({

D
θ̃n

(gm(θ̃n))− Ṡm(θ̃n)
}

R̂n

)
,

where gm and Dθ are introduced in (4.6) and (4.7) respectively.

Proposition 4.2. Suppose that Assumptions 4.1 and 4.2 hold. Moreover assume the
conditions in Theorem 3.4 as well as (3.28) (so ∆n = o(1) and (3.29) hold by that theo-
rem). Then (under P) the one-step estimator θ̂OSE

n satisfies (4.2) (or equivalently (4.12))
and (4.3) with θ̂n replaced by θ̂OSE

n . In particular, θ̂OSE
n is a semiparametrically efficient

estimator of θ at P.

Proof. The proof is deferred to Section B.5 in the supplement.

The information for estimating θ in our regression setting should be no larger than that
in the ordinary Gaussian copula model. Interestingly, by Proposition 4.2 and under the
extra conditions in Theorem 3.4, the one-step estimator θ̂OSE

n satisfies (4.12) and hence is
asymptotically linear in the efficient influence function I∗−1(θ)l̇∗oθ (F•(·);θ) in the ordinary
Gaussian copula model. Thus, it appears as if (with the extra conditions in Theorem 3.4)
the task of estimating θ is no more difficult under the additional regression structure. Even
without a dedicated lower bound analysis (as in Section 4.1), these observations suggest
that the semiparametric lower bound in our regression setting should largely coincide
with that in the ordinary Gaussian copula model. This is partially why we decide to defer
the formal but somewhat tedious lower bound analysis that supplements Section 4.1 to
Section B in the supplement. In contrast to the discussion here, the analysis in Section B
will not require a matching, efficient estimator such as the θ̂OSE

n , and so in particular does
not require the extra conditions in Theorem 3.4 (such as that placed by Assumption 3.4
which potentially requires bounded moment of ‖X‖ higher than the second order).
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5. Numerical performance. We carried out a small simulation study to demon-
strate the accuracy of our estimation procedures based on the residual ranks. We consider
two distinct parametrizations, namely an unrestricted model and a Toeplitz model, of the
copula correlation matrix R(θ).

5.1. Unrestricted model. For the first scenario, we consider an unrestricted model for
R = R(θ) with p = 3, that is, each of the d = p(p− 1)/2 elements of the upper-triangular
portion of R is a free parameter. Specifically R is generated as follows:

• The elements in the upper-triangular portion of R are drawn independently from a
normal distribution with standard deviation 0.5; if this does not produce a positive
definite R, the procedure is repeated until a positive definite matrix is obtained. The
particular R generated is

R =

 1.0000 0.2674 0.1791
0.2674 1.0000 0.1709
0.1791 0.1709 1.0000

 .

We next specify the nuisance parameters that will be taken from the following set of
possible combinations (not every single combination will be studied):

• For the q × p coefficient matrix B (recall that p = 3), we consider either q = 2 or
q = 10. For each case, the elements of B are drawn independently from a standard
normal distribution. The particular B generated are recorded in Section E.1 in the
supplement.
• The distribution function FX of the covariate X ∈ Rq is either a multivariate normal

distribution or a multivariate t-distribution (with 3 degrees of freedom) whose co-
variance or shape matrix has unit diagonal elements and off-diagonal elements equal
to ρ = 0.1, 0.5 or 0.9.
• The marginal distribution functions Fk, k ∈ [p] of E are chosen to have either

the same standard normal distribution or the same Cauchy distribution (i.e., t-
distribution with 1 degree of freedom), or these distributions scaled by a constant
factor 1/5.

For each combination studied, N = 1000 Monte-Carlo repetitions are performed, with
sample sizes n = 50 or n = 250. For each of the N repetitions, an independent sample of
N (0,R) distribution is drawn, and the marginals of this sample are subsequently adjusted
according to the specification of Fk, k ∈ [p] above to produce the sample of E. Next a
sample of X is drawn independently from E. Finally, the sample of Y is determined via
(1.5).

Note that when estimating B, the copula component E is considered as the noise, and
intuitively a smaller copula component should yield better estimation of B. In contrast, in
the estimation of R the copula component is instead considered as the signal. Our current
theory does not reveal which effect will dominate (as we simply take the rate ‖B̂ − B‖
as given and do not consider the special properties that B̂ may have). Therefore, for the
marginal distributions, the scaling by 1/5 is intended to clarify the effect of the scale of
the copula component on the estimation of R.

We focus on the comparison between the normal scores rank correlation coefficient
estimator R̂n, which coincides with the pseudo-likelihood estimator in this scenario as
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discussed in Section 3.4, and its oracle version Rn based on the (unobservable) oracle ranks.
Compared to R̂n, the estimator R̂ρ

n via inversion of Spearman’s rho performs slightly worse
and we omit presenting the results related to R̂ρ

n.
Our first simulation considers the case q = 2 and ρ = 0.1, and also considers the effect of

different regression methods on the estimation of B which in turn affects the estimation of
R. The results are summarized in Figure 1. In particular, in each subfigure, the results for
B̂ produced using the ordinary least squares (OLS) are plotted in the first six boxplots,
while those produced using the least absolute deviation (LAD, or equivalently quantile
regression at the quantile level 0.5) are plotted in the next six boxplots. These two six-
boxplot sets share a common x-label pattern. Each x-label is a two-tuple that indicates the
distribution of the covariate X and the marginal distribution functions Fk, k ∈ [p] of E.
The first letter in the two-tuple is either “n” or “3,” which indicates that X is either drawn
from the multivariate normal distribution or from the multivariate t-distribution (with 3
degrees of freedom) respectively as described earlier. The second letter in the two-tuple
is either “n”, “1”, “n/5” or “1/5,” which indicates that each of Fk, k ∈ [p] is either the
standard normal distribution, the Cauchy distribution, the standard normal distribution
scaled by 1/5, or the Cauchy distribution scaled by 1/5 respectively, again as described
earlier.

The performance of the estimators is measured by various Frobenius norms. The first
row in Figure 1 plots ‖R̂n−R‖F . For this row we additionally consider a naive estimator
RY
n . The estimator RY

n is the normal scores rank correlation coefficient estimator produced
directly from a sample of Y without taking into account the covariate X; the particular
sample of Y is taken from the “(n,1)” specification described above. The performances of
the oracle estimator Rn and the naive estimator RY

n are denoted by “Ora.” and “Y” on
the x-label respectively. For the second row we plot the ratio ‖R̂n − R‖F /‖Rn − R‖F ,
and for the third row we consider the estimation of B and plot ‖B̂ − B‖F . In Figure 1,
all three rows consist of two columns corresponding to sample sizes n = 50 and n = 250
respectively, and all subfigures are produced with the y-axis in logarithm scale.

From the first row of Figure 1 we immediately observe that the naive estimator RY
n

performs substantially worse than any of the other estimators, even though the sample of
Y is produced with a light-tailed X and a heavy-tailed E to intentionally minimize the
perturbation by the sample of X on the sample of E. For this reason we exclude the naive
estimator in subsequent simulation studies.

Next, as expected, when E is heavy-tailed, the OLS produces a rather inaccurate esti-
mator B̂ of B which further leads to inaccurate (relatively speaking especially at n = 250)
estimator R̂n of R. On the other hand, when E is light-tailed, the OLS produces a some-
what more accurate estimator B̂ of B than the LAD, but this leads to no appreciable
improvement in the estimator R̂n. The latter phenomenon is also expected because our
studies have shown that the rate of B̂−B does not affect the estimation of R (at the first
order). We will also exclude simulations done with B̂ produced by the non-robust OLS in
future studies.

Having considered the case q = 2 and ρ = 0.1, and excluded the naive estimator and the
estimators involving the OLS estimation of B, we now consider more correlated covariates
with higher ρ, and also possibly larger covariate dimension. Specifically, Figure 2 presents
the results for the common value of ρ = 0.5 but for (p, q) = (3, 2) and (p, q) = (3, 10). The
results for the same (p, q) specifications but for ρ = 0.9 are deferred to Section E.1 in the
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supplement. Collectively, these latter results show that, as long as a reasonable estimator
B̂ (such as that from the LAD) is used in computing the residual ranks, the estimator R̂n

is nearly as good as the oracle estimator Rn, even with high covariate dimension q = 10
(which results in a total number of q × p = 30 free parameters in B) and high correlation
ρ = 0.9 among the covariates at a relatively small sample size n = 50. Moreover, within
each figure the estimators R̂n under various specifications of the distribution of X and the
marginals of E perform quite similarly.

5.2. Toeplitz model. For the second scenario, we consider a Toeplitz model, which
is a (p − 1)-parameter model with θ = (θ1, . . . , θp−1)

> such that (R)kk′ = θ|k−k′| for
k 6= k′. We consider the case p = 4, which is particularly interesting because as stated
in [37], here the oracle pseudo-likelihood estimator θPLE

n of θ in the ordinary Gaussian
copula model can be quite inefficient. In particular, [37] verified that at the particular
value θ = θ∗ = (0.4945, 0.4593, 0.8462)>, the asymptotic relative efficiencies of θPLE

n

with respect to the information bound are equal to 18.3%, 19.8%, 96.9% for θ1, θ2 and θ3
respectively. Recall that the oracle pseudo-likelihood estimator and the pseudo-likelihood
estimator θ̂PLE

n have the same asymptotic distribution (see Section 3.4), and the efficient
information matrices in the ordinary Gaussian copula model and in our regression setting
coincide (see Proposition 4.1). Therefore, the one-step estimator (discussed in Section 4.2),
which is semiparametrically efficient, can be expected to substantially outperform the
pseudo-likelihood estimator.

For our specific simulation study, we let θ = θ∗ be as discussed in the last paragraph,
and specify the nuisance parameters similar to Section 5.1:

• The q × p coefficient matrix B is as generated in Section 5.1, now with p = 4, and
again with q = 2 and q = 10. The particular B generated are recorded in Section E.2
in the supplement.
• The distribution function FX is a multivariate t-distribution (with 3 degrees of free-

dom) whose shape matrix has unit diagonal elements and off-diagonal elements equal
to ρ = 0.5 or 0.9.
• The marginal distribution functions Fk, k ∈ [p] are the same Cauchy distribution.

We again consider N = 1000 Monte-Carlo repetitions and sample sizes n = 50 or n = 250.
Figures 3 and 4 present the results for the common value of ρ = 0.5 but for (p, q) =

(4, 2) and (p, q) = (4, 10) respectively. The results for the same (p, q) specifications but
for ρ = 0.9 are deferred to Section E.2 in the supplement. The `th row of each figure,
where ` ∈ {1, 2, 3}, considers the estimation of θ`, and compares the deviations of the
oracle pseudo-likelihood estimator, the oracle one-step estimator, the pseudo-likelihood
estimator, and the one-step estimator (as indicated by the x-labels) from θ`.

Similar to [37], but in our regression setting, we observe that the one-step estimators
outperform the respective pseudo-likelihood estimators in particular for θ`, ` = 1 or 2, just
as expected. More importantly, at least when the covariate dimension is low (i.e., when
q = 2), the one-step estimators perform almost as well as the corresponding oracle one-step
estimators. When the covariate dimension is high (i.e., when q = 10), both the one-step
estimators and the respective pseudo-likelihood estimators start out with a relatively large
bias when the sample size is small, but the bias improves at a larger sample size.
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Fig 1. Simulation results for the unrestricted model for (p, q) = (3, 2) and ρ = 0.1. The meanings of the
labels and of ρ are explained in the main text. All subfigures are produced with the y-axis in logarithm scale.
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Fig 2. Simulation results for the unrestricted model for (p, q) = (3, 2) (two top rows) or (p, q) = (3, 10)

(bottom top rows) and the common value ρ = 0.5. The estimator B̂ is produced by LAD. The meanings of
the labels and of ρ are explained in the main text.
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Fig 3. Simulation results for the Toeplitz model under the parameters specified in the main text, for (p, q) =
(4, 2) and ρ = 0.5.



COVARIATE-ADJUSTED GAUSSIAN COPULAS 29

Oracle PLE Oracle OSE PLE OSE
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Oracle PLE Oracle OSE PLE OSE
-0.1

-0.05

0

0.05

0.1

 

Oracle PLE Oracle OSE PLE OSE
-0.2

-0.1

0

0.1

0.2

Oracle PLE Oracle OSE PLE OSE
-0.15

-0.1

-0.05

0

0.05

0.1

 

Oracle PLE Oracle OSE PLE OSE
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Oracle PLE Oracle OSE PLE OSE
-0.05

0

0.05

0.1

 

Fig 4. Simulation results for the Toeplitz model under the exact same setting as Figure 3, except that now
(p, q) = (4, 10).
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6. Discussion on high-dimensional setting. In this paper we have studied the
(semiparametrically efficient) estimation of the copula parameter in the covariate-adjusted
Gaussian copula model. Our main conclusion is that asymptotically, and under mild con-
ditions, we can find estimators based on the residual ranks (computed from an initial
estimator B̂ of B) that perform as well as their counterparts based on the oracle ranks.
Our discussion so far has been confined to the fixed dimensional setting. In this section
we briefly address the potential extension of our study to the high-dimensional setting,
where the dimension p of the response and the dimension q of the covariate may no longer
be fixed and may even be increasing with the sample size n.

We shall confine our discussion to the estimation of the copula correlation matrix R
in the unrestricted model. In the high-dimensional setting, we need to strengthen the “in
probability” statements in our analysis, such as those in Theorems 3.3 and 3.4, to precisely
account for error accumulations over potentially increasing complexity of our model. For a
generic estimator R̃n of R (in high dimensions), this is often achieved by first establishing
a non-asymptotic deviation inequality of the form

P
{
|(R̃n −R)kk′ | ≥ f(n, ε)

}
≤ ε, ∀k, k′ ∈ [p],(6.1)

where the deviation f(n, ε) is typically a decreasing function in both the sample size n
and the exclusion probability ε. We would like (6.1) to be as tight as possible, so that we
can find an exclusion probability ε small enough so that a simple union bound over all
elements yields p2ε � 1, yet also large enough so that the deviation f(n, ε) is small. In
words, it is desirable that with high probability the elements of R̃n are uniformly close to
the corresponding elements in R. (We can compare (6.1) to, e.g., Definition 1 in [34] on
precision matrix estimation using the graphic LASSO. Compared to the latter, in (6.1)
we consider the deviation f(n, ε) as a function of the sample size n and the exclusion
probability ε, which conforms better to the notation in (6.3) below.)

In the ordinary Gaussian copula model, (6.1) can usually be established without sparsity
assumptions related to R or S = R−1. As a concrete example, estimation of R through Rρ

n

via inversion of Spearman’s rho has been well studied [31, 43]. For instance, Lemma 1 in
[43] establishes (6.1) with R̃n replaced by Rρ

n and with f(n, ε) on the order of
√

log(1/ε)/n;
precisely, they derived, for some absolute constant c0,

P

|(Rρ
n −R)kk′ | ≥

√
1

c0

log
(
2ε−1

)
n

 ≤ ε, ∀k, k′ ∈ [p].(6.2)

On the other hand, once (6.1) has been established, it can be combined with appropriate
sparsity assumptions and correspondingly tailored sparsity-inducing procedures to produce
accurate estimators of R or S in high dimensions. For instance, we may assume that R
itself is sparse (that is, most of its off-diagonal elements are zero), and a sparsity-inducing
estimator of R can be produced by thresholding R̃n at a level determined by f(n, ε)
[4]. Alternatively, as we have already mentioned in Section 1, in the context of high-
dimensional graphical models, we may assume that S = R−1 is sparse, and feed R̃n into
procedures such as the graphic LASSO [34] to produce a sparse estimator S̃n of S. The
distance between S̃n and S is usually determined by f(n, ε) as well.

In our regression setting, we need a deviation inequality analogous to (6.1) but with
R̃n replaced by residual rank-based estimators such as R̂ρ

n or R̂n. For simplicity we focus
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on the former case. Given (6.2), to obtain a deviation inequality for R̂ρ
n −R, we simply

need to complement (6.2) by a deviation inequality for R̂ρ
n − Rρ

n. This essentially calls
for a refinement of our Theorem 3.3, which (by the decomposition of the residual ranks
(3.11)) in turn requires establishing deviation inequalities for the remainder terms ran,k,
a ∈ {1, 2, 3, 4}, whose “in probability” bounds are stated in Propositions 3.1 and 3.2.

We will focus on the term r1n,k, which in our opinion is the most difficult to deal with.
In the high-dimensional setting, the dimension q of the covariate may be large. In this
case, a complete treatment of r1n,k will likely require sparsity assumptions on B and a
sparsity-inducing estimator of (the individual columns of) B, to ensure the accuracy of
the residual ranks whose calculation involves an estimator of (the individual columns of)
B̂. We will measure the sparsity of B by the maximum number s of nonzero elements
in the individual columns of B, and will simply assume that a good estimator B̂ of B is
given. Specifically, we require that B̂ satisfies the following properties:

• The events An,k =
{
‖B̂k−Bk‖ ≤ δB,n

}
, k ∈ [p], n ≥ 1 all hold with high probability,

for some sequence δB,n, n ≥ 1 that depends on the sample size and the sparsity of
B and possibly mildly on the ambient dimensions p and q.
• There exists another set of events Bn,k, k ∈ [p], n ≥ 1, all holding with high prob-

ability, such that on the event Bn,k, supp(B̂k) ⊂ supp(Bk), and so in particular

‖B̂k‖`0 ≤ s. In the words of [13], the estimator B̂ enjoys an oracle property in
variable selection.

A condition similar to the first one above has already appeared in our earlier Assump-
tion 3.1. Note that the dimension q of the covariate only explicitly enters our earlier
analysis of r1n,k through the covering number bound in (A.6) in the supplement. Our sec-
ond condition above ensures that, with high probability, the relevant covering number for
our problem is controlled through the sparsity index s, rather than through the ambient
dimension q; in particular, on the event Bn,k, we can rely on (A.6) in the supplement

with q replaced by s. For a concrete example of how an estimator B̂ satisfying the above
conditions can work in conjunction with the residual empirical process theory in [9] (which
as explained following Proposition 3.1 differs from ours) in high dimensions, we refer the
readers to [8].

From the proof of Proposition 3.1, our bound (3.8) on r1n,k is essentially based on a
non-asymptotic expectation bound. Thus, to establish a deviation inequality for r1n,k, we
only need to complement the expectation bound by a probability bound on the deviation
from expectation. We will content ourselves here with deriving an unweighted version of
the deviation inequality. We again assume that Assumptions 3.1, 3.2, 3.3 hold. Using the
classical bound on the expectation of the suprema of an empirical process, which we have
already seen in the proof of Proposition 3.1, we can establish the following expectation
bound:

E
[
sup
t∈R
|r1n,k(t)|1An,k1Bn,k

]
. log1/2

(
δ−1B,n

)
δ
1/2
B,n

√
s

n
+ log

(
δ−1B,n

) s
n
≡ Ēn.

Then, essentially complementing the above expectation bound by Talagrand’s inequality
for empirical processes (e.g., Theorem 3.3.9 in [21]), we arrive at

P

{
sup
t∈R
|r1n,k(t)| & Ēn + (Ēn + δB,n)1/2

√
log(ε−1)

n
+

log(ε−1)

n

}



32 I. GIJBELS, I. VAN KEILEGOM, Y. ZHAO

≤ ε+ P(A{n,k) + P(B{n,k).(6.3)

We can note the similarity between (6.2) and (6.3). Under growth conditions on the sparsity
level s and the ambient dimensions (both of which are typically required to establish a
rate δB,n fast enough), the deviation of r1n,k, k ∈ [p] can be uniformly controlled at a level
similar to or smaller than that of Rρ

n −R in (6.2). Analogous deviation inequalities can
be established for all other remainder terms in the decomposition of the residual ranks
(3.11). Therefore the residual rank-based R̂ρ

n in the regression context can be regarded as
good an estimator as the oracle rank-based estimator Rρ

n in the ordinary Gaussian copula
model in the high-dimensional setting.

SUPPLEMENT

Supplement to the paper: “Inference for covariate-adjusted semiparametric
Gaussian copula model using residual ranks”. The supplement contains more de-
tailed derivations for Section 4 on semiparametric efficiency, most proofs for the paper,
and some additional results for Section 5.
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[21] Giné, E., and Nickl, R. Mathematical Foundations of Infinite-Dimensional Statistical Models.
Cambridge University Press,, 2016.
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A. Proofs for Section 3.

A.1. Proofs for Section 3.1.

Proposition A.1. Under the law P, further assume that Assumptions 3.1 and 3.2
hold. Then, for all k ∈ [p], (3.8) holds.

Proof of Proposition A.1. Our proof is inspired by the proof of Lemma A.1 in [19]
and Lemma 1 in [1] that treat residuals from a nonparametric regression problem, but
here we rely on covering numbers instead of bracketing numbers, and also employ non-
asymptotic moment bound for (weighted) empirical processes. Throughout the proof we
fix arbitrary k ∈ [p]. We only prove the first half of (3.8) involving (3.1); the second half
involving (3.2) then easily follows because

sup
t∈R
|F r
n,k(t)− Fn,k(t)| ≤ 1/(n+ 1).(A.1)

Let ε be an arbitrarily small but fixed constant, and recall the sequence δB,n, n ≥ 1
introduced in Assumption 3.1. Let M = M(ε) be a constant large enough so that the
events An,k =

{
‖B̂k −Bk‖ ≤ MδB,n

}
, n ≥ 1 satisfy P(An,k) ≥ 1 − ε for all n. We define

the function gt,δ(·1, ·2) : R× Rq → R indexed by (t, δ) ∈ R× Rq as

gt,δ(·1, ·2) = 1

{
·1 ≤ t+ δ>·2

}
,(A.2)

and define the classes of functions Fn, n ≥ 1 as

Fn = {ft,δ(·1, ·2) ≡ gt,δ(·1, ·2)− gt,0(·1, ·2) : t ∈ R, ‖δ‖ ≤MδB,n} ,

where M is the constant chosen as before.
Define the function pt : Rq → R indexed by t ∈ R as

pt(b) = E
[
1

{
Ek ≤ t+ b>X

}]
.(A.3)
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Recall that B̂k −Bk is Xn-measurable, while Ek and X are independent of Xn. Then, by
property 12(b) in Section 10.3 in [13], and (A.3),

E
[
1

{
Ek ≤ t+ (B̂k −Bk)

>X
}
|Xn
]

= pt(B̂k −Bk).(A.4)

We let S denote the joint distribution of (Ek,X), and let Sn be the corresponding
empirical distribution constructed from (Ei,k,Xi), i ∈ [n]. We write 1An,k for the indicator
function of the event An,k. Then, starting from (3.1) and (A.4) we have

sup
t∈R
|r1n,k(t)|1An,k

= sup
t∈R

∣∣∣∣∣∣ 1n
∑
i∈[n]

[
1

{
Ei,k ≤ t+ (B̂k −Bk)

>Xi

}
− 1 {Ei,k ≤ t} − pt(B̂k −Bk) + Fk(t)

]∣∣∣∣∣∣1An,k
≤ sup

t∈R,‖δ‖≤MδB,n

∣∣∣∣∣∣ 1n
∑
i∈[n]

[
1

{
Ei,k ≤ t+ δ>Xi

}
− 1 {Ei,k ≤ t} − pt(δ) + Fk(t)

]∣∣∣∣∣∣
= sup

t∈R,‖δ‖≤MδB,n

∣∣∣∣∣∣ 1n
∑
i∈[n]

[
1

{
Ei,k ≤ t+ δ>Xi

}
− 1 {Ei,k ≤ t} − P(Ek ≤ t+ δ>X) + Fk(t)

]∣∣∣∣∣∣
= sup

f∈Fn
|(Sn − S)f |.

(A.5)

The covering number N(µ,F , ‖ · ‖g) is the minimal number of balls of radius µ as
measured by the (generic) norm ‖ · ‖g needed to cover the set F . We now bound the
covering number of the classes Fn. For n ≥ 1, we define the classes

Gn = {gt,δ(·1, ·2) : t ∈ R, ‖δ‖ ≤MδB,n} , Hn = {f − g : f, g ∈ Gn}.

Clearly, Fn ⊂ Hn. Thus, it suffices to bound the covering number of the classes Hn, which
can be done via bounding the covering number of the classes Gn.

Let 〈·, ·〉 denote the usual Euclidean inner product in Rq+1. Then,

Gn ⊂ {gt,δ(·1, ·2) : t ∈ R, δ ∈ Rq} =
{
1

{
·1 ≤ t+ δ>·2

}
: t ∈ R, δ ∈ Rq

}
=
{
1

{〈
(1, δ>)>, (·1,−·>2 )>

〉
≤ t
}

: t ∈ R, δ ∈ Rq
}

⊂
{
1

{〈
u, (·1,−·>2 )>

〉
≤ t
}

: t ∈ R,u ∈ Rq+1
}
.

The last set above is simply the collection of all indicator functions of half planes in Rq+1,
and the collection of such half planes has VC dimension q+3 (see Theorem B in [7]). Then,
from Theorem 2.6.4 in [18], we conclude that there exists an absolute constant K > 0 such
that for a constant Kq depending only on K and q (we can take Kq = K(q + 3)(4e)q+3),

N(µ,Gn, L2(Q)) ≤ Kq(1/µ)2(q+2), ∀Q ∈ B, 0 < µ < 1.

Here B is the set of all Borel probability measures on Rq+1. Then, by simple calculation,

N(µ,Fn, L2(Q)) ≤ N(µ,Hn, L2(Q)) ≤ N(µ/2,Gn, L2(Q))2
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≤ K2
q (2/µ)4(q+2), ∀Q ∈ B, 0 < µ < 2.(A.6)

Now, clearly the constant function F = 1 with ‖F‖L2(S) = 1 is an envelope for all the
classes Fn, n ≥ 1. In addition, for all n ≥ 1 and all ft,δ ∈ Fn, we have

‖ft,δ‖2L2(S)
= E

[∣∣∣1{Ek ≤ t+ δ>X
}
− 1 {Ek ≤ t}

∣∣∣]
= E

[
E
[∣∣∣1{Ek ≤ t+ δ>X

}
− 1 {Ek ≤ t}

∣∣∣ |X]]
≤ E

[
fk(t)|δ>X|+ Lk|δ>X|2

]
≤ fk(t)ME‖X‖δB,n + LkM

2E[‖X‖2]δ2B,n ≡ σ2n,ft,δ .(A.7)

Here the third step follows by the assumed Lipschitz continuity of fk which implies that

|Fk(b)− Fk(a)− fk(a)(b− a)| ≤ Lk(b− a)2, ∀a, b ∈ R.(A.8)

To control supf∈Fn |(Sn−S)f |, we partition Fn into two sets depending on the size of σn,ft,δ .
We first introduce some quantities from [8] which treats weighted empirical processes; this
will make the distinction between large and small σn,ft,δ clear. For the function gq(r)
introduced in the second equation display on p. 18 in [8], we choose q = e and set ge(r) =
e/r. We let the sequence of constants rn, n ≥ 1 be defined as in Theorem 9 in [8], that is,

rn = sup

{
r > 0 : r ≤

√
log(e/r) ∨ log log(r−1)

n

}
.

Let the sequence of constants sn, n ≥ 1 be

sn = log1/2(n)n−1/2.(A.9)

It is easy to calculate that rn = knsn for sn in (A.9) and another sequence of constants
kn, n ≥ 1 satisfying kn =

√
1/2 + o(1).

We first treat the case when σn,ft,δ is large enough, precisely, when σn,ft,δ > rn. Define
the function w : [0, 1]→ R as in Theorem 9 in [8]:

w(r) = r
√

log(e/r) ∨ log log(r−1).

Note that w(r) is increasing in r and w(r)/r is decreasing in r on [0, 1]. Then, we can
follow the proof of Theorem 9 in [8] to verify the conditions of Theorem 4 in [8], and arrive
at the last inequality in the proof of Theorem 4 in [8], which in our case reads

P

{
sup

ft,δ∈Fn:σn,ft,δ>rn

n1/2|(Sn − S)ft,δ|
w(σn,ft,δ)

≥ K1t+K2

}
≤ 2e−t

for some absolute constants K1 and K2. As commented in the proof of Theorem 4 in [8],
integrating the above tail bound yields that

sup
n≥1

E

[
sup

ft,δ∈Fn:σn,ft,δ>rn

n1/2|(Sn − S)ft,δ|
w(σn,ft,δ)

]
<∞.
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By the form of the function w(r) and the fact that supft,δ∈Fn σn,ft,δ → 0, we can simplify
the above to arrive at

sup
n≥1

E

[
sup

ft,δ∈Fn:σn,ft,δ>rn

n1/2|(Sn − S)ft,δ|
log1/2(δ−1B,n)σn,ft,δ

]
<∞.(A.10)

Next we treat the case when σn,ft,δ ≤ rn. By the classical bound on the expectation of
the suprema of an empirical process via entropy integral (e.g., Theorem 3.5.4 in [9]),

E sup
ft,δ∈Fn:σn,ft,δ≤rn

|(Sn − S)ft,δ| . log(n)n−1.(A.11)

Then Proposition A.1 follows from first combining (A.10) and (A.11), and then (A.5).

Lemma A.2. Under the law P, further assume that Assumptions 3.1, 3.2 and 3.3 hold.
Then for all k ∈ [p], (3.13) holds.

Proof. We fix arbitrary k ∈ [p], and let ε be an arbitrarily small but fixed constant.
Then, let the constant M and the event An,k be chosen exactly as in the proof of Propo-
sition A.1, and again write 1An,k for the indicator function of the event An,k. In addition,
define the sequence of random variables

Tn,i = fk(Ei,k)M‖Xi‖δB,n + LkM
2‖Xi‖2δ2B,n,(A.12)

and the events Bn,k,i = {Tn,i ≤ 1/2} (the constant 1/2 in the definition of Bn,k,i can be
replaced by any number on the open interval (0, 1)), and write 1Bn,k,i for the indicator
function of the event Bn,k,i.

Let FU
n,k be the empirical distribution function of the i.i.d. Unif(0, 1) random variables

Fk(Ei,k), i ∈ [n]; then, let the function wn,k be the modulus of continuity of the standard
empirical process

√
n(FU

n,k−I) (e.g., Eq. (1) in Section 14.2 in [15]). Recall that F←k defined
as in (1.2) is the left-continuous inverse of Fk. Note that P(F←k ◦ Fk(Ei,k) 6= Ei,k) = 1
(e.g., Proposition 3 in Section 1.1 in [15]). Thus, with probability one,

Fn,k(Êi,k) =
1

n

∑
j∈[n]

1{Ej,k ≤ Êi,k} =
1

n

∑
j∈[n]

1{F←k ◦ Fk(Ej,k) ≤ Êi,k}

=
1

n

∑
j∈[n]

1{Fk(Ej,k) ≤ Fk(Êi,k)} = FU
n,k(Fk(Êi,k)),(A.13)

where the third step follows by, e.g., (21) in Section 1.1 in [15]. Similarly, with probability
one, Fn,k(Ei,k) = FU

n,k(Fk(Ei,k)).
Thus for r3n,k,i, with probability one,

|r3n,k,i| =
∣∣∣FU
n,k(Fk(Êi,k))− Fk(Êi,k)− FU

n,k(Fk(Ei,k)) + Fk(Ei,k)
∣∣∣

=
∣∣∣(FU

n,k − I)(Fk(Êi,k))− (FU
n,k − I)(Fk(Ei,k))

∣∣∣
≤ n−1/2wn,k(|Fk(Êi,k)− Fk(Ei,k)|)

≤ n−1/2wn,k(fk(Ei,k)|(B̂k −Bk)
>Xi|+ Lk|(B̂k −Bk)

>Xi|2),
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where in the last step we have invoked (A.8) and (2.5). Therefore, recalling Tn,i from
(A.12) and sn from (A.9),

|r3n,k,i|1An,k1Bn,k,i ≤ n
−1/2wn,k(Tn,i)1Bn,k,i

≤ n−1/2wn,k((Tn,i ∨ s2n) ∧ (1/2)).(A.14)

Note that we first take the maximum of Tn,i and s2n, and then take the minimum of this
and 1/2 (as controlled by 1Bn,k,i) in (A.14), so that the argument of the function wn,k
is neither too small nor too large, and as a consequence we can always properly apply
deviation bound for wn,k (e.g., Inequality 1 in Section 14.2 in [15], copied as Lemma C.5).

Now let Cn = C log1/2(n), n ≥ 1 be a sequence with yet unspecified constant C > 0,
and let the function ψ below be as in Lemma C.5. First by (A.14) when conditioning on
Xi, and then by Lemma C.5 with a = δ = (Tn,i ∨ s2n) ∧ (1/2), we obtain

P
(
n1/2|r3n,k,i|1An,k1Bn,k,i ≥ Cn

√
(Tn,i ∨ s2n) ∧ (1/2) |Xi

)
≤ P

(
wn,k((Tn,i ∨ s2n) ∧ (1/2)) ≥ Cn

√
(Tn,i ∨ s2n) ∧ (1/2) |Xi

)
≤ 20

{(Tn,i ∨ s2n) ∧ (1/2)}4
exp

(
− [1− {(Tn,i ∨ s2n) ∧ (1/2)}]4

× C2 log(n)

2
ψ

(
C log1/2(n)√

n{(Tn,i ∨ s2n) ∧ (1/2)}

))

≤ 20

s8n
exp

(
−
(

1

2

)5

C2 log(n)ψ

(
C log1/2(n)√

n{(Tn,i ∨ s2n) ∧ (1/2)}

))
,(A.15)

where the last step follows by

s2n ≤ (Tn,i ∨ s2n) ∧ (1/2) ≤ 1/2, ∀n ≥ 1, i ∈ [n].(A.16)

By the first half of (A.16), the argument to the function ψ in (A.15) is bounded above
by C, and thus by, e.g., Proposition 1(10) in Section 11.1 in [15], the function ψ itself
is always bounded below by 1/(1 + C/3) (all uniformly over n ≥ 1 and i ∈ [n]). Then,
if the positive constant C is large enough, the rightmost term in (A.15) is bound above
by C ′n−(1+c) for some constants c, C ′ > 0 independent of n ≥ 1 and i ∈ [n]. We fix
this sequence Cn = C log1/2(n). Then, first using the union bound, then conditioning on
(X1, . . . ,Xn), and finally invoking the bound C ′n−(1+c) on the rightmost term in (A.15)
for the fixed sequence Cn, we obtain

P

(
max
i∈[n]

|r3n,k,i|1An,k1Bn,k,i
log1/2(n)n−1/2

√
Tn,i ∨ s2n

≥ C

)

≤
∑
i∈[n]

P

(
|r3n,k,i|1An,k1Bn,k,i

log1/2(n)n−1/2
√
Tn,i ∨ s2n

≥ C

)

=
∑
i∈[n]

E
[
P
(
n1/2|r3n,k,i|1An,k1Bn,k,i ≥ Cn

√
Tn,i ∨ s2n |Xi

)]
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≤
∑
i∈[n]

E
[
P
(
n1/2|r3n,k,i|1An,k1Bn,k,i ≥ Cn

√
(Tn,i ∨ s2n) ∧ (1/2) |Xi

)]
= O(n−c) = o(1).(A.17)

We rely on the following elementary lemma to lower bound the probability of the event
∩i∈[n]Bn,k,i.

Lemma A.3. Under Assumption 3.3, for any fixed positive constant L,

P
(

max
i∈[n]
‖Xi‖δB,n > L

)
→ 0.(A.18)

Proof. First suppose that δB,n = O(n−1/2). Then for some large enough constant K,
δB,n ≤ Kn−1/2 for all n ≥ 1. This and the union bound gives

P
(

max
i∈[n]
‖Xi‖δB,n > L

)
≤ nP(‖X‖δB,n > L) ≤ nP(‖X‖ > (L/K)n1/2)→ 0,

where the last convergence step holds because ‖X‖ has bounded second moment by As-
sumption 3.3; see., e.g., p. 161 in [13]. Thus we have shown (A.18).

Next, suppose instead it is not true that δB,n = O(n−1/2), then (A.18) holds by the
second half of Assumption 3.3.

Now, by Lemma A.3, we have

P(∪i∈[n]B{n,k,i) = P
(

max
i∈[n]

Tn,i > 1/2

)
≤ P

(
max
i∈[n]

M‖fk‖L∞‖Xi‖δB,n > 1/4

)
+ P

(
max
i∈[n]

LkM
2‖Xi‖2δ2B,n > 1/4

)
→ 0.

Therefore, P(∩i∈[n]Bn,k,i) → 1 as n → ∞. This together with the bound P(An,k) ≥ 1 − ε
and (A.17) yield (3.13).

Lemma A.4. Under the law P, further assume that Assumptions 3.1, 3.2 and 3.3 hold.
Then for all k ∈ [p], (3.9) and (3.14) hold.

Proof. We first prove (3.9). Conditioning on X, it is straightforward to show from
(A.3) that

pt(b) = Fk(t) + fk(t)b
>E[X] + d(t,b)(A.19)

where we have further introduced

d(t,b) = Ec(t,b,X), c(t,b,x) = Fk(t+ b>x)− Fk(t)− fk(t)b>x.

Using Taylor expansion and (A.8),

|c(t,b,x)| ≤ Lk(b>x)2,
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and thus

sup
t∈R
|d(t,b)| ≤ Lkb>E

[
XX>

]
b.(A.20)

From (3.3), using (A.4) and (A.19) for t ∈ R, we have

r2n,k(t) = pt(B̂k −Bk)− Fk(t)− fk(t)(B̂k −Bk)
>E[X]

= d(t, B̂k −Bk).

Then (3.9) easily follows from the above equality, (A.20) and the assumptions.
Next we prove (3.14). From (3.5), by (A.8) and the Lipschitz continuity of fk,

|r4n,k,i| ≤ |Fk(Êi,k)− Fk(Ei,k) + fk(Ei,k)(B̂k −Bk)
>Xi|

+ |(fk(Êi,k)− fk(Ei,k))(B̂k −Bk)
>E[X]|

≤ Lk((B̂k −Bk)
>Xi)

2 + Lk|(B̂k −Bk)
>Xi||(B̂k −Bk)

>E[X]|.

Then (3.14) follows from the above and the imposed assumptions.

A.2. Proof of Theorem 3.3.

Proof. First, when k = k′, ρ̂n,kk′ = ρn,kk′ = 1 and so (3.17) clearly holds. Thus we
focus on the case k 6= k′. We have the decomposition

√
n
(
ρ̂n,kk′ − ρn,kk′

)
= −6

n3/2

n2 − 1
2
∑
i∈[n]

[
{F̂n,k(Êi,k)− Fn,k(Ei,k)}{Fn,k(Ei,k)− Fn,k′(Ei,k′)}

]
+ 6

n3/2

n2 − 1
2
∑
i∈[n]

[
{F̂n,k′(Êi,k′)− Fn,k′(Ei,k′)}{Fn,k(Ei,k)− Fn,k′(Ei,k′)}

]
− 6

n3/2

n2 − 1

∑
i∈[n]

{F̂n,k(Êi,k)− Fn,k(Ei,k)− F̂n,k′(Êi,k′) + Fn,k′(Ei,k′)}2

≡ 6
n3/2

n2 − 1
(−2A+ 2B − C).(A.21)

We first bound the term A. Invoking (3.11) in Proposition 3.2, we rewrite A as

A =
∑
i∈[n]

{−fk(Ei,k)(B̂k −Bk)
>(Xi − E[X])}{Fk(Ei,k)− Fk′(Ei,k′)}

+
∑
i∈[n]

{−fk(Ei,k)(B̂k −Bk)
>(Xi − E[X])}

× {Fn,k(Ei,k)− Fk(Ei,k)− Fn,k′(Ei,k′) + Fk′(Ei,k′)}

+
∑
i∈[n]

{r1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i}{Fn,k(Ei,k)− Fn,k′(Ei,k′)}

≡ A1 +A2 +A3.(A.22)
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Now we analyze the term A1 in (A.22). We further rewrite A1 as

A1 = −(B̂k −Bk)
>
∑
i∈[n]

(Xi − E[X]) fk(Ei,k){Fk(Ei,k)− Fk′(Ei,k′)}

≡ −(B̂k −Bk)
>A11.(A.23)

Note that the random variable Xi − E[X] has expectation zero, is independent of Ei,k
and Ei,k′ , and each of its components has finite variance (by Assumption 3.3). Therefore
the i.i.d. summands in the term A11 have expectation zero. Now, the variance of the `th
coordinate of each individual summand in A11 is

E
[
(X` − E[X`])

2 f2k (Ek) (Fk(Ek)− Fk′(Ek′))2
]
≤ ‖fk‖2L∞E[‖X‖2].(A.24)

Therefore we conclude that ‖A11‖ = Op(n1/2) and hence, from (A.23),

|A1| ≤ ‖B̂k −Bk‖‖A11‖ = Op(n1/2δB,n).(A.25)

Next we consider the term A2 in (A.22). By the Dvoretzky-Kiefer-Wolfowitz inequality
(e.g., [12]),

max
i∈[n]
|Fn,k(Ei,k)− Fk(Ei,k)− Fn,k′(Ei,k′) + Fk′(Ei,k′)|

≤ ‖Fn,k − Fk‖L∞ + ‖Fn,k′ − Fk′‖L∞ = Op(n−1/2).

Then, together with Assumption 3.3 which implies that
∑

i∈[n] ‖Xi‖ = Op(n),

|A2| = Op

n−1/2 ∑
i∈[n]

‖fk‖∞ ‖B̂k −Bk‖ (‖Xi‖+ ‖E[X]‖)

 = Op

(
n1/2δB,n

)
.(A.26)

Next we consider the term A3 in (A.22). By (3.8) (or the simplified version (3.10))
and (3.9) in Proposition 3.1, (3.13) and (3.14) in Proposition 3.2, Assumption 3.1 which
implies

log(δ−1B,n) . log(n),(A.27)

and Assumption 3.3 which implies that
∑

i∈[n] ‖Xi‖1/2,
∑

i∈[n] ‖Xi‖ and
∑

i∈[n] ‖Xi‖2 are
all Op(n), we obtain∑

i∈[n]

∣∣∣r1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i

∣∣∣ = Op

(
log1/2(n)n1/2δ

1/2
B,n + nδ2B,n

)
.

Therefore,

A3 = Op

(
log1/2(n)n1/2δ

1/2
B,n + nδ2B,n

)
.(A.28)

From (A.22), (A.25), (A.26) and (A.28), we conclude that A = Op(log1/2(n)n1/2δ
1/2
B,n +

nδ2B,n). Similarly, B satisfies the same bound. We now deal with the term C. We have

|C| ≤ 2

∑
i∈[n]

{F̂n,k(Êi,k)− Fn,k(Ei,k)}2
+ 2

∑
i∈[n]

{F̂n,k′(Êi,k′)− Fn,k′(Ei,k′)}2
 ≡ 2C1 + 2C2.
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Using (3.11) again, (3.8) and (3.9) in Proposition 3.1, (3.13) and (3.14) in Proposition 3.2,
and (A.27), we have

C1 ≤ 2
∑
i∈[n]

fk(Ei,k)
2‖B̂k −Bk‖2‖Xi‖2

+ 8
∑
i∈[n]

{
r1n,k(Êi,k)

2 + r2n,k(Êi,k)
2 + r23n,k,i + r24n,k,i

}

= Op

(
nδ2B,n

)
+Op

(
log(n)δB,n + log2(n)n−1 + nδ4B,n + log(n)n−1δB,n

×
∑
i∈[n]

(‖Xi‖+ δB,n‖Xi‖2) + δ4B,n
∑
i∈[n]

‖Xi‖2(‖Xi‖+ ‖E[X]‖)2
)
.(A.29)

By Lemma A.3, maxi∈[n](δ
2
B,n‖Xi‖2) = op(1), and thus for the last term in (A.29) we have

δ4B,n
∑
i∈[n]

‖Xi‖2(‖Xi‖+ ‖E[X]‖)2 ≤
(

max
i∈[n]

δ2B,n‖Xi‖2
)
δ2B,n

∑
i∈[n]

(‖Xi‖+ ‖E[X]‖)2

= op
(
nδ2B,n

)
.

Plugging this into (A.29), and further simplifying gives

C1 = Op

(
nδ2B,n

)
.

Similarly, C2 satisfies the same bound.
Collecting terms, and recalling the overall scaling by n−1/2 of the terms A, B and C in

(A.21), we conclude that (3.17) holds.

A.3. Proof of Theorem 3.4.

Proof. First, when k = k′, r̂n,kk′ = rn,kk′ = 1 and so (3.27) clearly holds. Thus we
focus on the case k 6= k′. We have the decomposition

√
n(r̂n,kk′ − rn,kk′) =

1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}
Φ←(F r

n,k′(Ei,k′))

+
1√
n

∑
i∈[n]

Φ←(F r
n,k(Ei,k))

{
Φ←(F̂ r

n,k′(Êi,k′))− Φ←(F r
n,k′(Ei,k′))

}
+

1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}
×
{

Φ←(F̂ r
n,k′(Êi,k′))− Φ←(F r

n,k′(Ei,k′))
}

+O(log(n)n−1/2),(A.30)

where the last O(log(n)n−1/2) term comes from the factor φn given in (2.2).
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We first show that the first term on the right hand side of (A.30) satisfies

1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}
Φ←(F r

n,k′(Ei,k′)) = Op(∆n).(A.31)

We divide the summation on the left hand side of (A.31) into two cases, corresponding to
whether Fk(Ei,k) ∈ A1 or Fk(Ei,k) ∈ A2, for A1, A2 introduced in (3.23).

We first consider the case Fk(Ei,k) ∈ A1. By the Chernoff bound (e.g., (6) in [11], with
m = n(2n−γ)) and the assumption that γ < 1 (see (3.21)), the number of indices i ∈ [n]
satisfying Fk(Ei,k) ∈ A1 is upper bounded by 2n1−γ(1+op(1)). Using first this observation
and then Lemma C.1 give∣∣∣∣∣∣ 1√

n

∑
i∈[n]:Fk(Ei,k)∈A1

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}
Φ←(F r

n,k′(Ei,k′))

∣∣∣∣∣∣
= Op

(
n1/2−γ max

i∈[n]

[{
|Φ←(F̂ r

n,k(Êi,k))|+ |Φ←(F r
n,k(Ei,k))|

}
|Φ←(F r

n,k′(Ei,k′))|
])

= Op(log(n)n1/2−γ).(A.32)

Next we consider the case Fk(Ei,k) ∈ A2. For brevity sometimes we set Xc
i = Xi−E[X].

First, adding (Fn,k − F r
n,k)(Ei,k) to both sides of (3.12) in Proposition 3.2 yields

F̂ r
n,k(Êi,k)− F r

n,k(Ei,k) = (Fn,k − F r
n,k)(Ei,k)− fk(Ei,k)(B̂k −Bk)

>Xc
i

+ rr1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i.(A.33)

In what follows, we abbreviate the summation
∑

i∈[n]:Fk(Ei,k)∈A2
by
∑

Fk(Ei,k)∈A2
. By using

first-order Taylor expansion twice, Lemma C.2, and invoking (A.33), the summation on
the left hand side of (A.31) over Fk(Ei,k) ∈ A2 becomes

1√
n

∑
Fk(Ei,k)∈A2

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}
Φ←(F r

n,k′(Ei,k′))

=
1√
n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(F
r
n,k,i))

{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}

Φ←(F r
n,k′(Ei,k′))

=
1√
n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}

Φ←(F r
n,k′(Ei,k′))

+
1√
n

∑
Fk(Ei,k)∈A2

{
1

φ(Φ←(F
r
n,k,i))

− 1

φ(Φ←(Fk(Ei,k)))

}{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}

Φ←(F r
n,k′(Ei,k′))

=
1√
n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

{
−fk(Ei,k)(B̂k −Bk)

>Xc
i

}
Φ←(F r

n,k′(Ei,k′))

+
1√
n

∑
Fk(Ei,k)∈A2

Φ←(F r
n,k′(Ei,k′))

φ(Φ←(Fk(Ei,k)))

{
(Fn,k − F r

n,k)(Ei,k) + rr1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i

}

+
1√
n

∑
Fk(Ei,k)∈A2

{
1

φ(Φ←(F
r
n,k,i))

− 1

φ(Φ←(Fk(Ei,k)))

}{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}

Φ←(F r
n,k′(Ei,k′))
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= − 1√
n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

{
fk(Ei,k)(B̂k −Bk)

>Xc
i

}
Φ←(Fk′(Ei,k′))

− 1√
n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

{
fk(Ei,k)(B̂k −Bk)

>Xc
i

}{
Φ←(F r

n,k′(Ei,k′))− Φ←(Fk′(Ei,k′))
}

+
1√
n

∑
Fk(Ei,k)∈A2

Φ←(F r
n,k′(Ei,k′))

φ(Φ←(Fk(Ei,k)))

{
(Fn,k − F r

n,k)(Ei,k) + rr1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i

}

+
1√
n

∑
Fk(Ei,k)∈A2

{
Φ←(F̃ r

n,k,i)

φ2(Φ←(F̃ r
n,k,i))

}{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}{

F
r
n,k,i − Fk(Ei,k)

}
Φ←(F r

n,k′(Ei,k′))

≡ A+B + C +D.

(A.34)

In the above, for each i, the quantity F
r
n,k,i comes from the first Taylor expansion and is a

random number on the open interval between F̂ r
n,k(Êi,k) and F r

n,k(Ei,k), and the quantity

F̃ r
n,k,i comes from the second Taylor expansion and is a random number on the open

interval between F
r
n,k,i and Fk(Ei,k). The terms A,B,C,D in the last line of (A.34) are

all Op(∆n) — which when combined with the earlier summation over Fk(Ei,k) ∈ A1 in
(A.32) yields that (A.31) holds — as we now show in sequence.

The term A

We rewrite A as A = −
{
n−1/2(B̂k −Bk)

}>
A where

A =
∑
i∈[n]

1{Fk(Ei,k) ∈ A2}
{
fk(Ei,k) Φ←(Fk′(Ei,k′))

φ(Φ←(Fk(Ei,k)))

}
Xc
i .(A.35)

By Assumption 3.1, the term n−1/2(B̂k −Bk) in A is Op(n−1/2δB,n). Next we treat A.
In A, the random variable Xc

i has expectation zero, and is independent of Ei,k and
Ei,k′ . Therefore the i.i.d. summands in A have expectation zero. Next, the variance of the
`th coordinate of each individual summand in A is

E

[
1{Fk(Ek) ∈ A2}

{
fk(Ek) Φ←(Fk′(Ek′))

φ(Φ←(Fk(Ek)))
(X` − E[X`])

}2
]

= E

[
1{Fk(Ek) ∈ A2}

{
fk(Ek) Φ←(Fk′(Ek′))

φ(Φ←(Fk(Ek)))

}2
]
E
[
(X` − E[X`])

2
]

. E

[
1{Fk(Ek) ∈ A2}

{
fk(Ek)

φ(Φ←(Fk(Ek)))

}2

E
[
{Φ←(Fk′(Ek′))}2 |Ek

] ]
.(A.36)

Here the first step follows by the independence of X and E, and the second step follows
because the second moment of ‖X‖ is bounded. Now, the pair (Φ←(Fk(Ek)),Φ

←(Fk′(Ek′)))
is bivariate Gaussian with marginal variances equal to one and with correlation rkk′ , and so
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conditional on Ek, Φ←(Fk′(Ek′)) is a normal random variable with mean rkk′ Φ
←(Fk(Ek))

and variance 1− r2kk′ . Thus

E
[
{Φ←(Fk′(Ek′))}2 |Ek

]
= r2kk′Φ

←(Fk(Ek))
2 + (1− r2kk′).

Plugging the above into (A.36), then invoking (C.2) in Lemma C.3, and finally invoking
(3.24) and the fact that Fk(Ek) ∼ Unif(0, 1), we obtain

E

[
1{Fk(Ek) ∈ A2}

{
fk(Ek) Φ←(Fk′(Ek′))

φ(Φ←(Fk(Ek)))
(X` − E[X`])

}2
]

. E

[
1{Fk(Ek) ∈ A2}

{
fk(Ek)

φ(Φ←(Fk(Ek)))

}2 {
r2kk′Φ

←(Fk(Ek))
2 + (1− r2kk′)

}]

. E

[
1{Fk(Ek) ∈ A2}

{
fk(Ek)

(Fk ∧ (1− Fk))(Ek))

}2

{|Φ←(Fk(Ek))| ∨ 1}2
]

= O(δn).

So the variance of each coordinate of A in (A.35) is O(n δn), implying that

A = Op(δB,nδ
1/2
n ).(A.37)

This concludes our treatment of the term A.

The term B

As for the term A, first rewrite B as B = −
{
n−1/2(B̂k −Bk)

}>
B where

B =
∑

Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))
{fk(Ei,k)Xc

i}
{

Φ←(F r
n,k′(Ei,k′))− Φ←(Fk′(Ei,k′))

}
.

Again as for the term A, it suffices to treat B. Using Hölder’s inequality, the magnitude
of the `th coordinate of B is bounded by∑

i∈[n]

1{Fk(Ei,k) ∈ A2}
{
fk(Ei,k)(Xi,` − E[Xi,`])

φ(Φ←(Fk(Ei,k)))

}2
1/2

×

∑
i∈[n]

{
Φ←(F r

n,k′(Ei,k′))− Φ←(Fk′(Ei,k′))
}21/2

.

By Theorem 1 in [6], the sum in the second square bracket on the right hand side of the
last line above is op(

√
n). For the sum in the first square bracket,

∑
i∈[n]

1{Fk(Ei,k) ∈ A2}
{
fk(Ei,k)(Xi,` − E[Xi,`])

φ(Φ←(Fk(Ei,k)))

}2

= Op

(
nE

[
1{Fk(Ek) ∈ A2}

{
fk(Ek)(X` − E[X`])

φ(Φ←(Fk(Ek)))

}2
])
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= Op

(
nE

[
1{Fk(Ek) ∈ A2}

{
fk(Ek)

φ(Φ←(Fk(Ek)))

}2
]
E
[
(X` − E[X`])

2
])

= Op

(
nE

[
1{Fk(Ek) ∈ A2}

f2k (Ek)

(Fk ∧ (1− Fk))2(Ek)

])
= Op (n δn) .

Here the second step follows by the independence of X and E, the third step follows by
(C.2) in Lemma C.3 and Assumption 3.3, and the last step follows by (3.24). Collecting
terms, we have

B = op(n1/4δB,nδ
1/2
n ).(A.38)

This concludes our treatment of the term B.

The term C
We first deal with the terms involving (Fn,k − F r

n,k)(Ei,k). Because 1/φ(Φ←(·)) is the
derivative of Φ←(·) (see Lemma C.2),

E
[
1{Fk(Ek) ∈ A2}

1

φ(Φ←(Fk(Ek)))

]
=

∫
A2

1

φ(Φ←(u))
du

= Φ←(1− n−γ)− Φ←(n−γ) . log1/2(n),(A.39)

where the last step follows by (C.3) in Lemma C.3. Then, first by (A.1), Lemma C.1 and
then by (A.39),∣∣∣∣∣∣ 1√

n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

{
(Fn,k − F r

n,k)(Ei,k)
}

Φ←(F r
n,k′(Ei,k′))

∣∣∣∣∣∣
. log1/2(n)n−3/2

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

= Op

(
log1/2(n)n−1/2 E

[
1{Fk(Ek) ∈ A2}

1

φ(Φ←(Fk(Ek)))

])
= Op

(
log(n)n−1/2

)
.

Next we deal with the terms involving rr1n,k and the r3n,k,i’s. The latter quantities are
bounded as in (3.8) in Proposition 3.1 and (3.13) in Proposition 3.2 respectively; we also
recall (A.27). Then, simply replacing fk(t) by ‖fk‖L∞ <∞ in (3.8) and (3.13), we have∣∣∣∣∣∣ 1√

n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

{
rr1n,k(Êi,k) + r3n,k,i

}
Φ←(F r

n,k′(Ei,k′))

∣∣∣∣∣∣
= Op

log1/2(n)n−1/2
∑

Fk(Ei,k)∈A2

(1 + ‖Xi‖1/2 + ‖Xi‖δ1/2B,n) log1/2(n)n−1/2δ
1/2
B,n

φ(Φ←(Fk(Ei,k)))


= Op

log(n)n−1δ
1/2
B,n

∑
Fk(Ei,k)∈A2

1 + ‖Xi‖1/2 + ‖Xi‖δ1/2B,n

φ(Φ←(Fk(Ei,k)))


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= Op

log(n)δ
1/2
B,n E

1{Fk(Ek) ∈ A2}
1 + ‖X‖1/2 + ‖X‖δ1/2B,n

φ(Φ←(Fk(Ek)))


= Op

(
log(n)δ

1/2
B,n E

[
1{Fk(Ek) ∈ A2}

1

φ(Φ←(Fk(Ek)))

]
E
[
1 + ‖X‖1/2 + ‖X‖δ1/2B,n

])
= Op

(
log3/2(n)δ

1/2
B,n

)
.

Next we deal with the terms involving r2n,k and the r4n,k,i’s. The later quantities are
bounded as in (3.9) in Proposition 3.1 and (3.14) in Proposition 3.2 respectively. Then,∣∣∣∣∣∣ 1√

n

∑
Fk(Ei,k)∈A2

1

φ(Φ←(Fk(Ei,k)))

{
r2n,k(Êi,k) + r4n,k,i

}
Φ←(F r

n,k′(Ei,k′))

∣∣∣∣∣∣
= Op

log1/2(n)n−1/2
∑

Fk(Ei,k)∈A2

δ2B,n + ‖Xi‖(‖Xi‖ ∨ ‖E[X]‖)δ2B,n
φ(Φ←(Fk(Ei,k)))


= Op

(
log1/2(n)n1/2δ2B,n E

[
1{Fk(Ek) ∈ A2}

1 + ‖Xi‖(‖Xi‖ ∨ ‖E[X]‖)
φ(Φ←(Fk(Ek)))

])
= Op

(
log1/2(n)n1/2δ2B,n E

[
1{Fk(Ek) ∈ A2}

1

φ(Φ←(Fk(Ek)))

]
E [1 + ‖X‖(‖X‖ ∨ ‖E[X]‖)]

)
= Op

(
log(n)n1/2δ2B,n

)
.

Collecting terms, we have

C = Op

(
log3/2(n)δ

1/2
B,n + log(n)n1/2δ2B,n

)
.(A.40)

This concludes our treatment of the term C.

The term D
Recall that the term D in the last line of (A.34) is

1√
n

∑
Fk(Ei,k)∈A2

{
Φ←(F̃ r

n,k,i)

φ2(Φ←(F̃ r
n,k,i))

}{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}{

F
r
n,k,i − Fk(Ei,k)

}
Φ←(F r

n,k′(Ei,k′)).

We first show that

max
i∈[n]:Fk(Ei,k)∈A2

|F̃ r
n,k,i − Fk(Ei,k)|

(Fk ∧ (1− Fk))(Ei,k)
≤ max

i∈[n]:Fk(Ei,k)∈A2

|F r
n,k,i − Fk(Ei,k)|

(Fk ∧ (1− Fk))(Ei,k)
= op(1).

(A.41)

Recall that, for each i, the quantity F
r
n,k,i is a random number on the open interval between

F̂ r
n,k(Êi,k) and F r

n,k(Ei,k), and hence

|F r
n,k,i − F r

n,k(Ei,k)| ≤ |F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)|;(A.42)
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recall also that the quantity F̃ r
n,k,i is a random number on the open interval between F

r
n,k,i

and Fk(Ei,k), and hence

|F̃ r
n,k,i − Fk(Ei,k)| ≤ |F

r
n,k,i − Fk(Ei,k)|.(A.43)

Then, the first half of (A.41) follows from (A.43). Next, applying the triangle inequality
twice, and using (A.42) and (A.33) give

|F r
n,k,i − Fk(Ei,k)| ≤ |F

r
n,k,i − F r

n,k(Ei,k)|+ |F r
n,k(Ei,k)− Fk(Ei,k)|

≤ |F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)|+ |F r
n,k(Ei,k)− Fn,k(Ei,k)|+ |Fn,k(Ei,k)− Fk(Ei,k)|

≤ 2|(F r
n,k − Fn,k)(Ei,k)|+ |(Fn,k − Fk)(Ei,k)|

+ | − fk(Ei,k)(B̂k −Bk)
>Xc

i + rr1n,k(Êi,k) + r2n,k(Êi,k) + r3n,k,i + r4n,k,i|.(A.44)

We treat the terms in the last line of (A.44) one by one. First, by (A.1) and the fact that
γ < 1 (see (3.21)),

max
i∈[n]:Fk(Ei,k)∈A2

|(F r
n,k − Fn,k)(Ei,k)|

(Fk ∧ (1− Fk))(Ei,k)
= op(1).(A.45)

Next, by the second half of Lemma C.4 involving (C.4) on the weighted empirical processes,

sup
t:Fk(t)∈(1/n,1−1/n)

|(Fn,k − Fk)(t)|
tn
√

(Fk ∧ (1− Fk))(t)
= Op(1)(A.46)

for tn =

√
log log(n)

n
. Then, consecutively by (A.46) and γ < 1,

max
i∈[n]:Fk(Ei,k)∈A2

|(Fn,k − Fk)(Ei,k)|
(Fk ∧ (1− Fk))(Ei,k)

= Op

(
max

i∈[n]:Fk(Ei,k)∈A2

tn√
(Fk ∧ (1− Fk))(Ei,k)

)
= op(1).(A.47)

Next, consecutively by Assumptions 3.4 and 3.5, we have

max
i∈[n]:Fk(Ei,k)∈A2

|fk(Ei,k)(B̂k −Bk)
>Xc

i |
(Fk ∧ (1− Fk))(Ei,k)

= Op

(
max

i∈[n]:Fk(Ei,k)∈A2

|fk(F←k (Fk(Ei,k)))|
(Fk ∧ (1− Fk))(Ei,k)

n−τ
)

= op(1).(A.48)

Next, consecutively by (3.8) in Proposition 3.1, (3.13) in Proposition 3.2, (A.27) and sn
from (A.9), then the Lipschitz continuity of fk implying

f
1/2
k (Êi,k) ≤ f

1/2
k (Ei,k) + L

1/2
k |(B̂k −Bk)

>Xi|1/2,(A.49)

then Assumption 3.4 (implying (3.20)), and finally the second inequality in (3.21) (imply-
ing γ < 1/2 + τ), we have

max
i∈[n]:Fk(Ei,k)∈A2

|rr1n,k(Êi,k) + r3n,k,i|
(Fk ∧ (1− Fk))(Ei,k)
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= Op

 max
i∈[n]:Fk(Ei,k)∈A2

sn

{
f
1/2
k (Êi,k)δ

1/2
B,n + δB,n

}
+ sn

{
f
1/2
k (Ei,k)‖Xi‖1/2δ1/2B,n + ‖Xi‖δB,n

}
+ s2n

(Fk ∧ (1− Fk))(Ei,k)


= Op

 max
i∈[n]:Fk(Ei,k)∈A2

snf
1/2
k (Ei,k)δ

1/2
B,n(1 + ‖Xi‖1/2) + snδB,n(1 + ‖Xi‖) + L

1/2
k snδB,n‖Xi‖1/2 + s2n

(Fk ∧ (1− Fk))(Ei,k)


= Op(snn

γ/2 + snn
−τ+γ + s2nn

γ) = op(1).

(A.50)

Finally, consecutively by (3.9) in Proposition 3.1 and (3.14) in Proposition 3.2, Assump-
tion 3.4 (implying (3.20)), and finally the first half of the second inequality in (3.21),

max
i∈[n]:Fk(Ei,k)∈A2

|r2n,k(Êi,k) + r4n,k,i|
(Fk ∧ (1− Fk))(Ei,k)

= Op

(
nγδ2B,n max

i∈[n]:Fk(Ei,k)∈A2

{1 + ‖Xi‖(‖Xi‖+ ‖E[X]‖)}
)

= Op(n−2τ+γ) = op(1).(A.51)

Therefore, collecting the results from (A.44), (A.45), (A.47), (A.48), (A.50) and (A.51),
we conclude that the second half of (A.41) also holds. Now, using first (C.2) in Lemma C.3,
and then (A.41), we have

|D| ≤ 1√
n

∑
Fk(Ei,k)∈A2

∣∣∣Φ←(F̃ r
n,k,i)

∣∣∣
φ2(Φ←(F̃ r

n,k,i))

∣∣Φ←(F r
n,k′(Ei,k′))

∣∣
×
∣∣∣F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
∣∣∣ ∣∣F r

n,k,i − Fk(Ei,k)
∣∣

.
1√
n

∑
Fk(Ei,k)∈A2

∣∣∣Φ←(F̃ r
n,k,i)

∣∣∣{
F̃ r
n,k,i ∧ (1− F̃ r

n,k,i)
}2 ∣∣Φ←(F r

n,k′(Ei,k′))
∣∣

×
∣∣∣F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
∣∣∣ ∣∣F r

n,k,i − Fk(Ei,k)
∣∣

= Op

(
1√
n

∑
Fk(Ei,k)∈A2

∣∣∣Φ←(F̃ r
n,k,i)

∣∣∣
(Fk ∧ (1− Fk))2 (Ei,k)

∣∣Φ←(F r
n,k′(Ei,k′))

∣∣
×
∣∣∣F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
∣∣∣ ∣∣F r

n,k,i − Fk(Ei,k)
∣∣ ).(A.52)

Next, for the term Φ←(F̃ r
n,k,i) in (A.52), first by the mean value theorem,

max
i∈[n]:Fk(Ei,k)∈A2

∣∣∣Φ←(F̃ r
n,k,i)− Φ←(Fk(Ei,k))

∣∣∣ = max
i∈[n]:Fk(Ei,k)∈A2

∣∣∣F̃ r
n,k,i − Fk(Ei,k)

∣∣∣
φ(Φ←(F̂ r

n,k,i))

. max
i∈[n]:Fk(Ei,k)∈A2

∣∣∣F̃ r
n,k,i − Fk(Ei,k)

∣∣∣
F̂ r
n,k,i ∧ (1− F̂ r

n,k,i)
. Op

 max
i∈[n]:Fk(Ei,k)∈A2

∣∣∣F̃ r
n,k,i − Fk(Ei,k)

∣∣∣
(Fk ∧ (1− Fk))(Ei,k)

 = op(1).

Here, for each i with Fk(Ei,k) ∈ A2, F̂
r
n,k,i is a random number on the open interval

between F̃ r
n,k,i and Fk(Ei,k); hence (A.41) holds with the replacement of F̃ r

n,k,i by F̂ r
n,k,i,
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which further implies the second to last step above. (The second step follows by (C.2)
in Lemma C.3 and the last step follows by (A.41).) Applying this result to (A.52), and

using (A.44) to bound both
∣∣∣F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
∣∣∣ (see (A.33)) and

∣∣F r
n,k,i − Fk(Ei,k)

∣∣,
we conclude that to bound D, it suffices to bound

1√
n

∑
Fk(Ei,k)∈A2

{|Φ←(Fk(Ei,k))| ∨ 1}
∣∣∣Φ←(F r

n,k′(Ei,k′))
∣∣∣

(Fk ∧ (1− Fk))2(Ei,k)

[{
(F r

n,k − Fn,k)(Ei,k)
}2

+ {(Fn,k − Fk)(Ei,k)}2 +
{
fk(Ei,k)(B̂k −Bk)

>Xc
i

}2

+ rr1n,k(Êi,k)
2 + r2n,k(Êi,k)

2 + r23n,k,i + r24n,k,i

]
≡ D0 +D1 +D2 +D3 +D4 +D5 +D6.(A.53)

We treat the Di’s one by one. First, by (C.3) in Lemma C.3,

E
[
1{Fk(Ek) ∈ A2}

|Φ←(Fk(Ei,k))| ∨ 1

(Fk ∧ (1− Fk))(Ek)

]
=

∫
A2

|Φ←(u)| ∨ 1

u ∧ (1− u)
du . log3/2(n),(A.54)

E
[
1{Fk(Ek) ∈ A2}

|Φ←(Fk(Ei,k))| ∨ 1

(Fk ∧ (1− Fk))2(Ek)

]
=

∫
A2

|Φ←(u)| ∨ 1

(u ∧ (1− u))2
du . log1/2(n)nγ .(A.55)

Now, for the term D0, using (A.1), Lemma C.1 and (A.55),

D0 =
1√
n

∑
Fk(Ei,k)∈A2

{|Φ←(Fk(Ei,k))| ∨ 1}
∣∣∣Φ←(F r

n,k′(Ei,k′))
∣∣∣

(Fk ∧ (1− Fk))2(Ei,k)
{

(F r
n,k − Fn,k)(Ei,k)

}2
= Op

(
log1/2(n)n−3/2 E

[
1{Fk(Ek) ∈ A2}

|Φ←(Fk(Ei,k))| ∨ 1

(Fk ∧ (1− Fk))2(Ek)

])
= Op

(
log(n)n−3/2+γ

)
.(A.56)

Next we treat D1. Using (A.46), we have

D1 =
1√
n

∑
Fk(Ei,k)∈A2

{|Φ←(Fk(Ei,k))| ∨ 1}
∣∣∣Φ←(F r

n,k′(Ei,k′))
∣∣∣

(Fk ∧ (1− Fk))2(Ei,k)
{(Fn,k − Fk)(Ei,k)}2

= Op

log1/2(n) log log(n)n−3/2
∑

Fk(Ei,k)∈A2

|Φ←(Fk(Ei,k))| ∨ 1

(Fk ∧ (1− Fk))(Ei,k)


= Op

(
log1/2(n) log log(n)n−1/2 E

[
1{Fk(Ek) ∈ A2}

|Φ←(Fk(Ek))| ∨ 1

(Fk ∧ (1− Fk))(Ek)

])
= Op

(
log2(n) log log(n)n−1/2

)
.
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Due to γ < 1 (see (3.21)), the bound on D1 is of a larger order than that on D0.
Next we treat D2. We have

D2 =
1√
n

∑
Fk(Ei,k)∈A2

{|Φ←(Fk(Ei,k))| ∨ 1}
∣∣∣Φ←(F r

n,k′(Ei,k′))
∣∣∣

(Fk ∧ (1− Fk))2(Ei,k)

×
{
fk(Ei,k)(B̂k −Bk)

>Xc
i

}2

= Op

log1/2(n)n−1/2δ2B,n
∑

Fk(Ei,k)∈A2

{|Φ←(Fk(Ei,k))| ∨ 1}
(Fk ∧ (1− Fk))2(Ei,k)

f2k (Ei,k) ‖Xc
i‖2


= Op

(
log1/2(n)n1/2δ2B,nE

[
1{Fk(Ek) ∈ A2}

{
fk(Ek)

(Fk ∧ (1− Fk))(Ek)

}2

× {|Φ←(Fk(Ek))| ∨ 1}

]
E
[
‖X‖2

])
= Op(log1/2(n)n1/2δ2B,nδn).(A.57)

Here the last step follows from (3.24).
Next we treat D3 + D5. Starting from (3.8), (3.13) and invoking sn from (A.9), then

invoking (A.49), and finally using Hölder’s inequality and invoking δn from (3.24), we have

D3 +D5

=
1√
n

∑
Fk(Ei,k)∈A2

{|Φ←(Fk(Ei,k))| ∨ 1}
∣∣∣Φ←(F r

n,k′(Ei,k′))
∣∣∣

(Fk ∧ (1− Fk))2(Ei,k)

×
{
rr1n,k(Êi,k)

2 + r23n,k,i

}
= Op

sn ∑
Fk(Ei,k)∈A2

|Φ←(Fk(Ei,k))| ∨ 1

(Fk ∧ (1− Fk))2(Ei,k)

×
{
s2nδB,n

{
fk(Êi,k) + fk(Ei,k)‖Xi‖

}
+ s2nδ

2
B,n(1 + ‖Xi‖2) + s4n

}
= Op

s3n ∑
Fk(Ei,k)∈A2

|Φ←(Fk(Ei,k))| ∨ 1

(Fk ∧ (1− Fk))2(Ei,k)

×
{
fk(Ei,k)δB,n(1 + ‖Xi‖) + δ2B,n(1 + ‖Xi‖2) + δ2B,n‖Xi‖+ s2n

}
= Op

(
s3n nE

[
1{Fk(Ek) ∈ A2}

|Φ←(Fk(Ek))| ∨ 1

(Fk ∧ (1− Fk))2(Ek)

×
{
fk(Ek)δB,n(1 + ‖X‖) + δ2B,n(1 + ‖X‖2) + δ2B,n‖X‖+ s2n

} ])
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= Op

(
s3n n δB,n E

[
1{Fk(Ek) ∈ A2}

{|Φ←(Fk(Ek))| ∨ 1} fk(Ek)
(Fk ∧ (1− Fk))2(Ek)

]
+ log2(n)n−1/2+γ δ2B,n + log3(n)n−3/2+γ

)
= Op

(
s3n n δB,n

{
E

[
1{Fk(Ek) ∈ A2} {|Φ←(Fk(Ek))| ∨ 1}2 f2k (Ek)

(Fk ∧ (1− Fk))2(Ek)

]

× E
[

1{Fk(Ek) ∈ A2}
(Fk ∧ (1− Fk))2(Ek)

]}1/2

+ log2(n)n−1/2+γ δ2B,n + log3(n)n−3/2+γ

)

= Op(log3/2(n)n−1/2+γ/2δB,n δ
1/2
n + log2(n)n−1/2+γ δ2B,n + log3(n)n−3/2+γ).

(A.58)

Finally we treat D4 + D6. Starting from (3.9) and (3.14), then using Assumption 3.4
(implying (3.20)),

D4 +D6 =
1√
n

∑
Fk(Ei,k)∈A2

{|Φ←(Fk(Ei,k))| ∨ 1}
∣∣∣Φ←(F r

n,k′(Ei,k′))
∣∣∣

(Fk ∧ (1− Fk))2(Ei,k)

{
r2n,k(Êi,k)

2 + r24n,k,i

}

= Op

(
sn

∑
Fk(Ei,k)∈A2

|Φ←(Fk(Ei,k))| ∨ 1

(Fk ∧ (1− Fk))2(Ei,k)
δ4B,n

{
1 + ‖Xi‖2(‖Xi‖ ∨ ‖E[X]‖)2

})

= Op

(
log(n)n1/2+γ−2τ δ2B,n

)(A.59)

which, due to γ − 2τ < 0 (see (3.21)), is of smaller order than (A.57).
Collecting terms, and further simplifying using (3.20) and (3.21), we conclude that

D = Op(D0 +D1 +D2 +D3 +D4 +D5 +D6)

= Op

(
log2(n) log log(n)n−1/2 + log1/2(n)n1/2δ2B,nδn

+ log3/2(n)n−1/2+γ/2δB,n δ
1/2
n

)
.(A.60)

This concludes our treatment of the term D.

Finally, (A.31) follows from the bound (A.32), the decomposition (A.34), and the bounds
(A.37), (A.38), (A.40) and (A.60) on A, B, C and D respectively, after further simplifying
using (3.20) and (3.21).

The second term on the right hand side of (A.30) can be treated similarly as in the
above proof of (A.31) to arrive at an analogous result:

1√
n

∑
i∈[n]

Φ←(F r
n,k(Ei,k))

{
Φ←(F̂ r

n,k′(Êi,k′))− Φ←(F r
n,k′(Ei,k′))

}
= Op(∆n).(A.61)

By (A.30), (A.31) and (A.61), all that’s left to establish (3.27) in Theorem 3.4 is to
show that the third term on the right hand side of (A.30), which is a second-order term,
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satisfies ∣∣∣∣∣∣ 1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}

×
{

Φ←(F̂ r
n,k′(Êi,k′))− Φ←(F r

n,k′(Ei,k′))
} ∣∣∣∣∣∣ = Op(∆n).(A.62)

Using Hölder’s inequality we bound the left hand side of (A.62) as∣∣∣∣∣∣ 1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}{
Φ←(F̂ r

n,k′(Êi,k′))− Φ←(F r
n,k′(Ei,k′))

}∣∣∣∣∣∣
≤

 1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}2

1/2

×

 1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k′(Êi,k′))− Φ←(F r
n,k′(Ei,k′))

}2

1/2

.

In the last line above, the term in the first square bracket is Op(∆n) by Lemma A.5 below;
that the term in the second square bracket is also Op(∆n) follows analogously. Thus (A.62)
holds. This completes the proof of (3.27). The remaining part of Theorem 3.4 is trivial.

Lemma A.5. Assume the same conditions as in Theorem 3.4. Then,

1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}2
= Op(∆n).(A.63)

Proof. For the left hand side of (A.63), as when treating the left hand side of (A.31),
we again decompose the sum over i ∈ [n] into the cases Fk(Ei,k) ∈ A1 and Fk(Ei,k) ∈ A2;
we then apply the mean value theorem to each term in the sum in the second case. We
arrive at

1√
n

∑
i∈[n]

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}2

=
1√
n

∑
Fk(Ei,k)∈A1

{
Φ←(F̂ r

n,k(Êi,k))− Φ←(F r
n,k(Ei,k))

}2

+
1√
n

∑
Fk(Ei,k)∈A2

1

φ2(Φ←(F
r
n,k,i))

{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}2
.

In the above, for each i, the quantity F
r
n,k,i is identical to the one appearing in (A.34) and

is a random number on the open interval between F̂ r
n,k(Êi,k) and F r

n,k(Ei,k). Reasoning
similarly as in the derivation of (A.32), the first term in the last line above is Op(∆n). For
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the second term, using a derivation similar to that of (A.52), now using the second half
of (A.41), we have

1√
n

∑
Fk(Ei,k)∈A2

1

φ2(Φ←(F
r
n,k,i))

{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}2

= Op

(
1√
n

∑
Fk(Ei,k)∈A2

1

(Fk ∧ (1− Fk))2 (Ei,k)

{
F̂ r
n,k(Êi,k)− F r

n,k(Ei,k)
}2
)
.

By expanding the term in the curly bracket above using (A.33), and then reasoning sim-
ilarly as when deriving the bounds (A.56), (A.57), (A.58) and (A.59) on the terms D0,
D2, D3 +D5 and D4 +D6 respectively, the right hand side of the above equation is also
Op(∆n) . This is enough to conclude.

B. Detailed expositions for Section 4.

B.1. Distribution, density functions and parametric score functions. In this section we
review some distribution and density functions, and parametric score functions for the
copula parameter θ related to the law P = Pθ,B,F1,...,Fp,FX

. The qualifier “parametric”
means we treat θ as the only variable parameter and all other parameters are fixed.
(In the literature, e.g. in [17], sometimes the qualifier “ordinary” is used, but we choose
“parametric” to avoid confusion with the ordinary Gaussian copula model.)

B.1.1. Distribution and density functions. Recall that under the law P, the copula of E
is Cθ = CR(θ). Let cθ be the density of Cθ and denote its logarithm by lc(·;θ) : [0, 1]p → R.
Then, lc(·;θ) is given by, e.g., Eq. (2.1) in [14] as

lc(u;θ) = log cθ(u) = −p
2

log(2π)− 1

2
log(det R(θ))

− 1

2
Φ←• (u)>(S(θ)− Ip)Φ

←
• (u), u = (u1, . . . , up)

> ∈ [0, 1]p.(B.1)

Let fY|X(y|x) denote the conditional density of Y at y given X = x. Under the law P,
using the observation that the conditional density at Y = y given X = x is in fact the
density of E at y−B>x, it is easy to deduce that the joint density fY,X(·1, ·2) of (Y,X)
at Y = y and X = x is given by

fY,X(y,x) = fY|X(y|x)fX(x) = cθ(F•(y −B>x))
{∏
k∈[p]

fk(yk −B>k x)
}
fX(x).(B.2)

(We recall from Section 2.2.2 that Bk denotes the kth column of B.) Denote the logarithm
of the above joint density fY,X(·1, ·2) by l(·1, ·2; P) : Rp × Rq → R. By (B.2) and (B.1),
l(·1, ·2; P) is given by

l(y,x; P) = lc(F•(y −B>x);θ)

+
∑
k∈[p]

log(fk(yk −B>k x)) + log(fX(x)), y = (y1, . . . , yp)
>,x ∈ Rq.(B.3)
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In the above expression of l(·1, ·2; P), we have explicitly emphasized that this log density
is evaluated under the law P, because later we will also need to evaluate this log density
under perturbations of the law P. Also for later purpose, we denote by FY,X the joint
distribution function of (Y,X).

B.1.2. Parametric score functions. We first consider the ordinary Gaussian copula
model. We recall that lc(·;θ), specified in (B.1), is the logarithm of the copula density
cθ. Let l̇c,s(·;θ) = (l̇c,sm (·;θ))dm=1 : [0, 1]p → Rd be the corresponding parametric score
function for the copula parameter θ; then

l̇c,sm (u;θ) =
∂

∂θm
lc(u;θ)

= −1

2
tr
{

S(θ)Ṙm(θ)
}
− 1

2
Φ←• (u)>Ṡm(θ)Φ←• (u), u ∈ [0, 1]p, m ∈ [d].(B.4)

Also let (l̇c,mk (·;θ))pk=1 : [0, 1]p → Rp be the spatial derivatives of lc; then

l̇c,mk (u;θ) =
∂

∂uk
lc(u;θ)

=
Φ←(uk)

φ(Φ←(uk))
−
∑
k′∈[p]

(S(θ))kk′
Φ←(uk′)

φ(Φ←(uk))
, u ∈ [0, 1]p, k ∈ [p].

(For the above two equations, see, e.g., Eqs. (2.2) and (2.6) in [14] respectively.)
Now we turn to the covariate-adjusted Gaussian copula model. Under the law P,

we recall the logarithm l(·1, ·2; P) of the joint density of (Y,X) given in (B.3), which
in turn involves the logarithm lc in (B.1) of the copula density cθ. Let l̇s(·1, ·2; P) =
(l̇sm(·1, ·2; P))dm=1 : Rp × Rq → Rd be the parametric score function for the copula param-
eter θ corresponding to l(·1, ·2; P). Then

l̇sm(y,x; P) =
∂

∂θm
l(y,x; P) =

∂

∂θm
lc(F•(y −B>x);θ)

= l̇c,sm (F•(y −B>x);θ), (y,x) ∈ Rp × Rq, m ∈ [d],(B.5)

where lc,s(·;θ) is introduced in (B.4). Therefore, in fact

l̇s(y,x; P) = l̇c,s(F•(y −B>x);θ), (y,x) ∈ Rp × Rq.(B.6)

The specific form of l̇s(·1, ·2; P) can be readily obtained from (B.6) and (B.4).

B.2. Semiparametric lower bound.

B.2.1. Overview. As can be seen from Section 4.1, a central object for obtaining the
semiparametric lower bound for estimating θ is the efficient score (function) l̇∗θ(·1, ·2; P).
We very briefly review this and some related concepts here, while more detailed expositions
will be given later in this section. For textbook treatment of these concepts, we refer the
readers to Chapter 3 in [2] or Chapter 25 in [17].

Let T̃ , given explicitly later in (B.12), be the tangent set associated with the nuisance
parameters, and let cl(·) denote the closure operator. It will be clear later on that the
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tangent set T̃ is in fact a linear subspace of L0
2(FY,X), the latter being the collection of

functions f : Rp×Rq → R that are square-integrable with respect to the law FY,X and that
obey the additional restriction

∫
Rp×Rq f(y,x)dFY,X(y,x) = 0. Then, following p. 369 in

[17], the efficient score is the (coordinate-wise) projection of the parametric score function
l̇s(·1, ·2; P) in (B.5) for the parameter of interest θ onto the orthogonal complement of the
closure cl(T̃ ) of T̃ . More explicitly, the efficient score is given later in (B.14).

To be technically precise, the notion of semiparametric efficiency introduced in Sec-
tion 4.1 depends on the tangent set, whose choice may not be absolute. For instance, the
discussion following Definition 2.8 in [16] says “In ‘practice’ one hunts for a pair of a tan-
gent set and estimator sequence such that the tangent set is ‘big enough’ and the estimator
sequence ‘efficient enough’ so that the latter is asymptotically efficient according to the
preceding definition.” (See also p. 76 to 77 in [2].) For this paper, the tangent set is T̃ in
(B.12) and the efficient estimator (sequence) is the one-step estimator given by (4.13).

Based on our brief discussion above, the remainder of Section B.2 is further divided
into the following subsections. First, in Section B.2.2, we derive cl(T̃ ), the closure of the
tangent set T̃ . Then, in Section B.2.3, we calculate the efficient score.

B.2.2. Tangent set. In what follows, we fix some ε > 0 small enough. We first construct
a parametric family of distributions {Pη, |η| < ε} indexed by η such that the path η → Pη
passes through P at η = 0. To do this, we first construct paths through the infinite-
dimensional nuisance parameters Fk, k ∈ [p] and FX. Such constructions are covered by
Example 1 in Section 3.2 in [2] or Example 25.16 in [17], and the specific case for the
marginals Fk, k ∈ [p] has been worked out below Remark 2.5 in [14].

First, for each k ∈ [p], we define the path through the univariate marginal Fk. We

fix some arbitrary hk ∈ L0,d
2 [0, 1], where L0,d

2 [0, 1] is defined in Section 1.5. Then, for

η ∈ (−ε, ε), define the univariate density fhkk,η as

fhkk,η(t) = (1 + η hk ◦ Fk(t)) fk(t), t ∈ R.(B.7)

Because hk is bounded (by the choice hk ∈ L0,d
2 [0, 1]), we can and will choose ε > 0 small

enough so that fhkk,η is non-negative. Furthermore it is easy to check that fhkk,η integrates to

one over R, and so it is indeed a density. We let F hkk,η be the absolutely continuous univariate

distribution function induced by the density fhkk,η. Then the path η → F hkk,η passes through
Fk at η = 0. Moreover, by Example 1 in Section 3.2 in [2], we have

∂

∂η
log fhkk,η|η=0 =

1

fk

∂

∂η
fhkk,η|η=0 = hk ◦ Fk,(B.8)

and hk ◦ Fk is the score function for the the parametric model {F hkk,η : |η| < ε} at η = 0.
Analogously, we define the path through FX as follows. We fix some arbitrary h ∈

L0
2(FX), where L0

2(FX) is defined in Section 1.5. Let the function Ψ : R → (0, 2) be
Ψ(t) = 2(1 + e−2t)−1. Then, for η ∈ (−ε, ε), define the density function fhX,η : Rq → R as

fhX,η(x) = ψ(η; fX, h)Ψ(ηh(x))fX(x), x ∈ Rq,(B.9)

where the function ψ(·; fX, h) =
{∫

Rq Ψ(·h(x))fX(x)dx
}−1

. Thus fhX,η integrates to one

over Rq, and so it is indeed a density. We let F hX,η be the absolutely continuous distribution
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function in Rq induced by the density fhX,η. Then the path η → F hX,η passes through FX

at η = 0. Moreover, again by Example 1 in Section 3.2 in [2], we have

∂

∂η
log fhX,η|η=0 = h,

and h is the score function for the parametric model {F hX,η : |η| < ε} at η = 0.

Note that, restricting to only differentiable hk in the construction of fhkk,η is due to
the technical reason that the perturbation parameter η will appear not only directly in
fhkk,η but also implicitly in its argument when evaluating the derivative of fhkk,η (see (D.1)

in Section D). Because L0,d
2 is dense in L0

2[0, 1], the closure of the collections of score

functions generated by F hkk,η over hk ∈ L0,d
2 and over hk ∈ L0

2[0, 1] are equal. Because in
the calculation of the efficient score we project the parametric score function for θ onto
the closure of the tangent set T̃ (which in turn is the linear span of the score functions for
the nuisance parameters), the aforementioned restriction will turn out to be irrelevant.

Now we are ready to construct the path η → Pη. We consider arbitrary but fixed

α ∈ Rd, β ∈ Rq×p, h = (h1, . . . , hp) ∈ (L0,d
2 [0, 1])p and h ∈ L0

2(FX). For η ∈ (−ε, ε),
we denote Pη ≡ P

θ+ηα,B+ηβ,F
h1
1,η ,...,F

hp
p,η ,F

h
X,η

(for the definition of the latter, see Section 2).

The collection {Pη, |η| < ε} forms a parametric submodel that passes through P = P0

at η = 0. We denote by pη(·1, ·2) the joint probability density function of (Y,X) under
the law Pη. Following Eq. (7.1) in [17], we say that the path η → Pη is differentiable in
quadratic mean at η = 0 with score function g : Rp × Rq → R if

lim
η→0

∫
Rp×Rq

(√
pη(y,x)−

√
p0(y,x)

η
− 1

2
g(y,x)

√
p0(y,x)

)2

dy dx = 0.(B.10)

By, e.g., Theorem 7.2 in [17], necessarily g ∈ L0
2(FY,X). Differentiability in quadratic mean

requires certain regularity conditions that we collected earlier in Assumption 4.1.
Analogous to Proposition 2.6 in [14] (that treats the ordinary Gaussian copula model),

the first part of Proposition B.1 below gives our result regarding the score function for the
path η → Pη in the regression setting. Just as Bk denotes the kth column of B, we let βk
denote the kth column of β. Then, introduce the function l̇α,β,h,h(·1, ·2) : Rp×Rq → R as

l̇α,β,h,h(y,x) = α> l̇c,s(F•(z);θ)−
∑
k∈[p]

β>k x
{
l̇c,mk (F•(z);θ) fk(zk) + (ḟk/fk)(zk)

}

+
∑
k∈[p]

{
hk ◦ Fk(zk) + l̇c,mk (F•(z);θ)

∫ Fk(zk)

0
hk (u) du

}
+ h(x),

z = (z1, . . . , zp)
> ≡ y −B>x.(B.11)

In brief, by the first part of Proposition B.1, l̇α,β,h,h ∈ L0
2(FY,X) is the score function along

the path η → Pη at η = 0. Clearly, l̇α,0,0,0 (obtained by fixing β = 0, h = 0, h = 0) is a
linear combination of the components of the parametric score function for θ (see (B.6)),
while l̇0,β,h,h (obtained by fixing α = 0) is the score function for the nuisance parameters.
Following the convention in p. 369 in [17], the collection of the score functions l̇0,β,h,h for



COVARIATE-ADJUSTED GAUSSIAN COPULAS: SUPPLEMENT 25

the nuisance parameters over β ∈ Rq×p, h = (h1, . . . , hp) ∈ (L0,d
2 [0, 1])p and h ∈ L0

2(FX)

is by definition the (nuisance) tangent set at P, which we denote by T̃ . Explicitly,

T̃ =
{
l̇0,β,h,h : β ∈ Rq×p,h = (h1, . . . , hp) ∈ (L0,d

2 [0, 1])p, h ∈ L0
2(FX)

}
.(B.12)

In our case, T̃ is a linear subspace of L0
2(FY,X).

To succinctly represent cl(T̃ ), introduce the following collection of functions:

T1 =
{
l̇α,0,0,0 : α ∈ Rd

}
=
{
f : f(y,x) = α>l̇c,s(F•(y −B>x);θ),α ∈ Rd

}
,(B.13)

T2 =

{
fβ : fβ(y,x) ≡ −

∑
k∈[p]

β>k (x− E[X])

×
{
l̇c,mk

(
F•(y −B>x);θ

)
fk(yk −B>k x) + (ḟk/fk)(yk −B>k x)

}
,β ∈ Rq×p

}
,

T3 =
{
l̇0,0,h,0 : h ∈ (L0

2[0, 1])p
}
, T4 =

{
l̇0,0,0,h : h ∈ L0

2(FX)
}
.

It is clear that T1, T2 and T4, consisting of different components of the score function
lα,β,h,h, are linear subspaces of L0

2(FY,X); that T2 is as well will be part of Proposition B.1.

Proposition B.1. Suppose that Assumption 4.1 holds. Let α ∈ Rd, β ∈ Rq×p, h =
(h1, . . . , hp) ∈ (L0,d

2 [0, 1])p and h ∈ L0
2(FX). Then, the path η → Pη is differentiable in

quadratic mean at η = 0 with score function l̇α,β,h,h, that is, (B.10) holds with g(y,x)
replaced by l̇α,β,h,h(y,x).

Furthermore, the Ta’s, a ∈ {1, 2, 3, 4}, are closed linear subspaces of L0
2(FY,X) and

are pairwise orthogonal (in L2(FY,X)) except between T1 and T3, that is, Ta ⊥ Tb for all
a, b ∈ {1, 2, 3, 4} and a 6= b with the exception of a = 1 and b = 3. Moreover, the closure
cl(T̃ ) of the (nuisance) tangent set T̃ at P is given by cl(T̃ ) = T2 + T3 + T4 .

Proof. The proof is deferred to Section B.3.

B.2.3. Efficient score. Having determined that cl(T̃ ) = T2 + T3 + T4 from Proposi-
tion B.1, we are now ready to calculate the efficient score. We recall that the efficient
score l̇∗θ(·1, ·2; P) : Rp ×Rq → Rd for the copula parameter θ at P is the (coordinate-wise)
projection of the parametric score function l̇s(·1, ·2; P) = (l̇sm(·1, ·2; P))dm=1 for θ onto the

orthogonal complement of cl(T̃ ). Hence,

l̇∗θ(·1, ·2; P) = l̇s(·1, ·2; P)−ΠFY,X

(
l̇s(·1, ·2; P)|T2 + T3 + T4

)
,(B.14)

where ΠFY,X
(·|T ) denotes the coordinate-wise projection operator from L2(FY,X) onto

T where T should be a closed linear subspace of L2(FY,X). The explicit expression of
l̇∗θ(·1, ·2; P) is stated in Proposition 4.1 which determines that l̇∗θ(·1, ·2; P) is closely related
to the efficient score l̇∗oθ (F•(·);θ) in the ordinary Gaussian copula model (with unknown
margins).
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B.3. Proof of Proposition B.1.

Proof. We first verify differentiability in quadratic mean and calculate the score func-
tion. We wish to apply Proposition 2.1.1 in [2] or Lemma 7.6 in [17]. We essentially need

to verify two conditions: first, p
1/2
η (y,x) is continuously differentiable in η for every (y,x),

and second, the information “matrix” (which is in fact a scalar) Iη for η, introduced below
in (B.17), is well-defined and is continuous at η = 0, that is,

Iη → I0.(B.15)

Here and in what follows all convergences are taken along the limit η → 0. (Note that,
on surface Lemma 7.6 in [17] requires continuity of Iη in η, but a closer inspection of its
proof reveals that (B.15) is precisely what’s required to the deduce the differentiability in
quadratic mean of η → Pη at η = 0.) The first condition is easily checked.

Next we briefly discuss the continuity of Iη, deferring some detailed calculations to
Section D. For notational brevity we denote θη = θ + ηα, Bη = B + ηβ and let Bk,η be
the kth column of Bη. Also let Fh

•,η : Rp → Rp be

Fh
•,η(z) =

(
F h11,η(z1), . . . , F

hp
p,η(zp)

)>
, z = (z1, . . . , zp)

>.

Let l(y,x; Pη) denote the logarithm of the joint density pη. Similar to (B.3),

l(y,x; Pη) = lc
(
Fh
•,η(y −B>η x);θη

)
+
∑
k∈[p]

log(fhkk,η(yk −B>k,ηx)) + log(fhX,η(x)), y = (y1, . . . , yp)
>,x ∈ Rq.(B.16)

Then the information “matrix” Iη is given by

Iη =

∫
Rp×Rq

{
∂

∂η
l(y,x; Pη)

}2

pη(y,x)dydx,(B.17)

where

∂

∂η
l(y,x; Pη) =

1

pη(y,x)

∂

∂η
pη(y,x)

is understood to be defined arbitrarily when pη(y,x) = 0. By calculations detailed in
Section D, when pη(y,x) 6= 0,

∂

∂η
l(y,x; Pη) = α> l̇c,s(Fh

•,η(y −B>η x);θη)

−
∑
k∈[p]

β>k x

{
l̇c,mk

(
Fh
•,η(y −B>η x);θη

)
fhkk,η(yk −B>k,ηx)

+ η ḣk ◦ Fk(yk −B>k,ηx)
f2k

fhkk,η
(yk −B>k,ηx)

+ (1 + η hk ◦ Fk(yk −B>k,ηx))
ḟk

fhkk,η
(yk −B>k,ηx)

}
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+
∑
k∈[p]

{
hk ◦ Fk

(
yk −B>k,ηx

) fk

fhkk,η
(yk −B>k,ηx)

+ l̇c,mk

(
Fh
•,η(y −B>η x);θη

) ∫ Fk(yk−B>k,ηx)

0
hk(u)du

}
+
{
ψ̇(η; fX, h)ψ(η; fX, h)−1 + Ψ(ηh(x)) exp(−2ηh(x))h(x)

}
,(B.18)

where ψ̇(·; fX, h) is the derivative of ψ(·; fX, h) as in (D.4).
Section D establishes that (B.15) holds. Thus, finally, by Proposition 2.1.1 in [2] or

Lemma 7.6 in [17], we conclude that the path η → Pη is differentiable in quadratic mean
at η = 0, and the score function is given by (∂/∂η)l(y,x; Pη) evaluated at η = 0. Evaluating
(B.18) at η = 0 yields that (B.11) is the score function.

Next we prove the second half of the proposition. We first establish that the Ta’s, a ∈
{1, 2, 3, 4} are all closed linear subspaces of L0

2(FY,X).
Because T1, T3 and T4 are simply different collections of score functions l̇α,β,h,h ∈

L0
2(FY,X), they are clearly linear subspaces of L0

2(FY,X). Next, T1 and T2 are both closed
because they are finite dimensional, and T4 is closed because L0

2(FX) is closed in L2(FX).
Thus we just need to show that T2 is a linear subspace of L0

2(FY,X), and that T3 is
closed. We first consider T3. For brevity of presentation, we introduce the score operator
as in Eq. (2.8) in [14]. Let L0

2(Cθ) be the collection of functions f : [0, 1]p → R that
are square-integrable with respect to the distribution Cθ and that obey the additional
restriction

∫
[0,1]p f(u)dCθ(u) = 0. For k ∈ [p], define the bounded linear operator Oθ,k :

L0
2[0, 1]→ L0

2(Cθ) (see Lemma 2.4 in [14]) by

Oθ,kh = [Oθ,kh](u) = h(uk) + l̇c,mk (u;θ)H(uk), u = (u1, . . . , up)
>, h ∈ L0

2[0, 1],

where H(u) =
∫ u
0 h(t)dt. Then, following the construction below Eq. (2.8) in [14], we

further define the bounded score operator Oθ : (L0
2[0, 1])p → L0

2(Cθ) by

Oθh =
∑
k∈[p]

Oθ,khk, h = (h1, . . . , hp) ∈ (L0
2[0, 1])p.

It is readily checked that in terms of the operator Oθh, T3 can be succinctly expressed as

T3 =
{
f : Rp × Rq → R, f(·1, ·2) = [Oθh](F•(·1 −B>·2)), h ∈ (L0

2[0, 1])p
}
.(B.19)

In addition, Remark 2.5 in [14] states that the range of (L0
2[0, 1])p under Oθ, which we

denote by

T3,Cθ
≡ {Oθh : h ∈ (L0

2[0, 1])p},(B.20)

is a closed subspace of L0
2(Cθ). Consider the map from T3,Cθ

to T3 that explicitly maps
Oθh to [Oθh](F•(·1 −B>·2)). From (B.20) and (B.19), clearly this map is a bijection. In
what follows, let U = F•(E) = F•(Y −B>X); then U has distribution function Cθ. It is
then easy to see that this map is also an isometry. Hence, T3 is a closed linear subspace of
L0
2(FY,X).
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Next we consider T2. By the facts that∫
[0,1]

ḟk
fk
◦ F←k (u)du =

∫
[ak,bk]

ḟk
fk
◦ F←k ◦ Fk(t)fk(t)dt

=

∫
[ak,bk]

ḟk(t)dt = f(bk)− f(ak) = 0

and, by (4.8),∥∥∥∥∥ ḟkfk ◦ F←k
∥∥∥∥∥
2

L2[0,1]

=

∫
[0,1]

{
ḟk
fk
◦ F←k (u)

}2

du =

∫
[ak,bk]

{
ḟk
fk
◦ F←k ◦ Fk(t)

}2

fk(t)dt

=

∫
[ak,bk]

ḟ2k
fk

(t)dt <∞,

we conclude that in fact (ḟk/fk) ◦ F←k ∈ L0
2[0, 1]. Then it is readily checked that, for

hfk ≡ (ḟk/fk) ◦ F←k ∈ L0
2[0, 1],

l̇c,mk (F•(z);θ) fk(zk) + (ḟk/fk)(zk)

= [Oθ,khfk ](u), u = F•(z), z = (z1, . . . , zp)
> ∈ Rp.(B.21)

Then we can write an arbitrary fβ ∈ T2 as

fβ(y,x) = l̇0,β,0,0(y,x) +
∑
k∈[p]

β>k E[X][Oθ,khfk ](F•(y −B>x))

= l̇0,β,0,0(y,x) + [Oθhβ](F•(y −B>x)),(B.22)

where we have introduced hβ = (β>1 E[X]hf1 , . . . ,β
>
p E[X]hfp)

> ∈ (L0
2[0, 1])p. Thus, be-

cause l̇0,β,0,0 ∈ L0
2(FY,X) and [Oθhβ](F•(·1 − B>·2)) ∈ T3 ⊂ L0

2(FY,X) (see (B.19)),
clearly fβ ∈ L0

2(FY,X), and we conclude that T2 is a closed linear subspace of L0
2(FY,X).

We have now shown that the Ta’s, a ∈ {1, 2, 3, 4} are all closed linear subspaces of
L0
2(FY,X).

Next we note another fact that will be useful later on. First, we let

T̃3 =
{
l̇0,0,h,0 : h ∈ (L0,d

2 [0, 1])p
}
.(B.23)

Given that T3 is closed and L0,d
2 [0, 1] is dense in L0

2[0, 1] (see the remark regarding L0,d
2 [0, 1]

in Section 1.5), it is straightforward to show that

T3 = cl(T̃3).(B.24)

Now we establish the pairwise orthogonality of the Ta’s.
We first show that T1 ⊥ T2, which is related to a remark in the second paragraph on

p. 1937 in [14]. Note that the inner product between two elements l1, l2 ∈ L2(FY,X) can
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be written as E[l1(Y,X)l2(Y,X)], where for the remainder of this proof the expectation
E is always taken under the law P. We take arbitrary l̇α,0,0,0 ∈ T1 and fβ ∈ T2. Then

E[l̇α,0,0,0(Y,X)fβ(Y,X)]

= −α>
∑
k∈[p]

E
[
lc,s(F•(Y −B>X);θ)β>k (X− E[X])

×
{
l̇c,mk

(
F•(Y −B>X);θ

)
fk(Yk −B>k X)− (ḟk/fk)(Yk −B>k X)

}]
= −α>

∑
k∈[p]

E
[
lc,s(F•(E);θ)β>k (X− E[X])

{
l̇c,mk (F•(E);θ) fk(Ek)− (ḟk/fk)(Ek)

}]
= −α>

∑
k∈[p]

E
[
β>k (X− E[X])

]
E
[
lc,s(U;θ)

{
l̇c,mk (U;θ) fk(Ek)− (ḟk/fk)(Ek)

}]
= 0.

Here the third step follows by the independence of X and U = F•(E), and the last
step follows because X − E[X] is centered. That T2 ⊥ T3 can be shown analogously (the
convenient representation (B.19) makes this easier to check).

Now we show that T1 ⊥ T4. We take arbitrary l̇α,0,0,0 ∈ T1 and l̇0,0,0,h ∈ T4. Then

E[l̇α,0,0,0(Y,X)l̇0,0,0,h(Y,X)] = E[α>l̇c,s(F•(Y −B>X);θ)h(X)]

= E[l̇α,0,0,0(Y,X)]E[l̇0,0,0,h(Y,X)] = 0.

Here the second step follows again by the independence of X and U = F•(Y−B>X), and
the last step follows because the score functions l̇α,0,0,0 and l̇0,0,0,h have mean zero. That
T3 ⊥ T4 can be shown analogously.

Now we show that T2 ⊥ T4. We take arbitrary fβ ∈ T2 and l̇0,0,0,h ∈ T4. Then, first by
(B.21), and then by hfk ∈ L0

2[0, 1] and so Oθ,khfk ∈ L0
2(Cθ) which in turn implies that

E
[
[Oθ,khfk ](U)

]
= 0,

E[fβ(Y,X)l̇0,0,0,h(Y,X)] = −
∑
k∈[p]

E
[
β>k (X− E[X])[Oθ,khfk ](U)h(X)

]
= −

∑
k∈[p]

β>k E
[
[Oθ,khfk ](U)

]
E[(X− E[X])h(X)] = 0.

We have now established all of the orthogonality statements.

At last we establish that cl(T̃ ) = T2 + T3 + T4. Let

T̃2 = {l̇0,β,0,0 : β ∈ Rq×p}.

Also recall T̃3 from (B.23). Then we can write (B.12) as T̃ = T̃2 + T̃3 + T4. By (B.24), we
have

T̃2 + cl(T̃3) + T4 = T̃2 + T3 + T4.(B.25)

By (B.22), for arbitrary l̇0,β,0,0 ∈ T̃2 we have l̇0,β,0,0 ∈ T2+T3, yielding T̃2 ⊂ T2+T3. Using
(B.22) in the opposite direction yields T2 ⊂ T̃2 + T3. Thus we conclude T2 + T3 = T̃2 + T3.
This together with (B.25) yield

T̃2 + cl(T̃3) + T4 = T2 + T3 + T4.(B.26)
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Next,

cl(T̃ ) = cl(T̃2 + T̃3 + T4) ⊂ cl(T̃2 + cl(T̃3) + T4)

= cl(T2 + T3 + T4) = T2 + T3 + T4 ⊂ cl(T̃2 + T̃3 + T4).(B.27)

Here, the third step follows by (B.26), the fourth step follows because, as T2, T3 and T4
are all closed and they are pairwise orthogonal, T2 + T3 + T4 is closed, and the last step
follows by (B.26) (in the opposite direction) and the fact that the left hand side of (B.26) is
clearly contained in cl(T̃2+T̃3+T4). Thus all inclusions in (B.27) must in fact be equalities.
Finally we conclude that cl(T̃ ) = T2 + T3 + T4.

B.4. Proof of Proposition 4.1.

Proof. By Proposition B.1, T2, T3 and T4 are pairwise orthogonal closed linear sub-
spaces in L0

2(FY,X). Recall that the projection onto a sum of two orthogonal linear sub-
spaces of a Hilbert space equals the sum of the projections onto the two individual sub-
spaces (e.g., Proposition 3.C in Appendix A.2 in [2]). Then, applying this fact twice on
(B.14) yields

l̇∗θ(·1, ·2; P) = l̇s(·1, ·2; P)−
∑

a∈{2,3,4}

ΠFY,X

(
l̇s(·1, ·2; P)|Ta

)
.(B.28)

Now, by l̇s(·1, ·2; P) given in (B.6) and T1 introduced in (B.13), T1 simply consists of all
linear combinations of the components of l̇s(·1, ·2; P). By the fact from Proposition B.1
that T1 ⊥ T2 and T1 ⊥ T4 and therefore the components of l̇s are all orthogonal to T2 and
T4, Equation (B.28) simplifies to

l̇∗θ(·1, ·2; P) = l̇s(·1, ·2; P)−ΠFY,X

(
l̇s(·1, ·2; P)|T3

)
.(B.29)

To calculate the right hand side of (B.29), we again invoke an isometry argument
between certain subspaces of L0

2(Cθ) and L0
2(FY,X), as we have already done in the proof

of Proposition B.1. Analogous to (B.20), we define

T1,Cθ
=
{
f : [0, 1]p → R, f(·) = α>l̇c,s(·;θ),α ∈ Rd

}
(B.30)

where we recall l̇c,s given in (B.4). Now, Proposition 2.6 in [14] states that T1,Cθ
and T3,Cθ

are closed subspaces of L0
2(Cθ), and our Proposition B.1 states that T1, T3 are closed

subspaces of L0
2(FY,X). Moreover U = F•(Y−B>X) = F•(E) is distributed according to

Cθ. Comparing the representations (B.30), (B.20), (B.13) and (B.19) for T1,Cθ
, T3,Cθ

(as
subspaces of L0

2(Cθ)), T1, T3 (as subspaces of L0
2(FY,X)) respectively, we again see that

the bijection f → f(F•(·1 −B>·2)) from T1,Cθ
+ T3,Cθ

to T1 + T3 is an isometry.
Next, from (B.30), each of the d coordinates of l̇c,s(·;θ) belongs to T1,Cθ

. Let ΠCθ
(·|T3,Cθ

)
be the coordinate-wise projection operator from L2(Cθ) onto the closed linear subspace
T3,Cθ

. Then, Proposition 2.8 in [14] shows that

l̇c,s(·;θ)−ΠCθ
(l̇c,s(·;θ)|T3,Cθ

) = l̇∗oθ (·;θ).(B.31)
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For us, each of the d coordinates of l̇s(·1, ·2; P) belongs to T1. Thus, by the isometry between
T1,Cθ

+ T3,Cθ
and T1 + T3, analogous to (B.31), we conclude that

l̇s(·1, ·2; P)−ΠFY,X
(l̇s(·1, ·2; P)|T3) = l̇∗oθ (F•(·1 −B>·2);θ).

Finally, (4.10) follows from (B.29) and the above equation.
By (4.10), the efficient information matrix I∗(θ) from (4.1) can now be written as

I∗(θ) = E
[
(l̇∗θ l̇∗>θ )(Y,X; P)

]
= E

[
(l̇∗oθ l̇∗o>θ )(F•(Y −B>X);θ)

]
= E

[
(l̇∗oθ l̇∗o>θ )(U;θ)

]
,

and it corresponds exactly to the quantity I∗(θ) introduced at the bottom of p. 1920 and
explicitly given in (2.20) in [14]. Thus (4.11) follows.

B.5. Proof of Proposition 4.2.

Proof. All probabilities in this proof are stated under the law P. We show that (4.12),
understood as having θ̂n replaced by θ̂OSE

n , holds. We fix arbitrarily small ε > 0. Then,
for any constant B > 0,

P

∣∣∣∣∣∣√n(θ̂OSE
n − θ)− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)


∣∣∣∣∣∣ > ε


≤ P

(√
n‖θ̃n − θ‖ > B

)
+

∑
θn:θn∈n−1/2Zd,√
n‖θn−θ‖≤B

P

∣∣∣∣∣∣√n(θ̂OSE
n − θ)− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)


∣∣∣∣∣∣ > ε, θ̃n = θn

 .

By Assumption 4.2, the first term on the right hand side above can be made arbitrarily
small by enlarging B. Then, for this fixed, large enough B, the number of terms in the
summation in the second term on the right hand side above is bounded from above by
a finite constant uniformly over n ≥ 1. Thus, to establish (4.12), it suffices to show that
each term in the summation is o(1). For a single term in the summation we have

P

∣∣∣∣∣∣√n(θ̂OSE
n − θ)− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)


∣∣∣∣∣∣ > ε, θ̃n = θn


≤ P

(∣∣∣∣∣√n(θn − θ) + I∗−1(θn)

 φn√
n

∑
i∈[n]

l̇∗oθ (F̂ r
n,1(Êi,1), . . . , F̂

r
n,p(Êi,p);θn)


− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)


∣∣∣∣∣ > ε

)
.
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By the above inequality, to establish (4.12), it now suffices to show that, for each deter-
ministic sequence θn = θ +O(n−1/2), we have

I∗−1(θn)

 φn√
n

∑
i∈[n]

l̇∗oθ (F̂ r
n,1(Êi,1), . . . , F̂

r
n,p(Êi,p);θn)


− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)

+
√
n(θn − θ) = op(1).(B.32)

We start from the first term on the left hand side of (B.32). Define the matrices

Am(θ′) =
1

2
{Dθ′(gm(θ′))− Ṡm(θ′)}, θ′ ∈ Θ,m ∈ [d].(B.33)

Note that in terms of Am,n ≡ Am(θn), by the observation made in Remark 3, the first
term on the left hand side of (B.32) can be written as

√
nI∗−1(θn)

 tr(A1,nR̂n)
...

tr(Ad,nR̂n)

 =
√
nI∗−1(θn)

 tr(A1,nRn)
...

tr(Ad,nRn)



+
√
nI∗−1(θn)

 tr(A1,n(R̂n −Rn))
...

tr(Ad,n(R̂n −Rn))

 .

All components of I∗−1(θ) and Am(θ) are continuous in θ (see (4.11) and (B.33) respec-
tively) and hence all components of I∗−1(θn) and Am,n are Op(1). Together with (3.29)
in Theorem 3.4, we conclude that the second term on the right hand side above is op(1).
Thus, instead of (B.32), it now suffices to show that

√
nI∗−1(θn)

 tr(A1,nRn)
...

tr(Ad,nRn)

− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)


+
√
n(θn − θ) = op(1).(B.34)

Applying Remark 3 in the opposite direction to re-express Rn in (B.34) in terms of the
efficient score l̇∗oθ to conclude that (B.34) is equivalent to

I∗−1(θn)

 φn√
n

∑
i∈[n]

l̇∗oθ (F r
n,1(Ei,1), . . . , F

r
n,p(Ei,p);θn)


− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)

+
√
n(θn − θ) = op(1).(B.35)

The second and third terms on the left hand side of (B.35) are obvious Op(1), so we are
free to get rid of the φn factor in the first term to conclude that it suffices to show

I∗−1(θn)

 1√
n

∑
i∈[n]

l̇∗oθ (F r
n,1(Ei,1), . . . , F

r
n,p(Ei,p);θn)


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− I∗−1(θ)

 1√
n

∑
i∈[n]

l̇∗oθ (F•(Ei);θ)

+
√
n(θn − θ) = op(1).(B.36)

Thus we have reduced the problem in (B.32) involving the residual ranks to the one
in (B.36) involving the (unobservable) oracle ranks. In fact it is readily checked that
Equation (B.36) is identical to the second equation display on page 8 in the supplementary
material of [14] (their ˙̀∗

θ, Ui = (Ui1, . . . , Uip)
> and F̂n,k(Uik) correspond to our l̇∗oθ , F•(Ei)

and F r
n,k(Ei,k) respectively), and the latter is shown to hold there (under conditions (i) to

(iv) in Assumption 4.1). Thus we have finished the proof of the proposition.

C. Auxiliary lemmas.

Lemma C.1. For each k ∈ [p], we have

max
i∈[n]

max{|Φ←(F̂ r
n,k(Êi,k))|, |Φ←(F r

n,k(Ei,k))|} . log1/2(n).(C.1)

Proof. Note that

min
i∈[n]

min{F̂ r
n,k(Êi,k), F

r
n,k(Ei,k)} = 1/(n+ 1),

max
i∈[n]

max{F̂ r
n,k(Êi,k), F

r
n,k(Ei,k)} = n/(n+ 1).

This fact and (C.3) in Lemma C.3 then yield (C.1).

Lemma C.2. We have

d

du
Φ←(u) =

1

φ(Φ←(u))
and

d2

d2u
Φ←(u) =

Φ←(u)

φ2(Φ←(u))
.

Proof. The first equation is well known and follows easily from the derivative of an
inverse function. For the second equation, we first note that

d

du
φ(u) =

d

du

1√
2π
e−u

2/2 = −u 1√
2π
e−u

2/2 = −uφ(u).

Then we have

d2

d2u
Φ←(u) =

d

du

(
d

du
Φ←(u)

)
=

d

du

(
1

φ(Φ←(u))

)
= − 1

φ2(Φ←(u))

d

du
φ(Φ←(u))

= − 1

φ2(Φ←(u))
(−Φ←(u))φ(Φ←(u))

d

du
Φ←(u) =

Φ←(u)

φ2(Φ←(u))
.

Lemma C.3 (Bounds involving the standard normal quantile function).

sup
u∈(0,1)

u ∧ (1− u)

φ(Φ←(u))
≤ ∞,(C.2)

sup
u∈(0,1)

|Φ←(u)|√
2 log

(
1

2(u ∧ (1− u))

) ≤ 1.(C.3)
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Proof. Inequality (C.2) is well-known and follows by, e.g., Inequality (10) in [10].
Next, by Corollary 1 in [4], we have Φ(x) ≤ (1/2) exp(−x2/2), ∀x ≤ 0. Inequality (C.3)

then follows by inverting this inequality, and symmetry around u = 1/2.

For the next lemma, let FU
n be the empirical distribution function of independent

Unif(0, 1) random variables ξ1, . . . , ξn, and let αn ≡
√
n(FU

n −I) be the standard empirical
process. For 0 ≤ κ ≤ 1/2, let the function qκ : (0, 1)→ R be defined as qκ(t) = (t∧(1−t))κ.

Lemma C.4 (Theorem 4.2.1 of [5]). We have

sup
t∈(1/n,1−1/n)

∣∣∣∣ αn(t)

q1/2(t)

∣∣∣∣ = Op

(√
log log(n)

)
.(C.4)

Proof. The lemma is well known and is a straightforward consequence of Theo-
rem 4.2.2 in [5], by choosing the (EFKP upper-class) function w in that theorem to be

w(t) = q1/2(t)

√
log log

(
1

t ∧ (1− t)

)
,

and a few additional algebraic steps.

For the next lemma, let the function wn be the modulus of continuity of the standard
empirical process αn (where αn is introduced above Lemma C.4). Define the function

ψ(λ) =
2[(1 + λ){log(1 + λ)− 1}+ 1]

λ2
.

This is exactly the ψ function introduced in Section 11.1 in [15], and we refer the readers
to Proposition 1 in the same section for some of its properties.

Lemma C.5 (Modulus of continuity of empirical processes; see for instance Inequality 1
in Section 14.2 in [15]). Let 0 < a ≤ δ ≤ 1/2. Then for all λ > 0,

P(wn(a) ≥ λ
√
a) ≤ 20

aδ3
exp

(
−(1− δ)4λ

2

2
ψ

(
λ√
na

))
.

D. Detailed calculations for differentiability in quadratic mean. We first es-
tablish (∂/∂η)l(y,x; Pη) as in (B.18). Starting from (B.16), and using the expression (B.1)
for lc(·; ·), we have, when pη(y,x) 6= 0 (so necessarily yk −B>k,ηx ∈ Jk ≡ (ak, bk)),

∂

∂η
l(y,x; Pη) =

∂

∂η

{
− 1

2
log(det R(θη))

− 1

2
Φ←•

(
Fh
•,η(y −B>η x)

)>
(S(θη)− Ip)Φ

←
•

(
Fh
•,η(y −B>η x)

)
+
∑
k∈[p]

log
(
fhkk,η(yk −B>k,ηx)

)
+ log fhX,η(x)

}
= α> l̇c,s(Fh

•,η(y −B>η x);θη)
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+
∑
k∈[p]

l̇c,mk

(
Fh
•,η(y −B>η x);θη

){ ∂

∂η
F hkk,η

(
yk −B>k,ηx

)}

+
∑
k∈[p]

1

fhkk,η(yk −B>k,ηx)

{
∂

∂η
fhkk,η(yk −B>k,ηx)

}
+

1

fhX,η(x)

∂

∂η
fhX,η(x).(D.1)

We treat the remaining derivatives in (D.1) one by one. First, using differentiation under
the integral sign and (B.7) give

∂

∂η
F hkk,η

(
yk −B>k,ηx

)
=

∂

∂η

∫ yk−B>k,ηx

ak

fhkk,η(t)dt

= −β>k x fhkk,η(yk −B>k,ηx) +

∫ yk−B>k,ηx

ak

hk ◦ Fk(t) fk(t)dt

= −β>k x fhkk,η(yk −B>k,ηx) +

∫ Fk(yk−B>k,ηx)

0
hk(u)du.(D.2)

Next, first using (B.7) and then the differentiability of hk ◦ Fk (due to the restriction

hk ∈ L0,d
2 [0, 1]) give

∂

∂η
fhkk,η(yk −B>k,ηx)

=
∂

∂η

{
(1 + η hk ◦ Fk(yk −B>k,ηx)) fk(yk −B>k,ηx)

}
= hk ◦ Fk(yk −B>k,ηx) fk(yk −B>k,ηx)− β>k x η ḣk ◦ Fk(yk −B>k,ηx)

× f2k (yk −B>k,ηx)− β>k x(1 + η hk ◦ Fk(yk −B>k,ηx))ḟk(yk −B>k,ηx).(D.3)

Next, for the last term in (D.1), by differentiation under the integral sign,

∂

∂η
ψ(η; fX, h) = −ψ(η; fX, h)2

∫
R

Ψ2(ηh(x)) exp(−2ηh(x))h(x)fX(x)dx

≡ ψ̇(η; fX, h);(D.4)

then, dominated convergence theorem (DCT) yields the first equation on p. 53 in [2]:

lim
η→0

ψ̇(η; fX, h) =

∫
R
h(x)fX(x)dx = 0.

Then, from the above and (B.9), we have

∂

∂η
fhX,η(x) =

{
∂

∂η
ψ(η; fX, h)

}
Ψ(ηh(x))fX(x) + ψ(η; fX, h)

{
∂

∂η
Ψ(ηh(x))

}
fX(x)

= ψ̇(η; fX, h)Ψ(ηh(x))fX(x) + ψ(η; fX, h)Ψ2(ηh(x)) exp(−2ηh(x))h(x)fX(x)

=
{
ψ̇(η; fX, h)ψ(η; fX, h)−1

}
fhX,η(x) + Ψ(ηh(x)) exp(−2ηh(x))h(x)fhX,η(x).(D.5)

Plugging (D.2), (D.3) and (D.5) into (D.1) yields (B.18).
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Next we establish the continuity of Iη as in (B.15). To make the distributional depen-
dence on η more explicit, we shall denote the random triplet (Y,X,E) under the law Pη
by (Yη,Xη,Eη) and so in particular

Eη = (E1,η, . . . , Ep,η)
> = Yη −B>η Xη,(D.6)

while (Y,X,E) is reserved when this triplet follows the law P. Note that pη(·1, ·2) →
p0(·1, ·2) pointwise. Thus, by Scheffé’s lemma and the Portemanteau theorem (e.g., The-
orems 16.11 and 29.1 in [3] respectively), (Yη,Xη)  (Y,X). By Skorokhod representa-
tion theorem (e.g., Theorem 29.6 in [3]), we can and will choose (Yη,Xη), |η| < ε with
(Y0,X0) = (Y,X) so that the (Yη,Xη)’s are all defined on a common probability space

and (Yη,Xη)
a.s.−−→ (Y,X), so Eη

a.s.−−→ E as well.
For k ∈ [p], ` ∈ {1, 2, 3}, `′ ∈ {1, 2}, define the functions Bk,`(·1, ·2), Ck,`′(·1, ·2) : Rp ×

(−ε, ε)→ R, and also the function D(·1, ·2) : Rq × (−ε, ε)→ R as: for z = (z1, . . . , zp)
> ∈

Rp, x ∈ Rq and η ∈ (−ε, ε),

Bk,1(z, η) = l̇c,mk

(
Fh
•,η(z);θη

)
fhkk,η(zk), Bk,2(z, η) = η ḣk ◦ Fk(zk)

f2k

fhkk,η
(zk),

Bk,3(z, η) = (1 + η hk ◦ Fk(zk))
ḟk

fhkk,η
(zk),

Ck,1(z, η) = hk ◦ Fk (zk)
fk

fhkk,η
(zk), Ck,2(z, η) = l̇c,mk

(
Fh
•,η(z);θη

) ∫ Fk(zk)

0
hk(u)du,

D(x, η) = ψ̇(η; fX, h)ψ(η; fX, h)−1 + Ψ(ηh(x)) exp(−2ηh(x))h(x).

Then we can rewrite (B.18) as, when pη(y,x) 6= 0,

∂

∂η
l(y,x; Pη) = α> l̇c,s(Fh

•,η(y −B>η x);θη)−
∑
k∈[p]

β>k x
∑

`∈{1,2,3}

Bk,`(y −B>η x, η)

+
∑
k∈[p]

∑
`∈{1,2}

Ck,`(y −B>η x, η) +D(x, η).

Using the above expression and (D.6) in (B.17), we have

Iη = E

[{
∂

∂η
l(Yη,Xη; Pη)

}2
]

= E

[{
α> l̇c,s(Fh

•,η(Eη);θη)−
∑
k∈[p]

β>k Xη

∑
`∈{1,2,3}

Bk,`(Eη, η)

+
∑
k∈[p]

∑
`∈{1,2}

Ck,`(Eη, η) +D(Xη, η)
}2
]
.(D.7)

We first treat the squared terms (after expanding the square of the curly bracket) in

(D.7). We start with E
[{

α> l̇c,s(Fh
•,η(Eη);θη)

}2
]
. Without the scaling by α, this corre-

sponds exactly to the information matrix I(θη) for the parametric Gaussian copula model
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with known margins and copula correlation matrix R(θη). Then, following (2.2) to (2.4)
in [14], we have

E
[{

α> l̇c,s(Fh
•,η(Eη);θη)

}2
]

= α>E
[
l̇c,s(Fh

•,η(Eη);θη)l̇
c,s(Fh

•,η(Eη);θη)
>
]
α

= α>
1

2

[
tr
(
Ṡm(θη)R(θη)Ṡm′(θη)R(θη)

)]
m,m′∈[d]

α

→ α>
1

2

[
tr
(
Ṡm(θ)R(θ)Ṡm′(θ)R(θ)

)]
m,m′∈[d]

α

= E
[{

α> l̇c,s(F•(E);θ)
}2
]
<∞.

Here the convergence step follows by the continuities of R(·) and Ṡm(·).

Next we treat the terms E
[{

β>k XηBk,`(Eη, η)
}2]

, k ∈ [p], ` ∈ {1, 2, 3}. First,

E
[
XηX

>
η

]
=

∫
Rq

xx>fhX,η(x)dx

=

∫
Rq

xx>ψ(η; fX, h)Ψ(ηh(x))fX(x)dx→ E[XX>],

where the convergence step follows by the DCT. Next,

E
[
B2
k,1(Eη, η)

]
= E

[
l̇c,mk

(
Fh
•,η(Eη);θη

)2
fhkk,η(Ek,η)

2

]
= E

[
E
[
l̇c,mk

(
Fh
•,η(Eη);θη

)2 ∣∣∣Ek,η] fhkk,η(Ek,η)2]
= E

[
(S(θη))kk − 1

φ2(Φ←(F hkk,η(Ek,η)))
fhkk,η(Ek,η)

2

]

= {(S(θη))kk − 1}E

[
1

φ2(Φ←(F hkk,η(Ek,η)))
fhkk,η(Ek,η)

2

]
,(D.8)

where the third step follows by (2.9) in [14]. Now, with F hk←k,η denoting the left-continuous

inverse of F hkk,η, and using the facts that Ek,η = F hk←k,η ◦F
hk
k,η(Ek,η) with probability one and

F hkk,η(Ek,η) ∼ Unif(0, 1),

E

[
1

φ2(Φ←(F hkk,η(Ek,η)))
fhkk,η(Ek,η)

2

]
= E

[
1

φ2(Φ←(F hkk,η(Ek,η)))

{
fhkk,η ◦ F

hk←
k,η ◦ F hkk,η(Ek,η)

}2
]

=

∫
(0,1)

1

φ2(Φ←(u))

{
fhkk,η ◦ F

hk←
k,η (u)

}2
du.(D.9)

Under (vi) in Assumption 4.1, for all η small enough, both Fk and F hkk,η are strictly in-
creasing on Jk, and we can define a strictly increasing function v = vη : (0, 1) → (0, 1)
such that

F hk←k,η (u) = F←k ◦ v(u), ∀u ∈ (0, 1).(D.10)
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Now we divide the integral in (D.9) into two parts over the intervals (0, 1/2] and (1/2, 1)
respectively. We first consider the first interval. Using (B.7) and the boundedness of hk ∈
Ld
2 [0, 1], we can define a function cη : R→ R satisfying

F hkk,η(t) =
1

1 + cη(t)
Fk(t), ∀t ∈ R,(D.11)

and it is easy to show that ‖cη‖L∞ → 0 (as |η| → 0). Applying F hkk,η on both sides of (D.10)
and then invoking (D.11) on the right hand side yield

v(u) = {1 + cη ◦ F←k ◦ v(u)}u.(D.12)

Then, consecutively using (B.7) and the boundedness of hk, (D.10) and (D.12), the square
root of the numerator of the integrand in (D.9) is bounded by a constant multiple of

fk ◦ F hk←k,η (u) = fk ◦ F←k ◦ v(u) = fk ◦ F←k ({1 + cη ◦ F←k ◦ v(u)}u)

≤ sup
δ:|δ|≤‖cη‖L∞

fk ◦ F←k ((1 + δ)u) .

Then, continuing from (D.9), by the pointwise convergence of fhkk,η ◦F
hk←
k,η to fk ◦F←k , the

above inequality, condition (4.9) in Assumption 4.1 and the DCT,∫
(0,1/2]

1

φ2(Φ←(u))

{
fhkk,η ◦ F

hk←
k,η (u)

}2
du

→
∫
(0,1/2]

1

φ2(Φ←(u))
{fk ◦ F←k (u)}2 du <∞.(D.13)

Analogously, for the integral in (D.9) over the interval (1/2, 1),∫
(1/2,1)

1

φ2(Φ←(u))

{
fhkk,η ◦ F

hk←
k,η (u)

}2
du

→
∫
(1/2,1)

1

φ2(Φ←(u))
{fk ◦ F←k (u)}2 du <∞.(D.14)

Then, by (D.8), (D.9), (D.13), (D.14) and the continuity of S(·), we conclude that

E
[
B2
k,1(Eη, η)

]
→ E

[
B2
k,1(E, 0)

]
<∞.

Next,

E
[
B2
k,2(Eη, η)

]
= η2E

{ḣk ◦ Fk(Ek,η) f2k
fhkk,η

(Ek,η)

}2


= η2

∫
Jk

{
ḣk ◦ Fk(t)

f2k

fhkk,η
(t)

}2

fhkk,η(t)dt

= η2

∫
Jk

{
ḣk ◦ Fk(t)

}2 f4k

fhkk,η
(t)dt.
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By the boundedness of hk, from (B.7) it is easy to see that for all η small enough,
‖fk/fhkk,η‖L∞ < 2 (say). In addition, ‖ḣk ◦ Fk‖L∞ < ∞ because hk is continuously dif-
ferentiable. Thus, for all η small enough, the integrand in the integral above is bounded by
a constant multiple of f3k uniformly over Jk. By the boundedness of fk on Jk,

∫
Jk
f3k (t)dt .∫

Jk
fk(t)dt = 1 . Then, by the DCT, we conclude that

E
[
B2
k,2(Eη, η)

]
→ 0 = E

[
B2
k,2(E, 0)

]
.

Next,

E
[
B2
k,3(Eη, η)

]
= E

{(1 + η hk ◦ Fk(Ek,η))
ḟk

fhkk,η
(Ek,η)

}2


=

∫
Jk

{1 + η hk ◦ Fk(t)}2
ḟ2k

fhkk,η
(t)dt

→

∫
Jk

ḟ2k
fk

(t)dt = E
[
B2
k,3(E, 0)

]
<∞,

where the convergence step follows by the boundedness of hk, condition (4.8) in Assump-
tion 4.1 and the DCT. By the independence between Xη and Eη and the separate conver-

gences of E[XηX
>
η ] and E

[
B3
k,`(Eη, η)

]
, we conclude that, for all k ∈ [p] and ` ∈ {1, 2, 3},

E
[{

β>k XηBk,`(Eη, η)
}2
]
→ E

[{
β>k XBk,`(E, 0)

}2
]
<∞.

Next we treat the terms E
[
C2
k,`(Eη, η)

]
, k ∈ [p], ` ∈ {1, 2}. First, by the DCT,

E
[
C2
k,1(Eη, η)

]
= E

{hk ◦ Fk(Ek,η) fk
fhkk,η

(Ek,η)

}2


=

∫
Jk

{hk ◦ Fk(t)}2
f2k

fhkk,η
(t)dt

→ ‖h‖2L2[0,1]
= E

[
C2
k,1(E, 0)

]
<∞.

Next, using a derivation similar to that of (D.8), the facts that F hkk,η(Ek,η) ∼ Unif(0, 1)

and Fk ◦ F hk←k,η (u) = v(u) (for v(u) in (D.10)), we have

E
[
C2
k,2(Eη, η)

]
= E

{l̇c,mk (
Fh
•,η(Eη);θη

) ∫ Fk(Ek,η)

0
hk(λ)dλ

}2


= E

 (S(θη))kk − 1

φ2(Φ←(F hkk,η(Ek,η)))

{∫ Fk(Ek,η)

0
hk(λ)dλ

}2

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= {(S(θη))kk − 1}
∫
(0,1)

1

φ2(Φ←(u))

{∫ Fk◦F
hk←
k,η (u)

0
hk(λ)dλ

}2

du

= {(S(θη))kk − 1} (Ck,2,1 + 2Ck,2,2,1 + 2Ck,2,2,2 + Ck,2,3) ,

where

Ck,2,1 =

∫
(0,1)

1

φ2(Φ←(u))

{∫ u

0
hk(λ)dλ

}2

du,

Ck,2,2,1 =

∫
(0,1/2]

1

φ2(Φ←(u))

{∫ u

0
hk(λ)dλ

}{∫ v(u)

u
hk(λ)dλ

}
du,

Ck,2,2,2 =

∫
(1/2,1)

1

φ2(Φ←(u))

{∫ u

0
hk(λ)dλ

}{∫ v(u)

u
hk(λ)dλ

}
du,

Ck,2,3 =

∫
(0,1)

1

φ2(Φ←(u))

{∫ v(u)

u
hk(λ)dλ

}2

du.

Following the two-sided Hardy’s inequality (e.g., Proposition A.1 on p. 1 in the supplemen-
tary material of [14]) and (C.2) in Lemma C.3, Ck,2,1 <∞. Next, using the same lemma,
the boundedness of hk, (D.12) to calculate u− v(u), and finally the fact that ‖cη‖L∞ → 0,
we have

|Ck,2,2,1| =

∣∣∣∣∣
∫
(0,1/2]

1

φ2(Φ←(u))

{∫ u

0
hk(λ)dλ

}{∫ v(u)

u
hk(λ)dλ

}
du

∣∣∣∣∣
.
∫
(0,1/2]

1

u2
u|cη ◦ F←k ◦ v(u)|u du→ 0.

Analogous to the above, Ck,2,2,2, Ck,2,3 → 0.
Collecting terms, and invoking the continuity of S(·), we conclude that

E
[
C2
k,2(Eη, η)

]
→ {(S(θ))kk − 1}

∫
(0,1)

1

φ2(Φ←(u))

{∫ u

0
hk(λ)dλ

}2

du

= E
[
C2
k,2(E, 0)

]
<∞.

Finally we treat the term E
[
D2(Xη, η)

]
. By the DCT (precisely, with the integrand

below bounded by a constant multiple of (1 ∨ h(x))2fX(x) which is integrable because
h ∈ L0

2(FX), and by the pointwise convergence of the integrand to h(x)2fX(x)),

E
[
D2(Xη, η)

]
=

∫
Rq

{
ψ̇(η; fX, h)ψ(η; fX, h)−1 + Ψ(ηh(x)) exp(−2ηh(x))h(x)

}2
fhX,η(x)dx

→
∫
Rq
h2(x)fX(x)dx = ‖h‖2L2(FX) <∞.(D.15)

We have checked that the expectations of all the squared terms in (D.7) are continuous
at η = 0, and so we only need to verify that the expectations of all the cross terms in
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(D.7) are continuous at η = 0 as well. We first discuss the cross terms involving the
random variable D(Xη, η). The expectations of these cross terms will all converge to their
expectations at η = 0 by the independence of Eη and Xη, an argument similar to (D.15)
to treat the terms involving Xη, and Pratt’s lemma to treat the remaining terms involving
Eη. For the last part involving Pratt’s lemma, we refer to a similar argument in the next
paragraph; we omit the details.

For all other cross terms (i.e., those not involving the random variable D(Xη, η)), note
that all functions α> l̇c,s(Fh

•,η(z);θη), Bk,`(z, η), Ck,`(z, η) are jointly continuous in z and η.

Then, the convergence (Xη,Eη)
a.s.−−→ (X,E) and the continuity of the functions involved

imply that the random variables α> l̇c,s(Fh
•,η(Eη);θη), Bk,`(Eη, η), Ck,`(Eη, η) converge

almost surely to their respective limits α> l̇c,s(F•(E);θ), Bk,`(E, 0), Ck,`(E, 0). Then, using
the inequality |ab| ≤ (a2 + b2)/2 to bound the cross terms by the squared terms, the
convergences of the expectations of the cross terms to their respective limits at η = 0
follows by Pratt’s lemma (e.g., p. 164 in [13]) and the already-established convergences
of the expectations of the squared terms. At last, we conclude that (B.15) regarding the
continuity of Iη holds.

E. Additional simulation results. In this section we present some additional sim-
ulation results that were left out from Section 5 in the maintext due to space constraint.

E.1. Additional results for Section 5.1. First, for q = 2 and q = 10, the particular B
generated are respectively

B =

(
0.0796 −1.0101 −2.0212
0.8551 −0.3415 −0.8337

)
(for q = 2),

B =



−0.6796 −0.8770 −2.0306
−0.9054 0.8499 −1.0389
−0.3481 1.3291 −0.0503

0.8612 −0.4938 −0.7351
2.2292 −0.0226 −1.8954
0.2748 1.4955 0.6093
−0.1586 −0.2656 −0.4795
−1.4194 0.5680 0.7511

0.8065 −0.3997 −0.9803
0.5926 −0.0021 −2.2374


(for q = 10).

Next, Figure 1 in the supplement presents the simulation results for highly correlated
covariates with ρ = 0.9.

E.2. Additional results for Section 5.2. First, for q = 2 and q = 10, the particular B
generated are respectively

B =

(
3.5784 −1.3499 0.7254 0.7147
2.7694 3.0349 −0.0631 −0.2050

)
(for q = 2),
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Fig 1. Simulation results for the unrestricted model under the exact same setting as Figure 2 in the main
text, except that now ρ = 0.9.
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B =



−0.1241 0.7269 0.3252 −0.1649
1.4897 −0.3034 −0.7549 0.6277
1.4090 0.2939 1.3703 1.0933
1.4172 −0.7873 −1.7115 1.1093
0.6715 0.8884 −0.1022 −0.8637
−1.2075 −1.1471 −0.2414 0.0774

0.7172 −1.0689 0.3192 −1.2141
1.6302 −0.8095 0.3129 −1.1135
0.4889 −2.9443 −0.8649 −0.0068
1.0347 1.4384 −0.0301 1.5326


(for q = 10).

Next, Figures 2 and 3 in the supplement present the simulation results for highly cor-
related covariates with ρ = 0.9.
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Fig 2. Simulation results for the Toeplitz model under the exact same setting as Figure 3 in the main text,
except that now ρ = 0.9.
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Fig 3. Simulation results for the Toeplitz model under the exact same setting as Figure 4 in the main text,
except that now ρ = 0.9.
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