
Semantic mapping extension for OpenStreetMap applied to indoor
robot navigation

Lakshadeep Naik1, Sebastian Blumenthal2, Nico Huebel3, Herman Bruyninckx3, and Erwin Prassler1

Abstract— In this work a graph-based, semantic mapping
approach for indoor robotics applications is presented, which
is extending OpenStreetMap (OSM) with robotic-specific, se-
mantic, topological, and geometrical information. Models are
introduced for basic indoor structures such as walls, doors,
corridors, elevators, etc. The architectural principles support
composition with additional domain and application-specific
knowledge. As an example, a model for an area is introduced,
and it is explained how this can be used in navigation. A key
advantage of the proposed graph-based map representation is
that it allows exploiting the hierarchical structure of the graphs.
Finally, the compatibility of the approach with existing, grid-
based motion planning algorithms is shown.

I. INTRODUCTION

Complex service robotic applications have to deal with
changing environments, e.g., doors can be open, closed, or
at any state in-between, pallets in a factory or warehouse
can be added, moved, or removed. Such changes lead to
vastly different sensory input for robots. Traditional maps
used in indoor robotics focus solely on the (static) spatial
representation of the environment [1] and leave dynamic
obstacles to motion planning. This makes it hard to cope with
changing environments. Therefore, a representation for maps
is required that models, not just static spatial information but
also semantic information that allows to reason about the
state of the environment like open or closed doors.

In addition, complex service robotic applications need to
deal with a large variety of tasks in different contexts like
hospitals, industrial environments, or elderly care facilities to
name just a few. This requires application and environment
specific knowledge.

Graphs fulfill both requirements. Domain-specific knowl-
edge can be encoded in separate graphs and then be com-
posed to an application by adding the application specific
relations between the different graphs.

There are also existing graph-based map representations,
which use vector data such as points, lines, polygons to
represent geometric details of an environment and add se-
mantic information to model different entities present in
an environment. While the models presented in this work
fit into any graph-based map representation, the indoor
representation [2] of OpenStreetMap (OSM) was selected
for the following reasons: a) it is open-source, b) the OSM
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data model conforms to a graph model and OSM contains
lots of data and semantic tags, c) it has been successfully
used for robotic outdoor applications [3]–[8], and d) it
has tools supporting the development and usage of the
models. Furthermore, it has an established community as
well as company-driven use cases for indoor mapping such
as OpenStationMaps. However, these maps are made for
humans, who can deal with incomplete information. Robots
require a more precise modelling of their environment, which
is presented in this work.

The remainder of the paper is structured as follows. The
following Section II is discussing related work. Section III
introduces the suggested models and Section IV explains
how the models can be applied to an indoor navigation
use case. Finally, Section V concludes the paper with a
discussion and explains planned additions to the models.

II. RELATED WORK

OpenStreetMap [9] is an open source, collaborative project
for mapping outdoor environments. Users create and edit ge-
ographic data. OpenStreetMap has already attracted interest
in outdoor robotic applications [3]–[8], [10]–[13]. Those ap-
proaches make use of existing OpenStreetMap data for robot
localisation, path planning and navigation. OpenStreetMap
is most commonly used for outdoor environments. However,
there exist some community effort for mapping indoor envi-
ronments. Simple Indoor Tagging [2] provides an elementary
model for mapping indoor entities and also extensions for
certain domains exit, e.g., OpenStationMap [14] extends the
Simple Indoor Tagging model to map train stations across
the world. Other efforts [15], [16] by the OpenStreetMap
community focus on the 3D visualisation of an indoor
environment.

Simple Indoor Tagging and OpenStationMap focus on
modelling indoor environments for human navigation. For
example, a door is represented as a single point. However,
a robot needs to know where exactly it is located, the
type of the door and how to open it. By modelling it as
a connection, it can also be used in path planning as an
entry/exit point to a room. Furthermore, by modelling its
perception features (like color) it can also be used to aid
localization. Finally, some actions, like waiting in front of
the door, should be avoided. Such semantic information is
currently not modelled in OSM. The models introduced in
this work are the first step to alleviate this. We propose a
semantic mapping approach, in which we model the static
properties of different entities typically found in indoor
environments. The model includes geometrical, topological,



perceptual, and behavioural properties, which are useful for
navigating a robot in a large indoor facility.

There is also existing work on semantic maps for indoor
applications. Kostavelis et al. [17] provides an overview of
available semantic mapping approaches for mobile robots.
They classify semantic maps based on how they are created,
if they contain a topological graph or not and how they make
deductions about environment elements. Most of the existing
semantic approaches such as [18]–[20] add semantic infor-
mation on top of a geometric map and builds a topological
graph based on detected semantic features and environment
geometry. Lang et al. [21] present formal definition for
semantic maps created by robots. They combine the clas-
sification of map entities with common-sense knowledge to
improve human understanding. All these approaches follow
a bottom-up approach to build the semantic map, while we
follow a top-down approach.

The work of [22]–[24] shows a multi-hierarchical ap-
proach for semantic mapping, which has similarity to our
approach. However, they extract semantic information from
the sensors whereas in our approach we exploit existing
semantic information in a map to improve navigation and
task execution. Therefore, our approach is complementary
to the work in these papers.

Fig. 1. Different type of information modelled in the proposed semantic
map.

III. PROPOSED MODEL

In this section, we present a model to represent different
entities, which are typically part of an indoor environment.
The models consist of entities and relations. The modelling
process is divided into three steps: A) Building a Domain
Specific Modelling identifies basic concepts in a given do-
main. B) Logical modelling involves identifying data types
for entity attributes, different constraints on them, removing
redundant attributes etc. It gives an abstract structure of the
data model, but it is not specific to a particular technology.
C) Choosing a technology involves representing the actual
design of the data model using a particular technology.

A. Domain Specific Modelling

Geometrical, topological, semantic, perceptual and be-
havioural properties of an indoor environment are modelled
as shown in Fig. 1. In digital maps, walls and doors are
typically represented as the lines and points respectively. This
information is sufficient for humans, but most of the exist-
ing navigation algorithms in robotics require very detailed
geometry. Hence we capture the detailed geometry of the
environment by representing walls and doors as polygons
instead of a polyline. We introduce topological nodes for
different indoor elements such as rooms, doors, corridors
as shown in Fig. 2 (a). Each entity accessible from another
entity is connected using a relation. These graphs can be
used to plan human understandable paths.

Further, there exist dedicated areas in an indoor environ-
ment where a robot has to respect specific motion constraints
such as non blocking areas in front of a door. We model such
information by introducing virtual areas inside the rooms and
corridors. Movement between these local areas is constrained
using local topological graphs as shown in Fig. 2 (b). The
lines represent the topological connections between the areas
(not the path of the robot). The semantics are similar to a
traffic system, where robots taking a right turn (red line) use
area C34 while robots going straight (dashed blue line) are
using area C33. This makes robot behaviour more predictable
to people, who are familiar with traffic semantics.

Perception features such as wall/door material properties,
objects like fire extinguishers, windows, etc., can be added
as entities and their properties. Then robots can use them for
feature-based navigation and task planning. We also model
the behavioural properties of the environment such as the
opening direction of the door, which is very important for
robot navigation.

(a) (b)

Fig. 2. Path planning at different levels of abstraction. a) shows corridors,
junctions and wall entities while b) further includes areas for navigation.

B. Logical modelling

In this subsection, we present logical models for different
static entities found in an indoor environment. The models
are represented using directed graphs. Arrows represent a
’has-a’ relationship. Fig. 3 describes different color conven-
tions used.



Fig. 3. Colour conventions used in the directed graphs.

1) Perception features: These are features present in an
indoor environment such as windows, fire extinguishers,
electric switches, etc., which robots can use as perception
features. They are represented as points. Their dimensions
and perception properties are modelled as attributes.

2) Door/Wall side: The two sides of doors or walls
are usually not explicitly modelled in a digital map as it’s
not essential for human navigation. However, perception
features like color can differ on two sides of a wall. It is
modelled as the relation between two ‘corner’ entities to
identify which side of the wall/door it represents can have
relations to other perception ‘feature’s. ‘Material’ properties
such as colour or texture are stored as attributes. Fig. 4
shows the logical data model of a door/wall side.

Fig. 4. Logical data model for a door/wall side.

3) Door/Wall: A wall is represented as a relation between
a wall and its sides. The geometry of a wall is modelled
as a polygon to capture its actual shape. This polygon
is spanned by the corner nodes, which are also used to
describe the sides. Fig. 5 shows the logical data model of a
wall. A door is represented analogously to a wall except that
it has additional behavioural properties such as an opening
direction, type (automatic/manual door), etc.

Fig. 5. Logical data model for a wall.

4) Area/Room/Corridor: An area/room/corridor is
represented by its geometry and identifier. The identifier
is human readable, e.g., a room number. The geometry
is modelled as a polygon. Furthermore, all these models
have relations to connections and areas. Connections link
neighboring areas and represent movement constraints

between them. Areas are task/domain dependent and impose
constraints, e.g., speed limits. They also can contain other
areas, meaning area models can be hierarchically composed
(see Fig. 1). Room/corridor models are area models with
additional semantics represented by additional attributes
and relations, such as the relations to doors and walls
forming them. Elevators/stairs are another type of areas
with additional semantics represented by additional motion
constraints and connections to areas on other floors. Fig. 6
shows the logical data model of an area/room/corridor entity.

Fig. 6. Logical data model for a room/corridor

5) Level/floor: The model of a level/floor has a human
understandable identifier in the form of an attribute and
three types of relationships: the rooms/corridors it contains,
additional walls not part of those rooms and corridors, as
well as the connections, which model the relations between
the rooms and corridors of the level and can be used for
path planning on a higher level of abstraction (see Fig. 1).
Fig. 7 shows the logical data model of a level/floor entity.

Fig. 7. Logical data model for a level/floor

6) Building: A building is modeled by its geometry
(represented as a polygon) and attributes, such as its
identifier, use and location, as well as the relations to the
levels/floors it contains and the stairs/elevators connecting
them. Fig. 8 shows the logical data model of a building.

Fig. 8. Logical data model for a building



C. Choosing a technology

OpenStreetMap (OSM) elements [25] are basic
components of OSM’s conceptual data model of the
physical world. They consist of nodes, ways, and relations.
A node represents a specific point on the earth’s surface
defined by its latitude and longitude. A way is an ordered
list of nodes that define a polyline. Ways are used to
represent linear features such as rivers and roads. Ways
can also represent the boundaries of areas (solid polygons)
such as buildings, rooms etc. A relation is a multi-purpose
data structure that documents a relationship between two or
more data elements (nodes, ways, and/or other relations).
Each element can optionally have a role within the relation.
All types of the data element (nodes, ways and relations)
can have tags. Tags describe the semantic meaning of
the particular element to which they are attached. Tags
are represented as key-value pairs. The proposed tagging
schema for robotic indoor mapping is available online1. We
also provide the OSM Bridge Library2, which offers an API
for querying data stored in the map and services for path
planning or occupancy grid map generation.

In the following an example for modelling a room, its
walls, and their sides using proposed OSM mapping schema
is presented. Fig. 9 shows an example for a room, which
is modeled as an OSM relation. This relation connects the
room’s geometry, topological representation in form of a
node (red node in Fig. 9 (a)), and its relations with its walls,
doors, and areas. Its geometry is represented as an OSM
closed way with room corner nodes as its members (blue
nodes in Fig. 9 (a)). The connections between the room and
other rooms/areas/corridors are represented by connecting its
topological node to the topological nodes of other rooms,
areas, or corridors using an OSM way (not shown in Fig. 9).
The ‘area’ and ‘door’ relations will be treated as empty in
this example. The ‘wall’ relation contains the unique IDs of
the four walls of the room.

(a) Room geometry (b) Room relation

Fig. 9. Room modelling using proposed OSM tagging schema

Each wall of the room is represented as a separate OSM
relation as shown in Fig. 10. The wall geometry, wall corners,
and its sides are a part of the wall relation. The geometry of

1https://github.com/ropod-project/indoor_osm_
robot_wm

2https://github.com/ropod-project/osm_bridge

the wall is represented as a closed way along the corners of
the wall (green nodes in Fig. 11 (a)).

(a) Wall geometry (b) Wall relation

Fig. 10. Wall modelling using proposed OSM tagging schema

Each side of the wall is further represented as an OSM
relation as shown in Fig. 11. It contains two types of nodes:
corners(green nodes) and features (pink nodes). Corners refer
to outer corners of a wall geometry and the ‘side’ relation
uses two of them to identify, which side of the wall it
represents. Often only two sides of a wall are visible, in
which case the two not-visible ‘side’-relations are ignored.
In general, or model supports (runtime) composition. So
unknown parts can be neglected and added only when they
become necessary or available. Features refer to any features
present on this side such as windows, fire extinguishers, or
door tags. Features are represented as OSM nodes with their
perception properties stored in its tags. Material properties
of this side of the wall are also stored as tags of the ‘side’-
relation.

(a) Side geometry (b) Side relation

Fig. 11. Side modelling using proposed OSM tagging schema

IV. RESULTS

The proposed approach uses a composable graph structure
based on an extension of OSM. Our main hypothesis is: it is
possible to use one map type for multiple robotic use cases.
In this section, the usefulness of the model is shown in the
context of robot navigation. The objective is to demonstrate:
a) the map can be used for geometric navigation as an in-
place replacement for grid maps and b) it can be used for
generating waypoints for a robot to follow. Both cases are
demonstrated in a qualitative manner.

A. Generation of grid maps

An OSM map for a basement in a hospital was created
based on architectural drawings. For this experiment the



existing tool chain for OSM was used. The map had to be
manually created with the help of an overlain architectural
drawing, since an import of architectural CAD files was not
available. An excerpt is depicted in Fig. 12.

An according grid map can be generated by rasterization of
the edges for the wall geometries and the corridors. The areas
circumscribed by the wall polygons are treated as occupied
(black) cells, while the corridors are free (white) cells. The
remaining cells are considered to be unknown. Fig. 13 shows
the output in comparison to an occupancy grid map generated
using GMapping [26] in the real environment. The results are
similar, but the SLAM map has a slightly bent corridor. Here,
a loop closure might have yielded more accurate results.
Both maps can be used in conjunction with AMCL [27] as
a localization method.

Beyond this comparison, the OSM offers more options to
generate a grid: a) it can generate maps with different cell
sizes, b) it can take the state of the environment (like open
or closed doors) into account when generating the grid maps
and, therefore, help to reason about sensor outputs, c) it does
not require to manually ”polish” some areas3 and d) it does
not contain objects occluding walls.

Fig. 12. Map created using proposed OSM model viewed in the JOSM
[28] editor. Blue areas are wall geometries. Red ones are for doors. The
green lines indicate the connections between corridors and rooms, while
the directed arrows indicate connections between areas at a lower level of
abstraction.

B. Way points generation

In the second experiment, we used the area features in
the graph-based map for generating intermediate waypoints
to a destination. Fig. 15 shows the difference between the
paths planned using a global planner [27] with an occupancy
grid map and the waypoints generated using navigation areas
in the form of ”traffic lanes” from our graph-based map.
The path between these waypoints is planned using local
motion planners. The global grid planner returns a smooth
and short path. The planner using the proposed map runs an

3Generated maps can contain spurious noise in the free cells, when the
laser scanner coverage was not good during the mapping process. Usually
in those regions planners fail to generate paths, unless they are manually
post-processed.

(a) Occupancy grid map generated
using GMapping

(b) Occupancy grid map generated
using OSM

Fig. 13. Comparison between occupancy grid map generated using
GMapping and the OSM based approach. Both maps are similar.

A* graph search on the topology of the areas (cf. Section III).
Fig. 14 shows an excerpt of such a graph. At the lower
level, it forms a directed graph between connected areas.
Such areas represent traffic lanes, junctions, waiting zones,
or other domain specific concepts. In the presented case this
allows to plan paths that will guide robots along the right
side of corridors. This a) allows better integration with multi-
robot applications and b) a more predictable behaviour for
humans: the robots behave like cars on streets. At the higher
level of the hierarchy, (undirected) connections between, e.g.,
rooms, corridors, and junctions are represented. This can
be exploited for coarse path planning that gets refined in
a second step.

Fig. 14. This is an excerpt of a graph-based map showing the hierarchy
in the areas that can be exploited for topological path planning.

C. Comparison to Simple Indoor Tagging model

In this work, we extended maps developed for humans for
robotic applications. Thus we conducted another experiment
to understand the number of details required for humans and
robots. We mapped the same part of the building first using
only the Simple Indoor Tagging (SIT) [2] model (used for
creating indoor OSM for humans) and then with our pro-
posed model. Table I provides a comparison of the number



(a) Path planned only using geomet-
ric information in grid map.

(b) Way-points generated using geo-
metric, topological and semantic in-
formation in OSM. Location of the
way-points ensure that robot path
sticks to the right side of corridors,
according to the modelled semantics
of ”traffic rules”.

Fig. 15. Comparison between path generated using grid maps and proposed
semantic map.

of OSM elements in indoor OSM for robots and humans.
There is an exponential rise in the number of OSM elements
required to create maps in a robotic context. The additional
flexibility and extended capabilities to generate grid maps for
interfacing with existing software or to enable topological
path planning, which takes semantic constraints like traffic
rules into account, comes at a high prize in the form
of drastically increased modelling efforts. Currently, these
efforts are done manually and only supported by the tools
offered by the OSM community. These tools were mostly
developed for outdoor use cases and do not provide good
support for indoor modelling. And while the (graph-based)
data model of OSM allows the composition with domain-
specific models, the tools lack support for some concepts like
(visualizing) hierarchy. A improvement could come from any
of the following three directions: a) improving the existing
tools or adoption of better suited tool, e.g., from architecture,
b) exploiting available digital building information (e.g.,
BIM [29]) to automatically generate semantic maps, c)
(semi-)automatically building semantic maps from sensor
information as suggested by several approaches mentioned
in Section II.

SIT Proposed model
No. of nodes 35 543
No. of ways 9 225

No. of relations 0 289

TABLE I
COMPARISON OF OSM DATA ELEMENTS IN INDOOR OSM FOR ROBOTS

AND HUMANS

V. CONCLUSIONS AND FUTURE WORK

In this work, we present a graph-based, semantic mapping
approach. OSM was chosen as a starting point for its
implementation, since it is a) based on a graph data structure,
b) it is successfully used for outdoor environment models and
c) has tool support for manual model creation as well as a
server infrastructure with tooling for querying information
from the map (like osmium and overpass). Further, it is
supported by a strong community. The infrastructure of OSM
allows sharing maps with others. This has the potential that
robots can share their maps with other robots. However, OSM
also has shortcomings.

First, the process of manually creating the map is despite
the available GIS tools tedious. In future, improving tool
support, exploiting available digital building information
(e.g. BIM [29]) and integration of bottom up methods
for generating semantic maps into a process for (semi-
)automatically generating such maps, will be a key factor
for the success of the proposed map model. Second, OSM
requires the use of georeferenced coordinates. This is rather
counterintuitive for indoor robotic applications. Using vector
tiles (represented with GeoJSON) might be a solution that is
in line with developments in the OSM community. GeoJSON
provides partial maps in a local coordinate system, which can
be hooked on any external reference system.

The proposed extension (cf. Section III) allows to generate
maps useful for localization based on AMCL. The generated
output is similar to a map generated with GMapping. While
this shows compatibility with existing systems, it does not
exploit the full potential of the proposed models. Querying
the graph model for specific features allows selective discov-
ery of task-relevant features in the immediate environment
together with plans (”affordances”) to help the robot’s own
planner. E.g. one can query for specific perception features
based on available sensors and the task like detecting a door
frame for the task of moving through a door or just distances
to the walls for moving along a hallway.

The introduced models already allow path planning, that
takes semantic constraints like traffic rules into account.
This enables a predictable motion behaviour for humans:
the robots move like cars on the streets. The composability
and hierarchy supported by graph-based models also allow
seamless navigation over multiple maps (indoor or outdoor).
We showed that the model is at least applicable in the
domain of navigation. Our future work will address the
impact of such a model on motion control: we plan to
add further semantics to the local areas, to refine motion
behaviour: e.g. slow down and indicate intention with turn
signals in front of a junction or no parking areas close to fire
doors. Investigations for such extensions for perception and
localization as well as semantics for motion control (like the
mentioned traffic rules) has already started.
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International Publishing, 2015, pp. 309–318.

[7] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard, “Localization
on openstreetmap data using a 3d laser scanner,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), May
2015, pp. 5260–5265.

[8] O. Vysotska and C. Stachniss, “Exploiting building information from
publicly available maps in graph-based slam,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Oct 2016, pp. 4511–4516.

[9] M. Haklay and P. Weber, “Openstreetmap: User-generated street
maps,” IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct 2008.

[10] B. Suger and W. Burgard, “Global outer-urban navigation with open-
streetmap,” 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1417–1422, 2017.

[11] G. Floros, B. van der Zander, and B. Leibe, “Openstreetslam: Global
vehicle localization using openstreetmaps,” in 2013 IEEE International
Conference on Robotics and Automation, May 2013, pp. 1054–1059.

[12] P. Fleischmann, T. Pfister, M. Oswald, and K. Berns, Using
OpenStreetMap for Autonomous Mobile Robot Navigation. Cham:
Springer International Publishing, 2017, pp. 883–895. [Online].
Available: https://doi.org/10.1007/978-3-319-48036-7 64

[21] D. Lang and D. Paulus, “Semantic maps for robotics,” in Proc. of the
Workshop Workshop on AI Robotics at ICRA, 2014.

[13] E. C. M. Pereira, D. A. Lima, and A. C. Victorino, “Autonomous
vehicle global navigation approach associating sensor based control
and digital maps,” in 2014 IEEE International Conference on Robotics
and Biomimetics (ROBIO 2014), Dec 2014, pp. 2404–2409.

[14] “Openstationmaps,” https://openstationmap.org, accessed: 2017-11-19.
[15] “Simple 3d buildings - openstreetmap,” http://wiki.openstreetmap.org/

wiki/Simple 3D buildings, accessed: 2017-11-19.
[16] “F3db - full 3d building - openstreetmap,” http://wiki.openstreetmap.

org/wiki/F3DB, accessed: 2017-11-19.
[17] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile

robotics tasks: A survey,” Robotics and Autonomous Systems, vol. 66,
pp. 86 – 103, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0921889014003030

[18] I. Kostavelis, K. Charalampous, A. Gasteratos, and J. K. Tsotsos,
“Robot navigation via spatial and temporal coherent semantic maps,”
Engineering Applications of Artificial Intelligence, vol. 48, pp. 173 –
187, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0952197615002596

[19] N. Blodow, L. C. Goron, Z. C. Marton, D. Pangercic, T. Rhr,
M. Tenorth, and M. Beetz, “Autonomous semantic mapping for robots
performing everyday manipulation tasks in kitchen environments,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sept 2011, pp. 4263–4270.

[20] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and
reasoning with heterogeneous modalities,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 3515–3522.

[22] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J.-A. Fernandez-
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