





# Neurostimulation: respected family of therapies

- Deep brain stimulation (DBS)
  - Symptoms of Parkinson's disease
  - Tremors
  - Experimental: addiction, anorexia,...
- Cochlear implants
  - Nerve stimulation in the inner ear
  - For helping the profoundly deaf
    - i.e. no functioning middle or outer ear
- Pain relief





# Near future applications needing higher resolution:

Advanced prosthetics

Electric medicine ('electroceuticals')

Artificial eyes

Communication with paralyzed

Neurostimulation in pathologic

brain cavity







# Common high electrode count implant types

- Current clinical: silicone / Ptlr
- Microwire arrays
- Silicon arrays
  - Utah style
  - Michigan style
  - Si + integrated electronics













# Scar formation: issue for long-term high-res interface

#### Mechanisms:

- Damage by insertion / relative movement of implant
- Blood-derived proteins activate inflammatory cells and stimulate the release of pro-inflammatory and cytotoxic cytokines-> Blood-brain barrier (BBB) breakdown.
- Release of pro-inflammatory and cytotoxic soluble => neuronal apoptosis.
  Cellular debris => further stimulate microglia activation and BBB instability
- Chronic inflammation and astrocytic encapsulation (glial scar)





# Strategies to reduce scar tissue formation

- Anti-inflammatory drugs
  - · Dexamethasone, Minocyclin,...
  - · Optional: In situ drug release
  - Not a long-term strategy



- Reducing protein adhesion
  - PLL-based coatings
- Bioactive coatings
  - Laminin, L1, IKVAV
  - Growth factor release



- Reducing mechanical damage
  - Avoiding firmly anchoring to skull
  - Reducing cross sections
  - Compliant materials
  - Resorbable materials



## Our approach: ultra-flexible electrode arrays

- 1 µm thick
- Need relatively stiff needle-like carrier to get into the brain
- Carrier dissolves, only bare minimum stays behind
- Total dissolution must take≤ 4 weeks [Turner 1999]



# Design & Fabrication

- Wafer-scale, lithography based
- Polyimide isolation
- Pt metallization
- Iridium oxide electrodes
- Dissolving PLGA microneedle as carrier





# Implemented process improvements







Reduced electrode impedance

#### In vivo tests in rats (4 months)







Stable impedance

 Stable evoked potential recording (representative signals from 3 electrodes)

# In vivo tests, part II

- Long term action potential recording possible (<> Si needles)
- After a 1 month incubation (needle dissolution)





# Histology



- NeuN stain (green=viable neuron)
- GFAP stain (red = astrocytes)
- Scar only 20% of original needle
- Neurons grown into area formerly occupied by dissolving needle





#### Thanks!

Special thanks to my co-authors:

Marta Bovet Carmona, Dries Kil, Marjolijn Deprez, Ester Tooten, Bart Nuttin, Aya Takeoka, Detlef Balschun, Michael Kraft, Robert Puers

And of course our sponsors:









