
EXPLOITING EFFICIENT REPRESENTATIONS IN LARGE-SCALE
TENSOR DECOMPOSITIONS∗

NICO VERVLIET† , OTTO DEBALS† , AND LIEVEN DE LATHAUWER†

Abstract. Decomposing tensors into simple terms is often an essential step to discover and
understand underlying processes or to compress data. However, storing the tensor and computing
its decomposition is challenging in a large-scale setting. Though, in many cases a tensor is struc-
tured, i.e., it can be represented using few parameters: a sparse tensor is determined by the positions
and values of its nonzeros, a polyadic decomposition by its factor matrices, a Tensor Train by its
core tensors, a Hankel tensor by its generating vector, etc. The complexity of tensor decomposition
algorithms can be reduced significantly in terms of time and memory if these efficient representa-
tions are exploited directly. Only few core operations such as norms and inner products need to
be specialized to achieve this, thereby avoiding the explicit construction of multiway arrays. To
improve the interpretability of tensor models, constraints are often imposed or multiple datasets are
fused through joint factorizations. While imposing these constraints prohibits the use of traditional
compression techniques, our framework allows constraints and compression, as well as other efficient
representations, to be handled trivially as the underlying optimization variables do not change. To
illustrate this, large-scale nonnegative tensor factorization is performed using MLSVD and Tensor
Train compression. We also show how vector and matrix data can be analyzed using tensorization
while keeping a vector or matrix complexity through the concept of implicit tensorization, as illus-
trated for Hankelization and Löwnerization. The concepts and numerical properties are extensively
investigated with experiments.

Key words. tensor decompositions, canonical polyadic decomposition, PARAFAC, Tucker,
block term decomposition, Hankel, Löwner, large-scale, nonnegative factorization, tensorization

AMS subject classifications. 15A69

1. Introduction. In signal processing and data analysis, tensors are often given
as multiway arrays of numerical values. Tensor decompositions are then used to dis-
cover patterns, separate signals, model behavior, cluster similar phenomena, detect
anomalies, predict missing data, etc. More concrete examples include intrusion detec-
tion in computer networks [67], analysis of food samples [6], crop classification using
hyperspectral imaging [95], direction of arrival estimation using a grid of antennas [74]
and modeling melting temperatures of alloys [93]. In these contexts, the canonical
polyadic decomposition (CPD) and the block term decomposition (BTD) are com-
mon. The components, e.g., the rank-1 terms in a CPD, recovered by these decompo-
sitions can often be interpreted directly thanks to relatively mild uniqueness results
compared to matrices. If prior knowledge is available, constraints such as nonnega-
tivity, orthogonality, sparsity, smoothness, Vandermonde structure, (block) Toeplitz
structure and so on can be imposed on the components to further improve their in-

∗Submitted to the editors on October 16, 2017.
Funding: Nico Vervliet is supported by an Aspirant Grant from the Research Foundation

— Flanders (FWO). Otto Debals is supported by a Ph.D. grant of the Agency for Innovation by
Science and Technology (IWT). Research furthermore supported by: (1) Flemish Government: FWO:
projects: G.0830.14N, G.0881.14N; (2) EU: The research leading to these results has received funding
from the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC Advanced Grant: BIOTENSORS (n◦ 339804). This paper reflects only the
authors’ views and the Union is not liable for any use that may be made of the contained information;
(3) KU Leuven Internal Funds C16/15/059.
†KU Leuven, Dept. of Electrical Engineering ESAT/STADIUS, Kasteelpark Arenberg 10, bus

2446, B-3001 Leuven, Belgium; and Group Science, Engineering and Technology, KU Leuven - Ku-
lak, E. Sabbelaan 53, 8500 Kortrijk, Belgium (Nico.Vervliet@kuleuven.be, Otto.Debals@gmail.com,
Lieven.DeLathauwer@kuleuven.be).

1

mailto:Nico.Vervliet@kuleuven.be
mailto:Otto.Debals@gmail.com
mailto:Lieven.DeLathauwer@kuleuven.be

terpretation in specific applications. When multiple datasets describing (partially)
the same phenomenon are available, coupling or data fusion allows more meaningful
patterns to be extracted. More examples can be found in several overview papers;
see, e.g., [14, 52, 75]. While most publications tackle a single type of structure or
constraint, we discuss a general framework in this paper.

Given as dense arrays of numerical values, the cost of storing and processing ten-
sors tends to increase quickly, especially for high orders: for an Nth-order tensor of
size I× I×· · ·× I the number of entries is IN . To deal with these large-scale tensors,
various techniques have emerged to handle their decompositions, e.g., by deliberately
sampling entries [92, 93], through randomization [89], through compression and/or
using parallelism, e.g., [13, 43, 55, 67, 76, 79], or by cross approximation [9, 56, 63, 66].
Such techniques rely on the fact that tensors are structured and can be represented
efficiently using fewer parameters than the number of entries in the dense array. This
is also our basic assumption in this paper. Moreover, we assume that structure is ex-
ploitable to reduce the computational and memory complexity from O (tensor entries)
to O (parameters). Let us consider three important types of efficient representation
that allow such exploitation: compact, exact representation, compression-based rep-
resentation and (implicit) tensorization.

For the first type, the tensor has an exact and known structure that can be
represented compactly. A sparse tensor, for instance, is represented compactly by
the indices and values of the nonzeros, or more efficiently using tensor extensions of
compressed sparse column or row formats [4, 77]. For sparse tensors, the efficient or
compact representation has already been exploited extensively; see, e.g., [4,13,41,42,
43, 44, 45, 53, 67, 77, 78, 79]. In some applications the tensor is given as a polyadic
decomposition; the factor matrices then form the compact representation [57,70].

Second, in the case of compression-based representations, the tensor is first approx-
imated using a decomposition that is easier or cheaper to compute and this approxi-
mation is then used to speed up subsequent computations. For example, in the exper-
iment in subsection 4.2 a rank-10 CPD is computed directly from a 1024×1024×1024
tensor which takes 39 s, while the computation time for the decomposition is reduced
to 0.6 s after a MLSVD compression step which takes 8 s. Common examples of this
type are a truncated MLSVD [22], a Hierarchical Tucker approximation [31, 35] or a
Tensor Train (TT) approximation [65]. MLSVD compression is used extensively as
a preprocessing step to speed up the computation of an unconstrained CPD, which
follows from the CANDELINC model [12, 50]: thanks to the orthogonal compression
the rank-1 structure is preserved and the CPD can be computed from the compressed
core tensor. To design effective updating algorithms, a previously computed compact
representation of the old data combined with a newly arrived slice is used in [85]. In
scientific computing, recompression or rounding are often used to lower the multilin-
ear rank of a PD or a Tucker decomposition [48,49,64,72,73], or to lower the TT rank
of a tensor given as a PD [65] or a TT approximation [37,60]. Other examples include
the approximation of a matrix or tensor by a greedy orthogonal rank-1 decomposi-
tion [51], a hierarchical Kronecker tensor product decomposition [34] or a two-level
rank-(r1, . . . , rd) decomposition [47].

The third type is implicit tensorization. Tensorization involves mapping vectors
or matrices to higher-order tensors [14, 25]. (Note that we use a much broader def-
inition of tensorization than, e.g., the quantization concept in scientific computing;
see, e.g., [32] and references therein.) By decomposing the obtained tensors, mild
uniqueness conditions of tensor decompositions can be leveraged, which are key in
a variety of applications such as blind source separation (BSS). However, for some

2

types of tensorization, the number of data points increases drastically. For example,
third-order Hankelization of a vector of length M results in a tensor with O

(
M3
)

entries [74], while Löwnerization [27] of K observations of mixed rational functions,
sampled in M points, may result in a tensor of dimensions M/2 × M/2 × K. In
both examples, the signal length M that can be handled is limited by the respective
cubic and quadratic dependence of the number of entries on M . To avoid this data
explosion, we propose for this type of problems the concept of implicit tensorization:
by operating on the underlying data directly, no explicit construction of the tensor
is required. This way, implicit tensorization alleviates computation and memory cost
if the data underlying the tensor has few parameters, and the structure of this rep-
resentation can be exploited easily, e.g., through fast Fourier transforms (FFT); see
section 3. Examples are Hankelization, Löwnerization, Toeplitzization, segmentation
with overlap and outer product structures [5, 25]. Via implicit tensorization, deter-
ministic BSS techniques become a viable alternative to classical methods such as ICA,
even for datasets of realistic sizes. This is illustrated in subsection 4.3.

Optimization-based techniques are often used in, e.g., signal processing, data
analysis and machine learning, to compute a low rank or a low multilinear rank
approximationM of a (structured) tensor T . For example, for a CPD,M = JA,B,CK
and the following minimization problem is solved for the factor matrices A,B and C:

min
A,B,C

1

2
||M− T ||2F .

Often additional constraints are imposed to facilitate the interpretation of the re-
sulting factor matrices, or multiple datasets are analyzed jointly. Many of these
constraints can be implemented via projection, active set methods, penalties or using
parametric constraints; see [90] for an overview. As these constraints are usually im-
posed on factor matrices, classical complexity reduction techniques such as MLSVD
compression [7] can often not be used as the constraint is not preserved. For example,
if A ∈ RI×R is constrained to be nonnegative and U is an orthogonal basis for A, then
A = UÂ ≥ 0 does not imply that Â ≥ 0. Hence, when using MLSVD compression,
one cannot decompose the core tensor and impose nonnegativity. As the original fac-
tors remain the optimization variables in our approach, constrained decompositions
can be computed using a compressed or structured tensor. An illustration in the case
of compression is given in Figure 1.1.

1.1. Contributions. We explain how efficient representations originating from
each of the three types of efficient representations (compact, exact representation,
compression-based representation and (implicit) tensorization) can be exploited in
optimization-based algorithms for the computation of a CPD, a decomposition into
multilinear rank-(Lr, Lr, 1) terms (LL1), an LMLRA or a general BTD. To be able
to exploit this efficient representation, the computation of the residual is avoided by
expanding the least squares loss function into inner products and norms. For example,
for the CPD we have

min
A,B,C

1

2
||M− T ||2F = min

A,B,C

1

2
||M||2 − 〈M, T 〉+

1

2
||T ||2 .(1.1)

Each of these norms and the inner product, as well as the structured matrix-matrix
products required for the gradient can be implemented such that the structure un-
derlying the efficient representation is exploited. A number of papers have already
proposed similar ideas for the computation of a CPD or LMLRA in the specific cases

3

min −

∥∥∥∥∥
∥∥∥∥∥

2

F

min
−

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥
2

F

compress

candelinc

structured

Figure 1.1. In contrast to the classical CANDELINC model, the optimization variables remain
the same in our framework when using compression. Instead of doing computations on a small core
tensor, which is possible because the orthogonal transformation preserves low rank structure, we
compute the decomposition using the compact Tucker model, factor matrices included. This requires
that all operations are formulated in terms of the model and are implemented efficiently. (Figure
adapted from [90].)

of sparse tensors [4, 13, 41, 42, 43, 44, 45, 53, 67, 77, 78, 79], or polyadic and Tucker for-
mats [96, 97, 98]. We illustrate that these ideas can be extended to more types of
structured tensors, including tensors resulting from tensorization techniques. More-
over, we show that, in contrast to previous results, both first and second-order op-
timization algorithms can be used and that constraints and joint factorizations are
handled trivially, which we illustrate in the experiments by using Gauss–Newton type
methods in combination with active set and parametric constraints. We also pay
attention to often neglected numerical accuracy issues. Finally, we show that our
approach enables enormous speedups for large-scale problems even when constraints
are imposed or when multiple datasets are jointly factorized, in contrast to the tra-
ditional compression approach using the CANDELINC model [7] which cannot be
used in these cases, as the constraints are not preserved by orthogonal compression.
We demonstrate this experimentally for large-scale nonnegative tensor factorization
using MLSVD and TT compression and for implicit Hankelization of signals with
up to 500 000 samples. Matlab implementations for the framework are available in
Tensorlab [94].

1.2. Outline. After discussing the notation in the remainder of this section,
section 2 explains how efficient representations of structured tensors can be exploited
by rewriting the Frobenius norm objective function and gradient for the CPD, LL1,
LMLRA and BTD. We give an overview of implementations of the four core operations
— norm, inner product, matricized tensor times Khatri–Rao product and matricized
tensor times Kronecker product — in section 3 for structured tensors given in the
polyadic, Tucker or TT format and derive implementations for Hankel and Löwner
tensors. Finally, numerical experiments are given in section 4. We discuss the influ-
ence of the condition number and illustrate the performance for compression-based
nonnegative CPD and blind separation of exponential polynomials through implicit
Hankelization. In a last experiment, we show how ECG signals can be analyzed
efficiently using Löwnerization.

1.3. Notation. Scalars, vectors, matrices and tensors are denoted by lower case,
e.g., a, bold lower case, e.g., a, bold upper case, e.g., A and calligraphic, e.g., T ,
letters, respectively. K denotes either R or C. Sets are indexed by superscripts within
parentheses, e.g., A(n), n = 1, . . . , N . A mode-n vector is the generalization of a

4

column (mode-1) and row (mode-2) vector and is defined by fixing all but the nth
index of an Nth-order tensor. The mode-n unfolding of a tensor T is denoted by T(n)

and has the mode-n vectors as its columns. The mode-(m,n) unfolding is defined
analogously and is denoted by T(m,n). The vectorization operator vec (T) stacks all
mode-1 vectors into a column vector.

A number of products are needed. The mode-n tensor-matrix product is denoted
by T ·n A. The Kronecker and Hadamard, or element-wise, product are denoted by ⊗
and ∗, respectively. The column-wise (row-wise) Khatri–Rao products between two
matrices, denoted by � and �T, respectively, are defined as the column-wise (row-
wise) Kronecker product. As we assume that the first index runs faster than the
second and so on, we define the following shorthand notations to simplify expressions:

⊗
n
≡

1

⊗
n=N

⊗
k 6=n
≡

1

⊗
k=N
k 6=n

,

where N is the order of the tensor and indices are traversed in reverse order. Sim-
ilar definitions are used for �, �T and ∗. To reduce the number of parenthe-
ses, we assume the matrix product takes precedence over ⊗, �, �T and ∗, e.g.,
AB�CD ≡ (AB)� (CD). The complex conjugate, transpose and conjugated trans-
pose are denoted by ·̄, ·T and ·H, respectively. The column-wise concatenation of vec-
tors a and b is written as x = [a; b] and is a shorthand for x =

[
aT bT

]T
. The inner

product between A and B is denoted by 〈A,B〉 = vec (B)
H

vec (A). The Frobenius
norm is denoted by ||·||. Re (·) returns the real part of a complex number. II is the
I× I identity matrix and 1I is a length I column vector with ones. Finally, Vf is the
row-wise ‘flipped’ version of V ∈ KI×J , i.e., Vf (i, :) = V(I − i+ 1, :) for i = 1, . . . , I.

2. Exploiting efficient representations. Many tensor decompositions used in
signal processing and data analysis can be computed by minimizing the least squares
(LS) error between the approximation and the given tensor T

min
z
f(z) with f(z) =

1

2
||M(z)− T ||2 ,(2.1)

in which M(z) is a tensor decomposition with variables z. Various algorithms have
been proposed to solve (2.1), including alternating least squares (ALS) [8,11,23,36,54],
nonlinear conjugate gradient (NCG) [1], quasi-Newton (qN) [82] and Gauss–Newton
(GN) [82, 83,84] algorithms. We first review the notation for common tensor decom-
positions in subsection 2.1. In subsection 2.2 we give an overview of LS optimization
theory for algorithms using gradients (first-order information) and Hessian approx-
imations (second-order information) and show that many common approximations
to the Hessian do not depend on the data T . Hence, second-order algorithms can
be used without additional changes in implementation compared to first-order algo-
rithms. Finally, the core operations required to reduce the computational complexity
are introduced in subsection 2.3 by rewriting f(z) similar to (1.1).

2.1. Overview of tensor decompositions. The techniques derived in this
paper focus on four main decompositions, which can be grouped into two families
from an optimization point-of-view: CPD-based and BTD-based algorithms. Note
that we use different families compared to the usual division between decompositions
computed using numerical linear algebra techniques such as singular value decomposi-
tions (SVD), e.g., MLSVD, TT and hierarchical Tucker, and decompositions usually

5

computed through optimization (CPD, LL1, BTD). Here, we focus mainly on no-
tation; for pointers to uniqueness results and applications, we refer to the overview
papers [14,32,33,52,75].

CPD-based algorithms. The (canonical) polyadic decomposition (CPD) writes
an Nth-order tensor as a (minimal) sum of R rank-1 terms, each of which is an outer

product, denoted by ⊗, of N nonzero factor vectors a
(n)
r :

MCPD(z) =

R∑
r=1

a(1)
r

⊗ · · · ⊗ a(N)
r :=

r
A(1), . . . ,A(N)

z
.

Each factor matrix A(n) contains a
(n)
r , r = 1, . . . , R, as its columns and the variables

z are the vectorized factor matrices A(n), i.e., z =
[
vec
(
A(1)

)
; . . . ; vec

(
A(N)

)]
. (The

underlying variables will always be denoted by z.) Depending on the field, the CPD is
also known as PARAFAC, CANDECOMP or tensor/separation rank decomposition.

The decomposition into multilinear rank-(Lr, Lr, 1) terms (LL1) is accommodated
within this family as it is often computed as a constrained CPD [8,23,82]:

MLL1(z) =

R∑
r=1

(ArB
T

r) ⊗ cr = JA,B,CPK ,

in which Ar ∈ KI1×Lr , Br ∈ KI2×Lr for r = 1, . . . , R, A =
[
A1 . . . AR

]
,

B =
[
B1 . . . BR

]
, C =

[
c1, . . . , cR

]
and P is a binary matrix replicating col-

umn cr Lr times, i.e., P = blockdiag(1T

L1
, . . . ,1T

LR
). Similar to the CPD, z =[

vec (A) ; vec (B) ; vec (C)
]
. The LL1 decomposition is similar to PARALIND [8].

CONFAC generalizes this decomposition by allowing an arbitrary full row rank ma-
trix P in every mode [17]. In [82], the decomposition into (rank-Lr ⊗ rank-1) terms
is discussed as one generalization of MLL1 to higher-order tensors.

BTD-based algorithms. The low-multilinear rank approximation (LMLRA)
or Tucker decomposition writes a tensor as a multilinear transformation of a core
tensor S ∈ KJ1×···×JN by the factor matrices U(n) ∈ KIn×Jn , n = 1, . . . , N :

MLMLRA(z) = S ·1 U(1) · · · ·N U(N).

An LMLRA can be computed using SVDs of tensors unfoldings, i.e., as a (truncated)
multilinear singular value decomposition (MLSVD) [21,88], by higher-order orthogo-
nal iteration [22] or through optimization [39,40,82,83].

The more general block term decomposition writes a tensor as a sum of R multi-
linear rank-(Jr1, Jr2, . . . , JrN) terms [18]:

MBTD(z) =

R∑
r=1

S(r) ·1 U(r,1) · · · ·N U(r,N).

The difference between MLMLRA and MBTD is the additional summation over r =
1, . . . , R. For simplicity of notation, we only use MLMLRA in the derivations in this
paper.

2.2. Optimization for least squares problems. In gradient-based optimiza-
tion, an initial guess for the variables z0 is iteratively refined as

zk = zk−1 + αkpk,

6

with the step direction pk found by solving

Hkpk = −gk,(2.2)

in which gk and Hk are the gradient and the Hessian (or an approximation) of f(z)
w.r.t. z in (2.1), respectively, assuming M(z) is continuous in z and independent of
z̄ [81]. The step size αk ensures sufficient decrease in the objective function value, e.g.,
through line search. Alternatively, z can be updated using trust-region approaches
or using plane search [58, 80, 82]. The linear system (2.2) can be solved using direct
(pseudo)inversion or using (preconditioned) conjugate gradients [58].

For the LS objective function (2.1), various Hessian approximations are used
depending on the algorithm, e.g.,

• Hk = I for gradient descent,
• Hk = Hk−1 +Uk−1 +Vk−1 with Uk−1 and Vk−1 symmetric rank-1 matrices

constructed using previous gradients and updates of z for BFGS,
• Hk = JH

kJk with Jk = ∂
∂zvec (M(z)− T)

∣∣
z=zk

= ∂
∂zvec (M(z))

∣∣
z=zk

for
Gauss–Newton,

• Hk = JH

kJk + λkI for Levenberg–Marquardt.
None of these approximations of the Hessian depend on the tensor T . Therefore, only
the objective function evaluation and the gradient computation require adaptation to
exploit structure in T . Note that this also holds for ALS algorithms.

2.3. Exploiting efficient representations. Due to the explicit construction
of the residual tensor F = M(z) − T in (2.1) and the computation of the gradient,
the per-iteration complexity is governed by the number of entries in the tensor, i.e.,
O (
∏

n In). To reduce the complexity, we assume T is a function of a limited number
of parameters. The parameters can, for instance, be the set of positions and values
of nonzero entries in a sparse tensor, the factor matrices of a CPD or the underlying
signal in a Hankelized tensor. To exploit the structure in T and to avoid the creation
of the residual tensor, we rewrite the objective function and gradients, similar to (1.1),
which reveals the core operations. More concretely, we have

f(z) =
1

2
||M(z)||2 − 〈M(z), T 〉+

1

2
||T ||2 ,(2.3)

which requires the efficient computation of the norms of the model and the tensor,
and the inner product between the model and the tensor. Similarly, the gradient

which is given by ḡ = JHvec (F) with J = ∂vec(F)
∂z the Jacobian matrix, is rewritten

by grouping the model and data dependent terms as

ḡ = JHvec (M(z))︸ ︷︷ ︸−JHvec (T)︸ ︷︷ ︸
= ḡM − ḡT .(2.4)

(In the derivations, we work with g rather than ḡ.) The core operations are the
mtkrprod for the CPD-based algorithms and the mtkronprod for the BTD-based
algorithms as shown below. Extensions to constrained and coupled constraints con-
clude this section.

CPD-based algorithms. Let us partition g according to the variables z, i.e.,
in the case M(z) is a CPD, we have

g =
[
vec
(
G(1)

)
; . . . ; vec

(
G(N)

)]
,

7

with

vec
(
G(n)

)
=

∂f

∂vec
(
A(n)

) n = 1, . . . , N.

By grouping the model and data dependent terms as in (2.4), the gradients become

G
(n)
M = Ā(n)

(
∗

k 6=n
A(k)HA(k)

)
,

G
(n)
T = T̄(n)

(
�
k 6=n

A(k)

)
.(2.5)

It is clear that G
(n)
M can be computed efficiently after forming the inner products

A(k)HA(k), k = 1, . . . , N . We therefore focus on the operation in (2.5) which involves
the common matricized tensor times Khatri–Rao product (mtkrprod):

T̄(n)

(
A(N)�A(N−1)� · · ·�A(n+1)�A(n−1)� · · ·�A(1)

)
.(mtkrprod)

In the case M(z) is an LL1 decomposition, A(3) = CP is used to form the inner
products and to compute the mtkrprod. From the chain rule follows that for n = 3,
G(n), which is now the derivative w.r.t. C, i.e., G(3) = ∂f

∂C , is given by

G
(3)
M = Ā(3)

(
∗

k 6=3
A(k)HA(k)

)
PT,

G
(3)
T = T̄(3)

(
�
k 6=3

A(k)

)
PT.

BTD-based algorithms. Similarly, in the caseM(z) is an LMLRA, the gradi-
ent is partitioned as

g =
[
vec
(
G(0)

)
; vec

(
G(1)

)
; . . . ; vec

(
G(N)

)]
,

with

vec
(
G(0)

)
=

∂f

∂vec (S)

vec
(
G(n)

)
=

∂f

∂vec
(
U(n)

) , n = 1, . . . , N.

More specifically, the gradient expressions for the core tensors are given by

G(0)M = S̄ ·1
(
U(1)TŪ(1)

)
· · · ·N

(
U(N)TŪ(N)

)
,

G(0)T = T̄ ·1 U(1)T · · · ·N U(N)T ,(2.6)

and the expressions for the factors matrices by

G
(n)
M = Ū(n)S̄(n)

(
⊗
k 6=n

U(k)HU(k)

)
ST

(n),

G
(n)
T = T̄(n)

(
⊗
k 6=n

U(k)

)
ST

(n),(2.7)

8

for n = 1, . . . , N . In the case of more general BTD with R terms, an additional

summation is introduced; see, e.g., [83]. As (2.6) can be written as vec
(
G(0)T

)T

=

vec (T)
H
(
⊗n U(n)

)
, both (2.6) and (2.7) require a vectorized or matricized tensor

times Kronecker product (mtkronprod):

T̄(n)

(
U(N)⊗U(N−1)⊗ · · ·⊗U(n+1)⊗U(n−1)⊗ · · ·⊗U(1)

)
.(mtkronprod)

Note that

vec
(
G(0)T

)T

= vec

(
U(1)TT̄(1)

(
⊗
k 6=1

U(k)

))
,

hence the mtkronprod from (2.7) can be reused, although this may lead to a higher
complexity if the construction of the I×RN−1 matrix

(
⊗k 6=n U(k)

)
ST

(n) can be avoided
such as, e.g., for the polyadic format.

Core operations, constraints and coupling. In order to reduce the complex-
ity from O (tensor entries) to O (parameters), structure exploiting implementations
of the Frobenius norm and inner products with CPD and BTD models are required
to evaluate the objective function (2.3) as well as implementations for the mtkr-
prod and the mtkronprod for CPD and BTD gradients, respectively. Examples
of such implementations are discussed in section 3. In contrast to approaches taken
in, e.g., [7, 15], the original factor matrices and core tensors remain the optimiza-
tion variables. Therefore, algorithms for coupling datasets, e.g., [2, 83], only require
new implementations of the core operations. Similarly, parametric constraints such
as nonnegativity, orthogonality or Vandermonde structure can be handled using the
chain rule as in [83], as well as other types of constraints involving projecting onto
a feasible set; see, e.g., [38, 46]. An overview of techniques for constrained optimiza-
tion for tensor decompositions is given in [90]. Concrete examples are given in the
experiments in section 4.

3. Operations on efficient representations. In the previous section, the
computation of the norm, inner product, mtkrprod and mtkronprod have been
identified as the four key operations to allow tensor decomposition algorithms to work
on structured tensors. In this section, we show that it is relatively straightforward to
exploit efficient representations and to avoid the construction of the full tensor. We
show the complexity is indeed governed by the number of parameters in the efficient
representation, rather than the number of entries in the tensor. Unless stated other-
wise, only third-order tensors T ∈ KI×I×I are considered to simplify notations and
complexity expressions. In this section, we first give an overview of results for the
polyadic (subsection 3.1) and Tucker (subsection 3.2) formats as efficient representa-
tions of T , since expressions involving one of these formats occur in all of the discussed
decompositions. Then, efficient implementations for the TT format (subsection 3.3)
are discussed and two implicit tensorizations — Hankelization (subsection 3.4) and
Löwnerization (subsection 3.5) — are derived. These and other implementations are
available in Tensorlab [94].

We derive expressions for the two computational families: the rank-R CPD
MCPD = JA,B,CK and the multilinear rank-(R,R,R) LMLRA MLMLRA = S ·1
U ·2 V ·3 W. The extension to a BTD introduces additional summations and is omit-
ted here; see [83]. For the mtkrprod and mtkronprod operations, only the case
n = 1 is shown, unless the expressions do not generalize trivially for n = 2, . . . , N .

9

Table 3.1 gives a summary of the computational per-iteration complexity when com-
puting a rank-R CPD and clearly illustrates independence on the total number of
entries IN .

Table 3.1
Computational per-iteration complexity when computing a rank-R CPD of an Nth-order I ×

· · · × I tensor given in its efficient representation. For Hankelization and Löwnerization, second-
order tensorization of K signals is assumed, resulting in a tensor of size I × I ×K. The number of
samples is M = 2I − 1 for Hankel and M = 2I for Löwner. The number of iterations depends on
the optimization algorithm used: when using second-order information, e.g., in GN, one typically
needs far fewer iterations than when using only first-order information or ALS.

Structure Function Complexity

Dense Objective O
(
RIN

)
Gradient O

(
NRIN

)
Polyadic Parameters NIF

Objective O
(
NIFR+NIR2

)
Gradient O

(
NIFR+NIR2

)
Tucker Parameters O

(
NIJ + JN

)
Objective O

(
NIJR+ JNR+NIR2

)
Gradient O

(
NIJR+ JNNR+NIR2

)
TT Parameters O

(
NIr2

)
Objective O

(
NIr2R+NIR2

)
Gradient O

(
NIr2R+NIR2

)
Hankel Parameters MK

Objective O
(
M(K + log2M)R+ (M +K)R2

)
Gradient O

(
M(K + log2M)R+ (M +K)R2

)
Löwner Parameters M(K + 1)

Objective O
(
M(K + log2M)R+ (M +K)R2

)
Gradient O

(
M(K + log2M)R+ (M +K)R2

)

3.1. Polyadic format. In the polyadic format, a third-order tensor T is given
by a set of factor matrices X, Y and Z with F columns, i.e., T = JX,Y,ZK. The
number of variables is therefore F

∑
n In instead of

∏
n In. Efficient implementations

in the case T admits a PD, with F not necessary equal to R, have been presented
in [4] (see Kruskal tensor) and are here extended to complex data:

||T ||2 = 1T (XHX ∗YHY ∗ ZHZ) 1,

〈MCPD, T 〉 = 1T (XHA ∗YHB ∗ ZHC) 1,

T̄(1)(C�B) = X̄ (YHB ∗ ZHC) .(3.1)

The complexity of these operations is governed by the construction of the inner prod-
ucts which require O

(
NIF 2

)
and O (NIFR) flop. Each mtkrprod in (3.1) required

for G
(n)
T can then be computed using O (IFR) flop.

When computing an LMLRA, the following inner product is required:

〈MLMLRA, T 〉 = trace (S ·1 XHU ·2 YHV ·3 ZHW) ,(3.2)

10

as well as the mtkronprod operation:

T̄(1)(W⊗V) = X̄ (WHZ�VHY)
H
,(3.3)

vec (T)
H

(W⊗V⊗U) = vec (JUHX,VHY,WHZK)H
.(3.4)

The computation of the trace in (3.2) requires only the diagonal entries of the LMLRA
and takes O

(
NIFR+ FRN

)
flop, including the construction of the inner products.

To compute the actual gradient G
(1)
T , the result of (3.3) is multiplied by ST

(1), requiring

the product (WHZ�VHY)
H

ST

(1) which is a transposed mtkrprod involving usually

small matrices. (In many practical applications the rank or multilinear rank is small
compared to the tensor dimensions.) This product can be computed efficiently using,
e.g., [69, 87] and requires O

(
NFRN +NIFR

)
flop. The complexity of (3.4) is the

same.

3.2. Tucker format. In the Tucker format a third-order tensor T = Q ·1 X ·2
Y ·3 Z is defined by a third-order core tensor Q ∈ KJ1×J2×J3 and the factor matrices
X ∈ KI×J1 , Y ∈ KI×J2 , Z ∈ KI×J3 . The Tucker format often follows from the
computation of an LMLRA or an MLSVD, e.g., as the result of a compression step
[7]. For the complexity analysis, we assume Jn = J for n = 1, . . . , N . We assume
that the factor matrices have orthonormal columns, which is always possible through
normalization.

The norm of T is computed in O
(
JN
)

operations as

||T ||2 = ||Q||2 .

The inner product with MCPD and mtkrprod is similar to (3.2) and (3.3):

〈MCPD, T 〉 = trace
(
Q̄ ·1 ATX̄ ·2 BTȲ ·3 CTZ̄

)
T̄(1)(C�B) = X̄Q̄(1) (ZHC�YHB)

and both require O
(
NIJR+ JNR

)
flop.

To compute an LMLRA, the following expressions for the inner product and the
mtkronprod in (2.7) can be used

〈MLMLRA, T 〉 = 〈S,Q ·1 UHX ·2 VHY ·3 WHZ〉 ,
T̄(1)(W⊗V) = X̄Q̄(1) (ZHW⊗YHV) .

Similarly, the mtkronprod in (2.6) is computed as

vec(T)
H
(W⊗V⊗U) = vec (Q ·1UHX ·2VHY ·3 WHZ)

H
.

All computations involving the LMLRA require O
(
NIJR+ JNR+ JRN

)
flop.

3.3. Tensor Train format. An Nth-order tensor T ∈ KI1×···×IN can be rep-
resented by N core matrices or tensors Q(n) ∈ Krn−1×In×rn serially linked by N − 1
indices such that

ti1,...,iN =

r1∑
s1=1

· · ·
rN−1∑

sN−1=1

q
(1)
1,i1,s1

q
(2)
s1,i2,s2

· · · q(N)
sN−1,iN ,1, or

T = tt
(
G(1), . . . ,G(N)

)
.

11

The parameters rn, n = 0, . . . , N , are the compression ranks with r0 = rN = 1.
This formulation is known as matrix product states [59] in computational chemistry
and as Tensor Trains (TT) [60] in scientific computing and can be computed using
SVDs, cross approximation or optimization [60, 61, 62, 66]. Assuming all dimensions
and compression ranks are equal, i.e., rn = r for n = 1, . . . , N − 1, the total number
of parameters is O

(
NIr2

)
.

The squared norm of T is given by ||T ||2 = |F(N)|, in which the scalar F(N) is
constructed using the recursive formula

F(0) = 1,

F(n) =
(
Q(n) ·1 F(n−1)

)H

(1,2)
Q

(n)
(1,2) n = 1, . . . , N.

This way ||T ||2 can be computed in O
(
NIr3

)
flop. Note that this recursive formula

is essentially identical to the formula derived in [66].
To compute inner products with MCPD and MLMLRA, we first introduce the

auxiliary core tensors Q̂(n). Let A(1) = A, A(2) = B and A(3) = C for MCPD, and
A(1) = U, A(2) = V and A(3) = W for MLMLRA, then Q̂(n) is computed using
O
(
Ir2R

)
flop as

Q̂(n) = Q̄(n) ·2 A(n)T .

The inner products are then computed as

〈MCPD, T 〉 = trace
(

tt(Q̂(1), Q̂(2), Q̂(3))
)
,(3.5)

〈MLMLRA, T 〉 =
〈

tt(Q̂(1), Q̂(2), Q̂(3)), S̄
〉
.(3.6)

As only the diagonal entries of tt(Q̂(1), Q̂(2), Q̂(3)) are required to compute the trace
in (3.5), the construction of the R× · · · ×R tensor can be avoided. The construction
of the diagonal entries in (3.5) and the inner product in (3.6) require O

(
NRr2

)
and

O
(
RNr2

)
flop, respectively.

To compute an mtkrprod, the auxiliary cores Q̂(n), n = 1, . . . , N are used

again. Define P(1) = tt(Q̄(1), Q̂(2), Q̂(3)) and p
(1)
r as the mode-1 vectors P(1)(:, r, r),

r = 1, . . . , R, then

T̄(1)(C�B) =
[
p
(1)
1 p

(1)
2 · · · p

(1)
R

]
.

The complexity of computing one mtkrprod is therefore O
(
Ir2R

)
, assuming auxil-

iary cores have been constructed.
Similarly, the mtkronprod can be formed efficiently as

T̄(1)(W⊗V) =
(

tt(Q̄(1), Q̂(2), Q̂(3))
)
(1)
.

To compute the gradient terms G
(n)
T in (2.7) the unfolding

(
tt(Q̄(1), Q̂(2), Q̂(3))

)
(1)

can be constructed and multiplied with ST

(1), which requires O
(
IRN + IRN−1r2

)
flop.

However, by exploiting the TT structure, the product can be computed directly in
O
(
rRN + r2RN−1 + Ir2R

)
flop. The precise implementation is out of the scope of

this paper. Finally, to compute G(0)T in O
(
r2RN

)
flop, we can use

vec (T)
H

(W⊗V⊗U) = vec
(

tt(Q̂(1), Q̂(2), Q̂(3))
)T

.

12

3.4. Implicit Hankelization. Hankelization of a (possibly complex) signal vec-

tor m ∈ KM of length M =
∑N

n=1 In−N+1 yields an I1×I2 matrix T or I1×· · ·×IN
tensor T with constant anti-diagonals (ti1i2 = mi1+i2−1) or constant anti-diagonal hy-
perplanes in the tensor (ti1...iN = mi1+···+iN−N+1) for N = 2 and N > 2, respectively;
see [25,68] for a signal processing background. In blind source separation (BSS), a set
of K vectors mk ∈ KM is often given [16,25]. Each vector mk can be Hankelized sep-
arately and the resulting matrices or tensors can be concatenated along the (N +1)th
mode. To simplify the expressions1, we only consider second-order Hankelization and
assume I1 = I2 = I. Let us stack the vectors mk as the columns of M. Each entry of
the I × I ×K tensor T is given by tijk = mi+j−1,k. As multiplying a Hankel matrix
by a vector corresponds to a convolution, fast Fourier transforms (FFT) can be used
to speed up computations [3,28]. Let F denote the M -point FFT and F−1 the inverse
M -point FFT. Only the last I rows of the inverse M -point FFT are retained when
the operator F−1 is used, i.e., F−1x =

[
0I×(M−I) II

]
(F−1x) for x ∈ CM .

The squared norm can be computed in O (MK) flop as

||T ||2 = wT(M ∗M)1K ,

in which w is a vector that contains the number of occurrences of each entry of M
in T and can be computed as w = convolution(1I ,1I). The inner products can be
computed as

〈MCPD, T 〉 =
〈
F−1(FA ∗ FB)CT,M

〉
,

〈MLMLRA, T 〉 =
〈
F−1

(
(FV�TFU)S(1,2)W

T
)
,M
〉
.

The computational cost is O (RM(K + log2M)) and O
(
(R+K)M log2M +MR3

)
flop for the inner product with MCPD and MLMLRA, respectively.

To compute the mtkrprod, the Hankel structure can be exploited as

T̄(1)(C�B) = F−1
(
FM̄C ∗ FBf

)
,

T̄(2)(C�A) = F−1
(
FM̄C ∗ FAf

)
,

T̄(3)(B�A) = MHF−1 (FA ∗ FB) ,

requiring O (RM(K + log2M)) flop each. (Af and Bf are the flipped versions of A
and B; see subsection 1.3.)

The mtkronprod in G
(n)
T in (2.7) can be computed in O

(
R2M log2M +RMK

)
flop as

T̄(1)(W⊗V) = F−1
(
FM̄W�TFVf

)
,

T̄(2)(W⊗U) = F−1
(
FM̄W�TFUf

)
,

T̄(3)(V⊗U) = MHF−1 (FV�TFU) .

The multiplication with ST

(n) in (2.7) additionally takes O
(
IR3

)
flop for n = 1, 2 and

O
(
KR3

)
flop for n = 3. However, by first computing the multiplication of the row-

wise Khatri–Rao product with ST

(n), i.e., before performing the inverse FFT, the total

cost can be reduced to O
(
RM(K + log2M) +MR3

)
. Finally, the mtkronprod in

all modes can be computed in O
(
R2M log2M +R3M +RMK

)
flop using

vec(T)H(W⊗V⊗U) = vec
(
(F−1(FV�TFU))TM̄W

)T
.

1More general implementations are available in Tensorlab 3.0 [94].

13

3.5. Implicit Löwnerization. Löwner matrices and tensors have attractive
properties for applications involving rational functions [25, 27]. Given a function
h : K → K evaluated at M points ti ∈ T = {t1, . . . , tM}, we partition T in two
disjoint point sets X = {x1, . . . , xI} and Y = {y1, . . . , yJ} such that T = X ∪ Y and
M = I + J . The entries in a Löwner matrix L ∈ KI×J are then given by

lij =
h(xi)− h(yj)

xi − yj
, i = 1, . . . , I, and j = 1, . . . , J.

While higher-order generalizations of the Löwner transformation exist [25, 26], we
focus on third-order tensors in which each kth frontal slice is a Löwner matrix con-
structed from a function hk evaluated in the points in X and Y . Let P ∈ KI×K and
Q ∈ KJ×K contain sampled function values at the points in X and Y , respectively,
i.e.,

pik = hk(xi), i = 1, . . . , I, and k = 1, . . . ,K,

qjk = hk(yj), j = 1, . . . , J, and k = 1, . . . ,K.

The tensor T ∈ KI×J×K is then fully determined by P, Q, X and Y . To simplify
complexity expressions, we take I = J . Each frontal slice Tk, k = 1, . . . ,K can be
written as

Tk = Diag(pk)M−MDiag(qk)

= pk �T M−M(qk �T IJ),

in which M is a Cauchy matrix with

mij =
1

xi − yj
, 1 ≤ i, j ≤ I.

By assuming that all points in X and Y are equidistant, M is also a Toeplitz matrix.
As multiplying a Toeplitz matrix with a vector x can be seen as a convolution of the
generating vector v =

[
m1,I ;m1,I−1; . . . ;m1,1;m2,1; . . . ;mI,1

]
∈ K2I−1 with x, it is

not necessary to construct M and the multiplication can be performed using FFTs.
Let F be the (2I−1)-point FFT with zero padding for shorter vectors, F−1 the inverse
(2I − 1)-point FFT and define F−1 to be the last I rows of the result of the inverse
FFT. For a matrix X ∈ KI×K , MX and MTX can then be computed as

MX = F−1 (Fv1T

K ∗ FX) ,(3.7)

MTX = F−1
(
Fvf1T

K ∗ FX
)
.(3.8)

If Fv is precomputed, the cost of this multiplication is O (2KI + 4KI log2 2I) flop.
We now define the different operations for Löwner tensors. As the unfoldings

T(n), n = 1, 2, 3, are given by

T(1) = P�T M−M (Q�T IJ) ,

T(2) = MT (P�T II)− (Q�T MT) ,

T(3) = PT (M�T II)−QT (IJ �T MT) ,

the expressions for the mtkrprod and mtkronprod can be derived easily using
multilinear algebra identities, e.g., (A�T B)(C�D) = AC ∗ BD. The mtkrprod

14

can be computed efficiently as

T̄(1) (C�B) = P̄C ∗ M̄B− M̄
(
Q̄C ∗B

)
,

T̄(2) (C�A) = MH
(
P̄C ∗A

)
− Q̄C ∗MHA,

T̄(3) (B�A) = PH
(
M̄B ∗A

)
−QH (B ∗MHA) .

As each mtkrprod requires two FFT-based multiplications with M and two regular
matrix-matrix multiplications with P and Q, the complexity is O (RI(K + log2 I)).
Similarly, the mtkronprod in (2.7) can be computed as

T̄(1) (W⊗V) = P̄W�T M̄V − M̄
(
Q̄W�T V

)
,

T̄(2) (W⊗U) = MH
(
P̄W�T U

)
− Q̄W�T MHU,

T̄(3) (V⊗U) = PH
(
M̄V�T U

)
−QH (V�T MHU) ,

in O
(
R2I +R2I log2 I +RKI

)
flop for n = 1, 2 and O

(
RI log2 I +R2IK

)
flop for

n = 3. This can be reduced further to O (RI log2 I +RKI) flop for n = 1, 2, by
exploiting the row-wise Khatri–Rao products when computing the subsequent mul-
tiplication with ST

(n), which costs O
(
IR3

)
. A similar improvement can be made for

n = 3. The mtkronprod in (2.6) is computed as

vec (T)
H

(W⊗V⊗U) = vec
(
UT
(
P̄W�T M̄V

)
− (MHU)

T
(
Q̄W�T V

))T
and requires O

(
RI log2 I +R3I

)
flop.

The squared Frobenius norm is computed as

||T ||2 = 1T

I (M ∗M)T
(
(P ∗P)1K

)
,

+ 1T

I (M ∗M)
(
(Q ∗Q)1K

)
,

− 2Re
(
1T

K((M ∗M)TP ∗Q)1K

)
.

As only K + 2 FFTs are required, the total computational cost is O (4IK log2 2I)
flop. To compute the inner products with MCPD and MLMLRA, the results from
mtkrprod and mtkronprod are reused:

〈MCPD, T 〉 =
〈
T̄(3) (B�A) , C̄

〉
,

〈MLMLRA, T 〉 =
〈
XTT̄(1) (W⊗V) , S̄(1)

〉
.

Apart from the cost of the mtkrprod and the mtkronprod, an additional cost of
O (KR) and O

(
RN
)

flop is incurred for 〈MCPD, T 〉 and 〈MLMLRA, T 〉, respectively.
In the case the points sets X or Y do not contain equidistant points, M no longer

admits a Toeplitz structure. By exploiting the low displacement rank of Cauchy ma-
trices, it is again not necessary to explicitly construct the tensor. The computational
complexity of the multiplications with M in (3.7) and (3.8) is slightly increased to
O
(
4KI log2

2 2I
)

flop [29,30].

4. Experiments. The following experiments illustrate the scalability of con-
strained CPD, LL1 and BTD algorithms that exploit efficient representations of ten-
sors and the effect on the accuracy of the results. The latter is discussed in sub-
section 4.1 for ill-conditioned problems and in subsection 4.3 for Hankelized signals.
The former is illustrated by computing the nonnegative CPD of a compressed tensor

15

in subsection 4.2 and for the unconstrained LL1 decomposition and the constrained
BTD in subsection 4.3. The CPD error ECPD is defined as

ECPD = max
n

∣∣∣∣∣∣A(n) − Â(n)
∣∣∣∣∣∣∣∣∣∣A(n)

∣∣∣∣ ,

in which A(n) (Â(n)) are the exact (estimated) factor matrices, n = 1, . . . , N , and
scaling and permutation indeterminacies are assumed to be resolved using the congru-
ence maximization heuristic; see cpderr [94]. All timing results are total computation
times for a complete run of the optimization algorithm, in contrast to the derived per-
iteration complexities in section 3. Tensorlab 3.0 [94] is used for all experiments in
combination with Matlab 2016b running on a dual socket 20 core Intel Xeon E5-2660
v2 machine with 128 GiB of RAM running CentOS 7.

4.1. Accuracy and conditioning. In this first experiment, we study the ac-
curacy of recovered factor matrices for the full tensor and its efficient representation.
More specifically, the CPD of a tensor with an exact rank-R structure is computed
while varying the relative condition number κ, which is defined as in [86]. Concretely,
a rank-5 tensor of size 25× 25× 25 is constructed using random factor matrices A(n),

n = 1, 2, 3. Each random factor vector a
(n)
r has norm one and a fixed angle α w.r.t. the

other factor vectors in the same factor matrix, i.e., for n = 1, 2, 3,
∣∣∣∣∣∣a(n)

r

∣∣∣∣∣∣ = 1 and

cosα = a
(n)T

r a
(n)
s , for r, s = 1, . . . , R, r 6= s. As α decreases, the rank-1 terms become

more collinear and the condition number κ increases. A rank-5 CPD is computed
from the full tensor and from the structured tensor in the polyadic format using inex-
act GN, implemented in cpd nls, starting from a perturbed exact solution, i.e., the
initial guesses for factor matrices U(n) are constructed as U(n) = A(n) + σ(n)N(n)

with N(n) a random matrix with entries drawn from the normal distribution and
σ(n) = 0.1 ·

∣∣∣∣A(n)
∣∣∣∣ / ∣∣∣∣N(n)

∣∣∣∣. Figure 4.1 shows the error ECPD on the recovered
factor matrices for α = π/2, . . . , π/180 (using a logarithmic scale). As expected, the
error increases when the condition number κ worsens. For well-conditioned problems,
ECPD is in the order of the machine precision ε ≈ 10−16 if the full tensor is used,
while ECPD is higher for the structured tensor. This can be explained by the fact
that changes smaller than

√
ε ≈ 10−8 cannot be distinguished when using the struc-

tured tensor, as the computation of the objective function (2.3) requires the difference
of squared, almost equal numbers. For very ill-conditioned problems, ECPD may be
undesirably high when using the structured tensor. If the tensor admits an exact
decomposition and if this exact decomposition is required up to machine precision,
using the full tensor may be necessary. However, the structured tensor can still be
used as an initialization to reduce the overall computational cost. Note that for very
large-scale tensors, the explicit construction of the tensor may not be feasible anyway,
and that in many applications, the condition number is limited as indicated by the
reference points in Figure 4.1.

4.2. Compression for nonnegative CPD. The following experiments illus-
trate how compression can be used to reduce the complexity of constrained tensor
decompositions. Here, we focus on the widely used nonnegative CPD, which is sped
up by first computing a truncated MLSVD or a TT approximation. Two approaches
to enforce the constraints are used: a projected Gauss–Newton approach generat-
ing updates such that the variables are always positive using active sets [46], and
using parameter-based constraints, i.e., each entry is the square of an underlying

16

1 102 104 106
10−16

10−12

10−8

10−4

N (0, 1) U(0, 1)
congr.
0.99

Increasing difficultyα = π
2

α = π
180

Full

Structured

Condition number κ

E
C
P
D

Figure 4.1. By reducing the angle α between the factor vectors, the condition of the CPD
worsens, resulting in a higher error ECPD. For very ill-conditioned problems, using the structured
tensor approach may result in an undesirably large error and a few additional iterations using the
full tensor may be required to improve the accuracy. Above the graph, three typical test setups are
indicated as references: factor entries drawn from a normal distribution N (0, 1), from a uniform
distribution U(0, 1) or a triple bottleneck setup such that the congruence between all factor vectors
is 0.99 in each mode. The latter is typically considered very difficult. Results are medians over 100
experiments. The shaded areas give the minimum and maximum errors over all experiments.

variable [71]. The former approach is implemented using a boundary constrained
Gauss–Newton algorithm nlsb gndl; the latter is implemented using the structured
data fusion framework [83] (sdf nls and struct nonneg).

26 28 210
10−1

100

101

102

×2

×8.8

×2
×1.6

I

T
im

e
(s

)

Unconstrained GN

26 28 210

×8.5

×1.6

I

Projected GN

26 28 210

×7.6

×1.7
Full

Compressed

I

Parametric GN

Figure 4.2. When using a compressed tensor instead of the full tensor, the computational
cost scales linearly in the tensor dimensions instead of cubically for a rank-10 nonnegative tensor
of size I × I × I. MLSVD compression with a core size of 10 × 10 × 10 is used. The increase for
the structured tensor is actually less than linear (×1.6 − ×1.7 instead of ×2), which is caused by
an improved multicore usage. The time required to compute the MLSVD increases cubically from
20 ms for I = 26 to 8 s for I = 210 and is not included. Medians over 100 experiments for each
parameter are reported. All algorithms stop if the relative change in function value is smaller than
10−7. The parametric GN approach has a larger overhead and is not preconditioned, explaining the
higher computation time.

For the first experiment, let T be a nonnegative rank-10 tensor of size I × I × I
constructed using random factor matrices A(n) with entries drawn from a uniform
distribution U(0, 1). Gaussian i.i.d. noise is added such that the signal-to-noise ratio

17

(SNR) is 20 dB. Using a randomized MLSVD (mlsvd rsi [91]) the tensor is com-
pressed such that the core G has size 10×10×10, i.e., T ≈

q
G; U(1),U(2),U(3)

y
. The

core tensor G and the factors U(n) are then used as structured format to compute
a rank-10 CPD. Random initial factor matrices are drawn from the same distribu-
tion as A(n). Figure 4.2 shows the time required to compute an unconstrained CPD
(hence relying on CPD uniqueness), a constrained CPD using projected GN (cpd nls

with nlsb gndl solver) and a constrained CPD using parametrization (sdf nls). In
the three cases, the computation time for the original tensor T rises cubically in the
dimension I, for I = 26, 27, . . . , 210, while the time rises linearly using the structured
approach. Hence, existing CPD algorithms can be scaled to handle large problems,
provided that the MLSVD approximation can be computed and the rank is modest.
Note that the compression time, which also rises cubically in I from 20 ms for I = 26

to 8 s for I = 210, is not included. The total time for compression and decomposition is
still (far) less than the time required for the decomposition of the full tensor, though.
Moreover, in many signal processing and data analysis applications, the compres-
sion cost can be amortized by reusing the representation for multiple initializations,
ranks or experiments. The compression cost can be reduced further by resorting to
parallelism and/or cross approximation techniques; see, e.g., [9, 56,63].

5 6 7 8 9
10−1

100

101

102

×1.2

×8.3

Full

Compressed

Order N

T
im

e
(s

)

Figure 4.3. Using a TT approximation instead of the full 10×10×· · ·×10 tensor removes the
exponential dependence on the order N when computing a rank-5 nonnegative CPD: from N = 8
to N = 9 the time increases with a factor 1.2 ≈ 9/8 using the TT approximation, while the time
increase is 8.3 ≈ 10 using the full tensor. The median TT compresssion time is not included and
increases exponentially from 20 ms for N = 5 to 114 s for N = 9. The results are medians over 100
experiments.

In a second experiment, the complexity in function of the order N of the tensor
is investigated. We compare the required time to compute a nonnegative CPD of an
Nth order rank-5 tensor with dimensions 10×· · ·×10 using the full tensor and its TT
approximation. The data is generated by constructing N random factor matrices with
entries drawn from the uniform distribution U(0, 1). Random Gaussian i.i.d. noise is
added to the generated tensor such that the SNR is 20 dB. The core tensors G(n)
corresponding to the TT approximation are computed using tt tensor from the TT
Toolbox [62], which we slightly adapted such that all compression ranks rn = 5,
n = 1, . . . , N − 1. Random factor matrices using the same distribution are used as
initialization. Nonnegativity is enforced using the projected GN approach (cpd nls

with nlsb gndl solver). The timing results in Figure 4.3 clearly show that using the
TT approximation avoids the curse of dimensionality as the time increases linearly
in N in contrast to the time required for the decomposition of the full tensor. Note

18

that we expect the time to increase with a factor 10 if the order increases by one,
but the actual time increase is lower as seen in Figure 4.3. This is due to the fact
that the decomposition problem becomes easier as relatively more data is available
per variable. This is also reflected in the accuracy: for N = 5 the median accuracy
ECPD = 4.7 · 10−3, while ECPD = 3.8 · 10−5 for N = 9.

4.3. Signal separation through Hankelization. We use the blind source
separation (BSS) setup

X = SMT + N(4.1)

to recover the unknown sources S and unknown mixing matrix M from the given
signals X. The additive Gaussian i.i.d. noise N ∈ RM×K in the experiments is
scaled such that a given SNR is attained. In general, M and S cannot be recovered
uniquely. To achieve uniqueness, the classical independent component analysis as-
sumes statistically independent sources, while deterministic BSS techniques assume
that the sources are, e.g., exponential polynomials or rational functions. In the case
when source signals are sums of exponential polynomials, these signals can be re-
covered using Hankelization [19]. Hankelization along the columns of X leads to a
third-order tensor T of size

⌊
M+1

2

⌋
×
⌈
M+1

2

⌉
×K in which b·c and d·e are the floor

and ceil operators, respectively. Hence, if the number of samples M doubles, the
number of entries in T quadruples. Given this fast increase, we show that exploiting
the structure is crucial to apply deterministic BSS methods to problems of realistic
sizes. If each of the R source signals is a sum of Qr exponential polynomials of degree
dqr, q = 1, . . . , Qr, T can be decomposed into a sum of R multilinear rank-(Lr, Lr, 1)

terms with Lr =
∑Qr

q=1(dqr + 1) [19], i.e.,

T =

R∑
r=1

(ArB
T

r) ⊗ cr

in which cr estimates the rth mixing vector M(:, r). The source signals can be esti-
mated up to scaling and permutation by dehankelizing ArB

T
r , e.g., by averaging over

the anti-diagonals. The example from [19] is slightly adapted in this experiment: two
sources are mixed using

M =

[
2 1
−1 1

]
,

i.e., K = R = 2. The sources are given by

s1(t) = 0.5 sin(6πt)

s2(t) = (4t2 − 2.8t) exp(−t),

hence L1 = 2 and L2 = 3. Estimating R and Lr is out of the scope of this paper; see,
e.g., [19]. The true R and Lr are therefore used. M equidistant samples are taken
between 0 s and 1 s.

In the first experiment, the SNR is varied for a fixed number of M = 501 sam-
ples and the relative error E on the mixing matrix is compared when using the full
Hankelized tensor or the implicitly Hankelized tensor, i.e., in the structured format.
Hankelization is performed using hankelize, which returns both the explicit and im-
plicit tensorization. The resulting tensors of size 251× 251× 2 are decomposed using

19

ll1 nls starting from a random initialization. From the factor matrices, the signals
are recovered using dehankelize, without constructing the full tensor. As shown
in Figure 4.4, when increasing the SNR from 0 dB to 300 dB, the error decreases at
the same rate for the explicit and the implicit tensorization until the SNR is 180 dB:
while the error continues to decrease for the explicit tensorization, the error stagnates
at E ≈ 10−10 for the implicit tensorization. This loss of accuracy is explained in
subsection 4.1 and only occurs for a very high SNR and in the case the sources are
exact sums of exponential polynomials. As illustrated in the following experiments,
a trade-off between computational cost and accuracy can be made. In the case of a
high SNR, the solution using the implicit tensorization can be used to initialize the
algorithm with the full tensor.

0 180 300
10−16

10−8

100

Implicit

Explicit

SNR (dB)

E
rr

or
E

Figure 4.4. For low and medium SNR, the errors on the mixing matrix for the explicit and
implicit Hankelization approaches are equal. While the error for the implicit tensorization stagnates
for SNR larger than 180 dB, the error continues to decrease when using the explicit tensorization.
The errors are medians over 100 experiments, each using a best-out-of-five initializations strategy.

In the second experiment, the scaling behavior in function of the number of sam-
ples is illustrated for M = 501, 5 001, 50 001 and 500 001 points. The resulting Hanke-
lized tensors require 953 KiB, 95.3 MiB, 9.53 GiB and 953 GiB of memory, respectively,
if formed explicitly. The SNR is fixed at 20 dB. We compute an unconstrained LL1
decomposition (ll1 nls) and a constrained BTD, which models the tensor as

T =

R∑
r=1

(
V(r)G(r)V(r)T

)
⊗ cr,

in which V(r) are confluent Vandermonde matrices and G(r) are upper anti-triangular
matrices; see [19] for details. By imposing the structure in V(r), the recovered signals
are guaranteed to be exponential polynomials, and the underlying poles can be re-
covered easily. These parametric constraints are modeled in the SDF framework [83]
using struct confvander and sdf nls. Figure 4.5 and Figure 4.6 show the median
time and error on the mixing matrix over 50 noise realizations. Each algorithm is
initialized three and six times using random variables for the LL1 and BTD model,
respectively. The time and error for the best initialization, i.e., the one resulting in
the lowest error on the mixing matrix, is retained. The timing results in Figure 4.5
clearly show that implicit Hankelization drastically reduces the computation time,
allowing longer signals to be analyzed. The computation of the constrained BTD is
sensitive to the initialization and is difficult from an optimization point-of-view, as
the factors are ill-conditioned due to the generalized Vandermonde structure. This

20

results in higher computation times and a lower accuracy for random initializations.
Being able to analyze longer signal allows one to improve the accuracy for a fixed
SNR, as is clear from Figure 4.6: by taking 100 times as many samples, E decreases
by a factor 10.

501 5001 50001 500001
100

102

104

×14

×17

M

T
im

e
(s

)

Unconstrained LL1

501 5001 50001

×8.6

×187

Implicit

Explicit

M

Constrained BTD

Figure 4.5. For both the unconstrained LL1 decomposition and the constrained BTD, the com-
putation time using implicit tensorization increases more slowly, enabling large-scale applications.
For the LL1 decomposition, the time increases with a factor 14 ≈ 13 (O (M log2M)) using the ef-
ficient representation and with a factor 17 when the full tensor is used. The latter factor is better
than the expected factor 100 as fewer iterations are required. Computing the constrained BTD is
more difficult due to ill-conditioned factors and the variation in time is large causing larger devia-
tons from the expected scaling factors. The results are medians over 50 experiments with multiple
initializations.

501 5001 50001 500001
10−4

10−3

10−2

BTD

LL1

÷9.2

×100

M

E
rr

or
E

Figure 4.6. The relative error E of the estimated mixing matrix decreases when the number
of samples M increases. In the case of the unconstrained LL1 decomposition, E decreases with
a factor 9.2 ≈ 10 when 100 times as many samples are used. The constrained BTD is more
difficult from an optimization point-of-view and involves ill-conditioned factor matrices, resulting
in a modest improvement in terms of error. The errors are computed using implicit tensorization
and are medians over 50 noise realizations with multiple initializations. The results for full tensors
are similar.

4.4. Fetal ECG extraction. If the underlying sources can be modeled by ra-
tional functions, BSS techniques based on Löwnerization can be used to recover the
mixing matrix M and the sources S in (4.1). In this last experiment, the goal is
to separate the heart beats from the mother and the fetus, given five measured sig-
nals from five abdominal electrodes; see [20]. (The data is publicly available at [24].)

21

As illustrated in [27], each signal can be modeled by a rational function and the
LL1 decomposition of the Löwnerized data can be used to recover the mixing ma-
trix. Concretely, the signal matrix X ∈ R2500×5 is explicitly and implicitly mapped
to a tensor T ∈ R1250×1250×5 and an LL1 decomposition with L1 = L2 = 56, and
L3 = 45 is used to recover the 5 × 3 mixing matrix M using the Gauss–Newton im-
plementation in ll1 nls. (The values for Lr have been determined experimentally.)
Note that we need more than one source to model the mother’s heartbeat which is
a three dimensional signal [10]. The sources are recovered as S = XMT† and are
shown in Figure 4.7. The difference in computation time is relatively limited (81 s
and 51 s for the explicit and implicit tensorization, respectively), as the multilinear
ranks determined by Lr, r = 1, 2, 3, are quite high in this application. However, to
store T explicitly, 60 MB is required, while only 160 kB is needed to store the signal
matrix and evaluation points in the efficient representation, allowing the signals to be
processed on the limited resources of medical hardware.

0 10

fetus

mother

Time (s)

Figure 4.7. The heart beats of the fetus and the mother can be separated using Löwnerization.
An LL1 decomposition with L1 = L2 = 56, and L3 = 45 is computed from the implicitly Löwnerized
measured signals, after which the signals are reconstructed (shown) by pseudoinversion of mixing
matrix.

5. Conclusion. By rewriting the objective function and gradient expressions
commonly used to compute tensor decompositions, four core operations are exposed:
squared norm, inner product, matricized tensor times Khatri-Rao product and ma-
tricized tensor times Kronecker product. By specializing these operations for efficient
representations of tensors, both the computational and memory complexity are re-
duced from O (tensor entries) to O (parameters) as illustrated for the polyadic, Tucker
and Tensor Train format, as well as for Hankelization and Löwnerization. The opera-
tions can be used in many decomposition algorithms and frameworks, including ALS,
second-order algorithms and algorithms for constrained and/or coupled decomposi-
tions. The numerical consequences of exploiting efficient representations are studied
in the case a highly accurate solution is required. Finally, important concepts such as
Tucker or TT compression for constrained decompositions and implicit tensorization,
allow large-scale datasets to be handled easily, as illustrated for nonnegative CPD
and the Hankelization of mixtures of exponentials.

REFERENCES

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda, A scalable optimization approach for fitting
canonical tensor decompositions, J. Chemometrics, 25 (2011), pp. 67–86, https://doi.org/
10.1002/cem.1335.

[2] E. Acar, T. G. Kolda, and D. M. Dunlavy, All-at-once optimization for coupled matrix and
tensor factorizations, May 2011.

[3] R. Badeau and R. Boyer, Fast multilinear singular value decomposition for structured ten-
sors, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1008–1021, https://doi.org/10.1137/
060655936.

22

https://doi.org/10.1002/cem.1335
https://doi.org/10.1002/cem.1335
https://doi.org/10.1137/060655936
https://doi.org/10.1137/060655936

[4] B. Bader and T. G. Kolda, Efficient matlab computations with sparse and factored tensors,
SIAM J. Sci. Comput., 30 (2007), pp. 205–231, https://doi.org/10.1137/060676489.

[5] H. N. Bharath, D. Sima, N. Sauwen, U. Himmelreich, L. De Lathauwer, and S. Van Huf-
fel, Nonnegative canonical polyadic decomposition for tissue-type differentiation in
gliomas, IEEE J. Biomed. Health Inform., 21 (2017), pp. 1124–1132, https://doi.org/10.
1109/JBHI.2016.2583539.

[6] R. Bro, Multi-way analysis in the food industry: models, algorithms, and applications, PhD
thesis, University of Amsterdam, 1998.

[7] R. Bro and C. A. Andersson, Improving the speed of multiway algorithms: Part II:
Compression, Chemometr. Intell. Lab., 42 (1998), pp. 105–113, https://doi.org/10.1016/
S0169-7439(98)00011-2.

[8] R. Bro, R. A. Harshman, N. D. Sidiropoulos, and M. E. Lundy, Modeling multi-way
data with linearly dependent loadings, J. Chemometrics, 23 (2009), pp. 324–340, https:
//doi.org/10.1002/cem.1206.

[9] C. Caiafa and A. Cichocki, Generalizing the column-row matrix decomposition to multi-way
arrays, Linear Algebra and its Applications, 433 (2010), pp. 557 – 573, https://doi.org/10.
1016/j.laa.2010.03.020.

[10] D. Callaerts, B. De Moor, J. Vandewalle, W. Sansen, G. Vantrappen, and J. Janssens,
Comparison of SVD methods to extract the foetal electrocardiogram from cutaneous elec-
trode signals, Med. Biol. Eng. Comput., 28 (1990), pp. 217–224, https://doi.org/10.1007/
BF02442670.

[11] J. D. Carroll and J.-J. Chang, Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart–Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319, https://doi.org/10.1007/bf02310791.

[12] J. D. Carroll, S. Pruzansky, and J. B. Kruskal, CANDELINC: A general approach to
multidimensional analysis of many-way arrays with linear constraints on parameters, Psy-
chometrika, 45 (1980), pp. 3–24, https://doi.org/10.1007/bf02293596.

[13] J. H. Choi and S. V. N. Vishwanathan, DFacTo: Distributed factorization of tensors, in Pro-
ceedings of the 27th International Conference on Neural Information Processing Systems,
NIPS’14, Cambridge, MA, USA, 2014, MIT Press, pp. 1296–1304.

[14] A. Cichocki, D. Mandic, A.-H. Phan, C. Caiafa, G. Zhou, Q. Zhao, and L. De Lath-
auwer, Tensor decompositions for signal processing applications: From two-way to mul-
tiway component analysis, IEEE Signal Process. Mag., 32 (2015), pp. 145–163, https:
//doi.org/10.1109/msp.2013.2297439.

[15] J. E. Cohen, R. Cabral Farias, and P. Comon, Fast decomposition of large nonnegative
tensors, IEEE Signal Process. Lett., 22 (2015), pp. 862–866, https://doi.org/10.1109/lsp.
2014.2374838.

[16] P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent component
analysis and applications, Academic press, 2010.

[17] A. de Almeida, G. Favier, and J. C. M. Mota, A constrained factor decomposition with
application to MIMO antenna systems, IEEE Trans. Signal Process., 56 (2008), pp. 2429–
2442, https://doi.org/10.1109/TSP.2008.917026.

[18] L. De Lathauwer, Decompositions of a higher-order tensor in block terms — Part II:
Definitions and uniqueness, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1033–1066,
https://doi.org/10.1137/070690729.

[19] L. De Lathauwer, Blind separation of exponential polynomials and the decomposition of a
tensor in rank-(Lr, Lr, 1) terms, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1451–1474,
https://doi.org/10.1137/100805510.

[20] L. De Lathauwer, B. de Moor, and J. Vandewalle, Fetal electrocardiogram extraction
by blind source subspace separation, IEEE Trans. Biomed. Eng., 47 (2000), pp. 567–572,
https://doi.org/10.1109/10.841326.

[21] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decom-
position, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278, https://doi.org/10.1137/
S0895479896305696.

[22] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-
(R1, R2, . . . , RN) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl.,
21 (2000), pp. 1324–1342, https://doi.org/10.1137/S0895479898346995.

[23] L. De Lathauwer and D. Nion, Decompositions of a higher-order tensor in block terms —
Part III: Alternating least squares algorithms, SIAM J. Matrix Anal. Appl., 30 (2008),
pp. 1067–1083, https://doi.org/10.1137/070690730.

[24] B. De Moor, DaISy: Database for the identification of systems. Department of Electrical
Engineering, ESAT/SISTA, KU Leuven, Belgium, URL: http://www.esat.kuleuven.ac.be/

23

https://doi.org/10.1137/060676489
https://doi.org/10.1109/JBHI.2016.2583539
https://doi.org/10.1109/JBHI.2016.2583539
https://doi.org/10.1016/S0169-7439(98)00011-2
https://doi.org/10.1016/S0169-7439(98)00011-2
https://doi.org/10.1002/cem.1206
https://doi.org/10.1002/cem.1206
https://doi.org/10.1016/j.laa.2010.03.020
https://doi.org/10.1016/j.laa.2010.03.020
https://doi.org/10.1007/BF02442670
https://doi.org/10.1007/BF02442670
https://doi.org/10.1007/bf02310791
https://doi.org/10.1007/bf02293596
https://doi.org/10.1109/msp.2013.2297439
https://doi.org/10.1109/msp.2013.2297439
https://doi.org/10.1109/lsp.2014.2374838
https://doi.org/10.1109/lsp.2014.2374838
https://doi.org/10.1109/TSP.2008.917026
https://doi.org/10.1137/070690729
https://doi.org/10.1137/100805510
https://doi.org/10.1109/10.841326
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/070690730
http://www.esat.kuleuven.ac.be/sista/daisy/
http://www.esat.kuleuven.ac.be/sista/daisy/

sista/daisy/, Jul. 1. 2018. [Used dataset: cutaneous potential recordings of a pregnant
woman, biomedial systems, 96-012.].

[25] O. Debals and L. De Lathauwer, The concept of tensorization. Technical Report 17–99,
ESAT-STADIUS, KU Leuven, Belgium, 2017.

[26] O. Debals, L. De Lathauwer, and M. Van Barel, About higher-order Löwner tensors.
Technical Report 17–98, ESAT-STADIUS, KU Leuven, Belgium, 2017.

[27] O. Debals, M. Van Barel, and L. De Lathauwer, Löwner-based blind signal separation of
rational functions with applications, IEEE Trans. Signal Process., 64 (2016), pp. 1909–
1918, https://doi.org/10.1109/tsp.2015.2500179.

[28] W. Ding, L. Qi, and Y. Wei, Fast Hankel tensor-vector product and its application to
exponential data fitting, Numer. Linear Algebra Appl., 22 (2015), pp. 814–832, https:
//doi.org/10.1002/nla.1970.

[29] I. Gohberg and V. Olshevsky, Complexity of multiplication with vectors for structured matri-
ces, Linear Algebra Appl., 202 (1994), pp. 163–192, https://doi.org/10.1016/0024-3795(94)
90189-9.

[30] I. Gohberg and V. Olshevsky, Fast algorithms with preprocessing for matrix-vector multipli-
cation problems, Journal of Complexity, 10 (1994), pp. 411–427, https://doi.org/10.1006/
jcom.1994.1021.

[31] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2029–2054, https://doi.org/10.1137/090764189.

[32] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53–78, https://doi.org/10.1002/
gamm.201310004.

[33] W. Hackbusch, Tensor spaces and numerical tensor calculus, Springer Series in Computational
Mathematics, (2012), https://doi.org/10.1007/978-3-642-28027-6.

[34] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov, Hierarchical Kronecker
tensor-product approximations, J. Numer. Math., 13 (2005), https://doi.org/10.1515/
1569395054012767.

[35] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal.
Appl., 15 (2009), pp. 706–722, https://doi.org/10.1007/s00041-009-9094-9.

[36] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, Journal of
Mathematics and Physics, 6 (1927), pp. 164–189, https://doi.org/10.1002/sapm192761164.

[37] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor opti-
mization in the Tensor Train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713,
https://doi.org/10.1137/100818893.

[38] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, A flexible and efficient algorithmic frame-
work for constrained matrix and tensor factorization, IEEE Trans. Signal Process., 64
(2016), pp. 5052–5065, https://doi.org/10.1109/TSP.2016.2576427.

[39] M. Ishteva, P.-A. Absil, S. Van Huffel, and L. De Lathauwer, Best low multilinear
rank approximation of higher-order tensors, based on the Riemannian trust-region scheme,
SIAM J. Matrix Anal. Appl., 32 (2011), pp. 115–135, https://doi.org/10.1137/090764827.

[40] M. Ishteva, L. De Lathauwer, P.-A. Absil, and S. Van Huffel, The best rank-(R1, R2, R3)
approximation of tensors by means of a geometric Newton method, AIP Conference Pro-
ceedings, 1048 (2008), pp. 274–277, https://doi.org/10.1063/1.2990911.

[41] B. Jeon, I. Jeon, L. Sael, and U. Kang, SCouT: Scalable coupled matrix-tensor factorization
— algorithm and discoveries, in 2016 IEEE 32nd International Conference on Data Engi-
neering (ICDE), IEEE, May 2016, pp. 811–822, https://doi.org/10.1109/icde.2016.7498292.

[42] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, HaTen2: Billion-scale tensor
decompositions, in 2015 IEEE 31st International Conference on Data Engineering, IEEE,
Apr. 2015, pp. 1047–1058, https://doi.org/10.1109/icde.2015.7113355.

[43] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos, GigaTensor: Scaling tensor
analysis up by 100 times - algorithms and discoveries, Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD ’12,
(2012), https://doi.org/10.1145/2339530.2339583.

[44] O. Kaya and B. Uçar, Scalable sparse tensor decompositions in distributed memory sys-
tems, in Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis on - SC ’15, ACM, 2015, pp. 77:1–77:11, https:
//doi.org/10.1145/2807591.2807624.

[45] O. Kaya and B. Uçar, High performance parallel algorithms for the Tucker decomposition
of sparse tensors, in 2016 45th International Conference on Parallel Processing (ICPP),
IEEE, Aug. 2016, pp. 103–112, https://doi.org/10.1109/icpp.2016.19.

[46] C. Kelley, Iterative Methods for Optimization, SIAM, 1999.

24

http://www.esat.kuleuven.ac.be/sista/daisy/
http://www.esat.kuleuven.ac.be/sista/daisy/
ftp://ftp.esat.kuleuven.be/pub/stadius/odebals/debals2017concept.pdf
ftp://ftp.esat.kuleuven.be/pub/stadius/odebals/debals2017higher.pdf
https://doi.org/10.1109/tsp.2015.2500179
https://doi.org/10.1002/nla.1970
https://doi.org/10.1002/nla.1970
https://doi.org/10.1016/0024-3795(94)90189-9
https://doi.org/10.1016/0024-3795(94)90189-9
https://doi.org/10.1006/jcom.1994.1021
https://doi.org/10.1006/jcom.1994.1021
https://doi.org/10.1137/090764189
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1007/978-3-642-28027-6
https://doi.org/10.1515/1569395054012767
https://doi.org/10.1515/1569395054012767
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1137/100818893
https://doi.org/10.1109/TSP.2016.2576427
https://doi.org/10.1137/090764827
https://doi.org/10.1063/1.2990911
https://doi.org/10.1109/icde.2016.7498292
https://doi.org/10.1109/icde.2015.7113355
https://doi.org/10.1145/2339530.2339583
https://doi.org/10.1145/2807591.2807624
https://doi.org/10.1145/2807591.2807624
https://doi.org/10.1109/icpp.2016.19

[47] B. N. Khoromskij, Structured rank-(r1, . . . , rD) decomposition of function-related tensors in
RD, Comput. Methods Appl. Math., 6 (2006), https://doi.org/10.2478/cmam-2006-0010.

[48] B. N. Khoromskij and V. Khoromskaia, Low rank Tucker-type tensor approximation to
classical potentials, Central European Journal of Mathematics, 5 (2007), pp. 523–550,
https://doi.org/10.2478/s11533-007-0018-0.

[49] B. N. Khoromskij and V. Khoromskaia, Multigrid accelerated tensor approximation of func-
tion related multidimensional arrays, SIAM J. Sci. Comput., 31 (2009), pp. 3002–3026,
https://doi.org/10.1137/080730408.

[50] H. A. L. Kiers and R. A. Harshman, Relating two proposed methods for speedup of algo-
rithms for fitting two- and three-way principal component and related multilinear models,
Chemometr. Intell. Lab., 36 (1997), pp. 31–40, https://doi.org/10.1016/s0169-7439(96)
00074-3.

[51] T. G. Kolda, Orthogonal tensor decompositions, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 243–255, https://doi.org/10.1137/S0895479800368354.

[52] T. G. Kolda and B. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009),
pp. 455–500, https://doi.org/10.1137/07070111X.

[53] T. G. Kolda and J. Sun, Scalable tensor decompositions for multi-aspect data mining, 2008
Eighth IEEE International Conference on Data Mining, (2008), https://doi.org/10.1109/
icdm.2008.89.

[54] P. M. Kroonenberg and J. de Leeuw, Principal component analysis of three-mode data
by means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69–97,
https://doi.org/10.1007/bf02293599.

[55] A. P. Liavas and N. D. Sidiropoulos, Parallel algorithms for constrained tensor factorization
via alternating direction method of multipliers, IEEE Trans. Signal Process., 63 (2015),
pp. 5450–5463, https://doi.org/10.1109/tsp.2015.2454476.

[56] M. W. Mahoney, M. Maggioni, and P. Drineas, Tensor-CUR decompositions for tensor-
based data, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 957–987, https://doi.org/10.1137/
060665336.

[57] T. Müller, K. Kruppa, G. Lichtenberg, and N. Réhault, Fault detection with qualitative
models reduced by tensor decomposition methods, IFAC-PapersOnLine, 48 (2015), pp. 416–
421, https://doi.org/10.1016/j.ifacol.2015.09.562.

[58] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, second edi-
tion ed., 2006.

[59] R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Ann. Physics, 349 (2014), pp. 117 – 158, https://doi.org/10.1016/j.
aop.2014.06.013.

[60] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317,
https://doi.org/10.1137/090752286.

[61] I. V. Oseledets and S. Dolgov, Solution of linear systems and matrix inversion in the
TT-format, SIAM J. Sci. Comput., 34 (2012), pp. A2718–A2739, https://doi.org/10.1137/
110833142.

[62] I. V. Oseledets, S. Dolgov, V. Kazeev, D. V. Savostyanov, O. Lebedeva, P. Zhlobich,
T. Mach, and L. Song, TT-Toolbox. Available online at https://github.com/oseledets/
TT-Toolbox.

[63] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov, Tucker dimensionality re-
duction of three-dimensional arrays in linear time, SIAM J. Matrix Anal. Appl., 30 (2008),
pp. 939–956, https://doi.org/10.1137/060655894.

[64] I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov, Linear algebra for tensor
problems, Computing, 85 (2009), pp. 169–188, https://doi.org/10.1007/s00607-009-0047-6.

[65] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to
use SVD in many dimensions, SIAM J. Sci. Comput., 31 (2009), pp. 3744–3759, https:
//doi.org/10.1137/090748330.

[66] I. V. Oseledets and E. E. Tyrtyshnikov, TT-cross approximation for multidimensional
arrays, Linear Algebra Appl., 432 (2010), pp. 70–88, https://doi.org/10.1016/j.laa.2009.
07.024.

[67] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, ParCube: Sparse parallelizable
CANDECOMP-PARAFAC tensor decomposition, ACM Trans. Knowl. Discov. Data, 10
(2015), pp. 1–25, https://doi.org/10.1145/2729980.

[68] J. M. Papy, L. De Lathauwer, and S. Van Huffel, Exponential data fitting using multilin-
ear algebra: the single-channel and multi-channel case, Numer. Linear Algebra Appl., 12
(2005), pp. 809–826, https://doi.org/10.1002/nla.453.

[69] A.-H. Phan, P. Tichavský, and A. Cichocki, Fast alternating LS algorithms for high order

25

https://doi.org/10.2478/cmam-2006-0010
https://doi.org/10.2478/s11533-007-0018-0
https://doi.org/10.1137/080730408
https://doi.org/10.1016/s0169-7439(96)00074-3
https://doi.org/10.1016/s0169-7439(96)00074-3
https://doi.org/10.1137/S0895479800368354
https://doi.org/10.1137/07070111X
https://doi.org/10.1109/icdm.2008.89
https://doi.org/10.1109/icdm.2008.89
https://doi.org/10.1007/bf02293599
https://doi.org/10.1109/tsp.2015.2454476
https://doi.org/10.1137/060665336
https://doi.org/10.1137/060665336
https://doi.org/10.1016/j.ifacol.2015.09.562
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1137/090752286
https://doi.org/10.1137/110833142
https://doi.org/10.1137/110833142
https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox
https://doi.org/10.1137/060655894
https://doi.org/10.1007/s00607-009-0047-6
https://doi.org/10.1137/090748330
https://doi.org/10.1137/090748330
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1145/2729980
https://doi.org/10.1002/nla.453

CANDECOMP/PARAFAC tensor factorizations, IEEE Trans. Signal Process., 61 (2013),
pp. 4834–4846, https://doi.org/10.1109/tsp.2013.2269903.

[70] M. J. Reynolds, G. Beylkin, and A. Doostan, Optimization via separated representations
and the canonical tensor decomposition, J. Comput. Phys., 348 (2017), pp. 220–230, https:
//doi.org/10.1016/j.jcp.2017.07.012.

[71] J.-P. Royer, N. Thirion-Moreau, and P. Comon, Computing the polyadic decomposition
of nonnegative third order tensors, Signal Processing, 91 (2011), pp. 2159–2171, https:
//doi.org/10.1016/j.sigpro.2011.03.006.

[72] D. V. Savostyanov, Fast revealing of mode ranks of tensor in canonical form, Numer. Math.
Theor. Meth. Appl, 2 (2009), pp. 439–444, https://doi.org/10.4208/nmtma.2009.m9006s.

[73] D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, Fast truncation of mode
ranks for bilinear tensor operations, Numer. Linear Algebra Appl., 19 (2011), pp. 103–111,
https://doi.org/10.1002/nla.765.

[74] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, Parallel factor analysis in sensor array
processing, IEEE Trans. Signal Process., 48 (2000), pp. 2377–2388, https://doi.org/10.
1109/78.852018.

[75] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and
C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE
Trans. Signal Process., 65 (2017), pp. 3551–3582, https://doi.org/10.1109/TSP.2017.
2690524.

[76] N. D. Sidiropoulos, E. E. Papalexakis, and C. Faloutsos, Parallel randomly compressed
cubes: A scalable distributed architecture for big tensor decomposition, IEEE Signal Pro-
cess. Mag., 31 (2014), pp. 57–70, https://doi.org/10.1109/MSP.2014.2329196.

[77] S. Smith and G. Karypis, Tensor-matrix products with a compressed sparse tensor, in Pro-
ceedings of the 5th Workshop on Irregular Applications Architectures and Algorithms -
IA3 ’15, ACM, 2015, pp. 5:1–5:7, https://doi.org/10.1145/2833179.2833183.

[78] S. Smith and G. Karypis, A medium-grained algorithm for sparse tensor factorization, in
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE,
May 2016, pp. 902–911, https://doi.org/10.1109/ipdps.2016.113.

[79] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, SPLATT: Efficient and
parallel sparse tensor-matrix multiplication, in 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, IEEE, May 2015, pp. 61–70, https://doi.org/10.1109/
ipdps.2015.27.

[80] L. Sorber, I. Domanov, M. Van Barel, and L. De Lathauwer, Exact line and plane
search for tensor optimization, Comput. Optim. Appl., 63 (2015), pp. 121–142, https:
//doi.org/10.1007/s10589-015-9761-5.

[81] L. Sorber, M. Van Barel, and L. De Lathauwer, Unconstrained optimization of real func-
tions in complex variables, SIAM J. Optim., 22 (2012), pp. 879–898, https://doi.org/10.
1137/110832124.

[82] L. Sorber, M. Van Barel, and L. De Lathauwer, Optimization-based algorithms for ten-
sor decompositions: Canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1)
terms, and a new generalization, SIAM J. Optim., 23 (2013), pp. 695–720, https://doi.
org/10.1137/120868323.

[83] L. Sorber, M. Van Barel, and L. De Lathauwer, Structured data fusion, IEEE J. Sel. Topics
Signal Process., 9 (2015), pp. 586–600, https://doi.org/10.1109/JSTSP.2015.2400415.

[84] G. Tomasi and R. Bro, A comparison of algorithms for fitting the PARAFAC model, Comput.
Stat. Data Anal., 50 (2006), pp. 1700 – 1734, https://doi.org/10.1016/j.csda.2004.11.013.

[85] M. Vandecappelle, N. Vervliet, and L. De Lathauwer, Nonlinear least squares updating
of the canonical polyadic decomposition, in 2017 25th European Signal Processing Con-
ference (EUSIPCO17), Aug. 2017, pp. 693–697, https://doi.org/10.23919/EUSIPCO.2017.
8081290.

[86] N. Vannieuwenhoven, Condition numbers for the tensor rank decomposition, Linear Algebra
Appl., 535 (2017), pp. 35–86, https://doi.org/10.1016/j.laa.2017.08.014.

[87] N. Vannieuwenhoven, K. Meerbergen, and R. Vandebril, Computing the gradient in opti-
mization algorithms for the CP decomposition in constant memory through tensor blocking,
SIAM J. Sci. Comput., 37 (2015), pp. C415–C438, https://doi.org/10.1137/14097968x.

[88] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, A new truncation strategy for the
higher-order singular value decomposition, SIAM J. Sci. Comput., 34 (2012), pp. A1027–
A1052, https://doi.org/10.1137/110836067.

[89] N. Vervliet and L. De Lathauwer, A randomized block sampling approach to canonical
polyadic decomposition of large-scale tensors, IEEE J. Sel. Topics Signal Process., 10
(2016), pp. 284–295, https://doi.org/10.1109/JSTSP.2015.2503260.

26

https://doi.org/10.1109/tsp.2013.2269903
https://doi.org/10.1016/j.jcp.2017.07.012
https://doi.org/10.1016/j.jcp.2017.07.012
https://doi.org/10.1016/j.sigpro.2011.03.006
https://doi.org/10.1016/j.sigpro.2011.03.006
https://doi.org/10.4208/nmtma.2009.m9006s
https://doi.org/10.1002/nla.765
https://doi.org/10.1109/78.852018
https://doi.org/10.1109/78.852018
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/MSP.2014.2329196
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1109/ipdps.2016.113
https://doi.org/10.1109/ipdps.2015.27
https://doi.org/10.1109/ipdps.2015.27
https://doi.org/10.1007/s10589-015-9761-5
https://doi.org/10.1007/s10589-015-9761-5
https://doi.org/10.1137/110832124
https://doi.org/10.1137/110832124
https://doi.org/10.1137/120868323
https://doi.org/10.1137/120868323
https://doi.org/10.1109/JSTSP.2015.2400415
https://doi.org/10.1016/j.csda.2004.11.013
https://doi.org/10.23919/EUSIPCO.2017.8081290
https://doi.org/10.23919/EUSIPCO.2017.8081290
https://doi.org/10.1016/j.laa.2017.08.014
https://doi.org/10.1137/14097968x
https://doi.org/10.1137/110836067
https://doi.org/10.1109/JSTSP.2015.2503260

[90] N. Vervliet and L. De Lathauwer, Numerical optimization based algorithms for data fusion,
in Data Fusion Methodology and Applications, M. Cocchi, ed., Elsevier, 2018. Accepted
for publication.

[91] N. Vervliet, O. Debals, and L. De Lathauwer, Tensorlab 3.0 — Numerical optimization
strategies for large-scale constrained and coupled matrix/tensor factorization, in 2016 50th
Asilomar Conference on Signals, Systems and Computers, Nov. 2016, pp. 1733–1738, https:
//doi.org/10.1109/ACSSC.2016.7869679.

[92] N. Vervliet, O. Debals, and L. De Lathauwer, Canonical polyadic decomposition of incom-
plete tensors with linearly constrained factors. Technical Report 16–172, ESAT-STADIUS,
KU Leuven, Belgium, Apr. 2017.

[93] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, Breaking the curse of di-
mensionality using decompositions of incomplete tensors: Tensor-based scientific com-
puting in big data analysis, IEEE Signal Process. Mag., 31 (2014), pp. 71–79, https:
//doi.org/10.1109/MSP.2014.2329429.

[94] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab 3.0,
Mar. 2016. Available online at https://www.tensorlab.net.

[95] Z. Yawen, D. Guangjun, and X. Zhixiang, Hyperspectral image tensor feature extraction
based on fusion of multiple spectral-spatial features, in Proceedings of the 2016 International
Conference on Intelligent Information Processing - ICIIP ’16, ACM, 2016, pp. 43:1–43:8,
https://doi.org/10.1145/3028842.3028885.

[96] G. Zhou, A. Cichocki, and S. Xie, Decomposition of big tensors with low multilinear rank,
2014.

[97] G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, Nonnegative matrix and tensor factorizations:
An algorithmic perspective, IEEE Signal Process. Mag., 31 (2014), pp. 54–65, https://doi.
org/10.1109/msp.2014.2298891.

[98] G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, Efficient nonnegative Tucker decompositions:
Algorithms and uniqueness, IEEE Trans. Image Process., 24 (2015), pp. 4990–5003, https:
//doi.org/10.1109/tip.2015.2478396.

27

https://doi.org/10.1109/ACSSC.2016.7869679
https://doi.org/10.1109/ACSSC.2016.7869679
ftp://ftp.esat.kuleuven.be/pub/stadius/nvervliet/vervliet2017cpdli.pdf
https://doi.org/10.1109/MSP.2014.2329429
https://doi.org/10.1109/MSP.2014.2329429
https://www.tensorlab.net
https://doi.org/10.1145/3028842.3028885
https://doi.org/10.1109/msp.2014.2298891
https://doi.org/10.1109/msp.2014.2298891
https://doi.org/10.1109/tip.2015.2478396
https://doi.org/10.1109/tip.2015.2478396

	Introduction
	Contributions
	Outline
	Notation

	Exploiting efficient representations
	Overview of tensor decompositions
	Optimization for least squares problems
	Exploiting efficient representations

	Operations on efficient representations
	Polyadic format
	Tucker format
	Tensor Train format
	Implicit Hankelization
	Implicit Löwnerization

	Experiments
	Accuracy and conditioning
	Compression for nonnegative CPD
	Signal separation through Hankelization
	Fetal ECG extraction

	Conclusion
	References

