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Abstract—Most of the recent studies on churn prediction in
telco utilize social networks built on top of the call (and/or
SMS) graphs to derive informative features. However, extracting
features from large graphs, especially structural features, is an
intricate process both from a methodological and computational
perspective. Due to the former, feature extraction in the current
literature has mainly been addressed in an ad-hoc and hand-
crafted manner. Due to the latter, the full potential of the
structural information is unexploited. In this work, we incor-
porate both interaction and structural information by devising
two different ways of enriching original graphs with interaction
information, delineated by the well-known RFM model. We
circumvent the process of extensive manual feature engineering
by enriching the networks and improving the scalability of the
renowned node2vec approach to learn node representations.
The obtained results demonstrate that our enriched network
outperforms baseline RFM-based methods.

Index Terms—Enriched (Social) Networks, Node Representa-
tion Learning, RFM, Churn Prediction.

I. INTRODUCTION

Churn prediction in telco is a well-known problem for

several decades now, and, consequently, it has an extensive

presence in the data mining literature. Recently, with the

expansion of social network analytics, the studies on churn

prediction have shifted in the direction of using Call Detail

Records (CDRs) to generate call networks and extract in-

formative features from these. An additional motivation for

expanding the feature space stems from previous churn related

work which has proven that an increase in the predictive

performance depends on the explanatory features, rather than

on the modeling technique used [33].

However, extracting informative features from graphs (so-

called graph featurization), can be a quite intricate process due

to the complex structure of networks themselves, where to-

gether with the topology of the network (we will refer to this as

structural information), additional information characterizing

relationships between network nodes (to be referred to as inter-

action information), is usually provided. The literature has seen

many different featurizations of both interaction and structural

information. Interaction as part of customer behavior is usually

delineated with the well-known RFM (Recency, Frequency,
Monetary) framework, which has its benefits both in simplicity

and predictive performance [1, 2, 4, 35]. Similarly, structural

network information is a mainly hand-crafted ad-hoc solution

based on degree/closeness/betweenness/eigenvector centrality

measures [13, 24, 35]. The problem with such approaches is

not only in selecting which features to derive between the

variety of all possible ones, but also in the computational

burden which increases with the size of the network. For

example, a very informative feature, betweenness centrality,

becomes computationally intractable for very large networks

(the fastest known algorithm for computing betweenness cen-

trality takes 𝑂((𝑒′)2𝑙𝑜𝑔2𝑛), with 𝑛 number of nodes and 𝑒′ the
upper bound of the number of edges belonging to the shortest

path). Therefore, only a small number of related works use

both structural and interaction features [4, 8, 16, 22, 23, 35]

and not even to their fullest predictive potential.

In this work, we focus on the churn prediction task in telco,

with the idea to exploit both structural and interaction infor-

mation from the CDR graph, while circumventing the process

of extensive feature hand-engineering. For this, we propose

a novel approach based on node representation learning in

RFM-enriched call networks. First, we devise three different

operationalizations of RFM variables. Second, we use these to

design RFM-enriched variations of the original CDR-graph,

to achieve the goal of conjoining interaction information with

the original topology. Third, for node representation learning,

we propose a scalable adaptation of the existing node2vec

approach proposed in [5], to ensure scalability for very large

graphs (with 5M edges and more, as in our case). Furthermore,

this enables learning node representations in a more automated

and task-agnostic manner, which is the purpose of these kind

of approaches [5, 27].

To the best of our knowledge, this paper is the first both in

using node representations in CDR graphs for churn prediction

and applying the RFM framework together with unsupervised

learning of node representations. Additionally, we demonstrate

that designed extensions of the original graphs using RFM

features (in the form of artificial nodes), can lead to significant

performance improvements in terms of AUC and lift.

The rest of the paper is organized as follows. Section II

provides an overview of related work. Sections III and IV

explain our method and experimental setup, respectively. In

Section V we present experimental results and shortly discuss

them in Section VI. Finally, Section VII provides a conclusion

and directions for future research.
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II. RELATED WORK

Since the literature related to churn prediction in telecom-

munications is very extensive, we restrict ourselves only to

areas being of interest for this work: interaction features,

structural features and representation learning in graphs.

A. Extracting Interaction Features using the RFM Model
The RFM model represents the most typical way of char-

acterizing customer interactions, and customer behavior in

general. Given an event of interest, the RFM model defines

the following measures on a customer level: 1) how recent the

event occurred, i.e. how long is the time interval between the

event’s last occurrence and the moment of reference in time;

2) how frequently the event occurred, i.e. what is the number

of event occurrences in the observed time frame; 3) what is

the monetary aspect of the event, i.e. how much money the

customer spent related to the event. The RFM model has three

important qualities, due to which it has gained its popularity

in the literature. First, it relies on a simple concept, which

makes it easily understandable and computationally tractable

[11]. Furthermore, the only assumption required with RFM

variables is that the future behavior and value of a customer

can be predicted based on the customer’s past behavior [19].

Second, since the definition of the event is flexible and can

be adapted to different contexts, the RFM model is applicable

to different domains (banking [1], retail [2], telco [28]). For

example, in telco, the event is a call between two customers

(which can be further aggregated on different levels). Finally,

when used as explanatory variables, the RFM variables exhibit

very good predictive power [2, 12].

The current literature related to churn prediction in telco

devises a wide spectrum of RFM variations, ranging from

summary, coarse-grained to more fine-grained features. Exam-

ples of summary RFM variables are total call frequency, total

call volume (seconds) [4], seconds of use, frequency of use and

frequency of SMS in [12]. An overview of fine-grained RFM

variables across different dimensions can be seen in Table

I. In addition, different works propose different aggregation

levels and transformations. The RFM features are engineered

both by absolute values and percentages, for example, the call

frequency percentage (wrt total) to/from a different operator’s

network [4], the ratio of interaction frequency with churners

to the total interaction frequency [16] and the percentage of

minutes of use that were made to on-net callers [26].

B. Extracting Structural Features
Many previous works on churn prediction in telco have been

using features derived from the structure of the underlying

networked graph. These features are mainly expressed in the

form of different centrality measures since they, in one way

or the other, quantify the importance of the node in a network

from a topological perspective. For example, degree centrality

measures of 1𝑠𝑡, 2𝑛𝑑 and 3𝑟𝑑-order were used in [16]; 2𝑛𝑑-
order degree and structural cohesion (also known as clustering

coefficient or density) were used in [35]; PageRank in [8];

degree centrality, closeness centrality, eccentricity centrality,

clustering coefficient, Shapley value, degree and proximity

prestige in [30]. In [13], the authors used eigenvector centrality

not explicitly as explanatory variable, but instead to initialize

the energy level of a node in the spreading activation process.

Even more diversified structural features have been used for

analyzing telco call and SMS graphs (PageRank, diameter,

number of (strongly) connected components and cliques in

[24]), the process of message spreading in viral marketing

in telco (betweenness centrality, authorities, hubs, Weighted

PageRank, Weighted SenderRank, edge-weighted degree in

[14]), classifying the edges on decaying and permanent in the

call graph (the number of neighbors that two nodes have in

common, employed as explanatory variable in [28]).

The potential of structural features has not been fully

exploited in the literature. Despite recognizing their predictive

power, in e.g. [36] closeness and betweenness centrality were

not taken into account due to their computational requirements.

C. Combining Interaction and Structural Information
Interaction and structural information has already been

jointly utilized in the literature, either implicitly or explic-

itly. For example, in [26], customer behavior is claimed to

be independent of the call graph structure but, nonetheless,

degree centrality is used to normalize the values of interaction

features; in [28], 2𝑛𝑑-order embeddedness is derived as the

number of calls that neighbors of one node make to the

neighbors of another node, which essentially is a frequency

based on 2𝑛𝑑-order neighborhood. Moreover, several studies

on telco churn prediction have explicitly employed both inter-

action and structural features as explanatory variables in their

predictive models [4, 8, 16, 22, 23, 35]. Nevertheless, these

studies have not exploited the full potential of these two sets

of features, as they mostly employ either only degree measures

[4, 16, 22, 23] or a slightly extended, but still limited number

of structural features [8, 35]. The literature agrees that utilizing

more diversified (types of) features leads to better performance

[4, 8, 16, 35]. However, to the best of our knowledge, no

churn prediction in a telco related study carried out an inquiry

to determine which of these two classes of features provides

better predictive scores. On the other hand, RFM variables

were found to have more importance than structural features

in the task of classifying edges in a telco graph [28] and churn

prediction in banking [1]. This provides a good motivation for

enriching graph topologies with RFM variables.

D. Representation Learning on Graphs
Representation learning is a fast growing field of research

aiming not just to automate the feature engineering process,

but also to acquire task-independent and high performing

feature representations. It has many applications in various

domains such as natural language processing, speech recog-

nition, image classification. In fact, some prominent recent

works related to representation learning on graphs [5, 27] are

based on representation learning achievements in the natural

language processing (NLP) field [21], using the analogy be-

tween a context of a word in a document and a neighborhood
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TABLE I
DIFFERENT VARIATIONS OF FINE-GRAINED RFM VARIABLES PRESENT IN THE CURRENT TELCO CHURN PREDICTION LITERATURE. THE FIRST COLUMN

CONTAINS THE DIMENSION (THE COMBINATION OF DIMENSIONS) ACCORDING TO WHICH SLICING IS DONE; THE SECOND COLUMN REPRESENTS A

SUB-DIMENSION UTILIZED TO MAKE AN EVEN MORE FINE-GRAINED DISTINCTION. EXAMPLES ARE BORROWED FROM THE REFERENCES IN BOLD TYPEFACE,
REFERENCES IN STANDARD TYPEFACE BELONGING TO THE SAME ROW CALCULATE THE SAME VARIABLES BUT USE SLIGHTLY DIFFERENT TERMINOLOGY.

Dimension(s) Calculated per Example Used in RFM

Time

working days/weekends Minutes of usage by days of the week (working days and weekend) [25],[23] M
morning/midday/night Minutes of usage by time of call (morning, midday, night) [25] M

peak/off-peak Duration of calling in busy time [7],[26] M
special events Duration of calling in festival [7] M

Direction
incoming/outgoing

Total incoming/outgoing call duration (seconds) [4],[22] M
Number of outgoing/incoming calls [4],[22, 23] F

Number of SMS sent/received [22] F
Incoming/outgoing communication volume between 𝑖 and 𝑗 [6],[10] F/M

reciprocal calls Mutual communication volume between 𝑖 and 𝑗 [6] F/M

Destination

home network In-net call duration [10] M

competitor network
External total calls [23] F

External total duration [23] M

local/national/international
Minutes of local call [8],[7] M

Number of international calls [7] F
Minutes of long-distance call [8] M

Other party churners/non-churners
Total interaction frequency with churners [16],[4] F

Total call volume to/from churner neighbors (seconds) [4],[35] M
Average of call counts to/from non-churn neighbors [35] F

Direction+Destination incoming/outgoing+competitor network
Number of incoming, outgoing calls to/from a different operator’s network [4],[22, 23] F

Total incoming/outgoing call duration from a different operator’s network (seconds) [4],[22, 23] M

Direction+Other party incoming/outgoing+churners
Number of SMS/calls made/received to/from churners [22] F
Total duration of calls made/received to/from churners [22] M

Time+Destination peak/off-peak+competitor network Minutes of use (MOU) during peak period that were made to off-net callers [26] M

of a node in the graph. Once the node representations are

learnt, they can be employed in different predictive tasks,

such as multi-label classification, link prediction and so on.

For example, node representations are used for multi-label

classification tasks in social networks (Facebook [5], Flickr

[17, 27], YouTube [17, 27], blogger networks derived from the

BlogCatalog website [5, 27]), Wikipedia words co-occurrence

networks [5, 17] and citation networks (DBLP) [17]. In link

prediction, node representation learning has been applied on

the Facebook graph, Protein-Protein Interaction graphs and a

collaboration graph from ArXiv in [5].

To the best of our knowledge, representation learning has

not been used before in combination with RFM variables. In

addition, this paper is the first in using node representations

in CDR graphs for churn prediction in telco.

III. SCALABLE RFM-ENRICHED NODE REPRESENTATION

LEARNING

In this section, we introduce our approach, in which

we incorporate both structural and interaction information,

by carefully devising different RFM operationalizations and

network designs, as well as a scalable node representation

learning method. Hence, our approach is based on three

main building blocks: RFM variables (capturing interaction

information), enriched call networks (integrating structural

and interaction information) and node representation learning

methods (learning representations based on these networks).

We explain each of these in more detail, as follows.

A. Operationalization of RFM Network Features
In our approach, we first construct a usage graph from the

observed monthly CDR data. This is done in a standard way,

representing customers as nodes and adding edges between

nodes only if the corresponding customers had a call registered

in the CDR. Next, to quantify customer interaction behavior,

we calculate RFM variables for each customer and observed

period (month) using the following definitions:

∙ Recency: the number of days between the end of the

observed month and the customer’s most recent call

∙ Frequency: the number of calls of a customer during the

observed month

∙ Monetary: The monetary feature is calculated as the du-

ration (in seconds) of customer calls during the observed

month, given that the actual amount charged per call is

not available in our datasets.

We already mentioned in Section II that the literature has

seen plenty of RFM variations. In order to retain the simple

concept of RFM, we do not aim at fully replicating these

approaches, neither at additionally expanding the space of

different RFM characterizations. Instead, we opt for three

different RFM variants, as follows:

∙ Summary-RFM (denoted by 𝑅𝐹𝑀𝑠), calculated as the

total R/F/M per customer, i.e. overall recency (R), total

number of calls (F) and total duration (M) per customer.

∙ Detailed-RFM (denoted by 𝑅𝐹𝑀𝑑), where each of the

R/F/M variables is sliced based on the direction and

destination dimension into three subcategories: outgoing

towards home network, outgoing towards other networks

and incoming (denoted as 𝑅𝑜𝑢𝑡_ℎ, 𝑅𝑜𝑢𝑡_𝑜, 𝑅𝑖𝑛 and sim-

ilarly for 𝑀 and 𝐹 ), inspired by the approaches in

[4, 10, 22, 23].

∙ Churn-RFM (denoted by 𝑅𝐹𝑀𝑐ℎ), where we calculate

R/F/M variables only with respect to customers who

churned (denoted as 𝑅𝑐ℎ, 𝐹𝑐ℎ,𝑀𝑐ℎ). Hence, in this case,

𝑀𝑐ℎ, for example, represents the total duration of calls

to/from churners. A similar characterization of RFM has

been done in [4, 22, 35].
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B. RFM-Enriched Network Construction
In order to incorporate both interaction information (cap-

tured by RFM features) and latent topologically-sensitive infor-

mation of the network constructed from the CDR, we consider

two directions for network construction:

∙ First, retaining the original call network, while embedding

RFM information as the edge weighting factor (referred

to as RFM-embedded network);

∙ Second, augmenting the original call network with addi-

tional (artificial) nodes corresponding to RFM variables

(referred to as RFM-augmented network).

1) RFM-Embedded Networks: As already mentioned, the

aim in this scenario is to retain the original graph topology

and incorporate RFM information for computing edge weights.

This requires a method for combining RFM features into a

single score, which is not very established in the current RFM

related literature. In fact, except for ranking customers using

the unique RFM score defined as (𝑅∗100)+(𝐹∗10)+𝑀 in [31],

we have not encountered any similar consideration. However,

similarity between nodes can be determined based on the

Euclidean distance between their corresponding vectors, as has

been frequently used in previous works [18, 29]. Hence, we

devise the following four network designs:

∙ Embedded Graph with Summary-RFM Euclidean Dis-

tance Based Weighting (𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

)

In this graph, the weights of the edges are determined

as the inverse of the Euclidean distances between vectors

𝒗∈ℝ𝟛 of corresponding nodes. Here, 𝒗
𝑇 = (𝑅, 𝐹 ,𝑀),

where 𝑅, 𝐹 ,𝑀 are Summary-RFM features for each node

(Summary-RFM explained in III-A).

∙ Embedded Graph with Summary- Plus Churn-RFM

Euclidean Distance Based Weighting (𝐸𝐺𝐸𝑢𝑐𝑙
𝑠+𝑐ℎ)

Here the weights of the edges are determined as

the inverse of the Euclidean distances between

enriched node vectors 𝒗∈ℝ𝟞 of the form

𝒗
𝑇 = (𝑅, 𝐹 ,𝑀,𝑅𝑐ℎ, 𝐹𝑐ℎ,𝑀𝑐ℎ). Here, 𝑅, 𝐹 ,𝑀 represent

Summary-RFM features, while 𝑅𝑐ℎ, 𝐹𝑐ℎ,𝑀𝑐ℎ correspond

to the R/F/M features calculated with respect to a node’s

interaction with churners (Churn-RFM in III-A).

∙ Embedded Graph with Detailed-RFM Euclidean Distance

Based Weighting (𝐸𝐺𝐸𝑢𝑐𝑙
𝑑

)

In this graph, the weights of the edges are deter-

mined as the inverse of the Euclidean distances be-

tween vectors 𝒗∈ℝ𝟡 of the corresponding nodes. In this

case, a vector 𝑣 has nine components, since each of

R/F/M captures a fine-grained information for: incom-

ing (𝑋𝑖𝑛,𝑋∈{𝑅, 𝐹 ,𝑀}), outgoing towards home network

(𝑋𝑜𝑢𝑡_ℎ𝑜𝑚𝑒,𝑋∈{𝑅, 𝐹 ,𝑀}) and outgoing towards other net-

work (𝑋𝑜𝑢𝑡_𝑜𝑡ℎ𝑒𝑟, 𝑋∈{𝑅, 𝐹 ,𝑀}) (Detailed-RFM in III-A).

∙ Embedded Graph with Detailed- Plus Churn-RFM Eu-

clidean Distance Based Weighting (𝐸𝐺𝐸𝑢𝑐𝑙
𝑑+𝑐ℎ)

The weights of the edges in this graph are determined

as the inverse of the Euclidean distances between en-

riched node vectors 𝒗∈ℝ𝟙𝟚, since on top of the pre-

vious 9 components for Detailed-RFM features, we add

𝑅𝑐ℎ, 𝐹𝑐ℎ,𝑀𝑐ℎ, which correspond to the R/F/M features

calculated with respect to a node’s interaction with churn-

ers (Churn-RFM in III-A).

It is worth noticing that due to the preservation of the original

network topology, the computation of similarities is performed

only for those pairs of nodes which are actually connected

(and not for all possible pairs of nodes). This makes it com-

putationally tractable, despite the large size of the networks in

consideration.

2) RFM-Augmented Networks: The second type of net-

works we consider, are likewise built on top of the original

graph. Nevertheless, their final topology differs from the one

of the original graph, since here RFM information is conjoined

in the form of artificial nodes, which are added to the original

graph. To devise the construction of artificial nodes, we follow

the idea frequently used in literature related to customer

segmentation and customer lifetime value modeling, where

customers are usually segmented partitioning each of their

R/F/M variables in five equally-sized groups (corresponding to

very high, high, medium, low, very low) [3, 9, 19]. Inspired by

this approach, we design four different networks, as follows:

∙ Augmented Graph with Summary-RFM Artificial Nodes

(𝐴𝐺𝑠)

In this case, we start with deriving R, F and M features for

each node. Then we partition R, F and M values each into

five quantiles (similar to [3, 9, 19]), and we assign one

new (artificial) node to each quantile, obtaining thus 15

artificial nodes 𝑅𝑖, 𝐹𝑖,𝑀𝑖, where 𝑖∈ {1, 2, ..5}1. Next, we

expand the original graph by adding these new artificial

nodes and connecting each node to exactly one node from

the set of artificial R nodes, exactly one node from the

set of artificial F nodes and exactly one node from the set

of artificial M nodes, based on the appropriate R, F and

M quantiles. In this way, the newly obtained graph has at

most 15 new nodes, but exactly 3 ∗ |𝑉 | more edges than

the original one (with |𝑉 | being number of nodes in the

original graph).

∙ Augmented Graph with one Churn Node and Summary-

RFM Artificial Nodes (𝐴𝐺𝑠+𝑐ℎ)
This graph is exactly the same as 𝐴𝐺𝑠, except that one

additional artificial node representing churn is added, to

which then all the churners are connected. By adding this

node, we try to compensate for the information contained

in churn-RFM related features, which we do not exploit

in this case as we try to keep the number of nodes and

edges in the resulting graph not too large.

∙ Augmented Graph with Detailed-RFM Artificial Nodes

(𝐴𝐺𝑑)

In the two previous cases, RFM is calculated on a

summary level (Summary-RFM), which means that only

one value for each of R, F and M is calculated. Here, we

first derive Detailed-RFM information, calculating each

of R, F, M on a more fine-grained level using direction

1Exceptionally, due to the skewed distribution of R/F/M values, one can
end up having less than five quantiles per R/F/M.
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and destination dimensions to obtain three categories:

incoming, outgoing towards the home network and out-

going towards other networks. Next, we repeat the steps

from 𝐴𝐺𝑠, whereby each of these three categories is

binned into quantiles, thus leading to 45 artificial nodes

which are used to enrich the original graph. As with 𝐴𝐺𝑠,

each node is connected to the appropriate artificial nodes.

The number of additional edges, compared to the original

graph, increases with nine times the original number of

nodes (since each node becomes connected to three more

R artificial nodes - for incoming, home outgoing and other

outgoing, and similarly 3 more per F and per M).

∙ Augmented Graph with one Churn Node and Detailed-

RFM Artificial Nodes (𝐴𝐺𝑑+𝑐ℎ)
Similarly to 𝐴𝐺𝑠+𝑐ℎ, this graph is exactly the same as

𝐴𝐺𝑑 , except for adding one additional artificial node

representing churners, to which then all the churners are

connected.

All constructed networks are considered to be undirected.

This decision is motivated by the fact that our call graph

is sparse, and hence, retaining directed graphs would make

random walks get stuck at sink nodes. In addition, the

preference to undirected call graphs was given as well in

some previous works, where only hand-engineered features

were utilized (without considering random walks) [13]. The

motivation provided there was that, regardless the initiator,

both sides share the same information during interaction.

Additionally, we consider enriched graphs unweighted, for

two different reasons. First, due to a very different nature

between the type of nodes ("real" vs. artificial) in these pseudo-

bipartite2 graphs, it is not easy to determine the corresponding

weights as we would not like to bias the process of walk

generation neither towards "real" nor towards the artificially

added nodes. Second, if we were to make a differentiation

of weights for all the edges in the graph, we would need to

consider potential different weightings towards the artificial

nodes since the RFM-related literature argues weather R/F/M

features should be treated with the same [9] or different

[32] importance. However, in order to not determine these

weightings in an ad-hoc manner, studies do consider them with

equal priority [3, 19]. Furthermore, preliminary experiments

showed that unweighted networks provide better results than

weighted ones, which might stem from wrongly instantiating

the weighted parameters, but in any case setting parameters

would require more computational effort in order to find an

optimal weighting schema.

C. Scalable node2vec-based Representation Learning
For learning node representations, we utilize the node2vec

implementation provided by [5], for which we propose modi-

fications, in order to ensure its scalability on the large graphs

2One type of nodes are "real" nodes stemming from the original graph
and representing customers, while the other are artificial nodes representing
quantiles of R/F/M values. Artificial nodes are indeed mutually disconnected
but "real" nodes can be connected among themselves, hence we call these
networks "pseudo-bipartite".

Fig. 1. An extract from the 𝐴𝐺𝑠+𝑐ℎ network, depicting a 2𝑛𝑑 -level neighbor-
hood of a node 𝑛, with artificial nodes magenta (square), green (diamond)
and blue (octagon) representing R(ecency), F(requency) and M(onetary),
respectively. 𝑅𝑖 corresponds to 𝑖

𝑡ℎ quantile with respect to R(ecency), similarly
for 𝐹𝑖,𝑀𝑖. The artificial node corresponding to churners is denoted with 𝐶𝐻

in red.

that we consider. As already mentioned, node2vec is based on

the SkipGram model from the NLP domain, where, given the

current word, the goal is to predict its surrounding words. The

model aims to maximize the probability of finding the words

from the same context together and bring the representations of

the words from the same context closer than those of the words

found in different contexts. More precisely, if we denote by V

a set of words in vocabulary (or analogically, a set of nodes in

the graph), we are learning a function 𝑓, 𝑓 ∶ 𝑉 − > 𝑅𝑑 such

that

𝑚𝑎𝑥
∑
𝑣∈𝑉

𝑙𝑜𝑔𝑃 𝑟(𝐶𝑣|𝑓 (𝑣))

where 𝐶𝑣 is a context of word (node) 𝑣. This objective function

is further simplified using the independence assumption, while

the conditional likelihood is modeled with a softmax function

in which a computationally expensive normalization factor

is approximated using negative sampling. This procedure is

already explained in detail both in [21] and [5].

Another important aspect is the generation of a context, 𝐶𝑣,

which in NLP setting is straightforward, but in a graph setting

requires more attention. Therefore, different approaches were

used for this purpose in the current literature. Both in node2vec

([5]) and DeepWalk ([27]), fixed-length random walks are

used to generate contexts (neighborhoods). In [27], the next

node in the random walk is determined by uniformly sampling

between the current node neighbors. Unlike this, in node2vec,

random walks are guided by return and in-out parameters 𝑝

and 𝑞, trying to find the best balance between breadth-first and

depth-first sampling strategies. More precisely, if the walk has

reached node 𝑗, coming from node 𝑖, the (unnormalized) tran-

sition probability to continue to node 𝑘 is 𝑤𝑗𝑘,𝑤𝑗𝑘∕𝑝,𝑤𝑗𝑘∕𝑞
if 𝑑𝑖𝑘 equals 1,0,2 respectively, where 𝑤𝑖𝑗 and 𝑑𝑖𝑗 represent
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the weight of the (i,j) edge and the length of shortest path

between nodes 𝑖 and 𝑗 respectively. This obviously requires

precomputing transition probabilities to allow for efficient

sampling afterwards. The sampling procedure itself requires

special attention, since a straightforward sampling procedure

of randomly choosing an element from a sequence of length 𝑛

takes O(n) time, which is costly when 𝑛 is large. Instead, the

alias table sampling method [15], which takes only O(1) time,

is used. The node2vec approach requires constructing two alias

tables, one for nodes and one for edges, since in the beginning,

starting from the initial node, it determines the next node in the

walk based on the node alias tables, while afterwards, it always

decides based on the alias edge table and the edge from which

it has reached the current node. In the case of very large graphs

(with e.g. 40M of edges, as in our case) this approach, in

the provided implementation, turns out to be computationally

unfeasible. Hence, on the contrary to the original node2vec

idea, we decided not to impose any additional parametrization

on random walks except the weights of the adjacent edges. In

other words, once the random walk reaches the node 𝑣, the

probability of moving to its adjacent node 𝑢, is proportional to

normalized weight of the edge (𝑢, 𝑣). Given that we consider

our graphs undirected, it is still possible for a random walk

to return back to the node from which it has arrived, hence

we consider that no special treatment to enforce or impede

backtracking is necessary in our case. This modification allows

for faster walk generation, since it basically means that only

an alias table for the nodes has to be precomputed which

significantly decreases computational time, as will be shown in

the results section. Moreover, we will show that this relaxation

will not deteriorate the predictive performance.

Due to the simpler procedure used for random walk gen-

eration in DeepWalk [27], DeepWalk might look as a good

alternative to node2vec. However, on the contrary to node2vec,

which uses negative sampling for approximating the nor-

malization factor in softmax probabilities while trying to

optimize the objective function in SkipGram, DeepWalk uses

less efficient hierarchical softmax initially suggested in [20].

It is worth mentioning that our edge weight-driven random

walks used for context generation is similar to the incident-

edges-weighted sampling procedure performed in LINE [17].

Nevertheless, the other elements of these two approaches are

significantly different. Namely, in our approach the context

(walk) of full (predefined) length is generated in one pass after

which its representation is learnt by the SkipGram model. On

the contrary, in [17], each context is generated from two parts,

which are constructed independently from first and second-

order neighborhood and additionally, optimized separately

using two different objective functions. While [5] criticizes

previous approaches [17, 27] for not being flexible enough

when it comes to generating contexts through sampling, due

to the fact that there is no unique best performing sampling

and that the way of sampling influences learnt representation,

we have to emphasize that the flexibility of generating ran-

dom walks in node2vec, comes with a high computational

setback, as it requires tuning of return and in-out parameters

and especially for large networks, requires a lot of time for

precomputing transition probabilities.

D. Churn Definition
In the absence of churn labels (except for a very small

number of postpaid customers who ported-out), we define

churners based on the absence of activity, which can be

detected from CDRs. For the customers of month 𝑀 (rep-

resenting our customer base) we aim at predicting which of

them will churn in the month 𝑀+2 (we will refer to this as

"one-month gap" approach). More precisely, the customer who

is active in month 𝑀 , is a churner in month 𝑀+2 if (s)he is

still active in month 𝑀+1 (appears in the CDR for this month)

and has not been in the list of the ported-out customers for

the month 𝑀+1, while not being active in month 𝑀+2 or

has ported-out during the month 𝑀+2.

IV. EXPERIMENTAL SETUP

In this section, we provide brief insights about our datasets,

churn definition, baselines, predictive model, different param-

eterizations and evaluation method used.

A. Data
We perform our experiments on one prepaid and one

postpaid dataset (see Table II), each of which consists of

four consecutive months of CDR data. The only usage type

available in CDRs are calls (no SMS/MMS/GPRS usage), for

which we are provided with (anonymized) information about

caller, callee, as well as the date and the (real) duration of

call. For postpaid customers, we also have information if and

when the customer has ported-out (decided to switch to other

provider while retaining the same phone number), but this is

the case for only a dozen of customers on a monthly level.

Applying the before mentioned churn definition, we end up

TABLE II
STATISTICS OF THE DATASETS.

Measure Prepaid Postpaid

Number of nodes 4303541 4799149

Number of edges 5936423 9246134

Average degree 2.75886 3.85324

Average clustering coefficient 0.05749 0.06939

Number of connected components 138509 27392

Size of maximal clique 7 7

Degree assortativity coefficient -0.00110 -0.02290

Power law coeff. (degree distr.) 1.29164 1.67275

with around 7,5% of churners for the prepaid and 4.5% of

churners for the postpaid dataset.

B. Baseline Methods
We use four different RFM-based baseline methods, as

shown below. We restrain to fairly simple RFM alternatives,

where R/F/M features are calculated using the same definitions

as provided in Section III-A, just applying different slicing

across direction and destination dimensions. These features are
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TABLE III
METHOD NOTATION.

Type of
Information

RFM
Features

Enriched
Graph

Augmented
Graph

Summary 𝑅𝐹𝑀𝑠 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

𝐴𝐺𝑠

Summary+Churn 𝑅𝐹𝑀𝑠+𝑐ℎ 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠+𝑐ℎ 𝐴𝐺𝑠+𝑐ℎ

Detailed 𝑅𝐹𝑀𝑑 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑

𝐴𝐺𝑑

Detailed+Churn 𝑅𝐹𝑀𝑑+𝑐ℎ 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑+𝑐ℎ 𝐴𝐺𝑑+𝑐ℎ

then provided as explanatory variables to a logistic regression

model.

∙ 𝑅𝐹𝑀𝑠: Summary-RFM, which contains only summarized

RFM information, the same as defined in III-A.

∙ 𝑅𝐹𝑀𝑑 : Detailed-RFM, where each of the R/F/M dimen-

sions is sliced into three partitions (as defined in III-A).

∙ 𝑅𝐹𝑀𝑠+𝑐ℎ: Summary-RFM information enriched with the

same variables calculated with respect to churners; hence,

containing all the variables present both in 𝑅𝐹𝑀𝑠 and

𝑅𝐹𝑀𝑐ℎ.

∙ 𝑅𝐹𝑀𝑑+𝑐ℎ: Detailed-RFM information enriched with the

same variables calculated with respect to churners; hence,

containing all the features present in 𝑅𝐹𝑀𝑑 and 𝑅𝐹𝑀𝑐ℎ.

This setup imposes the requirement of considering four

consecutive months of data, since we use information from

month 𝑀−1 to identify to-be-churners in month 𝑀+1, which

are still present in CDR for month 𝑀 and based on which we

can calculate RFM features related to churners.

We would like to emphasize that RFM features can be

derived from data originating from different sources: either

from customer interactions (network features) as described

above, or from the individual (local) features of a customer.

In case of the latter, the monetary value of the customer could

be, for example, calculated as the amount recharged/billed per

month (for prepaid/postpaid respectively) [22]. However, since

in this work our datasets only consist of CDRs, we consider

only RFM features based on customer interactions.

C. Experiments
We perform a set of experiments to help us compare the

following methods (for notation see Table III), categorized in

four comparison scenarios:

∙ 𝑅𝐹𝑀𝑠 vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

vs. 𝐴𝐺𝑠

∙ 𝑅𝐹𝑀𝑠+𝑐ℎ vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠+𝑐ℎ vs. 𝐴𝐺𝑠+𝑐ℎ

∙ 𝑅𝐹𝑀𝑑 vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑

vs. 𝐴𝐺𝑑

∙ 𝑅𝐹𝑀𝑑+𝑐ℎ vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑+𝑐ℎ vs. 𝐴𝐺𝑑+𝑐ℎ

It is important to mention three sets of parameters that

we take into account for our experiments. The first set of

parameters is utilized both by our adaptation of node2vec

and the original node2vec method: number of walks 𝑛 and

walk length 𝑙. We set 𝑛=10 and 𝑙=30 (in [5]: 𝑛=10, but

𝑙=80). The second set of parameters refers to the underlying

SkipGram model and consists of three parameters: the number

of iterations 𝑖, the context window size 𝑠 and the number of

dimensions in the resulting representation 𝑑. For these, we set

𝑖 = 5, 𝑠 = 10 and 𝑑 = 128 (same in [5] except for 𝑖 = 1).

Finally, the last set consists of return parameter 𝑝 and in-

out parameter 𝑞, required only for node2vec. They are both

instantiated to 1 in our experiments.

D. Model and Evaluation Methods
Our predictive models are generated using logistic regres-

sion with 𝑙2 regularization, where the regularization hyper-

parameter was determined using 10-fold cross validation. The

motivation for using logistic regression is two fold. First,

not only churn prediction studies have shown that applying

logistic regression provides comparatively good predictive

performance to some other, more complex, predictive models

[33], but it was also used in studies [5, 27] which demonstrate

that learnt representations perform well even with this fairly

simple predictive technique.

We evaluate our models using AUC and lift scores (at 0.5%),

performing out-of-sample evaluation, as done in [35]. We

also provide an outlook into computational aspects regarding

random walk generation and node representation with respect

to the number of walks.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments

and analyze them from both a predictive and computational

performance perspective.

A. Predictive Performance
The results in terms of AUC and lift (at 0.5%) for Summary-

and Detailed-RFM based approaches are displayed in Tables

IV and V, respectively. Consequently, following are the results

for the four comparison scenarios (mentioned in Section IV-C):

1) 𝑅𝐹𝑀𝑠 vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

vs. 𝐴𝐺𝑠

In terms of AUC, 𝐴𝐺𝑠 performs best, while 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

scores worst, for both datasets (Table IV). The situation

is similar for lift for the postpaid dataset. For the prepaid

dataset, 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

outperforms the other two approaches in

terms of lift, while 𝑅𝐹𝑀𝑠 performs worst.

2) 𝑅𝐹𝑀𝑠+𝑐ℎ vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠+𝑐ℎ vs. 𝐴𝐺𝑠+𝑐ℎ

Similarly as in the previous case, 𝐴𝐺𝑠+𝑐ℎ outperforms the

two other approaches in terms of AUC, while 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠+𝑐ℎ is

the worst (Table IV). In case of lift, 𝐴𝐺𝑠+𝑐ℎ again has the

best performance. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠+𝑐ℎ performs better than 𝑅𝐹𝑀𝑠 for

the prepaid dataset, while the opposite holds for postpaid.

3) 𝑅𝐹𝑀𝑑 vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑

vs. 𝐴𝐺𝑑

In this case, 𝑅𝐹𝑀𝑑 outperforms the other two approaches

both in terms of AUC and lift (at 0.5%) (Table V). On

the other hand, 𝐴𝐺𝑑 outperforms 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑

.

4) 𝑅𝐹𝑀𝑑+𝑐ℎ vs. 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑+𝑐ℎ vs. 𝐴𝐺𝑑+𝑐ℎ

In this case 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑+𝑐ℎ scores the worst in terms of both

AUC and lift, on both datasets. For the prepaid dataset,

𝐴𝐺𝑑+𝑐ℎ outperforms 𝑅𝐹𝑀𝑑+𝑐ℎ in terms of AUC, while

for postpaid the opposite holds.

The overall best performance in terms of AUC is achieved

by 𝐴𝐺𝑠+𝑐ℎ for the postpaid and by 𝐴𝐺𝑑+𝑐ℎ for the prepaid

dataset. Furthermore, augmented network-based results are
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Fig. 2. AUC scores for SkipGram parameter number of iterations 𝑖 instantiated
with 1,5,10,15,20 using 𝐴𝐺𝑠+𝑐ℎ network as an example. AUC scores are stable
for varying 𝑖.

always better than the embedded network-based ones. Ad-

ditionally, in case of both datasets, augmenting with churn

information seems most important. Surprisingly, augmenting

with Detailed-RFM does not remarkably improve predictive

performance (as compared to augmenting with Summary-

RFM), although Detailed-RFM outperforms other baselines.

Original node2vec for 𝑝=𝑞=1 and our adaptation s-node2vec
yield very similar performances. It is worth mentioning that

the regularization hyper-parameter in the logistic regression

model is tuned as to maximize average AUC score across 10

folds, hence it is not optimized for lift.

Performance is stable regardless of the number of iterations

in the SkipGram model as illustrated in Figure 2 for 𝐴𝐺𝑠+𝑐ℎ.

B. Computational Performance
Due to a large number of parameters that would have to

be taken into account for a thorough computational analysis

across different methods, we restrain ourselves to providing the

outlook into computational performance. Figure 3 shows the

computational time needed to generate random walks using the

original node2vec approach (in the available implementation,

setting 𝑝=𝑞=1) and our adaptation, throughout different em-

bedded networks. The computational efficiency of our method

is obvious. Moreover, generation of random walks with the

original node2vec method was not feasible for augmented

networks within a reasonable time frame (24h). Therefore,

these are omitted from this analysis.

VI. DISCUSSION

It can be hypothesized that the performance comparability

of our representation learning approach and the node2vec

approach is purely empirically verified, requiring a complete

grid search fine-tuning of return and in-out parameters 𝑝 and

𝑞 to be performed. However, we strongly believe that there

Fig. 3. Computational time needed for random walk generation with the
original node2vec approach and our adaptation across different network
designs.

are grounded reasons for the obtained results. Namely, we

would like to remind the reader that the main motivation for

using parameters 𝑝 and 𝑞 in node2vec was to guide walks

to better account for homophily and structural equivalence.

Homophily refers to the concept that similar people (in this

case, nodes) tend to connect to those who they perceive as

similar. The idea behind the SkipGram model, used to learn

node representations in node2vec, is essentially the same as it

hypothesizes that similar words (again, nodes in this setting)

appear in similar contexts. Hence, we strongly believe that,

for a sufficient number of walks, the SkipGram architecture

itself can produce a similar (if not even a better) effect as

the one achieved by force-steering random walks in certain

directions. Another potential reason for not losing predictive

power despite the significant simplification in our approach

might be the fact that for churn prediction in particular

structural equivalence is of much less importance. Indeed,

while there are previous works [34] which make a connection

between churn prediction in telco and homophily, to the best

of our knowledge, there are none which mention something

similar for structural equivalence.

Additionally, we would like to emphasize that our method

achieved similar performance in terms of AUC as the original

node2vec approach, despite the fact that we were using shorter

walk lengths (30 vs. 80, as used in [5]). The value of

parameters differing from the original node2vec setting (𝑙=30

and 𝑖=5) were discovered through experimental evaluation.

Furthermore, we would like to mention that using a com-

bination of defined RFM-based (interaction) and several ad-

hoc structural features as a baseline, was not possible due to

the computational intractability of e.g. closeness centrality and

betweenneess centrality.

Finally, observe that we aimed at predicting churners in
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TABLE IV
COMPARISON IN TERMS OF AUC AND LIFT (AT 0.5%) BETWEEN BASELINES (𝑅𝐹𝑀𝑠 AND 𝑅𝐹𝑀𝑠+𝑐ℎ), ORIGINAL NODE2VEC 𝑛2𝑣 AND OUR SCALABLE

ADAPTATION (DENOTED AS 𝑠−𝑛2𝑣) ACROSS NETWORK DESIGNS 𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

, 𝐴𝐺𝑠, 𝐸𝐺
𝐸𝑢𝑐𝑙
𝑠+𝑐ℎ, 𝐴𝐺𝑠+𝑐ℎ BASED ON SUMMARY-RFM FEATURES. SYMBOL "-"

DENOTES THAT RANDOM WALKS COULD NOT BE CALCULATED WITHIN A REASONABLE TIME FRAME. THE BEST SCORES PER SCENARIO ARE MARKED IN BOLD.

Dataset
𝑅𝐹𝑀𝑠

𝐸𝐺𝐸𝑢𝑐𝑙
𝑠

𝐴𝐺𝑠 𝑅𝐹𝑀𝑠+𝑐ℎ
𝐸𝐺𝐸𝑢𝑐𝑙

𝑠+𝑐ℎ 𝐴𝐺𝑠+𝑐ℎ
n2v s-n2v n2v s-n2v n2v s-n2v n2v s-n2v

AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift

Prepaid 0.668 1.993 0.636 2.182 0.636 2.165 - - 0.679 2.070 0.669 1.995 0.633 2.133 0.635 2.106 - - 0.698 2.439
Postpaid 0.726 3.784 0.669 3.553 0.668 3.579 - - 0.748 4.153 0.727 3.779 0.664 3.292 0.663 3.289 - - 0.748 4.430

TABLE V
COMPARISON IN TERMS OF AUC AND LIFT (AT 0.5%) BETWEEN BASELINES (𝑅𝐹𝑀𝑑 AND 𝑅𝐹𝑀𝑑+𝑐ℎ), ORIGINAL NODE2VEC 𝑛2𝑣 AND OUR SCALABLE

ADAPTATION (DENOTED AS 𝑠−𝑛2𝑣) ACROSS NETWORK DESIGNS 𝐸𝐺𝐸𝑢𝑐𝑙
𝑑

, 𝐴𝐺𝑑 , 𝐸𝐺
𝐸𝑢𝑐𝑙
𝑑+𝑐ℎ, 𝐴𝐺𝑑+𝑐ℎ BASED ON DETAILED-RFM FEATURES. SYMBOL "-"

DENOTES THAT RANDOM WALKS COULD NOT BE CALCULATED WITHIN A REASONABLE TIME FRAME. THE BEST SCORES PER SCENARIO ARE MARKED IN BOLD.

Dataset
𝑅𝐹𝑀𝑑

𝐸𝐺𝐸𝑢𝑐𝑙
𝑑

𝐴𝐺𝑑 𝑅𝐹𝑀𝑑+𝑐ℎ
𝐸𝐺𝐸𝑢𝑐𝑙

𝑑+𝑐ℎ 𝐴𝐺𝑑+𝑐ℎ
n2v s-n2v n2v s-n2v n2v s-n2v n2v s-n2v

AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift AUC lift

Prepaid 0.687 2.087 0.625 1.937 0.628 1.954 - - 0.666 1.953 0.686 2.087 0.626 1.933 0.624 1.926 - - 0.699 2.500
Postpaid 0.744 4.322 0.586 1.954 0.583 1.905 - - 0.732 3.792 0.744 4.322 0.585 1.981 0.583 1.916 - - 0.733 3.922

month 𝑀+2 (a "one-month gap" approach) in order to make

prediction more in-time and hence, more valuable from a

business perspective. However, due to the fact that we use

data in month 𝑀+1 to identify churners, we are actually in a

position to make a prediction only for the next month, which,

nevertheless, coincides with standard approaches [7, 34].

VII. CONCLUSION

The contributions of this paper are four-fold. First, we de-

sign RFM-enriched extensions of original graphs which enable

conjoining both interaction and structural information. Second,

we adapt the original node2vec approach to relax random

walk generation and grid search tuning for two additional

parameters, making it scalable for very large graphs. Third,

conducted experiments showcase the performance benefits

which stem from constructing RFM-augmented networks and

learning node representations from these. Finally, this study is

the first both in using node representations in CDR graphs for

churn prediction and in applying the RFM framework together

with unsupervised learning of node representations, in general.

This work is a preliminary study which inspires a series of

interesting research questions. For our future work, we would

like to explore how different ways of creating artificial nodes

influence the predictive performance, as well as the effects

that various similarity measures might have for the RFM-

embedded networks. We are interested in a more profound

analysis of the weak performance obtained using fine-grained

RFM enriched networks. Additionally, it would be interesting

to see whether the change in parameters, that is, the number of

walks and walk length, would lead to an increase in AUC/lift

scores. Finally, determining what impact a particular selection

of random walk has on capturing homophily and structural

equivalence phenomena in networks is still an open question.
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