
Real-time Distributed In-Situ Benchmarking of Energy
Harvesting IoT Devices

Ashok Samraj Thangarajan
imec-DistriNet, KU Leuven

ashoksamraj.thangarajan@cs.kuleuven.be

Fan Yang
imec-DistriNet, KU Leuven
fan.yang@cs.kuleuven.be

Wouter Joosen
imec-DistriNet, KU Leuven

wouter.joosen@cs.kuleuven.be

Danny Hughes
imec-DistriNet, KU Leuven

danny.hughes@cs.kuleuven.be

ABSTRACT
The deployment of Internet of Things (IoT) devices is accelerating
across a wide range of applications. The majority of today’s IoT
devices are powered by batteries that can operate for a maximum of
a few years, after which they need to be replaced. This introduces
two problems. First, the effort that is required to manually replace
batteries cannot economically scale to support the next billion IoT
devices. Secondly, treating billions of toxic batteries as disposable
is not environmentally friendly. Together, these problems form a
critical road-block in deploying IoT solutions. The biggest prob-
lem facing the designers of IoT applications is ensuring that their
application software is energy efficient enough to operate within
the strict power envelope that is provided by batteries or energy
harvesting hardware. In this paper, we tackle this problem through
the introduction of a distributed benchmarking middleware that
rapidly and accurately quantifies the power consumption of differ-
ent software configurations. Critically, our middleware operates in
real-time across a distributed network of devices, allowing devel-
opers to experiment with code changes at runtime. This makes it
significantly easier for developers to write applications that operate
within the power constraints of batteries or energy harvesting sys-
tems. We evaluate our approach on a real world energy harvesting
testbed and demonstrate that benchmarking results are accurate,
with limited overhead for developers.

CCS CONCEPTS
• Networks → Network measurement; Middle boxes / network
appliances; Network performance analysis; Network manageability;

KEYWORDS
Internet of Things (IoT), Energy Harvesting, Benchmarking, Self
Adaptive Networks, Industrial IoT Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
M4IoT’18, December 10–11, 2018, Rennes, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6118-7/18/12. . . $15.00
https://doi.org/10.1145/3286719.3286724

ACM Reference Format:
Ashok Samraj Thangarajan, Fan Yang, Wouter Joosen, and Danny Hughes.
2018. Real-time Distributed In-Situ Benchmarking of Energy Harvesting
IoT Devices. In 5th Workshop on Middleware and Applications for the Internet
of Things (M4IoT’18), December 10–11, 2018, Rennes, France. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3286719.3286724

1 INTRODUCTION
The adoption of IoT across domains such as smart cities, e-health
and manufacturing is occurring at an estimated rate of 127 devices
every second [20]. Analysts claim that in the year 2020, the number
of deployed IoT devices will exceed 20 billion [1]. The rapid penetra-
tion of the IoT has increased comfort with smart devices, enhanced
safety in medical and automotive domains, and improved efficiency
in industries with predictive and condition based maintenance, thus
delivering great economic benefits [18].

The majority of IoT devices are estimated to last for between
a few months and a year [1]. Energy harvesting IoT devices offer
great potential in this space. It is therefore critical that IoT applica-
tion developers are supported in measuring energy efficiency. On
the platform side, S. Sudevalayam et al. [28] categorized the energy
harvesting platforms into two major types namely, (i) Harvest-
Use and (ii) Harvest-Store-Use. Although some IoT devices work
based on a single hop star routing approach, many IoT deployments
(e.g.industrial IoT solutions) require the end nodes to be part of a
network which performs muti-hop routing. Such kind of networks,
cannot rely on Harvest-Use architectures, because of the uncontrol-
lable and unpredictable nature of most energy harvesting sources.
They instead use a storage medium like battery or a supercapacitor
[22, 26, 27, 29] and sometimes even a multi-tier energy storage ar-
chitecture [12, 19]. It is proven in this research landscape, that the
best way to get tens of years of deploy-and-forget IoT networks, in
an environmentally friendly way [31] is by using supercapacitors
and a multi-tier energy storage architecture to ensure reliable en-
ergy supply to the IoT devices. This introduces high dynamism and
many more parameters that effect the system. Given the architec-
tural complexity of multi-tier storage systems, the benchmarking
scheme should be able to handle this complexity.

Most of the IoT systems are distributed in nature, and their
network and device specific parameters are distributed across the
entire network. All of these parameters effect the way in which
the networks perform. Moreover, reproducing the uncontrollable
environment dynamism in a lab environment is very difficult. To
benchmark such a system, all of the parameters must be made

19

https://doi.org/10.1145/3286719.3286724
https://doi.org/10.1145/3286719.3286724

M4IoT’18, December 10–11, 2018, Rennes, France A. S. Thangarajan et al.

available to the user and the benchmarking should be able to deliver
real-time results from field deployments.

It is in fact common that after IoT networks are deployed, their
field applications are expanded through over the air (OTA) updates.
Although developers test the applications during development, it
is difficult to say that the performance of the application will be
the same on a field-deployment. There are problems similar to
those explained in Tragedy of the Coulombs [7], were a specific
component like reading a sensor or a specific behaviour in the
software, which when triggered by field specific events, turns out
to be power hungry exhausting all the available energy. This makes
it essential to benchmark the software after deployment, in the field
and on a real-time basis, for application specific parameters.

In this paper, we treat all three of the problems discussed above
by introducing a middleware that offers the: (i) ability to handle
complex energy harvesting architectures, (ii) benchmarking for
distributed parameters across the network in real-time, (iii) bench-
marking during development and after OTA updates in field de-
ployments. The framework acquires network parameters that are
distributed across the end-points and delivers it for analysis, in tan-
dem with the network information available in the gateways. The
output of this acquisition is a set of modifiable network parameters
that can be assigned to the end-points without affecting the net-
work stability. The framework then gathers statistical data on the
energy profile of the devices against various network parameters.

The remainder of the paper is organized as follows, in the next
Section 2 we discuss related work and highlight the gap that this
framework fulfills. Section 3 provides a high level architecture of
the framework. Design and implementation of the framework is
discussed in Section 4. Section 5 presents the evaluation platform
and a use case study from a real-world deployment. In Section 6, we
discuss two areas of research that we intent to focus on following
this work. Finally, Section 7 presents concluding remarks.

2 RELATEDWORK
Kruger et al. [13] present a micro and macro benchmarking scheme
in their paper, however this was done to evaluate the suitability
of commercial components such as Raspberry Pi and BeagleBone
as IoT gateways. A benchmarking of IoT middlewares were done
by Cardoso et al. [4] which facilates selection of appropriate IoT
middleware that is suitable for a particular deployment. In contrast,
we focus on enabling development and network maintenance team
with better benchmarking tools. Hardware-level power analysis
[15], focusses on components of CPU’s and not on the network as a
whole. Simulators for TinyOS called TOSSIM [17] and its extension
powerTOSSIM [25] were presented, together they can estimate
energy consumption using an abstract model of a Mica2 sensor
node running on x86. Titzer et al. [30] presented Avrora, a simulator
that can simulate sensor network code at machine level like ATEMU
[21] and at the same time scalable like TOSSIM. AEON [16] builds
upon Avrora and delivers energy consumption of the node and
the network based on real development code. Gaglione et al. [6]
demonstrated developing a battery-free kinetic energy harvester,
based on vibration data collected from a bridge and simulating and
benchmarking in a laboratory environment using the collected data.
Ritter et al. [23] use supercapacitors and software instrumentation

to estimate lifetime of end-nodes in a laboratory set up and compare
it against previously developed mathematical models.

Some of the solutions discussed above delivers very fine grained
results, but most of these are simulations. Few others, were done on
a laboratory set up, or with previously collected model data of the
energy harvesting environment. We believe that, after the initial de-
ployments a component level energy profiling on individual nodes
is unnecessary. What we consider as a necessity for developers and
network maintenance teams is a tool for evaluating their changes
in-situ, and deliver real-time results from continuous testing with
minimal effort and time. Additionally, by enabling real-time evalu-
ation on field deployments, the framework facilitates Agile [2] like
development methodology, with continuous delivery of application
software on end-nodes with field test results, after every newly
deployed firmware.

3 FRAMEWORK ARCHITECTURE
Architectures that facilitate a generic approach to energy measure-
ment on IoT networks that support energy harvesting end-nodes
must meet three guidelines: (i) Able to measure energy consump-
tion against local and global network parameters, end-node param-
eters and application specific parameters (ii) Able to benchmark
end-nodes on live deployments remotely without degrading perfor-
mance and (iii) Able to handle complexities that arise frommulti-tier
energy harvesting architectures. We have ensured that the guide-
lines are followed by the architecture of the framework and the
delivered result covers all the parameters that impacts energy con-
sumption, some of which shall be discussed in the evaluation of the
framework.

3.1 Sub-Component Architecture
Our design, targets a traditional three layer IoT platform, that in-
cludes end-nodes for sensing and actuation, gateways to channel
the messages from end-nodes to the back-end, and a back-end plat-
form for data storage and analysis. The end-nodes and gateways
are linked by some form of wireless technology, which may range
from LPWAN links like LoRa and SigFox to short range wireless
links like Bluetooth, ZigBee, Smart Mesh IP. In such a three layered
IoT network, we assume that there are a wide range of network
parameters, distributed across the end-nodes and the gateway. It is
a co-operation of all the parameters that maintains these networks
optimally. In the case of energy harvesting, it is essential that all of
these parameters are better understood, and are made available at a
central point on this network for monitoring and good control. This
framework delivers upon all of these requirements with a multi-tier
architecture as seen in Figure 1.

3.1.1 Tier-I: End Nodes. The first tier represents the end-nodes,
that holds local network parameters, along with some device spe-
cific parameters that can be tuned to deliver better energy effeciency.
In this tier, we have designed three components on top of the net-
work stack and the device configurations using the SDK.
(a) Network Control Application (NCA)
(b) Sensor Data Processor (SDP)
(c) Control Interface (CI)
The Network Control Application establishes the initial connection
and is responsible for maintaining the connection. The Sensor Data

20

Real-time Distributed In-Situ Benchmarking of Energy Harvesting IoT Devices M4IoT’18, December 10–11, 2018, Rennes, France

Network!

Stack

Application!Run-time!

Environment

Network!

Control!

Application!

(NCA)

Sensor!Data!

Processor!

(SDP)

Development!SDK

Control!Interface!(CI)

End-Nodes

Tier – II Tier – III

Network!Manager

Network!Manager!SDK

Application!Run-time!

Environment

Controller!Probe!(CP)

Control!Data!

Adaptor!

(CDA)

Control!

Data!Parser!

(CDP)

Data!Representation!Tools

Sensor!and!Control!Database

Benchmarking!Data!

Representation!(BDR)

Benchmarking!Queries!(BQ)

Assumed!to!be!available!as!

part!of!IoT!network!

development!kit

Adapted!for!the!framework!or!

the!framework!uses!it!at!run-

time!for!storage/configurations

Developed!for!the!purpose!of!

the!framework!or!as!enablers!

for!the!framework

Device!

Configuration

Tier – I

Gateway Back-end

Figure 1: Architecture of the in-situ energy benchmarking framework.

Processor is an enabler in the framework to deliver energy related
sensor information (battery usage, current battery level, tempera-
ture etc.), when it receives commands from the Control Interface.
The Control Interface is the manager of the framework from end-
nodes side, that provides a set of services to other external interfaces.
External interface in the context of Control Interface are other sub-
modules deployed within the end-node and devices accessing its
services through the network (e.g. gateway). This provides flexi-
bility in the framework to either control the benchmarking from
within the end-nodes or from the gateway. However, running the
complete benchmarking on the end-nodes incurs energy cost, that
has to be kept low and as a known bounded value. Considering this
aspect, the three tier solution is established, as a result of which the
energy cost of running the benchmarking itself is kept negligible,
and the cost incurred in transmitting benchmarking data is used
for calculating the energy profile.

3.1.2 Tier-II: Gateway. The second tier consists of
(a) Controller Probe (CP)
(b) Control Data Parser (CDP)
(c) Control Data Adaptor (CDA)
The following was taken in to consideration when designing the
Controller Probe (i) Has the ability to exploit global parameters of
the network (ii) Has the capability to query and manipulate local
network and devices parameters of the end-node (iii) Run the con-
trol logic to generate the benchmarking parameters in tandem with
backend. The Control Data Parser as the name suggests, basically is
a parser that receives the data from the network and converts it to
a format understandable by the backend. The Control Data Adaptor
bundles data and uploads it to the database.

3.1.3 Tier-III: Back-end. The third tier has two submodules, which
are:
(a) Benchmarking Queries (BQ)
(b) Benchmarking Data Representation (BDR)
Benchmarking Queries exposes a set of API’s, using which a set of
queries are run over the data from Sensor and Control Database.
The Benchmarking Data Representation is essentially a data repre-
sentation module that shows the transformed data, that are queried
using the Benchmarking Queries, in the form of charts and graphs
that enables better data comparison methods. It is important to note
that the Benchmarking Queries and Benchmarking Data Representa-
tion works together to present the data in an user-understandable
format. Hence, these two modules can be designed or selected in
such a way that a single module transforms and presents the data.
This layer is also designed in such a way that it features a plugin-
like capability. To enable this, the data is posted using Message
Queuing Telemetry Transport (MQTT), streamed via webserver
and REST API’s are exposed for the plugin’s to query for informa-
tion. If the user wants to do some form of transformation of the data
(e.g. forecasting) in real-time or at a later stage, this can be done
by writing their own transformation functions over data received
from one of the methods given above. This feature is exploited in
Section 5 for an usecase study.

4 DESIGN OF THE FRAMEWORK
4.1 Benchmarking Application Software
For the purpose of this design and implementation, let’s assume
ENi is the end-node instance and GWj is the gateway instance, that

21

M4IoT’18, December 10–11, 2018, Rennes, France A. S. Thangarajan et al.

runs their respective portions of the benchmarking software. The
description below follows the modules depicted in Figure 1.

4.1.1 Tier-I. Consider ENi is powered up for the first time, it starts
searching for the network advertisements beacons from the GW.
Once a network is identified, the NCA triggers a join request that
results in the network stack, negotiating an optimal connection and
placement of the ENi in the network. This network is continually
optimized by the GW during its lifetime, to achieve best in class
performance. The NCA is also responsible for re-negotiating the
connection, in case of a connection drop.

The CI was implemented as a request-response based message
exchange entity, which delivers a set of services that can be used by
sub-modules within the ENi or by other network entities like the
GW. The CI delivers good control on individual parameters and do
not directly work on completing a request. That responsibility lies
with either the sub-modules or the GW (as in our case) whoever is
weilding control of ENi through the CI.

The SDP is exercised by the CI to sample sensor data, at the rate
in which CI needs, packages data into a format requested by CI and
pushes it into the network or a specific target set by the CI.

4.1.2 Tier-II. The CP in GWj interfaces with the CI of the ENi
for control and data to manage the benchmarking framework. CP
configures the framework according to user requirements and com-
mands the CI to deliver relevant data to the framework.

When ENi receives command from CP to transmit data, it asyn-
chronously transmits the data, which is received by the CDP and
parsed in such a way that the data can be loaded on to a database.
Based on whether the data is to be used for benchmarking or for
decision making in the benchmarking process, the data is either
pushed to a database or passed to CP. The CP receives data and
adjusts the benchmarking parameters to closely match the user
requirements.

The parsed data from the CDP is passed to the CDA. The task
of the CDA is to package this data and pass it to the backend in an
interface that is required by the server.

4.1.3 Tier-III. The CDA pushes data from ENi to the database.
Specific queries are written to pull relevant measurement data
from the database to be represented graphically. These queries are
represented by the BQ and graphical representation is delivered by
the BDR. Additionally, as discussed in the Section 3.1.3, this layer
features a plugin architecture. To exploit this, we intent to force
the system to work only on supercapacitor, and write a plugin to
forecast the data for the rest of operating range of the hardware,
with a minimum training data set obtained from the voltage drop
of capacitor. However, users of the framework, can either use the
queries within the BQ, or can develop their own plugin, or they can
use both for analysis.

The raw value from the capacitor drop over time will have lot
of residuals. So an initial smoothing of the value has to be done
before the data is used by the plugin. To keep this initial smoothing
simple, we did a moving average over a specific window that we
calculated, the proof of which, is as follows. Given a sequence:

{Xi }
N
i=1, N = number of data points

Moving average of the sequence defined with a window n is
{Si }

(N−n)+1
i=1

{Si } =
1
n
∑i+n−1
j=1 X j

So the moving average sequence is represented as:
Sn = { 1n

∑i+n−1
j=i X j }

(N−n)+1
i=1

The window n of simple moving average is obtained from the equa-
tion

n = {max(Xi+1,Xi)}Ni=1

4.2 Achieving the Design Objectives
In the architecture section, we discussed three guidelines behind
which this framework is designed. Here we will take these guide-
lines one-by-one and analyze how these objectives are achieved by
the framework.

The CI and CP discussed in Sections 4.1.1 and 4.1.2 respectively,
is able to query and modify device specific, local and global network
parameters on behalf of sub-modules within the IoT device or from
other devices that are in the same network. The CP and CI does this
in such a way, so as to not threaten the stability of the network, thus
delivering an in-situ benchmarking capability withminimal support
required from the user of the benchmarking framework. Together
with this and an algorithm to sequencially modify these parameters
and generate energy profile of the devices, we achieve the two of the
three design objectives. To handle complexities arising from multi-
tier energy harvesting architectures, the middleware parameterizes
all the power states, the operating mode, conditions and capacity
of both the supercapacitor and the battery. By doing this all of the
parameters that affects the network even in a complex architecture,
can be benchmarked and monitored remotely.

5 EVALUATION PLATFORM AND USE CASE
STUDY

5.1 Evaluation platform
5.1.1 Hardware. We selected the representative LTC5800 from
ADI [10] as our IoT end-node. The LTC5800 is an IETF Class-1
device [3] which is implemented as a System-on-Chip (SoC) that
integrates a low power 2.4 GHz IEEE 802.15.4e radio with a 20MHz
ARM Cortex-M3 32-bit microprocessor, with 12KB RAM and 32KB
flash memory available for applications. The LTC5800-IPM con-
sumes 800 nA in deep-sleep mode, 1.3 mA in active mode, 4.5 mA
when receiving a packet and 9.7 mA when transmitting a packet.
For the energy harvesting, a two staged storage approach was
followed with a super-capacitor as primary supply and a battery
for back-up. The battery output is regulated through a coulomb
counter [9], which is used to measure the charge consumed, when
the microcontroller is powered by battery. An analog multiplexer
[8], that is controlled by a sub-module of the software framework,
provides the following capabilities: (i) Switch on/off charging via
solar panel (ii) Switch from battery to supercapacitor and vice-versa
(iii) Measure the supercapacitor charge using the ADC when its not
powering the board. For the gateway, we used the same LTC5800 in
network manager mode, connected it via UART to an Intel Edison
platform [5].

5.1.2 Basic Software. The LTC5800 EN is a 6LoWPAN device,
which supports IPv6 and communicates with the gateway using the

22

Real-time Distributed In-Situ Benchmarking of Energy Harvesting IoT Devices M4IoT’18, December 10–11, 2018, Rennes, France

Constrained Application Protocol (CoAP) over User Datagram Pro-
tocol (UDP). The end-node runs SmartMesh-IP stack overMicrium’s
µCOS-II real-time operating system on the ARM Cortex-M3 core.
The application on the end-node side, that realises the framework
runs on this chip. On the GW side, the Intel Edison platform runs
embedded Linux, over which the control algorithms are developed.
For the backend, we configured a server with a time series database
influxDB [11] to store data and Grafana [14], an open source time
series analytics platform as the graphical representation tool.

5.2 Case Study
For the evaluation, we built a network that has 35 end-nodes con-
nected to a gateway. Two of the nodes were energy harvesting
nodes, that we ran our experiments on, and the remaining nodes
provide scale. The end-nodes were deployed across three floors of
a five floor building. We evaluated our benchmarking framework
based on its ability to quantify changes to the following parameters:
(a) With default parameters
(b) With routing off (default on)
(c) With join duty cycle as 255 (default 64)
(d) With antenna gain 8 (default 2)

For the purpose of evaluation, packets that send the voltage infor-
mation to the gateway were used to simulate sensor data sampling
rate. For all the experiments the sampling rate was set to 2 seconds.
Every experiment was run from a voltage drop in capacitance from
3.7V to 2.4V. Below 2.4V there were inconsistencies in the way
different hardwares went to poweroff due to low voltage. Hence a
lower bound of 2.4V was selected to ensure consistency across all
the measurements.

For the case study, we developed a plugin for the framework,
that provides a way to forecast the data with a minimal data set. To
achieve this, first we forced the system to operate on the superca-
pacitor, then we monitored the voltage drop due to the change in
parameters mentioned above. We then took a minimal data set and
forecasted the rest of the data. By doing this, we can reduce the
time and hence drastically reduce the duration over which we run
benchmarking. Selection of the forecasting algorithm is more of
an empirical method, the explanation is as follows. It is important
to note that, using the framework’s plugin architecture, the user
can select any data transformation method to work out their needs.
We tried forecasting using linear regression, gaussian process re-
gression, however the below approach seems to best suit our data
set.

To determine the forecasting algorithm, we ran experiments
with a sample application that sends sensor data every 10 seconds.
Along with the sensor data, we packed the capacitor voltage, this
ensures there is not much overhead for sending energy data, other
than the additional five bytes of voltage and an one byte identifier.
We used the BQ and BDR to plot the capacitor voltage drop over
time. The capacitor voltage exhibited a downward trend and an
additive seasonality, that were reminiscent of Holt-Winters (HW)
exponential smoothing [24]. For the α , β and γ values of the HW
forecasting, we allowed the algorithm to select the values, to yield
best results.

0 250 500 750 1000

Relative time (Sec)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

F
o

re
ca

st
ed

 C
ap

 V
o

lt
ag

e
(V

)

2.6

2.8

3.0

3.2

3.4

3.6

C
ap

 V
o

lt
ag

e
(V

)

(a) Training Data 200

0 250 500 750 1000
Relative time (Sec)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

F
o

re
ca

st
ed

 C
ap

 V
o

lt
ag

e
(V

)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

C
ap

 V
o

lt
ag

e
(V

)

(b) Training Data 400

Figure 2: Forecasts with Two Different Training Data
Ranges.

End-Node Modified Parameter MAPE

EN1

Default Parameters 0.49576

Routing OFF 1.03798

Join Duty Cycle = 255 0.53191

Antenna Gain = 8 1.01371

EN2

Default Parameters 0.77386

Routing OFF 0.60651

Join Duty Cycle = 255 1.47794

Antenna Gain = 8 0.76909
Table 1: MAPE on Forecasts for all Parameter Changes with
Odp = 150

To verify the correctness of the forecasting, from one complete
set of experimental data, we extracted few data points and fore-
casted the rest, and plotted it against the actual data to get a good
comparison. In Figure 2, we have shown two images with a total
data point of 545 and training data of 200 and 400 data points, and
compared it with the actual data. The red line shows the forecasted
data and the blue line shows the actual data. It is seen that as the
amount of forecasting data grows, the red line, more closely fol-
lows the blue line. Note that in the figure, for simplicity, voltage is
plotted against relative time, with time at start of experiment as 0
and voltage is collected every 2 seconds.

By experimentation, we selected an optimal number of training
data points (Odp) required for forecasting. Then we used the ob-
tained Odp to forecast for the rest of the experimental data. With
calculated Mean Absolute Percentage Error (MAPE) values for all
the forecasted data, we derived the accuracy of forecasting as shown
in Table 1. The possibilities with this framework are many, and this
case study shows one possible method to use the framework and
its plugin architecture.

6 FUTUREWORK
Our future work will focus on exploring areas of continuous self-
benchmarking, that assists decision making for self-adaptive algo-
rithms, for delivery of optimal energy performance of IoT networks.
Gathering data to a central location incurs energy cost, which in-
creases as the amount of data increases. So we will explore methods

23

M4IoT’18, December 10–11, 2018, Rennes, France A. S. Thangarajan et al.

for optimizing data handling such as data compression schemes or
posting data using, unused fields of mandatory network messages.

7 CONCLUSION
As we move towards energy harvesting IoT devices, the need to
benchmark and test the devices on live networks increase, due
to the dynamism of the sources from where energy is harvested.
We have presented a novel approach for real-time, in-situ bench-
marking of energy harvesting devices. The framework discussed
in the paper delivers on a method to benchmark live networks,
benchmark against all the available local and global parameters of
the network and device specific parameters that can be remotely
controlled. A case study of the plugin architecture was presented
with Holt-Winters forecasting algorithm. The framework can be
used to benchmark the end-nodes, against a wide range of network
and IoT device specific parameters, with little to no dependency
on the energy harvesting architectures and can gracefully handle
complex energy harvesting architectures. The framework essen-
tially enables developers to continuously test their deliveries and
updates, and network maintenance teams to fine tune the network
with real-time, in-situ benchmarking results.

REFERENCES
[1] 7, February 2017. 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31

Percent From 2016. Gartner Press Relese (7, February 2017). https://www.gartner.
com/newsroom/id/3598917

[2] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. 2001. Manifesto for agile software development. (2001).

[3] C. Bormann, M. Ersue, and A. Keranen. 2014. Terminology for Constrained-Node
Networks. RFC 7228. IETF. http://www.rfc-editor.org/rfc/rfc7228.txt

[4] João Cardoso, Carlos Pereira, AnaAguiar, and RicardoMorla. 2017. Benchmarking
IoTmiddleware platforms. InAWorld ofWireless, Mobile andMultimedia Networks
(WoWMoM), 2017 IEEE 18th International Symposium on. IEEE, 1–7.

[5] Intel Corporation. 2016. Intel Edison Compute Module Datasheet.
https://www.intel.com/content/dam/support/us/en/documents/edison/sb/
edison-module_HG_331189.pdf

[6] Andrea Gaglione, David Rodenas-Herraiz, Yu Jia, Sarfraz Nawaz, Emmanuelle
Arroyo, Cecilia Mascolo, Kenichi Soga, and Ashwin Sheshia. 2018. Energy neutral
operation of vibration energy-harvesting sensor networks for bridge applications.
In Proceedings of the 2018 International Conference on Embedded Wireless Systems
and Networks (EWSN ’18).

[7] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. 2015. Tragedy of the Coulombs:
Federating Energy Storage for Tiny, Intermittently-Powered Sensors. In Proceed-
ings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys
’15). ACM, New York, NY, USA, 5–16. https://doi.org/10.1145/2809695.2809707

[8] Analog Devices Inc. 2018. ADG811 Datasheet. http://www.analog.com/media/
en/technical-documentation/data-sheets/ADG811_812.pdf

[9] Analog Devices Inc. 2018. LTC3335 Datasheet. http://www.analog.com/media/
en/technical-documentation/data-sheets/3335f.pdf

[10] Analog Devices Inc. 2018. LTC5800 Datasheet. http://www.analog.com/media/
en/technical-documentation/data-sheets/5800ipmfa.pdf

[11] InfluxData. 2018. InfluxDB - Getting Started. https://docs.influxdata.com/
influxdb/v1.6/introduction/getting-started/

[12] X. Jiang, J. Polastre, and D. Culler. 2005. Perpetual environmentally powered
sensor networks. In IPSN 2005. Fourth International Symposium on Information
Processing in Sensor Networks, 2005. 463–468. https://doi.org/10.1109/IPSN.2005.
1440974

[13] Carel P Kruger and Gerhard P Hancke. 2014. Benchmarking Internet of things
devices. In Industrial Informatics (INDIN), 2014 12th IEEE International Conference
on. IEEE, 611–616.

[14] Grafana Labs. 2018. Grafana - Getting Started. http://docs.grafana.org/guides/
getting_started/

[15] Paul E Landman and Jan M Rabaey. 1996. Activity-sensitive architectural power
analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 15, 6 (1996), 571–587.

[16] O. Landsiedel, K. Wehrle, and S. Gotz. 2005. Accurate prediction of power
consumption in sensor networks. In The Second IEEE Workshop on Embedded

Networked Sensors, 2005. EmNetS-II. 37–44. https://doi.org/10.1109/EMNETS.
2005.1469097

[17] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. 2003. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications. In Proceedings of the
1st International Conference on Embedded Networked Sensor Systems (SenSys ’03).
ACM, New York, NY, USA, 126–137. https://doi.org/10.1145/958491.958506

[18] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs,
Jacques Bughin, and Don Aharon. June 2015. The Internet of Things: Mapping
the Value Beyond the Hype. McKinsey Global Institute, McKinsey & Company
(June 2015).

[19] C. Park and P. H. Chou. 2006. AmbiMax: Autonomous Energy Harvesting Plat-
form for Multi-Supply Wireless Sensor Nodes. In 2006 3rd Annual IEEE Com-
munications Society on Sensor and Ad Hoc Communications and Networks, Vol. 1.
168–177. https://doi.org/10.1109/SAHCN.2006.288421

[20] Mark Patel, Jason Shangkuan, and Christopher Thomas. May 2017. What’s
new with the Internet of Things? McKinsey & Company Article (May
2017). https://www.mckinsey.com/industries/semiconductors/our-insights/
whats-new-with-the-internet-of-things

[21] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras. 2004. ATEMU: a fine-
grained sensor network simulator. In 2004 First Annual IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and Networks, 2004.
IEEE SECON 2004. 145–152. https://doi.org/10.1109/SAHCN.2004.1381912

[22] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and Mani
Srivastava. 2005. Design Considerations for Solar Energy Harvesting Wireless
Embedded Systems. In Proceedings of the 4th International Symposium on Infor-
mation Processing in Sensor Networks (IPSN ’05). IEEE Press, Piscataway, NJ, USA,
Article 64. http://dl.acm.org/citation.cfm?id=1147685.1147764

[23] H. Ritter, J. Schiller, T. Voigt, A. Dunkels, and J. Alonso. 2005. Experimental
evaluation of lifetime bounds for wireless sensor networks. In Proceeedings of
the Second European Workshop on Wireless Sensor Networks, 2005. 25–32. https:
//doi.org/10.1109/EWSN.2005.1461996

[24] Prajakta S Kalekar. 2004. Time series Forecasting using Holt-Winters Exponential
Smoothing. (01 2004).

[25] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and
Matt Welsh. 2004. Simulating the Power Consumption of Large-scale Sensor
Network Applications. In Proceedings of the 2Nd International Conference on
Embedded Networked Sensor Systems (SenSys ’04). ACM, New York, NY, USA,
188–200. https://doi.org/10.1145/1031495.1031518

[26] Farhan Simjee and Pai H. Chou. 2006. Everlast: Long-life, Supercapacitor-operated
Wireless Sensor Node. In Proceedings of the 2006 International Symposium on Low
Power Electronics and Design (ISLPED ’06). ACM, New York, NY, USA, 197–202.
https://doi.org/10.1145/1165573.1165619

[27] Phillip Stanley-Marbell and Diana Marculescu. 2007. An 0.9 &Times; 1.2", Low
Power, Energy-harvesting System with Custom Multi-channel Communication
Interface. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE ’07). EDA Consortium, San Jose, CA, USA, 15–20. http://dl.acm.
org/citation.cfm?id=1266366.1266372

[28] S. Sudevalayam and P. Kulkarni. 2011. Energy Harvesting Sensor Nodes: Survey
and Implications. IEEE Communications Surveys Tutorials 13, 3 (Third 2011),
443–461. https://doi.org/10.1109/SURV.2011.060710.00094

[29] Jay Taneja, Jaein Jeong, and David Culler. 2008. Design, Modeling, and Ca-
pacity Planning for Micro-solar Power Sensor Networks. In Proceedings of
the 7th International Conference on Information Processing in Sensor Networks
(IPSN ’08). IEEE Computer Society, Washington, DC, USA, 407–418. https:
//doi.org/10.1109/IPSN.2008.67

[30] B. L. Titzer, D. K. Lee, and J. Palsberg. 2005. Avrora: scalable sensor network
simulation with precise timing. In IPSN 2005. Fourth International Symposium
on Information Processing in Sensor Networks, 2005. 477–482. https://doi.org/10.
1109/IPSN.2005.1440978

[31] A. S. Weddell, N. R. Harris, and N. M. White. 2008. Alternative Energy Sources
for Sensor Nodes: Rationalized Design for Long-Term Deployment. In 2008 IEEE
Instrumentation and Measurement Technology Conference. 1370–1375. https:
//doi.org/10.1109/IMTC.2008.4547256

24

https://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917
http://www.rfc-editor.org/rfc/rfc7228.txt
https://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-module_HG_331189.pdf
https://www.intel.com/content/dam/support/us/en/documents/edison/sb/edison-module_HG_331189.pdf
https://doi.org/10.1145/2809695.2809707
http://www.analog.com/media/en/technical-documentation/data-sheets/ADG811_812.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADG811_812.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/3335f.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/3335f.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/5800ipmfa.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/5800ipmfa.pdf
https://docs.influxdata.com/influxdb/v1.6/introduction/getting-started/
https://docs.influxdata.com/influxdb/v1.6/introduction/getting-started/
https://doi.org/10.1109/IPSN.2005.1440974
https://doi.org/10.1109/IPSN.2005.1440974
http://docs.grafana.org/guides/getting_started/
http://docs.grafana.org/guides/getting_started/
https://doi.org/10.1109/EMNETS.2005.1469097
https://doi.org/10.1109/EMNETS.2005.1469097
https://doi.org/10.1145/958491.958506
https://doi.org/10.1109/SAHCN.2006.288421
https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things
https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things
https://doi.org/10.1109/SAHCN.2004.1381912
http://dl.acm.org/citation.cfm?id=1147685.1147764
https://doi.org/10.1109/EWSN.2005.1461996
https://doi.org/10.1109/EWSN.2005.1461996
https://doi.org/10.1145/1031495.1031518
https://doi.org/10.1145/1165573.1165619
http://dl.acm.org/citation.cfm?id=1266366.1266372
http://dl.acm.org/citation.cfm?id=1266366.1266372
https://doi.org/10.1109/SURV.2011.060710.00094
https://doi.org/10.1109/IPSN.2008.67
https://doi.org/10.1109/IPSN.2008.67
https://doi.org/10.1109/IPSN.2005.1440978
https://doi.org/10.1109/IPSN.2005.1440978
https://doi.org/10.1109/IMTC.2008.4547256
https://doi.org/10.1109/IMTC.2008.4547256

	Abstract
	1 Introduction
	2 Related Work
	3 Framework Architecture
	3.1 Sub-Component Architecture

	4 Design of the Framework
	4.1 Benchmarking Application Software
	4.2 Achieving the Design Objectives

	5 Evaluation platform and Use Case Study
	5.1 Evaluation platform
	5.2 Case Study

	6 Future Work
	7 Conclusion
	References

