
Assessment of data storage strategies using the mobile cross-platform
tool Cordova

Gilles Callebaut, Lieven De Strycker
firstname.lastname@kuleuven.be

DRAMCO, ESAT

Michiel Willocx, Vincent Naessens, Jan Vossaert
firstname.lastname@cs.kuleuven.be

MSEC, imec-DistriNet

Abstract—The mobile world is fragmented by a variety of mobile
platforms, e.g. Android, iOS and Windows Phone. While native
applications can fully exploit the features of a particular mobile
platform, limited or no code can be shared between the different
implementations. Cross-platform tools (CPTs) allow developers
to target multiple platforms using a single codebase. These tools
provide general interfaces on top of the native APIs. Apart from
the performance impact, this additional layer may also result in
the suboptimal use of native APIs. This paper analyses the impact
of this abstraction layer using a data storage case study. Both
the performance overhead and API coverage is discussed. Based
on the analysis, an extension to the cross-platform storage API
is proposed and implemented.

Keywords–Cross-platform tools, data storage, performance anal-
ysis, API coverage, Apache Cordova/Phonegap.

I. INTRODUCTION

An increasing number of service providers are making their
services available via the smartphone. Mobile applications
are used to attract new users and support existing users
more efficiently. Service providers want to reach as many
users as possible with their mobile services. However, making
services available on all mobile platforms is very costly
due to the fragmentation of the mobile market. Developing
native applications for each platform drastically increases the
development costs. While native applications can fully exploit
the features of a particular mobile platform, limited or no code
can be shared between the different implementations. Each
platform requires dedicated tools and different programming
languages (e.g. Objective-C, C# and Java). Also, maintenance
(e.g. updates or bug fixes) can be very costly. Hence, application
developers are confronted with huge challenges. A promising
alternative are mobile cross-platform tools (CPTs). A significant
part of the code base is shared between the implementations for
the multiple platforms. Moreover, many cross-platform tools
such as Cordova use Web-based programming languages to
implement the application logic, facilitating programmers with
a Web background.

Although several cross-platform tools became more mature
during the last few years, some scepticism towards CPTs
remains. For many developers, the limited access to native
device features (i.e. sensors and other platform APIs) remains
an obstacle. In many cases, the developer is forced to use a
limited set of the native API, or to use a work-around –which
often involves native code– to achieve the desired functionality.
This paper specifically tackles the use case of data storage APIs
in Cordova. Cordova is one of the most used CPTs [22, 23]. It
is a Web-to-native wrapper, allowing the developer to bundle
Web apps into standalone applications.

Contribution. The contribution of this paper is threefold.
First, four types of data storage strategies are distinguished in
the setting of mobile applications. The support for each strategy
using both native and Cordova development is analysed and
compared. Second, based on this analysis a new Cordova plugin
is designed and developed that extends the Cordova Storage
API coverage. Finally, the security and performance of the
different native and Cordova storage mechanisms is evaluated
for both the Android and iOS platform.

The remainder of this paper is structured as follows.
Section II points to related work. Section III discusses the inner
workings of Cordova applications, followed by an overview of
data storage strategies and their API coverage in Cordova and
native applications. The design and implementation of a new
Cordova storage plugin is presented in Section IV. Section V
presents a security and performance evaluation of the available
Cordova and native storage mechanisms. This evaluation is
followed by a general reflection. The final section presents the
conclusions and points to future work.

II. RELATED WORK

Many studies compare CPTs based on a quantitative
assessment. For instance, Rösler et al. [26] and Dalmasso et al.
[18] evaluate the behavioral performance of cross-platform
applications using parameters such as start-up time and memory
consumption. Willocx et al. [30] extend this research and
include more CPTs and criteria (e.g. CPU usage and battery
usage) in the comparison. Further, Ciman and Gaggi [17] focus
specifically on the energy consumption related to accessing
sensors in cross-platform mobile applications. These studies are
conducted using an implementation of the same application in
a set of cross-platform tools and with the native development
tools. This methodology provides useful insights in the overall
performance overhead of using CPTs. Other research focuses on
evaluating the performance of specific functional components.
For instance, Zhuang et al. [31] evaluate the performance of the
Cordova SQlite plugin for data storage. The work presented in
this paper generalizes this work by providing an overview and
performance analysis of the different data storage mechanisms
available in Cordova, and comparing the performance with
native components.

Several other studies focus on the evaluation of cross-
platform tools based on qualitative criteria. For instance,
Heitkötter et al. [19] use criteria such as development
environment, maintainability, speed/cost of development and
user-perceived application performance. The user-perceived
performance is analyzed further in [20], based on user ratings
and comments on cross-platform apps in the Google Play
Store. The API coverage (e.g. geolocation and storage) of



cross-platform tools is discussed in [24]. It is complementary
with the work presented in this paper, which specifically focuses
on the API coverage, performance and security related to data
storage.

III. DATA STORAGE IN CORDOVA

A. Cordova Framework

A typical Cordova application consists of three important
components: the application source, the WebView and plugins.

Figure 1. Structure of a Cordova application. Light grey arrows represent
JavaScript calls, darker grey represent native calls. The Cordova framework is

illustrated by the gray area.

Cordova applications are, similar to Web apps, developed
in Web languages (i.e. HTML, CSS and JavaScript). Typically,
developers use JavaScript frameworks such as Ionic and Sencha,
which facilitate the development of mobile UIs.

The application code is loaded in a chromeless WebView.
By default, Cordova applications use the WebView bundled
with the operating system. An alternative is to include the
Crosswalk WebView [13]. The Crosswalk WebView provides
uniform behaviour and interfaces between different (versions
of) operating systems.

Cordova developers have two options for accessing device
resources: the HTML5 APIs provided by the WebView and
plugins. Despite the continuously growing HTML5 function-
ality [11] and the introduction of Progressive Web Apps [8],
the JavaScript APIs provided by the WebView are not –yet–
sufficient for the majority of applications. They do not provide
full access to the diverse resources of the mobile device, such
as sensors (e.g. accelerometer, gyroscope) and functionality
provided by other applications installed on the device (e.g.
contacts, maps, Facebook login). Plugins allow JavaScript code
to access native APIs by using a JavaScript bridge between the
Web code and the underlying operating system. Plugins consist
of both JavaScript code and native code (i.e. Java for Android,
Objective-C and recently Swift for iOS). The JavaScript code
provides the interface to the developer. The native source code
implements the functionality of the plugin and is compiled when
building the application. The Cordova framework provides
the JavaScript bridge that enables communication between

JavaScript and native components. For each platform, Cordova
supports several bridging mechansims. At runtime, Cordova
selects a bridging mechanism. When an error occurs, it switches
to another mechanism. Independent of the selected bridging
mechanism, the data requires several conversion steps before
and after crossing the bridge. Commonly used functionality such
as GPS are provided by Cordova as core plugins. Additional
functionality is provided by over 1000 third-party plugins,
which are freely available in the Cordova plugin store [12].

B. Storage API Coverage

This work focuses on data storage mechanisms in Cor-
dova applications. Four types of data storage strategies are
distinguished: files, databases, persistent variables and sensitive
data. Databases are used to store multiple objects of the same
structure. Besides data storage, databases also provide methods
to conveniently search and manipulate records. File storage can
be used to store a diverse set of information such as audio, video
and binary data. Persistent variables are stored as key-value
pairs. It is often used to store settings and preferences. Sensitive
data (e.g. passwords, keys, certificates) are typically handled
separately from other types of data. Mobile operating systems
provide dedicated mechanisms that increase the security of
sensitive data storage.

The remainder of this section discusses the storage APIs
available in Cordova and native Android/iOS. A summary of
the results is shown in Table I.

Cordova Android iOS

Databases
WebSQL

SQLite SQLiteIndexedDB
SQLite (Plugin)

Files Cordova File Plugin java.io NSData

Variables LocalStorage Shared Prefs NSUserDefaults
Property Lists

Sensitive Data SecureStorage (Plugin) KeyStore KeychainKeyChain

TABLE I. Storage API Coverage

1) Databases: Android and iOS provide a native interface
for the SQLite library. Cordova supports several mechanisms
to access database functionality from the application. First,
the developer can use the database interface provided by
the WebView. Both the native and CrossWalk WebViews
provide two types of database APIs: WebSQL and IndexedDB.
Although WebSQL is still commonly used, it is officially
deprecated and thus no longer actively supported [10]. Second,
developers can access the native database APIs via the SQLite
Plugin [6].

2) Files: In Android, the file storage API is provided by the
java.io package, in iOS this is included in NSData. Cordova
provides a core plugin for File operation, namely Cordova
File Plugin (cordova-plugin-file) [4]. Files are referenced via
URLs which support using platform-independent references
such as application folder.

3) Persistent Variables: In Android, storing and accessing
persistent variables is supported via SharedPreferences. It
allows developers to store primitive data types (e.g. booleans,



integers, strings). iOS developers have two options to store
persistent variables: NSUserDefaults and Property Lists.
NSUserDefaults has a similar behaviour to SharedPreferences
in Android. Property Lists offer more flexibility by allowing
storage of more complex data structures and specification
of the storage location. Cordova applications can use the
LocalStorage API provided by the Android and iOS WebView.
Although it provides a simple API, developers should be aware
of several disadvantages. First, LocalStorage only supports
storage of strings. More complex data structures need to be
serialized and deserialized by the developer. Furthermore, in
both Android and iOS [1], the data is stored in the cache of
the WebView, which can be cleared when, for instance, the
system is low on memory. Last, LocalStorage is known [1] to
perform poorly on large data sets and has a maximum storage
capacity of 5MB.

4) Sensitive Data: Android provides two mechanisms to
store credentials: the KeyChain and the KeyStore. A KeyStore
is bound to one specific application. Applications can not
access credentials in KeyStores bound to other applications.
If credentials need to be shared between applications, the
KeyChain should be used. The user is asked for permission
when an application attempts to access credentials in the
KeyChain. Credential storage on iOS is provided by the
Keychain. Credentials added to the Keychain are, by default,
app private, but can be shared between applications from the
same publisher. Cordova developers can use the credential
storage mechanisms provided by Android and iOS via the
plugin, SecureStorage (cordova-plugin-secure-storage) [7].

IV. NATIVESTORAGE PLUGIN

Section III-B identified several limitations when using the
Webview’s LocalStorage to store variables in Cordova. These
limitations are inconvenient for developers as they often rely on
persistent storage of variables. This section presents a Cordova
plugin for persistent variable storage, mitigating the limitations
of the LocalStorage mechanism.

A. Requirements

The plugin tackles the main disadvantages of LocalStorage
by providing:

R1 Persistent and sufficient storage
R2 Storage of both primitive data types and objects

Other requirements are:

R3 Support for Android and iOS
R4 App private storage
R5 Responsive APIs
R6 A user-friendly API

B. Realisation

The plugin consist of JavaScript and native code. The
JavaScript API provides the interface to application developers.
The native side handles the storage of variables using native
platform APIs.

NativeStorage provides two sets of JavScript APIs, a fine-
grained and a coarse-grained API, which are both asynchronous

1 // coarse grained API
2 NativeStorage.setItem("reference_to_value",<value>,

<success-callback>, <error-callback>);
3 NativeStorage.getItem("reference_to_value",<success-

callback>, <error-callback>);
4 NativeStorage.remove("reference_to_value",<success-

callback>, <error-callback>);
5 NativeStorage.clear(<success-callback>, <error-

callback>);

Listing 1. NativeStorage – Coarse-grained API

1 // fine grained API
2 NativeStorage.put<type>("reference_to_value",<value>,

<success-callback>, <error-callback>);
3 NativeStorage.get<type>("reference_to_value",<

success-callback>, <error-callback>);
4 NativeStorage.remove("reference_to_value",<success-

callback>, <error-callback>);

Listing 2. NativeStorage – Fine-grained API

and non-blocking. The coarse grained API provides a type-
independent interface, variables are automatically converted to
JSON objects via the JSON interfaces provided by the WebView
and passed as string variables to the native side. When a value
is retrieved, the string should be converted to the desired object
by the developer. The fine-grained API (Figure 2b) provides a
seperate implementation for the different JavaScript types. On
the native side, the variables are stored via SharedPreferences
in Android and NSUserDefaults in iOS.

Object

Object

Disk

Web App Plugin

JSON
string

JSON
string

Object

Object

(a) Coarse-grained API

Boolean

Boolean
Disk

Web App Plugin

Boolean

Boolean

(b) Fine-grained API

Figure 2. NativeStorage API

C. Evaluation

The plugin is evaluated based on the previously listed
requirements.

Persistent storage is provided via the native storage mech-
anisms. The documentation of the used native mechanisms
doesn’t state a limitation on the storage capacity. Hence, as
opposed to LocalStorage, the storage capacity is is only limited
by the available memory on the device, satisfying R1.



The native part of the plugin is developed for both Android
and iOS. These mobile operating systems have a combined
market share of 99% [15]. The used native storage mechanisms
were introducted in iOS 2.0 and Android 1.0. The plugin, hence,
provides support for virtually all version of these platforms
used in practice, satisfying R3.

The plugin uses NSUserdefaults and SharedPreferences
to store the data in app-private locations, ensuring that the
variables can not be accessed from outside the application.
This satisfies R4

The APIs are implemented using an asynchronous non-
blocking strategy, facilitating the development of responsive
applications (cf. R5).

Web developers are familiar with dynamic programming
languages such as JavaScript, supporting type changes of objects
at runtime. Thus, Web developers are more familiar with
APIs that don’t distinguish between different data types. The
coarse-grained API provides such a storage mechanism. Not
all Cordova developers have a Web background. Therefore,
a fine-grained API is provided for developers who are more
comfortable with a type-based mechanism, satisfying R6 and
R2. Using both the coarse- and fine-grained API, the different
JavaScript data types can be stored. Developers, however,
need to be aware that the object storage relies on the JSON
interface of the WebView to convert the object to a JSON string
representation. The WebView, for instance, does not support
the conversion of circular data strucures. These types of objects,
hence, cannot be stored using the plugin.

Since its release to Github [16] and NPM [5] the plugin has
been adopted by many Cordova application developers. We’ve
registered over 2500 downloads per month. Furthermore, the
plugin is part of the 5% most downloaded packages on NPM.
The plugin has been adopted in Ionic Native (Ionic 2) [3] and
the Telerik plugin marketplace [9]. Telerik verifies that plugins
are maintained and documented, thereby ensuring a certain
quality.

V. EVALUATION

The evaluation of the data storage mechanisms consists
out of three parts: a quantitative performance analysis and a
security evaluation.

A. Performance

Developers want to be aware of the potential performance
impact of using a CPT for mobile app development [21].
This section evaluates the performance of the different storage
mechanisms for Cordova applications and compares the results
with the native alternatives. Each storage strategy is tested by
deploying a simple native and Cordova test application that
intensively uses the selected storage strategy on an Android
and iOS device. For Android the Nexus 6 running Android 6
was used, for iOS the IPhone 6 running iOS 9 was used. The
test application communicates the test results via timining logs
that are captured via Xcode for iOS and Android Studio for
Android. The experiments were run sufficient times to ensure
the measurements adequately reflect the performance of the
tested storage mechanisms.

1) Databases:

a) Test Application: The database test application ex-
ecutes 300 basic CRUD operations (i.e. 100 x create, 100 x
read, 50 x delete and 50 x read) of objects containing two
string variables. The performance is determined by means of
measuring the total duration of all the transactions. This test has
been executed using the SQLite (native and Cordova), WebSQL
(Cordova) and IndexedDB (Cordova) mechanisms.

b) Results and Comparison: The results are presented
in Table II.The mechanism for retrieving values by means
of an index clearly results in a better performance com-
pared to the SQL-based mechanisms. This analysis shows
that IndexedDB provides an efficient way of storing and
retrieving small objects. WebSQL –provided by the WebView–
acts as a wrapper around SQLite. This is illustrated by the
performance overhead associated with this mechanism. The
deprecation of the specification/development stop could also
have contributed to the performance penalty. The SQLite plugin
suffers from a performance overhead caused by the interposition
of the Cordova framework and has consequently a noticeable
performance overhead.

Android iOS
Nexus 6 iPhone 6

SQLite (Native) 100 100
IndexedDB 6.94 12.47*
WebSQL 153 128
SQLite Plugin 133 116

TABLE II. Ratio of database execution time to the native (SQLite) operation
duration (in %). *In iOS IndexedDB is only supported as of iOS 10.

2) Files:

a) Test Application: The test application distinguishes
between read and write operations. Each operation is tested
using different files sizes, ranging from small files (∼ 1 kB)
to larger files (∼ 10MB). The performance of small files
allows the evaluation provides a baseline for file access. The
performance of the read and write operations itself can be
determined via the results from the large files.

The execution duration of different procedures and compo-
nents as well as the total read and write duration is measured
by means of timestamps. The application’s memory footprint
is measured via Instruments tool (Activity Monitor) in Xcode
and via Memory Monitor in Android Studio.

b) Results and Comparison: The results are presented
in Figure 3 and 4. In both Android and iOS a performance
difference between the native and Cordova mechanism can
be observed. R/W operations via the file plugin take longer
compared to the native mechanisms. On top of a performance
overhead, Cordova also comes with a higher memory consump-
tion, especially in iOS (Figure 5).

Android. Encoding, sending and decoding messages
amounts to 43% of the total read duration for large files, but it
is negligible for small files. Operations on smaller files result
in a overhead originating from resolving the URL to a local
path, and retrieving meta-data. When using small files, 46% of
the total read duration is spent on procedures related to files
access.



0 5

10 1
5

2
0

0

1,000

2,000

3,000

4,000

Filesize [MB]

O
pe

ra
tio

n
du

ra
tio

n
[m

s]

Native Write
Native Read

Cordova Write
Cordova Read

Figure 3. Duration of file operations in Android

Component Duration [1MB] Duration [20MB]
(ms) (% total) (ms) (% total)

Resolve to local URL 58 46 59 7.56
Native reading 20 16 366 47
Sending over bridge 28 22 339 43

Total 126 780

TABLE III. Execution time of components associated with a read operation in
Cordova Android (File Plugin). The procedure ”Sending over bridge” consists
of encoding, sending end decoding messages from the JavaScript side to the

native side.

A larger overhead is observed when writing a binary file in
Cordova. This additional overhead is created by the manner in
which messages are delivered over the bridge. The file contents
are stored as bytes. These bytes are first parsed to strings, after
which they are sent over the bridge. Once arrived at the native
side, the file contents are converted back to bytes and encoded
to a Base64 format. The additional overhead originates from
the procedures related to converting bytes to strings and vice
versa.

Component Duration [1MB] Duration [20MB]
(ms) (% total) (ms) (% total)

Processing file 108 65 1290 56
Execute call delay 38 23 632 28
Writing 20 12 369 16

Total 166 2291

TABLE IV. Execution time of components associated with a write operation
in Cordova Android (File Plugin). The procedure ”processing file” converts

the bytes –as an ArrayBuffer– to a string array. The ”execute call delay”
represents the delay between the write command executed in JavaScript and

the execution at the native side.

iOS. In iOS applications operating on large files will result
in a high memory allocation. This is illustrated in Figure 5.
Therefore, file sizes greater than 10MB can’t be read and
written in Cordova. For instance, reading and writing a 10MB
file results in 400MB of allocated memory. Another reason big

files can’t be transported is because of the mechanism behind
the Cordova bridge, i.e. URL loading interposition. As a result,
large files can’t get across the bridge. A solution for developers
is operating on chunks of data at a time.

The overhead as a result of reading files originates mostly
from the parsing of the arguments to an intelligible format for
the JavaScript code, i.e. a JSONArray. A mere 2.5% of the
total operation time is spent reading file contents. Sending this
content back over the bridge involves another 20% of the total
duration time.

During the writing operation 97% of the total operation
time is used parsing the arguments to an interpretable format
by the native side; similar to Cordova Android.

0 1 2 3 4 5 6 7 8 9

1
0

0

1,000

2,000

3,000

4,000

Filesize [MB]

O
pe

ra
tio

n
du

ra
tio

n
[m

s] Native Write
Native Read

Cordova Write
Cordova Read

Figure 4. Duration of file operations in iOS
0 1 2 3 4 5 6 7 8 9

10

0

100

200

300

400

Filesize [MB]

M
em

or
y

co
ns

um
pt

io
n
[M

B
]

Native
Cordova

Figure 5. Memory consumption as a result of file operations in iOS

c) Conclusion: Apache Cordova is limited –
performance-wise– in file operations on large files. This is a
result of the used bridge technologies and the architecture of
the Cordova framework. The latter is associated with a high
memory consumption. Arguments (including data) need to be
converted to an intelligible format to the other side, which
requires time and memory.

A performance improvement could be made if the bridge
allows the passing of bytes. The Cordova bridge could be, for



Component Duration [1MB] Duration [10MB]
(ms) (% total) (ms) (% total)

Resolve to local URL 11 3.56 16 0.6
Native reading 13.98 4.52 70 2.47
Arguments to JSONArray 202.77 65.62 2037.93 71.88
Sending over bridge 59.93 19.39 587.19 20.71

Total 309 2835

TABLE V. Performance read components in Cordova iOS

Component Duration [1MB] Duration [10MB]
(ms) (% total) (ms) (% total)

Processing file 266 97 2614 96
Native writing 7 3 96 4

Total 273 2710

TABLE VI. Performance write components in Cordova iOS

instance, complemented by the device-local service presented
in [25]. This bridge technique allows access to native device
APIs in HTML5 applications via WebSockets and HTTP
servers.

3) Persistent variables:

a) Test Application: The performance is examined via
storing and retrieving string values. The total duration of storing
and retrieving thousand variables is measured. The average
storage and retrieval time is used to compare the different
storage mechanisms.The Cordova mechanisms are LocalStorage
and NativeStorage. These are compared to NSUserDefaults
(iOS) and SharedPreferences (Android).

b) Results and Comparison: All mechanisms have an
execution time under 1ms, with the exception of NativeStorage
in Cordova and Property Lists in iOS. NativeStorage is the
only mechanism which uses the Cordova bridge and framework.
In addition to the Cordova induced performance penalty, in
Android the plugin’s native code blocks –with each iteration–
till the value is persistently stored on the disk. The plugin uses
SharedPreferences in a synchronous manner to provide errors
when storage to disk fails. However, SharedPreferences can be
used in an asynchronous manner as utilized in the native test
application. Nevertheless, the set and get operation duration in
NativeStorage is negligible (i.e. 1.9ms for storing a variable
and less than 1ms for retrieving it). Furthermore, plugin users
can opt to ignore the returned success or error value –which
was not the case in the test application– if they don’t want to
wait till the value is stored.

Property Lists in iOS are used to load an entire file in an
array. The performance as a consequence of this loading can be
seen in the duration of the get operation, which takes 9.83ms.
SharedPreferences and NSUserDefaults also load the entire
document in memory, but this is done during the initialisation
phase of the application. This phase is not incorporated in
the measurements. Hence, these measurements do not reflect
the total performance of the implementation, but rather the
noticeable impact on the retrieval and storage of persistent
variables.

B. Security

In both Android and iOS the security of storage mechanisms
strongly depends on the storage location and the platform’s
backup mechanisms. In iOS, interactions with the file system
are restricted to directories inside the application’s sandbox.
The Linux kernel –the centre of the Android platform– provides
similar security measures to handle file system access. The
backup mechanisms used in iOS and Android can result in the
exposure of sensitive data [27, 29, 28]. By default, application
data is backed up in Android. In Cordova Android this default
behaviour is not changed. Cordova iOS allows the WebStorage
to be backed up to the iCloud. This can come with two mayor
implications: (1) possible leakage of sensitive data and (2)
exhausting the limited iCloud storage capacity. The latter can
result in the rejection of the application because the iOS Data
Storage Guidelines [14] are not followed.

1) Databases: All database mechanisms are by default
private to the application and can be backed up on both mobile
platforms, with the exception of the SQLite plugin in iOS.
The plugin initially followed the default behaviour by allowing
backup. However, as a security measure the default storage
location of the plugin in iOS was changed to a directory which
can not be backed up. This SQLite plugin also has an encrypted
alternative, i.e. cordova-sqlcipher-adapter. This alternative
provides a native interface to SQLCipher, encrypting SQLite
databases via a user-supplied password.

2) Files: In iOS files are protected by a protection class.
Each of these classes corresponds to different security properties.
As of iOS 7, all files are by default encrypted individually until
first user authentication. The file plugin doesn’t change this
default behaviour. Natively each file can be secured using a
protection class best suited for the security requirements of
that file.

3) Persistent variables: All persistent variable storage
mechanisms are by default private to the application and can
be backed up on both mobile platforms, with the exception of
Property List. Property lists can be stored in arbitrary locations,
and can be backed up depending on the specified location.

4) Sensitive Data: The Secure Storage plugin provides
storage of sensitive data in Android and iOS.

On iOS, the plugin uses the SAMKeychain [2] plugin which
facilitates manipulations on the iOS Keychain. The plugin
allows static configuration of the KeyChain items’ accessibility.
this could entail a security risk. Data needs to be protected by
the most strict data protection class. This cannot be guaranteed
using a static global accessibility configuration of KeyChain
items. The Android KeyChain only allows storage of private
keys. Hence, for storing other tokens such as passwords or
JWT tokens, an additional encryption layer is used.

VI. CONCLUSIONS

This paper presented an assessment of data storage strategies
using the mobile cross-platform tool Cordova. An in-depth
analysis was performed on the API coverage of the available
data storage mechanisms in Cordova and Native applications.
Based on the analysis, an additional Cordova storage plugin
was developed that improves the storage of persistent variables.



Furthermore, the performance and security of the available
storage mechanisms were evaluated. Our performance analysis
shows that using the Cordova bridge comes with a significant
performance penalty. Hence, the WebView’s JavaScript API
should be used when possible. However, apart from perfor-
mance, other parameters such as functionality and security can
have an impact on the selection of the storage mechanism.

Databases. If access to a full fledged SQL database is
required, the SQLite plugin should be used. However, in
most mobile applications, the functionality provided by the
significantly faster IndexedDB interface of the WebView is
sufficient.

Variables. As described in Sections IV and V, it is
recommended to use NativeStorage for storing persistent
variables, since LocalStorage does not guarantee persistence
over longer periods of time. This type of storage is often used
to store preferences. Preferences are typically only accessed
once or twice during the life cycle of the application. Hence,
the performance overhead of NativeStorage does not have a
significant impact on de performance of the application.

Files. The WebView does not provide a file storage API.
Hence, developers have to use the core plugin, Cordova File
Plugin (cordova-plugin-file).

Sensitive data. The security analysis presented in Sec-
tion V-B shows that plugins such as SecureStorage offer
increased security compared to the WebView’s JavaScript API
because they benefit from the platform’s native secure storage
APIs. It is therefore recommended to use a plugin such as
SecureStorage to store sensitive data.

Future work on this topic might include an in-depth analysis
of the CrossWalk WebView. Currently, Cordova applications
suffer from a major performance penalty every time the
JavaScript bridge is accessed. CrossWalk has its own plugin
mechanism, which could show better performance than Cordova
plugins.

REFERENCES

[1] Cordova storage documentation. URL https://cordova.
apache.org/docs/en/latest/cordova/storage/storage.html.

[2] Samkeychain. URL https://github.com/soffes/SSKeychain.
[3] Nativestorage in the ionic framework documentation. URL

http://ionicframework.com/docs/v2/native/nativestorage/.
[4] Cordova file plugin npm website, . URL https://www.

npmjs.com/package/cordova-plugin-file.
[5] Nativestorage plugin npm website, . URL https://www.

npmjs.com/package/cordova-plugin-nativestorage.
[6] Sqlite plugin npm website, . URL https://www.npmjs.

com/package/cordova-sqlite-storage.
[7] Securestorage plugin npm website, . URL https://www.

npmjs.com/package/cordova-plugin-secure-storage.
[8] Progressive web apps. URL https://developers.google.

com/web/progressive-web-apps/.
[9] Cordova plugins in the telerik marketplace. URL http:

//plugins.telerik.com/cordova.
[10] Web sql database documentation. URL https://dev.w3.org/

html5/webdatabase/.
[11] Can i use ... ? URL http://caniuse.com/.
[12] Cordova plugins website. URL https://cordova.apache.

org/plugins/.

[13] Crosswalk website. URL https://crosswalk-project.org.
[14] ios data storage guidelines. URL https://developer.apple.

com/icloud/documentation/data-storage/index.html.
[15] Smartphone os market share, q2 2016. http://www.

idc.com/prodserv/smartphone-os-market-share.jsp, 2015.
access date: 20/10/2016.

[16] Cordova plugin nativestorage, 2016. URL https://github.
com/TheCocoaProject/cordova-plugin-nativestorage.

[17] Matteo Ciman and Ombretta Gaggi. Evaluating impact
of cross-platform frameworks in energy consumption of
mobile applications.

[18] Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet,
and Navid Nikaein. Survey, comparison and evaluation
of cross platform mobile application development tools.
2013.

[19] Henning Heitkötter, Sebastian Hanschke, and Tim A
Majchrzak. Evaluating cross-platform development ap-
proaches for mobile applications. 2012.

[20] Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and
Valerio Terragni. End users’ perception of hybrid mobile
apps in the google play store. In 2015 IEEE International
Conference on Mobile Services, pages 25–32. IEEE, 2015.

[21] Vision Mobile. Cross-platform developer tools 2012,
bridging the worlds of mobile apps and the web, 2012.
access date: 13/04/2016.

[22] Vision Mobile. Cross-platform tools 2015, 2015. URL
http://www.visionmobile.com/product/cross-platform-
tools-2015/. access date: 13/04/2016.

[23] Vision Mobile. Developer economics state of
the developer nation q1 2016, 2016. URL
http://www.visionmobile.com/product/developer-
economics-state-of-developer-nation-q1-2016/. access
date: 13/04/2016.

[24] M. Palmieri, I. Singh, and A. Cicchetti. Comparison of
cross-platform mobile development tools. 2012.

[25] Arno Puder, Nikolai Tillmann, and Michał Moskal. Ex-
posing native device apis to web apps. 2014.

[26] Florian Rösler, André Nitze, and Andreas Schmietendorf.
Towards a mobile application performance benchmark.
2014.

[27] Peter Teufl, Thomas Zefferer, and Christof Stromberger.
Mobile device encryption systems. In 28th IFIP TC-11
SEC 2013 International Information Security and Privacy
Conference, pages 203 – 216, 2013.

[28] Peter Teufl, Thomas Zefferer, Christof Stromberger, and
Christoph Hechenblaikner. ios encryption systems -
deploying ios devices in security-critical environments. In
SECRYPT, pages 170 – 182, 2013.

[29] Peter Teufl, Andreas Gregor Fitzek, Daniel Hein, Alexan-
der Marsalek, Alexander Oprisnik, and Thomas Zefferer.
Android encryption systems. In International Conference
on Privacy & Security in Mobile Systems, 2014. in press.

[30] Michiel Willocx, Jan Vossaert, and Vincent Naessens.
Comparing performance parameters of mobile app devel-
opment strategies. 2016.

[31] Yanyan Zhuang, Jennifer Baldwin, Laura Antuñna,
Yağız Onat Yazır, and Sudhakar Ganti. Tradeoffs in cross
platform solutions for mobile assistive technology. 2013.

https://cordova.apache.org/docs/en/latest/cordova/storage/storage.html
https://cordova.apache.org/docs/en/latest/cordova/storage/storage.html
https://github.com/soffes/SSKeychain
http://ionicframework.com/docs/v2/native/nativestorage/
https://www.npmjs.com/package/cordova-plugin-file
https://www.npmjs.com/package/cordova-plugin-file
https://www.npmjs.com/package/cordova-plugin-nativestorage
https://www.npmjs.com/package/cordova-plugin-nativestorage
https://www.npmjs.com/package/cordova-sqlite-storage
https://www.npmjs.com/package/cordova-sqlite-storage
https://www.npmjs.com/package/cordova-plugin-secure-storage
https://www.npmjs.com/package/cordova-plugin-secure-storage
https://developers.google.com/web/progressive-web-apps/
https://developers.google.com/web/progressive-web-apps/
http://plugins.telerik.com/cordova
http://plugins.telerik.com/cordova
https://dev.w3.org/html5/webdatabase/
https://dev.w3.org/html5/webdatabase/
http://caniuse.com/
https://cordova.apache.org/plugins/
https://cordova.apache.org/plugins/
https://crosswalk-project.org
https://developer.apple.com/icloud/documentation/data-storage/index.html
https://developer.apple.com/icloud/documentation/data-storage/index.html
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://github.com/TheCocoaProject/cordova-plugin-nativestorage
https://github.com/TheCocoaProject/cordova-plugin-nativestorage
http://www.visionmobile.com/product/cross-platform-tools-2015/
http://www.visionmobile.com/product/cross-platform-tools-2015/
http://www.visionmobile.com/product/developer-economics-state-of-developer-nation-q1-2016/
http://www.visionmobile.com/product/developer-economics-state-of-developer-nation-q1-2016/

	Introduction
	Related Work
	Data Storage In Cordova
	Cordova Framework
	Storage API Coverage
	Databases
	Files
	Persistent Variables
	Sensitive Data


	NativeStorage Plugin
	Requirements
	Realisation
	Evaluation

	Evaluation
	Performance
	Databases
	Files
	Persistent variables

	Security
	Databases
	Files
	Persistent variables
	Sensitive Data


	Conclusions

