## A micro-macro acceleration method for stiff stochastic differential equations (SDEs)

KU LEUVEN

HANNES VANDECASTEELE

PRZEMYSŁAW ZIELIŃSKI

GIOVANNI SAMAEY

#### Stiff SDEs are ubiquitous

Stochastic differential equations of the form

 $dX(t) = a(X,t;\varepsilon)dt + b(X,t;\varepsilon)dW(t)$ 

with  $\varepsilon$  a small-scale parameter and  $W(t) \sim N(0, t)$  Brownian motion.

- Solve for the probability distribution of  $X(t) \sim p(x, t)$
- High dimensional Monte Carlo
- Individual paths vary fast  $X(t; \omega, \varepsilon)$ ,  $\omega \in \Omega$



• Mostly interested in slow macroscopic state variables  $m_l(t) = E[R_l(X(t))]$ 

#### Applications in molecular dynamics

Important applications in molecular dynamics

$$dX(t) = -\nabla V(X(t)) dt + \sqrt{2\beta^{-1}} dW(t),$$

•  $X = (x_a, x_c, y_c)$  positions of the atoms

• The potential energy V(X) models interactions between atoms

$$V(X) = \frac{1}{2\varepsilon}(x_a - 1)^2 + \frac{1}{2\varepsilon}\left(\sqrt{x_c^2 + y_c^2} - 1\right)^2 + \left(\theta - \frac{\pi}{2}\right)^2$$

• Brownian motion W(t) models collisions with ambient solvent



#### A micro-macro acceleration method

Explicit methods have small stability domain,  $\delta t = O(\varepsilon)$ 



I. Kevrekidis, G. Samaey (2009); K. Debrabant, G. Samaey, P. Zieliński (2017).

### Efficiency of micro-macro acceleration

With micro-macro acceleration, we are able to *take larger time steps* than a microscopic method, while *attaining a good accuracy* 

- Convergence to the microscopic dynamics as  $\delta t$ ,  $\Delta t \mapsto 0$
- Stability bound for extrapolation is independent of  $\varepsilon$
- We have recently shown numerically that micro-macro acceleration can take larger  $\Delta t \gg \delta t$  and attain accurate simulation results.

#### Efficiency of micro-macro acceleration

Consider again the three-atom molecule with

$$V(x_{a}, x_{c}, y_{c}) = \frac{1}{2\varepsilon} (x_{a} - 1)^{2} + \frac{1}{2\varepsilon} \left(\sqrt{x_{c}^{2} + y_{c}^{2}} - 1\right)^{2} + \left(\theta - \frac{\pi}{2}\right)^{2}$$
  
We study the evolution of  $||A - C||^{2}$   
$$\underbrace{Mean ||A - C||^{2}}_{a,b} = \underbrace{Mean ||A - C||^{2}$$

Extrapolation step is of the order of the time-scale separation

H. Vandecasteele, P. Zieliński, G. Samaey (2019)

F. Legoll, T. Lelièvre (2010)

2

# Thank you for your attention !