
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Efficient Algebraic Effect
Handlers

Amr Hany Saleh

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

March 2019

Supervisors:
Prof. dr. ir. Tom Schrijvers
Prof. dr. Daniel De Schreye

Efficient Algebraic Effect Handlers

Amr Hany SALEH

Examination committee:
Prof. dr. ir. Joseph Vandewalle, chair
Prof. dr. ir. Tom Schrijvers, supervisor
Prof. dr. Daniel De Schreye, supervisor
Prof. dr. ir. Gerda Janssens
Prof. dr. ir. Bart Jacobs
Prof. dr. Matija Pretnar
(University of Ljubljana)

Prof. dr. Christophe Scholliers
(University of Gent)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

March 2019

© 2019 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Amr Hany Saleh, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Acknowledgments First of all, I want to thank my supervisor, Tom Schrijvers.
Your academic advising throughout the last four years has taught me a bunch,
particularly being more attentive to detail. I would also like to thank my examination
committee members for their insightful remarks. I am so thankful to my colleagues
Georgios Karachalias, Alexander Vandenbroucke, Gert-Jan Bottu and Cesar Santos
as well, and particularly to Klara Marntiorosian for proof-reading this text. Special
thanks also to Emke Van Steekiste for using her astounding translation skills to
translate the abstract.

This work would not have come to light without the funding of the Flemish research
foundation (FWO).

Many thanks go to my colleagues in the office: George, Steven, Alex, Klara, Ruben
and Gert-Jan. I have enjoyed our talks not only about work but also different
aspects of life. I will always appreciate these times.

I would like to thank my friends who I got to know throughout this period: Reka
Mezei, Roxana Oltean, Stelios Tsampas, Ilias Tsingenopoulos, Elly Louage, Nikolaos
Lykouras and Vita Ivanek. You know how stressful some of these periods were and
I am thankful to have had you encouraging me through these periods.

Timea Bagosi, your support during the early stages of my PhD has helped me get
through those times.

Of course, I am thankful to my friends that I have met throughout my journeys
around Europe, who travelled all the way to attend my public defense, keeping that
awesome EMCL spirit we had during our studies. I am so happy to have you in
Leuven, Andreas Fellner, Ilina Stoilkovska, Hanna Bakker, Itzel vázquez and my
travel buddy, Tobias Kaminski. I am also thankful for the encouragement of my
very close friends, Andrey Rivkin and Verena Pratissoli.

My Professors and role models, Slim Abdennadher and Haythem Ismail, you have
paved the road for me for the success I am having now. Thank you for your teaching

i

ii PREFACE

and mentoring that has played a huge role in shaping my perspective in academia
and in life. Also, my friends back home, Ali, Noha, Omar, Asmaa and Mostafa,
you have always got my back and I am eternally grateful for that.

Finally, I am thankful to be a part of my precious family. My father Hany Beder,
my mother Sanaa Elsayed, no words can describe what you have done for me. I
hope I made you proud.

To Noura and Haidy

Abstract

In programming languages, a side effect occurs whenever a computation has another
effect beside returning its result. There are many examples of side effects such as
printing or modifying mutable states. Traditionally, these effects are implicit and
built into a language. However, lately, programming using explicit effects is gaining
in popularity, since it allows for the free composition of effects. Additionally, it
offers a natural separation between the syntax of effects and their semantics, the
former given by effect declarations and the latter provided by the so-called “effect
handlers”. This composition adds an extra layer of modularity to programming with
effects and handlers, as it allows the same program to behave differently depending
on which handlers are used to deal with its effects. Unfortunately, such flexibility
comes at a cost. Even though efficient runtime representations for effects and effect
handlers have already been studied, most handler-based programs are still much
slower than effect-free hand-written code. In this thesis, we address the performance
issue of handler-based programs while preserving the modularity they provide. We
investigate this issue in two paradigms: Functional and Logic Programming.

For the Functional Programming part, we focus on Eff, which is an ML-based
language with explicit effects. We show that the performance gap can be drastically
narrowed (in some cases even closed) utilising a type-and-effect directed optimising
compilation. The main aim of these optimisations is to eliminate code related to
effects and handlers. Our approach consists of two stages. Firstly, we combine
source-to-source transformations with function specialisation in order to aggressively
reduce handler applications. Secondly, we show how to elaborate the source language
into a handler-less target language in a way that incurs no overhead for non-effectful
computations. Our approach eliminates much of the overhead of handlers and
yields competitive performance with hand-written OCaml code.

However, implementing these optimisations for Eff is error-prone because its core
language is implicitly-typed, making code transformations very fragile. We also
present in this thesis an explicitly-typed polymorphic core calculus for algebraic effect
handlers with a subtyping-based type-and-effect system to remedy this fragility.

iii

iv ABSTRACT

The proposed calculus tracks the use of subtyping through cast expressions with
explicit coercions as subtyping proofs, quickly exposing typing bugs during program
transformations.

For the Logic Programming part, we build on delimited control primitives for Prolog
to introduce algebraic effects and handlers into the language. Delimited control
is used to manipulate the program control-flow dynamically, and to implement a
wide range of control-flow and data-flow effects. Unfortunately, delimited control is
a rather primitive language feature that is not easy to use. Hence, we use effect
handlers as a structured method that makes use of delimited control. We illustrate
the expressive power of the feature and provide an implementation using elaboration
into the delimited control primitives.

Finally, delimited control adds a non-negligible performance overhead when used
extensively. To address this issue, we present an optimised compilation approach
that combines partial evaluation with dedicated rewrite rules. The rewrite rules are
driven by a lightweight effect inference system that analyses which effects may be
called by a program. We illustrate the effectiveness of our approach on a range
of benchmarks which shows that the overhead of delimited control is reduced to
hand-written Prolog efficiency after the optimisation process.

Beknopte samenvatting

In programmeertalen kunnen neveneffecten voorkomen wanneer een berekening
naast het teruggeven van het resultaat nog een bijkomend effect heeft. Voorbeelden
van deze neveneffecten zijn het tonen van tekst, of het wijzigen van veranderlijke
toestanden. Deze effecten zijn gewoonlijk impliciet, en ingebouwd in de taal.
Recentelijk wint het gebruik van expliciete effecten echter aan populariteit, omdat
hierbij de effecten vrij samengesteld kunnen worden. Het zorgt eveneens voor een
duidelijke scheiding tussen de syntaxis van effecten, en de semantiek ervan, waarbij
de eerste wordt gegeven door effectdeclaraties, en de tweede door zogenoemde effect
handlers. Door deze compositie wordt een extra laag van modulariteit ingebouwd
in het programmeren van effecten en handlers, omdat het mogelijk is om hetzelfde
programma verschillende gedragen te laten vertonen afhankelijk van de handlers
die de effecten interpreteren. Jammer genoeg hangt aan deze flexibiliteit ook een
prijskaartje. Hoewel er al onderzoek is gedaan naar efficiënte runtime representatie
voor effecten en effect handlers, zijn de meeste programma’s op basis van handlers
nog steeds veel langzamer dan effectvrije handgeschreven code. In deze thesis
richten we ons op de kwestie van performantie van handler-gebaseerde programma’s,
waarbij de modulariteit die ze bieden behouden wordt. We onderzoeken deze kwestie
binnen twee paradigma’s: Functioneel Programmeren en Logisch Programmeren.

Voor het deel over Functioneel Programmeren focussen we op Eff, een taal op
basis van ML met expliciete effecten. We laten zien dat de kloof in performantie
goed (in sommige gevallen volledig) gedicht kan worden met behulp van type-en-
effectgerichte optimaliserende compilatie. Het hoofddoel van deze optimalisaties is
om code gerelateerd aan effecten en handlers te elimineren. Onze aanpak bestaat
uit twee fasen. Eerst combineren we bron-naar-bron transformaties met specialisatie
van functies om de toepasing van handlers drastisch te verminderen. Vervolgens
tonen we hoe de brontaal omgezet kan worden tot een handler-loze doeltaal, waarbij
geen overhead geleden wordt bij effectloze computaties. Onze aanpak elimineert een
groot deel van de overhead veroorzaakt door handlers, en levert een competitieve
performantie met handgeschreven OCaml code.

v

vi BEKNOPTE SAMENVATTING

Het implementeren van deze optimalisaties voor Eff is echter foutgevoelig, omdat
types in de kerntaal van Eff impliciet zijn, wat het transformeren van code een
fragiel proces maakt. In deze thesis presenteren wij tevens een polymorfische
kerncalculus met expliciete types voor algebraïsche effect handlers met een type-en-
effectsysteem dat gebaseerd is op subtyping, om deze zwakte aan te pakken. In de
voorgestelde calculus is subtyping expliciet: waar een expressie een ander type heeft
dan verwacht, worden er coercions—dit zijn expliciete bewijzen van subtyping—aan
toegevoegd. Zo worden typing bugs snel zichtbaar tijdens programmatransformaties.

Voor het deel over Logisch Programmeren bouwen we verder op delimited control
primitieven voor Prolog om algebraïsche effecten en handlers in de taal te
introduceren. Delimited control wordt gebruikt om de control-flow dynamisch
te manipuleren, en om een breed gamma aan control-flow en data-flow effecten
te implementeren. Helaas is delimited control een vrij primitief taalconcept, en is
het gebruik ervan niet makkelijk. Bijgevolg gebruiken wij effect handlers als een
gestructureerde methode die gebruik maakt van delimited control. We illustreren de
expressieve kracht van dit taalconcept en geven een implementatie door vertaling
naar delimited control primitives.

Tot slot behandelen we de niet verwaarloosbare performantie-overhead die delimited
control veroorzaakt wanneer het extensief wordt gebruikt. Hiervoor presenteren
we een geoptimaliseerde aanpak voor compilatie, die gedeeltelijke evaluatie met
toegewijde herschrijfregels combineert. De herschrijfregels worden gestuurd door een
lichtgewicht effectinferentiesysteem dat analyseert welke effectoperaties opgeroepen
kunnen worden door een programma. We illustreren de effectiviteit van onze aanpak
aan de hand van een aantal maatstaven, waarbij we laten zien dat de overhead
veroorzaakt door delimited control gereduceerd wordt tot de efficiëntie van Prolog
na het optimalisatieproces.

Translated from English abstract by Imke van Steenkiste and revised by Tom Schrijvers

Contents

Abstract iii

Contents vii

List of Figures xiii

1 Introduction 1

1.1 Thesis Overview and Scientific Output 3

1.1.1 Effect Handlers in Functional Programming 3

1.1.2 Effect Handlers in Logic Programming 4

2 Background 5

2.1 Theory of Programming Languages 5

2.1.1 Abstract Syntax . 6

2.1.2 Type Systems . 6

2.1.3 Operational Semantics 9

2.2 Eff by Example . 10

2.2.1 Basic Example . 10

2.2.2 The N-Queens Problem 12

2.3 Formal Definition of Eff . 17

vii

viii CONTENTS

2.3.1 Syntax . 17

2.3.2 Type System . 18

2.3.3 Operational Semantics 23

2.4 Related Work . 25

2.4.1 Related Calculi . 25

2.4.2 Effect Handlers Implementations 27

3 Optimised Compilation for Eff 29

3.1 Motivation . 29

3.2 Compilation of Eff to OCaml 30

3.2.1 Programming with Algebraic Effect Handlers 31

3.2.2 Basic Compilation to OCaml 31

3.2.3 Purity Aware Compilation 33

3.2.4 Optimising Compilation 34

3.3 Source-Level Optimisations . 35

3.3.1 Term Rewriting Rules . 35

3.3.2 Function Specialisation 39

3.4 Basic Translation of Effy to OCaml 42

3.4.1 Translating Types . 42

3.4.2 Translating Terms . 44

3.5 Purity-Aware Translation to OCaml 46

3.6 Implementation in Eff . 49

3.6.1 Converting Source to Core Syntax 51

3.6.2 Translating Higher-Order Functions 51

3.6.3 Embedding pure computations into values 51

3.6.4 Extensible Set of Operations 52

3.7 Evaluation . 53

CONTENTS ix

3.7.1 Eff versus OCaml . 54

3.7.2 Eff versus Other Systems 55

3.8 Discussion . 56

4 Explicit Subtyping for Algebraic Effects 59

4.1 Introduction . 59

4.2 Overview . 60

4.2.1 Elaborating Subtyping . 60

4.2.2 Polymorphic Subtyping for Types and Effects 61

4.2.3 Guaranteed Erasure with Skeletons 61

4.3 The ImpEff Language . 62

4.3.1 Syntax . 63

4.3.2 Typing . 64

4.3.3 Well-formedness of Types, Constraints, Dirts, and Skeletons
for ImpEff . 67

4.4 The ExEff Language . 71

4.4.1 Syntax . 72

4.4.2 Typing . 75

4.4.3 Well-formedness of Types, Constraints, Dirts & Skeletons
for ExEff . 76

4.4.4 Operational Semantics 76

4.5 Type Inference & Elaboration . 82

4.5.1 Elaboration of ImpEff into ExEff 82

4.5.2 Constraint Generation & Elaboration 83

4.5.3 Constraint Solving . 88

4.5.4 Discussion . 94

4.6 Erasure of Effect Information from ExEff 94

4.6.1 The SkelEff Language 94

x CONTENTS

4.6.2 Typing . 95

4.6.3 Erasure . 95

4.6.4 Operational Semantics for SkelEff 98

4.6.5 Discussion . 98

4.7 Conclusion and Discussion . 102

4.7.1 Eff related type systems 103

5 Effect Handlers in Logic Programming 105

5.1 Delimited Control and Algebraic Effect Handlers 106

5.1.1 Delimited Control in Prolog 106

5.1.2 Syntax and Informal Semantics 108

5.1.3 Nested Handlers and Forwarding 111

5.1.4 Elaboration Semantics . 114

5.2 Optimisation . 115

5.2.1 Effect System . 116

5.2.2 Rewrite Rules . 119

5.2.3 Partial Evaluation . 121

5.3 Evaluation . 123

5.4 Related Work . 124

5.5 Conclusion and Discussion . 125

5.5.1 Eff vs Prolog: Concepts 126

5.5.2 Eff vs Prolog: Optimisations 127

6 Conclusion and Future Work 131

6.1 Summary of Contributions . 131

6.1.1 Effect handlers in Functional Programming 131

6.1.2 Effect handlers in Logic Programming 133

6.2 Ongoing and Future work . 134

CONTENTS xi

6.2.1 Import optimisations to new Eff calculus 134

6.2.2 Handler Merging in Eff 135

6.2.3 Explicit subtyping for polymorphic effects 135

6.2.4 Non tail-recursive continuations in Prolog 136

6.2.5 WAM implementation of effect handlers in Prolog 136

A Proofs of Eff optimisations 139

A.1 Soundness of Eff Rewriting rules 139

A.2 Type Preservation of Basic Compilation 141

B Proofs and Detailed examples for Prolog 147

B.1 Detailed parital evaluation example 147

B.2 State-DCG handler example in focus 150

B.3 Soundness of Rule (O-Disj) . 153

List of Symbols 161

Bibliography 161

List of publications 169

List of Figures

2.1 Types and terms of Effy . 18

2.2 Subtyping for pure and dirty types of Effy 19

2.3 Effy Type System . 21

2.4 Operational semantics of Effy 24

3.1 Basic Equivalences . 36

3.2 Term Rewriting Rules . 37

3.3 Types of (a subset of) OCaml 43

3.4 Compilation of Effy types to OCaml 43

3.5 Terms of (a subset of) OCaml 45

3.6 Compilation of Effy terms to OCaml 45

3.7 Subtyping induced coercions . 47

3.8 Type-&-effect-directed compilation for Values 49

3.9 Type-&-effect-directed compilation for Computations 50

3.10 Relative run-times of Loops example 54

3.11 Results of running N-Queens for all solutions on multiple systems . 56

3.12 Results of running N-Queens for one solution on multiple systems 56

4.1 ImpEff Syntax . 63

xiii

xiv LIST OF FIGURES

4.2 ImpEff Typing & Elaboration for values 64

4.3 ImpEff Typing & Elaboration for computations 65

4.4 ImpEff Constraint Entailment 68

4.5 Well-formedness of Value types for ImpEff 69

4.6 Well-formedness of Computation types for ImpEff 70

4.7 Well-formedness of Constraints for ImpEff 70

4.8 Well-formedness of dirts for ImpEff 71

4.9 Well-formedness of skeletons for ImpEff 71

4.10 ExEff Syntax . 73

4.11 ExEff Value Typing . 74

4.12 ExEff Computation Typing . 75

4.13 ExEff Well-formedness of Types, Constraints, Dirts & Skeletons . . . 77

4.14 ExEff Coercion Typing . 78

4.15 ExEff Operational Semantics for Values 79

4.16 ExEff Operational Semantics For Computations 80

4.17 Elaboration for value & computation types, constraints, and typing
environments. 83

4.18 Constraint Generation with Elaboration (Values) 84

4.19 Constraint Generation with Elaboration (Computations) 87

4.20 Skeleton extraction function from value types 93

4.21 SkelEff Syntax . 95

4.22 SkelEff Typing . 96

4.23 Definition of type erasure. 97

4.24 SkelEff Operational Semantics 99

4.25 Congruence Closures of the Step Relations 100

5.1 Delimited Control Meta-Interpreter 109

5.2 Normalisation rules . 117

LIST OF FIGURES xv

5.3 Effect Inference Rules . 118

5.4 Optimisation Rules for effect handlers 120

5.5 DCG benchmark results in ms . 123

5.6 Runtimes of nested-handler benchmarks in ms 124

5.7 Similarities of Optimisations . 127

A.1 Typing of (a subset of) OCaml 142

Chapter 1

Introduction

Exceptions are a well-known and convenient programming language mechanism for
dealing with unexpected situations and unrecoverable problems. The mechanism
typically comes in two parts: exceptions are introduced by raising them and they
are optionally eliminated by handling them.

By raising an exception the programmer denotes that the program cannot continue
its normal execution. The remainder of the code, called the continuation, will not
be executed. Examples, where this is appropriate, are when the value of a function
argument is found to be invalid (e.g., it is outside its expected domain) or when a
resource (e.g., a file) is missing.

Because there is no clear path forward, by default an exception is raised, and the
further execution of the whole program is aborted. While there is no clear path
forward at the program site where the exception is raised, the calling context that
leads to the exception may have a strategy to recover from the exception thanks to
its broader view of the overall program’s purpose.

For instance, if an exception is raised because a file is missing, the task that needs
the file may not know how to recover, but the GUI that invoked the task may decide
to recover by asking the user for an available file to proceed with. To recover from an
exception, the calling context intercepts and handles it by specifying an alternative
function to invoke when the normal function raises an exception. Hence, exceptions
and exception handlers manipulate a program’s control-flow. The program’s normal
control flow is aborted when an exception is raised and execution instead jumps to
the exception handler.

In this thesis, we study algebraic effects and their handlers [73, 66], which are a

1

2 INTRODUCTION

powerful generalisation of exceptions and exception handlers. Like an exception, an
algebraic effect can be raised, though we typically say that it is called rather than
raised. In the same way that raised exceptions can be handled, algebraic effects
that were called can be handled too, by an effect handler.

The big difference with normal exception handlers is that the continuation of
an algebraic effect is not discarded, but instead captured and made available to
the handler. This new capability gives the handler the option to resume that
continuation, possibly even multiple times, as part of its strategy for dealing with
the algebraic effect. Because of this extended functionality, effect handlers are
sometimes informally called “exception handlers on steroids”.

The typical applications of algebraic effects and handlers are quite different from
those of exceptions. Instead of signalling abnormal situations, they are usually
part of the normal program execution. Notably, they are used for programmer-
defined control-flow and dataflow effects. Indeed, we can find many such examples
in the literature. Bauer and Pretnar [6] give a range of examples implementing
non-deterministic choice with backtracking, exceptions, state passing, probabilistic
choice and transaction lookups and updates. Lindley [54] uses it to define parser
combinators. Schrijvers et al. [84] show how to implement different search heuristics
for Prolog [14]. Dolan et al. [24] use effect handlers for implementing schedulers of
concurrent systems.

One of the main benefits algebraic effects and handlers provide to the programmer
is an additional layer of modularity: the use of effects is now decoupled from their
interpretation. The same code that uses effects can serve different purposes by
handling those effects in different ways. For instance, the same nondeterminism
effects are interpreted differently by different search heuristics in the work of
Schrijvers et al., while the same process effects are interpreted differently by
different schedulers in the work of Dolan et al.

However, the additional modularity provided by algebraic effects comes at the cost
of performance, an aspect many implementations in the literature pay little or no
attention to. Nevertheless, algebraic effects are inherently more expensive than
regular exceptions because capturing and resuming continuations is more involved
than merely discarding the continuation. This brings us to the primary research
question of this thesis:

How can we achieve better performance for algebraic effects and handlers
while maintaining their modularity?

To answer this question, we investigate the suitability of optimised compilation
for automatically generating efficient code that rivals non-modular hand-written
implementations.

THESIS OVERVIEW AND SCIENTIFIC OUTPUT 3

1.1 Thesis Overview and Scientific Output

This thesis consists of two parts, which revolve around the two different programming
paradigms, Functional Programming and Logic Programming, for which we have
investigated the optimised compilation of algebraic effects.

1.1.1 Effect Handlers in Functional Programming

The first part concerns functional programming and focuses in particular on the
Eff language [72]. Eff is a functional language based on OCaml [52] with native
support for algebraic effects and handlers.

This part consists of three chapters. First, Chapter 2 provides the necessary
background on effect handlers in general and on Eff in particular for the next two
chapters. The next two chapters present our contributions.

Eff Optimisation Techniques Chapter 3 discusses our approach to the optimised
compilation of Eff. This approach consists of a combination of several techniques,
including term rewriting rules, function specialisation and specialised code generation
for non-effectful computations. In addition to formalizing these techniques, we have
also implemented the optimisations in the Eff compiler and present the benchmark
results we have obtained.

This chapter is based on my contribution in the technical report:

“Pretnar, M., Saleh, A. H., Faes, A., and Schrijvers, T. Efficient compilation of
algebraic effects and handlers. Technical Report CW 708, KU Leuven Department

of Computer Science, 2017.”

An Explicitly Typed Core Calculus for Eff Chapter 4 presents a new core
calculus for Eff. While implementing the optimisations for Eff in Chapter 3, we
discovered that Eff’s pre-existing core-language is unsuitable for implementing
sophisticated type-directed optimisations since the lack of explicit types made the
process highly error prone. This chapter presents a new calculus designed from the
ground up with that application in mind. In order to facilitate the tracking and
updating of type-and-effect information, our calculus is explicitly typed in the style
of System F. A particular novelty is that the proposed calculus also tracks the use
of subtyping explicitly using cast expressions with coercions as subtyping proofs.
This chapter is based on the following conference paper:

4 INTRODUCTION

“Saleh, A. H., Karachalias, G., Pretnar, M., and Schrijvers, T. Explicit effect
subtyping. In European Symposium on Programming (2018), Springer, pp.

327–35”

1.1.2 Effect Handlers in Logic Programming

The second part of this thesis ports the notion of algebraic effects and handlers to
Prolog, a Logic Programming language.

Basic Compilation into Prolog The first part of Chapter 5 presents our language
design for algebraic effects and handlers in Prolog, together with a simple source-
to-source compilation scheme from the effect handler syntax into Prolog. We also
provide a Prolog meta-interpreter to interpret the effect handler syntax into Prolog
with delimited control. However, the resulting compiled code is rather inefficient
compared to native Prolog.

Optimised Compilation into Prolog The second part of Chapter 5 investigates
optimised compilation for algebraic effects and handlers in Prolog. We combine
techniques inspired by our work on Eff, including several additional rewriting rules,
with partial evaluation to obtain code that is close to its hand-written counterpart.

Most of the content in this chapter is based on the following conference paper:

“Saleh, A. H., and Schrijvers, T. Efficient algebraic effect handlers for Prolog.
Theory and Practice of Logic Programming 16, 5-6 (2016), 884–898”

Chapter 2

Background

This chapter provides the technical background on the notion of algebraic effects
and handlers that are necessary for this thesis.

Different approaches have been used in the literature to present this notion. It was
first introduced by Plotkin and Pretnar [73, 66] in the form of a categorical model.
Later Bauer and Pretnar created a language design around this notion, formalised
by an abstract syntax, a type system and a denotational semantics that follows the
categorical model; they called this language Eff [72]. Later, Bauer and Pretnar [6]
also provided an operational semantics for Eff.

For this thesis, we focus on the programming languages aspect of algebraic effects
and handlers. Thus we present algebraic effects and handlers in the form of a core
calculus for a simplified version of Eff that we call Effy.

In Section 2.1, we provide the necessary background for the notions used in defining
a programming languages which are mainly syntax, type-system and semantics. In
Section 2.2, we informally introduce Eff by means of a few examples. Section 2.3
gives the formal definitions of Effy. Later, in Section 2.4, we briefly discuss
different alternatives and related work.

2.1 Theory of Programming Languages

This section gives a brief overview of the required background related to the theory
of programming languages that is used in this work. A programming language is

5

6 BACKGROUND

defined by an abstract syntax (grammar) and execution behaviour for this grammar.
Programming languages are either strongly-typed, weakly-typed or un-typed. The
semantics given to a language provide meaning to the syntax and a way of execution.

2.1.1 Abstract Syntax

Syntax is a cornerstone for defining any programming language. Abstract syntax
is a hierarchy of rules used to define a language’s grammar. An abstract syntax
definition consists of sorts that contain operators. The operators are the terminals
and non-terminals of a language [94].

We represent the expressions of a language using abstract syntax trees. Abstract
syntax trees are data structures that allow for the traversal inside expressions while
complying to the language’s grammar.

Example The following example shows the abstract syntax of a small programming
language and how a syntax tree for one of its expressions can be represented.

The language contains only variables that can have integers or booleans as values
and one operation which is subtraction. The abstract syntax looks as follows:

Expression e ::= x variable
| e1 − e2 subtraction

A syntax tree for the expression x1 − x2 starts with the subtraction operator that
has two leaves, one for x1 and the other for x2.

2.1.2 Type Systems

A type system is the formal classification of language objects in different categories,
each category supporting a limited set of operations [62]. We can call a category in
such a theory a type. A type is essentially a set of values. For example, a numeric
literal 5 can be assigned type int (integer), while the boolean value true can be
assigned the type bool. We also assign a type to an expression, like int to 2+3, if
that expression evaluates to a value of that type.

Type systems literature Type systems are a central topic in the field of
programming languages theory, which studies the formal definition of programming

THEORY OF PROGRAMMING LANGUAGES 7

languages and their metatheory. Well-known examples of type systems are System
F [62, Chapter 23] and the Hindley-Milner [17, 36] type systems.

Type systems example The type system specifies the classification by means of
a relation, also called a judgment, of the form Γ ` v : A. This judgment denotes
that for the given typing environment Γ, value v has type A. The judgment is
defined by means of a number of inference rules, often one per syntactic construct
(e.g., functions, handlers, etc.), that explain how to assign types to those constructs
in terms of the types of their components. For example, an expression (x− y) can
be assigned type float, if both x and y have type float. This inference rule is
formally written as:

Γ ` x : float Γ ` y : float
Γ ` x− y : float

Subtract (2.1)

Subtract is the rule name. The above rule can be read as follows: If the variable
x has type float and y has type float, then x-y has type float. We get the
types of the variables x and y from a typing environment Γ, which records the
types of the free variables. For example, if Γ contains information about x and y
such that x : float and y : float, then the Subtract rule would type-check
correctly for the expression x − y. Otherwise, if the information about x or y is
missing from the typing environment, or they have other types than float, then
the Subtract rule would reject the expression.

Type checking The main purpose of a type system is to rule out programs that
contain particular classes of (possibly latent) bugs; these programs are considered
ill-typed because they cannot be assigned a type in the type system. For example
the expression 45 + true is ill-typed, since we cannot add a numerical value to a
boolean value. Therefore, we need a type system that eliminates these ill-typed
expressions from the programs. This procedure of checking for ill-typed program
and ensuring that a program is well-typed is called type-checking. A programming
language with a type-checker is said to hold the type-safety property.

Subtyping Some type systems have a notion of subtyping [62, Chapter 15].
Subtyping is a partial order on types. For example, we might say that the integer
type is a subtype of the floating point type, or, conversely, that floating point
numbers are a supertype of integers. We will denote relations as follows A 6 A′ to
mean that the type A is a subtype of the type A′.

In the Subtract rule, suppose x has the type int. Then the rule rejects the
type of the variable as it expects float. However, this need not be the case in

8 BACKGROUND

a type system with subtyping. Suppose we have the subtyping rule int 6 float
that declares that the integer type is a subtype of the float type.1 Moreover, with
subtyping we would have the following “subsumption” typing rule in addition to
the Subtract rule:

Γ ` e1 : A A 6 A′

Γ ` e1 : A′
TySub (2.2)

Using the TySub rule, we can treat a variable as having any of the super types of its
type. Therefore the type system would not complain when e1 of type int appears
in a subtraction, as int is a subtype of float, and thanks to the subsumption rule
e1 can thus be seen as being of type float.

There are two main notions of subtyping in programming languages:

• Implicit subtyping: The subtyping occurs automatically inside the compiler.
The previous example that explains subtyping uses this technique. Many
subtyping rules can be applied to an expression until the desired type is
achieved.

• Explicit subtyping: The language supports casts to an expression where
subtyping proof can appear. In order to change the type of an expression in
an explicitly subtyped language, a subtyping witness has to accompany the
expression showing the required subtyping relation.

Type inference The notion of type inference or type reconstruction [63, Chapter
10] refers to automatically infer the type of an expression of a language. For
example, the following expression written in simply typed Lambda-calculus [62,
Chapter 9]:

λx.(x+ 1)

We assume that the type for this expression is a function type α→ β where α and
β are type variables and → states that the type is a function that takes the input
type α and returns the output type β. Since the computation inside the lambda
abstraction is an addition, the resulting type of the computation needs to be an
integer. Also, the variable x is used in the addition so the type of x is also an
integer. Therefore the inferred type of this expression is int→ int.

Several algorithms have been developed in the literature for type inference. Local
type inference was proposed by Pierce and Turner [64]. A different approach for type
inference is the greedy approach developed by Cardelli [13]. The inference algorithm
developed in Hindley-Milner type system [18] uses unification as the core of the
algorithm. Several constraint-based type inference algorithms feature a two-phase

1By just adding a .0 to the integer

THEORY OF PROGRAMMING LANGUAGES 9

approach: firstly generating constraints while inferring the type of an expression
and secondly resolving these constraints by means of substitutions [1, 92, 69].

2.1.3 Operational Semantics

Semantics is the study of the meaning of languages. Formal semantics for
programming languages is the study of formalisation of the practice of computer
programming [59]. Operational semantics defines the behaviour of a program. It
does so by describing how a valid program is interpreted through sequences of
computational steps that are also called reduction steps. A program reduces to a
terminal value that gets returned to the user.

Operational semantics of a programming language can be defined in two forms:

Small-step semantics Plotkin [67] introduced Small-step semantics (also called
structural semantics). The main idea of structural semantics is to define the
behaviour for each sort in the language. The specification takes the form of a set
of inference rules that define the valid transitions from one expression to another.
It uses structural induction approach over all the sorts of the language. Small-step
semantics gives control over the details and order of evaluation which allows for
more natural proofs of properties for the language.

Small-step semantics are algorithmic, meaning that we can write a terminating
program that reduces an expression to its terminal value using well-defined small-step
semantics.

Big-step semantics Big-step semantics was introduced by Kahn [40], and it
directly formulates to “this term evaluates to that final value” written t ⇓ v. It
provides an interpretation of how a term evaluates to value. The result of evaluating
a big-step semantics is usually a tree of inference rules and a terminal value.

The main disadvantage of big-step semantics is that it does not provide a step-by-
step evaluation of expressions in the language which makes the implementation of
big-step semantics in a compiler a hard task.

Type preservation Type preservation is an essential property for the operational
semantics of a language. It states that well-typedness of programs remains invariant
under the transition rules of the language. Meaning that the evaluation rules or
reduction rules that are given by the operational semantics do not cause a change
to the type of the expressions being evaluated.

10 BACKGROUND

2.2 Eff by Example

This section explains Eff informally by means of several examples that capture
its essence. The examples are variations of those first presented by Bauer and
Pretnar [6].

2.2.1 Basic Example

Let us start with a basic example which explores non-determinism in Eff.

Declaring an effect This example starts with the declaration of an effect—note
that Eff’s syntax resembles that of OCaml:

effect decide : unit -> bool;;

This declaration introduces an effect, called decide, that takes a value of type
unit and returns a value of type bool. Both unit and bool are built-in types:
unit is a type with a single value denoted (), and bool has two values denoted
true and false. Note that the declaration does not provide an implementation
for decide or otherwise assigns a meaning to it.

Using effects Here is an example use of the decide effect in a larger expression.

let x = (if #decide () then 10 else 20) in
let y = (if #decide () then 0 else 5) in
x - y

Note that the effect call is prefixed by #. Like a function call it receives a unit
value as a parameter, and its context, the conditional expression assumes that
it produces a boolean; these two facts are in accordance with the declared type
signature for the effect.

Informally, we can understand the whole expression as assigning either the value
10 or 20 to the variable x, and the value 0 or 5 to the variable y, depending on
the successive outcomes of the two calls to decide, and then subtracting y from x.
Yet, running the previous code results in an unhandled effect error. The reason for
this is that the effect decide is called while no definition is provided for it.

EFF BY EXAMPLE 11

Defining a handler This is where (effect) handlers come in. Handlers give
meaning to effects that arise in computations by intercepting their calls, “handling”
them and passing control back to the computation.2 If a second effect is called,
the control is passed back to the handler and so on. Finally, the handler decides
what to do with the final result of the computation. For instance, the following
code fragment “wraps” the above expression in a handler for the decide effect.

handle
let x = (if #decide () then 10 else 20) in
let y = (if #decide () then 0 else 5) in
x - y

with
| return x -> x
| #decide y k -> k true

The first line, also called clause, of the handler, | return x -> x, states what to
do when the computation is finished. In this case, it just returns the final result,
which is bound to the variable x, as it is. We refer to this clause as the return
clause or the value clause.

The second clause, | #decide y k -> k true, explains that the decide effect
should always return true. This is called the effect clause or the operation
clause.The clause receives two inputs: the first is the parameter y of type unit,
which is not used, and the second is the continuation (or evaluation context) k that
captures the context in which the effect was called in the form of a function. For
instance, for the first call to decide above the continuation is

k = fun rx ->
handle
let x = (if rx then 10 else 20) in
let y = (if #decide () then 0 else 5) in
x - y

with
| return x -> x
| #decide y k -> k true

The body of the clause, k true, applies this continuation to the value true, thus
resulting in the new computation

handle
let x = (if true then 10 else 20) in

2The interrupt handling mechanism of operating systems works in a similar fashion, but at an
entirely different level.

12 BACKGROUND

let y = (if #decide () then 0 else 5) in
x - y

with
| return x -> x
| #decide y k -> k true

Note that this computation is still wrapped in the original handler. As a consequence,
the second effect call receives continuation

k = fun ry ->
handle
let y = (if ry then 0 else 5) in
10 - y

with
| return x -> x
| #decide y k -> k true

and is handled in the same way. Eventually, the computation returns 10− 0 = 10.

2.2.2 The N-Queens Problem

Let us now look at a slightly more significant and more meaningful program to
motivate the use of effects and handlers. In particular, their main advantage is
modularity: we can reuse the same code, but apply different handlers to interpret
its effects differently and thus obtain different results.

We demonstrate this advantage on a program that solves the well-known N-Queens
Problem3, and contrast an implementation without effects and handlers (i.e., written
in plain OCaml) with an Eff implementation that does use them.

Without Effects and Handlers The following OCaml code implements a naive
solver for the N-Queens Problem. While the problem may have multiple solutions
for a given problem size N, the implementation only computes and returns the first
it encounters.

1 let no_attack (x, y) (x’, y’) =
2 x <> x’ && y <> y’ && abs (x - x’) <> abs (y - y’)
3

3The problem simply asks: How can N number of queens be placed on an N ×N chessboard
so that no two of them attack each other?

EFF BY EXAMPLE 13

4 let rec not_attacked x’ = function
5 | [] -> true
6 | x :: xs -> if no_attack x’ x then not_attacked x’ xs
7 else false
8

9 let available number_of_queens x qs =
10 let rec loop (possible, y) =
11 if y < 1 then
12 possible
13 else if not_attacked (x, y) qs then
14 loop ((y :: possible), (y - 1))
15 else
16 loop (possible, (y - 1))
17 in
18 loop ([], number_of_queens)
19

20 let queens_one number_of_queens =
21 let rec place (x, qs) =
22 if x > number_of_queens then Some qs else
23 let rec choose = function
24 | [] -> None
25 | y :: ys ->
26 begin match place ((x + 1), ((x, y) :: qs)) with
27 | Some qss -> Some qss
28 | None -> choose ys
29 end
30 in
31 choose (available number_of_queens x qs)
32 in
33 place (1, [])

Let us go through the functions provided above and give an explanation of what
they do. The function no_attack takes two locations and checks that these
locations cannot attack each other. This is done by checking 1) that their x (row)
and y (column) coordinates are different, and 2) that they cannot attack each
other diagonally (using the absolute value function). The function is used in the
not_attacked function which takes a queen position x and a list of positions of
other queens. Then, it checks that none of the positions in the list can attack the
additional queen at position x.

We use the previous function in the available function that takes the number
of queens, the current row x where an additional queen should be placed and the

14 BACKGROUND

already placed queens’ locations qs. Then it returns the available column positions
ys where the additional queen cannot attack any of the previously placed queens.

The main function is queens_one. This function is responsible for correctly placing
the queens. It returns a value of type (int list) option which denotes optionally
a list of positions for the placed queens. The ’a option datatype features two
shapes of values: Some x denotes a value x of type ’a, while None denotes the
absence of such a value.

The main function proceeds by placing the queens one by one, selecting for each
queen one of the available positions where it does not attack the previously
placed queens. In case that there are no places to place the queen at hand, it
backtracks and considers an alternative position for one of the previously placed
queens. This is done using the two mutually recursive functions place and choose.
The first is responsible for the correct placement of the queens, while the latter
backtracks over the available column locations for each queen. The interesting
line of code in the previous example is line 25. It assigns the current queen with
the position (x,y) and adds it to the list of placed queens qs. Then it places
the remaining queens, from x+1 onwards, with respect to the extended list of
placed queens (x, y)::qs. If there is a full placement, this is returned in line 26.
Otherwise, in line 27, an alternative position is considered for queen x.

While the above code works well, it only computes the first solution to the problem.
Suppose our requirement changes and we want all solutions. Then we have to
modify the code as follows to compute the list of all solutions.

let queens_all number_of_queens =
let rec place (x, qs) =
if x > number_of_queens then [qs] else
let rec choose = function
| [] -> []
| y :: ys ->

place ((x + 1), ((x, y) :: qs)) @ choose ys
in
choose (available (number_of_queens, x, qs))

in
place (1, [])

Observe that this code is relatively similar to the single-solution version. Nevertheless,
we had to modify the two main functions place and choose to return all solutions.
Instead of selecting only one column y for a queen in a row x, we go through all
the available columns selections and then we concatenate all the results in a list
using the @ function. So we are traversing the whole search tree instead of only
selecting one branch.

EFF BY EXAMPLE 15

With Effects and Handlers Let us use Eff to solve the N-queens problem
instead of OCaml. This solution is centered around two effects:

effect decide : unit -> bool ;;
effect fail : unit -> empty ;;

The first effect, decide, is familiar from the basic example. We use it here to
choose between two alternatives, denoted by true and false. The second effect,
fail, indicates that there is no valid alternative. Its return type is empty, which is
a built-in type without values. Hence, fail cannot possibly return; its only option
is to abort the current computation. It is usually wrapped in a pattern match as
follows.

abort = function () -> (match #fail () with)

The function abort has type unit -> ’a, i.e., it pretends to return a value of any
type. Of course, the function never returns for there is no value of the empty type
that #fail () can yield. (For the same reason the pattern match is empty: it is
pointless to provide a pattern to match on if no value is forthcoming.)

The code below uses these two effects in the choose function of the solver.

let queens number_of_queens =
let rec choose = function
| [] -> abort ()
| x::xs -> if #decide () then x else choose xs

in
let rec place (x, qs) =
if x > number_of_queens then qs else
let y = choose (available number_of_queens x qs) in
place ((x + 1), ((x, y) :: qs))

in
place (1, [])

In order to recover the single-solution behaviour of the program, we use the following
handler:

let option_handler = handler
| return y -> (Some y)
| #decide () k -> (match k true with

16 BACKGROUND

| Some x -> Some x
| None -> k false)

| #fail _ _ -> None

The return clause wraps the result in the data-type constructor Some to denote
the presence of a result.The #decide clause calls the continuation k with true,
and if it returns a result (Some x), the handler returns that result. If it does not
return a result (None), then the handler explores the other branch by calling the
continuation with false. The #fail clause discards the continuation and returns
None.

If we want all solutions instead, we do not have to modify the solver code. We can
just wrap it in a different handler:

let choose_all = handler
| return x -> [x]
| #fail _ k -> []
| #decide _ k -> k true @ k false

The choose_all handler collects all solutions in a list. Its first clause turns a single
result into a singleton list. Similarly, the second clause turns a fail effect into an
empty list. Finally, when a choice is made with decide, the handler explores both
alternatives by applying the continuation twice, once to true and once to false,
and appending the two resulting lists.

Running queens 4 with the two different handlers yields the following results.

with option_handler handle queens 4;;
(int * int) list option =
Some [(4, 3); (3, 1); (2, 4); (1, 2)]

with queens_all handle queens 4;;
(int * int) list list =
[[(4, 3); (3, 1); (2, 4); (1, 2)];
[(4, 2); (3, 4); (2, 1); (1, 3)]]

In summary, we have observed that effects and handlers allow us to quickly and easily
change the behaviour of a program and thus enable its reuse for different purposes.
While we have only given a single example, solving combinatorial problems, effect
handlers can be used in many more settings. For instance, Bauer and Pretnar [6]
show applications to printing, probabilistic programming, implicit state passing, and
cooperative multi-threading.

FORMAL DEFINITION OF EFF 17

2.3 Formal Definition of Eff

The previous section has provided an informal description of the Eff language by
means of examples. In this section, we give a more formal treatment of the language
in terms of a non-polymorphic fragment of Eff, called Effy. This presents a
more principled basis for understanding the theory behind Eff. We will build on
this core calculus in later chapters.

2.3.1 Syntax

There are two groups of syntactic sorts in Effy: types and terms.

Types

The top part of Figure 2.1 shows the types that an Effy term can take. There are
two sorts of types: simple types A and dirty types C.

Simple types contain primitive types such as int, bool and unit that present
integers, booleans and unit values respectively. In addition to primitive types, there
are function types A→ C, and handler types C V D. We explain below in detail
how to assign these types to their respective terms.

Dirty types are simple types accompanied by a set ∆ that we call dirt. The dirt is
a set of effects that may occur when executing a computation.

Terms

The terms of Effy are divided into two sorts: values and computations. The lower
part of Figure 2.1 shows the terms of Effy.

First, we take a look at the values; they are terms that by themselves are inert and do
not perform any computation. They can be variables x, units (), lambda abstractions
fun x 7→ c or handlers h. A handler h consists of a return clause (return x 7→ cr)
and zero or more effect clauses. We abbreviate Op1 x k 7→ cOp1

, . . . , Opn x k 7→ cOpn
as [Opx k 7→ cOp]Op∈O, and write O to denote the set {Op1, . . . , Opn}.

Computations are the terms that compute and may produce effects. A value can
be lifted into a computation using the return v term. Calling an effect creates
another primitive computation. The do construct sequences two computations and
passes the result from the first to the second. The handle c with e construct
applies a handler to a computation, handling some of its effects and producing

18 BACKGROUND

Types

Simple typesA,B ::= int | bool | unit | A→ C | C V D
Dirt∆ ::= {Op1, Op2, . . . }

Dirty typesC,D ::= A ! ∆

Terms

value v ::= x variable
| k constant
| fun x 7→ c function
| { handler

return x 7→ cr, return case
Op1 x k 7→ cOp1

, . . . , Opn x k 7→ cOpn ops cases
}

computation c ::= v1 v2 application
| let rec f x = c1 in c2 recursive let
| return v returned value
| Op v operation call
| do x← c1; c2 sequencing
| handle c with v handling
| if v then c1 else c2 If-Then-Else

Figure 2.1: Types and terms of Effy

a new computation. Function application v1 v2 also constructs a computation.
Finally, if v then c1 else c2 chooses between two computations based on the
condition v.

2.3.2 Type System

Subtyping The type system of Effy features subtyping. Consider that a
computation returning values of type A and potentially calling operations from
the set ∆ is assigned the type A ! ∆. This set ∆ is an over-approximation of the
operations that are called, and may safely be increased. This induces a natural
subtyping judgement A ! ∆ 6 A ! ∆′ on dirty types. As dirty types can occur inside
pure types (namely in arrow and handler types), we also get a derived subtyping
judgement on pure types. Effy’s Subtyping rules are given in Figure 2.2.

FORMAL DEFINITION OF EFF 19

Pure Types Subtyping

A 6 A′

Sub-bool

bool 6 bool

Sub-int

int 6 int

Sub-→
A′ 6 A C 6 C ′

A→ C 6 A′ → C ′

Sub-V
C ′ 6 C D 6 D′

C V D 6 C ′ V D′

Dirty Types Subtyping

C 6 C ′

Sub-!
A 6 A′ ∆ ⊆ ∆′

A ! ∆ 6 A′ ! ∆′

Figure 2.2: Subtyping for pure and dirty types of Effy

The judgement A 6 A′ states that the pure type A is a subtype of A′. While the
judgement C 6 C ′ states that the dirty type C is a subtype of C ′, rules Sub-bool
and Sub-int represent reflexivity for integer and boolean types. Notice that for
Sub-→ and Sub-V, the subtyping judgement is contra-variant in the argument
types of functions and handlers. Rule Sub-! shows subtyping for computation types.
If the pure parts of two computation types are subtypes, and the dirts are in a
subset relation, then the two dirty types are in a subtyping relation.

Value Typing After we presented the subtyping rules for Effy, now, let us look
at the typing rules. First, we consider the typing rules for Effy values. The typing
judgement for values takes the form Γ ` v : A which states that: given a typing
environment Γ, value v has value type A. The top-level environment Σ contains
the typing of effects and constants. Every effect is defined by its name and has an
input and an output simple types, e.g., (effect decide : unit -> bool).

The top of Figure 2.3 provides the inference rules that define value typing.
Rule TySubVal is the typing subsumption rule for values. It connects the
subtyping rules for values to the type system. A value v of type A can have
the type A′ if the subtyping relation A 6 A′ holds. Rule TyVar gets the type of

20 BACKGROUND

a free variable x from the typing environment Γ. The rule TyAbs handles lambda
abstractions. The lambda variable is added to the typing environment, and then
the body computation is type-checked to have a dirty type. The overall type is an
arrow type A→ C, where A is the expected input type of the function, and C is
the resulting computation type.

The handler case is slightly more complicated. Rule TyHand gives typing for
handlers. It requires that the right-hand sides of the return clause and all operation
clauses have the same computation type (B ! ∆), and that all operations mentioned
are part of the top-level environment Σ. The result type takes the form A ! ∆∪O V
B ! ∆, capturing the intended handler semantics: given a computation of type
A ! ∆∪O, such that O is the set of effects that the handler handles and ∆ contains
the remaining effects that appear in the input computation and are not handled by
the handler. The result type of the output computation is B. The handler handles
the operations O and propagates the unhandled operations ∆ to the output type.

Computation Typing Next, we describe the rules for computations. The typing
judgement for computations takes the form Γ ` c : C: Given a typing environment
Γ, the computation c has the dirty type C. Computations have a dirty type due
to the potential of triggering an effect. This judgement is defined in the bottom
half of Figure 2.3. Rule TySubComp is the subsumption rule for dirty types.
TyLetRec type checks recursive functions. Rule TyReturn handles return v
computations. The keyword return effectively lifts a value v of type A into a
computation of type A ! ∅. Rule TyOp checks operation calls. First, we ensure
that v has the appropriate type, as specified by the signature of Op. The side
condition Op ∈ ∆ ensures that the called operation Op is captured in the result
type. Rule TyDo handles sequencing. Given that c1 has type A ! ∆, the pure part
of the result of type A is bound to term variable x, which is brought in scope for
checking c2. All computations in a do-construct should have the same effect set ∆.
Rule TyHandleWith eliminates handler types, just as rule TyApp eliminates
arrow types. Rule TyITE makes sure that the condition is of type bool and the
two branches are of the same type.

Typing Derivation Example After presenting the syntax and typing rules for
Effy, we illustrate how they work on a small example. Let us type-check the
following Effy computation:

effect flip: bool -> bool ;;

handle
do x <- (#flip true) in (#flip x)

FORMAL DEFINITION OF EFF 21

Expressions
typing contexts Γ ::= ε | Γ, x : A

Γ ` v : A

TySubVal
Γ ` v : A A 6 A′

Γ ` v : A′

TyVar
(x : A) ∈ Γ
Γ ` x : A

TyConst
(k : A) ∈ Σ
Γ ` k : A

TyAbs
Γ, x : A ` c : C

Γ ` fun x 7→ c : A→ C

TyHand
Γ, x : A ` cr : B ! ∆[

(Op : AOp → BOp) ∈ Σ Γ, x : AOp, k : BOp → B ! ∆ ` cOp : B ! ∆
]
Op∈O

Γ ` {return x 7→ cr, [Opx k 7→ cOp]Op∈O} : A ! ∆ ∪ O V B ! ∆

Computations

Γ ` c : C

TySubComp
Γ ` c : C C 6 C ′

Γ ` c : C ′

TyApp
Γ ` v1 : A→ C Γ ` v2 : A

Γ ` v1 v2 : C

TyLetRec
Γ, f : A→ C, x : A ` c1 : C Γ, f : A→ C ` c2 : D

Γ ` let rec f x = c1 in c2 : D

TyReturn
Γ ` v : A

Γ ` return v : A ! ∅

TyOp
(Op : A→ B) ∈ Σ Γ ` v : A

Γ ` Op v : B ! {Op}

TyDo
Γ ` c1 : A ! ∆ Γ, x : A ` c2 : B ! ∆

Γ ` do x← c1; c2 : B ! ∆

TyHandWith
Γ ` v : C V D Γ ` c : C

Γ ` handle c with v : D

TyITE
Γ ` v : bool Γ ` c1 : C Γ ` c2 : C

Γ ` if v then c1 else c2 : C

Figure 2.3: Effy Type System

22 BACKGROUND

with
| #flip i k -> if i

then k false
else k true

| return y -> return y

In order to type-check this computation, we start from an empty typing environment.
Also, the set Σ contains the effect type signature flip : bool -> bool and the
signatures of the constants true : bool and false : bool.

We go through the derivation in a bottom-up fashion. In order to type-check the
handle/with computation, we use the rule TyHandleWith as follows:

TyHandWith
Ta Tb

∅ ` handle do x← (#flip true); (#flip x) with h : bool ! ∅

where h abbreviates the handler above, and the two derivations Ta and Tb are for
the handler and the do computation respectively. The derivation Ta for the handler
looks as follows:

(Ta)TyHand
T1 T2

∅ ` h : bool ! {flip}V bool ! ∅

Derivation tree T1 type-checks the return clause of the handler using TyReturn
as follows:

(T1) TyReturn
TyVar

y ∈ {y : bool}
y : bool ` y : bool

y : bool ` return y : bool ! ∅

For the operation clause, we use TyITE since it is an if/then/else statement:

(T2) TyITE
T3 T4 T5

Γ1 ` if i then k true else k false : bool ! ∅

The environment Γ1 is equal to {i : bool, k : bool → bool ! ∅}. There are
three subderivations, for the three components of the if/then/else. The first
derivation tree T3 type-checks the condition:

(T3) TyVar
i : bool ∈ Γ1

Γ1 ` i : bool

FORMAL DEFINITION OF EFF 23

The tree T4 type-checks the first branch of the conditional:

(T4) TyApp
TyVar

k ∈ Γ1

Γ1 ` k : bool→ bool ! ∅
TyConst

false : bool ∈ Σ
Γ1 ` false : bool

Γ1 ` k false : bool ! ∅

The use of Rule TyVar type-checks the continuation function k which is present
in Γ1. The continuation function is applied to false which is type-checked using
TyConst. Then both of the derivations are combined using the TyApp rule.

The tree T5, which is similar to T4, type-checks the other branch of conditional:

(T5) TyApp
TyVar

k ∈ Γ1

Γ1 ` k : bool→ bool ! ∅
TyConst

true : bool ∈ Σ
Γ1 ` true : bool

Γ1 ` k true : bool ! ∅

The tree Tb type-checks the do computation by using the TyDo rule:

(Tb) TyDo
T6 T7

∅ ` do x← (#flip true); (#flip x) : bool ! {flip}

This rule type-checks the two computations in the do computation. The trees T6
and T7 show the derivations respectively. We use the rule TyOp to type checking
the first computation since it is an effect call.

(T6) TyOp
flip : bool→ bool ∈ Σ

TyConst
true : bool ∈ Σ
∅ ` true : bool

∅ ` (#flip true) : bool ! {flip}

The second computation is also an effect call. We use TyOp again to type check
it.

(T7) TyOp
flip : bool→ bool ∈ Σ x : bool ` x : bool

x : bool ` (#flip x) : bool ! {flip}

2.3.3 Operational Semantics

Figure 2.4 defines the big-step operational semantics of Effy. The judgement
c ⇓ r states that computation c reduces to result r. A result is either a returned
value, return v, or an unhandled operation, Op v (y.c), where v is the operation’s
parameter and y.c is its continuation.

24 BACKGROUND

result r ::= return v | Op v (y. c)

Evaluation

c ⇓ r

Eval-App
c[v/x] ⇓ r

(fun x 7→ c) v ⇓ r

Eval-LetRec
c2[(fun x 7→ let rec f x = c1 in c2/f] ⇓ r

let rec f x = c1 in c2 ⇓ r

Eval-Ret

return v ⇓ return v

Eval-Op

Op v (y.c) ⇓ Op v (y.c)

Eval-Do-Ret
c1 ⇓ return v c2[v/x] ⇓ r

do x← c1; c2 ⇓ r

Eval-Do-Op
c1 ⇓ Op v (y. c′1)

do x← c1; c2 ⇓ Op v (y. do x← c′1; c2)

Eval-With-Ret
c ⇓ return v cr[v/x] ⇓ r

handle c with h ⇓ r

Eval-With-Handled-Op
c ⇓ Op v (y. c′) cOp[v/x, (fun y 7→ handle c′ with h)/k] ⇓ r

handle c with h ⇓ r

Eval-With-Unhandled-Op
c ⇓ Op′ v (y. c′) Op′ 6∈ O

handle c with h ⇓ Op′ v (y. handle c′ with h)

Eval-If-True
c1 ⇓ r

if true then c1 else c2 ⇓ r

Eval-If-False
c2 ⇓ r

if false then c1 else c2 ⇓ r

Figure 2.4: Operational semantics of Effy

RELATED WORK 25

Rule Eval-App substitutes the lambda binder x with the value v in the lambda
computation. Next, the value result is generated by the return v computation
(Eval-Ret), while the unhandled operation just reduces to itself in the computation
(Eval-Op). If the intermediate result of a sequential do is a value (Eval-Do-
Ret), it is substituted into the second computation. If it is an unhandled operation
(Eval-Do-Op), the second computation is appended to its continuation.

In the last three rules, h = {return x 7→ cr, [Opx k 7→ cOp]Op∈O}. When
a handled computation evaluates to a value (Eval-With-Ret), this value is
substituted into the handler’s return case. Finally, an unhandled operation is passed
to the appropriate operation case, if there is one (Eval-With-Handled-Op), or
propagated further, if there is not (Eval-With-Unhandled-Op). In either case,
the continuation y.c′ is handled by the same handler. This is because Eff and Effy
feature a deep handlers semantics, which means that the handler is re-wrapped
around the continuation as we showed in the basic example in Section 2.2. Rules
Eval-If-True and Eval-If-False reduce to the then-branch if the condition is
true and to the else-branch if the condition is false.

2.4 Related Work

In this section, we present an overview of the work related to algebraic effects and
handlers. We start with the different related calculi and optimisation techniques.
Then, we show different systems from the literature, and we discuss the difference
between their work and ours.

2.4.1 Related Calculi

Related type-and-effect systems The calculus presented in this chapter
resembles closely that of Pretnar [71] for inferring algebraic effects for Eff. The
type system is inspired by his work. Pretnar goes further into discussing a type
inference algorithm with constraint solving algorithm that we modify and build on
in Chapter 4.

In the work of Bauer and Pretnar [5], the presentation of an effect system that
gives information of what effects might be triggered by a computation opened the
gate for better optimisations in order to eliminate the overhead that effects and
handlers generate. The optimisations we show later in Chapter 3 depend heavily on
the effect system we introduce to be able to get more efficient run-times.

Several type-and-effects systems with various inference algorithms have been
discussed in the literature. The work of Dolan and Mycroft uses effect sub-typing

26 BACKGROUND

accompanied by a unification-based algorithm for inference [25]. Different systems
that are based on the notion of row-polymorphism [30] such as the work of Leijen
on Koka [49, 51]. Lindley et al. used implicit effect polymorphism in Frank [55].
Also, the work of Faes explored the extension of algebraic subtyping [23] into effect
systems [28].

Different Calculi for Algebraic Effects Kammar and Pretnar [43] presented a
calculus for algebraic effects and handlers with Hindley-Milner-style polymorphism.
Our work, contrarily, depends heavily on System F-style polymorphism [62,
Chapter 23]. The Hindley-Milner style allows universal quantifiers only at the
top-level of types. In System F however, they are allowed anywhere in a type. This
will be used in Chapter 4.

In our work, we deal with deep handlers, which means that the handler is re-wrapped
around the continuation in order to handle any other effect that might arise in the
continuation. Kammar et al. [41] introduced shallow handlers; these only handle
the first occurrence of an effect in a computation and are not wrapped around the
continuation. This means that a new handler is needed to handle the effects in
the continuation. Hillerström and Lindley [34] also introduced a calculus and an
implementation for shallow handlers that uses CPS translation.

Leijen [51] introduces an effect system for algebraic effects and handlers based on
types with scoped labels to track effects. Hillerström and Lindley [33] also presented
a calculus for algebraic effects based on row-typing and provided operational
semantics for it.

The recent work of Biernacki et al. [7] introduces Helium, which is language that
supports abstraction over algebraic effects. Helium’s calculus is equipped with a row-
based polymorphic type-and-effect system that supports existential quantification
over both types of an effect.

Calculi with Explicit Subtyping So far, in this thesis, we talk about Effy’s
type-system with implicit subtyping. We will see later that implicit subtyping
introduces bugs when we try to optimise Effy’s code using source to source
transformations. This is because we can not precisely pinpoint the type of a given
term when we run the optimisations.

Other than implicit subtyping, the notion of explicit subtyping has also been discussed
in the literature. We expand the calculus with notions of subtyping coercions that
accompany the terms to tell us the exact type of a given term without depending on
implicit subtyping. In the literature, the work of Mitchell [56] introduced the idea

RELATED WORK 27

of inserting coercions during type inference for ML-based languages, as a means for
explicit casting between different numeric types.

Breazu-Tanne et al. [11] also present a translation of polymorphic languages into
System F [62, Chapter 23], extended with coercions. System FC [88] uses explicit
type-equality coercions to encode complex language features (e.g. GADTs [61] or
type families [83]).

2.4.2 Effect Handlers Implementations

Many systems implement effect handlers, employing a range of different
implementation techniques. Almost every calculus we have discussed above features
an implementation as a proof of concept. Some toy languages were developed in
order to discover a property of algebraic effects or to show that one translation of
effects and handlers is more efficient than another.

As we will see later, Effy translates handlers to a free monad representation [3, 89]
that can be executed by OCaml. While this translation works in principle, it is
not very efficient.

Multicore OCaml [27] adapts the stack-switching design by Bruggeman et al. [12]
to provide an efficient native implementation. Multicore OCaml provides support
for algebraic effects in terms of multicore fibers to efficiently represent delimited
continuations at runtime. These come both in a cheaper one-shot and more
expensive multi-shot form. Several works [47, 35] have shown that this provides
an effective compilation target for algebraic effects. The performance of Multicore
OCaml is notable when continuations are called only once. However, when a
continuation is called more than once, it needs to be cloned first; this degrades the
performance considerably.

Kammar et al. [41] presented an implementation of effect handler libraries in
Haskell, OCaml, SML and Racket. The implementation technique uses an abstract
free-monad interface, implemented with continuations in Haskell and delimited
continuations in the other languages.

Kiselyov and others [46, 91, 45] investigate a number of different implementations
of the free monad that exhibit good runtime performance and/or algorithmic time
complexity. They consider a library in the lazily evaluated language Haskell. They
also support shallow handlers and explicit manipulation of the free monad structure
in the source language.

The web programming languages Koka [51] and Link [35] use different strategies
to compile effects and handlers. Koka performs a selective continuation passing
style (CPS) translation to lift effectful code into a free monad representation. Links

28 BACKGROUND

implements handlers by using a CEK machine on the server side and uses of a
higher-order CPS translation on the client-side [35].

Kammar and Plotkin [42] develop a theory of optimisations valid for effectful
programs that satisfy a specific algebraic theory. For example, if we assume
symmetry of non-deterministic choice, we may safely exchange the order in which
non-deterministic computations are executed. This may result in speedups.

Recently, effects and effect handlers are getting into mainstream languages.
Brachthäuser et al. [9] developed an implementation of effect handlers in Java. Their
work provides a library for effect handlers in terms of delimited continuations. In
Chapter 5, we provide an implementation for effects and handlers based on delimited
continuations also, though in Prolog. Brachthäuser and Schuster implemented an
algebraic effects and handlers library for Scala [8]. Leijen implemented a library for
effect handlers in C [50].

Chapter 3

Optimised Compilation for Eff

This chapter presents our work on optimising the Eff compiler. We introduce our
optimisation techniques and the evaluation on a set of benchmarks.

3.1 Motivation

Currently, there is a variety of implementations of algebraic effects and handlers
available to use as we have seen in the previous chapter. Due to this diversity of
implementations, runtime performance is becoming more of a concern. So far, most
implementations come in the form of libraries [46, 47, 41, 10] and interpreters [35, 6].
As a consequence, much of the effort to improve performance has been directed
toward improving the runtime representation of computations with handlers and
associated operations [35, 27, 45]. However, we see that in practice effect handlers
still incur a significant performance overhead compared to hand-written code and
native side-effects.

With an end-to-end overview of a compiler for the Koka language, Leijen [51] has
demonstrated that compilation is a valid alternative avenue for implementing
algebraic effects and handlers. This showed that optimising compilation, in
particular, is interesting because it can further narrow the performance gap with
hand-written code and native effects.

To substantiate this belief, we present in this chapter our approach to the optimised
compilation of Eff. Currently, Eff is considered inefficient due to the use of a
free monad representation in the compilation to OCaml, the disadvantages of
which we are going to discuss later in this chapter. Our approach to optimise Eff

29

30 OPTIMISED COMPILATION FOR EFF

is interleaving three different techniques with the aim of eliminating the overhead
introduced by handler code as much as possible. The first optimisation technique
is term-rewriting rules that aim to partially evaluate the program during compile
time. The second technique is purity-aware compilation which aims to compile
non-effectful code using native OCaml code instead of free monad representation.
Finally, function specialisation aims to aid the first two techniques exposing more
opportunities to apply rewriting and purity aware compilation.

Chapter overview We start this chapter by showing the current state of Eff
compilation by means of an example in Section 3.2. This describes the performance
limitations of the current compilation techniques and also shows the potential
optimisations possible to improve the efficiency of the output code. These potential
optimisations are our approach to optimising Eff. The first technique we present
is source-to-source transformations and selective function specialisation with the
aim of eliminating explicit uses of handlers and the resulting overhead (Section 3.3).
Next, we give a basic monadic elaboration of Effy into OCaml, where effectful
computations of Effy are translated into pure computations of OCaml that
generate elements of the free monad (Section 3.4). We further refine this translation
into one that exploits the purity of computations to generate pure OCaml
expressions where possible, resulting in mostly idiomatic OCaml code (Section 3.5).
This stage crucially relies on the information from Eff’s type-and-effect system to
do its job. In the next sections, we discuss our implementation of the Eff compiler
(Section 3.6), and present an experimental evaluation, which clearly demonstrates
the effectiveness of this approach on a number of benchmarks. (Section 3.7). At
the end of the chapter, we discuss the results of optimising Eff in Section 3.8.

Throughout this chapter, we work with both OCaml and Eff, whose syntax
closely follows OCaml, and we use colours to distinguish between OCaml code and
Eff code.

3.2 Compilation of Eff to OCaml

This section motivates the need for optimised compilation of Eff. We start this
section by showing a small example in Eff and then go through the process of
compiling it into OCaml using the Eff’s compiler strategy. We discuss the issues
of this compilation regarding the inefficiency of the produced code. Afterwards,
we briefly show how the compilation can be more efficient using our optimisation
techniques.

COMPILATION OF EFF TO OCAML 31

3.2.1 Programming with Algebraic Effect Handlers

The following example is a simple loop that repeatedly increments an implicit
integer state. We first declare two effects to manipulate the state and then define
a recursive function that increments the state a given number of times n.

effect Put: int -> unit ;;
effect Get: unit -> int ;;
let rec loop n =

if n = 0
then

()
else

(Put (Get () + 1); loop (n - 1))

The following handler gives the semantics of the two effects in the loop function:
let state_handler = handler

| #Put s’ k -> (fun _ -> k () s’)
| #Get () k -> (fun s -> k s s)
| return _ -> (fun s -> s)

The Put case is defined in terms of the parameter s’ (the new value of the state)
and the continuation k. We handle Put as a function that accepts (though ignores)
the initial state, and then resumes the continuation by passing it the expected result
() : unit.

The case for Get is similar, except that we pass the initial state s to the continuation
k twice: first as the result of the lookup, and second as the new (unmodified) state.
Finally, the return case ignores the final result of a computation and instead returns
the current value of the state. Note that by modifying the handled computation
into a function, the handler changes the computation’s type.

To tie everything together, we define the function main, which applies the handler
to loop and provides the initial state 0 to the resulting function:

let main n =
(with state_handler handle loop n) 0

3.2.2 Basic Compilation to OCaml

We represent an Eff computation by a (value of the) free monad in OCaml,
which is implemented as the ’a computation data type. It is used to build an
abstract syntax tree based on Eff’s syntax.

32 OPTIMISED COMPILATION FOR EFF

The data type ’a computation represents computations that have effects. In other
words, it represents terms with dirty types. For instance, in the loop example, the
’a computation data type is defined as follows:

type ’a computation =
| Value of ’a
| Put of int * (unit -> ’a computation)
| Get of unit * (int -> ’a computation)

The Value constructor represents non-effectful results using the data type ’a. The
second and third constructors represent the information of the two effects in our
program.

We then build computations using the following constructors: a value em-
bedding return : ’a -> ’a computation or basic operations put : int -> unit
computation and get : unit -> int computation. We compose effectful
computations using the monadic bind >>= operator, which evaluates an effectful
computation of type ’a computation and passes its result to a continuation of type
’a -> ’b computation, resulting in a ’b computation. We postpone the discussion
of the generic implementation of this data type to Section 3.4.

Eff functions have bodies that can trigger effects. For that reason, an Eff
function of type ’a -> ’b translates into a function of type ’a -> ’b computation
in OCaml. This applies equally to (curried) multi-argument functions. Thus an Eff
function f : ’a -> ’b -> ’c is translated as: f : ’a -> (’b -> ’c computation
)computation. The application f x y translates to f x >>= fun g -> g y.

Using the above definitions, the presented compiler translates the loop function
into the following code:

let rec loop n =
equal n >>= fun f ->
f 0 >>= fun b ->
if b then return () else

Get () >>= fun s ->
plus s >>= fun g ->
g 1 >>= fun s’ ->
Put s’ >>= fun _ ->
minus n >>= fun h ->
h 1 >>= fun n’ ->
loop n’

where equal, plus and minus are translations of Eff’s arithmetic operations into
predefined OCaml constants of the appropriate function type. For example, we
define addition as follows:

let plus = fun x -> return (fun y -> return (x + y))

COMPILATION OF EFF TO OCAML 33

We translate state_handler to a record of functions having each of the effect
clauses and the value as the return case of the handler, yielding the result shown
below

let state_handler = handler {
put_case = (fun s’ k ->

return (fun _ -> k () >>= fun f -> f s’));
get_case = (fun () k ->

return (fun s -> k s >>= fun f -> f s));
return_case = (fun _ ->

return (fun s -> return s));
}

The record specifying handler cases are of a predefined record type:
type (’a, ’b) handler_cases = {

put_case : int ->
(unit -> ’b computation) -> ’b computation ;

get_case : unit ->
(int -> ’b computation) -> ’b computation ;

return_case : ’a -> ’b computation ;
}

The handler is represented as the function handler : (’a, ’b)handler_cases
-> (’a computation -> ’b computation) that takes handler cases and returns a
handler, which is represented as a function between computations. Finally, the main
function may be translated as

let main n =
state_handler (loop n) >>= (fun f -> f 0)

Drawbacks of basic compilation When running the compiled OCaml program,
the continual composition and decomposition of computations produce a substantial
overhead. However, this compilation is safe as it assumes that any computation in
the program can be effectful. Therefore, if an effect is triggered, it will be caught.
This comes at the cost of performance.

3.2.3 Purity Aware Compilation

The idea behind this optimisation is that by identifying pure non-effectful
computations and generating regular OCaml code for them, as proposed by
Leijen [51], we can avoid some of the overhead created by the free monad. For
instance, since the arithmetic operators used in loop are pure,we can translate them

34 OPTIMISED COMPILATION FOR EFF

directly into OCaml’s arithmetic operations and bind their result with let rather
than with the more expensive >>= operator:

let rec loop n =
let f = (=) n in
let b = f 0 in
if b then return () else

Get () >>= fun s ->
let g = plus s in
let s’ = g 1 in
Put s’ >>= fun _ ->
let h = minus n in
let n’ = h 1 in
loop n’

Nevertheless, the backbone of the computation still makes use of >>= to sequence
the effectful Get and Put operations. Hence, the overall impact of this optimisation
on this example is limited.

In general, purity aware compilation effectiveness is directly proportional with the
percentage of the effect-free code used in a program. Applying a strong effect system
that gets information about effects in terms can benefit the overall performance by
applying the purity aware-compilation technique during compilation.

3.2.4 Optimising Compilation

The previous strategy leaves room for more optimisations. We achieve that with
the help of more aggressively optimised compilation, which replaces operation calls
in a handled operation with their corresponding operation cases. In addition to
partial evaluations, beta reduction techniques and specialisations of functions, we
can obtain altogether more efficient and tighter code:

let main n = (
let rec state_handler_loop m =

if m = 0
then

(fun s -> s)
else

(fun s -> state_handler_loop (m - 1) (s + 1))
in
state_handler_loop n) 0

All of the handler, the explicit operations Get and Put, and their explicit sequencing
with >>= have been eliminated. The recursive function loop has been locally
specialised for the particular interpretation of state_handler. The resulting code is

SOURCE-LEVEL OPTIMISATIONS 35

very close to the hand-written equivalent, the only difference being that a human
programmer would hoist the abstractions out of the two branches of the conditional
expression.

3.3 Source-Level Optimisations

This section discusses the heart of our optimising compiler, which consists of
source-to-source transformations that aim to improve the runtime performance of
the program. We look at term rewriting rules that aim to eliminate most of the
overhead introduced by effects and handlers. We also interleave the rewriting rules
with function specialisation that aims to access the function’s body to apply the
rewriting rules for a more efficient output code.

3.3.1 Term Rewriting Rules

Equivalences and Partial Evaluation

To facilitate equational reasoning [65] about programs with algebraic effect handlers,
Bauer & Pretnar [5] establish several observational equivalences, which we adapt
to Effy and they are shown in Figure 3.1 (we omit structural equivalences that
make ≡ a congruence). The meta-variables v, c stand for arbitrary values and
computations that make the left- and right-hand sides of the equivalences well-
typed with the same type. In the last three rules, h is of the form of {return x 7→
cr, [Opx k 7→ cOp]Op∈O}.

Rules 3.1 up to 3.5 are beta-reductions following the rules in Figure 2.4. Rule 3.6 is
the associativity rule pushing the sequencing outside. We assume in this rule that
free variables are unique, hence there is no variable shadowing. The last four rules
are handler partial evaluation rules. These equivalences aim to expose handlers for
the next part that mainly tries to reduce the exposed handlers to normal OCaml
computations.

Simplification and Handler Reduction

We use the information of the type and effect system and the syntactic structure of
the terms to perform a number of optimisations. We mainly target optimisations
that (help) remove handlers. We denote these optimisations in terms of semantics-
preserving rewrite rules of the form c c′ and we try to expose opportunities to
eliminate the handlers using the term rewriting rules that can also be seen as partial

36 OPTIMISED COMPILATION FOR EFF

(fun x 7→ c) v ≡ c[v/x] (3.1)

fun x 7→ v x ≡ v (3.2)

let rec f x = c1 in c2 ≡ c2[(fun x 7→
let rec f x = c1 in c1)/f] (3.3)

do x← return v; c ≡ c[v/x] (3.4)

do x← c; return x ≡ c (3.5)

do x2 ← (do x1 ← c1; c2); c3 ≡ do x1 ← c1; (do x2 ← c2; c3) (3.6)

handle c1 with {return x 7→ c2} ≡ do x← c1; c2 (3.7)

handle (return v) with h ≡ cr[v/x] (3.8)

handle (do y ← Op v; c) with h ≡ cOp[v/x, (fun y 7→
handle c with h)/k] (3.9)

handle (do y ← Op′ v; c) with h ≡ do y ← Op′ v; handle c with h
(Op′ 6∈ O) (3.10)

Figure 3.1: Basic Equivalences

evaluation rules which are listed in Figure 3.2. The rewriting rules are divided into
two groups:

Simplification These three rules simplify the structure of the program in the
hope of exposing opportunities to eliminate handlers. The first two, App-Fun and
Do-Ret, are static (during compile time) counterparts of the semantic rules Eval-
App and Eval-Do-Ret of Figure 2.4. It is a straightforward partial evaluation of
the computations. The last rule, Do-Op, exploits the associativity of do to bring
an operation to the front, where it can potentially be reduced by a handler.

Handler Reduction These rules reduce terms of the form (handle c with h) for
different shapes of computation c and are the heart of our optimisation. Rule
With-LetRec moves the handler into the main sub-computation. Rules With-
Ret and With-Handled-Op are the static counterparts of the semantic rules
Eval-With-Ret and Eval-With-Handled-Op, respectively.

SOURCE-LEVEL OPTIMISATIONS 37

c c′

Simplification

App-Fun

(fun x 7→ c) v c[v/x]

Do-Ret

do x← return v; c c[v/x]

Do-Op

do x← (do y ← Op v; c1); c2 do y ← Op v; (do x← c1; c2)

Handler Reduction
With-LetRec

handle (let rec f x = c1 in c2) with v
let rec f x = c1 in (handle c2 with v)

With-Ret
h = {return x 7→ cr, [Opx k 7→ cOp]Op∈O}

handle (return v) with h cr[v/x]

With-Handled-Op
h = {return x 7→ cr, [Opx k 7→ cOp]Op∈O}

handle (Op v) with h cOp[v/x, (fun x 7→ cr)/k]

With-Pure
h = {return x 7→ cr, [Opx k 7→ cOp]Op∈O} Γ ` c : A ! ∆ ∆ ∩ O = ∅

handle c with h do x← c; cr

With-Do
h = {return x 7→ cr, [Opx k 7→ cOp]Op∈O}

h′ = {return y 7→ (handle c2 with h), [Opx k 7→ cOp]Op∈O}
handle (do y ← c1; c2) with h handle c1 with h′

Figure 3.2: Term Rewriting Rules

38 OPTIMISED COMPILATION FOR EFF

Next, rule With-Pure applies when the computation c is pure relative to the
handler h. This is the case when the intersection of the operations that may
be called by c with the operations handled by h is empty. In this case, only the
handler’s return case is relevant. Hence, we sequence it at the end of c using the
sequencing operator.

Finally, the most unusual rule is With-Do which reduces the handling of a sequence
of two computations to a form where the two computations are handled separately.
The validity of this transformation becomes more obvious when we split it into two
steps:

1. We replace the sequential do with a handler:

do y ← c1; c2 handle c1 with {return y 7→ c2}

The intuition is that both forms express that the value returned by c1 gets
bound to y in c2.

2. We change the association of the handlers:

handle (handle c1
with {return y 7→ c2})

with {return x 7→ cr, [Opx k 7→ cOp]Op∈O}

handle c1
with {return y 7→ (handle c2

with {return x 7→ cr, [Opx k 7→ cOp]Op∈O}), [Opx k 7→ cOp]Op∈O}

The intuition is that any operations generated by c1 are forwarded anyway
from the inner handler to the outer handler. However, any return case is first
handled by the inner handler, and the computation that results is further
processed by the outer handler. The rewritten form accomplishes the same
workflow with a single handler around c1. The hope is that the handler around
c2 can be specialised independently from specialising the handler around c1.

Soundness The rewrite rules preserve observational equivalence. That is, if a
term is transformed according to the rules of Fig. 3.1, the resulting term preserves
the behaviour of the original, despite their syntactical difference. In order to prove
this property, we make use of the following induction principle [5, 68] which algebraic
effects and handlers comply to: to show that a property φ holds for all computations
Γ ` c : A ! ∆, it suffices to show that 1) φ(return v) holds for all values v, and 2)
that φ(do x← Op v; c′) holds for all operations Op ∈ ∆, values v and computations
c′, given that φ(c′) holds.

SOURCE-LEVEL OPTIMISATIONS 39

The equivalences and induction principle will turn out to be useful in proving the
soundness of the rewriting-rules:
Theorem 1.

∀c, c′,Γ, A,∆ : Γ ` c : A ! ∆ ∧ c c′ ⇒ c ≡ c′

The proof of this theorem is given in Appendix A.1.

3.3.2 Function Specialisation

The rewrite rules in Figure 3.2 deal with most computations of the form
(handle c with h) where h is a handler expression, either dropping the handler
altogether or pushing it down in the sub-computations. However, one important
case is not dealt with: the case where c is of the form f v with f the name
of a user-defined recursive function. However, if f is a function parameter of a
higher-order function, we can not perform the optimisation.

Consider this small example of the above situation:
let rec go n = go (Next n) in
handle (go 0) with
| return x -> x
| #Next n k -> if n > 100 then n else k (n * n + 1)

The non-terminating recursive function go seems to diverge. Yet, with the provided
handler, its argument steadily increases and evaluation eventually terminates when
the argument exceeds 100.

In order to optimise this situation, we create a specialised copy of the function that
has the handler pushed into its body. In other words, for any recursive definition
let rec f x = cf in c, we perform the following general rewrite inside c:

handle f v with h let rec f ′ x = handle cf with h in f ′ v

The expectation is that, by exposing the handler to the body of the function (cf),
further optimisations succeed in eliminating the explicit handler. A critical step
involved in the post-processing is to “tie the knot”: after several rewrite steps in cf ,
the handler is applied to the (original) recursive call, so we have a term of the form
handle f v′ with h, which we can replace by f ′ v′. This eliminates the handler
entirely and turns the original example into

let rec go n = ... in
let rec go ’ n = if n > 100 then n else go ’ (n * n + 1) in
go ’ 0

40 OPTIMISED COMPILATION FOR EFF

Generalization to non-tail recursion The above basic specialisation strategy
only works when the recursive call has a tail position. Yet, that is often not the
case. Take for instance the following example.

let rec range n =
match n with
| 0 -> []
| _ -> Fetch () :: range (n - 1)

in
handle (range 5) with
| return x -> x
| #Fetch _ k -> k 42

The function range creates a list of given length, filling it with elements obtained
by the Fetch operation. To keep the example small we use a handler that always
yields the value 42.

With the basic specialisation strategy, further optimisation does not succeed in
tying the knot. Instead, we obtain this partially optimised form:

let rec range n = ... in
let rec range ’ n =

match n with
| 0 -> []
| _ -> handle (range (n - 1)) with

| return x -> 42 :: x
| #Fetch _ k -> k 42

in
range ’ 5

In the tail position, the rewrite rule With-Do has kicked in to pull the call’s
continuation into the return case of the handler. This has turned the call into a
tail call, but the return case of the new handler around this call differs from the
original handler’s return case. This prevents us from tying the knot.

We could create a second specialised function definition for this new handler, but
the same problem would arise at its recursive call and so on, yielding an infinite
sequence of specialised functions. Instead, we use generalisation to break out of
this diverging process. Instead of specialising the function for one specific handler
in this diverging sequence, we specialise it for what they all have in common (the
operation cases) and parametrise it in what is different (the return case).

SOURCE-LEVEL OPTIMISATIONS 41

This yields the following general rewrite rule: for any recursive definition
let rec f x = cf in c, we perform the following general rewrite inside c:

handle f v with {return x 7→ cr, [Opx k 7→ cOp]Op∈O}

let rec f ′ (x, k) =

handle cf with {return x 7→ k x, [Opx k 7→ cOp]Op∈O} in f ′ (v, fun x 7→ cr)

and replace each handled recursive call handle f v′ with {return x 7→ c′r, [Opx k 7→
cOp]Op∈O} with f ′ (v′, fun x 7→ c′r).

This strategy enables us to tie the knot in the range example and obtain the
following form:

let rec range ’ (n, k) =
match n with
| 0 -> k []
| _ -> range ’ (n - 1, fun x -> k (42 :: x))

in
range ’ (5, fun x -> x)

Note that in effect this approach selectively CPS-transforms recursive functions to
specialise them for a particular handler.

Termination If left unchecked, function specialisation can diverge. This is
illustrated by the following small example program:

let rec go n =
if n = 0 then Fail

else if Decide then go (n -1) else go (n -2)
in handle (go m) with

| # Decide _ k ->
handle k true with
| #Fail _ _ -> k false

After specialisation for the top-level handler, we obtain
let rec go n =

if n = 0 then Fail
else if Decide then go (n -1) else go (n -2)

in let rec go1 n1 =
if n1 = 0 then Fail

else handle go1 (n1 -1) with

42 OPTIMISED COMPILATION FOR EFF

| #Fail -> go1 (n1 -2)
in go1 m

Note that the specialised function go1 still contains the second handler, which is
now applied to a recursive call. Hence, we can continue by specialising this handled
call to obtain

let rec go n =
if n = 0 then Fail

else if Decide then go (n -1) else go (n -2)
in let rec go1 n1 =

if n1 = 0 then Fail
else let rec go2 n2 =

if n2 = 0 then go1 (n1 -2)
else handle (handle go1 (n2 -1) with

| #Fail -> go1 (n2 -2)) with
| #Fail -> go1 (n1 -2)

in go2 (n1 -1)
in go1 m

Now the resulting code contains two nested handlers around a recursive call.
However, the inner of those two handlers is distinct from any of the previous
handlers because it refers to the new variable n2. Hence, we can specialise again
and again without end. This non-termination is undesirable, and so we currently
enforce termination by not re-specialising any already specialised function.

3.4 Basic Translation of Effy to OCaml

3.4.1 Translating Types

As a concrete target for translating Effy, we pick a small subset of OCaml
that includes standard constructs such as booleans, integers, functions and
local definitions (both non-recursive and recursive). Its types are given in
Figure 3.3, and in addition to the standard ones, they include a predefined type
T computation, which represents computations returning values of type T , and
a type (T1, T2) handler_cases, which lists all cases of a handler that takes
computations of type T1 computation into T2 computation.

We translate types of Effy into OCaml by means of the compilation function J·K
listed in Figure 3.4. Primitive types and function types are straightforwardly mapped
onto their OCaml counterparts. The handler type is translated to a function type
that turns one type of computation into another.

BASIC TRANSLATION OF EFFY TO OCAML 43

type T ::= bool
| int
| T1 → T2
| T computation
| (T1, T2) handler_cases

Figure 3.3: Types of (a subset of) OCaml

JboolK = bool
JintK = int

JA→ CK = JAK→ JCK
JC V DK = JCK→ JDK

JA ! ∆K = JAK computation

Figure 3.4: Compilation of Effy types to OCaml

Computation types are mapped to the predefined computation type, defined by
default as a datatype representation of a free monad (where Opi : Ai → Bi ranges
over the signature of all Effy operations):

type ’a computation =
| Return : ’a -> ’a computation
| Op1: JA1K * (JB1K -> ’a computation) -> ’a computation
| ...
| Opn: JAnK * (JBnK -> ’a computation) -> ’a computation

Here Return x represents a value x as a (pure) computation, and Op x k denotes an
impure computation that calls operation Op with argument x and continuation k. We
can interchange the implementation of ’a computation to obtain different runtime
representations, though in this work, we stick to the free monad representation, as
it is both simple and efficient enough for our purposes.

Note that the translation erases the dirt ∆ from computation types A ! ∆, for
lack of a convenient way to represent it in OCaml. The algebraic effect handlers
implementation of Multicore OCaml [27] has made a similar choice not to reflect
the set of possible operations in the type.

Finally, the type of all handler cases is defined to be the record type:
type (’a, ’b) handler_cases = {

return : ’a -> ’b;
op1: JA1K -> (JB1K -> ’b) -> ’b;

44 OPTIMISED COMPILATION FOR EFF

...
opn: JAnK -> (JBnK -> ’b) -> ’b

}

Here the operation cases are represented by a function that takes the argument and
the continuation of the operation and then performs the operation’s corresponding
behaviour. (Note that the domain ’b is not necessarily of the form _ computation.
We exploit this fact in Section 3.5 to allow handlers that handle all computations
into a pure value.)

3.4.2 Translating Terms

OCaml terms, given in Figure 3.5, include the standard ones: variables, constants
(corresponding to ones in Effy), function abstractions & applications, both non-
recursive & recursive local definitions, and conditionals. Next, we include records
that list handler cases and a number of predefined functions for value embedding,
operations, handler definitions and sequencing (or in other words, monadic binds).
Both Effy values and computations are translated to OCaml expressions as
described in Figure 3.6. With several notable exceptions, most forms have a direct
counterpart in OCaml. The fourth rule in that figure translates handler clauses
where the translated operation clauses are of the form op1 = E1; . . . ; opn = En.
We expand Ei as follows:

Ei =
{

fun x k 7→ JcOpiK Opi ∈ O
fun x k 7→ opi x >>= k otherwise

A handler value is translated to an application of the handler function to a record
value that gathers the return and operation cases. For the default free monad
representation, handler is defined as follows:

let rec handler (h : (’a, ’b) handler_cases) : (’a
computation -> ’b) =

function
| Return x -> h. return x
| Op1 (x, k) -> h.op1 x (fun y -> handler h (k y))
...
| Opn (x, k) -> h.opn x (fun y -> handler h (k y))

In case a handler does not provide a handling case for an operation Opi, we fill it in
with a default case that propagates it outwards, in which case ’b needs to be of the
form _ computation. Note that this is always the case with the basic translation
presented in this section.

BASIC TRANSLATION OF EFFY TO OCAML 45

expression E ::= x
| k
| fun x 7→ E
| E1E2
| let x = E1 in E2
| let rec f x = E1 in E2
| if E1 then E2 else E3
| {return = E; op1 = E1; . . . ; opn = En}
| return E1
| op1 | · · · | opn
| handler
| >>=

Figure 3.5: Terms of (a subset of) OCaml

JxK = x

JkK = k

Jfun x 7→ cK = fun x 7→ JcK

J{return x 7→ cr, [Opx k 7→ cOp]Op∈O}K =

handler
{return =
fun x 7→ JcrK;
op1 = E1; . . . ; opn = En}

Jv1 v2K = Jv1K Jv2K

Jlet rec f x = c1 in c2K = let rec f x = Jc1K in Jc2K

Jreturn vK = return JvK

JOpi vK = opi JvK

Jdo x← c1; c2K = Jc1K>>=(fun x 7→ Jc2K)

Jhandle c with vK = JvK JcK

Jif v then c1 else c2K = if JvK then Jc1K else Jc2K

Figure 3.6: Compilation of Effy terms to OCaml

46 OPTIMISED COMPILATION FOR EFF

Building a computation from a value, from an operation or by binding two
computations together all happens in terms of the corresponding operations on the
underlying free monad representation.

let return (x : ’a) : ’a computation = Return x

let op1 (x : JA1K) (k : JB1K -> ’a computation) : ’a
computation = Op1 (x, k)

...
let opn (x : JAnK) (k : JBnK -> ’a computation) : ’a

computation = Opn (x, k)

let rec (>>=) (c : ’a computation) (f : ’a -> ’b
computation) : ’b computation =

match c with
| Return x -> f x
| Op1 (x, k) -> Op1 (x, (fun y -> (k y) >>= f))
...
| Opn (x, k) -> Opn (x, (fun y -> (k y) >>= f))

Finally, handling a computation with a handler is simply translated as applying the
handler to the computation. The following theorem shows that this translation is
type-preserving.

Theorem 2.

Γ ` c : C =⇒ JΓK ` JcK : JCK (∀c, t,Γ)

The proof of this theorem is given in Appendix A.2; it proceeds by induction on the
typing derivation.

3.5 Purity-Aware Translation to OCaml

The basic compilation scheme’s free monad representation introduces a substantial
performance overhead for pure computations. This section presents an extended
compilation scheme that avoids this overhead for pure computations.

The main aim of our extended compilation scheme is to differentiate between
pure and impure computations. This is nicely summarised in the more nuanced
compilation of computation types:

JA ! ∆K =
{

JAK , if ∆ = ∅
JAK computation , if ∆ 6= ∅

PURITY-AWARE TRANSLATION TO OCAML 47

(A 6 A′) E

Sub-bool

(bool 6 bool) (fun x 7→ x)

Sub-int

(int 6 int) (fun x 7→ x)

Sub-→
(A′ 6 A) E1 (C 6 C ′) E2

(A→ C 6 A′ → C ′) (fun f x 7→ E2 (f (E1 x)))

Sub-V
(C ′ 6 C) E1 (D 6 D′) E2

(C V D 6 C ′ V D′) (fun hx 7→ E2 (h (E1 x)))

(C 6 C ′) E

Sub-!-Pure
(A 6 A′) E

(A ! ∅ 6 A′ ! ∅) E

Sub-!-PureImpure
(A 6 A′) E ∆′ 6= ∅

(A ! ∅ 6 A′ ! ∆′) (fun x 7→ return (E x))

Sub-!-Impure
(A 6 A′) E ∆ ⊆ ∆′ ∆ 6= ∅

(A ! ∆ 6 A′ ! ∆′) (fmapE)

Figure 3.7: Subtyping induced coercions

At the term level, we express the extended compilation by means of type-and-effect-
directed elaboration judgements that extend the declarative type system with a
target OCaml expression. The key ingredients are the judgements that elaborate
subtyping derivation of value types A 6 B or of computation types C 6 D into
functions that coerce between the two types (Figure 3.7).

The reflexive cases for bool and int yield an identity coercion, while function
and handler types give rise to pre- and post-composition of the coercions. We
distinguish three different cases for the coercion between computation types. If
both computations are pure, the coercion is just that between the values. A pure
computation is coerced to an impure one by composing the value coercion with
the return embedding. Finally, if the left-hand side computation is impure, so is
the other one, and we map the coercion over the free monad with the predefined
function

48 OPTIMISED COMPILATION FOR EFF

let rec fmap (f : ’a -> ’b) : (’a computation -> ’b
computation) =

function
| Return x -> f x
| Op1 (x, k) -> Op1 (x, (fun y -> fmap f (k y)))
...
| Opn (x, k) -> Opn (x, (fun y -> fmap f (k y)))

The elaboration judgement (Γ ` v : A) E yields a corresponding OCaml
expression E for the value v. Figure 3.8 shows the elaboration rules for values.
There are three noteworthy cases. Firstly, SubVal applies the subtyping coercion
to the elaborated term. Secondly, HandPure captures the case where the handler
maps pure expressions to pure expressions, which is only possible when there are no
operation cases. In this situation, we elaborate the handler into its elaborated value
case. The impure case, HandImpure, works similar to the basic translation. For
each operation Opi, we need to provide a case Ei. If an operation is handled by
a handler, we take the corresponding elaboration. If the operation is not handled,
but is still listed in the outgoing dirt ∆, we propagate it as before. Finally, the case
when the operation is neither handled nor listed in ∆ can never occur at runtime,
so we may safely raise an (OCaml) exception. Such treatment ensures that a
handler with empty ∆ and non-empty O is translated with a pure co-domain.

The elaboration judgement (Γ ` c : C) E yields a corresponding OCaml
expression E for the computation c. Figure 3.9 shows the elaboration rules for
computations. There are three differences with the basic compilation scheme.
Firstly, a pure return v computation is translated just like the value v, i.e.,
without the return wrapper. Secondly, we distinguish between pure and impure do
computations. The latter are translated in terms of the auxiliary >>= operator like
before, but the former can be simplified to a more efficient OCaml let expression.
Finally, computation subtyping is handled in the same way as expression subtyping,
by applying the coercion function.

Just like the basic compilation scheme, this more advanced elaboration is also
type-preserving.

Theorem 3.

Γ ` c : C E =⇒ JΓK ` E : JCK (∀Γ, c, C,E)

The proof of this theorem can be found in the work of Pretnar et al. [74].

IMPLEMENTATION IN EFF 49

Values

Γ ` v : A E

SubVal
(Γ ` v : A) E1
(A 6 A′) E2

(Γ ` v : A′) (E2E1)

Var
(x : A) ∈ Γ

(Γ ` x : A) x

Const
(k : A) ∈ Σ

(Γ ` k : A) k

Fun
(Γ, x : A ` c : C) E

(Γ ` fun x 7→ c : A→ C) (fun x 7→ E)

HandPure
(Γ, x : A ` cr : B ! ∅) Er

(Γ ` {return x 7→ cr} : A ! ∅V B ! ∅) (fun x 7→ Er)

HandImpure
(Γ, x : A ` cr : B ! ∆) Er[

(Op : AOp → BOp) ∈ Σ (Γ, x : AOp, k : BOp → B ! ∆ ` cOp : B ! ∆) EOp

]
Op∈O

Ei =

fun x k 7→ JcOpiK Opi ∈ O
fun x k 7→ opix>>=k Opi ∈ ∆−O
fun x k 7→ assert false otherwise

(Γ ` {return x 7→ cr, [Opx k 7→ cOp]Op∈O} : A ! ∆ ∪ O V B ! ∆)
 handler {return = fun x 7→ Er; op1 = E1; . . . ; opn = En}

Figure 3.8: Type-&-effect-directed compilation for Values

3.6 Implementation in Eff

To test the presented ideas in practice, we have implemented an optimising compiler
for Eff, a prototype functional programming language with algebraic effects and
handlers. This section describes the practical aspects of transforming Eff source
code into an efficient OCaml code, and points out the main differences between
the idealised representation and the actual implementation.

50 OPTIMISED COMPILATION FOR EFF

Computations

Γ ` c : C E

SubComp
(Γ ` c : C) E1 (C 6 C ′) E2

(Γ ` c : C ′) (E2E1)

App
(Γ ` v1 : A→ C) E1 (Γ ` v2 : A) E2

(Γ ` v1 v2 : C) (E1E2)

LetRec
(Γ, f : A→ C, x : A ` c1 : C) E1 (Γ, f : A→ C ` c2 : D) E2

(Γ ` let rec f x = c1 in c2 : D) (let rec f x = E1 in E2)

Ret
(Γ ` v : A) E

(Γ ` return v : A ! ∅) E

Op
(Op : A→ B) ∈ Σ (Γ ` v : A) E

(Γ ` Op v : B ! {Op}) (opE)

DoPure
(Γ ` c1 : A ! ∅) E1 (Γ, x : A ` c2 : B ! ∅) E2

(Γ ` do x← c1; c2 : B ! ∅) (let x = E1 in E2)

DoImpure
(Γ ` c1 : A ! ∆) E1 (Γ, x : A ` c2 : B ! ∆) E2 ∆ 6= ∅

(Γ ` do x← c1; c2 : B ! ∆) (E1>>=fun x 7→ E2)

With
(Γ ` v : C V D) E1 (Γ ` c : C) E2

(Γ ` handle c with v : D) (E1E2)

ITE
(Γ ` v : bool) E1 (Γ ` c1 : C) E2 (Γ ` c2 : C) E3

(Γ ` if v then c1 else c2 : C) if E1 then E2 else E3

Figure 3.9: Type-&-effect-directed compilation for Computations

IMPLEMENTATION IN EFF 51

3.6.1 Converting Source to Core Syntax

The actual source syntax of Eff is based on OCaml’s and features only a single
syntactic sort of terms, which lumps together values and computations. This
source syntax is desugared into the core syntax, which is very close to Effy, in a
straightforward manner [6]. For example, the Eff program if f x then 0 else g
5 x gets elaborated into

do b← f x; if b then (return 0) else (do h← g 5;h x)

Our implementation supports standard features such as datatype declarations and
control structures (like the conditional above), which we have omitted from Effy
to avoid the clutter.

3.6.2 Translating Higher-Order Functions

One of the crucial properties of OCaml, which Eff respects, is that higher-order
functions can accept both pure and impure functions as arguments. However, as
described in Section 3.5, these two kinds of functions are translated differently, so
higher-order functions need to be translated in a way that can deal with both pure
and impure code. One possible approach is to compile multiple versions of each
higher-order function, and select the appropriate one depending on the purity of its
arguments. However, in this work, we opted for a more straightforward approach
and labelled all higher-order functions as accepting impure arguments. Meaning,
the translation does not make use of purity-aware compilation. If such a function is
then applied to a pure argument, we use the coercions described in Section 3.5.

3.6.3 Embedding pure computations into values

Recall that in Effy, the two subterms of an application are values, whereas the
application itself is a computation. This implies that a nested application f x y
must be translated into f x >>= fun g -> g y. With the purity-aware translation,
we can do a bit better when f x is pure (the common case for curried functions),
and translate it as let g = f x in g y. However, this still incurs a significant
overhead in comparison to f x y. To remedy that, we extend the core syntax of
Eff with a coercion from computations into values, which behaves as a retraction
of the value embedding.

In the basic translation to OCaml, we translate this coercion using a function
run : ’a computation -> ’a, defined as

let run (Return x) = x

52 OPTIMISED COMPILATION FOR EFF

and the above application is translated as (run (f x))y. Note that this function is
partial and causes a runtime error if applied to an operation call. To avoid that, we
make sure we apply coercions only to computations guaranteed to be pure by the
effect system. The second thing to note is that this translation is no better than
f x >>= fun g -> g y, as both variants need to extract the value, returned by f x.

In the purity-aware translation, we make the coercion invisible, just like the value
embedding, and we translate the nested application simply as f x y, resulting in
zero overhead.

3.6.4 Extensible Set of Operations

In Section 3.4 we assumed a fixed set of operations. However, users may want to
declare their own operations, and Eff enables them to do so through declarations
such as:

effect Decide : unit -> bool

To support this extensibility in our translation, we make use of OCaml’s extensible
(GADT)1 variant type feature to define an initially empty type of operations, indexed
by their argument and result type:

type (’arg , ’res) operation = ..

Then, an operation declaration like the one above can be translated to an extension
of the operation type:

type (_, _) operation += Decide : (unit , bool) operation

Next, the free monad representation is adapted to:
type ’a computation =
| Return : ’a -> ’a computation
| Call: (’arg , ’res) operation * ’arg * (’res -> ’a

computation) -> ’a computation

where instead of multiple constructors, we have a single one that takes the called
operation, its argument and its continuation.

Handler cases are described with two fields: a return case is a function that takes
a value and returns a free monad representation, and a function that takes an
operation to its appropriate case:

1Generalized algebraic data type

EVALUATION 53

type (’a, ’b) handler_cases = {
return : ’a -> ’b computation ;
operations : ’arg ’res. (’arg , ’res) operation ->

’arg -> (’res -> ’b computation) -> ’b computation
}

A handler {return x 7→ cr, Op1 x k 7→ cOp1
, . . . , Opn x k 7→ cOpn} is translated as:

handler {
return = (fun x -> JcrK);
operations = (function

| Op1 -> (fun x k -> JcOp1K)
...
| Opn -> (fun x k -> JcOpnK)
| op ’ -> (fun x k -> Call (op ’, x, k))
)

}

where the last case of the operations function reinvokes any operation op’ that is
not captured by the handler so it propagates to a higher level handler (if there is
any).

The function handler and computation sequencing are redefined analogously:
let rec handler (h : (’a, ’b) handler_cases) : (’a

computation -> ’b computation) =
function
| Return x -> h. return x
| Call (op , x, k) -> (h. operations op) x (fun y ->

handler h (k y))

let rec (>>=) (c : ’a computation) (f : ’a -> ’b
computation) : ’b computation =

match c with
| Return x -> f x
| Call (op , x, k) -> Call (op , x, (fun y -> (k y) >>= f)

)

3.7 Evaluation

We evaluate the effectiveness of our optimising compiler for Eff on two different
types of benchmarks. First, we compare our different compilation schemes with
hand-written OCaml code to show the impact of every optimisation technique we
developed. Then, we measure our compiler’s best performance which combines all

54 OPTIMISED COMPILATION FOR EFF

Pure Latent Incr State
0

50

100 100 100 100 100

78.5 74.3

56

3435.4 37.4

62.3

85

2.4 2 5.5 3.32.3 1.9 3.8 2.3

Loop program variations

Pe
rc
en
ta
ge

Basic
Opt
Pure

PureOpt
Native

Figure 3.10: Relative run-times of Loops example

the optimisations against other OCaml-based implementations of algebraic effects
and handlers. All benchmarks were run on a MacBook Pro with a 2.5 GHz Intel
Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.

3.7.1 Eff versus OCaml

Our first evaluation, in Fig. 3.10, considers four different variations on the looping
program we introduced in Section 3.2.1: 1) Pure is a version without side-effects,
2) Latent contains an operation that is never called during the execution of the
benchmark, 3) Incr calls a single increment operation that increments an implicit
state, 4) State is the version of Section 3.2.1 that increments the implicit state
with the Get and Put operations. We compile these programs in four different
ways: 1) basic compilation mode without any optimisation (Basic), 2) purity-aware
compilation (Pure), 3) source-to-source optimisations (Opt), 4) the combination of
the previous two (PureOpt). Finally, we compare these different versions against
hand-written (Native) OCaml code: 1) a pure loop, 2) a latent OCaml exception,
3) a reference cell increment, and 4) a reference cell read followed by a write. The
programs were compiled with version 4.02.2 of the OCaml compiler.

In total we have 20 compiled programs, we run each program for 10,000 iterations.
In Figure 3.10 shows the resulting times relative to the basic version which scores
the slowest performance. The results show a substantial gap between the basic
compilation scheme and the hand-written OCaml, in the range of 25×–50× in
favour of the hand-written OCaml code. The source-to-source transformations and
purity-aware code generation each have individually varying success in reducing the
gap to a smaller, but still significant level. It is only when the two optimisations are
combined that we obtain a performance that is competitive with the hand-written
versions (1×-1.5×). In particular, the combined optimisations succeed in eliminating
all traces of the handlers and the free monad from the generated OCaml code.

EVALUATION 55

3.7.2 Eff versus Other Systems

Our second evaluation features two different versions of the well-known N -Queens
problem. Both versions use the same underlying program to explore the combinatorial
space with the operations Decide : unit -> bool and Fail : unit ->
void for non-determinism. The two versions only differ in which handler they
use to interpret the operations.

The first handler computes all solutions and returns them in a list and the second
computes only the first solution:

let all_solutions = handler
| return x -> [x]
| # Decide _ k -> k true @ k false
| #Fail _ _ -> []

let first_solution = handler
| return x -> Some x
| # Decide _ k -> match k true with

| Some x -> Some x
| None -> k false

| #Fail _ _ -> None

We compare the fully optimised Eff version against the same programs in three
OCaml-based systems and use the hand-written OCaml program as a baseline.
The three systems are Multicore OCaml [26, 27] (MultiCore), which provides
native lightweight threads for running continuations, but requires expensive copying
of the continuation for the non-linear use of the continuation in the above two
handlers. The second and third system are the effect handler implementation of
Kammar et al. [41] OCaml implementation that uses monad transformers [53], to
compile effects and handlers (HandlersInAction). We also compare against
the Eff Directly in OCaml implementation [47] (EffInOCaml). The last two
implementations are based on OCaml’s DelimCC libray for delimited control [44].
Because this library does not support native compilation, we compile all benchmarks
to bytecode and run that instead. We compare our work also with the OCaml
backend of Links [35, 15]. However, the performance of Links is on average twenty
times slower than the hand-written OCaml code and thus we exclude the results
hence they would dwarf all other runtimes.

Figure 3.11 shows the all_solutions runtimes of the different systems for different
problem sizes, each time relative to the hand-written OCaml code. The results
clearly show that Eff is consistently the fastest and competitive with hand-written
OCaml code. We see an even more uniform picture in Figure 3.12, where Eff is
consistently 25-30% faster than the closest competitor Multicore OCaml.

56 OPTIMISED COMPILATION FOR EFF

2 4 6 8 10 12 140

50

100

150

200

Problem Size

Relative percentage

OCaml MultiCore HandlersInAction EffInOCaml Eff(PureOpt)

Figure 3.11: Results of running N-Queens for all solutions on multiple systems

8 9 10 11 12 13 140

50

100

150

200

Problem Size

Relative percentage

OCaml MultiCore HandlersInAction EffInOCaml Eff(PureOpt)

Figure 3.12: Results of running N-Queens for one solution on multiple systems

3.8 Discussion

This chapter has presented a two-pronged approach for the optimisation of the
compilation of algebraic effects and handlers. First, we perform some source-to-
source transformations, including the specialisation of recursive function definitions
for appropriate handlers. Then we generate target code in a purity-aware fashion.
Our innovative combination shows that the synergy between these two approaches is
effective at eliminating handlers from some benchmarks and obtaining performance
that is competitive with hand-written code and better than that of existing non-
optimising implementations of algebraic effects and handlers.

However, due to the implicit type-system that the Eff calculus is based on, we
faced some difficulties with the optimisation of more extensive programs. Eff
computes the necessary type information through an inference algorithm [71]. For
practical reasons, in order to build more significant programs, the effect system of
Eff is polymorphic. Furthermore, to account for sub-typing, the inference algorithm
is constraint-based, and a type scheme consists of a quantified type together with
a set of constraints between its parameters. For example, the type of the identity

DISCUSSION 57

function fun x 7→ return x is:

∀α1, α2, δ1. α1 → α2 ! δ1 | α1 6 α2 (3.11)

where αi and δi are type and dirt variables respectively.

The existing algorithm of Eff computes the most general type scheme of a given
term in a bottom-up fashion, where constraints of sub-terms are joined together
with additional constraints determined by the shape of the term.

In order for our optimisations to function correctly, they need full access to the types
of all subterms. Moreover, the optimisations manipulate the types of the subterms.
Also, function specialisation uses the inference system information to infer the type
of the function it is going to specialise and then gives the new function a type
based on the old function’s type. This process can give rise to implementation
bugs because of the implicit sub-typing of the sub-terms in an Eff term. In some
programs, we cannot figure out the exact type of a sub-term since it can have many
types implicitly. Moreover, since the optimisations can change such types, bugs can
be introduced.

In order to remedy this issue, in our implementation, we construct terms through
the use of “smart” constructors, which take already typed subterms as arguments
and contain the necessary logic to return the appropriately annotated term. The
inference algorithm then traverses the untyped term and applies the corresponding
smart constructors. However, this was not enough to solve the issue with the bugs
introduced by optimisations.

The optimisation showed much success with a small range of programs, and this
acts as a proof of concept that the optimisations can be effective on run-times.
However, the need for a more concrete inference system is present so that the
application of the optimisations would have all the needed exact information about
the terms’ types. In the next chapter, we will discuss a new Eff calculus that
opens the gate for such applications.

Chapter notes and contributions This chapter is based on the report "Efficient
compilation of algebraic effects and handlers" by Pretnar et al. [74]. My contribution
to this work is the following:

• Formalisation of the term rewriting rules.

• Formalisation of the function specialisation optimisation.

• Implementation of the formalised optimisations in Eff.

• Benchmarking against hand-written OCaml code and other systems.

58 OPTIMISED COMPILATION FOR EFF

• Partial work on the proofs provided in Appendix A.

Chapter 4

Explicit Subtyping for
Algebraic Effects

4.1 Introduction

As we saw in the previous chapter, optimising the compiler of Eff showed promising
results, in some cases reaching even the performance of the hand-tuned code.
However, the optimisations introduced were very fragile. We argued that the main
reason behind this fragility is the complexity of subtyping in combination with the
implicit typing of Eff’s core language. Therefore, the main aim of the chapter is
to propose an explicitly-typed calculus based on subtyping in the aim to eliminate
the fragility of implicit subtyping in optimisations.

We divide this chapter as follows: First, we give a brief overview of the proposed
calculus in Section 4.2. Section 4.3 presents ImpEff, a polymorphic implicitly-typed
calculus for algebraic effects and handlers with a subtyping-based type-and-effect
system. ImpEff is essentially a (de-sugared) source language as it appears in the
compiler front-end of a language like Eff.

Next, Section 4.4 presents ExEff, the core calculus, which combines explicit
System F-style polymorphism with explicit coercions for subtyping in the style of
Reazu-Tannen [11]. This calculus comes with a type-and-effect system, a small-step
operational semantics and a proof of type-safety.

Section 4.5 specifies the typing-directed elaboration of ImpEff into ExEff and
presents a type inference algorithm for ImpEff that produces the elaborated
ExEff term as a by-product. It also establishes that the elaboration preserves

59

60 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

typing, and that the algorithm is sound with respect to the specification and yields
principal types.

Section 4.6 defines SkelEff, which is a variant of ExEff without effect
information or coercions. SkelEff is also representative of Multicore OCaml’s
support for algebraic effects and handlers [27], which is a possible compilation
target of Eff. By showing that the erasure from ExEff to SkelEff preserves
semantics, we establish that ExEff’s coercions are computationally irrelevant and
that, despite the existence of multiple proofs for the same subtyping, the coherence
property does not break. To enable erasure, ExEff annotates its types with (type)
skeletons, which capture the erased counterpart and are, to our knowledge, a novel
contribution.

We have also developed an implementation of a compiler from Eff to OCaml
with ExEff as its core language, and it can be found on https://github.
com/matijapretnar/eff/tree/explicit-effect-subtyping. The proofs of
the theorems provided in this chapter were developed by Pretnar, and they
can be found on https://github.com/matijapretnar/proofs/tree/master/
explicit-effect-subtyping

4.2 Overview

This section presents an informal overview of the ExEff calculus and the main
issues with elaborating to and erasing from it.

4.2.1 Elaborating Subtyping

Assume effects Tick : Unit → Unit and Tock : Unit → Unit that take a unit
value as a parameter and yield a unit value as a result.

Also, consider the computation do x ← Tick (); f x and assume that f has the
function type Unit→ Unit ! {Tock}, taking unit values to unit values and perhaps
calling Tock operations in the process. The whole computation then has the type
Unit ! {Tick, Tock} as it returns the unit value and may call Tick and Tock.

The above typing implicitly appeals to subtyping in several places. For instance,
Tick () has type Unit ! {Tick} and f x type Unit ! {Tock}. Yet, because they
are sequenced with do, the type system expects that they have the same set of
effects. The discrepancies are implicitly reconciled by the subtyping which admits
both {Tick} 6 {Tick, Tock} and {Tock} 6 {Tick, Tock}.

https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping
https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping
https://github.com/matijapretnar/proofs/tree/master/explicit-effect-subtyping
https://github.com/matijapretnar/proofs/tree/master/explicit-effect-subtyping

OVERVIEW 61

We elaborate the ImpEff term into the explicitly-typed core language ExEff to
make those appeals to subtyping explicit by means of casts with coercions:

do x← ((Tick ()) B γ1); (f x) B γ2

A coercion γ is a witness for a subtyping A ! ∆ 6 A′ ! ∆′ and can be used to
cast a term c of type A ! ∆ to a term c B γ of type A′ ! ∆′. In the above
term, γ1 and γ2 respectively witness Unit ! {Tick} 6 Unit ! {Tick, Tock} and
Unit ! {Tock} 6 Unit ! {Tick, Tock}.

4.2.2 Polymorphic Subtyping for Types and Effects

The above basic example only features monomorphic types and effects. Yet, our
calculus also supports polymorphism, which makes it considerably more expressive.
For instance the type of f in let f = (fun g 7→ g ()) in . . . is generalised to:

∀α, α′.∀δ, δ′.α 6 α′ ⇒ δ 6 δ′ ⇒ (Unit→ α ! δ)→ α′ ! δ′

This polymorphic type scheme follows the qualified types convention [39] where
the type (Unit → α ! δ) → α′ ! δ′ is subjected to several qualifiers, in this case
α 6 α′ and δ 6 δ′. The universal quantifiers bind the type variables α and α′, and
the effect set variables δ and δ′.

The elaboration of f into ExEff introduces explicit binders for both the quantifiers
and the qualifiers, as well as the explicit casts where subtyping is used.

Λα.Λα′.Λδ.Λδ′.Λ(ω :α 6 α′).Λ(ω′ :δ 6 δ′).fun (g :Unit→ α ! δ) 7→(g ())B(ω !ω′)

Here the binders for qualifiers introduce coercion variables ω between pure types and
ω′ between operation sets, which are then combined into a computation coercion
ω ! ω′ and used for casting the function application g () to the expected type.

Suppose that h has type Unit→ Unit ! {Tick} and f h type Unit ! {Tick, Tock}.
In the ExEff calculus the corresponding instantiation of f is made explicit through
type and coercion applications

f Unit Unit {Tick} {Tick, Tock} γ1 γ2 h

where γ1 needs to be a witness for Unit 6 Unit and γ2 for {Tick} 6 {Tick, Tock}.

4.2.3 Guaranteed Erasure with Skeletons

One of our main requirements for ExEff is that its effect information and subtyping
can be easily erased. The reason is twofold. Firstly, we want to show that neither

62 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

plays a role in the runtime behaviour of ExEff programs. Secondly and more
importantly, we want to use a conventionally typed (System F-like) functional
language such as OCaml as a backend for the Eff compiler.

At first, erasure of both effect information and subtyping seems easy: simply drop
that information from types and terms. However, by dropping the effect variables
and subtyping constraints from the type of f , we get ∀α, α′.(Unit → α) → α′

instead of the expected type ∀α.(Unit→ α)→ α. In our naive erasure attempt,
we have carelessly discarded the connection between α and α′. A more appropriate
approach to erasure would be to unify the types in dropped subtyping constraints.
However, unifying types may reduce the number of type variables when they become
instantiated, so corresponding binders need to be dropped, greatly complicating
the erasure procedure and its meta-theory.

Fortunately, there is an easier way by tagging all bound type variables with skeletons,
which are barebone types without effect information. For example, the skeleton of
a function type A→ B ! ∆ is τ1 → τ2, where τ1 is the skeleton of A and τ2 the
skeleton of B. In ExEff every well-formed type has an associated skeleton, and
any two types A1 6 A2 share the same skeleton. In particular, binders for type
variables are explicitly annotated with skeleton variables ς. For instance, the actual
type of f is:

∀ς.∀(α : ς), (α′ : ς).∀δ, δ′.α 6 α′ ⇒ δ 6 δ′ ⇒ (Unit→ α ! δ)→ α′ ! δ′

The skeleton quantifications and annotations also appear at the term-level:

Λς.Λ(α : ς).Λ(α′ : ς).Λδ.Λδ′.Λ(ω : α 6 α′).Λ(ω′ : δ 6 δ′). . . .

Now erasure is really easy: we drop not only effect and subtyping-related term
formers, but also type binders and application. We do retain skeleton binders and
applications, which take over the role of (plain) types in the backend language. In
terms, we replace types by their skeletons. For instance, for f we get:

Λς.fun (g : Unit→ ς) 7→ g () : ∀ς.(Unit→ ς)→ ς

4.3 The ImpEff Language

This section presents ImpEff, a basic functional calculus with support for algebraic
effect handlers. It is similar to the calculus presented in Chapter 2 but we add type
polymorphism which increases the expressivity of the calculus.

THE IMPEFF LANGUAGE 63

Terms

value v ::= x | () | fun x 7→ c | h
handler h ::= {return x 7→ cr, Op1 x k 7→ cOp1

, . . . , Opn x k 7→ cOpn}
computation c ::= return v | Op v (y.c) | do x← c1; c2

| handle c with v | v1 v2 | let x = v in c

Types & Constraints

skeleton τ ::= ς | Unit | τ1 → τ2 | τ1 V τ2

value type A,B ::= α | Unit | A→ C | C V D
qualified type K ::= A | π ⇒ K

polytype S ::= K | ∀ς.S | ∀α :τ.S | ∀δ.S
computation type C ,D ::= A ! ∆

dirt ∆ ::= δ | ∅ | {Op} ∪∆

simple constraint π ::= A1 6 A2 | ∆1 6 ∆2
constraint ρ ::= π | C 6 D

Figure 4.1: ImpEff Syntax

4.3.1 Syntax

Figure 4.1 presents the syntax of the ImpEff. There are two main kinds of terms:
(pure) values v and (dirty) computations c. The latter may call effectful operations.
Handlers h are a subsidiary sort of values. We assume a given set of operations Op,
such as Get and Put. We abbreviate Op1 x k 7→ cOp1

, . . . , Opn x k 7→ cOpn as
[Opx k 7→ cOp]Op∈O, and write O to denote the set {Op1, . . . , Opn}.

Similarly, we distinguish between two basic sorts of types: the value types A,B and
the computation types C,D. There are four forms of value types: type variables
α, function types A→ C, handler types C V D and the Unit type. Skeletons τ
capture the shape of types, so, by design, their forms are identical. The computation
type A ! ∆ is assigned to a computation returning values of type A and potentially
calling operations from the dirt set ∆. A dirt set is a recursive structure that
contains zero or more operations Op and has the base case of either an empty set or
a dirt variable δ. Despite this representation of dirt, the intended semantics of dirt
sets ∆ is that the order of operations Op is irrelevant. Similarly to all HM-based
systems, we discriminate between value types (or monotypes) A, qualified types
K and polytypes (or type schemes) S . (Simple) subtyping constraints π denote
inequalities between either value types or dirts. We also present the more general

64 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

typing environment Γ ::= ε | Γ, ς | Γ, α : τ | Γ, δ | Γ, x : S | Γ, ω : π

Γ `v v : A v′

(x : ∀ς̄ .∀α : τ .∀δ̄.π̄ ⇒ A) ∈ Γ
σ = [τ ′/ς,B/α,∆/δ] Γ c̀o γ : σ(π)

Γ `v x : σ(A) x τ̄ ′ B̄ ∆̄ γ̄
TmVar

Γ `v v : A v′

Γ c̀o γ : A 6 B
Γ `v v : B v′ B γ

TmCastV
Γ `v () : Unit ()

TmUnit

Γ, x : A `c c : C c′ Γ v̀ty A : τ T
Γ `v (fun x 7→ c) : A→ C fun (x : T) 7→ c′

TmTmAbs

Γ, x : A `c cr : B ! ∆ c′r Γ v̀ty A : τ T[
(Op : AOp → BOp) ∈ Σ

Γ, x : AOp, k : BOp → B ! ∆ `c cOp : B ! ∆ c′Op

]
Op∈O

cres = {return (x : T) 7→ c′r, [Opx k 7→ c′Op]Op∈O}

Γ `v {return x 7→ cr, [Opx k 7→ cOp]Op∈O} :
A ! ∆ ∪ O V B ! ∆ cres

TmHand

Figure 4.2: ImpEff Typing & Elaboration for values

form of constraints ρ that includes inequalities between computation types (as
we illustrate in Section 4.3.2 below, this allows for a single, uniform constraint
entailment relation). Finally, polytypes consist of zero or more skeleton, type or
dirt abstractions followed by a qualified type.

4.3.2 Typing

Figures 4.2 and 4.3 present the typing rules for values and computations respectively,
along with a typing-directed elaboration into our target language ExEff. In order
to simplify the presentation, in this section we focus exclusively on typing. The

THE IMPEFF LANGUAGE 65

typing environment Γ ::= ε | Γ, ς | Γ, α : τ | Γ, δ | Γ, x : S | Γ, ω : π

Γ `c c : C c′

Γ `c c : C 1 c′

Γ c̀o γ : C 1 6 C 2

Γ `c c : C 2 c′ B γ
TmCastC

Γ `v v1 : A→ C v′1
Γ `v v2 : A v′2

Γ `c v1 v2 : C v′1 v
′
2

TmTmApp

S = ∀ς̄ .α : τ .∀δ̄.π̄ ⇒ A
Γ, ς̄ , α : τ , δ̄, ω : π `v v : A v′ Γ, x : S `c c : C c′

Γ `c let x = v in c : C let x = Λς̄ .Λα : τ .Λδ̄.Λ(ω : π).v′ in c′
TmLet

Γ `v v : A v′

Γ `c return v : A ! ∅ return v′
TmReturn

(Op : AOp → BOp) ∈ Σ Γ `v v : AOp v′

Γ, y : BOp `c c : A ! ∆ c′ Γ v̀ty BOp : τ TOp Op ∈ ∆

Γ `c Op v (y.c) : A ! ∆ Op v′ (y : TOp.c
′)

TmOp

Γ `c c1 : A ! ∆ c′1 Γ, x : A `c c2 : B ! ∆ c′2

Γ `c do x← c1; c2 : B ! ∆ do x← c′1; c′2
TmDo

Γ `v v : C V D v′ Γ `c c : C c′

Γ `c handle c with v : D handle c′ with v′
TmHandle

Figure 4.3: ImpEff Typing & Elaboration for computations

66 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

parts of the rules that concern elaboration are highlighted in gray and are discussed
in Section 4.5.

We capture all defined operations along with their types in a global signature Σ.
The typing environment Γ keeps track of several variables during typing. It contains
skeleton variables ς, dirt variables δ, type variables with skeleton attached α : τ
and variables with polytype x : S . The typing environment also contains coercion
variables ω that we will discuss in the next section.

Values Typing for values takes the form Γ `v v : A and, given a typing
environment Γ, checks a value v against a value type A.

Rule TmVar handles term variables. Given that x has type (∀ς.α : τ .∀δ.π ⇒ A),
we appropriately instantiate the skeleton (ς), type (α), and dirt (δ) variables, and
ensure that the instantiated wanted constraints σ(π) are satisfied, via the side
condition Γ c̀o γ : σ(π). Rule TmCastV allows casting the type of a value v
from A to B, if A is a subtype of B (upcasting). Rule TmTmAbs checks lambda
abstractions and omits freshness conditions by adopting the Barendregt convention
which states that all bound variables are different from the free variables [4]. Finally,
Rule TmHand gives typing for handlers. It requires that the right-hand sides of
the return clause and all operation clauses have the same computation type (B ! ∆)
and that all operations mentioned are part of the top-level signature Σ. The result
type takes the form A ! ∆∪O V B ! ∆, capturing the intended handler semantics:
given a computation of type A ! ∆ ∪ O, the handler (a) produces a result of type
B, (b) handles operations O, and (c) propagates unhandled operations ∆ to the
output.

Computations Typing for computations takes the form Γ `c c : C and, given a
typing environment Γ, checks a computation c against a type C.

Rule TmCastC behaves like Rule TmCastV, but for computation types.
Rule TmLet handles polymorphic, non-recursive let-bindings. Rule TmReturn
handles return v computations. The keyword return effectively lifts a value v
of type A into a computation of type A ! ∅. Rule TmOp checks operation calls.
First, we ensure that v has the appropriate type, as specified by the signature of
Op. Then, the continuation (y.c) is checked. The side condition Op ∈ ∆ ensures
that the called operation Op is captured in the result type. Rule TmDo handles
sequencing. Given that c1 has type A ! ∆, the pure part of the result of type A
is bound to term variable x, which is brought in scope for checking c2. As we
mentioned in Section 4.2, all computations in a do-construct should have the same
effect set, ∆. Rule TmHandle eliminates handler types, just as Rule TmTmApp
eliminates arrow types.

THE IMPEFF LANGUAGE 67

Constraint Entailment The specification of constraint entailment takes the form
Γ c̀o ρ and is presented in Figure 4.4. Notice that we use ρ instead of π, which
allows us to capture subtyping between two value types, computation types or dirts,
within the same relation. Subtyping can be established in several ways:

Rule CoVar handles given assumptions. Rules VCoRefl and DCoRefl express
that subtyping is reflexive, for both value types and dirts. Notice that we do not have
a rule for the reflexivity of computation types since, as we illustrate below, it can be
established using the reflexivity of their subparts. Rules VCoTrans, CCoTrans
and DCoTrans express the transitivity of subtyping for value types, computation
types and dirts, respectively. Rule VCoArr establishes inequality of arrow
types. As usual, the arrow type constructor is contravariant in the argument
type. Rules VCoArrL and CCoArrR are the inversions of Rule VCoArr,
allowing us to establish the relation between the subparts of the arrow types.
Rules VCoHand, CCoHL, and CCoHR work similarly, for handler types.
Rule CCoComp captures the covariance of the type constructor (!), establishing
subtyping between two computation types if subtyping is established for their
respective subparts. Rules VCoPure and DCoImpure are its inversions. Finally,
Rules DCoNil and DCoOp establish subtyping between dirts. Rule DCoNil
captures that the empty dirty set ∅ is a subdirt of any dirt ∆ and Rule DCoOp
expresses that dirt subtyping preserved under extension with the same operation Op.
Notice that some forms of subtyping cannot be derived from the given rules, such
as δ ≤ {Op} ∪ δ. This is not a problem because the constraint generation rules
that we discuss later in this chapter do not generate subtyping constraints that lead
to those forms during solving. Consequently, the completeness of the constraint
solving algorithm is preserved according to Theorem 7.

4.3.3 Well-formedness of Types, Constraints, Dirts, and
Skeletons for ImpEff

The relations Γ v̀ty A : τ T and Γ c̀ty C : τ C check the well-formedness
of value and computation types respectively. Similarly, relations Γ c̀t ρ ρ and
Γ ∆̀ ∆ check the well-formedness of constraints and dirts, respectively.

Type Well-formedness & Elaboration

Since our system discriminates between value types and computation types, well-
formedness of types is checked using two mutually recursive relations: Γ v̀ty A :
τ T (values), and Γ c̀ty C : τ C (computations). We discuss each one
separately below.

68 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Γ c̀o γ : ρ Constraint Entailment

(ω : π) ∈ Γ
Γ c̀o ω : π

CoVar
Γ v̀ty A : τ T
Γ c̀o 〈T 〉 : A 6 A

VCoRefl

Γ ∆̀ ∆
Γ c̀o 〈∆〉 : ∆ 6 ∆

DCoRefl

Γ c̀o γ1 : A1 6 A2
Γ c̀o γ2 : A2 6 A3

Γ c̀o γ1 � γ2 : A1 6 A3
VCoTrans

Γ c̀o γ1 : C 1 6 C 2
Γ c̀o γ2 : C 2 6 C 3

Γ c̀o γ1 � γ2 : C 1 6 C 3
CCoTrans

Γ c̀o γ1 : ∆1 6 ∆2
Γ c̀o γ2 : ∆2 6 ∆3

Γ c̀o γ1 � γ2 : ∆1 6 ∆3
DCoTrans

Γ c̀o γ1 : B 6 A Γ c̀o γ2 : C 6 D
Γ c̀o γ1 → γ2 : A→ C 6 B → D

VCoArr

Γ c̀o γ : A→ C 6 B → D
Γ c̀o left(γ) : B 6 A

VCoArrL
Γ c̀o γ : A→ C 6 B → D

Γ c̀o right(γ) : C 6 D
CCoArrR

Γ c̀o γ1 : C 2 6 C 1 Γ c̀o γ2 : D1 6 D2

Γ c̀o γ1 V γ2 : C 1 V D1 6 C 2 V D2
VCoHand

Γ c̀o γ : C 1 V D1 6 C 2 V D2

Γ c̀o left(γ) : C 2 6 C 1
CCoHL

Γ c̀o γ : C 1 V D1 6 C 2 V D2

Γ c̀o right(γ) : D1 6 D2
CCoHR

Γ c̀o γ1 : A1 6 A2 Γ c̀o γ2 : ∆1 6 ∆2

Γ c̀o γ1 ! γ2 : A1 ! ∆1 6 A2 ! ∆2
CCoComp

Γ c̀o γ : A1 ! ∆1 6 A2 ! ∆2

Γ c̀o pure(γ) : A1 6 A2
VCoPure

Γ c̀o γ : A1 ! ∆1 6 A2 ! ∆2

Γ c̀o impure(γ) : ∆1 6 ∆2
DCoImpure

Γ c̀o ∅∆ : ∅ 6 ∆
DCoNil

Γ c̀o γ : ∆1 6 ∆2 (Op : AOp → BOp) ∈ Σ
Γ c̀o {Op} ∪ γ : {Op} ∪∆1 6 {Op} ∪∆2

DCoOp

Figure 4.4: ImpEff Constraint Entailment

THE IMPEFF LANGUAGE 69

Value Type Well-formedness

Γ v̀ty S : τ T

α :τ ∈ Γ
Γ v̀ty α : τ α

WfTyVar

Γ v̀ty A : τ1 T Γ c̀ty C : τ2 C
Γ v̀ty A→ C : τ1 → τ2 T → C

WfTyArr

Γ c̀ty C : τ1 C 1 Γ c̀ty D : τ2 C 2

Γ v̀ty C V D : τ1 V τ2 C 1 V C 2
WfHandTy

Γ v̀ty Unit : Unit Unit
WfUnitTy

Γ c̀t π π Γ v̀ty K : τ T
Γ v̀ty π ⇒ K : τ π ⇒ T

WfCoAbsTy

Γ, α : τ1 v̀ty S : τ2 T
Γ v̀ty ∀α :τ1.S : τ2 ∀α :τ1.T

WfTyAbs

Γ, δ v̀ty S : τ T
Γ v̀ty ∀δ.S : τ ∀δ.T

WfDirtAbs
Γ, ς v̀ty S : τ T

Γ v̀ty ∀ς.S : ∀ς.τ ∀ς.T
WfSkelAbs

Figure 4.5: Well-formedness of Value types for ImpEff

Value Types Well-formedness for value types for ImpEff are defined in Figure 4.5.
The judgement is syntax-directed on the structure of types; each rule corresponds
to a value type syntactic form. Since ExEff types are a superset of ImpEff types,
the elaboration-part (highlighted in gray) is the identity transformation to ExEff
that we will discuss in the next section. The essence of the judgement is to check
the well-scopedness of ImpEff types.

Computation Types Figure 4.6 shows the well-formedness for computation types.
We ensure that both parts of a computation type (the value type and the dirt)
are well-scoped under Γ, while elaborating the value-type into a proper ExEff
representation.

70 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Computation Type Well-formedness

Γ c̀ty C : τ C

Γ v̀ty A : τ T Γ ∆̀ ∆
Γ c̀ty A ! ∆ : τ T ! ∆

WfCompTy

Figure 4.6: Well-formedness of Computation types for ImpEff

Constraint Well-formedness

Γ c̀t ρ ρ

Γ v̀ty A : τ T1 Γ v̀ty B : τ T2

Γ c̀t A 6 B T1 6 T2
WfVTyCt

Γ c̀ty C : τ C 1 Γ c̀ty D : τ C 2

Γ c̀t C 6 D C 1 6 C 2
WfCTyCt

Γ ∆̀ ∆1 Γ ∆̀ ∆2

Γ c̀t ∆1 6 ∆2 ∆1 6 ∆2
WfDirtCt

Figure 4.7: Well-formedness of Constraints for ImpEff

Constraint Well-formedness

Well-formedness for constraints is given by judgement Γ c̀t ρ ρ and is shown
in Figure 4.7. All three rules check the constraint components for well-scopedness
using the other defined well-formedness relations.

Dirt Well-formedness

Judgement Γ ∆̀ ∆ checks dirt well-formedness and is defined in Figure 4.8. In
addition to checking that the dirt is well-scoped (illustrated by WfDirtVar), we
also make sure that all operations in a dirt set are already defined, by looking them
up in the globally visible signature Σ (WfOpDirt).

THE EXEFF LANGUAGE 71

Dirt Well-formedness

Γ ∆̀ ∆

Γ ∆̀ ∅
WfEmpty

δ ∈ Γ
Γ ∆̀ δ

WfDirtVar

(Op : AOp → BOp) ∈ Σ Γ ∆̀ ∆
Γ ∆̀ {Op} ∪∆

WfOpDirt

Figure 4.8: Well-formedness of dirts for ImpEff

Skeleton Well-formedness

Γ τ̀ τ

ς ∈ Γ
Γ τ̀ ς

WfSkelVar
Γ τ̀ Unit

WfSkelUnit

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1 → τ2
WfSkel→

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1 V τ2
WfSkelV

Figure 4.9: Well-formedness of skeletons for ImpEff

Skeleton Well-formedness

Finally, skeleton well-formedness is performed by judgement Γ τ̀ τ , as given in
Figure 4.9. The relation is straightforward. Since the base sort of skeletons is either
Unit or ς, the relation recursively reduces the arrow and handler types till it reaches
either of the base sorts.

4.4 The ExEff Language

This section presents ExEff, the calculus which forms the core language of our
optimising compiler. It is designed to explicitly state the type of every term in
the language. There is no need for implicit subtyping in this calculus. This allows
optimisations to be easily built on top of this calculus.

72 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

4.4.1 Syntax

Figure 4.10 presents ExEff’s syntax. ExEff is an intensional type theory akin
to System F [32], where every term encodes its own typing derivation. In essence,
all abstractions and applications that are implicit in ImpEff, are made explicit in
ExEff via new syntactic forms. Additionally, ExEff is impredicative, which is
reflected in the lack of discrimination between value types, qualified types and type
schemes; all non-computation types are denoted by T . While the impredicativity is
not strictly required for the purpose at hand, it makes for a cleaner system.

Coercions Of particular interest is the use of explicit subtyping coercions, denoted
by γ. ExEff uses these to replace the implicit casts of ImpEff (Rules TmCastV
and TmCastC in Figures 4.2 and 4.3) with explicit casts (v B γ) and (c B γ)
respectively.

Essentially, coercions γ are explicit witnesses of subtyping derivations: each coercion
form corresponds to a subtyping rule. Subtyping forms a partial order, which is
reflected in coercion forms γ1 � γ2, 〈T 〉, and 〈∆〉. Coercion form γ1 � γ2
captures transitivity, while forms 〈T 〉 and 〈∆〉 capture reflexivity for value types
and dirts (reflexivity for computation types can be derived from these).

Subtyping for skeleton abstraction, type abstraction, dirt abstraction, and
qualification is witnessed by coercion forms ∀ς.γ, ∀α.γ, ∀δ.γ, and π ⇒ γ,
respectively. Similarly, forms γ[τ], γ[T], γ[∆], and γ1@γ2 witness subtyping of
skeleton instantiation, type instantiation, dirt instantiation, and coercion application,
respectively.

Syntactic forms γ1 → γ2 and γ1 V γ2 capture injection for the arrow and the
handler type constructor, respectively. Similarly, inversion forms left(γ) and right(γ)
capture projection, following from the injectivity of both type constructors.

Coercion form γ1 ! γ2 witnesses subtyping for computation types, using proofs
for their components. Inversely, syntactic forms pure(γ) and impure(γ) witness
subtyping between the value- and dirt-components of a computation coercion.

Coercion forms ∅∆ and {Op} ∪ γ are concerned with dirt subtyping. Form ∅∆
witnesses that the empty dirt ∅ is a subdirt of any dirt ∆. Lastly, coercion form
{Op} ∪ γ witnesses that subtyping between dirts is preserved under extension with
a new operation. Note that we do not have an inversion form to extract a witness
for ∆1 6 ∆2 from a coercion for {Op} ∪∆1 6 {Op} ∪∆2. The reason is that dirt
sets are sets and not inductive structures. The set{Op} contains the operations and
∆ in this case is either ∅ or δ. For instance, for ∆1 = {Op} and ∆2 = ∅ the latter
subtyping holds, but the former does not.

THE EXEFF LANGUAGE 73

Terms

value v ::= x | () | fun (x : T) 7→ c | h
| Λς.v | v τ | Λα : τ.v | v T
| Λδ.v | v ∆ | Λ(ω : π).v | v γ | v B γ

handler h ::= {return (x : T) 7→ cr,
Op1 x k 7→ cOp1

, . . . , Opn x k 7→ cOpn}

computation c ::= return v | Op v (y : T .c) | do x← c1; c2
| handle c with v | v1 v2 | let x = v in c | c B γ

Types

skeleton τ ::= ς | Unit | τ1 → τ2 | τ1 V τ2 | ∀ς.τ

value type T ::= α | Unit | T → C | C 1 V C 2
| ∀ς.T | ∀α :τ.T | ∀δ.T | π ⇒ T

simple coercion type π ::= T1 6 T2 | ∆1 6 ∆2

coercion type ρ ::= π | C 1 6 C 2

computation type C ::= T ! ∆
dirt ∆ ::= δ | ∅ | {Op} ∪∆

Coercions
γ ::= ω Coercion Variable
| γ1 � γ2 Transitivity
| 〈T〉 Reflexivity over types
| γ1 → γ2 Arrow type congruence
| γ1 V γ2 Handler type
| left(γ) Arrow left inversion
| right(γ) Arrow right inversion
| 〈∆〉 Reflexivity over dirts
| ∅∆ Empty set of constraints
| {Op} ∪ γ Operation congruence
| ∀ς.γ Skeleton quantification
| γ[τ] Skeleton instantiation
| ∀α.γ Type quantification
| γ[T] Type instantiation
| ∀δ.γ Dirt quantification
| γ[∆] Dirt instantiation
| π ⇒ γ Constraint abstraction
| γ1@γ2 Constraint instantiation
| γ1 ! γ2 Computation type congruence
| pure(γ) Computation type left inversion
| impure(γ) Computation type right inversion

Figure 4.10: ExEff Syntax

74 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Γ v̀ v : T

(x : T) ∈ Γ
Γ v̀ x : T

ExVar
Γ v̀ () : Unit

ExUnit

Γ, x : T c̀ c : C Γ T̀ T : τ
Γ v̀ (fun x : T 7→ c) : T → C

ExTmAbs

Γ v̀ v : T1 Γ c̀o γ : T1 6 T2

Γ v̀ v B γ : T2
ExCastV

Γ, ς v̀ v : T
Γ v̀ Λς.v : ∀ς.T

ExSkelAbs

Γ, α : τ v̀ v : T
Γ v̀ Λα : τ.v : ∀α : τ.T

ExTyAbs
Γ, δ v̀ v : T

Γ v̀ Λδ.v : ∀δ.T
ExDirtAbs

Γ, ω : π v̀ v : T Γ ρ̀ π

Γ v̀ Λ(ω : π).v : π ⇒ T
ExCoAbs

Γ v̀ v : π ⇒ T Γ c̀o γ : π
Γ v̀ v γ : T

ExCoApp

ExHandler
Γ, x : Tx c̀ cr : T ! ∆[

(Op : T1 → T2) ∈ Σ Γ, x : T1, k : T2 → T ! ∆ c̀ cOp : T ! ∆
]
Op∈O

Γ v̀ {return (x : Tx) 7→ cr, [Opx k 7→ cOp]Op∈O} : Tx ! ∆ ∪ O V T ! ∆

Γ v̀ v : ∀ς.T
Γ τ̀ τ

Γ v̀ v τ : T [τ/ς]
ExSkelApp

Γ v̀ v : ∀α : τ.T1
Γ T̀ T2 : τ

Γ v̀ v T2 : T1[T2/α]
ExTyApp

Γ v̀ v : ∀δ.T
Γ ∆̀ ∆

Γ v̀ v ∆ : T [∆/δ]
ExDirtApp

Figure 4.11: ExEff Value Typing

THE EXEFF LANGUAGE 75

Γ c̀ c : C

Γ v̀ v1 : T → C Γ v̀ v2 : T
Γ c̀ v1 v2 : C

ExApp

Γ v̀ v : T Γ, x : T c̀ c : C
Γ c̀ let x = v in c : C

ExLet
Γ c̀ v : T

Γ c̀ return v : T ! ∅
ExReturn

Γ c̀ c1 : T1 ! ∆ Γ, x : T1 c̀ c2 : T2 ! ∆
Γ c̀ do x← c1; c2 : T2 ! ∆

ExDo

(Op : T1 → T2) ∈ Σ
Γ v̀ v : T1 Γ, y : T2 c̀ c : T ! ∆ Op ∈ ∆

Γ c̀ Op v (y : T2.c) : T ! ∆
ExOp

Γ v̀ v : C 1 V C 2 Γ c̀ c : C 1

Γ c̀ handle c with v : C 2
ExHandle

Γ c̀ c : C 1 Γ c̀o γ : C 1 6 C 2

Γ c̀ c B γ : C 2
ExCastC

Figure 4.12: ExEff Computation Typing

4.4.2 Typing

Value & Computation Typing Typing for ExEff values and computations
is presented in Figures 4.11 and 4.12 respectively and is given by two mutually
recursive relations of the form Γ v̀ v : T (values) and Γ c̀ c : C (computations).
ExEff typing environments Γ contain bindings for variables of all sorts:

Γ ::= ε | Γ, ς | Γ, α : τ | Γ, δ | Γ, x : T | Γ, ω : π

Typing is entirely syntax-directed. Apart from the typing rules for skeleton, type,
dirt, and coercion abstraction (and, subsequently, skeleton, type, dirt, and coercion
application), the main difference between typing for ImpEff and ExEff lies in
the explicit cast forms, (v B γ) and (c B γ). Given that a value v has type T1 and
that γ is a witness that T1 is a subtype of T2, we can upcast v with an explicit
cast operation (v B γ). Upcasting for computations works analogously.

76 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

4.4.3 Well-formedness of Types, Constraints, Dirts & Skele-
tons for ExEff

The definitions of the judgements that express the well-formedness of ExEff value
types (Γ T̀ T : τ), computation types (Γ C̀ C : τ), dirts (Γ ∆̀ ∆), and skeletons
(Γ τ̀ τ) shown in Figure 4.13 are equally straightforward as those for ImpEff.

Coercion Typing Coercion typing formalises the intuitive interpretation of
coercions that we gave in Section 4.4.1 and takes the form Γ c̀o γ : ρ. It is
essentially an extension of the constraint entailment relation of Figure 4.4.

Figure 4.14 shows the typing rules for ExEff coercions. The extended rules
in this figure deal with coercions for skeleton abstraction(VCoSkAbs) and
instantiation(VCoSkInst) for polymorphic types. The rules also deal with types
and dirts abstractions, and their instantiations. They also deal with coercions
abstractions and instantiation.

4.4.4 Operational Semantics

Figures 4.15 and 4.16 present ExEff’s small-step, call-by-value operational
semantics for values and computations respectively.

One of the non-conventional features of our system is in the stratification of results
in plain results and cast results:

terminal value vT ::= () | h | fun x : T 7→ c | Λα : τ.v | Λδ.v | Λω : π.v
value result vR ::= vT | vT B γ

computation result cR ::= return vT | (return vT) B γ | Op vR (y : T .c)

Terminal values vT represent conventional values, and value results vR can either
be plain terminal values vT or terminal values with a cast: vT B γ. The same
applies to computation results cR. Operation values do not feature an outermost
cast operation, as the coercion can always be pushed into its continuation.

Although unusual, this stratification can also be found in Crary’s coercion calculus
for inclusive subtyping [16], and, more recently, in System FC [88]. Stratification
is crucial for ensuring type preservation. Consider for example the expression
(return 5 B 〈int〉 ! ∅{Op}), of type int ! {Op}. We can not reduce the expression
further without losing effect information; removing the cast would result in

THE EXEFF LANGUAGE 77

Γ T̀ T : τ Value Types

(α : τ) ∈ Γ
Γ T̀ α : τ

WfVTyVar
Γ T̀ T : τ1 Γ C̀ C : τ2

Γ T̀ T → C : τ1 → τ2
WfVTyArr

Γ C̀ C 1 : τ1 Γ C̀ C 2 : τ2
Γ T̀ C 1 V C 2 : τ1 V τ2

WfVTyHandler

Γ T̀ Unit : Unit
WfVTyUnit

Γ ρ̀ π Γ T̀ T : τ
Γ T̀ π ⇒ T : τ

WfVTyCoAbs

Γ, ς T̀ T : τ
Γ T̀ ∀ς.T : ∀ς.τ

WfVTyCoAbs
Γ, α : τ1 T̀ T : τ2
Γ T̀ ∀α : τ1.T : τ2

WfVTyTyAbs

Γ, δ T̀ T : τ
Γ T̀ ∀δ.T : τ

WfVTyDirtAbs

Γ C̀ C : τ Computation Types

Γ T̀ T : τ Γ ∆̀ ∆
Γ C̀ T ! ∆ : τ

WfCTy

Γ ρ̀ ρ Coercion Types

Γ T̀ T1 : τ Γ T̀ T2 : τ
Γ ρ̀ T1 6 T2

WfVTyCt

Γ C̀ C 1 : τ Γ C̀ C 2 : τ
Γ ρ̀ C 1 6 C 2

WfCTyCt
Γ ∆̀ ∆1 Γ ∆̀ ∆2

Γ ρ̀ ∆1 6 ∆2
WfDTyCt

Γ ∆̀ ∆ Dirts

Γ ∆̀ ∅
Wf∆ Empty

δ ∈ Γ
Γ ∆̀ δ

Wf∆Var

(Op : T1 → T2) ∈ Σ
Γ ∆̀ ∆

Γ ∆̀ {Op} ∪∆
Wf∆Op

Γ τ̀ τ Skeletons

ς ∈ Γ
Γ τ̀ ς Γ τ̀ Unit

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1 → τ2

Γ τ̀ τ1 Γ τ̀ τ2

Γ τ̀ τ1 V τ2

Γ, ς τ̀ τ

Γ τ̀ ∀ς.τ

Figure 4.13: ExEff Well-formedness of Types, Constraints, Dirts & Skeletons

78 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Coercion Typing

Γ c̀o γ : ρ

(ω : π) ∈ Γ
Γ c̀o ω : π

VCoVar
Γ T̀ T : τ

Γ c̀o 〈T〉 : T 6 T
VCoRefl

Γ ∆̀ ∆
Γ c̀o 〈∆〉 : ∆ 6 ∆

DCoRefl

Γ c̀o γ1 : T1 6 T2
Γ c̀o γ2 : T2 6 T3

Γ c̀o γ1 � γ2 : T1 6 T3
VCoTrans

Γ c̀o γ1 : C1 6 C2
Γ c̀o γ2 : C2 6 C3

Γ c̀o γ1 � γ2 : C1 6 C3
CCoTrans

Γ c̀o γ1 : ∆1 6 ∆2
Γ c̀o γ2 : ∆2 6 ∆3

Γ c̀o γ1 � γ2 : ∆1 6 ∆3
DCoTrans

Γ c̀o γ1 : T2 6 T1
Γ c̀o γ2 : C1 6 C2

Γ c̀o γ1 → γ2 : T1 → C1 6 T2 → C2
VCoArr

Γ c̀o γ : T1 → C1 6 T2 → C2
Γ c̀o left(γ) : T2 6 T1

VCoLeftArr
Γ c̀o γ : T1 → C1 6 T2 → C2

Γ c̀o right(γ) : C1 6 C2
CCoRightArr

Γ c̀o γ1 : C3 6 C1
Γ c̀o γ2 : C2 6 C4

Γ c̀o γ1 V γ2 : C1 V C2 6 C3 V C4
VCoHandler

Γ c̀o γ : C1 V C2 6 C3 V C4
Γ c̀o left(γ) : C3 6 C1

CCoLeftHandler

Γ c̀o γ : C1 V C2 6 C3 V C4
Γ c̀o right(γ) : C2 6 C4

CCoRightHandler
Γ, ς c̀o γ : T1 6 T2

Γ c̀o ∀ς.γ : ∀ς.T1 6 ∀ς.T2
VCoSkAbs

Γ c̀o γ : ∀ς.T1 6 ∀ς.T2 Γ τ̀ τ

Γ c̀o γ[τ] : T1[τ/ς] 6 T2[τ/ς]
VCoSkInst

Γ, α : τ c̀o γ : T1 6 T2

Γ c̀o ∀α : τ.γ : ∀α : τ.T1 6 ∀α : τ.T2
VCoTyAbs

Γ c̀o γ : ∀α : τ.T1 6 ∀α : τ.T2 Γ T̀ T : τ
Γ c̀o γ[T] : T1[T/α] 6 T2[T/α]

VCoTyInst

Γ, δ c̀o γ : T1 6 T2

Γ c̀o ∀δ.γ : ∀δ.T1 6 ∀δ.T2
VCoDirtAbs

Γ c̀o γ : ∀δ.T1 6 ∀δ.T2 Γ ∆̀ ∆
Γ c̀o γ[∆] : T1[∆/δ] 6 T2[∆/δ]

VCoDirtInst

Γ c̀o γ : T1 6 T2
Γ ρ̀ π

Γ c̀o π ⇒ γ : π ⇒ T1 6 π ⇒ T2
VCoCoAbs

Γ c̀o γ1 : π ⇒ T1 6 π ⇒ T2 Γ c̀o γ2 : π
Γ c̀o γ1@γ2 : T1 6 T2

VCoCoInst

Γ c̀o γ1 : T1 6 T2
Γ c̀o γ2 : ∆1 6 ∆2

Γ c̀o γ1 ! γ2 : T1 ! ∆1 6 T2 ! ∆2
CCoComp

Γ c̀o γ : T1 ! ∆1 6 T2 ! ∆2

Γ c̀o pure(γ) : T1 6 T2
VCoPure

Γ c̀o γ : T1 ! ∆1 6 T2 ! ∆2

Γ c̀o impure(γ) : ∆1 6 ∆2
DCoImpure

Γ ∆̀ ∆
Γ c̀o ∅∆ : ∅ 6 ∆

DCoEmpty

Γ c̀o γ : ∆1 6 ∆2 (Op : T1 → T2) ∈ Σ
Γ c̀o {Op} ∪ γ : {Op} ∪∆1 6 {Op} ∪∆2

DCoOp

Figure 4.14: ExEff Coercion Typing

THE EXEFF LANGUAGE 79

Values

v v v
′

v v v
′

v B γ v v
′ B γ

(VCast)
(vT B γ1) B γ2 v v

T B (γ1 � γ2) (VPushTrans)

v v v
′

v T v v
′ T

(VtyApp)
v v v

′

v ∆ v v
′ ∆

(VdirtApp)

v v v
′

v γ v v
′ γ

(VCoerApp)
(Λα : τ.v) T v v[T/α] (VBredTy)

(Λδ.v) ∆ v v[∆/δ] (VBredDirt) (Λ(ω : π).v) γ v v[γ/ω] (VBredCoer)

(vT B γ) T v (vT T) B γ[T] (VPushTyapp)

(vT B γ) ∆ v (vT ∆) B γ[∆] (VPushDirtApp)

(vT B γ1) γ2 v (vT γ2) B γ1@γ2 (VPushCoer)

Figure 4.15: ExEff Operational Semantics for Values

computation (return 5), of type int ! ∅. Even if we consider type preservation only
up to subtyping, the redex may still occur as a subterm in a context that expects
solely the larger type.

We also need to make sure that casts do not stand in the way of evaluation. This
is captured in the so-called “push” rules, all of which appear in the two figures.

Operational semantics for Values Figure 4.15 shows the relation v v v
′ that

evaluates values. The rule (VCast) evaluates a value inside a cast. The rule
(VpushTrans) groups nested casts into a single cast, by means of transitivity.
The rules (VtyApp), (VdirtApp) and (VCoerApp) are the same as (VCast)
but for types, dirts and coercions respectively.

The rules (VBredTy), (VBredDirt) and (VBredCoer) beta reduces an
application by substitution of the applied type, dirt or coercion respectively into
the value v itself. The last rules capture the essence of push rules: whenever a
redex is “blocked” due to a cast, we take the coercion apart and redistribute it (in
a type-preserving manner) over the subterms, so that evaluation can proceed.

80 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Computations

c c c
′

c c c
′

c B γ c c
′ B γ

CCast
(cR B γ1) B γ2 c c

R B (γ1 � γ2) CPushTrans

v1 v v
′
1

v1 v2 c v
′
1 v2

CVarApp

(vT1 B γ) v2 c (vT1 (v2 B left(γ))) B right(γ) CPushApp

v2 v v
′
2

vT1 v2 c v
T
1 v′

2
CTermValApp

(fun (x : T) 7→ c) vR c c[vR/x] CFunBred

v v v
′

let x = v in c c let x = v′ in c
CLetValApp

let x = vR in c c c[vR/x] CLetValBred
v v v

′

return v c return v′ CReturnVal

return (vT B γ) c (return vT) B (γ ! ∅∅) CEmptyDirt

v v v
′

Op v (y : T .c) c Op v′ (y : T .c)
COpVal

(Op vR (y : T .c)) B γ c Op vR (y : T .(c B γ)) CPushOpCoer

c1 c c
′
1

do x← c1; c2 c do x← c′
1; c2

CdocRed

do x← ((return vT) B γ); c2 c c2[(vT B pure(γ))/x] CdoRet

do x← Op vR (y : T .c1); c2 c Op vR (y : T .do x← c1; c2) CdoOp

v v v
′

handle c with v c handle c with v′ CHandleVal

handle c with (vT B γ) c (handle (c B left(γ)) with vT) B right(γ) CHandlePush

c c c
′

handle c with vT c handle c′ with vT
CHandleComp

handle ((return vT) B γ) with h c cr[vT B pure(γ)/x] CHandleRet

handle (Op vR (y : T .c)) with h c
cOp[vR/x, (fun (y : T) 7→

handle c with h)/k] CHandleOp

handle (Op vR (y : T .c)) with h c Op vR (y : T .handle c with h) CHandleNoOp

Figure 4.16: ExEff Operational Semantics For Computations

THE EXEFF LANGUAGE 81

Operational semantics for Computations Figure 4.16 shows the relation c v
c′ that evaluates computations.

The rule CCast evaluates a computation inside a cast. The rule CPushTrans
uses transitivity to group nested casts into a single cast. CVarApp reduces the
function of the application before executing the application itself. CPushApp is
the push rule for β-reduction, it pushes the left part of the coercion into the input
value of the function and pushes the right part of the coercion outside to coerce
the result of the application. The rule CtermValApp reduces the input value
in an application, only after the function is already reduced to a terminal value
(after applying CVarApp multiple times). The rule CFunBred beta reduces an
application.

The rule CletValApp reduces the value in the Let..in.. computation and then
CLetValBred beta-reduces the whole computation. The rule CReturnVal
reduces the value inside the return-computation and CEmptyDirt pushes a cast
out of a return-computation and applies an empty dirt coercion to it.

The rule COpVal reduces the value inside an operation call and CPushOpCoer
pushes the outer cast of an operation inside the operation’s computation, illustrating
why the syntax for cR does not require casts on operation-computations. The rule
CdocRed reduces the first computation in sequencing. CdocRet is a push rule
for sequencing computations and performs two tasks at once. Since we know that
the computation bound to x calls no operations, we (a) safely “drop” the impure
part of γ, and (b) substitute x with vT , cast with the pure part of γ (so that types
are preserved). CdoOp handles operation calls in sequencing computations. If an
operation is called in a sequencing computation, evaluation is suspended and the
rest of the computation is captured in the continuation.

The last six rules are concerned with handlers. CHandleVal and CHandleComp
reduce the handler and the computation the handler is handling respectively.
CHandlePush pushes a coercion on the handler “outwards”, so that the handler
can be exposed and evaluation is not stuck (similarly to the push rule for term
application). CHandleRet behaves similarly to the push/beta rule for sequencing
computations. CHandleOp and CHandleNoOp are concerned with handling
of operations. The first captures cases where the called operation is handled by the
handler, in which case the respective clause of the handler is called. The second
rule captures cases where the operation is not covered by the handler and thus
remains unhandled.

Type safety of ExEff ExEff is type safe:

Theorem 4 (Type Safety). • If Γ v̀ v : T then either v is a result value or
v v v

′ and Γ v̀ v
′ : T .

82 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

• If Γ c̀ c : C then either c is a result computation or c c c
′ and Γ c̀ c

′ : C .

4.5 Type Inference & Elaboration

This section presents the typing-directed elaboration of ImpEff into ExEff. This
elaboration makes all the implicit type and effect information explicit, and introduces
explicit term-level coercions to witness the use of subtyping.

After covering the declarative specification of this elaboration, we present a
constraint-based algorithm to infer ImpEff types and at the same time elaborate
into ExEff. This algorithm alternates between two phases: 1) the syntax-directed
generation of constraints from the ImpEff term, and 2) solving these constraints.

4.5.1 Elaboration of ImpEff into ExEff

The grayed parts of Figures 4.2 and 4.3 augment the typing rules for ImpEff value
and computation terms with typing-directed elaboration to corresponding ExEff
terms. The elaboration is mostly straightforward, mapping every ImpEff construct
onto its corresponding ExEff construct while adding explicit type annotations
to binders in Rules TmTmAbs, TmHandler and TmOp. Implicit appeals to
subtyping are turned into explicit casts with coercions in Rules TmCastV and
TmCastC. Rule TmLet introduces explicit binders for skeleton, type, and dirt
variables, as well as for constraints. These last also introduce coercion variables ω
that can be used in casts. The binders are eliminated in rule TmVar by means
of explicit application with skeletons, types, dirts and coercions. The coercions
are produced by the auxiliary judgement Γ c̀o γ : π, defined in Figure 4.4, which
provides a coercion witness for every subtyping proof.

We have also shown that elaboration preserves types.

Theorem 5 (Type Preservation). • If Γ `v v : A v′ then elabΓ(Γ) v̀ v
′ :

elabS(A).

• If Γ `c c : C c′ then elabΓ(Γ) c̀ c
′ : elabC(C).

Here elabΓ(Γ), elabS(A) and elabC(C) convert ImpEff environments and types
into their ExEff counterparts. All four functions are entirely straightforward and
essentially traverse each sort, so that ImpEff value types A are replaced with
ExEff value types T , as shown in Figure 4.17.

TYPE INFERENCE & ELABORATION 83

elabS(α) = α
elabS(A→ C) = elabS(A)→ elabC (C)
elabS(C V D) = elabC (C)→ elabC (D)
elabS(Unit) = Unit
elabS(∀ς.S) = ∀ς.elabS(S)
elabS(∀α : τ.S) = ∀α : τ.elabS(S)
elabS(∀δ.S) = ∀δ.elabS(S)
elabS(π ⇒ K) = elabρ(π)⇒ elabS(K)

elabC (A ! ∆) = elabS(A) ! ∆

elabΓ(ε) = ε
elabΓ(Γ, ς) = elabΓ(Γ), ς
elabΓ(Γ, α : τ) = elabΓ(Γ), α : τ
elabΓ(Γ, δ) = elabΓ(Γ), δ

elabΓ(Γ, x : S) = elabΓ(Γ), x :
elabS(S)

elabΓ(Γ, ω : ρ) = elabΓ(Γ), ω :
elabρ(ρ)

elabρ(A 6 B) = elabS(A) 6 elabS(B)
elabρ(C 6 D) = elabC (C) 6 elabC (D)
elabρ(∆1 6 ∆2) = ∆1 6 ∆2

Figure 4.17: Elaboration for value & computation types, constraints, and typing
environments.

4.5.2 Constraint Generation & Elaboration

Constraint generation with elaboration into ExEff is presented in Figures 4.18
(values) and 4.19 (computations). Before going into the details of each, we first
introduce the three auxiliary constructs they use.

constraint set P,Q ::= • | τ1 = τ2,P | α : τ,P | ω : π,P
typing environment Γ ::= ε | Γ, x : S

substitution σ ::= • | σ · [τ/ς] | σ · [A/α] | σ · [∆/δ] | σ · [γ/ω]

At the heart of our algorithm are sets P, containing three different kinds of
constraints: (a) skeleton equalities of the form τ1 = τ2, (b) skeleton constraints of
the form α : τ , and (c) wanted subtyping constraints of the form ω : π. The purpose
of the first two becomes clear when we discuss constraint solving, in Section 4.5.3.
Next, typing environments Γ only contain term variable bindings, while other
variables represent unknowns of their sort and may end up being instantiated after
constraint solving. Finally, during type inference we compute substitutions σ, for
refining as of yet unknown skeletons, types, dirts, and coercions. The last one is
essential, since our algorithm simultaneously performs type inference and elaboration
into ExEff.

84 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Values

Q; Γ v̀ v : A | Q′;σ v′

GVar
(x : ∀ς̄ .∀α : τ .∀δ̄.π̄ ⇒ A) ∈ Γ σ = [ς ′/ς, α′/α, δ′/δ]

Q; Γ v̀ x : σ(A) | ω : σ(π), α′ : σ(τ),Q; • x ς̄ ′ ᾱ′ δ̄′ ω̄

GUnit

Q; Γ v̀ () : Unit | Q; • ()

GAbs
α : ς,Q; Γ, x : α c̀ c : C | Q′;σ c′

Q; Γ v̀ (fun x 7→ c) : σ(α)→ C | Q′;σ fun x : σ(α) 7→ c′

GHand
αr : ςr,Q; Γ, x : αr c̀ cr : Br ! ∆r | Q0;σr c′r σi = σi · σi−1 · . . . · σ1

Opi ∈ O :
(Opi : Ai → Bi) ∈ Σ
αi : ςi,Qi−1;σi−1(σr(Γ)), x : Ai, k : Bi → αi ! δi v̀

cOpi : BOpi ! ∆Opi | Qi;σi c′Opi
Q′ = αin : ςin, αout : ςout , ω1 : σn(Br) 6 αout , ω2 : σn(∆r) 6 δout ,

ω3i : σn(BOpi) 6 αout
n
, ω4i : σn(∆Opi) 6 δout

n
,

ω5i : Bi → αout ! δout 6 Bi → σn(αi ! δi)
n
,

ω6 : αin 6 σ
n(σr(αr)), ω7 : δin 6 δout ∪ O,Qn

cres = { return y : σn(σr(αr)) 7→ σn(c′r)[y B ω6/x] B ω1 !ω2

,
[
Opi x l 7→ σn(c′Opi)[l B ω5i/k] B ω3i !ω4i

]
Opi∈O

}

B (〈αin〉 !ω7 V 〈αout〉 ! 〈δout〉)
Q; Γ v̀ {return x 7→ cr, [Opx k 7→ cOp]Op∈O} :
αin ! δin V αout ! δout | Q′; (σn · σr) cres

Figure 4.18: Constraint Generation with Elaboration (Values)

A substitution σ is a solution of the set P, written as σ |= P, if we get derivable
judgements after applying σ to all constraints in P.

TYPE INFERENCE & ELABORATION 85

Values. Constraint generation for values takes the form Q; Γ v̀ v : A | Q′;σ v′ .
It takes as inputs a set of wanted constraints Q, a typing environment Γ, and a
ImpEff value v, and produces a value type A, a new set of wanted constraints Q′,
a substitution σ, and a ExEff value v′.

Unlike standard Hindley-Milner inference algorithm, our inference algorithm does not
keep constraint generation and solving separate. Instead, the two are interleaved, as
indicated by the additional arguments of our relation: (a) constraints Q are passed
around in a stateful manner (i.e., they are input and output), and (b) substitutions
σ generated from constraint solving constitute part of the relation’s output. We
discuss the reason for this interleaved approach in Section 4.5.4; we now focus on
the algorithm.

The rules are syntax-directed on the input ImpEff value. Rule GVar handles
term variables x: as usual for constraint-based type inference the rule instantiates
the polymorphic type (∀ς̄ .α : τ .∀δ̄.π̄ ⇒ A) of x with fresh variables; these are
placeholders that are determined during constraint solving. Moreover, the rule
extends the wanted constraints P with π̄, appropriately instantiated. In ExEff,
this corresponds to explicit skeleton, type, dirt, and coercion applications. The
rule GUnit elaborates ImpEff’s () to ExEff and does not generate any new
constraints and returns an empty substitution.

More interesting is the GAbs, for term abstractions. Like in standard Hindley-
Milner [18], it generates a fresh type variable α for the type of the abstracted term
variable x. In addition, it generates a fresh skeleton variable ς, to capture the (yet
unknown) shape of α.

As explained in detail in Section 4.5.3, the constraint solver instantiates type
variables only through their skeleton annotations, meaning that the shape of the
skeleton variable defines the shape of the type variable. Because we want to allow
local constraint solving for the body c of the term abstraction the opportunity to
produce a substitution σ that instantiates α, we have to pass in the annotation
constraint α : ς.1 We apply the resulting substitution σ to the result type σ(α)→ C .
Notice that though σ refers to ImpEff types, we abuse notation to save clutter
and apply it directly to ExEff entities too.

Finally, the GHand is concerned with handlers. Since it is the most complex of
the rules, we discuss each of its premises separately:

Firstly, we infer a type Br ! ∆r for the right hand side of the return-clause. Since
αr is a fresh unification variable, just like for term abstraction we require αr : ςr,
for a fresh skeleton variable ςr.

Secondly, we check every operation clause in O in order. For each clause, we
1This hints at why we need to pass constraints in a stateful manner.

86 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

generate fresh skeleton, type, and dirt variables (ςi, αi, and δi), to account for
the (yet unknown) result type αi ! δi of the continuation k, while inferring type
BOpi ! ∆Opi for the right-hand-side cOpi .

More interesting is the (final) set of wanted constraints Q′. First, we assign to the
handler the overall type

αin ! δin V αout ! δout

where ςin, αin, δin, ςout , αout , δout are fresh variables of the respective sorts. In
turn, we require that (a) the type of the return clause is a subtype of αout ! δout
(given by the combination of ω1 and ω2), (b) the right-hand-side type of each
operation clause is a subtype of the overall result type: σn(BOpi ! ∆Opi) 6 αout ! δout
(witnessed by ω3i !ω4i), (c) the actual types of the continuations Bi → αout ! δout
in the operation clauses should be subtypes of their assumed types Bi → σn(αi ! δi)
(witnessed by ω5i). (d) the overall argument type αin is a subtype of the assumed
type of x: σn(σr(αr)) (witnessed by ω6), and (e) the input dirt set δin is a subtype
of the resulting dirt set δout, extended with the handled operations O (witnessed
by ω7).

All the aforementioned implicit subtyping relations become explicit in the elaborated
term cres, via explicit casts.

Computations. The judgement Q; Γ c̀ c : C | Q′;σ c′ generates constraints
for computations.

GApp rule handles term applications of the form v1 v2. After inferring a type
for each subterm (A1 for v1 and A2 for v2), we generate the wanted constraint
σ2(A1) 6 A2 → α ! δ, with fresh type and dirt variables α and δ, respectively.
Associated coercion variable ω is then used in the elaborated term to explicitly
(up)cast v′1 to the expected type A2 → α ! δ. The rule GReturn is entirely
straightforward as it evaluates the value inside the return computation and returns
the resulted constraints and the substitution.

The rule GLet handles polymorphic let-bindings. First, we infer a type A for v, as
well as wanted constraints Qv. Then, we simplify wanted constraints Qv by means
of function solve (which we explain in detail in Section 4.5.3 below), obtaining a
substitution σ′1 and a set of residual constraints Q′v.

Generalisation of x’s type is performed by auxiliary function split, given by the
following clause:

ς̄ = {ς | (α : ς) ∈ Q,@α′.α′ /∈ ᾱ ∧ (α′ : ς) ∈ Q}
ᾱ = fvα(Q) ∪ fvα(A) \ fvα(Γ) Q1 = {(ω : π) | (ω : π) ∈ Q, fv(π) 6⊆ fv(Γ)}

δ̄ = fvδ(Q) ∪ fvδ(A) \ fvδ(Γ) Q2 = Q−Q1

split(Γ,Q,A) = 〈ς̄ , α : τ , δ̄,Q1,Q2〉

TYPE INFERENCE & ELABORATION 87

Computations

Q; Γ c̀ c : C | Q′;σ c′

GApp
Q; Γ v̀ v1 : A1 | Q1;σ1 v′1 Q1;σ1(Γ) v̀ v2 : A2 | Q2;σ2 v′2

Q; Γ c̀ v1 v2 : α ! δ | α : ς, ω : σ2(A1) 6 A2 → α ! δ,Q2; (σ2 · σ1)
 (σ2(v′1) B ω) v′2

GReturn
Q; Γ v̀ v : A | Q′;σ v′

Q; Γ c̀ return v : A ! ∅ | Q′;σ return v′

GLet
Q; Γ v̀ v : A | Qv;σ1 v′ solve(•; •; Qv) = (σ′1,Q′v)

split(σ′1(σ1(Γ)),Q′v, σ′1(A)) = 〈ς̄ , α : τ , δ̄, ω : π,Q1〉
Q1;σ′1(σ1(Γ)), x : ∀ς̄ .∀α : τ .∀δ̄.π ⇒ σ′1(A) c̀ c : C | Q2;σ2 c′

cres = let x = σ2(Λς̄ .Λα : τ .Λδ̄.Λ(ω : elabρ(π)).v′) in c′

Q; Γ c̀ let x = v in c : C | Q2; (σ2 · σ′1 · σ1) cres

GOp
Q; Γ v̀ v : A1 | Q1;σ1 v′ Q1;σ1(Γ), y : BOp c̀ c : A2 ! ∆2 | Q2;σ2 c′

(Op : AOp → BOp) ∈ Σ cres = Op (σ2(v′) B ω) (y : elabS(BOp).c′)
Q; Γ c̀ Op v (y : BOp.c) : A2 ! {Op} ∪∆2 | ω : σ2(A1) 6 AOp,Q2; (σ2 · σ1)

 cres

GDo
Q; Γ c̀ c1 : A1 ! ∆1 | Q1;σ1 c′1

Q1;σ1(Γ), x : A1 c̀ c2 : A2 ! ∆2 | Q2;σ2 c′2
cres = do x← (σ2(c′1) B 〈σ2(A1)〉 !ω1); (c′2 B 〈A2〉 !ω2)

Q; Γ c̀ do x← c1; c2 : A2 ! δ | ω1 : σ2(∆1) 6 δ, ω2 : ∆2 6 δ,Q2; (σ2 · σ1)
 cres

GHandle
Q; Γ v̀ v : A1 | Q1;σ1 v′ Q1;σ1(Γ) c̀ c : A2 ! ∆2 | Q2;σ2 c′

Q′ = α1 : ς1, α2 : ς2, ω1 : σ2(A1) 6 (α1 ! δ1 V α2 ! δ2),
ω2 : A2 6 α1, ω3 : ∆2 6 δ1,Q2

cres = handle (c′ B (ω2 ! ω3)) with (σ2(v′) B ω1)
Q; Γ c̀ handle c with v : α2 ! ∆2 | Q′; (σ2 · σ1) cres

Figure 4.19: Constraint Generation with Elaboration (Computations)

88 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

In essence, split generates the type (scheme) of x in parts. Additionally, it computes
the subset Q2 of the input constraints Q that do not depend on locally-bound
variables. Such constraints can be floated “upwards”, and are passed as input when
inferring a type for c. The set ᾱ contains the set of type variables that locally
appear as free variables in Q and the input type A. This set is used to extract the
set of skeletons ς̄ which contains the skeletons needed for the generalisation.

The rule GOp handles operation calls. Observe that in the elaborated term, we
upcast the inferred type to match the expected type in the signature. GDo handles
sequences. The requirement that all computations in a do-construct have the same
dirt set is expressed in the wanted constraints σ2(∆1) 6 δ and ∆2 6 δ (where δ is
a fresh dirt variable; the resulting dirt set), witnessed by coercion variables ω1 and
ω2. Both coercion variables are used in the elaborated term to upcast c1 and c2,
such that both draw effects from the same dirt set δ.

Finally, GHandle is concerned with effect handling. After inferring type A1 for the
handler v, we require that it takes the form of a handler type, witnessed by coercion
variable ω1 : σ2(A1) 6 (α1 ! δ1 V α2 ! δ2), for fresh α1, α2, δ1, δ2. To ensure that
the type A2 ! ∆2 of c matches the expected type, we require that A2 ! ∆2 6 α1 ! δ1.
Our syntax does not include coercion variables for computation subtyping; we
achieve the same effect by combining ω2 : A2 6 α1 and ω3 : ∆2 6 δ1.

The soundenss and completeness of the inference elaboration are proved in the
following two theorms:

Theorem 6 (Soundness of Inference). If •; Γ v̀ v : A | Q;σ v′ then for
any σ′ |= Q, we have (σ′ · σ)(Γ) `v v : σ′(A) σ′(v′) , and analogously for
computations.

Theorem 7. [Completeness of Inference] If Γ `v v : A v′ then we have •; Γ v̀

v : A′ | Q;σ v′′ and there exists σ′ |= Q and γ, such that σ′(v′′) = v′ and
Γ c̀o γ : σ′(A′) 6 A. An analogous statement holds for computations.

4.5.3 Constraint Solving

The second phase of our inference-and-elaboration algorithm is the constraint solver.
It is defined by the solve function signature:

solve(σ; P; Q) = (σ′, P ′)

It takes three inputs: the substitution σ accumulated so far, a list of already
processed constraints P , and a queue of still to be processed constraints Q. There
are two outputs: the substitution σ′ that solves the constraints and the residual
constraints P ′. The substitutions σ and σ′ contain four kinds of mappings: ς 7→ τ ,

TYPE INFERENCE & ELABORATION 89

α 7→ A, δ 7→ ∆ and ω → γ which instantiate respectively skeleton variables, type
variables, dirt variables and coercion variables.

Theorem 8 (Correctness of Solving). For any set Q, the call solve(•; •;Q) either
results in a failure, in which case Q has no solutions, or returns (σ,P) such that
for any σ′ |= Q, there exists σ′′ |= P where σ′ = σ′′ · σ.

The solver is invoked with solve(•; •; Q), to process the constraints Q generated
in the first phase of the algorithm, i.e., with an empty substitution and no processed
constraints. The solve function is defined by case analysis on the queue.

Empty Queue When the queue is empty, all constraints have been processed.
What remains are the residual constraints and the solving substitution σ, which are
both returned as the result of the solver.

solve(σ; P; •) = (σ, P)

Skeleton Equalities The next set of cases we consider are those where the queue is
non-empty and its first element is an equality between skeletons τ1 = τ2. We consider
seven possible cases based on the structure of τ1 and τ2 that together essentially
implement conventional unification as used in Hindley-Milner type inference [18].

90 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

solve(σ; P; τ1 = τ2,Q) =

match τ1 = τ2 with

| ς = ς 7→ solve(σ; P; Q)

| ς = τ 7→ if ς /∈ fvς(τ) then let σ′ = [τ/ς] in solve(σ′ · σ; •;σ′(Q,P))
else fail

| τ = ς 7→ if ς /∈ fvς(τ) then let σ′ = [τ/ς] in solve(σ′ · σ; •;σ′(Q,P))
else fail

| Unit = Unit 7→ solve(σ; P; Q)

|(τ1 → τ2) = (τ3 → τ4) 7→ solve(σ; P; τ1 = τ3, τ2 = τ4,Q)

|(τ1 V τ2) = (τ3 V τ4) 7→ solve(σ; P; τ1 = τ3, τ2 = τ4,Q)

| otherwise 7→ fail

The first case applies when both skeletons are the same type variable ς. Then the
equality trivially holds. Hence we drop it and proceed with solving the remaining
constraints. The next two cases apply when either τ1 or τ2 is a skeleton variable
ς. If the occurs check fails2, there is no finite solution and the algorithm signals
failure. Otherwise, the constraint is solved by instantiating the ς. This additional
substitution is accumulated and applied to all other constraints P,Q. Because the
substitution might have modified some of the already processed constraints P, we
have to revisit them. Hence, they are all pushed back onto the queue, which is
processed recursively.

The next three cases consider three different ways in which the two skeletons
can have the same instantiated top-level structure. In those cases the equality is
decomposed into equalities on the subterms, which are pushed onto the queue and
processed recursively.

The last catch-all case deals with all ways in which the two skeletons can be
instantiated to different structures. Then there is no solution.

Skeleton Annotations The next four cases consider a skeleton annotation α : τ
at the head of the queue, and propagate the skeleton instantiation to the type

2Meaning that ς ∈ fvς(τ), which leads to a cyclic structure.

TYPE INFERENCE & ELABORATION 91

variable. The first case, where the skeleton is a variable ς does nothing other
than moving the annotation to the processed constraints and proceeds with the
remainder of the queue. In the other three cases, the skeleton is instantiated and the
solver instantiates the type variable with the corresponding structure, introducing
fresh variables for any subterms. The instantiating substitution is accumulated and
applied to the remaining constraints, which are processed recursively.

solve(σ; P; α : τ,Q) =

match τ with

| ς 7→ solve(σ; P, α : τ ; Q)

| Unit 7→ let σ′ = [Unit/α] in solve(σ′ · σ; •; σ′(Q,P))

| τ1 → τ2 7→ let σ′ = [(ατ11 → ατ22 ! δ)/α] in
solve(σ′ ·σ; •; α1 : τ1, α2 : τ2, σ′(Q,P))

| τ1 V τ2 7→ let σ′ = [(ατ11 ! δ1 V ατ22 ! δ2)/α] in
solve(σ′ ·σ; •; α1 : τ1, α2 : τ2, σ′(Q,P))

Value Type Subtyping Next are the cases where a subtyping constraint between
two value types A1 6 A2, with the coercion variable ω as evidence, is at the head
of the queue. We consider six different situations.

92 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

solve(σ; P; ω : A1 6 A2,Q) =

match A1 6 A2 with

| A 6 A 7→ let T = elabS(A) in solve([〈T〉/ω] · σ; P; Q)

|ατ1 6 A 7→ let τ2 = skeleton(A) in solve(σ; P, ω : ατ1 6 A; τ1 = τ2,Q)

| A 6 ατ1 7→ let τ2 = skeleton(A) in solve(σ; P, ω : A 6 ατ1 ; τ2 = τ1,Q)

|(A1 → B1 ! ∆1) 6 (A2 → B2 ! ∆2) 7→ let σ′ = [(ω1 → ω2 !ω3)/ω] in

solve(σ′ · σ; P; ω1 : A2 6 A1, ω2 : B1 6 B2, ω3 : ∆1 6 ∆2,Q)

|(A1 ! ∆1 V A2 ! ∆2) 6 (A3 ! ∆3 V A4 ! ∆4) 7→ let σ′ = [(ω1 !ω2 V ω3 !ω4)/ω] in

solve(σ′ · σ; P; ω1 : A3 6 A1, ω2 : ∆3 6 ∆1, ω3 : A2 6 A4, ω4 : ∆2 6 ∆4,Q)

| otherwise 7→ fail

If the two types are equal, the subtyping holds trivially through reflexivity. The
solver thus drops the constraint and instantiates ω with the reflexivity coercion 〈T 〉.
Note that each coercion variable only appears in one constraint. Hence, we only
accumulate the substitution and do not have to apply it to the other constraints.
In the next two cases, one of the two types is a type variable α. Then we move
the constraint to the processed set. We also add an equality constraint between
the skeletons to the queue. This enforces the invariant that only types with the
same skeleton are compared. With this skeleton equality the type structure (if any)
from the type is also transferred to the type variable. The next two cases concern
two types with the same top-level instantiation. The solver then decomposes the
constraint into constraints on the corresponding subterms and appropriately relates
the evidence of the old constraint to the new ones. The final case catches all
situations where the two types are instantiated with a different structure and thus
there is no solution.

Auxiliary function skeleton(A), defined in Figure 4.20, computes the skeleton of A.
A skeleton of a type captures its structure (modulo the dirt information), which
is directly expressed in clauses 2, 3, and 4. Hence, in order to capture the whole
skeleton of a type, the only missing piece of information is the skeleton of all type
variables appearing in the type.

TYPE INFERENCE & ELABORATION 93

skeleton(A) = τ

skeleton(ατ) = τ
skeleton(Unit) = Unit
skeleton(A→ B ! ∆) = skeleton(A)→ skeleton(B)
skeleton(A ! ∆1 V B ! ∆2) = skeleton(A)V skeleton(B)

Figure 4.20: Skeleton extraction function from value types

As we mentioned earlier, each type variable is implicitly annotated with its skeleton,
which allows for the complete determination of the skeleton of a type (clause 1).

Dirt Subtyping The final six cases deal with subtyping constraints between dirts.

solve(σ; P;ω : ∆ 6 ∆′,Q) =

match ∆ 6 ∆′ with

|O ∪ δ 6 O′ ∪ δ′ 7→ if O 6= ∅ then let σ′ = [((O\O′) ∪ δ′′)/δ′,O ∪ ω′/ω] in
solve(σ′ · σ; •; (ω′ : δ ≤ σ′(∆′)), σ′(Q,P))

else solve(σ; P, (ω : ∆ 6 ∆′); Q)

| ∅ 6 ∆′ 7→ solve([∅∆′/ω] · σ; P; Q)

| δ 6 ∅ 7→ let σ′ = [∅/δ; ∅∅/ω] in solve(σ′ · σ; •; σ′(Q,P))

|O ∪ δ 6 O′ 7→

if O ⊆ O′ then let σ′ = [O ∪ ω′/ω] in solve(σ′ · σ; P, (ω′ : δ 6 O′); Q) else fail

|O 6 O′ 7→ if O ⊆ O′ then let σ′ = [O ∪ ∅O′\O/ω] in solve(σ′ · σ; P; Q) else fail

|O 6 O′ ∪ δ′ 7→ let σ′ = [(O\O′) ∪ δ′′/δ′; O′ ∪ ∅(O′\O)∪δ′′/ω] in
solve(σ′ · σ; •; σ′(Q,P))

If the two dirts are of the general form O ∪ δ and O′ ∪ δ′, we distinguish two
subcases. Firstly, if O is empty, there is nothing to be done and we move the
constraint to the processed set. Secondly, if O is non-empty, we partially instantiate
δ′ with any of the operations that appear in O but not in O′. We then drop O from

94 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

the constraint, and, after substitution, proceed with processing all constraints. For
instance, for {Op1}∪δ 6 {Op2}∪δ′, we instantiate δ′ to {Op1}∪δ′′—where δ′′ is a
fresh dirt variable—and proceed with the simplified constraint δ 6 {Op1, Op2} ∪ δ′′.
Note that due to the set semantics of dirts, it is not valid to simplify the above
constraint to δ 6 {Op2}∪ δ′′. After all the substitution [δ 7→ {Op1}, δ′′ 7→ ∅] solves
the former and the original constraint, but not the latter.

The second case, ∅ 6 ∆′, always holds and is discharged by instantiating ω to ∅∆′ .
The third case, δ 6 ∅, has only one solution: δ 7→ ∅ with coercion ∅∅. The fourth
case, O ∪ δ 6 O′, has as many solutions as there are subsets of O′, provided that
O ⊆ O′. We then simplify the constraint to δ 6 O′, which we move to the set of
processed constraints. The fifth case, O 6 O′, holds iff O ⊆ O′. The last case,
O 6 O′∪δ′, is like the first, but without a dirt variable in the left-hand side. We can
satisfy it in a similar fashion, by partially instantiating δ′ with (O\O′)∪ δ′′—where
δ′′ is a fresh dirt variable. Now the constraint is satisfied and can be discarded.

4.5.4 Discussion

At first glance, the constraint generation algorithm of Section 4.5.2 might seem
needlessly complex, due to eager constraint solving for let-generalisation. Yet,
we want to generalise at local let-bound values over both type and skeleton
variables. As it will become apparent in Section 4.6, if we only generalise at the
top over skeleton variables, the erasure does not yield local polymorphism. This
means that we must solve all equations between skeletons before generalising. In
turn, since skeleton constraints are generated when solving subtyping constraints
(Section 4.5.3), all skeleton annotations should be available during constraint solving.
This can not be achieved unless the generated constraints are propagated statefully.

4.6 Erasure of Effect Information from ExEff

4.6.1 The SkelEff Language

The target of the erasure is SkelEff, which is essentially a copy of ExEff
from which all effect information ∆, type information T and coercions γ have
been removed. Instead, skeletons τ play the role of plain types. Thus, SkelEff
is essentially System F extended with term-level (but not type-level) support for
algebraic effects.

ERASURE OF EFFECT INFORMATION FROM EXEFF 95

Terms

value v ::= x | () | h | fun (x : τ) 7→ c | Λς.v | v τ

handler h ::= {return (x : τ) 7→ cr,
Op1 x k 7→ cOp1

, . . . , Opn x k 7→ cOpn}

computation c ::= v1 v2 | let x = v in c | return v | Op v (y : τ .c)
| do x← c1; c2 | handle c with v

Types type τ ::= ς | τ1 → τ2 | τ1 V τ2 | Unit | ∀ς.τ

Figure 4.21: SkelEff Syntax

Figure 4.21 defines the syntax of SkelEff. One thing to notice is that the skeleton
variables become type variables for this language. Moreover, in the values, we have
skeleton variables applications (v τ) and abstractions (Λς.v).

The main point of SkelEff is to show that we can erase the effects and subtyping
from ExEff to obtain types that are compatible with a System F-like language. At
the term-level, SkelEff also resembles a subset of Multicore OCaml [27], which
provides native support for algebraic effects and handlers but features no explicit
polymorphism. Moreover, SkelEff can also serve as a staging area for further
elaboration into System F-like languages without support for algebraic effects and
handlers (e.g., Haskell or regular OCaml). In those cases, computation terms can
be compiled to one of the known encodings in the literature, such as a free monad
representation [41, 74], with delimited control [47], or using continuation-passing
style [51], while values can typically be carried over as they are.

4.6.2 Typing

Typing for SkelEff values and computations take the form Γ èv v : τ and
Γ èc c : τ . They are defined in Figure 4.22. The type-system follows that of
ExEff As illustrated by the rules, SkelEff is essentially System F extended with
term-level (but not type-level) support for algebraic effects.

4.6.3 Erasure

Figure 4.23 defines erasure functions εσv(v), εσc (c), εσV(T), εσC(C) and εσE(Γ) for
values, computations, value types, computation types, and type environments

96 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

typing environment Γ ::= ε | Γ, ς | Γ, x : τ

Values

Γ èv v : τ

(x : τ) ∈ Γ
Γ èv x : τ

SkVar
Γ èv () : Unit

SkUnit

Γ, x : τ1 èc c : τ2 Γ τ̀ τ1

Γ èv (fun x : τ1 7→ c) : τ1 → τ2
SkAbs

Γ èv v : ∀ς.τ1 Γ τ̀ τ2

Γ èv v τ2 : τ1[τ2/ς]
SkTyApp

Γ, ς èv v : τ
Γ èv Λς.v : ∀ς.τ

SkTyAbs

Γ, x : τx èc cr : τ[
(Op : τ1 → τ2) ∈ Σ Γ, x : τ1, k : τ2 → τ èc cOp : τ

]
Op∈O

Γ èv {return (x : τx) 7→ cr, [Opx k 7→ cOp]Op∈O} : τx V τ
SkHandler

Computations

Γ èc c : τ

Γ èv v1 : τ1 → τ2 Γ èv v2 : τ1
Γ èc v1 v2 : τ2

SkApp

Γ èv v : τ1 Γ, x : τ1 èc c : τ2
Γ èc let x = v in c : τ2

SkLet
Γ èv v : τ

Γ èc return v : τ
SkReturn

(Op : τ1 → τ2) ∈ Σ Γ èv v : τ1 Γ, y : τ2 èc c : τ
Γ èc Op v (y : τ2.c) : τ

SkOp

Γ èc c1 : τ1 Γ, x : τ1 èc c2 : τ2
Γ èc do x← c1; c2 : τ2

SkDo

Γ èv v : τ1 V τ2 Γ èc c : τ1
Γ èc handle c with v : τ2

SkHandle

Figure 4.22: SkelEff Typing

ERASURE OF EFFECT INFORMATION FROM EXEFF 97

εσv (x) = x
εσv (()) = ()

εσv (v B γ) = εσv (v)
εσv (fun (x : T) 7→ c) = fun (x : εσV(T)) 7→ εσc (c)

εσv (Λς.v) = Λς.εσv (v)
εσv (Λ(α : τ).v) = ε

σ·{α7→τ}
v (v)

εσv (Λδ.v) = εσv (v)
εσv (Λ(ω : π).v) = εσv (v)

εσv (v τ) = εσv (v) τ
εσv (v T) = εσv (v)
εσv (v ∆) = εσv (v)
εσv (v γ) = εσv (v)

εσv ({return (x : T) 7→ cr, [Opx k 7→ cOp]Op∈O}) =
{return (x : εσV(T)) 7→ εσc (cr), [Opx k 7→ εσc (cOp)]Op∈O}

εσc (v1 v2) = εσv (v1) εσv (v2)
εσc (let x = v in c) = let x = εσv (v) in εσc (c)

εσc (return v) = return (εσv (v))
εσc (Op v (y : T .c)) = Op (εσv (v)) (y : εσV(T).εσc (c))
εσc (do x← c1; c2) = do x← εσc (c1); εσc (c2)

εσc (handle c with v) = handle εσc (c) with εσv (v)
εσc (c B γ) = εσc (c)

εσV(α) = σ(α)
εσV(T → C) = εσV(T)→ εσC(C)

εσV(C 1 V C 2) = εσC(C 1)V εσC(C 2)
εσV(Unit) = Unit

εσV(π ⇒ T) = εσV(T)
εσV(∀ς.T) = ∀ς.εσV(T)

εσV(∀(α : τ).T) = ε
σ·{α7→τ}
V (T)

εσV(∀δ.T) = εσV(T)

εσC(T ! ∆) = εσV(T)

εσE(ε) = ε
εσE(Γ, ς) = εσE(Γ), ς

εσE(Γ, α : τ) = ε
σ·{α 7→τ}
E (Γ)

εσE(Γ, δ) = εσE(Γ)
εσE(Γ, x : T) = εσE(Γ), x : εσV(T)
εσE(Γ, ω : π) = εσE(Γ)

Figure 4.23: Definition of type erasure.

respectively. All five functions take a substitution σ from the free type variables α
to their skeleton τ as an additional parameter.

Thanks to the skeleton-based design of ExEff, erasure is straightforward. All
types are erased to their skeletons, dropping quantifiers for type variables and
all occurrences of dirt sets. Moreover, coercions are dropped from values and
computations. Finally, all binders and elimination forms for type variables, dirt set
variables and coercions are dropped from values and type environments.

The expected following theorems hold. Types are preserved by erasure.

98 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Theorem 9 (Type Preservation). If Γ v̀ v : T then ε∅E(Γ) èv ε
Γ
v (v) : εΓV(T). If

Γ c̀ c : C then ε∅E(Γ) èc ε
Γ
c (c) : εΓC(C).

Here we abuse the notation and use Γ as a substitution from type variables to
skeletons used by the erasure functions.

4.6.4 Operational Semantics for SkelEff

Figure 4.24 presents the small-step, call-by-value operational semantics of SkelEff,
and Figure 4.25 gives the congruence closure of the step relations

Finally, we have that erasure preserves the operational semantics.

Theorem 10 (Semantic Preservation). If v v v′ then εσv (v) ≡ v εσv (v′). If
c c c

′ then εσc (c) ≡ c εσc (c′).

In both cases, ≡ denotes the congruence closure of the step relation in SkelEff.

4.6.5 Discussion

Binder dropping Typically, when type information is erased from call-by-value
languages, type binders are erased by replacing them with other (dummy) binders.
For instance, the expected definition of erasure would be:

εσv (Λ(α : τ).v) = λ(x : Unit).εσv (v)

This replacement is motivated by a desire to preserve the behaviour of the typed
terms. By dropping binders, values might be turned into computations that trigger
their side-effects immediately, rather than at the later point where the original
binder was eliminated. However, there is no call for this circumspect approach in
our setting, as our grammatical partition of terms in values (without side-effects)
and computations (with side-effects) guarantees that this problem cannot happen
when we erase values to values and computations to computations.

Sensible erasure In Section 4.5.4, we argued that we generalise at local let-bound
values over both type and skeleton variables. We have also shown it by means
of an example in Section 4.2.3. This is now more apparent as we have shown
the erasure procedure and the inference algorithm that we substitute every free
type-variable α with its skeleton τ so that the skeletons become the actual type
of the SkelEff calculus. Therefore, skeleton generalisation is crucial for correct
erasure. The following example explains the importance of skeleton generalisation.

ERASURE OF EFFECT INFORMATION FROM EXEFF 99

value result vR ::= () | h | fun (x : τ) 7→ c | Λς.v
computation result cR ::= return vR | Op vR (y.c)

Values

v v v
′

v v v
′

v τ v v
′ τ

(Λς.v) τ v v[τ/ς]

Computations

c c c
′

v1 v v
′
1

v1 v2 c v
′
1 v2

v2 v v
′
2

vR1 v2 c v
R
1 v′2

(fun (x : τ) 7→ c) vR c c[vR/x]

v v v
′

let x = v in c c let x = v′ in c
let x = vR in c c c[vR/x]

v v v
′

return v c return v′
v v v

′

Op v (y : τ .c) c Op v′ (y : τ .c)

c1 c c
′
1

do x← c1; c2 c do x← c′1; c2
do x← return vR; c2 c c2[vR/x]

do x← Op vR (y : τ .c1); c2 c Op vR (y : τ .do x← c1; c2)

v v v
′

handle c with v c handle c with v′

c c c
′

handle c with vR c handle c′ with vR

handle (return vR) with h c cr[vR/x]

handle (Op vR (y : τ .c)) with h c
cOp
[vR/x, (fun (y : τ) 7→ handle c with h)/k]

handle (Op vR (y : τ .c)) with h c Op vR (y : τ .handle c with h)

Figure 4.24: SkelEff Operational Semantics

100 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

Terms with holes

value-holed value V v ::= [] | x | () | Hv | fun (x : τ) 7→ Cv

| Λς.V v | V v τ

value-holed handler Hv ::= {return (x : τ) 7→ Cv
r ,

| [Opx k 7→ Cv
Op]Op∈O}

value-holed computation Cv ::= V v
1 V v

2 | let x = V v in Cv | return V v

| Op V v (y : τ .Cv) | do x← Cv
1 ;Cv

2
| handle Cv with V v

computation-holed value V c ::= x | () | Hc | fun (x : τ) 7→ Cc

| Λς.V c | V c τ
computation-holed handler Hc ::= {return (x : τ) 7→ Cc

r ,
[Opx k 7→ Cc

Op]Op∈O}
computation-holed computation Cc ::= [] | V c

1 V c
2 | let x = V c in Cc

| return V c

| Op V c (y : τ .Cc)
| do x← Cc

1;Cc
2

| handle Cc with V c

We define values V v[v], V c[c], and computations Cv[v], Cc[c] in a straightforward
way.
Values

v ≡ v v′

v v v
′

v ≡ v v′
v ≡ v v

v ≡ v v′

v′ ≡ v v

v ≡ v v′ v′ ≡ v v′′

v ≡ v v′′

v ≡ v v′

V v[v] ≡ v V v[v′]
c ≡ c c′

V c[c] ≡ v V c[c′]

Computations

c ≡ c c′

c c c
′

c ≡ c c′
c ≡ c c

c ≡ c c′

c′ ≡ c c

c ≡ c c′ c′ ≡ c c′′

c ≡ c c′′

v ≡ v v′

Cv[v] ≡ c Cv[v′]
c ≡ c c′

Cc[c] ≡ c Cc[c′]

Figure 4.25: Congruence Closures of the Step Relations

ERASURE OF EFFECT INFORMATION FROM EXEFF 101

The following let-computation we have used in Section 4.2.3 is written using ImpEff
syntax:

let f = fun g 7→ (g ()) in c

The elaborated ExEff type of the variable f is

f : ∀ς1.∀ς2.∀α1 : ς1.∀α2 : ς2.∀δ1.∀δ2.α1 6 α2 ⇒ δ1 6 δ2 ⇒ (Unit→ α1 ! δ1)→ α2 ! δ2

Note that f is a higher order function that takes a function g of type (Unit→ α1 !
δ1) and returns the resulting types α2 ! δ2. Since f just returns the result of the
application, then we know that α1!δ1 = α2!δ2. The elaboration of f into ExEff
is as follows:

Λς1.Λς2.Λα1 : ς1.Λα2 : ς2.Λδ1.Λδ2.Λ(ω1 : α1 6 α2).Λ(ω2 : δ1 6 δ2).
let f = fun (g : (Unit→ α1 ! δ1) 7→ (g ()) B ω1 ! ω2

In the unify algorithm for type variables resolving. We have the following clauses:

|ατ1 6 A 7→ let τ2 = skeleton(A) in solve(σ; P, ω : ατ1 6 A; τ2 = τ1,Q)

|A 6 ατ1 7→ let τ2 = skeleton(A) in solve(σ; P, ω : A 6 ατ1 ; τ2 = τ1,Q)

Knowing that Λ(ω1 : α1 6 α2) and that the annotated skeletons for α1 and α2 are
τ1 and τ2, respectively, then the unification algorithm unifies τ1 and τ2 and we can
rewrite the type of f as follows:

∀ς.∀α1 : ς.∀α2 : ς.∀δ1.∀δ2.α1 6 α2 ⇒ δ1 6 δ2 ⇒ (Unit→ α1 ! δ1)→ α2 ! δ2

Applying the erasure function εσ(∗) on the type and f drops the α and δ quantifiers,
the coercion abstractions, the dirt variables and the cast. Moreover, σ contains the
substitutions α1 → ς and α2 → ς. Meaning that this substitution will be applied in
both the type and the f as follows:

102 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

f : ∀ς.(Unit→ ς)→ ς

let f = Λς.fun (g : (Unit→ ς)) 7→ (g ())

The skeleton now got lifted to be the new type-variables in SkelEff. The final
type of f gives the expected result. However, without the skeleton generalisation,
we do not reach this resulting type. If we use only type variables generalisation,
meaning that we remove skeletons entirely and keep only type variables of ExEff,
the resulting type of f becomes:

∀α1.∀α2.(Unit→ α1)→ α2

This type is semantically incorrect since α1 and α2 can be different. However, the
correct semantics of the program states that they are equivalent.

4.7 Conclusion and Discussion

In this chapter, we presented an explicitly-typed polymorphic core calculus for
algebraic effect handlers with a subtyping-based type-and-effect system. We use
subtyping in explicit casts with coercions that witness the subtyping proof. Our
typing-directed elaboration comes with a constraint-based inference algorithm that
turns an implicitly-typed Eff-like language (ImpEff) into an explicitly-typed
calculus (ExEff). Moreover, we showed that all coercions and effect information
can be erased in a straightforward way (SkelEff), demonstrating that coercions
have no computational content. Also, the erasure language can target famous
target languages like OCaml.

The calculus introduced in this chapter with explicit typing coercions has the power
to eliminate the issues we faced in optimising Eff. As we have discussed in
Section 3.8, the current Eff implementation with implicit-subtyping makes code
transformations very fragile. Therefore, using ExEff as a core language for the
optimisations should eliminate this problem.

In the next section, we discuss the similarities and differences of the calculi we
introduced in this chapter with other Eff calculi.

CONCLUSION AND DISCUSSION 103

4.7.1 Eff related type systems

The most closely related work is that of Pretnar [71] on inferring algebraic effects
for Eff, which is the basis for our implicitly-typed ImpEff calculus, its type system
and the type inference algorithm. There are three major differences with Pretnar’s
inference algorithm.

First, our ImpEff calculus and the inference algorithm are based on the work of
Pretnar [71]. However, our work introduces an explicitly-typed calculus. For this
reason we have extended the constraint generation phase with the elaboration into
ExEff and the constraint solving phase with the construction of coercions.

Secondly, we add skeletons to guarantee erasure. Skeletons also allow us to use
standard occurs-check during unification. In contrast, unification in Pretnar’s
algorithm is inspired by Simonet [86] and performs the occurs-check up to the
equivalence closure of the subtyping relation. In order to maintain invariants,
all variables in an equivalence class (also called a skeleton) must be instantiated
simultaneously, whereas we can process one constraint at a time. As these classes
turn out to be surrogates for the underlying skeleton types, we have decided to
keep the name.

Finally, Pretnar incorporates garbage collection of constraints [70]. The aim of this
approach is to obtain unique and simple type schemes by eliminating redundant
constraints. Garbage collection is not suitable for our use as type variables and
coercions witnessing subtyping constraints cannot simply be dropped, but must be
instantiated in a suitable manner, which cannot be done in general.

Consider, for instance, a situation with type variables α1, α2, α3, α4, and α5 where
α1 6 α3, α2 6 α3, α3 6 α4, and α3 6 α5. Suppose that α3 does not appear in
the type. Then garbage collection would eliminate it and replace the constraints by
α1 6 α4, α2 6 α4, α1 6 α5, and α2 6 α5. While garbage collection guarantees
that for any ground instantiation of the remaining type variables there exists a
valid ground instantiation for α3, ExEff would need to be extended with joins (or
meets) to express a generically valid instantiation like α1 tα2. Moreover, we would
need additional coercion formers to establish α1 6 (α1 t α2) or (α1 t α2) 6 α4.

As these additional constructs considerably complicate the calculus, we propose a
simpler solution. We use ExEff as it is for internal purposes, but display types to
programmers in their garbage-collected form.

Chapter Notes and Contributions This chapter is based on the paper "Explicit
Effect Subtyping" by Saleh et al. [77]. My own contribution to this work was the
following:

104 EXPLICIT SUBTYPING FOR ALGEBRAIC EFFECTS

• Language design including syntax, typing, elaboration for ImpEff, ExEff
and SkelEff.

• Constraint generation when elaborating from ImpEff to ExEff.

• Constraint solving algorithm design and implementation.

• Implementation of the language in Eff’s compiler.

Chapter 5

Effect Handlers in Logic
Programming

So far in this thesis, we have focused on algebraic effect handlers in the setting
of Functional Programming. The main advantage of handlers is that they can
change the program’s control flow by capturing the continuation in order to
resume it at a later point. In this chapter, we study effect handlers for the Logic
Programming paradigm. Potentially, effect handlers can be used to manipulate
Prolog’s search strategy and add a layer of modularity to Prolog. While traditionally
the language does not have many control flow constructs, the introduction of
delimited control constructs for Prolog by Schrijvers et al. [80] has remedied this
situation. Unfortunately, there are two prominent downsides to delimited control.
Firstly, it is a rather primitive feature that has been likened to the imperative
goto, which was labelled harmful for high-level programming by Dijkstra [22].
Secondly, the overhead of delimited control for encoding state-passing features
is non-negligible. For example, the delimited control implementation of DCGs
(Definite Clause Grammars) is ten times slower for a tight loop than the traditional
Prolog implementation.

This chapter addresses the downsides of delimited control by bringing a form of
algebraic effects and handlers to Prolog which provide a high-level structured
interface to delimited control. Moreover, in exchange for the restricted
expressiveness, we provide two benefits. Firstly, multiple handlers can be combined
effortlessly to deal with distinct effects, to deal with one effect in terms of another
or to customise the behaviour of an effect. Secondly, we provide an automated
program transformation that eliminates much of the overhead of delimited control.
We adopt different optimisation techniques from the optimisations we discussed

105

106 EFFECT HANDLERS IN LOGIC PROGRAMMING

earlier in Chapter 3. The transformation is formulated using partial evaluation
augmented with rewrite rules. These rewrite rules are driven by an effect analysis
system that characterises which effects a Prolog goal may trigger.

Our design of effect handlers for Prolog is more restricted than that of the Eff
calculus. However, compared to the free form of delimited control, the structured
approach of effect handlers simplifies the identification of program patterns that
can be optimised.

Chapter layout The rest of this chapter is structured as follows: In section
5.1, we give an introduction to delimited control constructs in Prolog. Then, we
introduce effect handlers syntax and give an informal explanation of their semantics.
Section 5.2 presents our optimisation techniques that aim to eliminate delimited
control code from the input program as delimited control is very costly with respect
to run-time. Afterwards, in Section 5.3, we discuss the results of evaluating the
run-times of Prolog programs with effect handlers with optimisations and without.
Finally, we discuss the work related to effect handlers in Logic Programming in
Section 5.4.1

5.1 Delimited Control and Algebraic Effect Han-
dlers

This section gives the necessary background on delimited control in Logic
Programming and then introduces our algebraic effect handlers syntax and semantics
for Prolog.

5.1.1 Delimited Control in Prolog

Delimited control in Prolog is a compelling means to dynamically manipulate
the control-flow of programs that was first explored in the setting of functional
programming [29, 19]. Schrijvers et al. [80] show its usefulness in Prolog to concisely
define implicit state, DCGs and coroutines. More recently, Desouter et al. [21] have
shown that delimited control also concisely captures the control-flow manipulation
of tabling.

The work of Schrijvers et al. [80] introduces delimited control for Prolog. It provides
Prolog with two predicates for delimited control:

1All examples of this chapter are available at http://github.com/ah-saleh/prologhandlers

http://github.com/ah-saleh/prologhandlers

DELIMITED CONTROL AND ALGEBRAIC EFFECT HANDLERS 107

• reset(G,Cont,T) executes goal G.

• shift(T1) suspends the execution of the current goal and captures the
remainder up to the nearest surrounding reset/3. This remainder is called
the continuation. It unifies the captured continuation with Cont and T with
T1. The control is then returned to the call just after the reset/3.

The following example shows delimited control in action.

main :- reset(p,Cont,Term), p :- write(a),
write(b). write(c).

?- main.
a c b

Because p terminates without shifting, the variables Cont and Term are unified with
0. The next example illustrates the interaction between shift/1 and reset/3.

main :- reset(p,Cont,Term), p :- write(a),
write(Term), shift(hello),
write(b), write(c).
call(Cont).

?- main.
a hello b c

Executing ?-main. calls p inside the reset, prints a, then suspends the execution
due to shift(hello), giving the control back to the main clause after the reset/3
and unifying Term with hello and Cont with (write(c)).

The meta-interpreter in Figure 5.1 captures the semantics of delimited control. The
main predicate that evaluates a goal is eval/1. It calls the helper predicate eval/2
that attaches an extra argument Signal to every goal. Signal is unified with
ok when the goal succeeds normally without shifting. When a goal’s evaluation is
terminated by a shift(Term), Signal is unified with shift(Term,Cont) such
that Cont is the remainder of the goal. The reset(G,Cont,Term) clause evaluates
G and unifies Cont and Term with 0 when G terminates normally without shifting;
otherwise, they get unified with the returned values of evaluating the goal inside the
reset/3. The conjunction clause (G1,G2) starts by evaluating G1. If it succeeds
normally, the conjunction continues with evaluating G2. If G1 is stopped by shift/1,
then the whole conjunction stops and G2 is added to the the main Signal. The ITE

108 EFFECT HANDLERS IN LOGIC PROGRAMMING

(If-Then-Else) clause evaluates the condition which has to succeed or fail without
shifting. Otherwise, an undefined action error stops the evaluation. Depending on
the success or failure of C, G1 or G2 get executed. If the goal is a built-in Prolog
predicate, then the goal gets called and the signal unifies with ok.

5.1.2 Syntax and Informal Semantics

We introduce two new syntactic constructs. The effect operations are Prolog
predicate symbols op/n that are declared as such with the following syntax.

:- effect op /n.

For instance, we declare operation c/1 to consume a token, get/1 and put/1 to
respectively retrieve and overwrite an implicit state, and out/1 to output a term.

The handler is a new Prolog goal form that specifies how to interpret effect
operations. Its syntax is as follows (square brackets identify optional clauses):

handle G0 with
op1(X̄)→ G1;
. . .
opn(X̄)→ Gm
[finally(Gf)]
[for(P1 = T1, . . . , Pn = Tn)]

The handle clause scopes G0 and handles the effects that arise in it. The operation
clauses opi(X̄) → Gi stipulate that an occurrence of operation opi(X̄) is to be
handled by the goal Gi.

Before we explain the optional finally and for clauses, consider a few ways in
which the out/1 operation can be handled in hw/0.

hw :- out(hello), out(world).

In terms of the exception analogy, hw/0 throws two out/1 exceptions. Our first
handler intercepts the first out/1 and does nothing.

?- handle hw with (out(X) -> true).
true.

A more interesting handler prints the argument of out/1.

DELIMITED CONTROL AND ALGEBRAIC EFFECT HANDLERS 109

eval(G) :-
eval(G,Signal),
(Signal = shift(Term,Cont) ->

write('ERROR: Uncaught shift'), fail
; true).

eval(shift(Term),Signal) :- !,
Signal = shift(Term,true).

eval(reset(G,Cont,Term),Signal) :- !,
eval(G,Signal1),
(Signal1 = ok -> Cont = 0,

Term = 0
; Signal1 = shift(Term,Cont)),
Signal = ok.

eval((G1,G2),Signal) :- !,
eval(G1,Signal1),
(Signal1 = ok -> eval(G2,Signal)
; Signal1 = shift(Term,Cont),

Signal = shift(Term,(Cont,G2))
).

eval((C->G1;G2),Signal) :- !,
(eval(C,Signal1) ->

(Signal1 = ok -> eval(G1,Signal)
; write('ERROR: Undefined action'), fail
)

; eval(G2,Signal)).

eval(Goal,Signal) :- built_in_predicate(Goal),
!,
call(Goal),
Signal = ok.

eval(Goal,Signal) :- clause(Goal,Body),
eval(Body,Signal).

Figure 5.1: Delimited Control Meta-Interpreter

110 EFFECT HANDLERS IN LOGIC PROGRAMMING

?- handle hw with (out(X) -> writeln(X)).
hello
true.

Note that only the first out/1 is handled; this aborts the remainder of hw and the
second out/1 is never reached. To handle all operations, effect handlers support
a feature akin to resumable exceptions: in the lexical scope of Gi, we can call
continue to resume the part of the computation after the effect operation (i.e.,
its continuation). For instance, the next handler resumes the computation after
handling the first out/1 operation and intercepts later out/1 operations in the
same way.

?- handle hw with (out(X) -> writeln(X), continue).
hello
world
true.

In contrast, the second handler suppresses all output.

?- handle hw with (out(X) -> continue).
true.

Interestingly, we can invoke the same continuation multiple times, for instance both
before and after printing the term.

?- handle hw with (out(X) -> continue, writeln(X), continue).
world
hello
world
true.

The finally Clause The optional finally clause is performed when G0 finishes;
if omitted, Gf defaults to true.

?- handle hw with (out(X) -> writeln(X), continue)
finally (writeln(done)).

hello
world
done
true.

DELIMITED CONTROL AND ALGEBRAIC EFFECT HANDLERS 111

Note that if the goal does not run to completion, the finally clause is not invoked.

?- handle hw with (out(X) -> writeln(X))
finally (writeln(done)).

hello
true.

The for Clause All variables in the operation and finally clauses are local to
that clause, except if they are declared in the for clause.2 Every Var = Term pair
in the for clause relates a variable, which we call a parameter, that is in scope of
all the operations and finally clauses with a term whose variables are in scope in
the handler context. For instance, the following handler collects all outputs in a list.

?- handle hw with (out(X) ->
Lin = [X|Lmid],
continue(Lmid,Lout))

finally (Lin=Lout)
for (Lin = List, Lout=[]).

List = [hello,world].

Note that continue has one argument for each parameter to indicate which values
the parameters take in the continuation. The next handler shows another usage for
the finally, which is consuming the input list Lin and unifying it with the variables
inside the c/1 "consume" effect.

?- handle (c(A), c(B)) with
(c(X) -> Lin = [X|Lmid], continue(Lmid,Lout))

finally (Lin = Lout)
for (Lin = [a,b], Lout = []).

A = a, B = b.

5.1.3 Nested Handlers and Forwarding

Nesting algebraic effect handlers is similar to nesting exception handlers. If an
operation is not caught by the inner handler, it is forwarded to the outer handler.
Moreover, if the inner handler catches an operation and, in the process of handling
it, raises another operation, then this operation is handled by the outer handler.
Let us illustrate both scenarios.

2The for clause plays a similar role as that in Schimpf’s logical loops [79].

112 EFFECT HANDLERS IN LOGIC PROGRAMMING

We can easily define a non-deterministic choice operator or/2 in the style of
Tor [84, 82] in terms of the primitive choice/1 effect which returns either of the
two boolean values t and f.

:- effect choice/1.

or(G1,G2) :- choice(B), (B == t -> G1 ; B == f -> G2).

chooseAny(G) :- handle G with
(choice(B) -> (B = t ; B = f), continue).

The chooseAny handler interprets choice/1 in terms of Prolog’s built-in disjunction
(;)/2. The semantics of the handler is as follows: whenever an effect choice(B)
is intercepted, B unifies with t, then the continuation is called. If the continuation
fails, or we asked for an alternative solution, then Prolog backtracks and unify B
with f and recall the continuation again.

?- chooseAny(or(X = 1, X = 2)).
X = 1;
X = 2.

To obtain more interesting behavior, we can nest this handler with:

flip(G) :- handle G with
(choice(B) -> choice(B1),

not(B1,B),
continue).

not(t,f).
not(f,t).

to flip the branches in a goal without touching the goal’s code.

?- chooseAny(flip(or(X = 1, X = 2))).
X = 2;
X = 1.

What happens is that the inner flip handler intercepts the choice(B) call of or/2.
It produces a new choice(B1) call that reaches the outer chooseAny handler, and
unifies B with the negation of B1, which affects the choice in the continue-ation
of or/2.

Thanks to forwarding, we can also easily mix different effects. For instance, with:

DELIMITED CONTROL AND ALGEBRAIC EFFECT HANDLERS 113

writeOut(G) :- handle G with
(out(T) -> writeln(T), continue).

we can combine output and non-determinism.

?- chooseAny(writeOut(or(out(hello), out(world)))), fail.
hello
world
false.

Note that the inner writeOut handler does not know how to interpret the choice/1
effect. As a consequence, it (implicitly) forwards this operation to the next
surrounding handler, chooseAny, who does know what to do.

Handlers can be nested to deal with goals that use multiple kinds of effects. For
instance, we can combine our basic out/1 handler, with a handler for an implicit
state.

:- effect get/1.
:- effect put/1.

stateH(G,Sin,Sout) :-
handle G with
(get(S) -> Sin1 = S, continue(Sin1,Sout1)
;put(S) -> continue(S,Sout1)
)

finally (Sin1 = Sout1)
for (Sin1=Sin,Sout1=Sout).

modeH(G) :-
handle G with

(out(X) -> get(V), (V == quiet -> true ; out(X)),
continue).

writeH(G) :- handle G with (out(X) -> write(X),continue).

?- stateH(writeH(modeH((hw,set(quiet),hw))),verbose,Mode).
hello
world
Mode = quiet.

114 EFFECT HANDLERS IN LOGIC PROGRAMMING

5.1.4 Elaboration Semantics

There is a straightforward elaboration of handlers into the shift/1 and reset/3
delimited control primitives for Prolog [80]. For instance, the handler inside the
predicate stateH/3 of the last example of Section 5.1.2 is elaborated into:

?- handler42(hw,List,[]).
List = [hello,world].

The first argument of the query predicate is the original handler’s goal. The second
and third arguments are the terms of the for clause in the original query. The
declaration of the out/1 operation is elaborated into:

out(X) :- shift(out(X)).

which shifts the term representation of the operation. The actual handler code is
elaborated into a predicate (with a fresh name).

handler42(Goal,Lin,Lout) :-
reset(Goal,Cont,Signal),
(Signal == 0 -> %finally clause

Lin = Lout
; Signal = out(X) -> %handle out(x)

Lin = [X|Lmid],
handler42(Cont,Lmid,Lout)

; shift(Signal), %effect forwarding
handler42(Cont,Lin,Lout)

).

These predicate arguments are a goal variable and each variable that appear in
the for clause of the original handler query. The predicate executes the goal
in the delimited scope of a reset/3, which captures any shift/1 call. If the
goal terminates normally (i.e., Signal=0), then the finally code is run. If
the goal suspends with a shift/1, the predicate checks whether the operation
matches the handler’s operation clause. If so, the clause’s body is run. Note
that continue(Lmid,Lout) has been expanded into a recursive invocation of
the handler with the actual continuation goal Cont. If the operation does not
match, the handler forwards it to the nearest surrounding handler with shift/1
and continues with the continuation.

OPTIMISATION 115

Generalisation of the elaboration The example above generalises straightfor-
wardly. Any declaration of an effect operation is elaborated into a predicate
definition.

:- effect op /n. 7→ op (X1,...,Xn) :- shift(op (X1,...,Xn)).

Also, every handler goal is substituted with a predicate call.

handle G0 with
op1 → G1;
. . .
opn → Gn
finally(Gf)
for(P1 = T1,...,Pn = Tn)

7→ h(G0,T1,...,Tn).

where h/n+ 1 is an auxiliary predicate defined as:

h(Goal,P1,..,Pn) :-
reset(Goal,Cont,Signal),
(Signal == 0 -> Gf
; Signal = op1 -> G′1
; ...
; Signal = opn -> G′n
; shift(Signal), h(Cont,P1,...,Pn)
).

Here, eachG′i is derived fromGi by replacing all occurrences of continue(S1,...,Sn)
with recursive calls h(Cont,S1,...,Sn).

5.2 Optimisation

Section 5.1.4’s elaboration of algebraic effects into the delimited control constructs
is conveniently straightforward. Unfortunately, capturing the delimited continuation
incurs a non-trivial runtime cost. In many simple cases, this cost is quite steep
compared to more conventional program transformation approaches. For instance,
the implementation of DCGs with delimited control is ten times slower in a tight
loop than the traditional term expansion approach [60].

However, the runtime overhead is not inherent in the algebraic effects and
handlers approach, and we can obtain competitive performance through optimised
compilation. This section presents our optimisation approach, which aims to
eliminate most uses of delimited control. The optimisation consists of two

116 EFFECT HANDLERS IN LOGIC PROGRAMMING

collaborating transformation approaches: rewrite rules (Section 5.2.2) and partial
evaluation (Section 5.2.3). We use term rewrite rules to simplify handler goals and
possibly eliminate the handler constructs altogether. These rules depend on an
effect system (Section 5.2.1) that infers which effects can or cannot be generated
by a goal. Partial evaluation complements the rewrite rules by specialising handled
predicate calls which enables, in particular, the specialisation of (mutually) recursive
predicates.

5.2.1 Effect System

Driving our optimisation is an effect system that associates with each goal G an
effect set E that denotes which effects the goal may call.

Effect Sets In order to cater for modular programs, effect sets E are not elements
of the powerset lattice over the closed set OP of locally known effect operation
symbols op/n. Instead, we use the powerset lattice over an open-ended set of
effect operations augmented with the additional top element All. This allows us to
express the effects of unknown goals and unknown effect operations in an abstract
manner.

Hence, we denote effect sets in one of two forms:
⋃
i opi/ni or All −

⋃
i opi/ni.

The former is an explicit enumeration of effect operations, while the latter expresses
the dual: all but the given effect operations.

The ∈ relation as well as the functions ∪ and − are extended from the powerset
lattice to our augmented version.

op/n ∈ E ≡
{
∃i : op/n = opi/ni , E =

⋃
i opi/ni

∀i : op/n 6= opi/ni , E = All −
⋃
i opi/ni

E1 − E2 ≡

{opi/ni | opi/ni 6∈ E2} , E1 =
⋃
i opi/ni

, E2 =
⋃
j opj/nj

All −
⋃
i opi/ni ∪

⋃
j opj/nj , E1 = All −

⋃
i opi/ni

, E2 =
⋃
j opj/nj

{opj/nj | opj/nj 6∈
⋃
i opi/ni} , E1 = All −

⋃
i opi/ni

, E2 = All −
⋃
j opj/nj

(
⋃
i opi/ni ∩

⋃
j opj/nj) , E1 =

⋃
i opi/ni

, E2 = All −
⋃
j opj/nj

OPTIMISATION 117

E − ∅ = E
opi − opj = ∅ if i = j
opi − opj = opi if i 6= j⋃
I opi − opj =

⋃
J opj (J = I − {j})

E − (E1 ∪ E2) = (E − E1)− E2
E −All = ∅
E ∪All = All
E ∪ ∅ = E⋃
I opi ∪ op1 =

⋃
J opj (J = I ∪ {j})

opk ∪ (All −
⋃
I opi) = All − (

⋃
J opj) (J = I − {k})

Figure 5.2: Normalisation rules

E1 ∪ E2 ≡

⋃
i opi/ni ∪

⋃
j opj/nj , E1 =

⋃
i opi/ni

, E2 =
⋃
i opj/nj

All − (
⋃
i opi/ni ∩

⋃
j opj/nj) , E1 = All −

⋃
i opi/ni

, E2 = All −
⋃
j opj/nj

All − (
⋃
i opi/ni −

⋃
j opj/nj) , E1 = All −

⋃
i opi/ni

, E2 =
⋃
j opj/nj

E2 ∪ E1 , otherwise

E ::= ∅ No effects
| op/n Operation op/n
| E ∪ E Union of effects
| E − E Difference of effects
| All All effects

Here ∅ means that the goal is pure. The effect expression op/n means that the
goal may call op/n. The union and difference have their obvious meaning. Finally,
the effect expression All abstracts over all possible effect operations.

Figure 5.2 lists the axioms of the equational theory of effect expressions. They are
normalisation rules such that when they are used from left to right as rewrite rules,
they turn the expression E into the forms ∅, opi/ni or All −

⋃
i opi/ni.

Effect System We use these functions over effect sets in the definition of our
effect system judgement Ec ` G : E. This judgement expresses that goal G calls
only effect operations from the effect set E, provided that continue calls only

118 EFFECT HANDLERS IN LOGIC PROGRAMMING

Ec ` G : E

Ec ` X : All (E-Var)
op/n ∈ OP

(E-Op)
Ec ` op(T1, . . . , Tn) : op/n

Ec ` G1 : E1 Ec ` G2 : E2

Ec ` (G1, G2) : E1 ∪ E2
(E-Conj)

Ec ` G1 : E1
Ec ` G2 : E2

Ec ` (G1;G2) : E1 ∪ E2
(E-Disj)

Ec ` continue(T̄) : Ec (E-Cont) Ec ` true : ∅ (E-True)

p(S1, . . . , Sn) :- G Ec ` G : E
(E-Pred)

Ec ` p(T1, . . . , Tn) : E

E∗ = (E0 −
⋃
i opi) ∪ Ef ∪

⋃
iEi

Ec ` G0 : E0 Ec ` Gf : Ef E∗ ` Gi : Ei (∀i)
(E-Handle)

Ec `

 handle G0 with
opi(X̄)→ Gi

finally(Gf) for(Gs)

 : E∗

Figure 5.3: Effect Inference Rules

effect operations from the effect set Ec. Since continue is not defined for a
top-level goal, we may assume any value for its Ec. Hence, for convenience, we
always take Ec = ∅ for top-level goals G and just write ` G : E.

Figure 5.3 defines this judgement using inference rules. Rule (E-Var) expresses
that a variable (i.e., unknown) goal may call All effect operations. Rule (E-Op)
states that a known effect operation calls itself. Rules (E-Conj) and (E-Disj)
combine the effects of their subgoals. Rule (E-True) expresses that the goal true,
as an example for other built-ins, is op-free. Rule (E-Cont) captures the invariant
that continue has the Ec effect. In Rule (E-Pred) the effect of a user-defined
predicate is the effect of its body. Finally, most of the complexity of the inference
system is concentrated in Rule (E-Handle) that deals with a handler goal. The
rule expresses that the handler goal forwards all the effect operations E0 of the
goal G0 it handles, except for the ones that the handler takes care of,

⋃
i opi/ni.

OPTIMISATION 119

Also, the handler may introduce additional calls to effect operations in its operation
and finally clauses. Also, note that calls to continue in the operation clauses
have the same effect as the handler goal itself; they are essentially recursive calls
after all.

Here are a few examples:
` hw : out/1
` handle hw with (out(X) -> writeln(X)) : ∅
` handle Y with (out(X) -> writeln(X)) : All − out/1

5.2.2 Rewrite Rules

We use the information of the effect system and the syntactic structure of goals to
perform a number of handler-specific optimisations. We denote these optimisations
in terms of semantics-preserving equivalences G1 ≡ G2 that we use as left-to-right
rewrite rules. Figure 5.4 lists our rewrite rules in the form of inference rules where
conditions on the inferred effects are written above the bar.

Rule (O-Disj) captures the fact that effect handling is orthogonal to disjunction
to specialise the branches of a disjunction separately. The proof of soundness
for this rule can be found in Appendix B.3. There are two rules for conjunction.
Rule (O-Conj) pulls the first goal G1 of a conjunct out of the handler if it does
not call any of the handler’s operations. This covers both the case where G1 is
an op-free goal and the case where the handler forwards all the operations in G1.
The second rule for conjunction, Rule (O-Op), statically evaluates the special case
where the first goal is an operation dealt with by the handler. This consists of three
parts: 1) the unification of the formal and actual parameters, 2) the unification of
the formal and actual operation arguments, and 3) calling the operation clause’s
goal. Note that we substitute all calls to continue(Ū) (for any Ū) in this last
goal with the second conjunct wrapped in the handler; note that the arguments Ū
become the new actual parameters. In the process we are careful to freshen all the
local logical variables that are used.

Rule (O-Drop) removes spurious operation clauses from the handler; it only retains
those that correspond to operations that the goal may call. In the case that no
operation clauses remain, Rule (O-Triv) dispenses with the handler altogether.
This amounts to unifying the formal and actual parameters and calling the finally
goal.

Finally, the most complex rule of all, Rule (O-Merge), merges two nested handlers
into one single handler and thereby eliminates expensive forwarding of operations.
At first, it might seem trivial to merge two handlers: We simply merge all the
components of the two handlers pairwise. There is an obvious simplification to

120 EFFECT HANDLERS IN LOGIC PROGRAMMING

(
handle (G1;G2)

with op→ G;
finally(Gf) for(Gs)

)
≡

(
handle G1

with op→ G;
finally(Gf) for(Gs)

)
;

(
handle G2

with op→ G;
finally(Gf) for(Gs)

)
(O-Disj)

Ec ` G1 : E1 E1 ∩
⋃
i

opi = ∅

(O-Conj)(
handle (G1,G2) with

op→ G;
finally(Gf) for(Gs)

)
≡ G1,

(
handle G2 with

op→ G;
finally(Gf) for(Gs)

)

(op(S̄)→ Gi) ∈ op→ G freshen(P̄F , S̄, Gi) = (P̄ ′
F , S̄

′, G′
i) (O-Op) handle (op(T̄), Gc)

with op→ G
finally(Gf)
for(P̄F =P̄A)

 ≡P̄ ′
F =P̄A,T̄=S̄′,G′

i

continue(Ū) 7→

handle Gc with
with op→ G
finally(Gf)
for(P̄F =Ū)

Ec ` G : E op′ → G′ = (op→ G) ∩ E

(O-Drop)(
handle G

with op→ G
finally(Gf) for(Gs)

)
≡

(
handle G

with op′ → G′

finally(Gf) for(Gs)

)
(

handle(G) with ∅
finally(Gf) for(Gs)

)
≡ G,Gs,Gf (O-Triv)

see text op′
2 → G′

2 = (op2 → G2)− op1
(O-Merge)

handle

 handle G

with op1 → G1
finally(G1,f)

for(G1,s)

with op2 → G2
finally(G2,f)
for(G2,s)

 ≡

handle G with

op1 → G′
1

op′
2 → G′

2
finally G′

1,f
for(G1,s,G2,s)

Figure 5.4: Optimisation Rules for effect handlers

OPTIMISATION 121

perform in the process: we can drop all outer handler’s operation clauses that
overlap with any of the inner handler’s clauses, as the inner handler takes precedence
over the outer one.

There is a further subtle issue that has to be taken account in order to preserve
the original semantics. The finally goal G1,f and the operation clause goals op1
may call operations that are originally intercepted by the outer handler. We have
to make sure that this remains the case. For that reason, we adjust those goals
to G′1,f and Ḡ′1 in the merged handler. Let us explain these adjustments for the
different forms of operation clause goals G1,i that we consider.

1. The operation goal G1,i is of the form G1,i,a,continue(V̄) where G1,i,a
does not contain any call to continue. We wrap the initial part of the goal
in the outer handler and finally proceed with continue.

G′1,i =

handle G1,i,a with

op2 → G2
finally continue(V̄ , P̄2,F)

for (P̄2,F , P̄
′
2,F)

2. The operation goal G1,i does not contain a call to continue. In this case,

we wrap the entire goal in the outer handler and make sure to call the outer
handler’s final goal.

G′1,i =

handle G1,i with

op2 → G2
finally G2,f
for (P̄2,F , P̄

′
2,F)

Similarly, we adapt the final goal G1,f to

G′1,f =

handle G1,f with

op2 → G2
finally G2,f
for (P̄2,F , P̄

′
2,F)

5.2.3 Partial Evaluation

We use a custom partial evaluation approach to expose more optimisation
opportunities for the rewrite rules and to deal with recursive predicates. Our
partial evaluation is targeted at predicate calls that are handled. Consider the
following simple DCG example that checks if a phrase is a succession of the
terminals ab:

122 EFFECT HANDLERS IN LOGIC PROGRAMMING

:- effect c/1.
ab.
ab :- c(a), c(b), ab.
query(Lin) :-
handle ab with
(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)
for (Lin1=Lin,Lout1=[]).

Here we abstract the goal handle ab with ... into a fresh predicate (say ab0/2),
which makes abstraction of the actual handler parameters. This yields the new
definition of query/1:

query(Lin) :- ab0(Lin,[]).

At the same time we unfold the definition of ab/0 in the newly created predicate
ab0/2. Because ab/0 has two clauses, this means that ab0/2 bifurcates similarly.

ab0(Lin,Lout) :- %first ab clause
handle true with
(c(X) -> Lin1=[X|Lmid],

continue(Lmid,Lout1))
finally (Lin1 = Lout1)
for (Lin1=Lin,Lout1=Lout).

ab0(Lin,Lout) :- %second ab clause
handle (c(a), c(b), ab) with
(c(X) -> Lin1=[X|Lmid],

continue(Lmid,Lout1))
finally (Lin1 = Lout1)
for (Lin1=Lin,Lout1=Lout).

This unfolding exposes new rewriting opportunities. Using the Rules (O-Drop) and
(O-Triv), the first clause specialises to Lin1=Lin, Lout1=Lout, Lin1=Lout1.
In the second clause, a double use of Rule (O-Op) deals with the c/1 operations.
This leaves a recursive invocation of ab/0, wrapped in the handler. Now the partial
evaluation kicks in again, realises that this is a variant of the earlier specialization
and ties the knot with a recursive call to ab0/2. After further clean-up of the
unifications, we get:

ab0(L,L).
ab0([a,b|Lmid],Lout) :- ab0(Lmid,Lout).

EVALUATION 123

There is no trace of delimited control left. Moreover, this is precisely the tight code
that the traditional DCG yields. A step-by-step elaboration for this example is in
Appendix B.1

5.3 Evaluation

We evaluate the usefulness of our optimisation approach experimentally on a set of
benchmarks. All results were obtained on an Intel Core i7 with 8 GB RAM running
hProlog 3.2.38 on Ubuntu 14.04.

The first experiment concerns the ab program of Section 5.2.3. Figure 5.5 lists the
timings (in ms) for different input sizes obtained with three different versions of the
program: the traditional DCG implementation (based on SICStus), the elaborated
handler implementation and the optimised handler implementation. Clearly, the
original use of delimited control slows the program down by more than an order of
magnitude. Fortunately, our optimisation eliminates all uses of delimited control
and matches the traditional implementation’s performance.3

Input Size Traditional Elaboration Optimised
1× 103 0 2 0
1× 104 1 4 1
1× 105 8 37 5
1× 106 32 321 29
2× 106 67 635 58
5× 106 150 1821 146
1× 107 300 4757 297
1× 108 2953 47632 2922

Figure 5.5: DCG benchmark results in ms

The second experiment considers three scenarios with nested handlers. Figure 5.6
lists the runtime results (in ms) for different input sizes of different versions: the
plain elaborated program, the program optimised with only the rewrite rules and
the program optimised with both rewrite rules and partial evaluation.

The first benchmark, state_dcg, extends the ab example with an implicit state
that is incremented with every occurrence of ab in the input and because the rewrite
rules merge the two handlers in this benchmark, they generate an almost two-fold
speed-up.

With partial evaluation, the speed-up of around two orders of magnitude is much
more dramatic. The main reason is that delimited control is again eliminated.

3Thanks to more aggressive inlining it is even slightly faster.

124 EFFECT HANDLERS IN LOGIC PROGRAMMING

The details of state_dcg handler and an overview on how the handler merging
optimisation, and the partial evaluation work in this example are in Appendix B.2.

The second benchmark adds an inner-most dummy handler for an unused foo/0.
This benchmark aims to assess the cost of forwarding. In the plain elaborated
version, we can see there is a significant overhead. Thanks to the rewriting, the
three handlers are again merged and most of the overhead of the spurious handler
disappears – the only remaining cost is the spurious foo/0 operation clause. Finally,
with partial evaluation, all trace of the foo/0 is eliminated.

The third benchmark re-implements the calculator example of Dragan et al. [38]
with two handlers, one to manage an implicit stack and one to one for an implicit
register. The behaviour is similar to the other two benchmarks: merging the
handlers roughly halves the runtime and partially evaluating them speeds up the
code by two orders of magnitude.

Program Name Input Size Elaborated Rewriting Rewriting + PE
state_dcg 1× 103 3 2 0
state_dcg 1× 104 20 11 0
state_dcg 1× 105 151 63 3
state_dcg 1× 106 1879 604 37
state_dcg 2× 106 2814 1208 75
state_dcg 5× 106 7919 4348 186
state_dcg 1× 107 29695 18094 375

state_dcg_foo 1× 103 4 3 0
state_dcg_foo 1× 104 23 11 0
state_dcg_foo 1× 105 358 61 3
state_dcg_foo 1× 106 4666 670 37
state_dcg_foo 2× 106 8777 1350 75
state_dcg_foo 5× 106 30026 4551 186

calculator 1× 103 4 3 1
calculator 1× 104 30 16 1
calculator 1× 105 307 78 10
calculator 1× 106 1195 761 57
calculator 2× 106 3015 1525 110
calculator 5× 106 12326 6114 247

Figure 5.6: Runtimes of nested-handler benchmarks in ms

5.4 Related Work

Language Extensions Various Prolog language extensions have been proposed
concerning program transformations. Van Roy has proposed Extended DCGs [75]
to thread multiple named accumulators. Similarly, Ciao Prolog’s structured state

CONCLUSION AND DISCUSSION 125

threading [38] enables different implicit states. Algebraic effects and handlers can
easily provide similar functionality.

Schimpf’s logical loops [79] approach has been very influential on our handler
design, in particular regarding the elaboration into recursive predicates and the
notions of locally fresh variables and parameters. Of course, both features originate
in distinct paradigms: logical loops are inspired by imperative loops, while handlers
originate in the functional programming paradigm.

Control Primitives Various works have considered extensions of Prolog that
enable control-flow manipulation. Before the work of Schrijvers et al. [80], Tarau
and Dahl [90] already allowed the users of BinProlog to access and manipulate the
program’s continuation.

Various coroutine-like features have been proposed in the context of Prolog
for implementing alternative execution mechanisms, such as constraint logic
programming and delay. Nowadays most of these are based on a single primitive
concept: attributed variables [37, 48, 58, 20]. Like delimited control, attributed
variables are a very low-level feature that is meant to be used directly, but is often
used by library writers as the target for much higher-level declarative features.

Algebraic Effects and Handlers in Prolog Schrijvers et al. [84] have previously
appealed to a functional model of algebraic effects and handlers to derive a Prolog
implementation of search heuristics [82]. The proposed concepts in this chapter
enable a direct Prolog implementation that avoids this detour into a different
paradigm.

5.5 Conclusion and Discussion

This chapter defined algebraic effects and handlers for Prolog as a high-level
alternative to delimited control for implementing custom control-flow and dataflow
effects.

In order to avoid undue runtime overhead of capturing delimited continuations,
we provide an optimised compilation approach based on partial evaluation and
rewrite rules. In order to apply these re-writing rules, we developed an effect
system that guides the rules showing which effects are triggered by which terms.
Our experimental evaluation shows that this approach greatly reduces the runtime
overhead.

126 EFFECT HANDLERS IN LOGIC PROGRAMMING

In this section, we discuss the similarities and the differences we have observed
between the two languages in focus. We first discuss the conceptual differences
of introducing effects and handlers into the two languages and we also note the
advantages that we ported from one language to the other.

5.5.1 Eff vs Prolog: Concepts

Eff, on the one hand, is a functional language that is based on OCaml. Therefore,
when effects and handlers are introduced, they can be seen as functions. The
captured continuations and the results of handling computations are also functions.
This facilitates parameters passing and accumulation of results which allows
contextualising a behaviour of a specific part of the Eff program.

Prolog, on the other hand, does not support functions since it uses unification and
backtracking to resolve a query. A Prolog variable can be unified only once, and in
order to un-unify that variable, we need backtracking. It does not support function
passing or re-assigning values to a variable. That is why we use local variables inside
a handler definition and unify it with external global variables, using the keyword
for, to connect them to the top-level Prolog code.

Prolog’s calculus can be modelled in Functional Programming. The work of Spivey
and Seres [87] showed techniques of embedding Prolog’s semantics in Haskell. Later,
the work of Schrijvers et al. [84] modelled Prolog’s calculus using monads and effect
handlers. The concept of their work is representing unification and backtracking
as side effects and then using handlers to give these effects semantics according
to Prolog’s semantics. They have extended Prolog’s search techniques by adding
different handlers that interpret these effects differently. Encoding such different
search techniques in Prolog itself without the aid of delimited control constructs
can be a tedious job since these techniques would have to be implemented using
Prolog’s unification and backtracking only.

Techniques adapted from Eff to Prolog The overall high-level syntax
of effect handlers introduced to Prolog is largely inspired by Eff’s syntax.
The handle...with... keywords for Prolog are very similar to those
with...handle... for Eff. Listing the different effects in the handler is also
inspired by Eff. The finally clause in Prolog resembles the value clause in Eff.

The notion of type systems in Prolog is absent. Some work in the literature,
nevertheless, introduces type systems into Prolog as an add-on, such as the work
of Mycroft and O’Keefe [57]. Though native Prolog variables can be unified with
any term. When we introduced effect handlers to Prolog, we needed to provide a
system that infers which effects can be thrown by which terms, in order to facilitate

CONCLUSION AND DISCUSSION 127

Eff Optimisations Prolog Optimisations
With-Handled-Op (O-Op)

With-Pure (O-Drop) + (O-Triv)

Figure 5.7: Similarities of Optimisations

the optimisations that we wanted to implement. Therefore, we adapted the Eff’s
effect system to Prolog after taking into considerations the differences between the
two calculi.

Eff and Prolog continuations In Eff’s calculus, continuations are functions.
They are identified by a variable that stores the continuation function. This variable
can be accessed, passed around and captured and in general, used as a first class
value which increases the expressiveness of the language. In Prolog, on the contrary,
the effect handlers calculus we presented does not allow accessing the continuation
itself as we can only use the keyword continue to invoke it. This limits the freedom
of using the continuation in the language. If we looked at the compilation process of
effect handlers in Prolog, we see that the continue key-word gets translated into a
recursive call for the predicate representing the handler. The continuation itself is a
variable within this predicate that does not escape. In theory, the delimited control
construct reset/3 can give the programmer the access to the continuation variable.
However, restricting that access allows for a more structured way of writing the
programs and also enables more optimisations.

5.5.2 Eff vs Prolog: Optimisations

Similarities between Eff and Prolog Optimisations Both Chapter 3 and this
chapter introduce sets of rewriting rules that have a similar goal, namely to eliminate
handler code or open more possibilities to eliminate handler code, so that in return
the output code is more efficient. In this part, we discuss the similarities between
the optimisation rules of Figure 3.2 in Chapter 3 and the rules of this chapter listed
in Figure 5.4. We show the similarities between the two optimisation techniques in
Figure 5.7.

For example, in Figure 3.2 we presented Rule With-Handled-Op that partially
evaluates a handler handling an effect. The similarity is evident in Figure 5.4 where
Rule O-Op partially evaluates a handler with an effect in the beginning of its
conjunctive goal.

In the rule With-Handled-Op, cop gets executed after substituting the operation
variable with the input of Opv and the continuation with a function that executes

128 EFFECT HANDLERS IN LOGIC PROGRAMMING

the return clause of the handler. The Prolog rule is rather similar. If the rest of the
conjunctive goal true, then the newly generated handler reduces to the finally
clause of the handler.

Another similarity is the rule With-Pure which checks if a computation is pure
concerning the handler surrounding it. This is achieved by checking the intersection
between the handler’s effect and the computation’s effects. If the intersection is
empty, then only the return clause of the handler is relevant, and it is added to the
end of the computation. In the Logic Programming setting, The previous rule is a
combination of the two rules (O-Drop) and (O-Triv). The first rule checks the
intersection of effects between the goal and the handler; then it drops the effects
in the handler that are do not appear in the goal. The second checks if there are
no remaining effects handled by the handler. If this is the case, then it drops the
handler and applies the unification between the local and global variables and also
the finally clause.

Differences between rewrite rules of Eff and Prolog We also discovered
differences between the two paradigms regarding the introduction and optimisation
of effect handlers. Prolog’s calculus for effect handlers is more restricted. This
enables for more aggressive optimisations. For example, the handler merging
rule (O-Merge) removes a layer of delimited control reset/shift code when
elaborating to Prolog. The continuations do not have types in Prolog, which allows
easy merging the handlers. However, in Eff, the types of handlers, the continuation
variables and the effects themselves make merging more complicated.

Merging handlers in Functional Programming has been discussed in the literature.
The work of Wu and Schrijvers [95] introduced a technique that fuses (or merges)
nested algebraic effect handlers. The paper uses algebras for free monads to
represent handlers and uses folds and fold/build fusion techniques [31] to merge two
or more nested handlers. However, it does not give a proper compilation scheme.

The handlers merging techniques used in that work can be adapted into our Eff
compiler. However, the calculus introduced should be modified in order to fit
Eff’s calculus and provide a compilation scheme that fits the other optimisation
techniques that occur in Eff. We have not included handlers merging into the
optimisation techniques so far because we focus on eliminating one handler at a
time. If a program with nested handlers is compiled using our current optimisations,
the compiler will try to eliminate the inner handler first then optimise the outer
levels afterwards. However, the optimisations stop whenever the code that needs
to be handled is a variable or none of the re-writing rules is applicable. Thus,
our compilation can be made more powerful in the future by employing handlers
merging, improving the overall efficiency of the compiled program.

CONCLUSION AND DISCUSSION 129

Contributions This chapter is based on my paper with Schrijvers [78]. My
contributions are the following:

• Design of the effect handlers syntax in Prolog.

• Elaboration from effect handlers syntax to delimited control.

• The optimisation techniques discussed in this chapter.

• Implementation of the system in Prolog as a source to source com-
piler. The implementation is available on http://github.com/ah-saleh/
prologhandlers.

• Testing and benchmarking.

• Proof of the soundness of the O-Disj rule in Appendix B.

http://github.com/ah-saleh/prologhandlers
http://github.com/ah-saleh/prologhandlers

Chapter 6

Conclusion and Future Work

In this chapter, we briefly recall the aim of this thesis, and summarise our research
contributions in the context of both Eff and Prolog. Additionally, we discuss the
ongoing work that builds on the content of this thesis, as well as potential ideas for
future work.

6.1 Summary of Contributions

Looking back to the research question we have presented in the introductory
section, we see that the primary goal of this thesis is to optimise the compilation of
algebraic effect and handlers, while maintaining the modularity that it provides. Our
work is divided into two parts. The first focuses on the Functional Programming
Programming paradigm and the second focuses on the Logic Programming paradigm.
For the former we use Eff, while for the latter we use Prolog.

6.1.1 Effect handlers in Functional Programming

Optimising Eff compiler The compiler of Eff uses a free monad representation
aas a structure for the compiled code. This proved to be costly during run-time.
The main aim of Chapter 3 is to find different optimisation techniques that decrease
the run-time of Eff programs.

As a result, the run-time performance of programs written in Eff can now compete
with other different functional systems’ run-times, while having the extra advantage

131

132 CONCLUSION AND FUTURE WORK

of abstraction and modularity of plugging in different handlers to give effects
different behaviours. We developed three main techniques that work together to
reduce (and occasionally eliminate) the impact of the free monad representation:

• Term-rewriting rules: we use these rules to partially evaluate and eliminate
as much handler code as possible.

• Function specialisation: this technique allows further term-rewriting
optimisation of handlers that are nested within functions. Without this
technique, such handlers are not accessible and therefore can not be optimised.

• Purity aware compilation: we use the effect system of Eff to compile non-
effectful Eff code directly into native OCaml code, instead of using the
free monad representation.

We implement all the optimisations in Eff. Then, we benchmark the optimised
compiler versus hand-written OCaml code and other systems:

• The combination of all three optimisation techniques generates an optimised
OCaml code that competes with hand-written code (1x-1.5x). A great
factor for this speed-up is the successful removal of all traces of handlers
through the optimisation process, resulting in non-monadic OCaml code.

• Eff was consistently 25-30% faster than its closest competitor, Multicore
OCaml.

However, due to the implicit sub-typing of the original Eff calculus, many bugs
in the system were introduced during optimisation. These bugs occur because the
compiler cannot know the precise type of a term during optimisation. Moreover, in
the function specialisation optimisation, pinpointing the type of the new specialised
function was not possible due to the same issue. This problem showed up when
we tried to optimise larger Eff programs such as parser combinators using effect
handlers.

These problems point to the need for an explicitly-typed language, where we
can ensure that an implmentation of our optimisations is type-preserving. Such a
language can assist in eliminating a large class of bugs and make the implementation
of our optimisations significantly more reliable.

Eff calculus with explicit sub-typing Chapter 4 provides an entirely new calculus
for Eff which uses explicit typing at its core calculus. The proposed calculus aims
to facilitate the optimisation of the compilation process which, in return, produces
more efficient code.

SUMMARY OF CONTRIBUTIONS 133

We propose three different calculi that interact with each other to provide a robust
system our optimisations can be implemented in.

• ImpEff: an implicitly-typed calculus. A programmer writes the program in
ImpEff syntax; then we elaborate the program into ExEff.

• ExEff: an explicitly-typed language in which subtyping is explicitly stated
in terms using casts with a subtyping proof. The main aim of ExEff is to
facilitate the optimisation process. The optimisations can access the exact
type of every term during compilation. Hence, generating new optimised
terms with types built on existing terms should be straightforward. After
doing all source transformations in ExEff, we elaborate the transformed
code into SkelEff.

• SkelEff: this language omits all additional typing information that is
included in ExEff. This makes SkelEff programs significantly smaller and
easy to translate to many different target languages, such as plain OCaml.

Along with these languages, we have also provided a type-and-effect inference
system with a constraint solving algorithm to resolve the types and the effects of
the terms during the elaboration from ImpEff to ExEff. We have implemented
a new Eff compiler that incorporates the three new calculi we provided for Eff.

6.1.2 Effect handlers in Logic Programming

In Prolog, we can introduce effect handlers to manipulate the control flow of a
strictly controlled language where only cuts can be used to exploit program flow.
The delimited control constructs presented by Schrijvers et al. [81] opened the
gates for a a better understanding of how we can manipulate the control flow
of Prolog programs. The hindrance of the delimited control constructs is that
they are inefficient due to copying from the heap whenever a shift is triggered.
Therefore, effect handlers in Prolog provide a more systematic way of using control
flow constructs, thus eliminating many of the drawbacks of the more primitive
delimited control constructs.

Moreover, Effect handlers provide an extra layer of modularity when used.

Effect handlers introduction In the first part of Chapter 5, We addressed the
introduction of effect handlers in Prolog by:

• Introducing syntax for algebraic effect handlers in Prolog.

134 CONCLUSION AND FUTURE WORK

• Showing an elaboration of handlers syntax into delimited control by means of
a meta-interpreter.

The direct elaboration of effect handlers into delimited control constructs results
in inefficient compiled code. We addressed this problem in the second part of
Chapter 5 by devising two different optimisation techniques:

• The first technique consists of term rewriting whose main aim is to eliminate
handler code during compilation. These rules are accompanied by an effect
system we developed to realise which terms can throw effects. This information
is used to guide the application of rewriting rules.

• The second method uses a partial evaluation that works together with the
rewriting rules, exposing more handlers and allowing more possibilities for
optimisations.

Applying the optimisations to a program containing effect handlers eliminates
the inefficiency of delimited control in the output code while preserving the
semantics of the input program. Our benchmarks show that, after applying the
optimisation techniques, we reach the same level of efficiency as a hand-written
Prolog implementation. We have also implemented this system as a source-to-source
transformation compiler on top of Prolog.

6.2 Ongoing and Future work

We have introduced in this thesis several optimisation techniques in two different
programming paradigms. Additionally, we introduced a new calculus for Eff. We
see much potential for further development of both paradigms of this thesis. Most
of the ideas we present in this section are already under active development.

6.2.1 Import optimisations to new Eff calculus

One of the immediate paths to follow is to port and implement the optimisation
techniques presented in Section 3.3 in the new calculus of Eff. The probability to
get clean and fast code with this approach is high.

ONGOING AND FUTURE WORK 135

Before this approach can be applied, The term rewriting rules should get adapted
to work with the syntax of ExEff. For example, the following rule from Figure 3.2

With-Ret
h = {return x 7→ cr, [Opx k 7→ cOp]Op∈O}

handle (return v) with h cr[v/x]

can be modified, to fit the ExEff calculus, as

With-Ret-ExEff
h = {return (x : T) 7→ cr, [Opx k 7→ cOp]Op∈O}

handle (return v) with h cr[v/x]

However, this example is rather simple. The main challenge is to devise a technique
to maintain the consistency of the type coercions associated with every term. The
rewriting rule has to make sure that the coercions of the re-written term should be
consistent with the coercions of the original one.

6.2.2 Handler Merging in Eff

In Section 5.5, we discussed the difficulty of merging (or flattening) nested handlers
in Eff. However, one can adapt in Eff the techniques introduced by Wu and
Schrijvers [95] for merging nested algebraic effect handlers. Then, providing a
terminating compilation scheme on top of them would be needed.

Handlers merging can be used to speed up programs that have nested handlers
when the compiler does not know how to optimise the computation the handler
is handling. For example, if the handler is handling a function application where
the function is a variable, handle f x with, then we cannot proceed with
any optimisation discussed in the previous chapters, since the compiler does not
have the information of what this variable will be bound to during compilation time.
Therefore, the only thing an optimiser can do is to flatten the handlers since a
single handler instead of nested ones means only one layer of continuation passing
which is more efficient.

6.2.3 Explicit subtyping for polymorphic effects

Our main focus in this thesis is targeting monomorphic algebraic effects and handlers.
To declare an effect, we provide a concrete input type and output type. However,
lately, a new wave of research started experimenting with abstraction over effects

136 CONCLUSION AND FUTURE WORK

and introducing polymorphic effects [85, 7]. Instead of defining an effect with a
concrete type, we can define it with a type variable as follows:

effect e : α→ α

This introduction introduces new challenges such as which handler to pick during
runtime to handle a polymorphic effect, or how can we proof the type safety property
for languages that support polymorphic effects and handlers.

Extending Eff with polymorphic effects increases the expressiveness of the language.
However, adapting the type-and-effect inference algorithm to handle that added
expressiveness is a new challenge. In ExEff, for example, extensions for coercions
to support polymorphic effects are needed in order to keep all the type and effect
information explicit to the term. The constraint generation, inference and unification
algorithms need to be updated. The new calculus will also need to prove type safety
and preservation properties.

If a robust type-and-effect system is implemented for polymorphic effects and
handlers, the modified optimisation techniques can be ported to the new calculus
in a natural way.

6.2.4 Non tail-recursive continuations in Prolog

The Prolog examples discussed in Chapter 5 are tail-recursive examples. For instance,
the ab_inc predicate is a tail recursive predicate, for which, after optimisation, the
generated code is free from delimited control constructs. That happens due to
the possibility of tying the recursive knot. Non-tail recursive predicates are more
challenging to optimise fully.

In Chapter 3, we introduced the function specialisation optimisation technique
in Eff. This technique can solve such non tail-recursive continuations issue in
Prolog. With this technique, we can generate a new predicate that captures this
non tail-recursion. Then, we can use it to tie the recursive knot.

6.2.5 WAM implementation of effect handlers in Prolog

Warren Abstract Machines (WAM) [93, 2] are the de facto standard target for
Prolog compilers. Many Prolog systems such as HProlog, BProlog and SWI-Prolog
target WAM to compile Prolog code.

Chapter 5 introduced an implementation of effects and handlers in Prolog using
a source to source compilation into delimited control code. It has also provided

ONGOING AND FUTURE WORK 137

optimisation techniques to guide the compilation. One has to compile this effect
handlers-style written code using our compiler then run it in standard Prolog to
get the result which might be inconvenient for many users. Recently, SWI-Prolog
added a WAM implementation of delimited control constructs into its library. It
would be beneficial for users to also include an implementation for effect handlers
in the WAM because of its convenience and efficiency.

Appendix A

Proofs of Eff optimisations

A.1 Soundness of Eff Rewriting rules

Proof of Theorem 1. We prove the theorem for each rewrite rule:

• App-Fun: This follows directly from Equation 3.1.

• Do-Ret: This follows directly from Equation 3.4.

• Do-Op: This follows directly from Equation 3.6.

• With-LetRec:

handle (let rec f x = c1 in c2) with v
≡ (Eq. 3.3)

handle (c2[(fun x 7→ let rec f x = c1 in c1)/f]) with v
≡ (f 6∈ v)

(handle c2 with v)[(fun x 7→ let rec f x = c1 in c1)/f]
≡ (Eq. 3.3)

let rec f x = c1 in (handle c2 with v)

• With-Ret: This follows directly from Equation 3.8.

139

140 PROOFS OF EFF OPTIMISATIONS

• With-Handled-Op:

handle (Op v) with h
≡ (Eq. 3.5)

handle (do x← Op v ; return x) with h
≡ (Eq. 3.9)

cOp[v/x, (fun x 7→ handle return x with h)/k]
≡ (Eq. 3.8)

cOp[v/x, (fun x 7→ cr)/k]

• With-Pure: We prove this property by induction on c.

– Case c = return v:

handle (return v) with h
≡ (Eq. 3.8)

cr[v/x]
≡ (Eq. 3.4)

do x← return v ; cr

– Case c = do y ← Op v ; c′ with Op ∈ O:
This cannot happen since ∆ ∩ O = ∅.

– Case c = do y ← Op v ; c′ with Op 6∈ O:

handle (do y ← Op v ; c′) with h
≡ (Eq. 3.10)

do y ← Op v ; handle c′ with h
≡ (Induction hypothesis)

do y ← Op v ; (do x← c′ ; cr)
≡ (Eq. 3.6)

do x← (do y ← Op v ; c′) ; cr

• With-Do: We prove this property by induction on c1.

– Case c1 = return v:

handle (do y ← return v ; c2) with h
≡ (Eq. 3.4)

handle (c2[v/y]) with h
≡ (y 6∈ h)

(handle c2 with h)[v/y]
≡ (Eq. 3.8)

handle (return v) with h′

TYPE PRESERVATION OF BASIC COMPILATION 141

– Case c1 = do z ← Op v ; c′1 with Op ∈ O:

handle (do y ← (do z ← Op v ; c′1) ; c2) with h
≡ (Eq. 3.6)

handle (do z ← Op v ; (do y ← c′1 ; c2)) with h
≡ (Eq. 3.9)

cOp[v/x, (fun z 7→ handle (do y ← c′1 ; c2) with h)/k]
≡ (Induction hypothesis)

cOp[v/x, (fun z 7→ handle c′1 with h′)/k]
≡ (Eq. 3.9)

handle (do z ← Op v ; c′1) with h′

– Case c1 = do z ← Op v ; c′1 with Op 6∈ O:

handle (do y ← (do z ← Op v ; c′1) ; c2) with h
≡ (Eq. 3.6)

handle (do z ← Op v ; (do y ← c′1 ; c2)) with h
≡ (Eq. 3.10)

do z ← Op v ; handle (do y ← c′1 ; c2) with h
≡ (Induction hypothesis)

do z ← Op v ; handle c′1 with h′
≡ (Eq. 3.10)

handle (do z ← Op v ; c′1) with h′

A.2 Type Preservation of Basic Compilation

To support the proof, we give the type system for the targeted subset of OCaml
in Figure A.1. To simplify the proof, and omit unnecessary details, the type
system contains a number of “derived rules” for the OCaml functions used in the
elaboration. This way we can also avoid the additional complexity of object-level
polymorphism.

Before we prove the main lemma, we prove a lemma about subtyping.

Lemma 11. For all pure types A and B, and for all computation types C and D
we have that:

A 6 B ⇒ JAK = JBK

and
C 6 D ⇒ JCK = JDK

142 PROOFS OF EFF OPTIMISATIONS

O-Var
(x : T) ∈ Γ
Γ ` x : T

O-Const
(k : A) ∈ Σ
Γ ` k : JAK

O-Fun
Γ, x : T1 ` E : T2

Γ ` fun x 7→ E : T1 → T2

O-App
Γ ` E1 : T1 → T2 Γ ` E2 : T1

Γ ` E1E2 : T2

O-Let
Γ ` E1 : T1 Γ, x : T1 ` E2 : T2

Γ ` let x = E1 in E2 : T2

O-LetRec
Γ, f : T1 → T2, x : T1 ` E1 : T2 Γ, f : T1 → T2 ` E2 : T3

Γ ` let rec f x = E1 in E2 : T3

IfThenElse
Γ ` v : bool Γ ` c1 : C Γ ` c2 : C

Γ ` if v then c1 else c2 : C

O-HandlerCases
Γ ` E : T1 → T2

[
Γ ` Ei : JAOpK→ (JBOpK→ T2)→ T2

]
(Opi:Ai→Bi)∈Σ

Γ ` {return = E; op1 = E1; . . . ; opn = En} : (T1, T2) handler_cases

O-Ret

Γ ` return : T → T computation

O-Operation
(Op : A→ B) ∈ Σ

Γ ` op : JAK→ JBK computation

O-Handler

Γ ` handler : (T1, T2) handler_cases→ (T1 computation→ T2)

O-Bind

Γ ` (>>=) : T1 computation→ (T1 → T2 computation)→ T2 computation

O-FMap

Γ ` fmap : (T1 → T2)→ (T1 computation→ T2 computation)

Figure A.1: Typing of (a subset of) OCaml

TYPE PRESERVATION OF BASIC COMPILATION 143

Proof. The proof proceeds by mutual induction on the derivation of subtyping for
pure and dirty types.

Sub-bool: bool 6 bool
In this case the lemma holds trivially.

Sub-int: int 6 int
In this case the lemma holds trivially.

Sub-→: A→ C 6 A′ → C ′.
From the rule’s first hypothesis we have that A′ 6 A. Thus by the induction
hypothesis we have that JA′K = JAK. From the rule’s second hypothesis we
have that C 6 C ′. Thus by the induction hypothesis we have that JCK = JC ′K.
Hence, we have that JAK → JCK = JA′K → JC ′K. As JA→ CK = JAK →
JCK and JA′ → C ′K = JA′K → JC ′K, we thus conclude that JA→ CK =
JA′ → C ′K.

Sub-V: C V D 6 C ′ V D′.
From the rule’s first hypothesis we have that C ′ 6 C. Thus by the induction
hypothesis we have that JC ′K = JCK. From the rule’s second hypothesis
we have that D 6 D′. Thus by the induction hypothesis we have that
JDK = JD′K. Hence, we have that JCK → JDK = JC ′K → JD′K. As
JC V DK = JCK→ JDK and JC ′ V D′K = JC ′K→ JD′K, we thus conclude
that JC V DK = JC ′ V D′K.

Sub-!: A ! ∆ 6 A′ ! ∆′.
The rule’s first hypothesis is A 6 A′. Thus by the induction hypothesis we
have JAK = JA′K. Moreover, we have that JA ! ∆K = JAK computation and
JA′ ! ∆′K = JA′K computation. Hence, we conclude JA ! ∆K = JA′ ! ∆′K.

Now follows the proof of the main theorem.

Proof of Theorem 2. We prove the preservation of typing for the basic elaboration
by mutual induction on the typing derivations for values and computations.

(SubVal): Γ ` v : A′
The rule’s first assumption is that Γ ` v : A. By the induction hypothesis
we thus have that JΓK ` JvK : JAK. The rule’s second assumption is that
A 6 A′. From Lemma 11 we then have that JAK = JA′K. Thus we conclude
JΓK ` JvK : JA′K.

144 PROOFS OF EFF OPTIMISATIONS

(Var): Γ ` x : A
From the hypothesis of the rule, we have that (x : A) ∈ Γ. It follows that
(x : JAK) ∈ JΓK. Hence, by rule Var we have JΓK ` x : JAK. Because JxK = x,
we conclude JΓK ` JxK : JAK.

(Const): Γ ` k : A
We have that (k : A) ∈ Σ. Hence, by rule O-Const we have JΓK ` k : JAK.
Because JkK = k we conclude JΓK ` JkK : JAK.

(Fun): Γ ` fun x 7→ c : A→ C
From the rule it follows that Γ, x : A ` c : C. By the induction hypothesis,
we thus have JΓ, x : AK ` JcK : JCK. Because JΓ, x : AK = JΓK, x : JAK we
thus have from rule O-Fun that JΓK ` fun x 7→ JcK : JAK → JCK. As
JA→ CK = JAK → JCK and Jfun x 7→ cK = fun x 7→ JcK, we conclude
JΓK ` Jfun x 7→ cK : JA→ CK.

(Hand): Γ ` {return x 7→ cr, [Opx k 7→ cOp]Op∈O} : A ! ∆ ∪ O V B ! ∆
From the first hypothesis of the rule and the induction hypothesis we have
that JΓ, x : AK ` JcrK : JB ! ∆K. We can simplify this to JΓK, x : JAK ` JcrK :
JBK computation.
From the second hypothesis and the induction hypothesis we have that
JΓ, x : AOp, k : BOp → B ! ∆K ` JcOpK : JB ! ∆K for each Op ∈ O. This
simplifies to JΓK, x : JAOpK, k : JBOpK → JBK computation ` JcOpK :
JBK computation.
For any Op 6∈ O, we have that JΓK, x : JAOpK, k : JBOpK→ JBK computation `
(opx>>=k) : JBK computation by O-Operation, O-Bind and O-Apply.
Hence, by rule O-Fun and O-HandlerCases, we may conclude that
JΓK ` {return = fun x 7→ JcrK; op1 = E1; . . . ; opn = En} :
(JAK, JBK computation) handler_cases. Finally, by O-Handler and O-
Apply we have that JΓK ` handler {return = fun x 7→ JcrK; op1 =
E1; . . . ; opn = En} : JAK computation → JBK computation, implying
JΓK ` J{return x 7→ cr, [Opx k 7→ cOp]Op∈O}K : JA ! ∆ ∪ O V B ! ∆K.

(SubComp): Γ ` c : C ′
The proof proceeds analogously to one for rule SubVal.

(App): Γ ` e1 e2 : C
From the rule’s two hypotheses and the induction hypotheses, we have
that JΓK ` Je1K : JA→ CK and JΓK ` Je2K : JAK. Because JA→ CK =
JAK → JCK we have by rule O-App that JΓK ` Je1K Je2K : JCK. Because
Je1 e2K = Je1K Je2K, we conclude JΓK ` Je1 e2K : JCK.

(LetRec): Γ ` let rec f x = c1 in c2 : D
From the rule’s first hypothesis and the induction hypothesis we have

TYPE PRESERVATION OF BASIC COMPILATION 145

JΓ, f : A→ C, x : AK ` Jc1K : JCK. We can simplify this to JΓK, f :
JAK → JCK, x : JAK ` Jc1K : JCK. From the rule’s second hypothesis
and the induction hypothesis we have JΓ, f : A→ CK ` Jc2K : JDK. We
can simplify this to JΓK, f : JAK → JCK ` Jc2K : JDK. By rule O-
LetRec we then have JΓK ` let rec f x = Jc1K in Jc2K : JDK. Since
Jlet rec f x = c1 in c2K = let rec f x = Jc1K in Jc2K, we conclude
JΓK ` Jlet rec f x = c1 in c2K : JDK.

(Ret): Γ ` return v : A ! ∅
From the rule’s assumption and the induction hypothesis we have that
JΓK ` JvK : JAK. Hence, by means of rules O-Ret and O-App we have
JΓK ` return JvK : JAK computation. As Jreturn vK = return JvK and
JA ! ∅K = JAK computation, we conclude JΓK ` Jreturn vK : JA ! ∅K.

(Op): Γ ` Op v : B ! {Op}
From the first hypothesis of the rule, we have (Op : A→ B) ∈ Σ. From the
second hypothesis of the rule and the induction hypothesis, we have that
JΓK ` JvK : JAK. By rules O-Operation and O-App we then have JΓK ` op JvK :
JBK computation. As JOp vK = op JvK and JB ! {Op}K = JBK computation,
we conclude JΓK ` Jop vK : JB ! {Op}K.

(Do): Γ ` do x← c1 ; c2 : B ! ∆
From the rule’s first hypothesis and the induction hypothesis we have
JΓK ` Jc1K : JA ! ∆K. We can simplify this to JΓK ` Jc1K : JAK computation.
From the rule’s second hypothesis and the induction hypothesis we have
JΓ, x : AK ` Jc2K : JB ! ∆K. We can simplify this to JΓK, x : JAK `
Jc2K : JBK computation. Using rule O-Fun we have JΓK ` fun x 7→
Jc2K : JAK → JBK computation. Using rules O-Bind and O-App
we then have JΓK ` Jc1K>>=(fun x 7→ Jc2K) : JBK computation.
As Jdo x← c1 ; c2K = Jc1K>>=(fun x 7→ Jc2K), we conclude JΓK `
Jdo x← c1 ; c2K : JBK computation.

(With): Γ ` handle c with v : D
From the rule’s first assumption and the induction hyptothesis we have
that JΓK ` JvK : JC V DK. Because JC V DK = JCK → JDK we thus
have JΓK ` JvK : JCK → JDK. From the rule’s second assumption and the
induction hypothesis we also have JΓK ` JcK : JCK. By rule O-App we then
have JΓK ` JvK JcK : JDK. Because Jhandle c with vK = JvK JcK we thus
conclude JΓK ` Jhandle c with vK : JDK.

Appendix B

Proofs and Detailed examples
for Prolog

B.1 Detailed parital evaluation example

This appendix elaborates the optimisation example of Section 5.2.3 in more depth.

We start from the following program:

:- effect c/1.
ab.
ab :- c(a), c(b), ab.
query(Lin) :-
handle ab with
(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)
for (Lin1=Lin,Lout1=[]).

Step 1 We abstract the goal handle ab with ... into a new predicate ab0/2.
This new predicate takes two arguments: one for every parameter in the handler’s
for clause. The original call is replaced by a call to the new predicate, supplying
the actual parameters of the handler as actual arguments.

query(Lin) :- ab0(Lin,[]).

147

148 PROOFS AND DETAILED EXAMPLES FOR PROLOG

The predicate ab0/2 is a copy of ab/0’s definition, with the handler wrapped
around each clause’s body.

ab0(Lin,Lout) :-
handle true with
(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)
for (Lin1=Lin,Lout1=Lout).

ab0(Lin,Lout) :-
handle (c(a), c(b), ab) with
(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)
for (Lin1=Lin,Lout1=Lout).

Step 2 The optimiser now applies rewrite rules to the two clauses. In the first
clause, Rule (O-Drop) can be applied because the effect system provides the
information that the goal true has no effects. Hence, we drop the operation clause:

ab0(Lin,Lout) :-
handle true with
finally (Lin1 = Lout1)
for (Lin1=Lin,Lout1=Lout).

Step 3 The handler currently handles no operations1. The optimiser proceeds
with applying (O-Triv):

ab0(Lin,Lout) :-
true,
Lin1 = Lout1 ,
Lin1 = Lin,
Lout1 = Lout.

Step 4 By partially evaluating true and the remaining unifications, the first
clause is simplified to:

ab0(L,L).
1This syntax is only allowed during the compilation process.

DETAILED PARITAL EVALUATION EXAMPLE 149

Step 5 In the second clause the handler’s goal starts with the c/1 operation. The
optimiser applies (O-Op) to the handler, producing the following code:

ab0(Lin,Lout) :-
Lin1 = [a|Lmid],
Lin1 = Lin,
Lout1 = Lout,
handle (c(b), ab) with
(c(X1) -> Lin11=[X1|Lmid1], continue(Lmid1,Lout11))

finally (Lin11 = Lout11)
for (Lin11=Lmid,Lout11=Lout1).

All the variables in the new handler goal are fresh variables. Observe that the actual
arguments in the newly generated for clause are taken from the continue call of
the previous handler. This is to ensure the correct state threading of the handler,
and to keep the correct semantics of the program.

Step 6 The optimiser re-applies (O-Op) for c(b), generating the following code:

ab0(Lin,Lout) :-
Lin1 = [a|Lmid],
Lin1 = Lin,
Lout1 = Lout,
Lin11 = [b|Lmid1],
Lin11 = Lmid,
Lout11 = Lout1,
handle (ab) with
(c(X2) -> Lin12=[X1|Lmid2], continue(Lmid2,Lout12))

finally (Lin12 = Lout12)
for (Lin12=Lmid1,Lout12=Lout11).

Step 7 The remaining handler goal is now a variant of the original one, which
was already abstracted into ab0/2. Therefore, we can replace it with ab0/2.

ab0(Lin,Lout) :-
Lin1 = [a|Lmid],
Lin1 = Lin,
Lout1 = Lout,
Lin11 = [b|Lmid1],
Lin11 = Lmid,

150 PROOFS AND DETAILED EXAMPLES FOR PROLOG

Lout11 = Lout1,
ab0(Lmid1,Lout11).

Step 8 The clause now consists of several unifications followed by a tail-recursive
call. Partially evaluating the unifications leads to the final optimised code:

ab0([a,b|Lmid1],Lout) :-
ab0(Lmid1,Lout).

B.2 State-DCG handler example in focus

This appendix shows the result of optimising a program that consists of two handlers.
We first show the elaboration into delimited control. Then, we show how the original
program can be optimised by means of the rewrite rules and partial evaluation.

We use the following program, which was used to generate the results of the first
benchmarks in Figure 5.6. As described in Section 5.3, there are two handlers: one
handles the implicit state operations and the other handles the DCG operations.

abinc.
abinc :- c(a), c(b), get_state(St), St1 is St+1,

put_state(St1), abinc.

state_phrase_handler(Sin,Sout,Lin,Lout) :-
handle

(handle abinc
with
(get_state(Q) -> Q = Sin1, continue(Sin1,Sout1)
; put_state(NS) -> continue(NS,Sout1)
)

finally
Sout1 = Sin1

for
(Sin1 = Sin, Sout1 = Sout)

)
with
(c(X) -> Lin1 = [X|Lmid], continue(Lmid,Lout1))

finally
Lin1 = Lout1

STATE-DCG HANDLER EXAMPLE IN FOCUS 151

for
(Lin1=Lin, Lout1=Lout).

The inner handler’s goal is abinc, which consumes two elements, a and b, by using
the operation c/1 and then increments the state using the operations get_state/1
and put_state/1.

?- state_phase_handler(0,Sout,[a,b,a,b,a,b],Lout).
Sout = 0
Lout = [a,b,a,b,a,b];
Sout = 1
Lout = [a,b,a,b];
Sout = 2
Lout = [a,b];
Sout = 3
Lout = [].

The immediate elaboration into delimited control yields:

state_phrase_handler(A, B, C, D) :-
handler_0(handler_1(abinc,A,B), C, D).

handler_1(A, B, C) :-
reset(A, D, E),
(D == 0 ->

C = B
; E = get_state(F) ->

F = B,
handler_1(D, B, C)

; E = put_state(G) ->
handler_1(D, G, C)

; shift(E),
handler_1(D, B, C)

).
handler_0(A, B, C) :-
reset(A, D, E),
(D == 0 ->

B = C
; E = c(F) ->

B = [F|G],
handler_0(D, G, C)

; shift(E),

152 PROOFS AND DETAILED EXAMPLES FOR PROLOG

handler_0(D, B, C)
).

The predicates handler_0/3 and handler_1/3 correspond to the elaborated DCG
and state handlers respectively. They follow the semantics described in Section
5.1.4.

Using the rewrite rules first, yields the following elaborated program instead:

state_phrase_handler(A, B, C, D) :-
handler_2(abinc, A, B, C, D).

handler_2(A, B, C, D, E) :-
reset(A, F, G),
(F == 0 ->

C = B,
D = E

; G = get_state(H) ->
H = B,
handler_2(F, B, C, D, E)

; G = put_state(I) ->
handler_2(F, I, C, D, E)

; G = c(J) ->
D = [J|K],
handler_2(F, B, C, K, E)

; shift(G),
handler_2(F, B, C, D, E)

).

The two handlers have been merged into one, with the corresponding performance
improvement.

When partial evaluation is enabled as well, the optimisation goes one step further
and yields the following final program:

state_phrase_handler(A, B, C, D) :-
abinc0(A, B, C, D).

abinc0(A, A, B, B).
abinc0(A, B, [a,b|C], D) :-
E is A+1,
abinc0(E, B, C, D).

Partial evluation has pushed the handlers into the definition of abcinc/0 where
the rewrite rules have been able to replace the operations by the corresponding

SOUNDNESS OF RULE (O-DISJ) 153

eval(G) :- eval(G,Signal),
(Signal = shift(Term,Cont) ->

fail
; true).

eval(shift(Term),Signal) :- !,Signal = shift(Term,true).

eval(reset(G,Cont,Term),Signal) :- !, eval(G,Signal1),
(Signal1 = ok -> Cont = 0, Term = 0
; Signal1 = shift(Term,Cont)),
Signal = ok.

eval((G1,G2),Signal) :- !, eval(G1,Signal1),
(Signal1 = ok -> eval(G2,Signal)
; Signal1 = shift(Term,Cont),

Signal = shift(Term,(Cont,G2))).

eval((G1;G2),Signal) :- !, (eval(G1,Signal)
; eval(G2,Signal)).

eval((C->G1;G2),Signal) :- !, (eval(C,Signal1) ->
(Signal1 = ok -> eval(G1,Signal)
; fail
)

; eval(G2,Signal)).

eval(Goal,Signal) :- built_in_predicate(Goal), !, call(Goal), Signal = ok.

eval(Goal,Signal) :- clause(Goal,Body), eval(Body,Signal).

Figure B.1: Delimited Control Meta-Interpreter

handler clauses. As a consequence, the handlers are eliminated and no delimited
control primitives are generated.

B.3 Soundness of Rule (O-Disj)

This appendix proves the soundness of the (O-Disj) rewrite rule. Our proof relies
on the elaboration of the handler syntax into delimited control and the corresponding
semantics for delimited control given by Schrijvers et al. [80]. This semantics is
expressed in terms of a Prolog meta-interpreter that we show in Figure B.1.

154 PROOFS AND DETAILED EXAMPLES FOR PROLOG

We start from the left-hand side of the rewrite rule and turn it into the right-hand
side by means of a number of equivalence preserving transformations.

handle (G1;G2) with
op→ G;

finally Gf
for Gs.

(B.1)

The elaboration of this handler goal into delimited control yields the following
auxiliary predicate:

h(Goal,P1,..,Pn) :-
reset(Goal,Cont,Term),
(Term == 0 -> Gf
; Term = op → G
; shift(Signal), h(Cont,P1,...,Pn)
).

Here the variables Pi are the formal parameters of Gs. The goal itself is then by
definition equivalent to

h((G1;G2),A1,...,An) (B.2)
where the Ai are the actual parameters of Gs.

This is equivalent to evaluation the goal in the meta-interpreter:

eval(h((G1;G2),A1,...,An)) (B.3)

We can now unfold the eval/1 call and subsequently unfold the resulting call to
the auxiliary predicate eval/2 which selects the last clause. After also evaluating
the call to clause/2 to unfold h/n+ 1 we get:

eval((reset((G1;G2),Cont,Term),
(Term == 0 -> Gf
; Term = op → G
; shift(Signal), h(Cont,P1,...,Pn)
)

)
, Signal
),

(Signal = shift(Term,Cont) -> fail ; true)

(B.4)

SOUNDNESS OF RULE (O-DISJ) 155

For the sake of space, we refer to the if-then-else block after the reset/3 call as
<Switches>. We can thus abbreviate the above as:

eval((reset((G1;G2),Cont,Term), <Switches>)
, Signal
),

(Signal = shift(Term,Cont) -> fail ; true)

(B.5)

Unfolding eval/2 using the appropriate clause for conjunction, yields:

eval(reset((G1;G2),Cont,Term), Signal1),
(Signal1 = ok -> eval(<Switches>, Signal)
; Signal1 = shift(Term,Cont) ->

Signal = shift(Term,(Cont,<Switches>))
),
(Signal = shift(Term,Cont) -> fail ; true)

(B.6)

Now we unfold the first call to eval/2 using the clause for reset/3:

eval((G1;G2), Signal2),
(Signal2 = ok -> Cont = 0, Term = 0
; Signal2 = shift(Term,Cont)
),
Signal1 = ok,
(Signal1 = ok -> eval(<Switches>, Signal)
; Signal1 = shift(Term,Cont) ->

Signal = shift(Term,(Cont,<Switches>))
),
(Signal = shift(Term,Cont) -> fail ; true)

(B.7)

Again, we unfold the first call to eval/2 using the clause for disjunction:

(eval(G1, Signal2) ; eval(G2, Signal2)),
(Signal2 = ok -> Cont = 0, Term = 0
; Signal2 = shift(Term,Cont)
),
Signal1 = ok,
(Signal1 = ok -> eval(<Switches>, Signal)
; Signal1 = shift(Term,Cont) ->

Signal = shift(Term,(Cont,<Switches>))
),
(Signal = shift(Term,Cont) -> fail ; true)

(B.8)

156 PROOFS AND DETAILED EXAMPLES FOR PROLOG

We now distribute what comes after the first disjunction into both branches.

(
eval(G1, Signal2),
(Signal2 = ok -> Cont = 0, Term = 0
; Signal2 = shift(Term,Cont)
),
Signal1 = ok,
(Signal1 = ok -> eval(<Switches>, Signal)
; Signal1 = shift(Term,Cont) ->

Signal = shift(Term,(Cont,<Switches>))
),
(Signal = shift(Term,Cont) -> fail ; true)

;
eval(G2, Signal2),
(Signal2 = ok -> Cont = 0, Term = 0
; Signal2 = shift(Term,Cont)
),
Signal1 = ok,
(Signal1 = ok -> eval(<Switches>, Signal)
; Signal1 = shift(Term,Cont) ->

Signal = shift(Term,(Cont,<Switches>))
),
(Signal = shift(Term,Cont) -> fail ; true)

)

(B.9)

SOUNDNESS OF RULE (O-DISJ) 157

At this point we change gear and start folding again. First we fold the reset/2
clause of eval/2 twice, once in each branch.

(
eval(reset(G1,Term,Cont),Signal1),
(Signal1 = ok -> eval(<Switches>, Signal)
; Signal1 = shift(Term,Cont) ->

Signal = shift(Term,(Cont,<Switches>))
),
(Signal = shift(Term,Cont) -> fail ; true)

;
eval(reset(G2,Term,Cont),Signal1),
(Signal1 = ok -> eval(<Switches>, Signal)
; Signal1 = shift(Term,Cont) ->

Signal = shift(Term,(Cont,<Switches>))
),
(Signal = shift(Term,Cont) -> fail ; true)

)
(B.10)

Then we fold the conjunction clause of eval/2 in each branch.
(
eval((reset(G1,Term,Cont),<Switches>),Signal),
(Signal = shift(Term,Cont) -> fail ; true)

;
eval((reset(G2,Term,Cont),<Switches>),Signal),
(Signal = shift(Term,Cont) -> fail ; true)

)
(B.11)

Subsequently, we fold eval/1 twice.
(
eval((reset(G1,Term,Cont),<Switches>))

;
eval((reset(G2,Term,Cont),<Switches>))

)
(B.12)

Now we can drop the meta-interpretation layer again.
(
(reset(G1,Term,Cont),<Switches>)

;
(reset(G2,Term,Cont),<Switches>)

)
(B.13)

158 PROOFS AND DETAILED EXAMPLES FOR PROLOG

Then we fold h/n+ 1 twice.

(h(G1,A1,...,An); h(G2,A1,...,An)) (B.14)

Finally, we invert the elaboration to obtain the right-hand side of the rewrite rule.

handle G1 with
op→ G;

finally(Gf)
for(Gs)

;

handle G2 with
op→ G;

finally(Gf)
for(Gs)

(B.15)

List of Symbols

The next list describes several symbols that are used in the thesis.

Chapter 2

C Dirty type

Γ Typing environment

∆ Dirt

! Dirty type constructor

⇓ Big-step semantics evaluate

V Handler type

∈ Belongs to a set

λ Lambda abstraction

T Derivation tree

O Set of operations

→ Function type

A 6 A′ Subtyping relation

A Simple type

c Eff computation

v Eff value

x : int Variable x has type int

* Tuple constructor in OCaml

() Unit value

<> Inequality check in OCaml

Effect call

&& And operator in OCaml

k Continuation variable

Chapter 3

JCK Compilation of C from Effy to
OCaml

≡ Basic equivalence

∀.x For all values given to the
variable x

 Term-rewriting rule

/∈ Does not belong to a set

fmap Higher order function in OCaml

T Type of OCaml

[] Substitution operator

»= Sequencing operator in OCaml

CPS Continuation Passing Style

159

160 PROOFS AND DETAILED EXAMPLES FOR PROLOG

Chapter 4

• Empty substitution

B ExEff cast

Cc Computation-holed computation

Hc Computation-holed handler

γ Coercions of ExEff

Q Constraints set

γ1 � γ2 Transitivity of coercions in
ExEff

ω Coercion variable of ExEff

P Constraints queue

V c Computation-holed value

δ Dirt variable

ε Erasure function symbol

≡ c Congruence step for SkelEff
computations

≡ v Congruence step for SkelEff
values

τ Skeleton

ς Skeleton variable

 c small-step semantics for ExEff
and SkelEff computations

 v small-step semantics for ExEff
and SkelEff values

S Polytype

K Qualified type

〈T 〉 Reflexivity of coercions in Ex-
Eff

σ Set of substitutions

ρ Constraint

π Simple constraint

α Type variable

Cv Value-holed computation

`co Constraint Entailment for Imp-
Eff

`c Computation typing for ImpEff

`v Value typing for ImpEff

∆̀ Well-formedness for dirts

τ̀ Well-formedness for skeletons

c̀o Coercion typing for ExEff

c̀ty Well-formedness for computa-
tion types of ImpEff

c̀t Well-formedness for constraints

èc SkelEff computation typing

èv SkelEff value typing

v̀ty Well-formedness for value types
of ImpEff

Hv Value-holed handler

T Value type for ExEff

V v Value-holed value

Chapter 5

opn → Gn operation clause for opn is
Gn

; Prolog disjunctive operator

G Prolog goal

op /n Operation op has n arguments

Bibliography

[1] Agesen, O. Constraint-based type inference and parametric polymorphism.
In International Static Analysis Symposium (1994), Springer, pp. 78–100.

[2] Ait-Kaci, H. Warren’s abstract machine: a tutorial reconstruction. MIT
press, 1991.

[3] Awodey, S. Category theory, volume 49 of oxford logic guides, 2006.

[4] Barendregt, H. The Lambda Calculus: its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
1981.

[5] Bauer, A., and Pretnar, M. An effect system for algebraic effects and
handlers. Logical Methods in Computer Science 10, 4 (2014).

[6] Bauer, A., and Pretnar, M. Programming with algebraic effects and
handlers. Journal of Logic and Algebraic Programming 84, 1 (2015), 108–123.

[7] Biernacki, D., Piróg, M., Polesiuk, P., and Sieczkowski, F.
Abstracting algebraic effects.

[8] Brachthäuser, J. I., and Schuster, P. Effekt: extensible algebraic
effects in scala (short paper). In Proceedings of the 8th ACM SIGPLAN
International Symposium on Scala, SCALA@SPLASH 2017, Vancouver, BC,
Canada, October 22-23, 2017 (2017), H. Miller, P. Haller, and O. Lhoták,
Eds., ACM, pp. 67–72.

[9] Brachthäuser, J. I., Schuster, P., and Ostermann, K. Effect
handlers for the masses. Proceedings of the ACM on Programming Languages
2, OOPSLA (2018), 111.

[10] Brady, E. Programming and reasoning with algebraic effects and dependent
types. In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (2013), ACM, pp. 133–144.

161

162 BIBLIOGRAPHY

[11] Breazu-Tannen, V., Coquand, T., Gunter, C. A., and Scedrov,
A. Inheritance as implicit coercion. Information and Computation vol 93
(1991), 172–221.

[12] Bruggeman, C., Waddell, O., and Dybvig, R. K. Representing
control in the presence of one-shot continuations. In ACM SIGPLAN Notices
(1996), vol. 31, ACM, pp. 99–107.

[13] Cardelli, L. An implementation of F. Digital. Systems Research Center,
1993.

[14] Clocksin, W. F., and Mellish, C. S. Programming in Prolog: Using
the ISO standard. Springer Science & Business Media, 2012.

[15] Cooper, E., Lindley, S., Wadler, P., and Yallop, J. Links: Web
programming without tiers. In Proceedings of the 5th International Conference
on Formal Methods for Components and Objects (2006), vol. 4709 of Lecture
Notes in Computer Science, Springer, pp. 266–296.

[16] Crary, K. Typed compilation of inclusive subtyping. In Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming
(NY, USA, 2000), ICFP ’00, ACM, pp. 68–81.

[17] Damas, L., and Milner, R. Principal type-schemes for functional programs.
In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (1982), ACM, pp. 207–212.

[18] Damas, L., and Milner, R. Principal type-schemes for functional programs.
In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (NY, USA, 1982), POPL ’82, ACM, pp. 207–212.

[19] Danvy, O., and Filinski, A. Abstracting control. In LISP and Functional
Programming (1990), pp. 151–160.

[20] Demoen, B. Dynamic attributes, their hProlog implementation, and a first
evaluation. Report CW 350, Dept. of Comp. Sc., KU Leuven, Belgium, 2002.

[21] Desouter, B., van Dooren, M., and Schrijvers, T. Tabling as a
library with delimited control. TPLP 15, 4-5 (2015), 419–433.

[22] Dijkstra, E. W. Letters to the editor: Go to statement considered harmful.
Commun. ACM 11, 3 (Mar. 1968), 147–148.

[23] Dolan, S. Algebraic Subtyping. PhD thesis, PhD thesis, University of
Cambridge, 2016, 2016.

BIBLIOGRAPHY 163

[24] Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A.,
Sivaramakrishnan, K., and White, L. Concurrent system programming
with effect handlers. In International Symposium on Trends in Functional
Programming (2017), Springer, pp. 98–117.

[25] Dolan, S., and Mycroft, A. Polymorphism, subtyping, and type inference
in mlsub. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (2017), ACM, pp. 60–72.

[26] Dolan, S., White, L., and Madhavapeddy, A. Multicore ocaml. In
OCaml Workshop (2014), vol. 2.

[27] Dolan, S., White, L., Sivaramakrishnan, K., Yallop, J., and
Madhavapeddy, A. Effective concurrency through algebraic effects. In
OCaml Users and Developers Workshop (2015).

[28] Faes, A. Algebraic subtyping for algebraic effects and handlers. Master’s
thesis, KULeuven, 2018.

[29] Felleisen, M. The theory and practice of first-class prompts. POPL ’88,
pp. 180–190.

[30] Gaster, B. R., and Jones, M. P. A polymorphic type system for extensible
records and variants.

[31] Gill, A., Launchbury, J., and Peyton Jones, S. L. A short cut to
deforestation. In Proceedings of the conference on Functional programming
languages and computer architecture (1993), ACM, pp. 223–232.

[32] Girard, J.-Y., Taylor, P., and Lafont, Y. Proofs and Types.
Cambridge University Press, 1989.

[33] Hillerström, D., and Lindley, S. Liberating effects with rows and
handlers. In Proceedings of the 1st International Workshop on Type-Driven
Development (2016), ACM, pp. 15–27.

[34] Hillerström, D., and Lindley, S. Shallow effect handlers. In Asian
Symposium on Programming Languages and Systems (2018), Springer,
pp. 415–435.

[35] Hillerström, D., Lindley, S., and Sivaramakrishnan, K. Compiling
links effect handlers to the ocaml backend. In OCaml Workshop (2016).

[36] Hindley, R. The principle type-scheme of an object in combinatory logic.
Transactions of the american mathematical society 146 (1969), 29–60.

164 BIBLIOGRAPHY

[37] Holzbaur, C. Metastructures versus attributed variables in the context of
extensible unification. In Programming Language Implementation and Logic
Programming, 4th International Symposium, PLILP’92, Leuven, Belgium,
August 26-28, 1992, Proceedings (1992), M. Bruynooghe and M. Wirsing,
Eds., vol. 631 of Lecture Notes in Computer Science, Springer, pp. 260–268.

[38] Ivanovic, D., Morales Caballero, J. F., Carro, M., and
Hermenegildo, M. Towards structured state threading in Prolog. In
CICLOPS 2009 (2009).

[39] Jones, M. P. A theory of qualified types. In ESOP ’92, 4th European
Symposium on Programming, Rennes, France, February 26-28, 1992,
Proceedings (1992), B. Krieg-Brückner, Ed., vol. 582 of Lecture Notes in
Computer Science, Springer, pp. 287–306.

[40] Kahn, G. Natural semantics. In Annual Symposium on Theoretical Aspects
of Computer Science (1987), Springer, pp. 22–39.

[41] Kammar, O., Lindley, S., and Oury, N. Handlers in action. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional
programming (2013), ICFP ’14, ACM, pp. 145–158.

[42] Kammar, O., and Plotkin, G. D. Algebraic foundations for effect-
dependent optimisations. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (2012), ACM,
pp. 349–360.

[43] Kammar, O., and Pretnar, M. No value restriction is needed for algebraic
effects and handlers. Journal of Functional Programming 27 (2017).

[44] Kiselyov, O. Delimited control in ocaml, abstractly and concretely: System
description. In International Symposium on Functional and Logic Programming
(2010), Springer, pp. 304–320.

[45] Kiselyov, O., and Ishii, H. Freer monads, more extensible effects. In
Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015,
Vancouver, BC, Canada, September 3-4, 2015 (2015), B. Lippmeier, Ed.,
ACM, pp. 94–105.

[46] Kiselyov, O., Sabry, A., and Swords, C. Extensible effects: an
alternative to monad transformers. In Proceedings of the 2013 ACM SIGPLAN
Symposium on Haskell, Boston, MA, USA, September 23-24, 2013 (2013),
C. Shan, Ed., pp. 59–70.

[47] Kiselyov, O., and Sivaramakrishnan, K. Eff directly in ocaml. In
OCaml Workshop (2016).

BIBLIOGRAPHY 165

[48] Le Houitouze, S. A New Data Structure for Implementing Extensions to
Prolog. vol. 456 of LNCS, pp. 136–150.

[49] Leijen, D. Koka: Programming with row polymorphic effect types.
In Proceedings 5th Workshop on Mathematically Structured Functional
Programming, MSFP@ETAPS 2014, Grenoble, France, 12 April 2014. (2014),
P. Levy and N. Krishnaswami, Eds., vol. 153 of EPTCS, pp. 100–126.

[50] Leijen, D. Implementing algebraic effects in C - "monads for free in c". In
Programming Languages and Systems - 15th Asian Symposium, APLAS 2017,
Suzhou, China, November 27-29, 2017, Proceedings (2017), B. E. Chang, Ed.,
vol. 10695 of Lecture Notes in Computer Science, Springer, pp. 339–363.

[51] Leijen, D. Type directed compilation of row-typed algebraic effects.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017
(2017), G. Castagna and A. D. Gordon, Eds., ACM, pp. 486–499.

[52] Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., and
Vouillon, J. The ocaml system release 4.02. Institut National de Recherche
en Informatique et en Automatique 54 (2014).

[53] Liang, S., Hudak, P., and Jones, M. Monad transformers and modular
interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (1995), ACM, pp. 333–343.

[54] Lindley, S. Algebraic effects and effect handlers for idioms and arrows. In
Proceedings of the 10th ACM SIGPLAN workshop on Generic programming
(2014), ACM, pp. 47–58.

[55] Lindley, S., McBride, C., and McLaughlin, C. Do be do be do.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017
(2017), G. Castagna and A. D. Gordon, Eds., ACM, pp. 500–514.

[56] Mitchell, J. C. Coercion and type inference. In Proceedings of the 11th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(New York, NY, USA, 1984), POPL ’84, ACM, pp. 175–185.

[57] Mycroft, A., and O’Keefe, R. A. A polymorphic type system for prolog.
Artificial intelligence 23, 3 (1984), 295–307.

[58] Neumerkel, U. Extensible unification by metastructures. In META’90 (Apr.
1990), pp. 352–364.

[59] Nielson, H. R., and Nielson, F. Semantics with applications, vol. 104.
Springer, 1992.

166 BIBLIOGRAPHY

[60] Pereira, F. C., and Warren, D. H. Definite clause grammars for
language analysis—a survey of the formalism and a comparison with augmented
transition networks. Artificial intelligence 13, 3 (1980), 231–278.

[61] Peyton Jones, S., Vytiniotis, D., Weirich, S., and Washburn, G.
Simple unification-based type inference for gadts. In ICFP ’06 (2006).

[62] Pierce, B. C. Types and programming languages. MIT press, 2002.

[63] Pierce, B. C. Advanced topics in types and programming languages. MIT
press, 2005.

[64] Pierce, B. C., and Turner, D. N. Local type inference. ACM Transactions
on Programming Languages and Systems (TOPLAS) 22, 1 (2000), 1–44.

[65] Plaisted, D. A. Equational reasoning and term rewriting systems. Handbook
of logic in artificial intelligence and logic programming 1 (1993), 273–364.

[66] Plotkin, G., and Pretnar, M. Handlers of algebraic effects. In European
Symposium on Programming (2009), Springer, pp. 80–94.

[67] Plotkin, G. D. A structural approach to operational semantics. J. Log.
Algebr. Program. 60-61 (2004), 17–139.

[68] Plotkin, G. D., and Pretnar, M. A logic for algebraic effects. In
Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA (2008),
IEEE Computer Society, pp. 118–129.

[69] Pottier, F. A versatile constraint-based type inference system. Nordic
Journal of Computing 7, 4 (2000), 312–347.

[70] Pottier, F. Simplifying subtyping constraints: A theory. Information and
Computation 170, 2 (2001), 153–183.

[71] Pretnar, M. Inferring algebraic effects. Logical Methods in Computer
Science 10, 3 (2014).

[72] Pretnar, M. An introduction to algebraic effects and handlers, invited
tutorial. Electronic Notes in Theoretical Computer Science 319 (2015), 19–35.

[73] Pretnar, M., and Plotkin, G. D. Handling algebraic effects. Logical
Methods in Computer Science 9 (2013).

[74] Pretnar, M., Saleh, A. H., Faes, A., and Schrijvers, T. Efficient
compilation of algebraic effects and handlers. Tech. Rep. CW 708, KU Leuven
Department of Computer Science, 2017.

BIBLIOGRAPHY 167

[75] Roy, P. V. A useful extension to prolog’s definite clause grammar notation.
132–134.

[76] Saleh, A. H. Transforming delimited control: Achieving faster effect handlers.
ICLP (Technical Communications) 1433 (2015).

[77] Saleh, A. H., Karachalias, G., Pretnar, M., and Schrijvers, T.
Explicit effect subtyping. In Programming Languages and Systems - 27th
European Symposium on Programming, ESOP (2018), Springer, pp. 327–354.

[78] Saleh, A. H., and Schrijvers, T. Efficient algebraic effect handlers for
prolog. Theory and Practice of Logic Programming 16, 5-6 (2016), 884–898.

[79] Schimpf, J. Logical loops. In International Conference on Logic Programming
(2002), Springer, pp. 224–238.

[80] Schrijvers, T., Demoen, B., Desouter, B., and Wielemaker, J.
Delimited continuations for Prolog. TPLP 13, 4-5 (2013), 533–546.

[81] Schrijvers, T., Demoen, B., Desouter, B., and Wielemaker, J.
Delimited continuations for Prolog. Theory and Practice of Logic Programming
13, 4-5 (2013), 533–546.

[82] Schrijvers, T., Demoen, B., Triska, M., and Desouter, B. Tor:
Modular search with hookable disjunction. Sci. Comput. Program. 84 (2014),
101–120.

[83] Schrijvers, T., Peyton Jones, S., Chakravarty, M., and
Sulzmann, M. Type checking with open type functions. In ICFP ’08
(2008), ACM, pp. 51–62.

[84] Schrijvers, T., Wu, N., Desouter, B., and Demoen, B. Heuristics
entwined with handlers combined: From functional specification to logic
programming implementation. In Proceedings of the 16th International
Symposium on Principles and Practice of Declarative Programming (2014),
ACM, pp. 259–270.

[85] Sekiyama, T., and Igarashi, A. Handling polymorphic algebraic effects.
arXiv preprint arXiv:1811.07332 (2018).

[86] Simonet, V. Type inference with structural subtyping: A faithful formalization
of an efficient constraint solver. In Programming Languages and Systems,
First Asian Symposium, APLAS 2003, Beijing, China, November 27–29, 2003,
Proceedings (2003), A. Ohori, Ed., Springer, pp. 283–302.

[87] Spivey, J. M., and Seres, S. Embedding prolog in haskell. In Proceedings
of Haskell (1999), vol. 99, pp. 1999–28.

168 BIBLIOGRAPHY

[88] Sulzmann, M., Chakravarty, M. M. T., Peyton Jones, S., and
Donnelly, K. System f with type equality coercions. In Proceedings of the
2007 ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation (New York, NY, USA, 2007), TLDI ’07, ACM, pp. 53–66.

[89] Swierstra, W. Data types à la carte. Journal of functional programming
18, 4 (2008), 423–436.

[90] Tarau, P., Dahl, V., and Fall, A. Backtrackable state with linear
assumptions, continuations and hidden accumulator grammars. In ILPS (1995),
Citeseer, p. 642.

[91] van der Ploeg, A., and Kiselyov, O. Reflection without remorse:
revealing a hidden sequence to speed up monadic reflection. In Proceedings
of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden,
September 4-5, 2014 (2014), W. Swierstra, Ed., ACM, pp. 133–144.

[92] Wang, T., and Smith, S. F. Precise constraint-based type inference
for java. In European Conference on Object-Oriented Programming (2001),
Springer, pp. 99–117.

[93] Warren, D. H. An abstract prolog instruction set. Technical note 309
(1983).

[94] Wile, D. S. Abstract syntax from concrete syntax. In Proceedings of the 19th
international conference on Software engineering (1997), ACM, pp. 472–480.

[95] Wu, N., and Schrijvers, T. Fusion for free - efficient algebraic effect
handlers. In Mathematics of Program Construction (2015), vol. 9129 of LNCS,
Springer, pp. 302–322.

[96] Wu, N., Schrijvers, T., and Hinze, R. Effect handlers in scope. ACM
SIGPLAN Notices 49, 12 (2015), 1–12.

List of publications

Workshops papers

• Saleh, Amr Hany. "Transforming Delimited Control: Achieving
Faster Effect Handlers." In Proceedings of the Technical Communi-
cations of the 31st International Conference on Logic Programming
(ICLP 2015)

Technical reports

• Pretnar, Matija, Amr Hany Saleh, Axel Faes, and Tom Schrijvers.
"Efficient compilation of algebraic effects and handlers." Technical
Report CW 708, KU Leuven Department of Computer Science,
2017.

Papers at international conferences

• Saleh, Amr Hany, and Tom Schrijvers. "Efficient algebraic effect
handlers for Prolog." Theory and Practice of Logic Programming
16.5-6 (2016): 884-898.

• Saleh, Amr Hany, Georgios Karachalias, Matija Pretnar, and Tom
Schrijvers. "Explicit Effect Subtyping." In European Symposium
on Programming, pp. 327-354. Springer, Cham, 2018.

169

FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

DTAI

Celestijnenlaan 200A box 2402

B-3001 Leuven

ah.saleh@cs.kuleuven.be

https://dtai.cs.kuleuven.be

	Abstract
	Contents
	List of Figures
	Introduction
	Thesis Overview and Scientific Output
	Effect Handlers in Functional Programming
	Effect Handlers in Logic Programming

	Background
	Theory of Programming Languages
	Abstract Syntax
	Type Systems
	Operational Semantics

	Eff by Example
	Basic Example
	The N-Queens Problem

	Formal Definition of Eff
	Syntax
	Type System
	Operational Semantics

	Related Work
	Related Calculi
	Effect Handlers Implementations

	Optimised Compilation for Eff
	Motivation
	Compilation of Eff to OCaml
	Programming with Algebraic Effect Handlers
	Basic Compilation to OCaml
	Purity Aware Compilation
	Optimising Compilation

	Source-Level Optimisations
	Term Rewriting Rules
	Function Specialisation

	Basic Translation of Effy to OCaml
	Translating Types
	Translating Terms

	Purity-Aware Translation to OCaml
	Implementation in Eff
	Converting Source to Core Syntax
	Translating Higher-Order Functions
	Embedding pure computations into values
	Extensible Set of Operations

	Evaluation
	Eff versus OCaml
	Eff versus Other Systems

	Discussion

	Explicit Subtyping for Algebraic Effects
	Introduction
	Overview
	Elaborating Subtyping
	Polymorphic Subtyping for Types and Effects
	Guaranteed Erasure with Skeletons

	The ImpEff Language
	Syntax
	Typing
	Well-formedness of Types, Constraints, Dirts, and Skeletons for ImpEff

	The ExEff Language
	Syntax
	Typing
	Well-formedness of Types, Constraints, Dirts & Skeletons for ExEff
	Operational Semantics

	Type Inference & Elaboration
	Elaboration of ImpEff into ExEff
	Constraint Generation & Elaboration
	Constraint Solving
	Discussion

	Erasure of Effect Information from ExEff
	The SkelEff Language
	Typing
	Erasure
	Operational Semantics for SkelEff
	Discussion

	Conclusion and Discussion
	Eff related type systems

	Effect Handlers in Logic Programming
	Delimited Control and Algebraic Effect Handlers
	Delimited Control in Prolog
	Syntax and Informal Semantics
	Nested Handlers and Forwarding
	Elaboration Semantics

	Optimisation
	Effect System
	Rewrite Rules
	Partial Evaluation

	Evaluation
	Related Work
	Conclusion and Discussion
	Eff vs Prolog: Concepts
	Eff vs Prolog: Optimisations

	Conclusion and Future Work
	Summary of Contributions
	Effect handlers in Functional Programming
	Effect handlers in Logic Programming

	Ongoing and Future work
	Import optimisations to new Eff calculus
	Handler Merging in Eff
	Explicit subtyping for polymorphic effects
	Non tail-recursive continuations in Prolog
	WAM implementation of effect handlers in Prolog

	Proofs of Eff optimisations
	Soundness of Eff Rewriting rules
	Type Preservation of Basic Compilation

	Proofs and Detailed examples for Prolog
	Detailed parital evaluation example
	State-DCG handler example in focus
	Soundness of Rule (O-Disj)

	List of Symbols
	Bibliography
	List of publications

