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Abstract—Iterative Learning Control (ILC) can yield superior
performance for mechatronic systems that execute the same task
consecutively. One major limitation of ILC however, is that the
ILC algorithm has to relearn the optimal control input signal for
every new task, which is time consuming. The convergence speed
of the ILC can be improved by hot-starting new tasks, reusing
data available from previous tasks. A hot-start is an improved ini-
tial input for a new task, which minimizes the need for additional
learning. In this paper, a novel transformation-based approach
to hot-start tracking or non-tracking tasks for nonlinear systems
is derived. The proposed methodology is analysed in simulation
examples and its effectiveness is demonstrated experimentally.

I. INTRODUCTION

Iterative Learning Control (ILC) can yield superior perfor-
mance for mechatronic systems that execute the same task
consecutively [1], [2], [3]. The algorithm iteratively learns the
optimal control input signal by learning from the error signals
of previous iterations of the same task. ILC is therefore able
to compensate for repetitive disturbances, and only requires an
approximate model of the considered system [3], while still
achieving high performance, making this control strategy very
appealing for industry.

However, one major limitation is that for every new task,
the ILC algorithm has to relearn the optimal control input
signal. In an industrial setting, the optimal control signals
often need to be learned for a wide range of configurations
and tasks that—even though possibly very similar—require
multiple time-consuming learning procedures. Examples are
motions of weaving looms, where a wide range of patterns
needs to be woven, each being almost identical to at least
one other. Or looms with different cam profiles, realizing the
same type of motion but with small variations. Other examples
are positioning stages or pick-and-place robots, where similar
tasks emerge from variations of the start and stop point, the
allowed speed or acceleration, etc. Besides simply developing
a quickly converging ILC, the total learning time for such
applications can be drastically reduced by appropriately initial-
izing or hot-starting the learning for new tasks. This hot-start
yields an improved initial guess for the new task, reducing
the need for additional learning and therefore speeding up
convergence.

An algorithm that uses data of previously learned trajec-
tories to initialize a new task is developed in [4]. This is
done by deriving a transformation between the desired motion
trajectories of the past and the new task. While this approach
yields promising results, it assumes linear time-invariant (LTI)
system behavior and is only applicable when a reference signal
is available.

By employing basis functions, [5] parametrizes the ILC
control signal in terms of the task, such that the result can
be extrapolated towards different tasks. The downside of
this approach, however, is that it is only designed for LTI
systems. In [6], a multidimensional interpolation algorithm is
employed in order to share data between similar tasks, and the
capabilities of this approach are validated on an experimental
setup. The downside of this lookup table-based approach is
that the tasks need to be ordered on a specific grid, which is
not always straightforward.

This paper explores a more generic method by extending
the transformation-based approach of [4] towards nonlinear
systems. Moreover, the proposed approach is also applicable
to tasks that are not described by a motion trajectory. Such
tasks can involve complex objectives and constraints, aligning
it more with the current demands of industry. The approach
is furthermore extended towards the inclusion of multiple
past tasks and the developed concepts are validated both in
simulation and experimentally on a nonlinear mechatronic
system. The developed approach is combined with a generic
two-step ILC approach [7]: first an explicit model correction
is computed, followed by an optimization of the system inputs
using the corrected system dynamics. This ILC is implemented
using the learning control toolbox ROFALT [8].

The remainder of this paper is organized as follows. Section
II introduces the notation, the basics of the two-step ILC
approach and the considered problem. The approach from
[4] is revisited in Section III and is subsequently extended
towards nonlinear systems, alternative control objectives and
multiple past tasks in Section IV. While these extensions are
supported by simulation examples, an experimental validation
on a mechatronic slider-crank setup is conducted in Section V
and conclusions are drawn in Section VI.



II. PRELIMINARIES

A. Notation

A specific ILC iteration i is indicated by a subscript (·)i
and the collection of N time samples of an arbitrary signal
is denoted by xi = [xi(1) xi(2) . . . xi(N)]T . Utilizing
this notation, a generic nonlinear system ỹ = P (u) with the
observed output ỹ and applied input u is modeled as

y = P̂ (u) +α = h(u,α), (1)

where y is the expected output, P̂ are the modeled dynamics
and α denote additive, nonparametric correction terms that
are further explained below. The operator T (x) describes the
lower triangular Toeplitz matrix of a vector

T (x) =


x1 0 · · · 0
x2 x1 · · · 0
...

...
. . .

...
xN xN−1 . . . x1

 . (2)

B. ILC Algorithm

In this paper we make use of the generic two-step ILC
approach presented in [7]. Each ILC iteration i consists of
the following steps:

1) Control step: Given model correction terms αi (with
α0 = 0), calculate the input ui that minimizes a given
objective function J and constraints g:

ui = arg min
u

J (u,yi,αi) (3)

s.t. yi = h(u,αi),

g (u,yi,αi) ≤ 0.

If the objective is to follow a predefined reference yr, the
objective function can be chosen as J(yi) = ‖yr−yi‖22.

2) Model correction step: Calculate αi+1 that minimizes
the difference between the predicted output yi and
output ỹi observed after applying input ui:

αi+1 = arg min
α

‖ỹi − h(ui,α)‖22. (4)

C. Problem formulation

The use case considered is the motion control of a slider-
crank mechanism that converts a rotary motion θ, caused by
a torque τ , into a linear displacement xslider, as schematically
shown in Fig. 1. The goal is to perform a reference tracking
task or a point-to-point motion while minimizing a more
complex objective, such as the system’s energy consumption.
Using first principle modeling [6], a nonlinear dynamic model
P̂ is derived, which can be provided to ROFALT in the form
of ODEs [8]. In the following, a simulation study of the
mechanism will be performed, using a perturbed version of
the model P̂ to introduce model-plant mismatch.

III. EXISTING APPROACH FOR LTI SYSTEMS

In this section, the transformation-based approach from [4]
will be discussed. First, an overview of the method will be
provided, followed by an application to the considered use
case with an analysis of the results.

Fig. 1: Schematic representation of the setup.

A. Overview

The following assumptions are made in the context of the
existing transformation-based approach:

• P is a discrete-time, linear time-invariant (LTI) system
that can be equivalently expressed by ỹ = Pu, using the
lifted system representation [3].

• The system is modeled as y = P̂u.
• A reference tracking problem is considered with the

objective function being J(y) = ‖yr − y‖22.
• yr,[1] and yr,[2] are similar and have equal signal length
N .

The optimal input signal uopt,[1] that perfectly tracks yr,[1] is
then given by

uopt,[1] = P−1yr,[1]. (5)

It is assumed that, instead of using (5), this input signal
uopt,[1] is learned by applying ILC (cf. Section II-B) to
track the reference signal yr,[1], since exact knowledge of
the plant is not available. After learning this task, the goal
is to track another task with reference signal yr,[2]. Instead of
learning this task without any initial knowledge, [4] proposes
the following procedure to reduce the number of iterations
required to learn uopt,[2].

Procedure 1 Transformation-based approach for LTI systems

1: Construct the lower-triangular Toeplitz matrix Kr that
transforms the desired output of task 1 to the desired
output of task 2:

Kr = Y−1
r,[1]Yr,[2], (6)

where Yr,[i] = T (yr,[i]), with i ∈ [1, 2], according to (2).
2: Compute the hot-start to track yr,[2] – the estimated input

signal ûopt,[2] – as follows:

ûopt,[2] = Kruopt,[1]. (7)

The considered approach initializes task 2 using data of the
previously learned task 1, linearly approximating a potentially
nonlinear input-output relation through (6) and (7).

B. Simulation study for the slider-crank mechanism

In this section, the previously discussed Procedure 1 is
applied to the problem defined in Section II-C with the
objective of minimizing the tracking error for a given reference
yr. In Fig. 2, the initial input uinit,[1] is shown along with
the converged input uopt,[1] obtained from applying ILC. The
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Fig. 2: Reference trajectories (top) and respective initial and
optimal input signals for task 1 (middle) and task 2 (bottom),
with the hot-start ûopt,[2] for task 2 (bottom) derived using
Procedure 1.

initial input for task 2, uinit,[2], can be obtained without exe-
cuting any physical experiments. Finally, the hot-start ûopt,[2]
is derived using (6) and is also depicted in Fig. 2 along with
uinit,[2] and the converged input uopt,[2]. It can be seen that
ûopt,[2] significantly deviates from uopt,[2], indicating that Pro-
cedure 1 yields a poor hot-start for this problem. Additionally,
‖uopt,[2] − ûopt,[2]‖ > ‖uopt,[2] − uinit,[2]‖, suggesting that
the initial input is a better starting point for applying ILC,
compared to the computed hot-start. These findings can be
attributed to the fact that the linear approximation of the
nonlinear input-output relation is not capturing the system
dynamics well enough for changing references.

IV. NOVEL TRANSFORMATION-BASED APPROACH FOR
NONLINEAR SYSTEMS

In this section a novel transformation-based approach is pro-
posed that extends Procedure 1 towards nonlinear systems and
allows consideration of non-tracking tasks. First, an overview
of the proposed approach will be provided, where we will hot-
start the new task with data of one previous task. Second, the
approach will be extended such that the hot-start of the new
task can be composed of multiple past tasks.

A. Overview

Unlike the transformation-based approach presented in [4],
the approach proposed in Procedure 2 represents a linear
transformation exclusively in the input-space of the system.
When applied to nonlinear systems and under the assumption
of task similarity, nonlinearities of the input-output relation
are captured by the ILC algorithm and the proposed trans-
formation yields a hot-start superior to the result obtained by
Procedure 1. Since the proposed approach is not considering
the references but derives a transformation exclusively based
on inputs, another advantage is that it is not limited to tracking
tasks.

Procedure 2 Transformation-based approach for nonlinear
systems

1: Obtain uinit,[1] for task 1 by solving (3) with αi = 0.
2: Learn uopt,[1] by applying ILC (cf. Section II-B).
3: Obtain uinit,[2] for task 2 by solving (3) with αi = 0. Note

that this step does not require any physical experiments.
4: Construct K[i] that transforms uinit,[i] to uopt,[i] as

K[i] = U−1
init,[i]Uopt,[i], (8)

where Uinit,[i] = T (uinit,[i]) and Uopt,[i] = T (uopt,[i]).
5: Compute the hot-start for task 2 with i = 1 as follows:

ûopt,[2] = K[1]uinit,[2]. (9)

Proof that (9) is equal to (6) for LTI systems. Consider an
LTI system modeled with the non-singular, lower-triangular
Toeplitz matrix P̂ such that

uinit,[i] = P̂−1yr,[i]. (10)

Since it holds for Toeplitz matrices that

T (u)v = T (v)u ∀ u,v ∈ RN , (11)

one can reformulate (9) into

ûopt,[2] = U−1
init,[1]Uopt,[1]uinit,[2] (12)

= U−1
init,[1]Uinit,[2]uopt,[1] (13)

= (P̂−1Yr,[1])
−1P̂−1Yr,[2]uopt,[1] (14)

= Y−1
r,[1]Yr,[2]uopt,[1] = Kruopt,[1]. (15)

Hence, for LTI systems, Procedure 2 and Procedure 1 are
equivalent.

B. Reference tracking problem

In this section we revisit the tracking problem of Section
III-B, but using Procedure 2 to derive the hot-start ûopt,[2]. The
resulting hot-start is shown in Fig. 3, along with the previously
obtained input for the purpose of comparison. It is obvious that
the hot-start derived using Procedure 2 is significantly closer
to uopt,[2] than the hot-start obtained from Procedure 1. A
comparison of the tracking error resulting from the obtained
input signals is also given in Fig. 3, clearly showing that the



-2.5

0

2.5

5

Time [s]

In
pu

t
to

rq
ue

[N
m

]
uinit,[2]
uopt,[2]
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Fig. 3: Initial, optimal and hot-started (from Procedure 1 and
2) inputs (top) and their resulting tracking error (bottom).

hot-start using Procedure 2 yields the best performance. The
approach proposed in Procedure 2 thus provides a hot-start that
outperforms Procedure 1, resulting in a superior starting point
for the ILC algorithm and therefore requiring less iterations
to converge.

C. Minimizing energy consumption

In this section, the problem introduced in Section II-C is
considered with the objective to minimize energy consumption
of the system, denoted as

min
τ ,ω

∆tωT τ + ∆t
Rm
K2
m

τT τ , (16)

where ∆t is the sampling time, τ represents the torque, ω is
the angular velocity and Rm and Km denote the rotary motor
resistance and motor constant, respectively. Additionally, the
following motion constraints are taken into account:

• The key constraint, graphically represented in Fig. 4,
involves the timing of the displacement of the slider:

xslider(k) ≥ xmin ∀k ∈ {kleft, . . . , N − kright} . (17)

• The motor velocity must be positive at all times dθ
dt =

ω ≥ 0.
• The initial condition is set to θ0 = π, ω0 = 0.
• The final condition is set to θN = 3π, ωN = 0.

The two considered tasks have N = 150 samples with
kleft = kright = 35 for task 1 and kleft = kright = 44 for
task 2. The initial input uinit,[2] and the hot-start ûopt,[2]
(derived using Procedure 2) are shown in Fig. 5, along with
the converged input signal uopt,[2] if we would have applied
ILC directly. It can be seen that the resulting hot-start ûopt,[2]
resembles uopt,[2], which is also indicated by comparing the
normed difference ‖uopt,[2]− ûopt,[2]‖ < ‖uopt,[2]−uinit,[2]‖.
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Fig. 5: Initial input signal uinit,[2], the hot-start ûopt,[2] derived
using Procedure 2, and the optimal input signal uopt,[2] for task
2.

D. Inclusion of multiple previous tasks

As shown in Procedure 3, the proposed Procedure 2 can
be extended to take multiple past tasks into account, which is
supposed to increase the quality of the hot-start.

Procedure 3 Transformation-based approach for nonlinear
systems with inclusion of multiple past tasks

1: Given tuples
{
uinit,[i],uopt,[i]

}
∀ i ∈ I = {1, . . . , Ntasks}.

2: Compute K[i] ∀ i ∈ I according to (8).
3: For a new task j /∈ I obtain uinit,[j] and compute separate

hot-starts according to (9) for every past task as

û[j],[i] = K[i]uinit,[j]. (18)

4: Combine the generated hot-starts to form the actual hot-
start ûopt,[j]. A possible combination can be achieved by
using inverse distance weighting [9],

ûopt,[j] =

∑Ntasks
i=1 wi û[j],[i]∑Ntasks

i=1 wi
, (19)

where wi = (dpi )
−1 is a weight with di a scalar distance

measure from the data of tasks i and j and p is the power
of the weight.



Remark. An exemplary choice for di in (19) is to consider
the norm difference in nominal model inputs di = ‖uinit,[j]−
uinit,[i]‖. Alternatively, one can e.g. weigh on the basis of time
since last execution of the task, a certain machine parameter,
or even among different machines of the same type.

To show its effectiveness, Procedure 3 is applied to the
problem stated in Section IV-C, but with four similar past tasks
kleft = kright ∈ {36, 50, 40, 39} and kleft = kright = 44 for the
new task. In Fig. 6, the optimal inputs uopt,[i] of the past tasks
are shown along with the hot-starts from each past task to the
new task (18), where a substantial similarity of the separate
hot-starts can be seen, indicating that the nonlinear dynamics
of the slider-crank system are excited in approximately the
same way, despite the variation in tasks.
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Fig. 6: The optimal inputs (top) and the separate hot-starts
(middle) from four past tasks; the initial and optimal input
in comparison with the hot-start derived using Procedure 3
(bottom).

Employing (19) with wi = ‖uinit,[5]−uinit,[i]‖−1, the hot-
start ûopt,[5] is obtained as shown on the bottom of Fig. 6. Due
to the inclusion of multiple tasks, the quality of the hot-start
is increased compared to the results shown in Fig. 5.

In a typical application setting where we have to learn
consecutive tasks and in the case without hot-starts, as shown
in Fig. 7, the ILC has to relearn upon switching between
tasks, yielding chattering behavior in terms of energy con-
sumption and constraint violations on the slider displacement
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Fig. 7: Energy consumption for the considered tasks over
iterations.

in numerous iterations. With the application of the proposed
hot-starts, the chattering effect is drastically reduced, faster
convergence is obtained and the number of constraint viola-
tions is lower. Finally, Fig. 8 shows a detailed view of the
slider displacement in the first iteration of task 5. It is obvious
that the displacement obtained without a hot-start yields a
constraint violation, whereas the application of Procedure 3
reduces constraint violations significantly.
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Fig. 8: Comparison of the slider displacement in the first
iteration of task 5.

V. EXPERIMENTAL VALIDATION

In this section, the proposed approach of Procedure 3 will
be experimentally validated on the setup shown in Fig. 9. The
mechanism is driven by a motor that converts a rotary motion
into a linear displacement—a motion conversion that often
emerges in industrial applications. The challenging nonlinear-
ities of this setup stem from kinematic and dynamic effects
like dead points and discontinuities (e.g. due to Coulomb
friction). As a basis, we consider the problem of Section
IV-C, but with a task length of N = 600 samples, three
past tasks kleft = kright ∈ {210, 160, 190} and the new task
kleft = kright = 175.
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Fig. 9: The mechatronic setup with its components: Linear
slider (1), rotary motor (2) and the crank (3).

In Fig. 10, the three optimal inputs uopt,[i] for the past tasks
are shown along with the hot-starts from each past task to the
new task.
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ûopt,[4]
uopt,[4]

Fig. 10: The optimal inputs (top) and the separate hot-starts
(middle) from three past tasks; the initial and optimal input
in comparison with the hot-start derived using Procedure 3
(bottom).

Comparable conclusions to Section IV-D can be drawn,
namely that the nonlinear dynamics of the slider-crank system
are excited in a comparable way, despite the variation in tasks.
The three separate hot-starts are combined to form the hot-
start ûopt,[4] using wi = ‖uinit,[4] − uinit,[i]‖−1 in (19). The

result is shown on the bottom of Fig. 10, where it can be
seen that ûopt,[4] is very close to the optimal result uopt,[4],
confirming that the proposed approach is also applicable on
the experimental setup.

VI. CONCLUSIONS

In this paper, we have developed a transformation-based
approach to initialize or hot-start similar tasks in ILC, on the
basis of data obtained during previous tasks.

The goal is to minimize the total calibration time of an
industrial machine, if multiple tasks have to be learned. This
is done by extending the approach of [4] towards nonlinear
systems and tasks that are not described by a predefined
output trajectory, but involve more complex objectives and
constraints, aligning it more with current industrial demands.
Additionally, the approach is extended to include multiple past
tasks that are weighted based on the similarity of the tasks.
To show the effectiveness of the developed concepts they are
validated on a nonlinear mechatronic slider-crank setup, both
in simulation and experimentally.

Future research will be focussed on expanding the proposed
procedure to tasks with an unequal number of samples and
further analysis of its applicability and limitations, including
an analysis on the required level of similarity between tasks.
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