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Abstract

Definitive screening designs permit the study of many quantitative factors on a re-
sponse in a few runs more than twice the number of factors. In practical applications,
researchers often require a design for m quantitative factors, construct a definitive
screening design for more than m factors and drop the superfluous columns. This is
done when the number of runs in the standard m-factor definitive screening design
is considered too limited or when no standard definitive screening design exists for
m factors. In these cases, it is common practice to arbitrarily drop the last columns
of the larger design. In this article, we show that certain statistical properties of the
resulting experimental design depend on the exact columns to be dropped and that
other properties are insensitive to these columns. We perform a complete search for
the best sets of 1-8 columns to drop from standard definitive screening designs with
up to 24 factors. We observed the largest differences in statistical properties when
dropping four columns from 8- and 10-factor definitive screening designs. In other
cases, the differences are small, or even nonexistent. Supplementary materials for the
article are available online.

Keywords: Conference Matrix; D-efficiency; Isomorphism; Second-Order Model; Two-
Factor Interaction.
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1 Introduction

Screening designs permit the experimental study of many factors in a small number of

runs. Practitioners studying quantitative factors may not feel comfortable with screening

designs that restrict attention to two levels per factor. They could argue that screening

also requires checking whether a factor’s main effect is linear or not, and identifying active

two-factor interactions. To meet these concerns, Jones and Nachtsheim (2011) developed

three-level designs using a number of runs that is only one more than twice the number of

factors studied. The designs are now called definitive screening designs (DSDs).

The original DSDs presented by Jones and Nachtsheim (2011) were based on a heuristic

optimal design algorithm. For an odd number of factors and also for some even numbers of

factors, the original DSDs were not orthogonal. Xiao et al. (2012) presented a construction

of DSDs using conference matrices. A major advantage of that construction is that it

guarantees that the resulting DSDs are orthogonal. A drawback is that, for certain numbers

of factors, the number of runs of the resulting DSDs is larger than two times the number

of factors plus one. In this article, we refer to an n-factor DSD constructed from an n-

dimensional conference matrix as a standard DSD or sDSD.

As an illustration, Table 1 shows how a 10-factor sDSD is constructed from a 10 × 10

conference matrix C. The first ten runs in the table show the original conference matrix.

In general, a conference matrix C is an n-dimensional square matrix of −1s, 0s and 1s for

which CTC = (n− 1)In, where In is the n× n identity matrix. Consequently, the columns

of a conference matrix are orthogonal. This implies that a conference matrix is an ideal

building block for an orthogonal experimental design. For the design in Table 1, it is easy

to verify that CTC = 9I10.

The second set of ten runs of the 10-factor sDSD in Table 1 contains the mirror images

or the negatives of the first 10 runs. The sDSD’s final run is a center run in which all

factors are set at their middle level. Xiao et al. (2012) point out that their construction

guarantees that the linear main effects (LEs) are orthogonal to all second-order effects (i.e.,

the quadratic main effects (QEs) and the two-factor interaction effects (TFIs)), and that

the second-order effects are never completely aliased.

Conference matrices do not exist when n is odd, and when n is 22, 34 or 58 (Colbourn
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Table 1: Standard definitive screening design (sDSD) with 10 factors, constructed by folding

over a 10× 10 conference matrix C.

Part Run C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C 1 0 1 1 1 1 1 1 1 1 1

2 1 0 −1 −1 −1 −1 1 1 1 1

3 1 −1 0 −1 1 1 −1 −1 1 1

4 1 −1 −1 0 1 1 1 1 −1 −1

5 1 −1 1 1 0 −1 −1 1 −1 1

6 1 −1 1 1 −1 0 1 −1 1 −1

7 1 1 −1 1 −1 1 0 −1 −1 1

8 1 1 −1 1 1 −1 −1 0 1 −1

9 1 1 1 −1 −1 1 −1 1 0 −1

10 1 1 1 −1 1 −1 1 −1 −1 0

−C −10 −1 −1 −1 1 −1 1 −1 1 1 0

−9 −1 −1 −1 1 1 −1 1 −1 0 1

−8 −1 −1 1 −1 −1 1 1 0 −1 1

−7 −1 −1 1 −1 1 −1 0 1 1 −1

−6 −1 1 −1 −1 1 0 −1 1 −1 1

−5 −1 1 −1 −1 0 1 1 −1 1 −1

−4 −1 1 1 0 −1 −1 −1 −1 1 1

−3 −1 1 0 1 −1 −1 1 1 −1 −1

−2 −1 0 1 1 1 1 −1 −1 −1 −1

−1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1

0 11 0 0 0 0 0 0 0 0 0 0

and Dinitz, 2006). For this reason, it is impossible to construct sDSDs for which the run

size is as small as two times the number of factors plus one when the number of factors is

odd, or when it is 22, 34 or 58. To deal with this problem, Xiao et al. (2012) recommend

dropping columns from a sDSD with one, two or three columns more than the required
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number. For a design comparison, Dougherty et al. (2015) followed this recommendation

and generated a 9-factor design with 21 runs by dropping one column from the 10-factor

sDSD in Table 1. Fidaleo et al. (2016) used the same 9-factor DSD to investigate the

electrochemical decolorization of the azo dye RV5, a compound used for textile dyeing. In

this article, we refer to a DSD obtained by dropping one or more columns from a sDSD as

a projected DSD or pDSD.

Dropping k columns from a sDSD with n = m + k columns can result in an m-factor

design with better aliasing properties than an m-factor sDSD so that the pDSD is more

likely to identify the active effects. For instance, when comparing different cost-efficient

screening designs, Stone et al. (2014) preferred a 6-factor pDSD with 17 runs constructed

by dropping two columns from the 8-factor sDSD to a 6-factor 13-run sDSD, due to the

substantial aliasing between pairs of TFIs and between a QE and a TFI in the 13-run

design. Patil (2017) studied the impact of seven factors on a welding process where some

TFIs were expected to be active, and observed that the 7-factor design formed by dropping

one column from the 8-factor sDSD exhibited a substantial amount of aliasing among the

interactions. To reduce the aliasing, he dropped three columns from the 10-factor sDSD in

Table 1, and thus used a 21-run design instead of a 17-run design.

Errore et al. (2017) conducted a simulation study involving sDSDs and pDSDs with 8,

10 and 12 factors. The pDSDs were constructed by dropping two or four columns from

10-, 12-, 14- and 16-factor sDSDs. The simulations showed that an m-factor pDSD is more

likely to identify the active effects than an m-factor sDSD. For this reason, Errore et al.

(2017) recommend the use of m-factor pDSDs obtained by dropping two columns from

n-factor DSDs.

So far, no systematic study has been performed about the best subsets of k columns to

drop from a sDSD with n = m+ k columns. In each of the applications mentioned above,

the authors arbitrarily dropped the last k columns. This is also what commercial software

packages do. However, a motivating example detailed in Section 2 shows that there can

be marked differences in powers for detecting active effects and type-I error rates between

pDSDs obtained by dropping different sets of columns.

This article has three main contributions. Its first contribution is that it identifies
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the best sets of k columns to drop from sDSDs. This required us to define criteria that

distinguish the designs obtained by dropping columns. In Section 3, we show that several

criteria from the literature are insensitive to the sets of columns dropped, and that the

criteria that do depend on the sets of columns dropped are all based on correlations between

TFI contrast vectors. Our detailed study of criteria that do and do not depend on the sets

of columns dropped provide additional insights into the properties of DSDs, and forms the

second contribution of this article. In Section 4, we report the results of a complete search

for the best sets of 1-8 columns to drop from sDSDs for up to 24 factors. In Section 5, we

compare m-factor sDSDs to m-factor pDSDs with larger run sizes, obtained by dropping

different numbers of columns from sDSDs with more than m factors. In doing so, we

highlight the fact that TFI contrast vectors are, in several cases, more severely aliased in

pDSDs with larger run sizes than in sDSDs with smaller run sizes. Our detailed study

of this counterintuitive phenomenon is the third contribution of this article. Finally, in

Section 6, we conclude with a discussion and some suggestions for future research.

2 Motivating example

Our motivating example is inspired by the study of Stone et al. (2014) on alternative screen-

ing designs for an artificial 6-factor experiment. Using simulations, these authors compared

the performance of a 16-run two-level fractional factorial design, a 12-run Plackett-Burman

design, a 16- and a 24-run two-level no-confounding design (Jones and Montgomery, 2010)

and a 17-run pDSD to correctly identify two to four active LEs, up to three active TFIs

and up to two active QEs. In order to detect the second-order effects with the two-level

design options, it was possible to augment these designs with extra runs such as center or

axial runs, and to fold over the designs. The goal of the study was to identify the screening

design with the lowest expected cost for the complete experiment, measured by the total

number of runs used, the number of correctly identified active effects at the screening stage

and the efficiency of the estimates of these effects.

Here, we consider a situation where four out of six factors are active. The nonzero effects

involving these factors are their four LEs, their six TFIs and one QE. A sensible screening

design for this scenario would be a 6-factor 21-run pDSD obtained by dropping four columns
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(a) pDSDa utilizing columns C1-C6 (b) pDSDb utilizing columns C1-C5 and C7

Figure 1: Color maps showing absolute correlations between the LE and TFI contrast

vectors for two 6-factor pDSDs obtained from the 10-factor sDSD in Table 1.

from the 10-factor sDSD in Table 1. Let pDSDa be the design constructed by dropping the

last four columns, C7, C8, C9 and C10, of the 10-factor sDSD and let pDSDb be the design

constructed by dropping the columns C6, C8, C9 and C10 instead. Figure 1 visualizes the

absolute correlations between all pairs of contrast vectors corresponding to the LEs and the

TFIs for both design options. In the color maps, the largest absolute correlations for the

TFIs equal 0.75. They are visualized by the darkest off-diagonal cells. Figure 1a shows 18

of these dark off-diagonal cells (corresponding to nine pairs of TFIs), while there are only

12 such cells in Figure 1b (corresponding to six pairs of TFIs). The differences between

the design options are also reflected in the average absolute correlations and the sums

of squared correlations between all pairs of TFI contrast vectors. The average absolute

correlation is 0.221 for pDSDa and 0.207 for pDSDb. The sum of squared correlations

equal 8.25 and 6.75 for pDSDa and pDSDb, respectively. So, the aliasing between the TFIs

is more severe when dropping the last four columns of the design in Table 1 than when

dropping the columns C6, C8, C9 and C10.

The difference in the average absolute correlations and in the sum of squared correlations
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between the two pDSD options may have major consequences for any data analysis using

the two screening designs. To illustrate this, we conducted a simulation study assuming

that the signal-to-noise (SN) ratio for the active LEs, TFIs and QEs equals two, which is

the smallest SN ratio considered in the simulation study of Stone et al. (2014). The model

used for the simulations is formally described in supplementary Section A. In this section,

we consider the scenario in which the active factors were allocated to the last columns of

pDSDa and pDSDb. We simulated 1,000 responses for each design and determined the set

of effects declared active using the two-step approach of Jones and Nachtsheim (2017); see

supplementary Section A for details about this method as well as the selection of its tuning

parameters. We assessed the performance of the pDSDs in terms of powers and type-I error

rates. We calculated the power as the fraction of the simulations for which the active effects

were correctly declared active, and the type-I error rate as the fraction of the simulations

for which the inactive effects were incorrectly declared active. The supplementary materials

of this article include an R implementation of our simulation study.

Figure 2a shows the powers for the seven active second-order effects given our assignment

of the active factors to the designs’ columns. Both for pDSDa and pDSDb, the powers for the

active LEs all equal 1 (not shown). The figure shows that the powers for the active second-

order effects for pDSDb are uniformly larger than those for pDSDa. More specifically, the

powers for pDSDa are in the range 0.28-0.39, while, for pDSDb, the powers for the active

TFIs range from 0.71 to 0.96, and the power for the active QE equals 0.50. Figure 2b shows

the type-I error rates for the 14 inactive second-order effects. The type-I error rates for the

inactive LEs were very close to zero for both pDSDa and pDSDb (not shown). Figure 2b

shows that the type-I error rates tend to be smaller for pDSDb than for pDSDa, since

the maximum type-I error rate for pDSDa and pDSDb are 0.62 and 0.34, respectively. In

summary, Figure 2 demonstrates that, in the presence of several active TFIs, the reduced

aliasing of pDSDb when compared to pDSDa results in a more correct detection of the

active effects.

We conducted the above simulation study for all 15 possible assignments of the active

factors to the designs’ columns and provide a comprehensive discussion of the results in

supplementary Section A. The results show that pDSDa has the unfavorable powers and

7



0.00

0.25

0.50

0.75

1.00

pDSDa pDSDb

P
ow

er

(a) Power

0.00

0.25

0.50

0.75

1.00

pDSDa pDSDb

Ty
pe

−
I e

rr
or

 r
at

e

(b) Type-I error rate

Figure 2: Powers for the active second-order effects and type-I error rates for the inactive

second-order effects for pDSDa, constructed by dropping the last columns of the 10-factor

21-run sDSD in Table 1, and pDSDb, constructed by dropping the columns C6, C8, C9 and

C10. Black bars: powers and type-I error rates for TFIs; gray bars: powers and type-I error

rates for QEs.
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type I error rates from Figure 2 for three of the assignments, and the favorable ones for the

12 other assignments. For pDSDb, two of the assignments have the unfavorable powers and

type I errors, while the other 13 have the favorable ones. Given our results, we conclude

that pDSDb is preferable to pDSDa.

3 Criteria to evaluate projected definitive screening

designs.

To evaluate all possible pDSDs as comprehensively as possible, we considered all the sta-

tistical criteria that have been used to evaluate DSDs in the literature, and express these

criteria as functions of the numbers of columns dropped from the sDSDs. The criteria

either do not depend on the exact columns dropped from the sDSDs or they do depend

on these columns. Obviously, the criteria that do not depend on the columns dropped are

not helpful to select the best possible pDSDs. The criteria that do depend on the columns

dropped allow us to determine which pDSDs ought to be preferred, and play a central role

in Section 4. We discuss the two groups of criteria in separate subsections.

3.1 Criteria that do not depend on the columns dropped

Supplementary Section B shows analytical expressions for (i) relative D-efficiencies to es-

timate the model with all LEs and the model with all LEs and QEs; (ii) relative standard

errors for LE and QE estimates in these models; (iii) correlations between pairs of QE

contrast vectors; (iv) correlations between the contrast vector of a QE and a TFI; and, (v)

correlations between pairs of TFI contrast vectors involving three factors. Each of these

properties only depend on the numbers of factors in the pDSDs and the numbers of columns

that were dropped from the sDSDs. So, these measures do not depend on the exact set of

columns dropped from a sDSD. They all improve with the run size of the pDSD, except

for the correlation between pairs of QE contrast vectors which increases to 1/3 for large

run sizes. Expressions similar to (i)-(v) were given by Jones and Nachtsheim (2011), Xiao

et al. (2012) and Georgiou et al. (2014). Our expressions differ from the ones derived in

the earlier articles in that they are written as a function of the number of columns dropped
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from sDSDs.

In this section, we provide expressions for powers of significance tests in a null model,

in a model including all LEs and in a full response surface model in two or three factors.

To the best of our knowledge, our analytical expressions for these properties are new to

the literature on DSDs.

3.1.1 Null model and model with all linear effects

Departing from a model including only the intercept or from a model containing the inter-

cept and all LEs, we can conduct t tests for individual LEs, QEs and TFIs. Four pertinent

tests are shown in Table 2. The first two columns in the table identify the hypothesis to

be tested, while the third column shows the terms that appear in the model besides the

effect to be tested. The fourth column shows the degrees of freedom ν for the t statistic.

The last column is the non-centrality parameter λ of the non-central t-distribution needed

to calculate the power of the test. In the table’s second column, βi, βii and βij represent

the LE of factor i, the QE of factor i and the interaction between the factors i and j

(where i 6= j), respectively. The derivations for the degrees of freedom and non-centrality

parameters are included in supplementary Section B.

Table 2: Degrees of freedom ν and non-centrality parameters λ for various significance tests

using a pDSD, assuming a signal-to-noise ratio of 1 for the effect tested. Setting k = 0

shows the results for a sDSD.

Label Hypothesis Model terms ν λ

L1 βi = 0 Intercept only 2(m+ k)− 1
√

2(m+ k)− 2

Lme βi = 0 Intercept + all LEs 2k +m
√

2(m+ k)− 2

Qme βii = 0 Intercept + all LEs 2k +m− 1
√

6(m+k−1)
2(m+k)+1

Ime βij = 0 Intercept + all LEs 2k +m− 1
√

2(m+ k)− 4
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The first test, labeled L1, is useful for testing whether adding a LE to a model containing

only the intercept has added value. The second test in Table 2, labeled Lme, is useful in

a scenario where the experimenter first fits a model including all m LEs and then tests

whether one LE can be removed. The third and fourth test, labeled Qme and Ime, are

relevant in situations where the experimenter first fits a model including the intercept and

all m LEs, and then tests whether adding a single QE or a single TFI improves the model

significantly.

All non-centrality parameters λ listed in Table 2 are increasing functions of k. As a

result, the powers for the four significance tests increase with k and with the number of

runs. The powers for the four significance tests can all be calculated as

1− Prob(−tν,α/2 < Tν,λ < tν,α/2),

where Tν,λ is a random variable following a non-central t-distribution with ν degrees of

freedom and non-centrality parameter λ, and −tν,α/2 and tν,α/2 are the critical values based

on a central t-distribution with ν degrees of freedom for a significance level equal to α.

The non-centrality parameters and the resulting powers are independent of the sets of k

columns dropped from an (m+k)-factor sDSD, and from the values of i and j in the effects

tested (i.e., βi, βii and βij); see supplementary Section B for details.

The λ values in Table 2 assume that the absolute values of βi, βii and βij equal the

standard deviation of the responses, σ. In other words, the non-centrality parameters we

report correspond to signal-to-noise ratios of 1. To calculate the power for βi, βii and βij

values equal to δσ, the non-centrality parameter λ has to be multiplied by δ.

Finally, expressions for the powers of the tests L1, Lme, Qme and Ime for sDSDs can be

obtained from those in Table 2 by setting k = 0.

3.1.2 Response surface model in two or three factors

For any two factors, an (m+k)-factor sDSD projects into a face-centered central composite

design, in which the four factorial points each appear (m+k)/2 times, and the center point

as well as the four axial points occur only once. This is also true for any m-factor pDSD

obtained from an (m+ k)-factor sDSD, independent of which k columns are dropped from

the sDSD. As a result, all two-factor projections from a sDSD and any pDSD obtained
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from it are identical. All statistical properties of two-dimensional projections of sDSDs

and pDSDs are therefore also identical.

Schoen et al. (2018) shows that all three-factor projections from a sDSD and from any

pDSD derived from it are isomorphic. The isomorphism implies that the D-efficiency for

a second-order model in three factors is the same for each three-factor projection of a

sDSD and for any pDSD derived from it. Similarly, the I-efficiency is the same for each

three-factor projection of a sDSD or a pDSD obtained from it.

When fitting full second-order models in two or three quantitative factors, it is common

to perform significance tests for the individual QEs and the individual TFIs. Table 3 lists

the four tests, the degrees of freedom ν for the tests as well as the values for the non-

centrality parameter λ needed for calculating the powers of the tests. The tests labeled Q2

and I2 are concerned with a QE and a TFI in a two-factor response surface model, while

the tests labeled Q3 and I3 are concerned with a QE and a TFI in a three-factor response

surface model. In the expressions for the non-centrality parameters for the latter two

tests, we replaced m+ k by n to save space. Jones and Nachtsheim (2011) also considered

the tests Q2 and I2 for evaluating DSDs, but they did not provide analytical expressions.

Expressions for the powers of these tests for sDSDs can be obtained from those in Table 3

by setting k = 0.

The power calculations for the hypotheses Q3 and I3 include two cases each because

the correlations between contrast vectors involving three factors can take different signs,

depending on whether n = m+k is a multiple of 4 or not (recall that, due to the construction

of sDSDs using conference matrices, n = m+ k is always even). Due to these differences in

signs, the expressions for the non-centrality parameters for the hypotheses Q3 and I3 also

differ depending on whether n = m+ k is a multiple of 4 or not.

As in the tests in Table 2, the non-centrality parameters in Table 3 correspond to signal-

to-noise ratios of 1. To calculate the power for βii and βij values equal to δσ in the tests

in Table 3, the non-centrality parameter λ has to be multiplied by δ.
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Table 3: Degrees of freedom ν and non-centrality parameters λ for various significance tests

when using a pDSD for fitting a full second-order response surface model in two or three

factors, assuming a signal-to-noise ratio of 1. Setting k = 0 or n = m shows the results for

a sDSD.

Label Hypothesis ν λ Comment

Q2 βii = 0 2(m+ k)− 5
√

2(4m−7)
3(m+k−1)

Any n = m+ k

I2 βij = 0 2(m+ k)− 5
√

2(m+ k)− 4 Any n = m+ k

Q3 βii = 0 2(m+ k)− 9
√

2(5n3−33n2+51n+4)
4n3−21n2+24n+2

n = m+ k is a multiple of 4

√
2(5n3−43n2+109n−86)
4n3−29n2+54n−26

n = m+ k is an odd multiple of 2

I3 βij = 0 2(m+ k)− 9
√

2(5n3−33n2+51n+4)
5n2−19n+14

n = m+ k is a multiple of 4

√
2(5n3−43n2+109n−86)

5n2−29n+36
n = m+ k is an odd multiple of 2

3.2 Criteria that do depend on the columns dropped

Different sets of k columns dropped from a sDSD can result in different correlations between

the contrast vectors of two TFI effects βij and βkl, corresponding to four different factors

i, j, k and l. For an (m + k)-factor sDSD and any m-factor pDSD obtained from it by

dropping k columns, the absolute values of the correlations between the contrast vectors

of βij and βkl can take the values

rij,kl =
n− 4τ

n− 2
,

where 1 ≤ τ ≤ bn/4c, and n = m + k. This follows from Corollary 1 in Schoen et al.

(2018). The maximum possible absolute correlation therefore is

1− 2

n− 2
.
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This expression tends to 1 as n increases, but, even for small n, it can take a fairly large

value. For instance, for the 10-factor sDSD in Table 1, the maximum correlation is 1 −

2/(10 + 0 − 2) = 3/4, while the only other possible correlation value equals 1/4. None of

the correlations can be zero. Similarly, the 8-factor sDSD also only involves two different

values for the absolute correlation, namely 0 and 2/3. For that sDSD, certain pairs of

interactions βij and βkl have uncorrelated contrast vectors, while other pairs of interactions

have contrast vectors that have the maximum absolute correlation of 2/3. The 16-factor

sDSD involves the absolute correlations 0, 2/7, 4/7 and 6/7 for pairs of interactions βij

and βkl. Note that the absolute correlation of 6/7 is the maximum one possible.

In any case, the maximum absolute correlations of 2/3, 3/4 and 6/7 for the 8-, 10- and

16-factor sDSDs show that two interactions of the types βij and βkl can be strongly aliased

when sDSDs or pDSDs are used, especially when k is large. A consequence of this result

is that a broad range of rij,kl values is possible when an m-factor pDSD is obtained from

a large (m+ k)-factor sDSD. The challenge then is to drop the k columns that result in a

pDSD that avoids as many large correlations of the type rij,kl as possible.

4 Best sets of k columns to drop

We performed a complete search for the best sets of k columns to drop from an (m + k)-

factor sDSD for m + k ∈ {6, 8, . . . , 20, 24} and k ≤ 8. To this end, we considered several

statistical criteria that summarize the correlation between pairs of TFI contrast vectors

with four different factors. The n-dimensional conference matrices used to construct the

n-factor sDSDs were obtained from Xiao et al. (2012) for n = 8, 10, 12, 14, 16 and 18.

For n = 20 and 24, sDSDs were obtained from JMP 12. We introduce the criteria in

Section 4.1 and identify the best sets of k columns to drop from the sDSDs in Section 4.2.

The supplementary materials of this article include R programs to reproduce all the results

in this section.

14



4.1 Classification criteria

The pDSDs (and also the sDSDs) resemble two-level orthogonal designs of strength three.

For instance, orthogonal designs of strength three provide LE contrast vectors which are

neither correlated with each other nor with the TFI contrast vectors. For this reason,

two-level strength-3 orthogonal designs are commonly classified in terms of the correlation

between pairs of TFI contrast vectors. Two well-known criteria in this context are the max-

imum J4-characteristic (Deng and Tang, 1999) and the B4 count (Tang and Deng, 1999).

The maximum J4-characteristic measures the maximum absolute correlation between pairs

of TFI contrast vectors while the B4 count measures the sum of squared correlations. In-

spired by these criteria, we considered the maximum absolute correlation and the sum of

squared correlations between pairs of TFI contrast vectors involving four factors, to classify

the pDSDs obtained by dropping different sets of columns. We also considered the average

absolute correlation between pairs of TFI contrast vectors involving four different factors,

since this criterion was discussed in Jones and Nachtsheim (2011) when evaluating sDSDs.

4.2 Results

We identified the best and worst sets of columns to drop according to each of the three

classification criteria (maximum absolute correlation, average absolute correlation and sum

of squared correlations). It turned out that the rankings produced by the three criteria

agreed for most combinations of m + k factors and k columns to drop. Detailed results

on the best and worst sets of 1-8 columns to drop are given in Table S3 in supplementary

Section C. Here, we present an overview of our most important results, restricting attention

to k ≤ 4. We refer to a set of columns that is best/worst in terms of all criteria as the

overall best/worst set.

Table 4 shows the overall best sets of 1-4 columns to drop from each (m + k)-factor

sDSD. Sometimes, there are multiple overall best sets of columns that give rise to equally

good pDSDs. In that case, we report the overall best set of columns that involves the

largest indices. For all cases where the set of columns dropped does not affect the quality

of the resulting design, we inserted the entry ‘Any’ in the table.

Table 4 shows that we can drop any single column, any pair of columns and any triplet
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Table 4: Overall best sets of k columns to drop from an (m + k)-factor sDSD, in terms

of the maximum absolute correlation, average absolute correlation and sum of squared

correlations between pairs of TFI contrast vectors.

# factors in sDSD # columns dropped (k)

(m+ k) 1 2 3 4

6 Any Any Any Any

8 Any Any Any Last four

10 Any Any Any 6, 8, 9, 10

12 Any Any Any 7, 8, 10, 12

14 Any Any Any Last four

16 Any 8, 16 Last three Last four

18 Any Any Any Last four

20 Any Any Any 14, 17, 18, 20

24 Any Any Any 20, 22, 23, 24

of columns from an (m+k)-factor sDSD without affecting the TFI contrast vectors’ correla-

tions (in other words, without affecting the aliasing among the TFIs), except when starting

from the 16-factor sDSD. As a result, Dougherty et al. (2015), Fidaleo et al. (2016), Patil

(2017), and Stone et al. (2014) coincidentally used the best possible pDSD for their exper-

iment. Any other choice of columns to drop for this particular case would have resulted in

an equivalent pDSD for their experiments.

Dropping different sets of four columns from a sDSD generally results in pDSDs with

different values of the correlation criteria for TFIs. To construct pDSDs for 4, 10, 12 and

14 factors from 8-, 14-, 16- and 18-factor sDSDs, respectively, the overall best option is to

drop the last four columns. However, the motivating example in Section 2 showed that a

21-run 6-factor pDSD obtained by dropping columns 6, 8, 9 and 10 from a 10-factor sDSD

is better than the one obtained by dropping the last four columns. Dropping columns 6, 8,

9 and 10 is in fact the overall best option. Similar results hold for dropping four columns

from 12-, 20- and 24-factor sDSDs.
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Table 5 shows to what extent the choice of the set of columns dropped from a sDSD

affects the correlations among TFI contrast vectors in a pDSD. More specifically, it shows

a comparison of the average and maximum absolute correlations for TFI contrast vectors,

as well as of the sum of the squared correlations, for the best and the worst set of columns

dropped from a sDSD. Table 5 only covers the 10 cases in which the set of columns dropped

matters when k ≤ 4 (i.e., the cases for which Table 4 does not have the entry ‘Any’). For

each combination of number of factors and number of columns dropped, the results for the

overall best set are shown first followed by the results for the overall worst set, except for

m + k = 16 and k = 4. For this case, we report two worst sets of columns as there is

no overall worst set. The first set is worst according to the average absolute correlation,

whereas the second set is worst according to the sum of squared correlations. Both of the

sets have the same maximum absolute correlation.

The largest difference between the best and the worst sets of k columns is for the case in

which four columns are dropped from the 8-factor sDSD. For that case, the overall best set

provides a maximum absolute correlation as small as 0.167, an average absolute correlation

of 0.133, and a sum of squared correlations of 0.333. In contrast, the overall worst set has a

maximum absolute correlation of 0.667, an average absolute correlation of 0.267, and a sum

of squared correlations of 1.667. As explained in the previous section, the value of 0.667 is

the maximum possible value for the correlations between pairs of TFI columns involving

four different factors when m+ k = 8.

In all other cases, the maximum correlation is not affected by the columns dropped.

However, the average correlations and the sum of squared correlations are smaller when the

overall best sets of columns are dropped. For m+k = 10, there is an appreciable difference

in average absolute correlation and in the sum of squared correlations. We illustrated the

impact of this difference in average absolute correlation and sum of squared correlations in

Section 2. For m+ k ≥ 12, the best and worst sets of columns to drop result in only minor

differences in terms of the average absolute correlation and the sum of squared correlations.

In conclusion, dropping the last few columns from a sDSD is generally a good strategy,

except when leaving out four columns from an 8 or a 10-factor sDSD.
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Table 5: Comparison of the average and maximum correlations among TFI contrast vectors

and of the sum of the squared correlations between the best and worst sets of k columns

dropped from an (m+ k)-factor sDSD.

# Factors Set size Run size Average Maximum Sum of squared

(m+ k) k 2(m+ k) + 1 correlation correlation correlations

8 4 17 0.13333 0.167 0.3333

0.26667 0.667 1.6667

10 4 21 0.20714 0.75 6.7500

0.22143 0.75 8.2500

12 4 25 0.19048 0.4 23.7600

0.19365 0.4 24.2400

14 4 29 0.19394 0.5 58.0000

0.19495 0.5 58.6667

16 4 33 0.12747 0.857 115.0408

0.13467 0.857 116.0204

0.12867 0.857 117.2449

16 3 33 0.13173 0.857 166.0102

0.13458 0.857 166.0102

16 2 33 0.13333 0.857 231.8571

0.13585 0.857 231.8571

18 4 37 0.18159 0.375 201.1875

0.18178 0.375 201.5625

20 4 41 0.17292 0.444 322.2222

0.17311 0.444 322.8148

24 4 49 0.13479 0.364 693.3471

0.13485 0.364 693.7438
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5 Comparing DSDs with different run sizes

Creating pDSDs by dropping columns from sDSDs is useful because it increases the number

of runs for a given number of factors under investigation. This results in smaller standard

errors and larger numbers of estimable TFIs, for instance. We demonstrate the benefits of

pDSDs by looking at power curves for 6-factor designs, namely the 6-factor sDSD and five

6-factor pDSDs obtained by dropping 2, 4, 6, 8 and 10 columns from 8-, 10-, 12-, 14- and

16-factor sDSDs, respectively. Our findings support those of the simulation study in Errore

et al. (2017), in that increasing the run size of the design generally leads to larger powers.

However, in contrast to these authors, we use the analytical expressions in Tables 2 and 3

to determine the power curves and show separate results for the different kinds and sizes

of effects. In this way, we provide more insight into the capabilities of sDSDs and pDSDs

to detect active LEs, TFIs and QEs.

5.1 Power for significance tests

Figure 3 shows the power curves for the four types of tests in Table 2, assuming a significance

level of 0.05 and signal-to-noise ratios of 1 and 2. The horizontal axis in the figure shows

the numbers of columns dropped from the larger sDSDs and the number of runs in the

resulting pDSD. The figure shows that the powers for the four tests increase with k and

thus with the run size. The powers for the QEs’ significance tests are much lower than the

powers for the other tests. Figure 3a shows that QEs with the same size as σ are unlikely

to be detected, as the power is only about 25%. Figure 3b shows that QEs twice as large

are more likely to be detected. However, the power for the QEs is still markedly lower

than the powers for LEs and TFIs of that size. The powers for active LEs and TFIs that

are twice as large as σ equal one for the 6-factor sDSD and any pDSD constructed from a

larger sDSD.

Based on Figure 3a, we cannot recommend the 6-factor sDSD involving 13 runs (and

having k = 0) when effects as large as the noise are of interest. Instead, we recommend the

17-run pDSD used by Stone et al. (2014) and constructed by dropping two columns from an

8-factor sDSD. For this option, the powers of the tests for the LEs and the TFIs are larger

than 0.86. Larger designs only marginally improve the powers. When the signal-to-noise
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Figure 3: Statistical power for testing the hypotheses in Table 2 for the sDSD with m = 6

factors (k = 0) and several pDSDs (k > 0). N : run size of the design. � : L1; © : Lme;

4 : Qme; + : Ime.

ratio is greater than or equal to 3, the powers for all tests in Table 2 are larger than 0.90,

even for the 6-factor sDSD. We conclude that it is worth considering a pDSD with four

extra runs (and thus k = 2) when the interest is in detecting small effects. This agrees

with the recommendation of Errore et al. (2017).

Figure 4 shows the power curves for the tests in Table 3 for the 6-factor sDSD and

the 6-factor pDSDs constructed by dropping 2, 4, 6, 8 and 10 columns from sDSDs with

8, 10, 12, 14 and 16 factors, respectively. The signal-to-noise ratios assumed to construct

the curves were again 1 and 2. Comparing this figure with Figure 3, we observe that the

powers for hypothesis Q2 hardly differ from those for hypothesis Qme, while the powers for

hypothesis I2 lie between those for hypotheses Ime and Lme. The powers for hypotheses Q3

and I3 in the context of a three-factor model are lower than those for the hypotheses Q2

and I2 in the context of a two-factor model.

Figure 4a shows that QEs with the same size as σ are unlikely to be detected when a

second-order model in three factors is estimated. The powers for the QEs are only about

25% in that case. The figure also shows that, for TFIs, powers of 75% or more are achieved

only when a 6-factor pDSD is formed with at least four more runs than the sDSD (by
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Figure 4: Statistical power for testing the hypotheses in Table 3 for the sDSD with m = 6

factors (k = 0) and several pDSDs (k > 0). N : run size of the design. � : Q2; © : I2;

4 : Q3; + : I3.

dropping two or four columns from an 8- or 10-factor sDSD). Figure 4b shows that the

powers for effects that are twice as large as the standard deviation of the noise are much

larger than those for effects that are as large as the standard deviation of the noise. The

power for hypothesis test Q3, however, remains substantially smaller than 1 for any of the

run sizes considered here. Signal-to-noise ratios greater than or equal to three times the

noise’s standard deviation result in powers larger than 0.90 for all tests listed in Table 3,

except for hypothesis Q3, in the event the sDSD is used. In conclusion, when testing QEs

end TFIs in 2- or 3-factor second-order models, it pays off to use a pDSD involving more

runs than the sDSD to detect effects with sizes equal to or twice the standard deviation of

the noise.

5.2 Aliasing of TFIs

Based on the results reported in Section 4, we investigated whether pDSDs have the poten-

tial to improve the aliasing pattern of TFIs in sDSDs. We studied pDSDs involving 4-18

and 20 factors constructed by dropping the overall best sets of 1-4 columns from sDSDs
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with up to 24 factors. For even numbers of factors up to 16, we consider the three designs

obtained by dropping 0, 2 and 4 columns. For 18 and 20 factors, we consider only two

different designs because there exists no 22-factor sDSD. So, 18- and 20-factor pDSDs can

only be constructed starting from the 20- and 24-factor sDSDs. For odd numbers of factors

up to 17, we consider the pDSDs constructed from sDSDs with one and three extra factors.

For 19 factors, this is impossible, again because because there is no 22-factor sDSD. For

this reason, we do not discuss the 19-factor case here.

Figure 5 shows the average absolute correlation, maximum absolute correlation and

sum of squared correlations between pairs of TFI contrast vectors for the designs under

study. Figures 5a, 5c and 5e show the results for even numbers of factors m, while Figures

5b, 5d and 5f show the results for odd numbers of factors m. Figures 5a and 5b show the

average absolute correlations, Figures 5c and 5d show the maximum absolute correlations,

and Figures 5e and 5f show the logarithm of the sum of squared correlations.

Figures 5a shows that pDSDs with 4, 6, 10, 12, 18 and 20 factors have a smaller average

absolute correlation between pairs of TFI contrast vectors than the corresponding sDSDs.

Similarly, Figure 5b shows that 5-, 9-, 11-, 13- and 17-factor pDSDs with six extra runs and

thus k = 3 also have a smaller average absolute correlation between pairs of TFI contrast

vectors than the corresponding pDSDs with only two extra runs. The largest decrease in

average correlation is for the 4-factor designs where the 9-run sDSD provides an average

absolute correlation of 0.4, while the 17-run pDSD obtained from the 8-factor sDSD has

an average as low as 0.13.

For 7 and 15 factors, increasing the run size by four (i.e., using k = 3 instead of k = 1)

causes the average absolute correlation between pairs of TFI contrast vectors to go up. For

eight factors, the pDSD with four extra runs (corresponding to k = 2) has a larger average

absolute correlation than the sDSD (k = 0), and it is the pDSD with eight extra runs

(k = 4) which has the smallest average absolute correlation. For 14 and 16 factors, the

best design options in terms of the average absolute correlation are the pDSD obtained by

dropping two columns from the 16-factor sDSD and the 16-factor sDSD itself, respectively.

The 16-factor sDSD turns out to perform well in terms of the average correlation, as the

best 12-, 13-, 14-, 15- and 16-factor designs in terms of that criterion are all based on it.
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Figure 5: Correlations between pairs of TFI contrast vectors.
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Figures 5c and 5d show that the patterns in the maximum absolute correlations are quite

different from those in the average absolute correlations. More specifically, both figures

show that, for designs with 5-7, 11-13, 17 and 18 factors, the maximum absolute correlation

increases with the run size. The largest increase in maximum absolute correlation is for

designs with 12 factors. The 12-factor sDSD provides a maximum absolute correlation of

0.4, while the pDSD with eight extra runs (corresponding to k = 4) exhibits a maximum

of 0.857. For 8-10, 15, 16 and 20 factors, however, there are pDSDs which have smaller

maximum absolute correlations than the corresponding sDSDs.

Regarding the sum of squared correlations between pairs of TFI contrast vectors, Figures

5e and 5f show that increasing the run size of pDSDs reduces the sum of squared correlations

for all numbers of factors. So, although the average and maximum absolute correlations

between TFI contrast vectors are exacerbated when using specific pDSDs instead of sDSDs,

the sum of squared correlations of the larger options is always smaller than for the sDSDs.

Figure 5 shows that the pDSD options used by Patil (2017) and Stone et al. (2014) were

not optimal in terms of the maximum absolute correlation between pairs of TFI contrast

vectors. While the 6-factor design with 17 runs of Stone et al. (2014) provides a smaller

average absolute correlation than the 6-factor sDSD, it has a larger maximum absolute

correlation (0.67 versus 0.5). The 7-factor design with 21 runs and k = 3 of Patil (2017)

has larger maximum and average absolute correlations between its pairs of TFI contrast

vectors than the 7-factor design with 17 runs and k = 1.

If there is one thing that Figure 5 makes clear, it is that certain sDSDs and pDSDs

involve very large absolute correlations between pairs of TFIs, indicating close to complete

aliasing. Particularly unfavorable in this respect are the pDSDs constructed by dropping

columns from the 16-factor sDSD, because all of these designs have quite a number of

absolute correlations of 0.857 (despite the fact that the average correlations for this design

are small). However, these large correlations only become problematic if many TFIs are

active. Figure 5 also shows that, if a large maximum absolute correlation is a major concern,

alternative design options with a maximum absolute correlation below 0.5 are available for

all numbers of factors, except 7. For applications involving seven factors in which many

TFIs are expected to be active, we recommend dropping five columns from the 12-factor
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sDSD because the absolute correlations between the TFI contrast vectors for the resulting

design are smaller than or equal to 0.4.

6 Discussion

In this article, we studied projected DSDs or pDSDs for m factors constructed by drop-

ping sets of k columns from sDSDs with m + k factors. We considered sDSDs with 6-24

factors, and studied the pDSDs resulting from dropping sets of 1-4 columns. Table S3

in supplementary Section C includes additional results we found on dropping up to eight

columns.

The sDSDs used in this study were constructed from conference matrices. This allowed

us to derive analytical expressions for several criteria from the literature on DSDs. In

supplementary Section B, we derive expressions for the relative D-efficiency to estimate

the LEs model and the LEs-plus-QEs model for pDSDs with different run sizes, as well as

analytical expressions for the relative standard errors for the LE and QE estimates. We

also derived expressions for the non-centrality parameter required for calculating the power

of various significance tests. We showed that the correlations between two QE contrast

vectors, a QE and a TFI contrast vector, and between two TFI contrast vectors involving

a common factor are independent of the set of k columns dropped from the (m+ k)-factor

sDSD. Supplementary Section B also includes analytical expressions for these correlations.

How well multiple TFIs can be estimated at the same time depends on the selection of

the sets of k columns to drop from the sDSDs. Using a complete search, we identified the

best sets of columns to drop in terms of the average absolute correlation, the maximum

absolute correlation, and the sum of squared correlations between pairs of TFI contrast

vectors. The differences between the best and worst sets were largest when dropping four

columns from the 8- and 10-factor sDSDs. Table S3 in supplementary Section C shows

moderate or small differences when dropping more than four columns from a sDSD except

when dropping columns from the 10-factor sDSD or eight columns from the 12-factor sDSD.

For these cases, the maximum absolute correlation of the worst option is more than three

times as large as that of the best option. We conclude that dropping the last few columns

from a sDSD constructed using the method of Xiao et al. (2012) is generally a good strategy.
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We also compared designs with different run sizes constructed by dropping columns from

sDSDs with different run sizes in terms of the average absolute correlation, the maximum

absolute correlation, and the sum of squared correlations between pairs of TFI contrast

vectors. We found that increasing the run size for a given number of factors, which is

equivalent to dropping more columns from larger sDSDs, improves the sum of squared

correlations between pairs of TFI contrast vectors. However, the average and maximum

absolute correlations do not necessarily improve. In fact, these values may even increase

with the run size of the pDSD. Thus, in order to limit the amount of aliasing between TFIs,

a careful design selection is needed. For certain sDSDs and pDSDs, quite large numbers of

TFIs are nearly completely aliased.

The sDSDs have also been adapted to deal with two-level categorical factors and with

blocking factors. The methods developed by Jones and Nachtsheim (2013) and Nguyen

and Pham (2016) to include k two-level categorical factors in a DSD transform the last k

columns into two-level columns. Picking other columns than the last k may yield better

designs. Similarly, the blocking schemes of Jones and Nachtsheim (2016) convert the last

k columns of DSDs into blocking factors. Possibly, better designs can be obtained by

using other columns to create the blocking factor. Investigating these issues would be an

interesting avenue for future research too.

SUPPLEMENTARY MATERIAL

Supplementary sections.pdf Details on the simulation protocol and results; discussion

and derivations of design properties; and, table with detailed results about dropping

from 1-8 columns from standard definitive screening designs.

Supplementary files.zip Simulation protocol and programs to identify the best sets of

columns to drop from standard definitive screening designs.
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