Guest Lecture: Current Trends in Artificial Intelligence, 2 February 2015, Brussels

Historical Linguistics and AI

Dirk Pijpops, QLVL research unit, University of Leuven

- Historical Linguistics
- Agent-based modelling
- Example: own research

- Subfield of linguistics which asks how and why languages change
- Languages change

Drifts

Cycles: grammaticalization of the French future tense

Latin-Old French		Middle French		Modern French
<i>ego cantabo</i> I sing-FUT				
<i>je chanter ai</i> I to sing have	\rightarrow	<i>je chanterai</i> I sing-FUT	\rightarrow	<i>je chanterai</i> I sing-FUT
		<i>je vais chanter</i> I go to sing	\rightarrow	<i>je vais chanter</i> I sing-FUT

 Drifts: deflexion, e.g. loss of case in the Germanic and Romance languages

∃ x, y: girls(y) & women(x) & caressing(x, y) puell-as femin-ae permulcent

De vrouwenaaiende meisjes.The womencaressthe girls

Dat zijn de meisjes die de vrouwen aaien.

...de meisjes die zij aaien

...de meisjes die hun aaien

subject	object
ik	mij
jij	jou
hij/zij	hem/haar
wij	ons
jullie	jullie
zij	hun

- Nou, hun zeggen dat...
 Well, them say that...
- Dan zegt hem weer...
 Then says him again

- Dirks fiets → Dirk zijn fiets
 Dirk's bike Dirk his bike
- iets leuks something fun
- \rightarrow iets leuk
 - something fun

Why is historical linguistics of interest to researchers in AI?

- Interest in language: Turing test, robot communication, learning, the emergence of language
- How do (rules in) languages come into being?
 - Grammaticalization (e.g. French future tense)
 - Exaptation (e.g. Dutch adjectival inflection, Dutch gender)
 - Reanalysis (e.g. Dutch z'n-construction)

Why is Artificial Intelligence of interest to historical linguists?

[G. Ed. ;	p. 463.]	NO	MINATIV	TE FEMIN	INE.	then, that
SANSKRIT.	ZEND.	GR. DOR.	LATIN.	GOTHIC.	LITHUANIAN.	OLD SCLAVONIC.
prathamā,	frathema,1	πρώτα	prima,	fruma,	pirmà,	perva-ya.
dwitiyâ,	bitya,	δευτέρα,	altera,	anthara,	antrà,	viora-ya.
tritîyâ,	thritya,	τρίτā,	tertia,	thridy6',	tréchià,	treti-ya.
chaturtha,2	tilirya,	τετάρτα,	quarta,	(fidvordo'),	ketwirtd,	chetverta-ya.
panchamā,	pugdha,	πέμπτα,	quinta,	fimfto",	penktà,	pyala-ya.s
shashtha,	ostvá,4	ёкта,	sexia,	saihsto',	szészta,	shesta-ya.
saptamā,	haptatha,	έβδόμā,	septima,	(sibundő'),	sékma,	sedma-ya.
ushtamâ,	astēma,	dydóā,	octava,	ahtudő,	ászma,	osma-ya.
navamå,	nâuma,	έννάτα,	nona,	niund6',	dewintà,5	devyala-ya.5
dašamā,	dašema,	δεκάτα,	decima,	taihundó',	deszimtà,	desyata-ya.
Ekādašā,	aévandaia,6	ένδεκάτα,	undecima,	(ainliftő'),	wienólikta,	yedina-ya-na-desya
vinsati tamã,	vîsaititěma ?	είκοστα,	vicesima,		dwideszimtà,	vtoraya-na-desyaty

(Bopp 1885: 452)

Aggregate grammaticalisation score (jittered)

Datapoints, chronological

Aggregate grammaticalisation, with lowess regression line (Correlation: Kendall tau = 0.126, p < 0.0001)

(Petré & Van de Velde 2014)

Iterative learning experiments

- No concrete language changes
- Limited in scope

Agent-based modelling / multi-agent systems

(Guerreiro et al. 2013)

(Dhamdher & Dovrolis 2009)

(Bazghandi 2012)

(Steels & Spranger 2008)

\Rightarrow Can it happen like this?

	Masc	Neut	Fem		Masc	Neut	Fem		Masc	Neut	Fem
		Singular				Singular				Singular	
NOM	dër	daz	diu		dër	daz	diu		der	das	die
ACC	dën	daz	die		dën	daz	die		den	das	die
DAT	dëmu	dëmu	dëru		dëm	dëm	dër		dem	dem	der
GEN	dës	dës	dëru		dës	dës	dër		des	des	der
	Plural					Plural				Plural	
NOM	die	diu	deo		die	diu	die		die	die	die
ACC	die	diu	deo		die	diu	die		die	die	die
DAT	dēn	dēn	dēn		dën	dën	dën		den	den	den
GEN	dëro	dëro	dëro		dër	dër	dër		der	der	der
							ļ				
	Old High German			\rangle	Middle Hi	gh Gerr	nan	\rangle	New H	ligh Gei	rman
9(00		11	í 00			15	00			19

(van Trijp 2014: 3)

- Explain the collapse of the Germanic, Romance,... case systems
 - Historical accident (Baerman 2009)
 - Universal case hierarchy (Hawkins 2004)
 - Language use (van Trijp 2012, 2013)

	Masc	Neut	Fem		Masc	Neut	Fem		Masc	Neut	Fem
		Singular				Singular				Singular	
NOM	dër	daz	diu		dër	daz	diu		der	das	die
ACC	dën	daz	die		dën	daz	die		den	das	die
DAT	dëmu	dëmu	dëru		dëm	dëm	dër		dem	dem	der
GEN	dës	dës	dëru		dës	dës	dër		des	des	der
	Plural					Plural				Plural	
NOM	die	diu	deo		die	diu	die		die	die	die
ACC	die	diu	deo		die	diu	die		die	die	die
DAT	dēn	dēn	dēn		dën	dën	dën		den	den	den
GEN	dëro	dëro	dëro		dër	dër	dër		der	der	der
							ļ				
	Old High German			\rangle	Middle Hi	gh Gerr	nan	\rangle	New H	ligh Gei	rman
9(00		11	í 00			15	00			19

(van Trijp 2014: 3)

Break

Guest Lecture: Current Trends in Artificial Intelligence, 2 February 2015, Brussels

The Rise of the Weak Inflection in Germanic

Dirk Pijpops, QLVL research unit, University of Leuven Katrien Beuls, Artificial Intelligence Lab, Vrije Universiteit Brussel

The Rise of the Weak Inflection in Germanic

- The Story
- The Model
- The Results
- The Conclusions

(Pijpops & Beuls 2015)

- Germanic past tense
 - Strong: $ik \ loop \rightarrow ik \ liep$ I run I run-PAST
 - Weak: \rightarrow *ik loopte*
 - I run-PAST

Competition between the strong and weak strategies

Strong			Weak		
krijg	\rightarrow	kreeg	lach	\rightarrow	lachte
lieg	\rightarrow	loog			
zuig	\rightarrow	z00g			
drink	\rightarrow	dronk			
zwem	\rightarrow	zwom			
sterf	\rightarrow	stierf			
spreek	\rightarrow	sprak			
zit	\rightarrow	zat			
vaar	\rightarrow	voer			
blaas	\rightarrow	blies			
vang	\rightarrow	ving			

- Germanic past tense
 - Strong: $ik \ loop \rightarrow ik \ liep$ I run I run-PAST
 - Weak: *ik lopen deed* \rightarrow *ik loopte* I to run did I run-PAST

Competition between the strong and weak inflections

- Weak inflection is becoming dominant
- Weak inflection first takes over the low frequency verbs and then works its way up to the more frequent verbs
 - \Rightarrow Why?
 - \Rightarrow Influence of learners

- May work for the current situation (in English):
 - Strong vowel alternations are (mostly) irregular
 - Weak inflection is more frequent
- Doesn't work for the situation in Germanic:
 - Strong vowel alternations are still regular
 - Weak inflection has only just been born
 - \Rightarrow General applicability

Adding a new inflection only further complicates matters

krijg	\rightarrow	kr <mark>ee</mark> g
lieg	\rightarrow	loog
zuig	\rightarrow	zoog
drink	\rightarrow	dr <mark>o</mark> nk
zwem	\rightarrow	zwom
sterf	\rightarrow	stierf
spreek	\rightarrow	sprak
zit	\rightarrow	zat
vaar	\rightarrow	voer
blaas	\rightarrow	blies
vang	\rightarrow	ving

Adding a new inflection only further complicates matters

krijg	\rightarrow	kr <mark>ee</mark> g
lieg	\rightarrow	loog
zuig	\rightarrow	z00g
drink	\rightarrow	dronk
zwem	\rightarrow	zwom
sterf	\rightarrow	stierf
spreek	\rightarrow	sprak
zit	\rightarrow	zat
vaar	\rightarrow	voer
blaas	\rightarrow	blies
vang	\rightarrow	ving
lach	\rightarrow	lach <mark>te</mark>

- Agent-based
- 10 agents
- Past events: 257 verbs
- FCG grammar: 11 strong patterns + 1 weak one
- Memory of previously heard forms: Corpus of Spoken Dutch

Competition formula:

Ik schrijf + PAST 'I wrote'

schreef

schrijf<mark>de</mark>

Competition formula:

Ik schrijf + PAST 'I wrote'

p("schreef") ~ heard("schreef") + heard(pattern 1)

p("*schrijfde*") ~ heard("*schrijfde*") + heard(pattern weak)

Competition formula:

Ik schrijf + PAST 'I wrote'

Replenishment

Replenishment

Learning

Learning

learner agent

Original corpus input, no replenishment

Original corpus input, new agent every 2500 interactions

• Given a high enough replenishment rate,...

- The weak strategy can grow to become dominant, even starting from a vastly inferior position
- The weak strategy first takes over the low frequency verbs, then the more frequent verbs

- Rise of the weak inflection as a byproduct of language use
- Learners do not actively try to change the language, they just try to express something

The Conclusions

Evolutionary advantages of both inflections

- Strong inflection: shorter e.g. *I ran* ↔ *I runned*
- Weak inflection: generally applicable

The Conclusions

- Conditions which favor the weak inflection
 - Sociohistorical conditions: many language learners
 - Linguistic conditions: low frequent verbs
 - ⇒ Both inflections can co-exist for a long time
 - \Rightarrow Expansion of weak inflection can be slowed down

• No short term effect

Criticism

The Conclusions

- No short term effect
- Given the right conditions, huge long term effect

- In historical linguistics, sociohistorical changes, like increased language contact, influx of new learners etc.: often named as causes or catalysts of languages changes
- Agent-based models can be used to test their long-term effects

 Techniques from Artificial Intelligence, such as agentbased modelling, can be useful in the most unexpected disciplines

Look outside of your field

for further information: dirk.pijpops@kuleuven.be

References

Baerman, Matthew. 2009. Case Syncretism. *The Oxford handbook of case*, 219–230. Oxford: Oxford University Press.
 Bazghandi, Ali. 2012. Techniques, Advantages and Problems of Agent Based Modeling for Traffic Simulation. *International Journal of Computer Science Issues* 9(1). 115–119.

- Bopp, Franz. 1885. A comparative grammar of the Sanskrit, Zend, Greek, Latin, Lithuanian, Gothic, German, and Slavonic languages. 4th ed. London: Williams.
- Carroll, Ryan, Ragnar Svare & Joseph Salmons. 2012. Quantifying the evolutionary dynamics of German verbs. (Ed.) Ryan Carroll. *Journal of Historical Linguistics* 2(2). 153–172
- Dhamdher, Amogh & Constantine Dovrolis. 2009. An agent-based model for the evolution of the internet ecosystem. *COMSNETS. 1st International Conference on Communication Systems and Networks*, 1–10.
- Guerreiro, Orlando & Miguel Ferreira. 2013. Towards an Agent Based Modeling: The Prediction and Prevention of the Spread of the Drywood Termite Cryptotermes brevis. *Progress in Artificial Intelligence. 16th Portuguese Conference on Artificial Intelligence, EPIA 2013*, 480–491.
- Hawkins, John A. 2004. Efficiency and complexity in grammars. Oxford: Oxford university press.
- Petré, Peter & Freek Van de Velde. 2014. Tracing real-life agents' individual progress in ongoing grammaticalization. In Luc Steels, Freek Van de Velde & Remi Van Trijp (eds.), *How grammaticalization processes create grammar: from historical corpus data to agent-based models*, 48–51.
- Pijpops, Dirk & Katrien Beuls. 2015. Strong "islands of resilience" in the weak flood. Dutch strategies for past tense formation implemented in an agent-based model. *Computational Linguistics in the Netherlands (CLIN)*. February 6, Antwerp.

Steels, Luc & Michael Spranger. 2008. The robot in the mirror. *Connection Science* 20(4). 337–358.

- Trijp, Remi van. 2012. Self-Assessing Agents for Explaining Language Change: A Case Study in German. *Proceedings of the 20th European Conference on Artificial Intelligence.* Montpellier: France.
- Trijp, Remi van. 2013. Linguistic Selection Criteria for Explaining Language Change: A Case Study on Syncretism in German Definite Articles. *Language Dynamics and Change*, 3(1):105-132.

Trijp, Remi Van. 2014. Fitness landscapes in cultural language evolution: a case study on german definite articles.