
Exact and Approximate Weighted Model Integration with
Probability Density Functions Using Knowledge Compilation

Pedro Zuidberg Dos Martires and Anton Dries and Luc De Raedt
KU Leuven, Belgium

firstname.lastname@cs.kuleuven.be

Abstract

Weighted model counting has recently been extended to
weighted model integration, which can be used to solve hybrid
probabilistic reasoning problems. Such problems involve both
discrete and continuous probability distributions. We show
how standard knowledge compilation techniques (to SDDs
and d-DNNFs) apply to weighted model integration, and use
it in two novel solvers, one exact and one approximate solver.
Furthermore, we extend the class of employable weight func-
tions to actual probability density functions instead of mere
polynomial weight functions.

1 Introduction
The state-of-the-art method for inference in probabilistic
graphical models reduces inference to weighted model count-
ing (WMC) (Chavira and Darwiche 2008), while utilizing
knowledge compilation (KC) (Darwiche and Marquis 2002).
Knowledge compilation transforms the logical structure un-
derlying a graphical model into an equivalent target repre-
sentation. Although the knowledge compilation step itself is
computationally hard, answering queries in the target repre-
sentation only requires polytime.

Standard weighted model counting only supports discrete
probability distributions. To repair this omission, WMC
has recently been extended towards weighted model in-
tegration (WMI) (Belle, Passerini, and Van den Broeck
2015), supporting additionally continuous variables. How-
ever, the weight functions supported within current formula-
tions of WMI (Belle, Passerini, and Van den Broeck 2015;
Belle et al. 2016; Morettin, Passerini, and Sebastiani 2017;
Kolb et al. 2018) allow only for piecewise polynomial func-
tions. Moreover, none of these prior works has studied the
applicability of knowledge compilation to WMI.

The key contribution of this paper is that we show how to
handle actual probability density functions instead of piece-
wise polynomials in the context of WMI by applying stan-
dard knowledge compilation techniques. To this end, we cast
weighted model integration within the framework of alge-
braic model counting (AMC) (Kimmig, Van den Broeck, and
De Raedt 2017). More specifically, we make the following
contributions:

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. We introduce the probability density semiring.
2. We show how this allows us to cast WMI within AMC and

thereby to use the general body of literature on knowledge
compilation.

3. We introduce Symbo, a solver for WMI that realizes knowl-
edge compilation and exact symbolic inference.

4. We introduce Sampo, a solver for WMI that realizes knowl-
edge compilation and approximate inference via sam-
pling.

Symbo exploits the PSI-Solver by (Gehr, Misailovic, and
Vechev 2016) to simplify algebraic expressions, while Sampo
is based on mapping the arithmetic circuit that results from
the KC step onto Edward (Tran et al. 2016), a probabilistic
programming language wrapped around TensorFlow (Abadi
et al. 2015). The latter transforms approximate inference in
probabilistic programs into an embarrassingly parallelizable
task.

2 Preliminaries
2.1 Weighted Model Integration
Compared to the well-known SAT problem, where the prob-
lem consists of deciding whether there is a satisfying assign-
ment to a logical formula or not, an SMT problem generalizes
SAT to additionally allowing the use of expressions formu-
lated in a background theory.
Example 1. Consider the SMT theory broken:

broken↔ (no cool ∧ (t > 20)) ∨ (t > 30) (1)

where no cool is a Boolean variable and t a real-valued
variable. SMT then answers the question whether or not there
is a satisfying assignment to the formula for the variables
no cool and t.

In this paper we consider real arithmetic, non-linear real
arithmetic and linear real arithmetic SMT formulas.
Definition 1. (SMT(RA) (real arithmetics)) Let R denote
the set of reals, B = {⊥,>} the set of Boolean values, let B be
a set of M Boolean and X a set of N real variables. An atomic
formula is an expression of the form g(X) ./ c, where c ∈ R,
./∈ {=,,,≥,≤, >, <}, and g : RN → R.

We then define SMT(RA) theories as Boolean com-
binations (by means of the standard Boolean operators

{¬,∧,∨,→,↔}) of Boolean variables b ∈ B and of atomic
formulas over X.

We distinguish two special cases:

• SMT(NRA) (non-linear real arithmetics): atomic formu-
las take the form

∑
i ci · xpi

i ./ c, where the xi ∈ X and
ci, c, pi ∈ Q.

• SMT(LRA) (linear real arithmetics):
∑

i ci · xi ./ c, where
the xi ∈ X and ci, c ∈ Q.

We have introduced different kinds of SMT formulas as dif-
ferent WMI solvers are only applicable to certain SMT theo-
ries. For instance, the solver proposed by (Morettin, Passerini,
and Sebastiani 2017) is only applicable to SMT(LRA),
whereas Symbo can handle SMT(NRA) and Sampo even
SMT(RA).

Definition 2. (Interpretation of SMT formula) Let J and K
be two sets of variables and φ be an SMT formula over J
and K. The set of total interpretations (or total assignments)
that satisfy φ is the set of assignments to the elements in J
and K that satisfy ∃J,∃K : φ(J,K). We denote the set of total
interpretations by IJ,K(φ). The set of partial interpretations
is denoted by IJ(φ), which is the set of assignments to J
that satisfy ∃K : φ(J,K). The set of total assignments to
a partially interpreted formula is denoted by IJ(φk), which
denotes the set of assignments to the elements in J that satisfy
φ(J,k), with k ∈ IK(φ).

Consider again the theory broken (cf. Eq. 1). Assume
that t is distributed according to: t ∼ Nt(20, 5) and that
the probability for no cool being true is 0.01. Determining
the probability of the formula being true extends the SMT
problem to weighted model integration.

Definition 3. (Weighted model integration (WMI)) Given a
set B of M Boolean variables, X of N real variables, a weight
function w : BM × RN → R+, and an SMT formula φ over
B ∪ X, the weighted model integral is

WMI(φ,w | X, B) =
∑

b∈IB(φ)

∫
x∈IX (φb) w(x,b)dx (2)

For the remainder of the paper we will assume that the
weight function factorizes as:

w(x,b) = wx(x)wb(b) = wx(x)
∏

bi∈bwb(bi) (3)

with wb : BM → R and wx : RN → R. We can assume this
without loss of generality as any weight function that does not
follow this factorization can be rewritten as a sum of weight
functions over mutually exclusive partial assignments to the
Boolean variables, where each individual term of the sum
factorizes according to Eq. 3. The weighted model integral is
then expressed as a sum over weighted model integrals. We
additionally assume that the weight function wb(b) further
factorizes as

∏
bi∈b wb(bi). See also Definition 6.

2.2 Algebraic Model Counting
Definition 4. (Weighted model counting (WMC)). WMC is
the special case of weighted model integration where the set
of real variables is empty: X = ∅.

WMC is traditionally used for probabilistic inference in
Bayesian networks (Chavira and Darwiche 2008) and proba-
bilistic programming (Fierens et al. 2015) with a factorized
weight function: WMC(φ,w|B) =

∑
b∈I(φ(B))

∏
bi∈b w(bi).

Algebraic model counting (Kimmig, Van den Broeck, and
De Raedt 2017) generalizes WMC to commutative semirings.
More formally,
Definition 5. A commutative semiring is an algebraic struc-
ture (A,⊕,⊗, e⊕, e⊗) equipping a set of elements A with
addition and multiplication such that (1) addition ⊕ and mul-
tiplication ⊗ are binary operationsA×A → A; (2) addition
⊕ and multiplication are associative and commutative binary
operations over the setA; (3) ⊗ distributes over ⊕; (4) e⊕ ∈ A
is the neutral element of ⊕; (5) e⊗ ∈ A is the neutral element
of ⊗; and (6) e⊕ is an annihilator for ⊗.
Definition 6. (Algebraic model counting (AMC)) (Kimmig,
Van den Broeck, and De Raedt 2017) Given:
• a propositional logic theory φ over a set of variables B
• a commutative semiring (A,⊕,⊗, e⊕, e⊗)
• a labeling function α : L → A, mapping literals L from

the variables in B to values from the semiring setA
The algebraic model count of a theory φ is then defined as:

AMC(φ, α|B) =
⊕

b∈IB(φ)

⊗
bi∈b α(bi)

We use α instead of w and the term label rather than weight
to reflect that the elements of the semiring cannot always be
interpreted as weights.

2.3 Knowledge Compilation
Knowledge compilation (Darwiche and Marquis 2002) can be
regarded as the process of transforming a propositional logic
formula into a form that allows for polytime evaluation of
the formula. Although the knowledge compilation step itself
is computationally hard, the overall procedure yields a net
benefit when a logical circuit has to be evaluated multiple
times, possibly with different weights for the literals.

A popular language to compile propositional formulas
into are Sentential Decisions Diagrams (SDDs) (Choi 2013),
which we also use to implement our two solvers Symbo and
Sampo. SDDs are a subset of d-DNNF formulas (a graphical
representation of an example SDD is illustrated in Figure
1). SDDs and d-DNNFs are well-known target langauges for
knowledge compilation and they have been used in state-of-
the-art inference engines for Bayesian networks. In order to
guarantee a correct evaluation of a compiled propositional
formula, we require the neutral-sum property to hold:
Definition 7. (Neutral-sum property) A semiring addition
and labeling function pair (⊕, α) is neutral if and only if
∀b ∈ B : α(b) ⊕ α(¬b) = e⊗. (Kimmig, Van den Broeck, and
De Raedt 2017)
Theorem 1. (AMC on d-DNNF) ((Kimmig, Van den Broeck,
and De Raedt 2017, Theorem 4)) Evaluating a d-DNNF rep-
resentation of the propositional theory φ, using Algorithm
1 in (Kimmig, Van den Broeck, and De Raedt 2017), for a
semiring and labeling function with neutral tuple (⊕, α) is
a correct computation (cf. (Kimmig, Van den Broeck, and
De Raedt 2017, Definition 10)) of the algebraic model count.

3 The Probability Density Semiring
We are now going to define the probability density semiring
and the labeling function, cf. Definition 6. This will allow us
to cast WMI as AMC.

Definition 8. (Atomic formula abstraction) Let c(X) be
an atomic formula (cf. Definition 1), absc(X) is then called
the atomic formula abstraction of c, given that (absc(X) ↔

∃X.c(X)) holds.

Definition 9. (Labeling function α) Let l be a literal. Then
the label of the literal l is given by:

α(l) B
{

(p(l), ∅) if l Boolean variable
([c(X)], X) if l is an atomic formula abstraction

In the former case, p(l) denotes the probability for l being
true and in the latter case, c(X) denotes the condition of which
l is the abstraction.

The label of a negated literal ¬l is given by:

α(¬l) B
{

(1 − p(l)), ∅) if l is a Boolean variable
([¬c(X)], X) if l atomic formula abstraction

The brackets [.] around [c(X)] denote the so-called Iverson
brackets (Knuth 1992). They evaluate to 1 if their argument
c(X) evaluates to true and to 0 otherwise.

Example 2. Applying the labeling function α to the literals
in our running example yields, for example: α(no cool) =
(0.01, ∅) and α(abst>20) = ([t > 20], {t}).

Definition 10. (Probability density semiring S) The ele-
ments of the semiring S are given by the set

A B {(a,V(a))} (4)

where a denotes any algebraic expression over RA andV(a)
the set of real variables occurring in a. The neutral elements
e⊕ and e⊗ are defined as:

e⊕ B (0, ∅) e⊗ B (1, ∅) (5)

For the addition and multiplication we define:

(a1,V(a1)) ⊕ (a2,V(a2)) B (a1 + a2,V(a1 + a2)) (6)
(a1,V(a1)) ⊗ (a2,V(a2)) B (a1 × a2,V(a1 × a2)) (7)

Example 3. An example of an algebraic expression over RA
would be 0.01 × [s + 20 < t] × [t ≤ 30] + [t > 30], s ∈ R,
t ∈ R.

Lemma 1. The structure S = (A,⊕,⊗, e⊕, e⊗) is a commu-
tative semiring.
Proof (Sketch). We need to show that the properties in Def-
inition 5 hold. The proof relies on the commutativity and
associativity of the Iverson brackets under standard addi-
tion and multiplication. Similarly for the distributivity of
the multiplication over the addition (cf. Property 3). Lastly,
properties 4 to 6 are trivially satisfied. We conclude that the
structure S is indeed a commutative semiring. �

Lemma 2. The pair (⊕, α) is neutral, i.e. α(l) ⊕ α(¬l) = e⊗,
where l is a literal.
Proof. We have two cases:

1. l is a Boolean variable, α(l) ⊕ α(¬l) = (P(l), ∅) ⊕ (1 −
P(l), ∅) = (1, ∅).

2. l is an atomic formula: α(l) ⊕ α(¬l) = ([l],V([l])) ⊕
([¬l],V([¬l])) = ([l] + [¬l],V([l] + [¬l])) =
([>],V([>])) = (1, ∅) �

Lemma 3. (AMC on d-DNNF with S) The algebraic model
count is a correct calculation on a d-DNNF representation of
a logic formula given the density semiring S.
Proof. This follows immediately from Lemma 1 and 2, to-
gether with Theorem 1. �

4 WMI via AMC
A key difference between WMI and AMC is that in an AMC
task there is no integral. This intuitively implies that we
need to perform an integration on the algebraic model count
if we want to cast WMI using AMC: “WMI =

∫
AMC”.

Additionally, WMI is defined on SMT formulas and AMC on
propositional logic formulas. We address these differences in
theorem 2, which also allows us to show that WMI can be
cast as AMC.
Theorem 2. Let φ be an SMT(RA) formula over the Boolean
variables in the set B and continuous variables in the set
X. Let φa be the propositional logic formula over the set
of Boolean variables B and BX , where BX is the set of
abstractions of atomic formulas (cf. Definition 8) in φ.
Let w be a weight function over the Boolean variables
in B and the continuous variables in X. Furthermore, let
AMC(φa, α|BX ∪ B) evaluate to (Ψ,V(Ψ)) in the semiring S,
with Ψ =

∑
v∈IB,BX (φa)

∏
vi∈v avi .Then

WMI(φ,w|X, B) B
∫

x∈X Ψwx(x)dx (8)

where X is the set of all possible assignments to the variables
inV(Ψ).
Proof In the first step we rewrite Ψ (an example is given in
Example 3) as the sum-product over the algebraic expres-
sions av. The av are the probability or Iverson labels of the
literals from Definition 9. In the second step (P2 to P3) we
split up the sum and the product over the variables v into
sums over the abstractions of atomic formulas axi and atomic
propositions abi - likewise for the product. bi and x j denote
the assignment to a specific variable in the set of assignments
b and xa respectively. The superscript b in φb

a indicates a
specific assignment to the Boolean variables corresponding
to the atomic propositions. Next (P3 to P4), we push the prod-
uct over the atomic propositions through and note that this
product corresponds to the weight of the Boolean variables
wb(b).∫

x∈X Ψwx(x)dx P1

=
∫

x∈X

(∑
v∈IB,BX (φa)

∏
vi∈v avi

)
wx(x)dx P2

=
∫

x∈X
∑

b∈IB(φa)
∑

xa∈IBX (φb
a)

∏
bi∈b,x j∈xa abi ax j wx(x)dx P3

=
∫

x∈X
∑

b∈IB(φ)
∑

xa∈IBX (φb
a)

∏
x j∈xa ax j wb(b)wx(x)dx P4

=
∑

b∈IB(φ)

∫
x∈X

∑
xa∈IBX (φb

a)
∏

x j∈xa ax j w(x,b)dx P5

=
∑

b∈IB(φ)

∫
x∈IX (φb) w(x,b)dx P6

In P5 we exchanged the summation and the integration (as-
suming that Fubini’s theorem (Fubini 1907) holds). We also
rewrote the product of the weight functions for the Booleans
and for the continuous variables as a single weight function,
assuming that the weight function factorizes accordingly. The
integral over the so-obtained sum-product is the integral over
Iverson brackets. In P6 we rewrite the indefinite integral over
the Iverson brackets as the definite integral with boundary
conditions corresponding to the conditions present in the
Iverson brackets. This corresponds to the definition of the
weighted model integral. �

We have shown that we can solve a WMI problem by
formulating it as an AMC problem, given that the weight
function is factorizable. The weighted model integral for a
non-factorizable weight function is then obtained by adding
up the weighted model integrals for the factorizeable weight
functions into which the problem decomposes.

5 Probability of SMT Formulas
We describe now Symbo and Sampo, algorithms that, re-
spectively, produce the exact and the approximate weighted
model integral of an SMT formula φ and a factoriz-
able weight function w utilizing knowledge compilation.
Implementations of both algorithms are available under
https://bitbucket.org/pedrozudo/hal problog.

5.1 Symbo
In Lemma 3 we saw that the probability semiring S can be
used to calculate the algebraic model count on a d-DNNF
representation of a logical formula. Recalling Theorem 2, we
are hence also capable of obtaining the weighted model inte-
gral for an SMT formula, given the probability distributions
of the random variables.

Algorithm 1. (Symbo) Symbo computes the weighted
model integral of an SMT(NRA) formula φ for a fac-
torizable weight function w by executing the following
steps:

1. Abstract all atomic formulas in φ according to Defi-
nition 8 and obtain φa.

2. Compile φa into a d-DNNF representation φcompiled.
3. Transform φcompiled into an arithmetic circuit ACφ by

replacing logical and/or operations with symbolic
multiplications/additions.

4. Label literals in ACφ according to the labeling func-
tion given in Definition 9 with corresponding sym-
bolic values.

5. Symbolically evaluate ACφ and obtain (Ψ,V(Ψ)).
6. Multiply Ψ by the weight of the continuous variables

inV(Ψ).
7. Symbolically integrate over the continuous variables

by calling a symbolic inference engine.

We implemented Algorithm 1 using the SDD package 1

for the KC step and the inference engine of the PSI-Solver

1http://reasoning.cs.ucla.edu/sdd/

for symbolic manipulations 2.
Example 4. Consider our initial example in Eq. 1. Executing
the first two steps of Symbo yield the compiled logic formula
that is shown on the left in Figure 1. Steps number three and
four of Symbo produce the arithmetic circuit on the right
in Figure 1. The probability for the theory broken, which

NOT

abst>30 abst>20no cool

AND

AND

OR

broken

[t ≤ 30]

[t > 30] [t > 20]0.01

×

×

+

Ψbroken

Figure 1: Shown on the left is a graphical representation of
the compiled logic formula given in Eq. 1 (in the SDD target
language), where the atomic formulas have been abstracted
away. On the right we see the corresponding arithmetic circuit
where the literals have been replaced by corresponding labels
according to the labeling function in 9 and where the logic
and/or operation have been replaced by ×/+ respectively.
Note, the labels in the arithmetic circuit do not explicitly
state the set of continuous variables involved.

coincides with the weighted model integral, is obtained by
evaluating the arithmetic circuit (step five), multiplying this
expression by the probability density function for t (step six)
and carrying out the integral (step 7).

p(broken)

=
∫

(0.01[t>20][t≤30] + [t>30])Nt(20, 5)dt

= 0.01
∫

20<t≤30Nt(20, 5)dt+
∫
t>30Nt(20, 5)dt

= 1 − 0.01
∫ − 5

√
8

2 + 20
√

8
−∞

e−x2
dx − 0.99

∫ − 5
√

8
2 + 30

√
8

−∞
e−x2

dx

In Example 4, the weight function on the continuous vari-
ables depended only on a single variable. It is, however, easy
to see that our formalism does also allow for multivariate dis-
tributions that are then used with more intricated integration
bounds, such as in Example 3.

5.2 Sampo
In the general case, symbolic inference methods are not able
to produce numerical results to a given problem. This is
because the resulting integrals are not tractable utilizing sym-
bolic integration. For such cases Monte Carlo (MC) methods
are used to compute intractable integrals by approximating
the integration by a summation.

2For a detailed discussion of allowed symbolic manipulations
see (Gehr, Misailovic, and Vechev 2016)

Theorem 3. (MC approximation of WMI) Let φ be an
SMT(RA) theory, w a factorizable weight function over the
Boolean variables B and continuous variables X. Further-
more, let AMC(φ,w|X ∪ B) evaluate to (Ψ,V(Ψ)). Then the
Monte Carlo approximation of WMI(φ,w|X, B) is given by:

WMIMC(φ,w|X, B) B 1
N

∑N
i=1 Ψ(xi) (11)

where the xi’s are N independent and identically distributed
random variables drawn from the density w.
Proof.

WMI(φ,w|X, B) =
∫

x∈X Ψ(x)wx(x)dx P1

= Ewx(x)[Ψ(x)] P2

≈ 1
N

∑N
i=1 Ψ(xi) P3

The expression in P2 denotes the expectation of Ψ(x) with
respect to w(x). The approximation in P3 is the mean value
of Ψ obtained through MC assignments to the continuous
random variables present in Ψ. �

The MC approximation of the weighted model integral of
an SMT formula necessitates that we evaluate a compiled
SMT problem at N different points, i.e. we need to evaluate
a compiled theory N times with different weights. This is
exactly where the strength of knowledge compilation lies:
expensively compile once and cheaply evaluate often.

Numerical computation libraries such as TensorFlow rely
heavily on the concept of computation graphs. Realizing
that we can translate a d-DNNF formula to a computational
graph and express the labels of literals in an SMT formula
as tensors, allows us to compute the N evaluations necessary
for the MC approximation of the weighted model integral not
only cheaply but also in parallel.

Algorithm 2. Sampo computes the weighted model
integral of an SMT(RA) formula φ for a factorizable
weight function w by executing the following steps:
1. Abstract all atomic formulas in φ according to Defi-

nition 8 and obtain φa.
2. Compile φa into a d-DNNF representation φcompiled.
3. Transform φcompiled into an arithmetic circuit ACφ, i.e.

replacing logical and/or operations with elementwise
tensor multiplications/additions.

4. Label the literals in ACφ according to the labeling
function given in Definition 9 with corresponding
tensors.

5. Symbolically evaluate ACφ and obtain (Ψ,V(Ψ)) rep-
resented by a computation graph CG.

6. Run the CG representing (Ψ,V(Ψ)) N times, where
N is the number of samples approximating the proba-
bility densities.

7. Take the mean of the values of the N runs of the CG.

We implemented Algorithm 2 using again the SDD pack-
age for the KC step and using TensorFlow as the underlying
symbolico-numerical computation library. Random variables
are sampled using the Edward library.
Example 5. Let us illustrate Sampo on our running example
in Eq. 1. Assume therefore that we already have at hand

ACEvaluated
φ . We then need to sample N values for the random

variable t. Lets suppose we sample 5 values.

tMC ∈ {12.8, 35.1, 17.6, 22.2, 21.4} (13)

and plug these samples into Ψ. We map the Boolean random
variable no cool to a 1D tensor whose entries are 0.01. Con-
sulting the arithmetic circuit in Figure 1, we easily see that
we obtain for the MC estimate:

ΨMC =

0.01
0.01
0.01
0.01
0.01

 ◦

[12.8>20]
[35.1>20]
[17.6>20]
[22.2>20]
[21.4>20]

 ◦

[12.8≤30]
[35.1≤30]
[17.6≤30]
[22.2≤30]
[21.4≤30]

 +

[12.8>30]
[35.1>30]
[17.6>30]
[22.2>30]
[21.4>30]

=

0.01
0.01
0.01
0.01
0.01

 ◦

0
1
0
1
1

 ◦

1
0
1
1
1

 +

0
1
0
0
0

 =

0
1
0

0.01
0.01

 (14)

where ◦ denotes the elementwise multiplication of tensors.
With the Monte Carlo estimate of Ψ we obtain the MC esti-
mate for the weighted model integral by simply averaging:

WMIMC =
1
5
∑5

i=1 ΨMC,i = 1.02/5 = 0.204

Compiling an SMT formula and transforming the resulting
arithmetic circuit into a computation graph has the advantage
that sampling becomes embarrassingly parallelizable. To the
best of our knowledge, Sampo is the first probabilistic infer-
ence algorithm for the hybrid domain that is able to harness
parallelization on a GPU.

5.3 Discussion on Complexity
The complexity of Symbo and Sampo is mainly determined
by the complexity of their subcomponents. The knowledge
compilation step is #P-complete. The evaluation of the result-
ing arithmetic circuit is done in polytime. Symbo, however,
suffers from the problem that the search for simplifications
in symbolic expressions is a hard problem. One such simpli-
fication is the symbolic integration step itself. For example,
integrating convex polytopes is #P-complete. These complex-
ity concerns do not hold for Sampo, as we are dealing with
mere additions and multiplications on the GPU.

In the next section the computational complexity of sym-
bolic simplifications becomes experimentally apparent in the
ClickGraph benchmark for Symbo (cf. Table 1). We are cur-
rently already investigating how to practically circumvent the
computational hardness in such cases. For example, by sub-
querying or by static program analysis and detecting where
to intermediately integrate variables.

6 Experimental Evaluation
In the previous section we have developed two algorithms
that perform weighted model integration for weight functions
in the form of probability density functions. Because general
probability density functions are common in probabilistic pro-
grams, but have only been approximated in existing weighted
model integration algorithms (using piecewise polynomial

weight functions), we compare Symbo and Sampo with state-
of-the-art inference algorithms in probabilistic programming.

To this end, we extended the syntax of the probabilistic
programming system ProbLog2 (Dries et al. 2015), so that
it allows for the use of abstractions of atomic formulas and
for the declaring how continuous random variables are dis-
tributed. ProbLog2 implements inference for the probabilistic
programming language aProbLog (Kimmig, Van den Broeck,
and De Raedt 2011), where inference is done through alge-
briac model conting.

We are interested in two main questions during the ex-
perimental evaluation of Symbo and Sampo. Q1: How does
Symbo, a logico-symbolic solver, compare to a pure, state-
of-the-art, symbolic solver for the hybrid domain? Q2: How
does Sampo compare to related state-of-the-art probabilistic
inference algorithms? Q3: In the interest of completeness
we also adopted Symbo to solve traditional weighted model
integration problems, where the weight function is expressed
as a polynomial function.

We answer Q1 by comparing Symbo, which uses the PSI-
Solver and combines it with KC, to pure symbolic inference
with the PSI-Solver.

For Q2, we compare Sampo to the inference algorithms of
Distributional Clauses (DC) (Nitti, De Laet, and De Raedt
2016)3, BLOG (Milch et al. 2007)4 and to Hybrid Proba-
bilistic Model Counting (IHPMC) (Michels, Hommersom,
and Lucas 2016)5. These are state-of-the-art probabilistic
programming systems that all support first order logic as well
as hybrid representations.

In Q3 we compare Symbo to the existing WMI solver of
(Morettin, Passerini, and Sebastiani 2017), which uses predi-
cate abstraction, SMT solving and numerical integration, and
to the solver of (Kolb et al. 2018), which uses XADDs (San-
ner and Abbasnejad 2012) and hence symbolic integration.

Experiments were performed on a laptop Intel(R) i7 CPU
2.60GHz with 16 Gb memory. Sampo took additionally ad-
vantage of an NVIDIA Quadro M1000M.

Q1 (Symbo): We compared Symbo and the PSI-Solver on
the set of benchmark experiments given in (Gehr, Misailovic,
and Vechev 2016, section F of Appendix)6.

In Table 1, we observe that Symbo outperforms the PSI-
Solver for 9/10 benchmarks, for 7/10 even when including
the time spent on the knowledge compilation step. Only for
the ClickGraph benchmark PSI performs better than Symbo,
which timed-out after 15s during circuit evaluation. This
is because PSI integrates out variables after loop iterations.
This is not yet supported in the ProbLog implementation and
Symbo ends up with a large symbolic expression that is hard
to integrate over. This could be solved, for example, by using
sub-queries, as can be done in ProbLog2.

We note that the symbolic inference engine underlying
the PSI-Solver has until now only been used for imperative
programing. The implementation of Symbo shows that the

3https://bitbucket.org/problog/dc problog
4https://bayesianlogic.github.io
5https://github.com/SteffenMichels/IHPMC
6cf.: Fun (Minka et al. 2014) and R2 (Nori et al. 2014)

Benchmark KC Evaluation PSI Domain
BurglarAlarm 31.4 0.8 190.1 D
CoinBias 41.9 7.9 12.9 H
Grass 31.2 1.2 228.0 D
NoisyOR 35.8 11.2 12.7 D
TwoCoins 27.0 2.1 57.8 D
ClickGraph 4300 – 10500 H
ClinicalTrial 54.6 25.7 3400 H
AddFun/max 25.2 4.4 53.1 H
AddFun/sum 27.1 2.1 84.9 H
MurderMystery 27.6 0.3 65.4 D

Table 1: Knowledge compilation and arithmetic circuit eval-
uation times for Symbo, and problem solving time for PSI.
Times are given in ms. Run times were averaged over 50
runs. The domain column indicates whether the problem is
Discrete or Hybrid.

powerful symbolic inference engine can also be adopted for
logic programming when making use of KC.

To conclude, it is generally beneficial to perform logical
inference on top of symbolic inference in the hybrid domain.

Q2 (Sampo): In order to evaluate Sampo, we chose bench-
marks from (Nitti, De Laet, and De Raedt 2016) and (Michels,
Hommersom, and Lucas 2016), which were stated to be hard-
est in terms of query complexity. We show our results in
Figures 2 and 3. In Figure 2, we compare Sampo to DC and
BLOG. A comparison with IHPMC for this first problem is
not possible as IHPMC does not allow for expressing hierar-
chical models. DC an BLOG are, just like Sampo, sampling
based methods, which use both importance sampling and
likelihood weighting7. This is why we plot the evaluation
time and the standard deviation in function of the number
of samples. IHPMC is not a sampling based method but it-
eratively splits up the space into mutually exclusive pieces
and calculates bounds for each piece, which translates to it-
eratively tighter and tighter error bounds. For this reason we
investigate in the plots in Figure 3 the standard deviation of
the four methods scrutinized in function of the run time.

All four plots clearly indicate that once Sampo has trans-
formed a probabilistic program into an arithmetic circuit, the
run time is not only lower but also that Sampo is more accu-
rate than the competing algorithms. This is especially true for
two distinct cases. Firstly, when there are binary random vari-
ables present. Contrary to DC and BLOG, Sampo does not
sample these random variables but includes their probability
as weight in the circuit evaluation. This can be seen Figure
2a and 3a. The reason why the STD is not zero for Sampo in
2a is due to floating point rounding errors. The second case
where Sampo clearly outperforms the other methods is when
we condition on low probability events, cf. Figure 3b. Here
we condition on an event that has probability 0.0001 to occur.
The logic structure of the problem implies that the query
given the observation must be satisfied. In Figure 3b we see
that Sampo is the only algorithm that picks up this structure.

7BLOG also provides rejection sampling and MCMC.

0.0

0.5

1.0

1.5
ru

n
tim

e
[s

]
Sampo
DC
BLOG

102 103 104 105 106 107

number of samples

10 8

10 6

10 4

10 2

ST
D

(a)

0

1

2

ru
n

tim
e

[s
]

Sampo
DC
BLOG

102 103 104 105 106 107

number of samples

10 3

10 2

10 1

ST
D

(b)

Figure 2: The example used is drawing balls (denoted by
bi and having different size, color and material) with re-
placement from an urn (Nitti, De Laet, and De Raedt 2016).
The queries used are (a) p(b1=b2∧col(b1)=black) and (b)
p(b1=1|0.39<size(b1)<0.41). The upper panel shows the run
time (circuit evaluation for Sampo). Evaluation runs are av-
eraged over 50 runs and the knowledge compilation step is
averaged over 50 compilations. Time-out was set at 2.5s. The
linear behavior of Sampo towards higher sample numbers is
due to the GPU starting to run out of memory. Sampo spent
1.62s for (a) and 0.11s for (b) on the knowledge compilation
step, averaged over 50 runs.

As the inference reduces to inference on exclusviely Boolean
random variables, Sampo immediately finds the correct so-
lution without drawing any samples for continuous random
variables, in contrast to the other algorithms.

We also observe that there is practically no time penalty
for the number of samples for Sampo, contrary to DC and
BLOG. This behavior manifests itself most prominently in
the upper panel of Figure 2a and in Figure 3a. For the latter,
we see that higher sample numbers, which correspond to
lower STDs, take up just as much time as lower sample
numbers. This produces the quasi-vertical line Figure 3a.
This behavior is due to delegating the N evaluations of the
arithmetic circuits, which correspond to N times sampling
the continuous random variables, to the GPU and executing
the evaluation in parallel. Only in Figure 2a we observe a
linear dependency of the run time in function of the number
of samples towards high sample numbers. This is caused by
the GPU running out of memory.

Q3 (WMI): By allowing Symbo to handle also bounded
polynomial weights, instead of probability density distribu-
tions, we can compare Symbo to the existing exact WMI
solvers of WMI-PA (Morettin, Passerini, and Sebastiani
2017) and WMI-XADD (Kolb et al. 2018). This extension of
Symbo is necessary as these solvers are limited to polynomial
weights and cannot handle proper probability densities.

We made the experimental comparison of the three meth-
ods on a set of synthetic problems given in (Morettin,
Passerini, and Sebastiani 2017)8. The benchmarks consist of
WMI problems that have from five to seven Boolean variables

8https://github.com/unitn-sml/wmi-pa

0.0 0.5 1.0 1.5 2.0
Inference time [s]

10 3

10 2

10 1

100

M
SE

Sampo
DC
BLOG
IHPMC

(a) query: p(f99)

0.0 0.5 1.0 1.5
Inference time [s]

0.0

0.5

1.0

M
SE

Sampo
DC
BLOG
IHPMC

(b) query: p(f99| f0)

Figure 3: We show the dependencies of the mean squared
error on time for two queries of the theory: fi ↔ di ∨ c >
li ∨ fi−1, cf. (Michels, Hommersom, and Lucas 2016). fi and
di are Bools. The probability of di being true is 0.0001. c and
li are normally distributed variables with mean 20 and 30
respectively and standard deviation 5. Note the two different
scales for the plots on the y-axis. The mean squared errors
are averaged over 50 runs. The average KC time (over 50
iterations) is 4.34s for (a) and 2.66s for (b). In the left plot the
mean squared error was calculated with respect to the mean
of 50 runs using Sampo with 105 samples. In the right plot,
we stopped when all the runs for a given number of samples
for an algorithm reached the correct solution (which is 1.0)
or the algorithm timed-out after 2s.

and where the weight functions are multivariate polynomials
of dimensions two to three.

We compared the three methods on the benchmarks with
two dimensional polynomial weights. We observe in Figure 4
that Symbo solves the majority of the problems with bivariate
polynomials faster than the other two methods. We omit the
comparison plot for the benchmarks with three dimensional
polynomials, as here the other methods, which are specialized
algorithms for polynomial weight functions, beat Symbo at
large. Symbo spends most of the time on the final integration
step (cf. point 7 in Algorithm 1). In fact, Symbo spent at most
0.32s on the KC step, at most 0.34s on the circuit evaluation
and any remaining time on the symbolic integration - for any
of the presented benchmarks. Using a dedicated integrator
for bounded polynomials instead of the generic PSI inte-
grator could mitigate this problem. Integrating out variables
during the evaluation of the arithmetic circuit could also be
beneficial, as this leads to smaller symbolic expressions.

2 4 6 8 10
Inference time [s]

0

20

40

60

In
st

an
ce

s s
ol

ve
d

wi
th

in
 ti

m
e

lim
it

Symbo
XADD
PA

Figure 4: We show the number of problem instances solved
below the time limit for problems with bivariate polynomial
weights.

7 Related Work
In the initial work on weighted model integration (Belle,
Passerini, and Van den Broeck 2015) the authors perform
weighted model integration on piecewise polynomials by it-
eratively generating models by adding the negation of the
model from the previous iteration to the formula. In subse-
quent work by (Morettin, Passerini, and Sebastiani 2017)
the number of generated models is substantially reduced by
deploying SMT-based predicate abstraction (Graf and Saı̈di
1997). In this line of work (Belle et al. 2016) also investigated
component caching while performing a DPLL search when
calculating a weighted model integral. Their approach is in-
deed related to knowledge compilation. However, it is not
applicable in cases when algebraic constraints exist between
variables and couple these. The methods proposed on WMI
are strictly limited to piecewise polynomials. We, completely
lift this restrictions and are able to perform WMI via knowl-
edge compilation on SMT(RA) and SMT(NRA) formulas
using probability density functions instead of piecewise poly-
nomials on SMT(LRA).

As seen in section 6, WMI has also been studied in the
context of XADDs (Kolb et al. 2018) and the approach is
closely related to Symbo. Here again, the weight functions
considered are only of polynomial form. Another drawback
of this approach is that, unlike for the SDDs and d-DNNFs
used in our approach, there are not yet any efficient com-
pilers available for converting WMI to XADDs. For SDDs
and d-DNNFs, one can employ standard state-of-the-art KC
technology. SDDs are more succinct than BDDs, of which
XADDs are an extension. This entails, in turn, that SDDs are
more succinct than XADDs. Standard knowledge compila-
tion techniques are not readily available for XADDs as Kolb
et al.’s compilation algorithm interleaves symbolic and logic
inference.

Somewhat related to WMI with piecewise polynomials
is the work of (Gutmann, Jaeger, and De Raedt 2011), who
restricted distributions to Gaussians, which are chopped up
into easily integrable and axis-aligned pieces.

Contrary to these works, we generalize WMI by providing
a much larger class of weight functions and constraints.

With respect to inference for probabilistic programming in
the hybrid domain, two classes of algorithms exist: approxi-
mate and exact. Firstly, for what concerns one of the few exact
inference systems, there is the already mentioned work for
imperative probabilistic programming (Gehr, Misailovic, and
Vechev 2016), which has contributed the PSI-Solver that we
use in Symbo. The PSI-Solver beats other recent approaches
in exact probabilistic inference (Narayanan et al. 2016). We
show that knowledge compilation speeds up pure symbolic
inference and that Symbo outperforms the PSI-Solver.

Another approach, related to exact inference in proba-
bilistic logic programming, is that of (Islam, Ramakrishnan,
and Ramakrishnan 2012). Similarly to Symbo, they symboli-
cally evaluate a theory in order to obtain an expression for a
probability density. However, their approach is restricted to
Gaussians (although gamma distributions are in theory also
implementable), and more importantly it is built on top of
Prism (Sato 1995), which assumes that proofs are mutually
exclusive, and which avoids the disjoint sum problem. As a

consequence they do not support WMI in its full generality.
Supporting WMI requires the KC step, which they do not
address.

Secondly, for what concerns approximate inference, we
have the sampling approaches in Distributional Clauses by
(Gutmann et al. 2011; Nitti, De Laet, and De Raedt 2016)
and BLOG by (Milch et al. 2007), which we have already
discussed in section 6 and which both deploy importance
sampling in order to sample from probability distributions
and densities alike, combined with likelihood weighting.

Approximate inference is also performed in (Michels,
Hommersom, and Lucas 2016). In their work, a hybrid prob-
abilistic problem is represented by so called hybrid proba-
bility trees (discussed in Section 6). Our experiments show
that Sampo outperforms DC, BLOG and IHPMC. Moreover,
Sampo has the advantage that when conditioning on rare
events in the discrete domain, we still obtain reliable esti-
mates of the weighted model integral. Using pure sampling
based methods such as in Distributional Clauses and BLOG
leads to poor results. This is known to be problematic when
using importance sampling based methods.

Note that when conditioning on rare events in continu-
ous domains, Sampo performs as poorly as other sampling
techniques as it performs essentially rejection sampling with
almost all samples being rejected.

8 Conclusion and Future Work
We have shown how knowledge compilation can be applied
to the task of weighting model integration by leveraging
algebraic model counting and thereby presenting a unified
formalism for weighted model integration and knowledge
compilation. We have also introduced an exact and an ap-
proximate solver based on this idea and demonstrated their
effectiveness. Sampo is to the best of our knowledge the first
sampling based algorithm deployable in the WMI setting.

In future work, we would like to investigate in more detail
the relationship between Kolb et al.’s work and the work
presented here, theoretically as well as experimentally. More-
over, we would like to integrate Symbo and Sampo into a full-
fledged probabilistic programming language and investigate
thoroughly how it compares to existing languages, especially
DC, BLOG, Anglican, Church.

9 Acknowledgments
This work has been supported by the Research Founda-
tion - Flanders (FWO) project G0D7215N, the European
Research Council Advanced Grant project SYNTH9 (ERC-
AdG-694980), and the H2020 CHIST-ERA and FWO project
ReGround10 (G0D7215N). The authors would like to thank
Sebastijan Dumančić, Angelika Kimmig, Ondřej Kuželka
and Robin Manhaeve for reading and commenting on first
drafts of this paper, and Samuel Kolb for inspiring discus-
sions on the topic of WMI.

9https://synth.cs.kuleuven.be/
10http://reground.cs.kuleuven.be

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg,
J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.;
Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar,
K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.;
Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.;
and Zheng, X. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software available
from tensorflow.org.
Belle, V.; Van den Broeck, G.; Passerini, A.; et al. 2016.
Component Caching in Hybrid Domains with Piecewise Poly-
nomial Densities. In AAAI, 3369–3375.
Belle, V.; Passerini, A.; and Van den Broeck, G. 2015. Prob-
abilistic Inference in Hybrid Domains by Weighted Model
Integration. In Proceedings of 24th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2770–2776.
Chavira, M., and Darwiche, A. 2008. On Probabilistic In-
ference by Weighted Model Counting. Artificial Intelligence
172(6):772 – 799.
Choi, Arthur, K. D. D. A. 2013. Compiling Probabilis-
tic Graphical Models Using Sentential Decision Diagrams.
Berlin, Heidelberg: Springer Berlin Heidelberg. 121–132.
Darwiche, A., and Marquis, P. 2002. A Knowledge Compila-
tion Map. J. Artif. Int. Res. 17(1):229–264.
Dries, A.; Kimmig, A.; Meert, W.; Renkens, J.; Van den
Broeck, G.; Vlasselaer, J.; and De Raedt, L. 2015. ProbLog2:
Probabilistic Logic Programming. Cham: Springer Interna-
tional Publishing. 312–315.
Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov, D.;
Gutmann, B.; Thon, I.; Janssens, G.; and De Raedt, L. 2015.
Inference and Learning in Probabilistic Logic Programs Us-
ing Weighted Boolean Formulas. Theory and Practice of
Logic Programming 15(3):358–401.
Fubini, G. 1907. Sugli Integrali Multipli. Rom. Acc. L. Rend.
(5) 16(1):608–614.
Gehr, T.; Misailovic, S.; and Vechev, M. 2016. PSI: Exact
Symbolic Inference for Probabilistic Programs. In Interna-
tional Conference on Computer Aided Verification, 62–83.
Springer.
Graf, S., and Saı̈di, H. 1997. Construction of Abstract State
Graphs with PVS. In International Conference on Computer
Aided Verification, 72–83. Springer.
Gutmann, B.; Thon, I.; Kimmig, A.; Bruynooghe, M.; and
De Raedt, L. 2011. The Magic of Logical Inference in
Probabilistic Programming. Theory and Practice of Logic
Programming 11(4-5):663–680.
Gutmann, B.; Jaeger, M.; and De Raedt, L. 2011. Extending
ProbLog with Continuous Distributions. Berlin, Heidelberg:
Springer Berlin Heidelberg. 76–91.
Islam, M. A.; Ramakrishnan, C.; and Ramakrishnan, I. 2012.
Inference in Probabilistic Logic Programs with Continuous
Random Variables. Theory and Practice of Logic Program-
ming 12(4-5):505–523.

Kimmig, A.; Van den Broeck, G.; and De Raedt, L. 2011.
An Algebraic Prolog for Reasoning about Possible Worlds.
In AAAI.
Kimmig, A.; Van den Broeck, G.; and De Raedt, L. 2017.
Algebraic Model Counting. Journal of Applied Logic 22:46–
62.
Knuth, D. E. 1992. Two Notes on Notation. Am. Math.
Monthly 99(5):403–422.
Kolb, S.; Mladenov, M.; Sanner, S.; Belle, V.; and Kersting,
K. 2018. Efficient Symbolic Integration for Probabilistic
Inference. In IJCAI, 5031–5037.
Michels, S.; Hommersom, A.; and Lucas, P. J. F. 2016. Ap-
proximate Probabilistic Inference with Bounded Error for
Hybrid Probabilistic Logic Programming. In IJCAI 2016.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L.;
and Kolobov, A. 2007. BLOG: Probabilistic Models with Un-
known Objects. In Getoor, L., and Taskar, B., eds., Statistical
Relational Learning. MIT Press.
Minka, T.; Winn, J.; Guiver, J.; Webster, S.; Za-
ykov, Y.; Yangel, B.; Spengler, A.; and Bronskill, J.
2014. Infer.NET 2.6. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.
Morettin, P.; Passerini, A.; and Sebastiani, R. 2017. Effi-
cient Weighted Model Integration via SMT-Based Predicate
Abstraction. def 1(x1):x2.
Narayanan, P.; Carette, J.; Romano, W.; Shan, C.; and Zinkov,
R. 2016. Probabilistic Inference by Program Transformation
in Hakaru (System Description). In International Symposium
on Functional and Logic Programming - 13th International
Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016,
Proceedings, 62–79. Springer.
Nitti, D.; De Laet, T.; and De Raedt, L. 2016. Probabilistic
Logic Programming for Hybrid Relational Domains. Ma-
chine Learning 103(3):407–449.
Nori, A. V.; Hur, C.-K.; Rajamani, S. K.; and Samuel, S.
2014. R2: An Efficient MCMC Sampler for Probabilistic
Programs. In AAAI, 2476–2482.
Sanner, S., and Abbasnejad, E. 2012. Symbolic Variable
Elimination for Discrete and Continuous Graphical Models.
In AAAI.
Sato, T. 1995. A Statistical Learning Method for Logic
Programs with Distribution Semantics. In In proceedings
of the 12TH international conference on logic programming
(ICLP95. Citeseer.
Tran, D.; Kucukelbir, A.; Dieng, A. B.; Rudolph, M.; Liang,
D.; and Blei, D. M. 2016. Edward: A Library for Proba-
bilistic Modeling, Inference, and Criticism. arXiv preprint
arXiv:1610.09787.

