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Abstract. We present a computational model for the Earth’s magnetosphere that relies
on the multi-fluid plasma model. When the multi-fluid equations are coupled to the full
Maxwell’s equations, the resulting system is able to tackle non-equilibrium effects that are
beyond the magnetohydrodynamics (MHD) description. The multi-fluid model allows for
studying relevant phenomena in the Earth’s magnetosphere such as the presence of heavier
ions, high frequency waves, small scale dynamics, non-thermal equilibrium or separation
of the species motion. In this article, the derivation of the multi-fluid model from kinetic
theory is presented. The propagation of linear waves in the ideal collisionless two-fluid
model under solar wind and magnetospheric conditions is studied. The two-fluid model is
implemented using a second order finite volume method. The algorithm is benchmarked
against three cases: electromagnetic shock-tube problem, a supersonic plasma flow over
a cylinder and over a sphere. The magnetic reconnection occurring in the magnetotail
is studied standalone using a two-fluid model. Preliminary results of a two-fluid global
magnetosperic simulation are presented.

1 INTRODUCTION

The solar wind is a plasma flow mainly composed of protons (H+) and electrons (e−).
The composition of heavier ions is usually limited to small quantities (<0.1%), while the
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presence of He++ can vary from 3% to 6% under normal conditions [13]. However, large
enhancement of the He++ abundance (up to 30%) has been observed, as sporadic events,
associated to radio bursts in the corona [5]. The abundance of heavy ions observed in the
magnetosphere is caused by outflow of ions able to escape from the ionosphere through the
polar cap, the dayside cusp, the auroral oval and the nightside auroral region. The main
component of the heavy ions in the magnetosphere is O+. The abundance of this element
in the magnetosphere has been measured during geomagnetic events by the International
Sun-Earth Explorer (ISEE) to be between 40% to 80% of the total amount of ions [17].

Due to the large abundance of oxygen in the magnetosphere, it is a major challenge
the development of models able to account for its effects in the global dynamics. The
heavy ions change the local properties of the plasma as they have larger gyroradius.
Furthermore, their presence modifies the Alfvén speed and the plasma pressure [14]. It
is still nowadays an open question the way heavy ions can affect the development of the
Kelvin-Helmholtz instability at the low latitude flanks or the topology of reconnection in
the magnetotail, triggering tearing instabilities.

Most of the global models describing the interaction between the solar wind and the
Earth’s magnetosphere [24, 29, 12], like the vast majority of the models used in solar
physics, are based on the (single fluid) model of magnetohydrodynamics (MHD). Although
this model is a very useful tool able to represent large scale dynamics, it cannot tackle
some of the phenomena occurring in the magnetosphere. Recent efforts have been oriented
to reproduce 2D global magnetospheric simulation using the hybrid-Vlasov model [26].
However, a domain containing a global magnetospheric representation is too large to carry
out a 3D kinetic simulation with the current computational resources available. Models
including the effect of the heavy ions but neglecting the effect of the electrons can be
found in [9, 28].

We propose the multi-fluid model, solving for mass, momentum and energy conserva-
tion equations for the dominant species of the magnetospheric plasma. The model will
consider separately the dynamics of protons (H+) and electrons (e−). This model can be
easily extended to include heavy ions, i.e., O+ and He+. The electromagnetic field will be
tackled with the full Maxwell’s equations. This innovative coupling allows for accounting
for high frequency waves as well as charge separation, both effects completely neglected
by the MHD approach.

The present article is organized as follows: 1) the general multi-fluid model is derived
from kinetic theory, taking special attention on the assumptions that result in the ideal
collisionless two-fluid model; 2) the ideal collisionless model is presented both in dimen-
sional and dimensionless form; 3) the propagation of linear waves in the two-fluid plasma
is studied under the solar wind and magnetospheric conditions; 4) the finite volume nu-
merical model is presented; 5) the results of the ideal collisionless two-fluid model are
presented.
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2 DERIVATION OF THE MULTI-FLUID MODEL

Due to the disparity of multi-fluid plasma models that can be found in literature, in the
present section, we present the derivation of the multi-fluid model used in this paper. The
present section is based on the works of Meier and Shumlak [20], Zhdanov [31], Braginskii
[6] and Benilov [2]. We will present first the derivation of the general model, including
inelastic collisions, i.e., chemical reactions, but the rest of the work will focus on the ideal
two-fluid model considering ions and electrons.

2.1 Kinetic equation

The evolution of the distribution function fα(~v, ~x, t) of the species α within a plasma
is described by the Boltzmann’s kinetic equation.

∂fα
∂t

+ ~v · ~∇fα +
~Fα
mα

· ~∇~vfα = Jα + Γα (1)

The left-hand side of the kinetic equation represents the substantial derivative in time
of the distribution function, whereas the right-hand side is the variations in time of the
distribution function due to collisions. The external force, when the plasma is under the

effect of electromagnetic fields, can be written as qα

(
~E + ~v × ~B

)
, where the electric and

magnetic field are denoted as ~E and ~B, respectively; qα is the electric charge and mα the
mass of the particles α.

In the present work, the collision integral, Jα, accounts for binary collisions including
both elastic and reactive collisions. Therefore, the collision operator is a sum over the
species, as follows:

Jα =
∑
β

Jαβ(fα, fβ) (2)

where Jαβ(fα, fβ) is the collision operator of the binary collision between the species α
and β. The partial collisional operator for elastic collisions, can be retrieved under the
”molecular chaos” assumption, e.g., [31],[27], as follows:

Jαβ(fα, fβ) =

∫ ∫ (
f ′αf

′
β − fαfβ

)
σαβ|~vα − ~vβ|dΩd~vβ (3)

where quantities after collisions are denoted with the superscript ′, dΩ is the solid angle
of the scattering after the collision, and σαβ is the cross section of the collision. The
derivation of Eq. (3) can be found in [31]. The reactive collisions are accounted by the
operator Γα.

2.2 Balance equations

Local macroscopic variables can be obtained from the distribution function by integrat-
ing over the velocity space. We define the following macroscopic values: number density
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nα, mass density ρα, mean velocity ~uα and temperature Tα.

nα =

∫
fαd~v, ρα = mαnα =

∫
mαfαd~v

nα~uα =

∫
~vfαd~v,

3

2
nαkTα = Uα =

mα

2

∫
(~v − ~uα)2fαd~v

The equations describing the evolution of macroscopic variables can be obtained from
the kinetic equation by taking moments, i.e., integrating over the velocities space of the
particles. Consider a variable ψα(~vα, ~x, t), we define the averaging operator 〈·〉 as:

nα〈ψα〉 =

∫
ψαfαd~v (4)

Therefore, multiplying Eq. (1) by the variable ψα and integrate over the velocities, we
obtain the following transport equation:

∂nα〈ψα〉
∂t

+ ~∇ · (nα〈ψα~vα〉)− nα
[
〈∂ψα
∂t
〉+ 〈~v · ~∇ψα〉+

1

mα

〈~Fα · ~∇~vψα〉
]

=∑
β

∫
ψαJαβd~v +

∫
ψαΓαd~v (5)

Let the variable ψα be the collisional invariants, i.e., ψ
(1)
α = mα, ψ

(2)
α = mα~vα, ψ

(3)
α =

mαv
2
α. Note that using those variables, the terms, 〈∂ψα

∂t
〉 and 〈~v · ~∇ψα〉 vanish. Using

the previous collisional invariants in Eq. 5, we obtain mass, momentum and total energy
balance equations for the species α :

∂ρα
∂t

+ ~∇ · (ρα~uα) = ρ̇α, (6)

∂ρα~uα
∂t

+ ~∇ · (ρα~uα~uα + pα
¯̄I) = ~∇ · ¯̄πα + ~Fα +

∑
β

~Relastic
αβ + ~Rreact

α , (7)

∂

∂t

[
Uα + ρα

u2
α

2

]
+ ~∇ ·

[(
Uα + ρα

u2
α

2

)
~uα

]
=

~∇ · (~uα · ¯̄πα − ~qα − pα~uα) + ρα ~Fα · ~uα +
∑
αβ

Q̇elastic
αβ + Q̇react

α . (8)

The transport fluxes are also defined in terms of the distribution function and the
peculiar velocity, defined as, ~cα = ~vα−~uα. We recall that the peculiar velocity is measured
with respect to the macroscopic velocity of the species α, unlike other models, such
as [27, 31], where the peculiar velocities are taken with respect to the heavy particles
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mean velocity [27] or the mixture mean velocity [31]. Therefore, we define the following
macroscopic transport fluxes:

pα =
1

3

∫
mαfαc

2
αd~v, παrs =

∫
mαfαcrcsd~v, ~qα =

1

2

∫
mαc

2
α~cαfαd~v. (9)

The relaxation terms due to elastic collisions are defined by means of the distribution
function, as follows:

~Relastic
αβ =

∫
mα~vαJαβd~v, Q̇elastic

αβ =

∫
mαv

2
αJαβd~v. (10)

Whereas, the relaxation terms due to reactive collisions are written as:

~Rreact
α =

∫
mα~vαΓαd~v, Q̇react

α =

∫
mαv

2
αΓαd~v. (11)

In the following sections, we will focus on the ideal multi-fluid model. The ideal
multi-fluid neglects the transport fluxes, παrs and ~qα, treating the fluids as dissipationless.
This simplification is equivalent to consider the distribution functions of the fluids to be
Maxwellian, i.e.,

f (0)
α = nα

(
mα

2πkTα

)3/2

exp

[
−mα(~vα − ~uα)2

2kTα

]
. (12)

This simplification holds as long as the dissipation characteristic time is much larger than
the hydrodynamic characteristic time.

However, when the transport equation, i.e., Eq. (5), is integrated considering Mawellian
distributions, an average transfer of momentum and energy appears as a consequence of
the collisions between the species, i.e., ~Rreact

α and Q̇elastic
αβ . Expressions of the average

momentum and energy exchange can be found in [2]. When the two latter terms are
neglected, the so-called collisionless ideal multi-fluid model is obtained. This simplification
holds as long as the collisional characteristic time between the two species is much larger
than the hydrodynamic characteristic time.

Even though the latter assumptions can be commonly found in literature, the reader
may find the collisionless assumption in contradiction with the local thermodynamical
assumption. As shown in [4], in strongly magnetized plasma, i.e., ταΩα � 1, the condition
for local thermal equilibrium is λα/L‖. Where τα is the characteristic collisional time, Ωα

the gyrofrequency, λα the mean free path and L‖ is the characteristic macroscopic length
in the direction of the magnetic field.

However, in the context of multi-fluid modelling, one needs to make the difference
between the like particle and different particle collisions. In the current paper, we refer
as τei to the collisional time between the electrons being scattered by ions. The order of
magnitude of the collisional frequencies is:

τ−1
ee ∼ τ−1

ei ∼
ωpe
nλ3

D

∼ n

T 3/2m
1/2
e

, (13)
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τ−1
ii ∼ τ−1

ee ∼
ωpi
nλ3

D

∼
(
me

mi

)1/2

τ−1
ee and τ−1

ie ∼
me

mi

τ−1
ei . (14)

With the previous expressions, it can be understood that the energy transferred by
an electron to an ion in a collision produces a change in ion’s energy that is very small
compared to its own energy as the mass ratio is very small. However, the ions may produce
a change in the electron’s energy that is comparable to the energy transferred in a collision
with another electron. Additionally, the effect of the collisions may be negligible in the
limit nλ3

D →∞, i.e., when the particles in the Debye sphere tend to infinity.
Because of the analysis shown above, we can conclude that the collisionless limit and

the local thermal equilibrium assumption seem to be in contradiction. However, in the
following we will use the collisionless ideal two-fluid model as an intermediate step towards
a more consistent model, since it can be a practical tool to verify the code and retrieve
analytical solution.

3 THE IDEAL COLLISIONLESS TWO-FLUID EQUATIONS

3.1 Maxwell equations coupled to multi-fluid equations

In the present section, we give a summary of the equations solved in the results pre-
sented herein. In the following, we use the ∗ subindex in order to denote dimensional
variables. We present the ideal collisionless multi-fluid equations. Considering Ns, the
number of species in plasma, the conservation laws for the species α read:

∂ρ∗α
∂t∗

+ ~∇∗ · (ρ∗α~u∗α) = 0, (15)

∂ρ∗α~u
∗
α

∂t∗
+ ~∇∗ · (ρ∗α~u∗α~u∗α + p∗α

¯̄I) = Q∗α
~E +~j∗α × ~B∗, (16)

∂E∗α
∂t

+ ~∇ · (ρ∗αH∗α~u∗α) = ~j∗α · ~E∗. (17)

As it is shown in the above equations, each species has its own density ρ∗α, velocity ~u∗α,

total energy E∗α = ρ∗α
u∗

2
α

2
+U∗α and total enthalpy H∗α = u∗

2
α

2
+h∗α .The charged species have

the electric charge Q∗α and the electric current ~j∗α = Q∗αn
∗
α~u
∗
α.

The previous equations are coupled to Maxwell’s equations that describe the spatial
and time evolution of the electric field ~E∗ and the magnetic induction ~B∗. In order to fulfill
the two elliptic constraints contained in the Gauss’ law and the Gauss’ law for magnetism,
the divergence cleaning method suggested by Munz et al. [21] is used in the present work.
In the mentioned method, two Lagrange multipliers, Ψ and Φ, are introduced to couple
the constraints with the evolution equations. The set of equations reads:

∂ ~B∗

∂t∗
+ ~∇∗ × ~E∗ + γ2~∇∗Ψ∗ = 0, (18)
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∂ ~E∗

∂t∗
− c∗2 ~∇∗ × ~B∗ + (χc∗)2~∇Φ∗ = −

~j∗

ε∗0
, (19)

∂Ψ∗

∂t∗
+ c∗

2 ~∇∗ · ~B∗ = 0, (20)

∂Φ∗

∂t∗
+ ~∇∗ · ~E∗ =

ρ∗c
ε∗0
, (21)

where c∗ = 299.8 · 106 m/s is the speed of light, ε∗0 = 8.854 · 10−16 F/M is the permittivity
of free space, and γ and χ are parameters that control the speed of the waves correcting
the errors in the divergence constraints, and the total charge density ρ∗c =

∑
α∈Ns Q

∗
αn
∗
α.

3.2 Normalized equations

The previous set of the equations is written in non-dimensional form. We denote
normalized variables without the superscript. We can choose three different dimensionally
independent variables to normalize the equations. In the following we will consider p0, ρ0

and t0. We define the following non-dimensional parameters, respectively, the normalized
gyroradius, Debye length, collisional time and mass ratio:

r̂L =
m∗i v0

B0q0l0
, r̂2

D =
ε0kBT0m

∗
i

ρ0q2
0

B2
0q

2
0

m2
i v

2
0

and λem = mi/me (22)

Note that the non-dimensional Debye length is normalized with the gyroradius.
The rest of reference dimensions are computed as follows:

v0 =
√
p0/ρ0 = vTh0 , l0 = v0t0, T0 = p0/(ρ0Ri)

B0 =
m∗i v0

q0l0r̂L
, E0 = u0B0

Using the previous definitions, the normalized set of equations considering electrons
and single ionized ions, reads:

∂ρe
∂t

+∇ · (ρe~ve) = 0 (23)

∂ρe~ve
∂t

+∇ · (ρe~ve~ve + pe) =
λem
r̂L
ρeqe

(
~E + ~ve × ~B

)
(24)

∂Ee
∂t

+∇ · (He~ve) =
λem
r̂L
ρeqe ~E · ~ve (25)

∂ρi
∂t

+∇ · (ρi~vi) = 0 (26)

∂ρi~vi
∂t

+∇ · (ρi~vi~vi + pi) =
1

r̂L
ρiqi

(
~E + ~vi × ~B

)
(27)

∂Ei
∂t

+∇ · (Hi~vi) =
1

r̂L
ρiqi ~E · ~vi (28)
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With the non-dimensional ideal gas laws:

pe = λemρeTe, pi = ρiTi (29)

The set of non-dimensional Maxwell’s equations is:

∂ ~B

∂t
+ ~∇× ~E + γ2~∇Ψ = 0, (30)

∂ ~E

∂t
−
(
c∗

v0

)2

~∇× ~B + χ2

(
c∗

v0

)2

~∇Φ = − 1

r̂2
Dr̂L

(ρiqi~vi + λemρeqe~ve) , (31)

∂Ψ

∂t
+

(
c∗

v0

)2

~∇ · ~B = 0, (32)

∂Φ

∂t
+ ~∇ · ~E =

1

r̂2
Dr̂L

(ρiqi + λemρeqe) (33)

4 LINEAR WAVES IN TWO-FLUID PLASMA

In this section, we present the dispersion relation of linear waves traveling in a two-fluid
plasma. The present study sumarizes the study presented in [10]. We consider the waves

to travel within a homogeneous background at rest: pe0 , pi0 , ~B0, are constant; ne0 = ni0
are constant, therefore, ~E0 = 0; and, ~ue0 = ~ui0 = 0, therefore, ~j = 0.

We decompose the evolution of the flow variables asQ(~x, t) = Q0+Q̃ exp
[
i
(
~k · ~x− ωt

)]
where the perturbations Q̃ are considered to be small. The system of equations (23)-(33)

become a system of algebraic equations for the variables (ñe, ~̃ue, p̃e, ñi, ~̃ui, p̃i, ~̃E, ~̃B). Note
that the pressure is used as variable instead of the energy, and also, only four electromag-
netic variables are independent as a result of the Gauss’ laws. Therefore, in total there
are 14 independent variables, i.e., so is the number of types of waves we may expect.

First, we change the reference frame where the unit vector ~e3 is on the direction of the
propagation of the waves, ~k, the vector ~e2 is in the plane defined by ~k and ~B, perpedicular
to ~e3, as follows:

~e1 = ~e2 × ~e3, ~e2 = ~B × ~k/| ~B × ~k|, ~e3 = ~k/|~k| (34)

We also define the angle between the propagation direction and the magnetic field, as
θ, and the parameters:

λ = k‖/k = cos θ and τ = k⊥/k = sin θ. (35)
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Figure 1: Reference frame used in the study of the wave propagation in two-fluid.

In order to simplify the system of 14 variables, we remove the two marginal waves,
i.e., ω = 0. These perturbations, do not move, producing pressure perturbations that
compensate the electric field, when ñe 6= 0 and ñi 6= 0. These pressure perturbations are
in counterphase, as follows:

p̃e = −p̃i = i
ene
k
Ẽ3 = −e

2ne
ε0k2

(ñe − Zñi) (36)

In order to find the resting twelve waves, we define the plasma frequency, gyrofrequency
and speed of sound as:

ωpe,i =

√
e2ne,i
ε0me,i

, Ωe,i =
eB

me,i

, ve,i =

√
γpe

ne,ime,i

(37)

and the mass ratio as µ = me/mi.
After some transformations, that are omitted in the present paper, the twelve order

system reads:



ω − k2c2 0 ωpeω 0 −ωpiω 0

0
ω2−k2c2
−ω2

pe−ω2
pi

λωpeΩe τωpeΩe λωpiΩi τωpiΩi

ωpeω λωpeΩe ω2 − λ2Ω2
e λτΩ2

e 0 0

0 τωpeΩe −τλΩ2
e

ω2−k2v2e
−ω2

pe−τ2Ω2
e

0 ωpeωpi

−ωpiω λωpiΩi 0 0 ω2 − λ2Ω2
i −λτΩ2

i

0 τωpiΩi 0 ωpeωpi −λτΩ2
i

ω2−k2v2i
−ω2

pi−τ2Ω2
i


·



Ẽ1

Ẽ2

Ũe1
Ũe3
Ũi1
Ũi3


= 0.

(38)
Taking the determinant of the previous matrix, we retrieve the twelve order polynomial

solution for the twelve dispersion relation ω = ω(~k). Since the matrix is symmetric, there
are six two-fold degerate waves propagating in opposite directions, i.e., ω < 0 and ω > 0.
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The polynomial reads, in general form:

F (k̄2, ω̄2) =
6∑

m=0

min(4,6−m)∑
max(0,3−m)

αmnk̄
2nω̄2m = 0 (39)

where the frequency of the waves and the wave number have been normalized as follows:

ω̄ = ω/ωp where ωp =
√
ω2
pe + ω2

pi (40)

k̄ = δk where δ = c/ωp. (41)

The 19 coefficients of the polynomial αmn = αmn(λ2, µ, E2, v2, w2), depend on the condi-
tions as follows:

E = ωe/ωp, v = ve/c, and w = vi/c. (42)

4.1 Waves in the magnetosphere and the solar wind

As we showed in the previous section, the waves in two-fluid plasmas depend strongly
on the conditions of the plasma and the direction of propagation. In Table 1, we present
the conditions used in this study, corresponding to characteristic conditions in the solar
wind and the Earth’s magnetosphere.

Table 1: Characteristic conditions in the solar wind and the Earth’s magnetosphere.

Solar wind Magnetosphere

n 107 m−3 1010 m−3

B 6 · 10−9 T 3 · 10−5 T
T 105 K 104 K
L 1.5 · 106 m 6 · 103 m

One of the main interests of studying the wave propagation in two-fluid plasmas is
that it contains modes that range from high frequency-short wavelength to slow-long
wavelength. As it can be seen in both diagrams of Fig. 2, there are different limits, some
of them indicated with dashed lines. The limits are discussed in Table 2.

It can be noted that the dispersion diagrams corresponding to solar wind and magne-
tosphere conditions are drastically different:

- The upper and lower cutoff limits in the solar wind converge to the plasma fre-
quency, as the ion cyclotron and electron cyclotron frequencies are much smaller
than the plasma frequency. However, the upper and lower cutoff is present in the
magnetosphere.
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Figure 2: Eigenvalues of the ideal collisionless two-fluid system for oblique propagation
at θ = 45o.

Table 2: Asymptotic limits of the dispersion diagram.

Cutoff
k2 → 0

ω2 = ω2
p plasma frequency

ω2 = ω2
p + 1

2
(Ω2

e + Ω2
i )

±|Ωe − Ωi|
√
ω2
p + 1

4
(Ωe + Ωi)2

upper and lower
cutoff

Resonance
k2 →∞

ω2 = λΩ2
e electron cyclotron

ω2 = λΩ2
i ion cyclotron

Local, high frequency
k2 →∞, ω2 →∞

ω2 = k2c2 EM waves
ω2 = k2v2

e electron sound
ω2 = k2v2

i ion sound

Global, low frequency MHD
k2 → 0, ω2 → 0

ω2 = λ2k2v2
A Alfvén

ω2 = 1
2
k2 [v2

A + v2
s

±
√

(v2
A + v2

s)
2 − 4λ2v2

Av
2
s

] slow and fast
m.s. wave

- The ion and electron cyclotron limits appear earlier in the solar wind than in the
magnetosphere.

- The electromagnetic waves (green line) seem to be closer to the characteristic di-
mensions (L0,ω0) in the magnetosphere than in the solar wind.

- The two-fluid regime seems to be more present in the magnetospheric conditions
than in the solar wind, as the solar wind characteristic dimensions are in the MHD
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limit, whereas in the magnetosphere comprises higher frequencies.

5 FINITE VOLUME FORMULATION

The presented numerical model is described in [15], studying reactive and collisional
multi-fluid cases, while considering the plasma quasi-neutral. We write the system of
equations (15)-(21) in conservation form, as follows:

∂U(P)

∂t
+ ~∇ · ~F(c) = ~∇ · ~F(d) + S, (43)

where U are the conservative variables and P are the variables in which we actually store
and update the solution. For the Maxwell’s system ((18)-(21)), we have:

U = P =


~B
~E
Ψ
Φ

 , ~F(c) =


¯̄I × ~E + γ2Ψ¯̄I

−c2 ¯̄I × ~B + (χc)2Φ¯̄I

c2 ~BT

~ET

 and S =


0

− ~j
ε0

0
ρc
ε0

 . (44)

Whereas, for the multi-fluid equations, we consider:

Us =

 ρs
ρs~us
ρsEs

 , Ps =

 ρs
~us
Ts

 , ~F(c)
s =

 ρs~us
ρs~us~us + ps

¯̄I
ρsHs~us

 ,

~F(d)
s =

 0
¯̄πs

~us · ¯̄πs − ~qs

 and Ss =

 ρ̇s
Qs

~E +~js × ~B +
∑j∈Ns

j 6=s
~Rsj
s

~js · ~E +
∑j∈Ns

j 6=s Q̇sj
s · ~us +

∑j∈Ns
j 6=s Hsj

s + Q̇s

 .

(45)

After writing Eq. (43) in integral form, we can apply the Finite Volume method, as
follows:

dU(Pi)

dt
|Ωi|+

∑
j∈Di

Hij|∂Ωij| =
∑
j∈Di

Gij|∂Ωij|+ Si|Ωi|. (46)

The numerical schemes used in the present work, uses modified-CIR for Maxwell’s
equations, as follows:

Hij = A+
nUL + A−nUR =

H(UL) + H(UR)

2
− 1

2
|An|(UR −UL), (47)

where the numerical diffusivity is scaled in order to balance these terms with the flux
terms.
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For the multi-fluid equations discretization, a generalization of the AUSM+-up[18] is
applied, as follows,

Hs(U) = ~F(c)
s · ~n = Msas

 ρs
ρs~us
ρsHs

+ ps

 0
~n
0

 , (48)

where the expressions for the upwinded and the pressure fluxes can be found in Liou
[18].

Three-point Backward Euler for the second order implicit time discretization, as fol-
lows:

S(P̃) =
3U(P̃)− 4U(Pn) + U(Pn−1)

2∆t
+ R(P̃), (49)

In order to obtain second-order accuracy in space, we use a weighted linear least square
reconstruction [1] with Venkatakrishnan’s limiter [25] to obtain second order in space.

6 VALIDATION RESULTS

6.1 Electromagnetic plasma shock

The case studies the evolution of a discontinuity of the plasma density and the magnetic
field in one dimension. It is an extension of the Sod tube [23], used to assess the Riemann
problem for Euler equations, and especially, the Brio-Wu shocktube [7], used to study the
Riemann problem in ideal MHD solvers. The present case, introduced by Shumlak and
Loverich [22], studies the same conditions as in the Brio-Wu shocktube, in the multi-fluid
limit.

The results presented here are run in a domain extending 50 units with a mesh of
1000 mesh points. The region of interest extends from x ∈ [0, 1]. The domain is chosen
to be large enough to avoid having influence of the boundaries, especially when a shock
arrives at the boundary. Neumann boundary conditions are chosen for all variables. All
the simulations are run until time t = 0.1.

The non-dimensional parameters chosen in the results shown herein are : c∗/v0 = 100,
λem = 1836 and r̂D = 0.01. The normalized gyroradius r̂L is changed depending on the
simulation.

The normalized initial conditions are chosen as follows:

13



A. Alvarez Laguna et al.

Pleft(x < 0.5, t = 0) =



~B = (0.75, 1, 0)
~E = (0, 0, 0)
Ψ = 0
Φ = 0
ρe = 1/λem
~ue = (0, 0, 0)
pe = 1/2
ρi = 1
~ui = (0, 0, 0)
pi = 1/2

Pright(x > 0.5, t = 0) =



~B = (0.75,−1, 0)
~E = (0, 0, 0)
Ψ = 0
Φ = 0
ρe = 0.125/λem
~ue = (0, 0, 0)
pe = 1/20
ρi = 0.125
~ui = (0, 0, 0)
pi = 1/20

(50)

Analogous to the case presented by Shumlak and Loverick [22], we change the value of
the normalized gyroradius and we compare to ideal MHD case (r̂L → 0) and the Euler
case (r̂L →∞). In Fig. 3, we present the the ion density for the different cases.

The results in Fig. 3 are similar to the ones presented in Shumlak and Loverick [22],
although differences are found, maybe due to the different resolution of the mesh or
difference in the numerical method. Also, the fact of having a much larger domain is done
in order to avoid the reflection of possible waves coming from the boundaries that can
play an important role in the solution.

6.2 Flow over a cylinder with complex shock topology

The present case studies the 2-D, field-aligned, low-β and superfast magnetized plasma
around a perfectly conducting cylinder. The MHD solution was first calculated in [8]. The
main interest of this case is the formation of a shock front with a dimpled shape as it is
composed of fast, intermediate and hydrodynamic shock parts. Herein, we reproduce for
the first time the previous MHD results with a collisionless ideal two-fluid model.

The results presented here are run in a circular domain of radius 12.5 with a inner
circular boundary of radius 0.125. The domain is chosen to be large enough to avoid
having influence of the boundaries. Half of the outer boundary is considered as an inlet,
whereas the rest is the outlet. At the inlet, the conditions imposed are the ones in Eq.
(51), Neumann boundary conditions are chosen for all variables in the outlet, and perfectly
conducting walls are chosen for the inner boundary.

The non-dimensional parameters chosen in the results shown herein are as follows:
c∗/v0 = 100, λem = 1836 and r̂D → 0. The normalized gyroradius r̂L = 0.01.

The normalized initial and inlet coditions are as follows:
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Figure 3: Ion density in the collisionless case for different values of normalized gyroradius.
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Fig. 8. a Steady axi-symmetrical solution of the flow over a perfectly
conducting sphere, with MA = 1.5 and β = 0.4 (100 × 100 grid).
Density contours pile up in shocks, and streamlines come in horizon-
tally from the left. b For comparison, the steady bow shock solution for
the flow around a cylinder (Fig. 2), with the same inflow parameters.
In the flow over a sphere, the shock fronts are much closer to the object
than in the cylinder case, because a sphere obstructs the flowmuch less
than a cylinder.

parts present in the topology of Fig. 1b, vary when β and MA

are varied in the switch-on regime. The dimple effect is more
pronounced for low values of β andMA.

As a final remark, we can say that in the parameter regime
under consideration, the global stand-off distance of the bow
shocks (Petrinec & Russell 1997) decreases for increasingMA

while keeping β constant (Fig. 4) — although the stand-off dis-
tance on the stagnation line does not seem to change much
(Fig. 5). The stand-off distance increases for increasing β while
MA is kept constant (Figs. 6 and 7).

4. Axi-symmetrical flow over a sphere

In this section we present numerical simulation results for an
axi-symmetrical bow shock flow over a perfectly conducting
sphere, for parameter values of β = 0.4 and MA = 1.5 which
are situated in the switch-on domain (Fig. 3). These are the same
parameters as for the bow shock flow around a cylinder which
was studied inDe Sterck et al. (1998b).Wewill investigate if the
axi-symmetrical bow shock flow over a sphere in the switch-on
regime exhibits a complex bow shock topology similar to the
topology of a flow around a cylinder in that parameter regime. In
Fig. 8a we show a global view of the converged axi-symmetrical
bow shock solution. The horizontal x-axis (coinciding with the
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Fig. 9. Detail of the steady axi-symmetrical solution of the flow over a
perfectly conducting sphere (100×100 grid). Density contours pile up
in shocks, and streamlines come in horizontally from the left. For the
symmetrical flow over a sphere, parameters in the switch-on domain
lead to a complicated topology which is very similar to the topology
of the flow around a cylinder.

stagnation streamline) is an axis of rotational symmetry. The
leading shock front shows a clear dimple, and there seem to be
additional discontinuities behind the leading shock front. The
shock front is much closer to the object than in the case of the
flow around a cylinder with the same inflow parameters, which
is shown in Fig. 8b for comparison.

In Fig. 9 we show a detailed representation of the central
part of the axi-symmetrical bow shock solution near the stagna-
tion streamline. This plot is to be compared to its cylinder flow
equivalent shown in Fig. 2 (where only the upper part of the
symmetrical flow is plotted). The flow clearly exhibits a topol-
ogy which is very similar to the topology of the flow around a
cylinder. Inspection of the way in which the field lines are re-
fracted when the shocks are passed, reveals that the shocks in all
the flows are of the same type as the shocks in the model flow of
Fig. 2 which were discussed in Sect. 2.1, and detailed analysis
of upstream and downstream Mach numbers, along the lines of
the detailed analysis in De Sterck et al. (1998b), confirms this
conclusion.

We can thus conclude that in the switch-on regime the axi-
symmetrical flow over a sphere exhibits a complex bow shock
topologyvery similar to the topologyof a bowshockflowaround
a cylinder in that parameter regime.

Figure 4: Comparison of the ion density between the two-fluid solution (left) and the
MHD solution (right) from [8].

P =



~B = (1, 0, 0)
~E = (0, 0, 0)
Ψ = 0
Φ = 0
ρe = 1/λem
~ue = (1.5, 0, 0)
pe = 0.1
ρi = 1
~ui = (1.5, 0, 0)
pi = 0.1

(51)

The two-fluid results compared to the solution of [8] are presented in Fig. 4. Note that
in the previous figure, the solution has been rotated in order to be compare so the plasma
flows from left to right. Even though, the results of the MHD solution are more evolved,
one can note that the characteristic dimple is also present in the collisionless two-fluid
solution.

One of the key features of this solution is the use of the real mass ratio. As it can be
seen in Eq. (51), the velocity of both species are the same, whereas the mass density of
electrons is much smaller since their particle mass is much smaller. Therefore, the speed of
sound of electrons is λe times higher than the one of the ions. Using the abovementioned
initial conditions, the initial Mach number of electrons is subsonic and the one of the ions
is supersonic, i.e., Me = 0.06 and Mi = 2.59. The Mach of both species are depicted in
Fig. 5, showing in both cases the shape of the dimple.
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Figure 5: Electron (left) and ion (right) Mach contours. The plasma flows from right to
left.

In Fig. 5, one can see the complexity of the wake. In the MHD case, the wake is
omitted as only one quarter is simulated. However, in the two-fluid case, the electrons
flow subsonically. Therefore, it is not possible to truncate the domain as done in ideal
MHD that makes use of supersonic boundary conditions.

6.3 Flow over a sphere with complex shock topology

We extend the results of the previous section in a 3D geometry. In this case, the
conditions are the same as in the case of the cylinder, but flowing over a sphere of the
same radius. The case is used to verify the 3D implementation of the code.

As in the previous case, we simulate a spherical domain with an inner sphere of radius
0.125. At the inlet, the conditions imposed are the ones in Eq. (51), Neumann boundary
conditions are chosen for all variables in the outlet, and perfectly conducting walls are
chosen for the inner boundary. The initial field is the one of Eq. (51).

As in the previous case, the non-dimensional parameters chosen in the results shown
herein are as follows: c∗/v0 = 100, λem = 1836 and r̂D → 0. The normalized gyroradius
r̂L = 0.01.

Preliminary results are presented in Fig. 6. Even though a finer mesh should be tested,
the solution shows that also a complex structure forms in the shock front. However, the
dimple structure is not as defined as in the 2D case.
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Figure 6: Countour plot of the ion density of the supersonic flow over a sphere. The
plasma flows from left to right.

7 MAGNETOSPHERIC RESULTS

7.1 Reconnection in the magnetotail: GEM challenge

Magnetic reconnection plays a fundamental role in the global dynamics of the Earth’s
magnetosphere. During a geomagnetic substorm, magnetic reconnection takes place in
the magnetotail, on the night-side of the magnetosphere, producing heating and acceler-
ation of the particles that travel along the magnetic field lines and can enter the Earth’s
atmosphere through the polar caps, producing the Northern lights.

Magnetic reconnection in weakly collisional plasmas, as the one in the magnetotail, is
a very complex phenomena, where the reconnection can iniciate at scales of the order of
the electron’s skin depth and that is dominated by the ion’s scales. Since reconnection is
observed to occur faster than the theoretical models, the simulation community proposed
the Geospace Environmental Modeling (GEM) [3] Reconnection Challenge in order to
compare the different models representing a collisionless reconnection. Different models,
as resistive MHD [3], Hall MHD [19], full-particle and hybrid [30] have been compared in
the previous study.

Two-fluid model, as it resolves the electromagnetic and the electron scales, is a good
candidate to represent the origins of the reconnection [11]. Magnetic field lines are not
frozen in the electron fluid, allowing for reconnection. Therefore, unlike Hall-MHD, two-
fluid model does not need an artificial resistivity to initiate reconnection.

The initial conditions consider a Harris current sheet in the z-direction formed by
anti-parallel magnetic fields in the x-direction. The magnetic pressure is balanced by the
pressure in the plasma pressure (both in electrons and ions, to conserve charge neutrality).
The electric current is achieved by an initial diamagnetic velocity in ions and electrons
in the z-direction with opposite directions. We also include a small perturbation in the
magnetic field, forming two magnetic islands. The initial field reads:
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P(~x, t = 0) =



~B = (B0 tanh(y/λ)−B0
l0π

10Ly
cos(2xπ/Lx) sin(yπ/Ly),

2B0
l0π

10πLx
sin(2xπ/Lx) cos(yπ/Ly), 0)

~E = (0, 0, 0)
Ψ = 0
Φ = 0
ρe = mpn0

(
1/5 + sech2(y/λ)

)
~ue = (0, 0, 2kBTe

λqB0

sech2(y/λ)

(1/5+sech2(y/λ))
)

Te = 5
12µ0

B2
0

n0kB

ρi = men0

(
1/5 + sech2(y/λ)

)
~ui = (0, 0,−2kBTi

λqB0

sech2(y/λ)

(1/5+sech2(y/λ))
)

Ti = 1
12µ0

B2
0

n0kB

(52)

The non-dimensional parameters chosen in the results shown herein are as follows:
c∗/v0 = 10, λem = 25 and r̂D = 0.0001. The normalized gyroradius r̂L = 1. In this case,
the mass ratio has been chose to this unnatural large value as it was prescribed in the
GEM challenge, in order to compare the results with the kinetic simulations.

In Fig. 7, the evolution of the electron and ion momentum is presented. As it can
be seen, as the reconnection evolves, the dynamics of electrons and ions decouple from
each other. As well, it is worth noting the turbulent structures that appear in the ions
flow. These turbulent structures are not seen in any other model, neither in MHD nor in
kinetic simulations.

7.2 Preliminary global magnetospheric results

Here we present preliminary results of the first 3D two-fluid magnetospheric result. The
computational domain is a sphere of radius 250 with an inner sphere of radius 2.5 centered
in the origin. The Geocentric Solar Magnetospheric (GSM) system of coordinates is used
for which the x-direction points at the Sun and the dipole is contained in the xz-plane.
The outer boundary is divided into two semispheres, one considered as an inlet and the
other as the outlet. The inlet imposes the conditions of the solar wind and the outlet
applies a Neumann condition. In the inner boundary, the plasma number density is fixed
to 56 AMU/cm3, the temperature is set to 35000 K, and perfectly conducting boundary
is applied for the electromagnetic field and mirror for the rest of variables.

As done in [16], the magnetic field is divided into two components: ~B = ~B0 + ~B1, where
~B0 is a curl-free steady component and ~B1 is the induced component. The curl-free part
correspond to the dipole of the Earth, that is set with a tilt angle of 11.94o.

The initial conditions are taken from measurements of the solar wind performed by the
ACE satellite. The initial conditions that coincide with the inlet conditions, read:
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Figure 7: Electron (left) and ion momentum (right) evolution during the magnetic recon-
nection. Snapshots at t = 18 (top), t = 26 (middle), t = 45 (bottom) panel.
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Figure 8: Formation of the ring current in the two-fluid magnetospheric simulation. Con-
tour correspond to the electric current and the lines to the magnetic field.

P(~x, t = 0) =



~B = (0.591792,−2.13282,−0.602181) ~E = (0, 0, 0)
Ψ = 0
Φ = 0
ρe = 1.26020/λem
~ue = (−10.8434,−0.859678, 0.0146937)
pe = 0.282599
ρi = 1.26020
~ui = (−10.8434,−0.859678, 0.0146937)
pi = 0.282599

(53)

The non-dimensional parameters chosen in the results shown herein are as follows:
c∗/v0 = 10, λem = 1836 and r̂D = 0.0001. The normalized gyroradius r̂L = 0.1.

In Fig. 8, the preliminary results of the previous model representing a global magne-
tosphere are presented. The plots show the magnetic field lines comprising the magnetic
dipole of the Earth. Also, the electric current can be seen, forming the so-called ring
current around the planet. The results are still at an early stage of the simulation when
the bow shock is still not formed.

8 CONCLUSIONS

In the present paper, we present a computational model based on the multi-fluid de-
scription oriented to space weather simulations. The ideal collisionless two-fluid plasma
model, considering electrons and ions under the effect of electromagnetic fields, has been
studied as a first step. The model has been derived from kinetic theory, taking special
attention on the assumptions performed at the particle scales in order to retrieve the ideal
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collisionless two-fluid model.
The propagation of waves in two-fluid plasmas has been studied. The dispersion di-

agrams for solar wind and magnetospheric conditions has been presented. Two-fluid
plasmas are able to reproduce phenomena ranging from high frequency and small scale
dynamics related to the particle dynamics to low frequency and large scale phenomena
related to the MHD description. The magnetospheric conditions suggest that the waves
present at the relevant scales are in the two-fluid regime rather than in the MHD limit.

The equations have been discretized in a finite volume solver that couples multi-fluid
set of equations with Maxwell’s equations. The latter is a very stiff system difficult to
solve numerically and it solved using a second order implicit time stepping. Second order
accuracy in space is obtained by flux reconstruction using flux limiter.

The algorithmic is tested to study the electromagnetic plasma shock problem. Also, the
supersonic flow over a cylinder with a complex shock structure is studied. The problem
is designed for the first time as two-fluid plasma case. The results show that the dimple
in the shock, that was formed in the MHD case is also present in the two-fluid case. The
case is extended to 3D showing also a complex shock structure when a sphere is present.

The numerical model is used to study the dynamics of plasmas under magnetospheric
conditions. The magnetic reconnection taking place in the magnetotail is studied stan-
dalone. The two-fluid description reveals separation of the motion of ions and electrons, as
well as turbulent motions that are not present in other descriptions. Preliminary results
of a global two-fluid magnetospheric simulation are shown. The two-fluid description is
able to represent the ring current in the first stages of the simulation.
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Pulkkinen. The gumics-4 global mhd magnetosphere-ionosphere coupling simulation.
Journal of Atmospheric and Solar-Terrestrial Physics, 80:48–59, may 2012.

[13] J. C. Kasper, M. L. Stevens, A. J. Lazarus, J. T. Steinberg, and K. W. Ogilvie. Solar
wind helium abundance as a function of speed and heliographic latitude: Variation
through a solar cycle. The Astrophysical Journal, 660(1):901, 2007.

[14] E. A. Kronberg, M. Ashour-Abdalla, I. Dandouras, D. C. Delcourt, E. E. Grigorenko,
L. M. Kistler, I. V. Kuzichev, J. Liao, R. Maggiolo, H. V. Malova, K. G. Orlova,
V. Peroomian, D. R. Shklyar, Y. Y. Shprits, D. T. Welling, and L. M. Zelenyi.
Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent
observations and models. Space Science Reviews, 184(1):173–235, 2014.

23



A. Alvarez Laguna et al.

[15] A. A. Laguna, A. Lani, N. N. Mansour, H. Deconinck, and S. Poedts. A
fully-implicit finite-volume method for multi-fluid reactive and collisional mag-
netized plasmas on unstructured meshes. Journal of Computational Physics,
doi:10.1016/j.jcp.2016.04.058, 2016.

[16] A. Lani, M. S. Yalim, and S. Poedts. A gpu-enabled finite volume solver for global
magnetospheric simulations on unstructured grids. Computer Physics Communica-
tions, 185(10):2538–2557, 2014.

[17] W. Lennartsson, R. D. Sharp, E. G. Shelley, R. G. Johnson, and H. Balsiger. Ion com-
position and energy distribution during 10 magnetic storms. Journal of Geophysical
Research: Space Physics, 86(A6):4628–4638, 1981.

[18] M.-S. Liou. A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of
Computational Physics, 214:137–170, May 2006.

[19] Z. W. Ma and A. Bhattacharjee. Hall magnetohydrodynamic reconnection: The
Geospace Environment Modeling challenge. Journal of Geophysical Research: Space
Physics, 106:3773–3782, Mar. 2001.

[20] E. T. Meier and U. Shumlak. A general nonlinear fluid model for reacting plasma-
neutral mixtures. Physics of Plasmas, 19(7):072508, July 2012.

[21] C.-D. Munz, P. Ommes, and R. Schneider. A three-dimensional finite-volume solver
for the Maxwell equations with divergence cleaning on unstructured meshes. Com-
puter Physics Communications, 130:83–117, July 2000.

[22] U. Shumlak and J. Loverich. Approximate riemann solver for the two-fluid plasma
model. J. Comput. Phys., 187(2):620–638, May 2003.

[23] G. A. Sod. A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. Journal of Computational Physics, 27:1–31, Apr. 1978.
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