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Abstract

Structural reliability methods are nowadays a cornerstone for the design of

robustly performing structures, thanks to advancements in modeling and

simulation tools. Monte-Carlo based simulation tools have been shown to

provide the necessary accuracy and flexibility. While standard Monte-Carlo

estimation of the probability of failure is not hindered in its applicability by

approximations or limiting assumptions, it becomes computationally unfea-

sible when small failure probability needs to be estimated, especially when

the underlying numerical model evaluation is time consuming.

In this case, variance reduction techniques are commonly employed, al-

lowing for the estimation of small failure probabilities with a reduced number

of samples and model calls. As a competing approach to variance reduction
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techniques, surrogate models can be used to substitute the computationally

expensive model and performance function with an easy to evaluate numeri-

cal function calibrated through a supervised learning procedure. Both these

tools provide accurate results for structural application. However, partic-

ular care should be taken into account when the reliability problems deal

with high dimensional or strongly non-linear structural performances since

the accuracy of the estimate is largely dependent on choices made during the

surrogate modeling process. In this work, we compare the performance of the

most recent state-of-the-art advance Monte-Carlo techniques and surrogate

models when applied to strongly non-linear performance functions. This will

provide the analysts with an insight to the issues that could arise in these

challenging problems and help to decide with confidence on which tool to se-

lect in order to achieve accurate estimation of the failure probabilities within

feasible times with their available computational capabilities.

Keywords: Kriging, Interval Predictor, Failure Probability, surrogate

modeling, model emulation

1. INTRODUCTION

Nowadays, the design of engineering structures, systems or networks is

largely based on computer based work flows. These work flows are particu-

larly crafted on the application of numerical methods for the solution of the

sets of differential equations that model and describe the physical processes

involved in such applications. However, since these methods do not tradi-

tionally account for the inherent and unavoidable non-deterministic nature

of the modeled processes, a large degree of over-conservatism needs to be
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included to prevent premature failure of the structure (i.e., the structure is

no longer capable of fulfilling its initial design purpose). This conservatism

might possibly cancel out the improvements achieved through the numerical

optimization procedures.

Therefore, nowadays engineering design processes should account for the

non-determinism in e.g., the mechanical properties of the used materials, the

loading of the structure, etc. Then, based on a solid mathematical descrip-

tion of these properties, the reliability of these structures can be effectively

assessed and included even in the earliest design stages. In practice, the

assessment of the reliability is made by computing the probability that the

structure is failing to satisfy its initial design requirements given the ran-

domness or uncertainty on its structural properties and functional loading

environment. Consider a model m : Rnx 7→ Rny that predicts the structural

responses y ∈ Y ⊂ Rny , based on a vector of parameters x ∈ X ⊂ Rnx of the

model. X is herein the set of admissible model parameters, As the actual

value of the model parameters in x is either inherently variable, unknown or

both, also the prediction of the model responses y is also not deterministic.

In a probabilistic context, both quantities are modeled as a random vectors,

and their realizations are respectively distributed according to the probabil-

ity density functions fX (x) and fY (y). In that case, the probability of

failure Pf , that is, the probability that the structure does not satisfy its per-

formance requirements, is computed as the probability of a model response

belonging to the failure domain F :

Pf = P (y ∈ F) =

∫
Rny

IF(y)fY (y)dy (1)
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with IF : Rny 7→ {0, 1} the indicator function, which is defined as:

IF =

0 ⇐⇒ Y ∈ {y | y = m(x), x ∈ X , g(y) > 0}

1 ⇐⇒ Y ∈ {y | y = m(x), x ∈ X , g(y) ≤ 0}
(2)

with g(y) : Rny 7→ R the so-called limit-state function that indicates whether

or not the structure satisfies a predefined performance. In practice, the

considered model m() can be high-dimensional in terms of parameters and

responses. Moreover, the indicator function IF is in most cases non-linear.

Therefore, it is generally intractable to obtain an analytical solution to the

integral in eq. (1). As a solution hereto, simulation methods are commonly

applied to approximate the probability of failure, based on a large number of

realizations of the non-deterministic parameters x and obtaining the corre-

sponding model responses y. The most common approach is to follow Monte

Carlo integration of eq. (1). However, when a sufficiently accurate estima-

tion of a very small Pf (i.e. Pf < 10−3) is desired (e.g. with a coefficient of

variation of less than 5%), a very high number of evaluations of the model

m() is typically needed, which is computationally intractable in case even

medium-scaled numerical models are considered. As an attempt to allevi-

ate this problem, advanced Monte Carlo methods, also known as variance

reduction techniques, such as Line Sampling [1], Subset simulation [2], and

more recently SubSet-∞ [3] have been introduced. These methods have been

applied to large scale problems in e.g. [4, 5, 6], and the gain in computational

efficiency has been numerously illustrated (e.g., [7]). Although these highly

advanced methods typically require less model evaluations as compared to

standard MC, they still prove to be insufficiently accurate in case IF(yi)

is highly non-linear. In that case, still a large number of evaluations are
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typically necessary to obtain a sufficiently small variance of the estimator.

As an alternative approach to alleviate the computational expense, the

functional relation of the full model m() is commonly approximated by a

less computationally intensive surrogate model ŷ = m̂(x). Such a surrogate

model aims at approximating the numerical procedure of the full model m()

with simple mathematical relationships, which takes less computational effort

to evaluate than the solution of the model. The mathematical relationships

of the surrogate model are calibrated by providing a supervised learning al-

gorithm with x-y pairs, obtained from a limited number of runs of m(), with

the target of minimizing a certain norm of the prediction error (e.g., ||y−ŷ||22)

of the model. The accuracy of m̂ is commonly assessed by computing the

prediction error over x-y pairs that did not belong to the training data set.

Many types of surrogate models, including Polynomial Chaos Expansions

[8], Support Vector Machines [9], Neural Networks [10, 11], and many other

techniques have been introduced and applied in recent years. However, since

a less complicated relationship m̂ is applied to predict y, the surrogate ap-

proximation introduces a prediction uncertainty to the model response y [12].

Consequently, this prediction uncertainty propagates to uncertainty concern-

ing the computed probability of failure, that has to be effectively estimated

and accounted for in such approximated analyses.

This work therefore presents a systematic approach to consider such pre-

diction uncertainty in the estimation of small failure probabilities in nonlinear

models. Specifically, Kriging and Interval Predictor Models are considered,

as they readily provide an analyst with an estimate of their prediction uncer-

tainty. A small analytic case study is performed to illustrate the proposed
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approach. This paper is an extension of [13], as it deepens the theoreti-

cal foundations of the work on both interval predictor models and adaptive

Kriging and presents a more thorough case study of the approaches.

2. Uncertain surrogate model predictions

This section provides an overview of the considered surrogate modeling

techniques that are considered in this paper: Kriging and Interval Predictor

models. Since these models provide the analyst with an estimate of the

uncertainty on the prediction of the model response, such uncertainty in the

model output will propagate to the computed probabilities of failure in the

form of bounds of the estimation.

2.1. Kriging

Kriging, also commonly referred to as Gaussian Process Modeling, ap-

proximates the full model m() as the sum of a functional regression model

F (β,x), where F is usually a polynomial function and β indicating the re-

gression terms, and a stationary zero-mean Gaussian stochastic process z(x)

[14]. Formally, the Kriging surrogate model m̂Kr() for the lth response is

expressed as:

ŷl = m̂l,Kr(x) = F (β:,l,x) + zl(x) (3)

with l = 1, ..., ny. As such, a single Kriging model is constructed for each

separate response. For the remainder of the paper, index l is omitted for the

sake of notational simplicity. When a vector of model responses is considered,

it is implicitly implied that a single Kriging model was constructed for each
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response. In eq. (3), the polynomial regression model is given as the linear

superposition of a number of functions f(x) : Rn 7→ R:

F (β,x) = fT (x)β (4)

where β are the corresponding regression coefficients that have to be esti-

mated. The auto-covariance of the stationary zero-mean Gaussian stochastic

process z(x) is given as:

E[z(xi), z(xj)] = σ2R(θ, xi, xj) (5)

with σ the process variance and R(θ, xi, xj) the correlation model between

two xi, xj in X . The correlation model is characterized by a set of coefficients

θ.

As such, first the degree of the polynomial regression model and the cor-

relation function family are selected by the analyst, based on expert opinion.

Then, the correlation coefficients, process variance and correlation parame-

ter θ are determined using a supervised learning procedure. Specifically, nt

couples of model parameters xtr and corresponding responses ytr of the full

model m() are provided. Based on these couples, the necessary parameters

are determined following a maximum likelihood approach [15, 16].

Since Kriging associates a Gaussian random variable to each predicted

ŷ = m̂Kr(x), also an estimation of the variance ζ(x) to the prediction is

given by the Kriging model. Moreover, it can be shown that Kriging is an

unbiased predictor, as it is exact (i.e., zero variance and deviation from mean)

for the provided training points xtr. However, the variance of the prediction

(and as such the uncertainty) increases when the distance ||xtr−x||2 from the

training points becomes larger. As such, when considering the k · σ-bounds,
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with k ∈ Z+, the response of the Kriging predictor can as such be interpreted

as an interval:

ŷI = [m̂Kr(x)− k · ζ(x); m̂Kr(x) + k · ζ(x)] (6)

This interval is by definition symmetric around the deterministic estimate

of the Kriging model. By applying this method for each model response

yl, l = 1, ..., ny, an interval vector ŷI containing the k ·σ confidence intervals

of the model response is obtained next to the deterministic estimate ŷl of the

model response. Note that the assumption that the discrepancy between the

actual model and the regression model as a stationary zero-mean Gaussian

stochastic process can only be fulfilled when the order of the chosen regression

model is sufficiently similar to m(). In practice however, this condition is not

so trivial to obtain, since m() is in general unknown for the entire sample

space, especially when m() requires considerable computational expense to

be evaluated.

A technique for adaptively refining Kriging models in the context of prop-

agating interval uncertainty was introduced in [17]. As can intuitively be

understood, there exists some similarity in accurately predicting small fail-

ure probabilities and propagating interval uncertainty: both processes need a

surrogate model that is accurate in the extremes of the numerical model. The

adaptive Kriging refinement presented in [17] is based on the idea of Maxi-

mum Improvement (MI) to direct the sampling of additional parts. The MI

value of a certain candidate point is specifically evaluated as:

MI =
min (m̃ (x))− (m̃ (xnew)−∆m̃ (xnew))

min (m̃ (x))
(7)

MI =
(m̃ (xnew) + ∆m̃ (xnew))−max (m̃ (x))

max (m̃ (x))
(8)
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with xnew the candidate sample point and ∆ ˜mnew the Kriging estimate of

the variance at this point (i.e., the k ·σ bound). Starting from a coarse large

space-filling design, an initial Kriging model is trained. Then, based on the

MI metric, sampled over a very fine space-filling design, a set of new points is

selected and appended to the initial design before retraining the new Kriging

model. This procedure is repeated until convergence of MI [17].

2.2. Interval Predictor Model

Conversely to most surrogate modeling approaches, Interval Predictor

Models (IPM) provide the analyst with a set-valued mapping mI
IPM : x 7→

yI ⊂ Y , instead of only one crisp value [18, 19]. Specifically, the IPM

translates the crisp valued vector of input parameters x to an interval vector

yI bounding the range of the actual crisp model prediction. This interval

vector yI is defined as:

ŷI =
{
y | y = pT · φ(x),p ∈ pI

}
(9)

with φ(x) a suitable polynomial basis with predefined order d, p ∈ Rd a vec-

tor containing the expansion parameters for the polynomial basis and apex T

denoting the vector transpose operation. The parameters p are determined

by providing nt couples of model parameters x and corresponding responses

y of the full model m(). The set p can be chosen to be hyper-rectangular

which enables the numerical training scheme to be simplified [20]. Then,

instead of determining a single set of crisp parameters p, the training of

the IPM consists of determining the boundaries (i.e. p and p) such that all

(x,y) are encapsulated by the predicted intervals of the IPM. Fortunately,

this means that the IPM can be trained by solving an optimization program
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which is both linear and convex. This is obtained according to a constrained

optimization approach where the expectancy of the interval range is mini-

mized, while ensuring that y
i
< yi < yi, i = 1, ..., ny, with yi in this case a

training sample. If the IPM is being created for the purposes of reliability

analysis it may be more useful to minimize the difference between the failure

probability calculated by the upper and lower bounds (P̄f −P f ), as this will

result in tighter bounds - at the consequence of having to solve a non-convex

program. In addition, it is important to evaluate the objective function ei-

ther analytically or with high accuracy, rather than empirically, when small

samples are used to train an IPM intended for use with small failure prob-

abilities. This is because the standard deviation of the empirical estimate

of the failure probability may well be larger than the failure probability in

these cases. Based on the trained IPM, the lower and upper bound, being y

and y of the prediction interval vector ŷI are estimated as:

y = 0.5 ∗ (p+ p)t · φ(x)− 0.5 ∗ (p− p)t · φ(|x|) (10a)

y = 0.5 ∗ (p+ p)t · φ(x) + 0.5 ∗ (p− p)t · φ(|x|) (10b)

It is clear that obtaining more data will expand the set p, and without

observing an infinite amount of data the obtained bounds on the model

output will never be completely robust. Fortunately Scenario Optimization

theory provides a framework for judging how well the model will generalize

when trained with a finite set of observed data. The reliability R of an IPM,

i.e. the probability that a future unobserved data point is contained within

the IPM, is bounded by

ProbPn [R ≥ 1− ε] > 1− β, (11)
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where ε and β are the confidence and reliability parameters, which for our

hyper-rectangular model can be obtained from

β ≥
(
k + d− 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1− ε)N−i, (12)

where N is the number of training data points, k is the number of data points

discarded by some algorithm and d is the dimensionality of the parameter

vectors. The robustness of an IPM can be evaluated by plotting 1−ε against

1−β, which we will refer to as a confidence-reliability plot, and then finding

1 − ε for an arbitrarily high value of 1 − β. In simple terms, if the area

under the confidence-reliability plot is larger then the IPM is more robust.

Reassuringly, reducing the degrees of freedom in the meta-model (d) increases

this area, and hence improves the generalization of the meta-model (refer to

[20] for a more thorough discussion).

The bound given in eq. (12) is overly conservative in many cases as it

assumes the convex optimization program used to create the IPM is fully

supported (that is, the number of support constraints, which when removed

result in a tighter IPM, is equal to the number of optimization variables). In

some cases this may be overly conservative, and therefore a more optimistic

bound can be obtained by identifying the number of support constraints, s,

and then applying

ε(s) = 1− N−s

√
β

N
(
N
s

) , (13)

which is valid for non-convex programs.

Note that the IPM does not provide a crisp value of the model response.

For comparison with the crisp value that is provided by the full model m()
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and the Kriging predictor, the least squares estimate using the basis chosen

for the IPM is used. This should be roughly similar to finding the mean of a

staircase predictor model, as in [21].

In order to reduce the number of support constraints in the IPM and

hence improve its reliability two strategies were adopted. Firstly we set

p̄i = p
i

for i > 1, in other words the parameter vector was the same for the

upper and lower bound except for a constant, which almost halves the bound

on the number of support constraints. This strategy works particularly well

when modeling deterministic functions. Secondly, an iterative scheme is used

to refine the basis chosen. Firstly, a polynomial basis with the maximum

required degree is created and then the IPM is trained. The monomial term

with the lowest pi is removed. The IPM is now retrained with the new

basis and the procedure is repeated until the IPM has a sufficiently small

uncertainty.

An analogy between IPM’s and interval fields [22, 23, 24] can be estab-

lished in analogy to the analogy between Gaussian Random Fields and Krig-

ing. An interval field is modeled by means of a truncated series expansion of

interval scalars pI that are used to scale a set of basis functions φ(r) that are

defined over the model domain, where the former represent the magnitude

of the spatial uncertainty in the model and the latter represent the spatial

nature of this uncertainty. Similar considerations can be made concerning

the IPM, where instead of efficiently trying to represent the model domain,

an accurate representation of the solution manifold of the numerical model is

constructed. The interval valued parameters p represent the uncertainty in

the prediction of the model, whereas the basis functions represent the global
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shape of the solution manifold.

2.3. Interval failure probability

From the previous, it can be understood that both Kriging and IPM

surrogate models either give an estimate of the uncertainty on the prediction

of ŷ or provide the analyst with a set-valued response that prescribes this

uncertainty. In both cases, the predicted response ŷ is modeled as belonging

to an interval ŷI . As such, in the context of estimation the reliability of

the considered structure given a vector of random model parameters x ∼

fX (x), the resulting random model responses can be regarded as belonging

to a probability box [ŷ] due to the superposition of the interval uncertainty

from the surrogate model on the probabilistic description of the response y

stemming from the random model parameters x. As such, in the context

of determining the structural reliability, also the probability of failure P̂f

becomes interval valued. Specifically, P̂ I
f can be computed as:

P̂ I
f =

∫
Rny

IF([ŷ])f I

Ŷ I
([ŷ])d[ŷ] (14)

which can be solved following e.g. a nested optimization approach [25].

However in this specific context, some considerations allow for simplifi-

cation of this equation. In case of Kriging, the superimposed interval un-

certainty on the predicted model response is strict in the sense that the

upper and lower bounds do not cross. This is a direct result from the

truncation of the random variable that is associated to each predicted re-

sponse. Also, since during the training of the IPM, the explicit constraint

y
i
< yi < yi, i = 1, ..., ny is included, a similar observation can be made
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in this context, as demonstrated in [26] and [21]. Therefore, only the ex-

treme bounds of the predicted response intervals need to be considered in

the evaluation of the failure probability. As such, eq. (14) can be split up as

[27]:

P̂ f =

∫
Rny

IF(ŷ)f
Ŷ

(ŷ)dŷ ≈ 1

NPf

NPf∑
i=1

IF(ŷ
i
) (15a)

P̂ f =

∫
Rny

IF(ŷ)f
Ŷ

(ŷ)dŷ ≈ 1

NPf

NPf∑
i=1

IF(ŷi) (15b)

where, f
Ŷ

(ŷ) and f
Ŷ

(ŷ) are respectively the distribution function of the

lower and upper bounds on the prediction of the surrogate model. It should

be noted that this computation only requires a single call to the surrogate

model m̂(), as both Kriging and IPM provide the analyst with the confidence

bounds on the model prediction.

In case dependent random model parameters are considered, the com-

putation of the failure probability is usually performed in standard normal

space (SNS). Due to the interval-valued uncertainty that is attributed to

each realization of the random model responses, also the limit state func-

tion becomes interval valued after transformation to SNS. However, it can

be shown that due to the monotonicity of the iso-probabilistic transforma-

tion to SNS (see [28]), the minimum and maximum value of the limit state

function correspond to the vertices of the interval-valued uncertainty on the

model response realizations. Therefore, the above argumentation also holds

in this case.

This method as such allows an analyst to make a robust prediction of

the probability of failure of a highly non-linear, computationally demanding
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computer model at greatly reduced cost. It furthermore allows the analyst to

uniquely separate the uncertainty stemming from the modeled physics from

the uncertainty that stems from applying a surrogate model instead of the

full numerical simulation code.

3. Uncertain failure probability estimation

In the study of the uncertainty concerning the estimation failure prob-

ability due to the application of surrogate modeling techniques, Adjiman’s

function is applied:

y = fadj(x1, x2) = cos(x1) · sin(x2)−
x1

(x22 + 1)
(16)

Based on this function, decreasing levels of failure probability are esti-

mated by considering the threshold value for yth ∈ {2, 2.5, 3, 3.1, 3.2, 3.3,

3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.95, 4}. In a first attempt, advanced Monte

Carlo methods such as Line Sampling and SubSet simulation, as well as reg-

ular Monte Carlo simulation are applied, and their performance in terms

of necessary number of function evaluations and variance of the predictor

are compared. Then, different surrogate models for Adjiman’s function are

constructed using three techniques:

• an Interval Predictor Model, based on a 7th-order polynomial basis,

refined using a basis refinement algorithm until only 12 monomials are

present,

• a Kriging model with 2nd-order regression model F (β,x) and an expo-

nential correlation model R(θ;xi,xj) = exp(−θ|xi − xj|),
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• a Kriging model with 2nd-order regression model F (β,x) and an expo-

nential correlation model R(θ;xi,xj) = exp(−θ|xi − xj|), but trained

using the adaptive refinement scheme from [17], as also explained in

section 2.1, using an initial training set size of 10 samples and an in-

crease of 5 additional training points per iteration,

and these surrogate models are applied to perform a large scale Monte Carlo

integration of eq. (1). Both modeling techniques are applied to the same

training data sets containing either 100, 250, 500 or 1000 deterministic train-

ing samples. It should be noted that no computational gain is expected in the

application of a surrogate model for the considered test function. Nonethe-

less, it allows for conceptually comparing the accuracy in predicting small

failure probabilities of the considered surrogate modeling techniques in a

rigorous way.

Since the considered surrogate modeling approaches are conceptually very

different, comparison of their accuracy based on some a priori (i.e., before

computing Pf ) metric is non-informative. The most obvious way would be

to compute for instanc the R2-value and the Chebyshev norm (Dch) of the

difference between the analytical model and surrogate prediction using a

set of validation data. However, since the interval predictor model only

provides a set valued response for each combination of parameter values, such

metrics computed over for instance the midpoint of the predicted intervals

are non-informative. Hence, such comparison does not tell much about the

performance of the methods. All numerical computations, except for the

adaptive Kriging refinement, are performed using [29].

16



3.1. Advanced Monte Carlo sampling

As a first step in the analysis, the performance of Monte Carlo, Line

Sampling with an adaptive algorithm to find the important direction (see

[30]) and SubSet-∞ [3] is tested in terms of the estimation of the failure

probability, the coefficient of variance of this estimation and the number of

samples that were needed to obtain the estimate. These simulation methods

are applied directly using the analytical function, as introduced in eq. (16),

to ensure that this analysis is not biased due to prediction errors of the

surrogate models. Both x1 and x2 are assumed to be marginally uniform

distributed within the interval [−4; 4] with zero covariance.

The Monte Carlo and Line Sampling methods were applied until a coef-

ficient of variance (CoV) of the estimator of 5% was reached, albeit with a

maximum of 107 samples. Hereto, the sampling was performed in batches of

5 · 102 samples for Monte Carlo simulation and 200 lines for Line Sampling.

Then, after each batch the CoV is estimated and the simulation is stopped if

CoV < 0.05. The important direction for Line Sampling is found by means

of the adaptive algorithm presented in [30]. For SubSet-∞, the intermediate

levels of Pf were set to 0.1 and the initial population size was heuristically

set until a sufficiently small CoV was obtained. A CoV of approx. 8% for

the prediction of Pf for yth = 2 was obtained at 103 samples, as the CoV

did not improve significantly when the population size was further increased.

The same initial population size was kept constant for all other evaluations

of the failure probability.

Figure 1 illustrates the topology of the limit state function of Adjiman’s

function in the standard normal space U . Herein, u1 and u2 respectively cor-
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respond to u1 = Tu(x1) and u2 = Tu(x2), with Tu : X 7→ U a transformation

operator mapping responses from physical to standard normal space. This

plot is generated by performing 5 ·104 Monte-Carlo evaluations of the analyt-

ical function, with a threshold value of yth = 3.7. The red dots in this figure

indicate the samples laying in the failure domain F (i.e., I ≤ 0), whereas the

samples in the safe domain S (i.e., I > 0) are indicated in green. As it may

be noted, a highly non-linear notched limit state function g(u) is obtained,

which poses a challenge for the applied advanced Monte Carlo methods.

Figure 1: Failure domain F and safe domain S in standard normal space for Adjiman’s

function

Figure 2 shows the estimated failure probability, as obtained using Monte

Carlo, Advanced Line Sampling and SubSet-∞, as a function of the threshold

value. First, it can be seen that the estimate of the failure probability as a

function of the threshold of y is approximately equal for Monte Carlo and

the SubSet methods, as long as the failure probability remains moderately

large (i.e., Pf > 10−3). However, the obtained results diverge significantly

when smaller failure probabilities are computed. Advanced Line Sampling
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on the other hand provides in this case a better estimate for the smaller

failure probabilities, which is explained by the independence of Line Sampling

performance to the magnitude of the probability of failure [31].

Figure 2: Estimated failure probability and the coefficient of variance for different thresh-

old values y for Adjiman’s function

Figure 3 shows the CoV of the failure probabilities estimated by the

three methods. It can be noted that the variance on the failure probability

predictor that is obtained by Monte Carlo and Advanced Line Sampling is

up to a factor 5 smaller as compared to SubSet-∞. This is a direct result

from the fact that in the case of Monte Carlo and Advanced Line Sampling,

additional samples were generated until a specified CoV of 5% was reached,

whereas the SubSet method was heuristically tuned to minimize the CoV of

the prediction. Moreover, in the case of SubSet, the CoV measures up to

60% in the case of the smallest considered failure probabilities.
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Figure 3: Estimated failure probability and the coefficient of variance for different thresh-

old values y for Adjiman’s function

Figure 4 shows the computational efficiency in terms of necessary number

of samples to perform the probability of failure estimate. From this figure,

it is clear that SubSet-∞ is more efficient than Advanced Line Sampling,

which in its turn is more efficient than standard Monte Carlo simulation for

the estimation of the failure probability. This is particularly true when small

failure probabilities are considered. However, in that context it should be

noted that the variance of the Monte Carlo estimator is an order of magnitude

lower as compared to the variance of P̂f , as obtained by SubSet, which limits

the credibility of the estimate. The variance of Pf obtained via Advanced

Line Sampling is approximately equal to that of Monte Carlo, albeit at a

strongly reduced computational cost.

It should be noted that SubSet-∞, the most efficient technique, still re-
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quires more than 2000 model evaluations, which is prohibitive when the

estimation of the failure probability of a structure using computationally

expensive computer models m() is considered.

Figure 4: Number of necessary samples of the advanced Monte Carlo methods for different

threshold values y for Adjiman’s function

As such, it can be concluded that although highly performing advanced

Monte Carlo methods exist to date, the estimation of small failure probabil-

ities in highly non-linear models still can prove to be computationally very

demanding. Therefore, even using these advanced Monte Carlo methods,

the application of surrogate modeling techniques still proves to be of impor-

tance, as the training of such surrogate model typically requires less model

evaluations as compared to a direct application of the advanced Monte Carlo

methods for the estimation of a small probability of failure. As discussed in

section 2, this however imposes uncertainty on the prediction of the failure

probability as well.
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3.2. Surrogate model based estimation

This section presents results of the effect of the selection of the surro-

gate modeling approach and corresponding training on the uncertainty that

is attributed to the prediction. Using the constructed surrogate models, de-

creasing levels of failure probability are estimated by performing Monte Carlo

sampling until the CoV of the predictor was less than 5%, analogously to the

method that was applied in section 3.1.

The results for each estimation of the failure probability, for each of the

constructed surrogate models is illustrated in figures 5 - 7. For the Kriging

models, the 2 · σ bounds are considered, which yield a 95.5% confidence

interval for Pf . For the IPM the uncertainty in the bounds on Pf is considered

as being less than ε when β = 1 − 96. In other words the bounds on Pf

obtained from integrating over the bounds of the IPM must be expanded by

ε.

Figure 5 illustrates the performance of the regular Kriging surrogate mod-

eling approach. Specifically, the ±2 · σ bounds are illustrated together with

the crisp (mean) estimate of the model for all considered training data sets.

Also the prediction of the failure probability using the analytic model is il-

lustrated. First, in case sufficient data are used for the training, the regular

Kriging is capable of providing a relatively accurate crisp estimate of the

failure probability, as long as Pf > 5 ·10−03. For smaller failure probabilities,

Kriging fails in all cases. Second, it can be noted that the Kriging prediction

is conservative in the sense that the ±2 · σ alway encompass the true fail-

ure probability. However, the lower bound prediction fails in all cases when

y > 3.7. This is due to the difficulty of sampling small failure probabilities
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with standard Monte Carlo with a limited sample set. Finally, when more

data are included in the training of the Kriging model, the ±2 · σ bounds

on the prediction become tighter. This is a direct result of the conditioned

random field that underlies these predictions. When more points are located

throughout the model domain, the relative distance between training points

decreases, and as such also the variance of the predicted random variable.

Figure 5: Performance of the Kriging surrogate models trained with different data sets in

predicting the failure probability of Adjiman’s function. For clarity, only the results of the

models trained with 100 and 1000 are shown.

Figure 6 illustrates the performance of the interval predictor model in

predicting the upper bound of Pf . Specifically, the ±ε bounds on the pre-
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diction of the upper limit of the failure probability P̄f are illustrated for all

data sets. Also the prediction of the failure probability using the analytic

model is illustrated. Only the upper bound of the IPM is illustrated for

visualization purposes, since this is the most relevant from an engineering

standpoint. First, it can be seen that except for y = 2 and y = 2.6, the

exact failure probability always lies inside the ε bounds of the upper bound

prediction of the IPM. Hence, the IPM always gives a safe estimation of the

failure probability. However, when the true Pf becomes smaller than 0.01

for the model trained with 1000 samples, the ε bounds inflate very quickly,

making the estimate very conservative. This behavior is more pronounced for

smaller data sets, since the confidence in the interval is proportional to the

size of the training data set. Finally, it can be noted that the upper bound

prediction of the set, without taking ε into account is more accurate than

the IPM that is trained with 1000 samples. This indicates over-training of

the polynomial basis, which is possibly aggravated by the iterative pruning

of the polynomial basis as explained in section 2.2.

Figure 7 illustrates the performance of the adaptive Kriging model. Specif-

ically, the ±2 · σ bounds are illustrated together with the crisp (mean) es-

timate of the model for all considered training data sets. Also the predic-

tion of the failure probability using the analytic model is illustrated. First,

the crisp estimate of the adaptive Kriging model is highly accurate for all

datasets, except for the model trained with 110 samples. Furthermore, when

Pf < 2 · 10−04 the crisp accuracy degrades quickly. The ±2 ·σ bounds on the

prediction are in all cases conservative w.r.t. the actual failure probability.

It can be noted that the prediction bounds of the adaptive Kriging model are
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Figure 6: Performance of the IPM surrogate models trained with different data sets in

predicting the failure probability of Adjiman’s function.

less over-conservative as compared to the regular Kriging model. This is a

direct result from the fact that the adaptive training procedure of the Kriging

model directs more training points towards the zone with a high probability

of failure. Therefore, given the same number of training points, the sampling

will be denser in the region of the input space where the extrema of the

function are locate, and as such, the variance of the Kriging estimator will

locally be lower in this region.

As such, the best performing method of the considered surrogate models

in terms of needed training data, accuracy and conservatism of the predicted
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Figure 7: Performance of the Adaptive Kriging surrogate models trained with different

data sets in predicting the failure probability of Adjiman’s function. For clarity, only the

results of the models trained with 110 and 1010 are shown

Pf is adaptive Kriging. This can be explained by the fact that the adaptive

Kriging model aims at optimizing the surrogate model performance in those

regions where extrema of the model are located. However, in other regions of

the model, the adaptive Kriging model generally is expected not to perform

well due to a lack of local training points. In general, the improved per-

formance of Adaptive Kriging when compared with Kriging should inspire

the development of similar active learning type methods for IPMs. This is

particularly important for low failure probabilities where the performance of

26



the IPM is worst due to the comparatively high value of ε.

Finally, it can be seen that by using a surrogate model, computational

expenses for evaluating small failure probabilities can be decreased drasti-

cally. This statement is based on the argumentation that the application of

advanced Monte Carlo methods for the estimation of small failure probabil-

ities in conjunction with non-linear limit-state functions might prove to be

computationally very demanding when a full-scale numerical model is used

for the prediction of Pf .

4. Conclusions

In case highly non-linear limit state functions occur in the estimation

of small failure probabilities, advanced Monte Carlo methods such as Line

Sampling or SubSet simulation may perform poorly or may still need a large

number of deterministic model evaluations to converge to a sufficiently small

coefficient of variance on the estimator. Less expensive surrogate models

that are calibrated in a supervised learning approach are therefore often

used. However, these surrogate model prediction introduce a further level of

uncertainty due to their approximative nature. This paper presents a study

on the robust estimation of small failure probabilities in strong non-linear

models. Specifically, Kriging and Interval Predictor Models are employed

since they give an estimate of the uncertainty on the computed model re-

sponse, and hence, provide the analyst with a confidence interval on the

prediction. Since the intervals are used to model the uncertainty on the sur-

rogate model estimation superpose on the propagated variability stemming

from the random model parameters, the failure probability should be com-
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puted using a probability box formulation of the model response. It is shown

that this problem reduces to computing two separate failure probabilities,

using only a single run of model evaluations. Therefore, instead of focusing

on the crisp estimate of the surrogate model to compute the probability of

failure, it is suggested to take the corresponding uncertainty into account.

For practical purposes, it is moreover even sufficient to consider the upper

bound on the failure probability prediction. The performed case studies on

a highly non-linear function show that:

• advanced Monte Carlo methods per se are sometimes not sufficient to

perform accurate failure probability computations in highly non-linear

models, leading to often still high computational expenses. This calls

for the application of robust surrogate modeling procedures.

• Interval predictor models always provide a robust estimate of the prob-

ability of failure, yet when small failure probabilities are considered,

the bounds on the prediction become non-informatively large, espe-

cially for smaller data sets. Also over-training of the polynomial basis

can occur when too many data-points are provided for the training.

• The presented Adaptive Kriging method outperforms regular Kriging

and Interval Predictor Models significantly in terms of over-conservatism

and accuracy of the estimate and needed training data. However, it is

expected that the Adaptively trained Kriging model performs poorly

in other regions of the model domain due to a lack of training points.

28



Acknowledgements

The Flemish Research Foundation is acknowledged for their support in

the research project G0C2218N, as well as for the post-doctoral grant 12P359N

of Matthias Faes.

References

References

[1] P. Koutsourelakis, H. Pradlwarter, G. Schuëller, Reliability of structures
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